WO2016182403A1 - Feed additive comprising lysine derivative - Google Patents

Feed additive comprising lysine derivative Download PDF

Info

Publication number
WO2016182403A1
WO2016182403A1 PCT/KR2016/005118 KR2016005118W WO2016182403A1 WO 2016182403 A1 WO2016182403 A1 WO 2016182403A1 KR 2016005118 W KR2016005118 W KR 2016005118W WO 2016182403 A1 WO2016182403 A1 WO 2016182403A1
Authority
WO
WIPO (PCT)
Prior art keywords
acl
rumen
feed
lysine
feed additive
Prior art date
Application number
PCT/KR2016/005118
Other languages
French (fr)
Korean (ko)
Inventor
홍국기
김정현
박연희
박혜민
최수진
문준옥
오린석
양영렬
박진승
Original Assignee
씨제이제일제당 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당 (주) filed Critical 씨제이제일제당 (주)
Publication of WO2016182403A1 publication Critical patent/WO2016182403A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/142Amino acids; Derivatives thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/142Amino acids; Derivatives thereof
    • A23K20/147Polymeric derivatives, e.g. peptides or proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/10Feeding-stuffs specially adapted for particular animals for ruminants

Definitions

  • the present application relates to a feed additive comprising a lysine derivative and a method for raising animals using the same.
  • ACL ⁇ -amino- ⁇ -caprolactam
  • One object of the present application is to provide a feed additive comprising ⁇ -amino- ⁇ -caprolactam (ACL) or a salt thereof as an active ingredient.
  • ACL ⁇ -amino- ⁇ -caprolactam
  • Another object of the present application is to provide a feed composition comprising the feed additive.
  • Another object of the present application is to provide a method of raising an animal, comprising feeding the feed composition to the animal.
  • ⁇ -amino- ⁇ -caprolactam is a lysine derivative, which has a low rate of being degraded and absorbed by ruminant microorganisms, so that it can be absorbed in the stomach or small intestine of ruminants, resulting in an increase in ruminants and improvement of oil quality. .
  • FIG. 1 is a diagram showing a scheme for generating ⁇ -amino- ⁇ -caprolactam (ACL) from lysine.
  • ACL ⁇ -amino- ⁇ -caprolactam
  • Figure 2 is a diagram showing the total gas generation amount (ml) of each of the control, lysine, L-ACL, and D / L-ACL.
  • Fig. 3 is a diagram showing the results of confirming the ratios of cattle rumen bypass by lysine, L-ACL, and D / L-ACL.
  • One embodiment embodying the present application is a feed additive, comprising ⁇ -amino- ⁇ -caprolactam (ACL) or a salt thereof as an active ingredient.
  • ACL ⁇ -amino- ⁇ -caprolactam
  • ⁇ -amino- ⁇ -caprolactam means a compound represented by the following Chemical Formula 1.
  • the ACL is one of the lysine derivatives, also named lysine lactams.
  • Preparation of the ACL can be carried out using a variety of methods known in the art, for example, it can be carried out by enzymatic synthesis or chemical synthesis. More specifically, it can be synthesized using a ring closure reaction for converting lysine to ACL, using a catalyst (catalyst) for converting lysine to ACL, or using an appropriate organic solvent for converting lysine to ACL. It can be prepared by, but is not limited to those described above.
  • the ACL may be included in the feed additive in the form of its salt.
  • the ACL may be provided as a salt in an acceptable form as a feed ingredient, which may be prepared by known methods.
  • specific examples include inorganic acids such as hydrochloric acid, nitric acid, phosphoric acid and sulfuric acid; Sulfonic acids such as methanesulfonic acid; Or acid addition salts formed by organic carbon acids such as oxalic acid, acetic acid, fumaric acid, malonic acid, maleic acid, malic acid, succinic acid, but are not limited thereto.
  • the ACL may be in the form of L-ACL, D-ACL or D / L-ACL, but is not limited thereto.
  • lysine is one of the basic ⁇ -amino acids, which, together with methionine and cysteine, belong to the first limited amino acid of ruminants, and lysine is biosynthesized from oxalacetic acid via the lysine biosynthetic pathway.
  • feed additive means a substance added to a feed composition.
  • the feed additive may be to improve productivity or health of the target animal, but is not limited thereto.
  • the feed additive may correspond to auxiliary feed in the feed management method.
  • the feed additive may further include nutrients such as nucleotides, amino acids, calcium, phosphoric acid, organic acids, etc. to increase productivity or health of the target animal, but is not limited thereto.
  • feed composition refers to food to be given to animals.
  • the feed composition refers to a substance that supplies organic or inorganic nutrients necessary for maintaining the life of an animal or producing meat, milk, and the like.
  • the feed composition may include a feed additive, and may further include nutritional ingredients necessary for maintaining the life of the animal, or producing meat, milk, and the like.
  • the individual to which the feed additive or feed composition including the same is applicable is not particularly limited, and any form may be applied.
  • the present invention may be applied to animals such as cattle, sheep, giraffes, camels, deer, goats, and the like without limitation, and specifically, but not limited to ruminants having rumen.
  • ruminant is a special digestive tract found in some animals of mammalian joiners, and is divided into four rooms, called hump, honeycomb, folds, and wrinkles, for the purpose of rubbing. Also known as ruminwiwi, once swallowed food into the mouth again to chew well swallow swallowing, this rumen is called the stomach to enable rumination. In the rumen, microbial symbiosis has the ability to decompose and energize the cellulose of plants that cannot be digested by ordinary animals.
  • ruminant refers to an animal having the rumen described above, which includes the animals of the family Camel, Baby Deer, Deer, Giraffe and Bovine.
  • bovine animals include, for example, cattle, goats, black goats, sheep, and the like, and more specifically, cattle. However, it is not limited thereto.
  • the feed additive according to the present application may be used individually, may be used in combination with a conventionally known feed additive, and may be used sequentially or simultaneously with the conventional feed additive.
  • Another embodiment embodying the present application is a feed composition comprising the feed additive.
  • the feed additive and feed composition are as described above.
  • the feed composition may be paid according to a general specification management method, may be paid in the morning and afternoon, but is not limited thereto.
  • the amount of salary is not particularly limited.
  • Another aspect of embodying the present application is a method of raising an animal, comprising feeding the feed additive or feed composition to the animal.
  • the method may be a method comprising feeding the feed composition to a ruminant.
  • the method may be paid according to a general specification management method, and may be paid in the morning and afternoon, but is not limited thereto.
  • the amount of salary is not particularly limited.
  • Holstein (Holstein) castor with rumen cannula (with weight of 630 ⁇ 650kg) was released and two dogs were fed twice a day (7:30 am, 3:00 pm).
  • Commercial feed (CJ CheilJedang, MilkzenTM) And rice straw was fed by breeding.
  • the rumen fluid was collected around 10 am on the day of the experiment, and the contents of the rumen were taken out through the cannula, squeezed out with gastric fluid with gauze, and then packed in a thermos bubbling with CO 2 and transported to the laboratory in a state of blocking oxygen invasion. It was used later. It took less than an hour to transport to the lab.
  • McDougall's buffer (Troelsen and Donna, 1966), which is generally used in rumen experiments after filtration with two layers of gauze, and used as an anaerobic culture solution.
  • Table 1 The composition of McDougall's buffer simulations is shown in Table 1.
  • Test feed was used as a commercial feed (CJ Cheil Jedang, Milk JenTM) as a basic feed, and the test material was prepared by mixing the test material with the basic feed.
  • Test materials were used as L-ACL and D / L-ACL, and experimental group 1 using L-ACL as test substance and experimental group 2 using D / L-ACL as test substance.
  • Control 1 consisting of only basic feed without test substance and control 2 using L-lysine as test substance were compared together. In each experimental group, the culture was carried out in three repetitions.
  • the basic feed and the test substance were mixed in a ratio of 4: 1 (basic feed 0.4 g, test substance 0.1 g, except for control 1, 0.5 g only basic feed), and 0.5 g of the mixed test feed was added to a 125 ml culture bottle. After mixing 50 ml of the prepared anaerobic broth, the mixture was sealed and left in a 39 ° C. incubator to start culture.
  • the culture was finally carried out for 72 hours, and culture sampling was conducted at 0h, 48h, 72h after the start of the culture. In order to confirm the culture state, the total gas generation amount of the culture solution sample was primarily measured.
  • microbial symbiosis has the ability to decompose and energize the cellulose of plants that cannot be digested by ordinary animals.
  • the microbes in the rumen produce a gas, most of which is volatile fatty acids (VFA). Volatile fatty acids are generally generated at 65% acetic acid, 20% propionic acid, and 15% butyric acid, and these volatile fatty acids are used as ruminant energy sources. Journal of Biotechnology Vol. 9 (38), pp. 6229-6232).
  • the increase or decrease of volatile fatty acid production by the microorganisms in the rumen can be used as an indicator of the degradation of feed or feed additives, thereby inferring the link between the protective effect of the feed additives in the rumen and the reduction of volatile fatty acid production. have.
  • FIG. 3 is a graph showing the rumen bypass rate (%), which compares the relative residual amount (%) of 24h and 48h samples when the residual amount of 0h sample is converted to 100%.
  • L-lysine was digested by rumen microorganisms at 0% and 48h after 48h
  • L-ACL was digested by rumen microorganisms at 96% at 48h and 90% at 72h. Seemed.
  • D / L-ACL showed a rumen bypass rate of 102% at 48h and 91% at 72h. Considering the error range, it can be determined that L-ACL and D / L-ACL are bypassed by almost no degradation by the microorganisms in the rumen until 72h.
  • Nutrients not broken down by the microbes in the rumen are absorbed in the small intestine and used for protein synthesis and energy metabolism.
  • ACL it is expected that most of it will be delivered to the small intestine due to the high bypass efficiency, and that the amide binding site of the ACL can be converted into lysine form when the amide binding site of the ACL is cleaved by the application of the degrading enzymes present in the small and liver. Absorption will be used.
  • the following experiment was conducted.
  • cleavage of amide bonds is possible by digestive enzymes such as trypsin and pepsin, and can also be cleaved by hydrolytic enzymes such as asilase.
  • digestive enzymes such as trypsin and pepsin
  • hydrolytic enzymes such as asilase.
  • proteins having peptide bonds by digestive enzymes such as aminopeptidase, carboxypeptidase, endopeptidase, and dipeptidase, which are located in the mucosa
  • Digested into amino acids and some dipeptide forms, some undigested dipeptides are also absorbed into cells, hydrolyzed to amino acids by dipeptidase and then transported into the bloodstream. Numerous nutrients in a form that cannot be used directly are absorbed by the small intestine and then moved along the bloodstream to the liver, where they are converted into substances that can be metabolized in the body through various decomposition processes.
  • Example 2 One. Small intestine enzyme group
  • Example 2 Liver tissue Enzyme group
  • liver tissue Mix 0.125g of liver tissue and 1ml of 20mM sodium phosphate buffer (pH7.4) in the liver of Hanwoo (History: KOR005078680400) slaughtered at NACF Bucheon Livestock Products Market, and then glass bead (Sigma G1145) Hepatic tissue was disrupted via beadbeater (MP TM FastPrep®-24) by adding (about 1/10 volume) (20 seconds, 3 times). The hepatic crushing fluid thus obtained was centrifuged at 4 ° C. (14000 rpm, 10 minutes) to secure the supernatant and used in this experiment.
  • MP TM FastPrep®-24 beadbeater
  • Example 1 in vitro digestion experiments were conducted using enzyme groups of small intestine and liver tissues to determine whether ACLs having a protective function (bypass) in the rumen can be digested and digested in the small intestine.
  • the reaction proceeded at a concentration of about 2 g / L ACL, and the exact concentration is specified in the LC quantification results (g / L) of Example 2-4.
  • the final volume of the reaction is 1000 ⁇ l and the composition of the substrate, small intestine, and buffer used is specified in Table 4 below.
  • Example 2-4 Small intestine enzyme reaction result
  • ACL was converted to lysine in the in vitro reaction of small intestine and hepatic enzyme family. From these results, it was confirmed that when the ACL reaches the small intestine through the rumen, it can be converted into lysine by digestive enzymes in the small intestine. The possibility was confirmed. This means that the ACL provided as a feed additive can be utilized directly as lysine in substantially amino acid form in the body of ruminants.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Animal Husbandry (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Birds (AREA)
  • Fodder In General (AREA)
  • Feed For Specific Animals (AREA)

Abstract

The present application relates to a feed additive comprising a lysine derivative, and a method for raising animals using same.

Description

라이신 유도체를 포함하는 사료첨가제Feed additives containing lysine derivatives
본 출원은 라이신 유도체를 포함하는 사료첨가제 및 이를 이용하여 동물을 사육하는 방법에 관한 것이다. The present application relates to a feed additive comprising a lysine derivative and a method for raising animals using the same.
생명을 유지하고 새로운 조직을 형성하거나 젖, 고기, 알 등을 생산하는 활동을 이어가기 위하여 동물은 적절한 영양분을 체외로부터 계속적으로 공급받아야 한다. In order to sustain life, to form new tissues, or to continue the work of producing milk, meat, eggs, etc., animals must be supplied with adequate nutrients in vitro.
따라서, 동물에게 사료 외에도 필수적인 영양성분인 아미노산을 직접 급여하여 증체율 및 육질 등의 특성을 개선시키려는 노력이 지속되어 왔다. 하지만 반추동물이 섭취한 대부분의 아미노산은 반추위 내 미생물들의 소화과정을 통해 60-70%가 자체적으로 소비되고 일부 소화가 덜 된 아미노산만 소장에서 소화, 흡수된다. 반추위 내 미생물들에 의한 분해 과정을 회피하고 소장에 안정적으로 도달 및 흡수되어야만 하기 때문에 반추위 내 보호 효과 또는 반추위 우회(bypass) 효과가 향상된 신규 기술 및 물질에 대한 필요성이 높아지고 있는 추세이다. Therefore, efforts have been made to improve the characteristics such as weight gain and meat quality by directly feeding amino acids, which are essential nutrients to animals. However, most amino acids consumed by ruminants are consumed 60-70% by the digestion process of the microbes in the rumen, and only some less digestible amino acids are digested and absorbed in the small intestine. There is a growing need for new technologies and materials that have improved protection and / or bypass effects in the rumen because they must be avoided and absorbed by the microorganisms in the rumen and stably reached and absorbed in the small intestine.
현재까지 알려진 아미노산을 보호하는 방법으로는, 아미노산-광물질 킬레이트 방법, pH에 민감한 고분자를 이용한 캡슐화 방법, 코팅처리기술(Smartamine MTM, Mepron M85, METHIO-BY)이 있다. 그러나, 상기 코팅처리기술이 적용된 제품은 부형제의 사용과 코팅물질의 가격에 영향을 많이 받는다는 단점이 있다.Known methods of protecting amino acids are amino acid-mineral chelate method, encapsulation method using pH sensitive polymer, and coating treatment technology (Smartamine MTM, Mepron M85, METHIO-BY). However, the product to which the coating treatment technology is applied has a disadvantage of being affected by the use of excipients and the price of the coating material.
셀룰로오스, 검류, 당류, 탄산칼슘, 탈크 등을 분사하여 건조함으로 보호 라이신을 제조하는 방법이 있으나 대량생산이 어렵고, 피복물질이 미생물의 영양원으로 사용되어 효율이 떨어진다. 또한, 아미노산을 에틸 셀룰로오스, 경화 유지, 왁스 등의 보호물질과 혼합하여 냉동스프레이 하는 방식의 제품이 있으나, 이 경우 에너지 비용이 많이 들고 표면에 위치한 비보호 아미노산을 통하여 분해가 진행되어 그 효과가 떨어지는 단점이 있다. 따라서, 장관내 및 반추위에서 서식하고 있는 미생물에 대해 높은 안정성을 유지하면서 반추위를 지나쳐 반추동물이 사용할 수 있는 반추위 보호 아미노산의 개발의 필요성이 절실히 요구되고 있다.There is a method of manufacturing a protective lysine by spraying cellulose, gum, sugar, calcium carbonate, talc and the like, but mass production is difficult, and the coating material is used as a nutrient source of microorganisms, thereby decreasing efficiency. In addition, there is a product of the method of refrigeration spray by mixing amino acids with protective substances such as ethyl cellulose, hardening oil, wax, etc. In this case, the energy cost is high, and the degradation is progressed through the unprotected amino acids located on the surface. There is this. Therefore, there is an urgent need for the development of rumen protective amino acids that can be used by ruminants across the rumen while maintaining high stability against microorganisms in the intestinal and rumen.
본 발명자들은 반추위 보호 아미노산을 개발하고자 예의 노력한 결과, α-아미노-ε-카프로락탐(ACL)이 반추위 보호 아미노산 유도체로서 사용될 수 있음을 확인하였다. 상기 ACL은 반추위 미생물에 분해되는 정도가 현저히 낮아 반추위를 우회(bypass)하고 반추동물의 위 또는 소장에서 분해 및 흡수될 수 있음을 확인하고, 본 출원을 완성하였다. As a result of intensive efforts to develop rumen protective amino acids, the inventors have found that α-amino-ε-caprolactam (ACL) can be used as rumen protective amino acid derivatives. The ACL has a significantly low degree of degradation in ruminant microorganisms, bypasses the rumen and confirms that it can be decomposed and absorbed in the stomach or small intestine of ruminants, thus completing the present application.
본 출원의 하나의 목적은 α-아미노-ε-카프로락탐(ACL) 또는 이의 염을 유효성분으로 포함하는, 사료 첨가제를 제공하는 것이다.One object of the present application is to provide a feed additive comprising α-amino-ε-caprolactam (ACL) or a salt thereof as an active ingredient.
본 출원의 다른 목적은 상기 사료 첨가제를 포함하는, 사료 조성물을 제공하는 것이다.Another object of the present application is to provide a feed composition comprising the feed additive.
본 출원의 또 다른 목적은 상기 사료 조성물을 동물에게 급여하는 단계를 포함하는, 동물을 사육하는 방법을 제공하는 것이다. Another object of the present application is to provide a method of raising an animal, comprising feeding the feed composition to the animal.
α-아미노-ε-카프로락탐(ACL)은 라이신 유도체로서, 반추위 미생물에 의해 분해 흡수되는 비율이 낮아 반추동물의 위 또는 소장에서 흡수되어 반추동물의 증체 및 유질의 개량 등의 효과를 가져올 수 있다. α-amino-ε-caprolactam (ACL) is a lysine derivative, which has a low rate of being degraded and absorbed by ruminant microorganisms, so that it can be absorbed in the stomach or small intestine of ruminants, resulting in an increase in ruminants and improvement of oil quality. .
도 1은, 라이신으로부터 α-아미노-ε-카프로락탐(ACL)을 생성하는 scheme을 나타낸 도이다. 1 is a diagram showing a scheme for generating α-amino-ε-caprolactam (ACL) from lysine.
도 2 는 대조군, 라이신, L-ACL, 및 D/L-ACL 각각의 총 가스발생량 (ml)을 나타낸 도이다.Figure 2 is a diagram showing the total gas generation amount (ml) of each of the control, lysine, L-ACL, and D / L-ACL.
도 3는, 라이신, L-ACL, 및 D/L-ACL 각각의 축우 반추위 바이패스(Bypass) 비율을 확인한 결과를 나타낸 도이다. Fig. 3 is a diagram showing the results of confirming the ratios of cattle rumen bypass by lysine, L-ACL, and D / L-ACL.
본 출원을 구현하는 하나의 양태는 α-아미노-ε-카프로락탐(ACL) 또는 이의 염을 유효성분으로 포함하는, 사료 첨가제이다.One embodiment embodying the present application is a feed additive, comprising α-amino-ε-caprolactam (ACL) or a salt thereof as an active ingredient.
본 출원에서 용어, "α-아미노-ε-카프로락탐(ACL)"은 하기 화학식 1로 표시되는 화합물을 의미한다. 상기 ACL은 라이신 유도체의 하나이며, 라이신 락탐으로도 명명된다. In the present application, the term "α-amino-ε-caprolactam (ACL)" means a compound represented by the following Chemical Formula 1. The ACL is one of the lysine derivatives, also named lysine lactams.
[화학식 1][Formula 1]
Figure PCTKR2016005118-appb-I000001
Figure PCTKR2016005118-appb-I000001
상기 ACL의 제조는 당업계에 공지된 다양한 방법을 이용하여 수행될 수 있으며, 예를 들어, 효소적으로 합성하거나 화학적으로 합성하여 수행할 수 있다. 보다 구체적으로, 라이신을 ACL로 전환시키는 고리 닫힘 반응을 이용하여 합성할 수 있으며, 이때 라이신을 ACL로 전환하는 촉매(catalyst)를 사용하거나, 라이신을 ACL로 전환할 수 있는 적절한 유기 용매 등을 이용하여 제조할 수 있으나, 상기 기술한 바에 제한되는 것은 아니다. Preparation of the ACL can be carried out using a variety of methods known in the art, for example, it can be carried out by enzymatic synthesis or chemical synthesis. More specifically, it can be synthesized using a ring closure reaction for converting lysine to ACL, using a catalyst (catalyst) for converting lysine to ACL, or using an appropriate organic solvent for converting lysine to ACL. It can be prepared by, but is not limited to those described above.
또한, 상기 ACL은 이의 염 형태로 사료 첨가제에 포함될 수 있다. 구체적으로 상기 ACL은 사료 성분으로서 허용 가능한 형태의 염으로 제공될 수 있으며, 이는 공지의 방법으로 제조될 수 있다. 구체적인 예로는 염산, 질산, 인산, 황산 등의 무기산; 메탄설폰산 등의 설폰산; 또는 옥살산, 아세트산, 푸마르산, 말론산, 말레인산, 말산, 숙신산 등의 유기 카본산에 의해 형성된 산부가염을 들 수 있으나, 이에 제한되는 것은 아니다. In addition, the ACL may be included in the feed additive in the form of its salt. Specifically, the ACL may be provided as a salt in an acceptable form as a feed ingredient, which may be prepared by known methods. Specific examples include inorganic acids such as hydrochloric acid, nitric acid, phosphoric acid and sulfuric acid; Sulfonic acids such as methanesulfonic acid; Or acid addition salts formed by organic carbon acids such as oxalic acid, acetic acid, fumaric acid, malonic acid, maleic acid, malic acid, succinic acid, but are not limited thereto.
또한, 상기 ACL은 L-ACL, D-ACL 또는 D/L-ACL 형태일 수 있으나, 이에 제한되지 않는다. In addition, the ACL may be in the form of L-ACL, D-ACL or D / L-ACL, but is not limited thereto.
본 출원에서 용어, "라이신"은 염기성 α-아미노산의 하나로, 메티오닌 및 시스테인과 함께 반추동물의 제1제한 아미노산에 속하며, 라이신은 옥살아세트산으로부터 라이신 생합성 경로를 통해 생합성된다. As used herein, the term “lysine” is one of the basic α-amino acids, which, together with methionine and cysteine, belong to the first limited amino acid of ruminants, and lysine is biosynthesized from oxalacetic acid via the lysine biosynthetic pathway.
본 출원에서 용어, "사료 첨가제"는 사료 조성물에 첨가되는 물질을 의미한다. 상기 사료 첨가제는 대상 동물의 생산성 향상이나 건강을 증진시키기 위한 것일 수 있으나, 이에 제한되지 않는다. 상기 사료 첨가제는 사료 관리법 상의 보조사료에 해당할 수 있다.As used herein, the term "feed additive" means a substance added to a feed composition. The feed additive may be to improve productivity or health of the target animal, but is not limited thereto. The feed additive may correspond to auxiliary feed in the feed management method.
상기 사료 첨가제는 ACL 또는 이의 염 이외에도 대상 동물의 생산성 또는 건강 증진을 위한 뉴클레오티드류, 아미노산, 칼슘, 인산, 유기산 등의 영양소를 추가로 포함할 수 있으나, 이에 제한되지 않는다. In addition to the ACL or salts thereof, the feed additive may further include nutrients such as nucleotides, amino acids, calcium, phosphoric acid, organic acids, etc. to increase productivity or health of the target animal, but is not limited thereto.
본 출원에서 용어, "사료 조성물"은 동물에게 주는 먹이를 말한다. 상기 사료 조성물은 동물의 생명을 유지, 또는 고기, 젖 등을 생산하는데 필요한 유기 또는 무기 영양소를 공급하는 물질을 말한다. 상기 사료 조성물은 사료 첨가제를 포함할 수 있으며, 동물의 생명 유지, 또는 고기, 젖 등을 생산하는데 필요한 영양성분을 추가적으로 포함할 수 있다. As used herein, the term "feed composition" refers to food to be given to animals. The feed composition refers to a substance that supplies organic or inorganic nutrients necessary for maintaining the life of an animal or producing meat, milk, and the like. The feed composition may include a feed additive, and may further include nutritional ingredients necessary for maintaining the life of the animal, or producing meat, milk, and the like.
상기 사료 첨가제 또는 이를 포함하는 사료 조성물을 적용할 수 있는 개체는 특별히 한정되지 않고, 어떠한 형태의 것이든 적용 가능하다. 예를 들면, 소, 양, 기린, 낙타, 사슴, 염소 등과 같은 동물에 제한 없이 적용가능하며, 구체적으로는 반추위를 가지는 반추동물에 적용가능하나, 이에 제한되지 않는다. The individual to which the feed additive or feed composition including the same is applicable is not particularly limited, and any form may be applied. For example, the present invention may be applied to animals such as cattle, sheep, giraffes, camels, deer, goats, and the like without limitation, and specifically, but not limited to ruminants having rumen.
본 출원에서 용어, "반추위"란 포유류 소목의 일부 동물에서 볼 수 있는 특수한 소화관으로, 일명 되새김을 하기 위해 혹위, 벌집위, 겹주름위, 및 주름위의 4개의 방으로 나뉘어 있다. 일명 되새김위라고도 하며, 한번 삼킨 음식물을 다시 입안으로 토하여 잘 씹은 후에 삼키는 것을 반추라고 하고, 이런 반추를 가능하게 하는 위를 반추위라고 한다. 반추위에는 미생물이 공생하고 있어서 일반적인 동물들이 소화하지 못하는 식물의 셀룰로스를 분해하여 에너지화할 수 있는 능력을 갖게 된다. In the present application, the term "ruminant" is a special digestive tract found in some animals of mammalian joiners, and is divided into four rooms, called hump, honeycomb, folds, and wrinkles, for the purpose of rubbing. Also known as ruminwiwi, once swallowed food into the mouth again to chew well swallow swallowing, this rumen is called the stomach to enable rumination. In the rumen, microbial symbiosis has the ability to decompose and energize the cellulose of plants that cannot be digested by ordinary animals.
본 출원에서 용어, "반추동물"이란 상기 설명한 반추위를 갖는 동물을 의미하며, 이에는 낙타과, 애기사슴과, 사슴과, 기린과 및 소과의 동물들이 포함된다. 다만, 낙타과와 애기사슴과는 겹주름위와 주름위가 완벽하게 분화되지 않아 3개의 방으로 이루어진 반추위를 가지고 있는 것으로 알려져 있다. 구체적으로 소과의 동물은, 예를 들어 소, 염소, 흑염소, 양 등을 들 수 있으며, 더욱 구체적으로는 소일 수 있다. 그러나 이에 제한되지는 않는다.As used herein, the term "ruminant" refers to an animal having the rumen described above, which includes the animals of the family Camel, Baby Deer, Deer, Giraffe and Bovine. However, the camel family and the baby deer are known to have a rumen consisting of three rooms because the folds and wrinkles are not completely differentiated. Specifically, bovine animals include, for example, cattle, goats, black goats, sheep, and the like, and more specifically, cattle. However, it is not limited thereto.
또한, 본 출원에 따른 사료 첨가제는 개별적으로 사용될 수 있고, 종래 공지된 사료 첨가제와 병용하여 사용될 수 있으며, 종래의 사료 첨가제와 순차적 또는 동시에 사용될 수 있다.In addition, the feed additive according to the present application may be used individually, may be used in combination with a conventionally known feed additive, and may be used sequentially or simultaneously with the conventional feed additive.
본 출원을 구현하는 다른 하나의 양태는 상기 사료 첨가제를 포함하는, 사료 조성물이다. Another embodiment embodying the present application is a feed composition comprising the feed additive.
상기 사료 첨가제 및 사료 조성물에 대해서는 앞서 설명한 바와 같다. The feed additive and feed composition are as described above.
상기 사료 조성물은 일반적인 사양관리 방법에 따라 급여될 수 있으며, 오전과 오후에 급여될 수 있으나, 이에 제한되지 않는다. 또한, 급여 양은 특별히 제한되지 않는다. The feed composition may be paid according to a general specification management method, may be paid in the morning and afternoon, but is not limited thereto. In addition, the amount of salary is not particularly limited.
본 출원을 구현하는 또 다른 하나의 양태는 상기 사료 첨가제 또는 사료 조성물을 동물에 급여하는 단계를 포함하는, 동물을 사육하는 방법이다. Another aspect of embodying the present application is a method of raising an animal, comprising feeding the feed additive or feed composition to the animal.
상기 방법은 구체적으로, 상기 사료 조성물을 반추동물에 급여하는 단계를 포함하는 방법일 수 있다. 또한, 상기 방법은 일반적인 사양관리 방법에 따라 급여될 수 있으며, 오전과 오후에 급여될 수 있으나, 이에 제한되지 않는다. 또한, 급여 양은 특별히 제한되지 않는다. Specifically, the method may be a method comprising feeding the feed composition to a ruminant. In addition, the method may be paid according to a general specification management method, and may be paid in the morning and afternoon, but is not limited thereto. In addition, the amount of salary is not particularly limited.
이하 본 출원을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 본 출원을 예시적으로 설명하기 위한 것으로 본 출원의 범위가 이들 실시예에 한정되는 것은 아니다. Hereinafter, the present application will be described in more detail with reference to Examples. However, these examples are for illustrative purposes only and the scope of the present application is not limited to these examples.
실시예Example 1. In vitro 반추위 발효를 통한  1. In vitro rumen fermentation ACLACL 물질의 bypass 효율 측정 실험 Bypass efficiency measurement experiment
1-1. 1-1. 반추위액Rumen juice 채취 Collection
반추위 캐뉼라 장착 홀스테인(Holstein) 거세우 (체중 630~650kg내외) 1두를 공시하였으며, 공시축은 하루에 2회 (오전 7시30분, 오후 3시) 시판사료(CJ제일제당, 밀크젠TM) 및 볏짚을 급여하여 사육하였다.Holstein (Holstein) castor with rumen cannula (with weight of 630 ~ 650kg) was released and two dogs were fed twice a day (7:30 am, 3:00 pm). Commercial feed (CJ CheilJedang, MilkzenTM) And rice straw was fed by breeding.
반추위액의 채취는 실험 당일 오전 10시경에 진행하였으며, 캐뉼라를 통해 반추위 내용물을 꺼낸 뒤 거즈로 위액을 짜서 추출한 뒤 보온병에 담아 CO2로 bubbling 하여, 산소의 침입을 차단한 상태로 실험실로 운반한 뒤 사용하였다. 실험실까지 운반하는데 1시간 이내로 소요되었다.The rumen fluid was collected around 10 am on the day of the experiment, and the contents of the rumen were taken out through the cannula, squeezed out with gastric fluid with gauze, and then packed in a thermos bubbling with CO 2 and transported to the laboratory in a state of blocking oxygen invasion. It was used later. It took less than an hour to transport to the lab.
1-2. 1-2. 혐기배양Anaerobic Culture 진행 Progress
실험실로 운반된 반추위액은 2겹의 거즈로 여과 후 반추위 실험에서 일반적으로 사용되고 있는 McDougall's buffer (Troelsen and Donna, 1966)의 모사액과 1:3의 비율로 혼합하여 혐기 배양액으로 사용하였다. McDougall's buffer 모사액의 조성은 표 1에서 보는 것과 같다.The rumen solution transported to the laboratory was mixed with a simulated solution of McDougall's buffer (Troelsen and Donna, 1966), which is generally used in rumen experiments after filtration with two layers of gauze, and used as an anaerobic culture solution. The composition of McDougall's buffer simulations is shown in Table 1.
시험사료는 시판사료(CJ제일제당, 밀크젠TM)를 기초사료로 사용하였고, 기초사료에 시험물질을 혼합하여 시험사료를 제조하였다. 시험물질은 L-ACL, D/L-ACL 두 종류를 사용하였고, L-ACL을 시험물질로 사용한 실험군 1, D/L-ACL을 시험물질로 사용한 실험군 2로 하였다. 시험물질 없이 기초사료로만 이루어진 대조군 1과 L-lysine을 시험물질로 사용한 대조군 2를 함께 비교하였다. 각 실험군 마다 3반복으로 배양을 진행하였다. 기초사료와 시험물질을 4:1의 비율로 혼합하였고 (기초사료 0.4 g, 시험물질 0.1 g, 단, 대조군 1은 기초사료만 0.5 g), 125ml 배양병에 혼합된 시험사료 0.5g을 첨가하였고, 준비된 혐기 배양액 50ml을 혼합한 후에 밀폐하여 39℃ incubator에 정치함으로써 배양을 개시하였다.Test feed was used as a commercial feed (CJ Cheil Jedang, Milk JenTM) as a basic feed, and the test material was prepared by mixing the test material with the basic feed. Test materials were used as L-ACL and D / L-ACL, and experimental group 1 using L-ACL as test substance and experimental group 2 using D / L-ACL as test substance. Control 1 consisting of only basic feed without test substance and control 2 using L-lysine as test substance were compared together. In each experimental group, the culture was carried out in three repetitions. The basic feed and the test substance were mixed in a ratio of 4: 1 (basic feed 0.4 g, test substance 0.1 g, except for control 1, 0.5 g only basic feed), and 0.5 g of the mixed test feed was added to a 125 ml culture bottle. After mixing 50 ml of the prepared anaerobic broth, the mixture was sealed and left in a 39 ° C. incubator to start culture.
반추위액 희석을 포함한 배양개시까지의 전 과정 동안 O2 free CO2를 분사하여 반추위액이 산소에 노출되지 않도록 혐기 상태를 유지하였다.O 2 free CO 2 was injected to maintain the anaerobic state so that the rumen fluid was not exposed to oxygen during the whole process up to the start of the culture including the dilution of the rumen fluid.
McDougall's buffer 모사액의 조성Composition of McDougall's Buffer Simulation
buffer (1L 기준)buffer (based on 1L)
NaH2PO4·2H2ONaH 2 PO 4 · 2H 2 O 9.3 g9.3 g
NaHCO3 NaHCO 3 9.8 g9.8 g
NaClNaCl 0.47 g0.47 g
KClKCl 0.57 g0.57 g
MgCl2 MgCl 2 0.256 g0.256 g
CaCl2 CaCl 2 0.106 g0.106 g
CaseinCasein 2.5 g2.5 g
Resazulin (0.1%)Resazulin (0.1%) 1.5 ml1.5 ml
1-3. sampling 및 시험물질 잔존량 분석 결과1-3. Sampling and Test Substance Remaining Analysis Results
1-3-1. 총 가스발생량 측정1-3-1. Total gas generation measurement
배양은 최종적으로 72 시간 동안 진행되었고, 배양액 sampling 은 배양 개시 후, 0h, 48h, 72h 에 진행하였다. 배양 상태를 확인하기 위해 1차적으로 배양액 sample의 총 가스발생량을 측정하였다. The culture was finally carried out for 72 hours, and culture sampling was conducted at 0h, 48h, 72h after the start of the culture. In order to confirm the culture state, the total gas generation amount of the culture solution sample was primarily measured.
반추위에는 미생물이 공생하고 있어서 일반적인 동물들이 소화하지 못하는 식물의 셀룰로스를 분해하여 에너지화할 수 있는 능력을 갖게 된다. 이러한 과정에서 반추위 내 미생물은 가스를 생성하는데, 이 가스의 대부분은 휘발성 지방산(volatile fatty acids, VFA)이다. 휘발성 지방산은 일반적으로 아세트산(acetic acid) 65%, 프로피온산(propionic acid) 20%, 부티르산(Butyric acid) 15% 비율로 발생되며, 이렇게 생성된 휘발성 지방산은 반추동물의 에너지원으로 이용하게 된다 (African Journal of Biotechnology Vol. 9(38), pp. 6229-6232). 따라서 반추위 내 미생물에 의한 휘발성 지방산 생성 증가 또는 감소 여부는 사료 또는 사료 첨가제의 분해 여부에 대한 지표로 활용 가능하며, 이를 통해 사료 첨가제의 반추위 내 보호 효과와 휘발성 지방산 생성 감소 사이의 연관성을 유추할 수 있다. In the rumen, microbial symbiosis has the ability to decompose and energize the cellulose of plants that cannot be digested by ordinary animals. In this process, the microbes in the rumen produce a gas, most of which is volatile fatty acids (VFA). Volatile fatty acids are generally generated at 65% acetic acid, 20% propionic acid, and 15% butyric acid, and these volatile fatty acids are used as ruminant energy sources. Journal of Biotechnology Vol. 9 (38), pp. 6229-6232). Therefore, the increase or decrease of volatile fatty acid production by the microorganisms in the rumen can be used as an indicator of the degradation of feed or feed additives, thereby inferring the link between the protective effect of the feed additives in the rumen and the reduction of volatile fatty acid production. have.
본 실험을 통해 측정한 가스발생량은 표 2와 도 2에서 보는 것과 같다. 총 가스발생량에서는 시험물질 없이 기초사료로만 이루어진 대조군 1 대비, L-lysine을 시험물질로 사용한 대조군 2에서 총 가스발생량이 감소하였고, L-ACL, D/L-ACL를 시험물질로 사용한 실험군 1, 2는 대조군 1, 2 대비 총 가스발생량이 감소하였다. 이는 L-ACL, D/L-ACL 이 반추위액 내 미생물에 의해 분해 소모되지 않아, 미생물이 생산하는 총 가스 발생량이 대조군 대비 줄어든 것으로 판단할 수 있다. 이로써 총 가스발생량 감소는 간접적으로, 반추위 bypass 율의 증가를 의미하며, L-ACL, D/L-ACL이 L-lysine 대비 반추위 bypass 율이 높을 것으로 추정할 수 있다.Gas generation measured through this experiment is as shown in Table 2 and FIG. In the total gas generation amount, the total gas generation amount was decreased in the control group 2 using L-lysine as the test substance, and the control group 1, which used L-ACL and D / L-ACL as the test substance, compared to the control group 1 consisting of the basic feed without the test substance. 2, the total gas generation decreased compared to the control 1, 2. This is because the L-ACL, D / L-ACL is not consumed by the microorganisms in the rumen liquid, so that the total amount of gas produced by the microorganisms is reduced compared to the control group. As a result, the decrease in total gas generation indirectly means an increase in the rumen bypass rate, and it can be estimated that L-ACL and D / L-ACL have a higher rumen bypass rate than L-lysine.
총 가스발생량 (ml)Total gas generation amount (ml)
총 가스발생량 (ml)Total gas generation amount (ml)
48h 48h 72h72h
1One 22 33 평균값medium SDSD 1One 22 33 평균값medium SDSD
대조군 1Control group 1 controlcontrol 135135 144144 138138 139139 4.94.9 146146 146146 145145 145145 0.80.8
대조군 2Control 2 L-LysL-Lys 126126 128128 126126 127127 1.21.2 129129 129129 130130 129129 0.10.1
실험군 1Experiment group 1 L-ACLL-ACL 113113 115115 113113 113113 1.11.1 117117 115115 118118 117117 1.51.5
실험군 2Experiment group 2 D/L-ACLD / L-ACL 114114 114114 113113 114114 0.80.8 117117 119119 117117 118118 1.51.5
1-3-2. 반추위 bypass 율 측정1-3-2. Rumen bypass rate measurement
배양액 sample의 총 가스발생량 측정 후, 배양액을 원심분리(4000rpm, 10분)하여 상층액 내에 존재하는 시험물질의 양을 측정하였고, sampling 시간대별 시험물질의 잔존량을 토대로 반추위 bypass 율을 계산하였다. LC 분석 결과 시험물질 잔존량은 표 3에서 보는 것과 같다. 도 3은 반추위 bypass 율 (%)을 그래프로 나타낸 것으로, 0h sample의 잔존량을 100%로 환산했을 때 24h, 48h sample의 상대적인 잔존량 (%)을 비교한 것이다.After measuring the total gas generation amount of the culture medium sample, the culture medium was centrifuged (4000rpm, 10 minutes) to measure the amount of test material present in the supernatant, and the rumen bypass rate was calculated based on the remaining amount of test material for each sampling time zone. As a result of LC analysis, the remaining amount of test substance is as shown in Table 3. FIG. 3 is a graph showing the rumen bypass rate (%), which compares the relative residual amount (%) of 24h and 48h samples when the residual amount of 0h sample is converted to 100%.
결과적으로, L-lysine은 0h 대비, 48h 이후의 반추위 bypass 율이 0%로, 반추위 미생물에 의해 모두 소화되었고, L-ACL은 0h 대비, 48h 에 96%, 72h 에 90% 의 반추위 bypass 율을 보였다. D/L-ACL의 경우도 L-ACL의 경우와 비슷하게, 0h 대비, 48h 에 102%, 72h 에 91% 의 반추위 bypass 율을 보였다. 오차범위를 고려하면 L-ACL 및 D/L-ACL은 72h까지 반추위 내 미생물에 의해 거의 분해되지 않고, bypass 되는 것으로 판단할 수 있다.As a result, L-lysine was digested by rumen microorganisms at 0% and 48h after 48h, and L-ACL was digested by rumen microorganisms at 96% at 48h and 90% at 72h. Seemed. Similarly to L-ACL, D / L-ACL showed a rumen bypass rate of 102% at 48h and 91% at 72h. Considering the error range, it can be determined that L-ACL and D / L-ACL are bypassed by almost no degradation by the microorganisms in the rumen until 72h.
배양액 상층액 내에 존재하는 시험물질의 잔존량 (g/L)Residual amount of test substance in the culture supernatant (g / L)
  0h0h 48h 48h 72h72h
1One 22 33 평균값medium SDSD 1One 22 33 평균값medium SDSD 1One 22 33 평균값medium SDSD
대조군 2Control 2 2.232.23 2.372.37 2.062.06 2.222.22 0.160.16 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00 0.000.00
실험군 1Experiment group 1 2.512.51 2.472.47 2.612.61 2.532.53 0.070.07 2.482.48 2.432.43 2.402.40 2.432.43 0.040.04 2.192.19 2.362.36 2.302.30 2.282.28 0.090.09
실험군 2Experiment group 2 2.502.50 2.342.34 1.581.58 2.422.42 0.120.12 2.322.32 2.552.55 2.502.50 2.462.46 0.120.12 2.082.08 2.242.24 2.312.31 2.212.21 0.120.12
실시예Example 2.  2. ACLACL 소화 test Digestion test
반추위 내 미생물에 의해 분해되지 않은 영양 성분들은 소장에서 흡수되어 단백질 합성, 에너지 대사 등에 활용된다. ACL의 경우 높은 bypass 효율로 인해 대부분이 소장으로 전달될 것으로 예상되며, 소장 및 간에 존재하는 분해 효소의 적용을 통해 ACL의 아마이드 결합 부위가 절단될 경우 라이신 형태로 전환될 수 있으므로, 반추위 동물의 소장에서 흡수 이용될 것이다. 상기 배경하에 bypass된 ACL이 분해효소에 의해 라이신으로 복원되는 것을확인하기 위하여 다음과 같은 실험을 진행하였다. Nutrients not broken down by the microbes in the rumen are absorbed in the small intestine and used for protein synthesis and energy metabolism. In the case of ACL, it is expected that most of it will be delivered to the small intestine due to the high bypass efficiency, and that the amide binding site of the ACL can be converted into lysine form when the amide binding site of the ACL is cleaved by the application of the degrading enzymes present in the small and liver. Absorption will be used. In order to confirm that the bypassed ACL is restored to lysine by the degrading enzyme, the following experiment was conducted.
일반적으로 아마이드 결합(또는 펩타이드 결합)의 절단은 트립신, 펩신과 같은 소화 분해 효소에 의해 가능하며, 아실레이즈와 같은 가수분해 효소에 의해서도 절단이 가능하다. 또한 생체 내에서 소화 분해 반응을 담당하는 소장의 경우 점막에 위치한 아미노펩티다제, 카르복시펩티다제, 엔도펩티다제, 디펩티다제 등의 소화 분해 효소들에 의해서 펩타이드 결합을 갖는 대부분의 단백질들이 아미노산과 일부 디펩타이드 형태로 소화되며, 미 소화된 일부 디펩타이드 역시 세포 내로 흡수되어 디펩티다제에 의하여 아미노산으로 가수분해된 뒤 혈류로 이동한다. 직접 사용이 불가능한 형태의 다양한 영양소들은 소장에서 흡수된 뒤 혈류를 따라 간으로 이동하여 다양한 분해과정을 거쳐 체내에서 대사할 수 있는 형태의 물질로 전환되게 된다. In general, cleavage of amide bonds (or peptide bonds) is possible by digestive enzymes such as trypsin and pepsin, and can also be cleaved by hydrolytic enzymes such as asilase. In addition, in the small intestine responsible for digestion in vivo, most proteins having peptide bonds by digestive enzymes such as aminopeptidase, carboxypeptidase, endopeptidase, and dipeptidase, which are located in the mucosa, Digested into amino acids and some dipeptide forms, some undigested dipeptides are also absorbed into cells, hydrolyzed to amino acids by dipeptidase and then transported into the bloodstream. Numerous nutrients in a form that cannot be used directly are absorbed by the small intestine and then moved along the bloodstream to the liver, where they are converted into substances that can be metabolized in the body through various decomposition processes.
이러한 이유로 본 연구에서는 실제 소의 소장 및 간에 존재하는 효소들을 대상으로 ACL의 소화 분해 가능성을 확인하였다.For this reason, this study confirmed the possibility of digestion and digestion of ACL against enzymes in small intestine and liver.
실시예2Example 2 -1. 소장 효소군 확보-One. Small intestine enzyme group
농협중앙회 부천축산물공판장에서 도축된 한우(이력변호: KOR005078680400)의 소장을40m를 구매하였다. 절단 된 1m 내외의 소장 내부에 20mM sodium phosphate buffer(pH7.4) 5ml를 첨가하여 소장 내에 존재하는 효소가 sodium phosphate buffer에 추출될 수 있도록 혼합하였다. 총 길이 40m의 소장을 대상으로 약 200ml 양의 소장 효소액을 확보하였으며, 4℃에서 원심분리(14000rpm, 10분) 하여 상층액을 확보한 뒤, 20mM sodium phosphate buffer(pH 7.4)에 2배 희석하여 본 실험에 활용하였다. 40m of Korean cattle (History: KOR005078680400) slaughtered at the Bucheon Livestock Products Market of the National Agricultural Cooperative Federation were purchased. 5m of 20mM sodium phosphate buffer (pH7.4) was added to the small intestine of about 1m and then digested so that the enzymes in the small intestine could be extracted into sodium phosphate buffer. About 200m of small intestine enzyme solution was obtained for small intestine with a total length of 40m. The supernatant was obtained by centrifugation (14000rpm, 10 minutes) at 4 ℃, and then diluted twice in 20mM sodium phosphate buffer (pH 7.4). This experiment was used.
실시예2Example 2 -2. -2. 간조직Liver tissue 효소군 확보 Enzyme group
농협중앙회부천축산물공판장에서 도축된 한우(이력변호: KOR005078680400)의 간을 대상으로 간 조직 0.125g과 20mM sodium phosphate buffer(pH7.4) 1ml을 섞은 후, 2ml용량의 튜브에 Glass bead(Sigma G1145)를 첨가하여(약 1/10부피) beadbeater(MP TM FastPrep®-24)를 통해 간조직을 파쇄하였다 (20초, 3회). 이렇게 확보된 간조직 파쇄액은 4℃에서 원심분리(14000rpm, 10분)하여 상층액을 확보한 뒤 본 실험에 활용하였다. Mix 0.125g of liver tissue and 1ml of 20mM sodium phosphate buffer (pH7.4) in the liver of Hanwoo (History: KOR005078680400) slaughtered at NACF Bucheon Livestock Products Market, and then glass bead (Sigma G1145) Hepatic tissue was disrupted via beadbeater (MP ™ FastPrep®-24) by adding (about 1/10 volume) (20 seconds, 3 times). The hepatic crushing fluid thus obtained was centrifuged at 4 ° C. (14000 rpm, 10 minutes) to secure the supernatant and used in this experiment.
실시예2Example 2 -3. 소장 및 간의 효소 반응 진행-3. Enzyme Reaction in the Small Intestine and Liver
실시예1을 통해 반추위 내 보호 기능(bypass)이 확인된 ACL이 실제 소장 내에서 소화 및 분해가 가능한지 확인하기 위해서 소장 및 간 조직의 효소군을 이용하여 in vitro분해 실험을 진행하였다. 반응은 ACL 2g/L 내외의 농도에서 진행하였으며, 정확한 농도는 실시예 2-4의 LC정량 결과(g/L)에 명기되어 있다. 반응의 최종 볼륨은 1000㎕이며, 사용된 기질, 소장효소, 버퍼의 조성은 아래 표 4에 명기되어 있다. In Example 1, in vitro digestion experiments were conducted using enzyme groups of small intestine and liver tissues to determine whether ACLs having a protective function (bypass) in the rumen can be digested and digested in the small intestine. The reaction proceeded at a concentration of about 2 g / L ACL, and the exact concentration is specified in the LC quantification results (g / L) of Example 2-4. The final volume of the reaction is 1000 μl and the composition of the substrate, small intestine, and buffer used is specified in Table 4 below.
In vitro 분해 반응액 조성In vitro digestion reaction composition
기질(ACL; stock 농도 4g/L)Substrate (ACL; stock concentration 4 g / L) 500500
소장 효소군Small intestine enzyme group 100100
20mM sodium phosphate buffer (pH 7.4)20 mM sodium phosphate buffer (pH 7.4) 400400
최종 반응 volume(㎕)Final reaction volume (μl) 10001000
실시예Example 2-4. 소장 효소군 반응 결과 2-4. Small intestine enzyme reaction result
37 ℃ 반응 조건에서 24시간 효소 반응 후 샘플 분석을 진행하였다. 반응이 끝나고 난 샘플 내 단백질을 제거하기 위해서 0.5% 과염소산(DEA JUNG, 순도 60~62%)을 첨가하여 10배 희석한 뒤, 원심분리(14000rpm, 10분)를 통해 상층액 내에 존재하는 ACL의 양과 생성물이 되는 라이신 농도를 HPLC로 정량화 하여 mM로 환산하였다. 전환율(mole%)은 반응전 시료의 몰농도(mM) 와 반응 후 몰농도(mM)의 비율을 백분율(%)로 환산하였다 (ACL분자량: 128.18g/L, lysine 분자량: 146.19g/L). Sample analysis was performed after enzyme reaction for 24 hours at 37 ℃ reaction conditions. After the reaction was completed, the solution was diluted 10-fold by adding 0.5% perchloric acid (DEA JUNG, purity 60-62%), and then centrifuged (14000 rpm, 10 minutes) to remove the protein in the supernatant. The amount and product of lysine concentration was quantified by HPLC and converted to mM. The conversion rate (mole%) was converted from the molar concentration (mM) of the sample before the reaction and the molar concentration (mM) after the reaction as a percentage (%) (ACL molecular weight: 128.18g / L, lysine molecular weight: 146.19g / L) .
24시간 소장 효소군 반응 결과, ACL로부터 라이신으로의 전환율(분해율)은 50.5 mole%였으며, 간 조직 효소군에서는 18.9 mole%의 전환율(분해율)을 확인하였다 (표 5). As a result of the reaction for 24 hours intestine enzyme group, the conversion (degradation rate) from ACL to lysine was 50.5 mole%, and the conversion rate (decomposition rate) of 18.9 mole% was confirmed in the liver tissue enzyme group (Table 5).
소장 및 간 효소군 대상 ACL 전활율(분해율)ACL Absorption Rate for Small Intestine and Liver Enzymes
소장효소군 반응Small intestine enzyme reaction 반응 전Before the reaction 반응 후After the reaction 전환율 (mole%)Conversion rate (mole%)
g/Lg / L mMmM g/Lg / L mMmM
ACLACL 2.552.55 19.8719.87
LYSLYS 1.471.47 10.0310.03 50.550.5
간조직Liver tissue 효소군 반응 Enzyme group reaction 반응 전Before the reaction 반응 후After the reaction 전환율 (mole%)Conversion rate (mole%)
g/Lg / L mMmM g/Lg / L mMmM
ACLACL 2.552.55 19.8719.87
LYSLYS 0.5490.549 3.753.75 18.918.9
결론적으로 소장과 간조직 효소군의 in vitro 반응에서 ACL이 라이신으로 전환되는 것을 확인하였다. 이러한 결과로부터 ACL이 반추위를 거쳐 소장에 도달할 경우 소장 내 소화 분해 효소로 인해 라이신으로 전환이 가능하다는 것을 확인하였으며, 미 분해된 ACL 또한 혈액을 통해 간을 거칠 경우 직접 사용 가능한 라이신 형태로의 전환 가능성을 확인하였다. 이는 사료 첨가제로써 제공된 ACL이 실질적으로 반추 동물의 체내에서 아미노산 형태인 라이신으로 직접 활용 가능하다는 것을 의미한다.In conclusion, ACL was converted to lysine in the in vitro reaction of small intestine and hepatic enzyme family. From these results, it was confirmed that when the ACL reaches the small intestine through the rumen, it can be converted into lysine by digestive enzymes in the small intestine. The possibility was confirmed. This means that the ACL provided as a feed additive can be utilized directly as lysine in substantially amino acid form in the body of ruminants.
이상의 설명으로부터, 본 출원이 속하는 기술분야의 당업자는 본 출원이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 출원의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 출원의 범위에 포함되는 것으로 해석되어야 한다.From the above description, those skilled in the art will appreciate that the present application can be implemented in other specific forms without changing the technical spirit or essential features. In this regard, the embodiments described above are to be understood in all respects as illustrative and not restrictive. The scope of the present application should be construed that all changes or modifications derived from the meaning and scope of the following claims and equivalent concepts rather than the detailed description are included in the scope of the present application.

Claims (8)

  1. α-아미노-ε-카프로락탐(ACL) 또는 이의 염을 유효성분으로 포함하는, 사료 첨가제.α-amino-ε-caprolactam (ACL) or a salt thereof as an active ingredient, feed additive.
  2. 제1항에 있어서, 상기 사료 첨가제는 반추동물용인 것인, 사료 첨가제.The feed additive of claim 1, wherein the feed additive is for ruminants.
  3. 제2항에 있어서, 상기 반추동물은 소인, 사료 첨가제.The feed additive of claim 2 wherein the ruminant is a bovine.
  4. 제1항 내지 제3항 중 어느 한 항의 사료 첨가제를 동물에게 급여하는 단계를 포함하는, 동물을 사육하는 방법.A method of raising an animal, comprising feeding the animal the feed additive of any one of claims 1 to 3.
  5. 제4항에 있어서, 상기 동물은 반추동물인, 동물을 사육하는 방법.The method of claim 4, wherein the animal is a ruminant.
  6. 제1항 내지 제3항 중 어느 한 항의 사료 첨가제를 포함하는, 사료 조성물.A feed composition comprising the feed additive of any one of claims 1 to 3.
  7. 제6항의 사료 조성물을 동물에게 급여하는 단계를 포함하는, 동물을 사육하는 방법.A method of raising an animal, comprising feeding the animal the feed composition of claim 6.
  8. 제7항에 있어서, 상기 동물은 반추동물인, 동물을 사육하는 방법.8. The method of claim 7, wherein said animal is a ruminant.
PCT/KR2016/005118 2015-05-14 2016-05-13 Feed additive comprising lysine derivative WO2016182403A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20150067661 2015-05-14
KR10-2015-0067661 2015-05-14

Publications (1)

Publication Number Publication Date
WO2016182403A1 true WO2016182403A1 (en) 2016-11-17

Family

ID=57248250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/005118 WO2016182403A1 (en) 2015-05-14 2016-05-13 Feed additive comprising lysine derivative

Country Status (2)

Country Link
KR (1) KR20160135102A (en)
WO (1) WO2016182403A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0163831B1 (en) * 1995-03-18 1998-11-16 비비바흐, 카르그 Feed and method making of lysine coating in the rumination
JP2003206276A (en) * 2002-01-07 2003-07-22 Chisso Corp METHOD FOR PRODUCING alpha-AMINO-epsilon-CAPROLACTAM
KR20080054732A (en) * 2006-12-13 2008-06-19 대한민국(관리부서:농촌진흥청) Manufacture of ruminally protected fat supplemented with amino acids
KR101167228B1 (en) * 2004-06-10 2012-07-23 보드 오브 트러스티즈 오브 미시건 스테이트 유니버시티 Synthesis of caprolactam from lysine
KR101288938B1 (en) * 2010-12-27 2013-07-24 김현수 Method for preparing rumen protected amino acid coated encapsulation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0163831B1 (en) * 1995-03-18 1998-11-16 비비바흐, 카르그 Feed and method making of lysine coating in the rumination
JP2003206276A (en) * 2002-01-07 2003-07-22 Chisso Corp METHOD FOR PRODUCING alpha-AMINO-epsilon-CAPROLACTAM
KR101167228B1 (en) * 2004-06-10 2012-07-23 보드 오브 트러스티즈 오브 미시건 스테이트 유니버시티 Synthesis of caprolactam from lysine
KR20080054732A (en) * 2006-12-13 2008-06-19 대한민국(관리부서:농촌진흥청) Manufacture of ruminally protected fat supplemented with amino acids
KR101288938B1 (en) * 2010-12-27 2013-07-24 김현수 Method for preparing rumen protected amino acid coated encapsulation

Also Published As

Publication number Publication date
KR20160135102A (en) 2016-11-24

Similar Documents

Publication Publication Date Title
Metges Contribution of microbial amino acids to amino acid homeostasis of the host
Hawksworth et al. Bacteria and the N-nitrosation of secondary amines
Smith et al. Formation of phenolic and indolic compounds by anaerobic bacteria in the human large intestine
Tengjaroenkul et al. Ontogenic development of the intestinal enzymes of cultured Nile tilapia, Oreochromis niloticus L.
WO2016200048A1 (en) Method for increasing survival rate, storage stability, acid resistance or bile resistance of lactic acid bacterium
KR101115560B1 (en) Biologically non-degradable peptide, angiotensin converting enzyme inhibitor, drug and functional food
Cárdenas et al. Relationships between the genome and some phenotypical properties of Lactobacillus fermentum CECT 5716, a probiotic strain isolated from human milk
Godwin et al. The Synthesis of Biologically Active Pteroyloligo-γ-l-Glutamates (Folic Acid Conjugates): EVALUATION OF [3H] PTEROYLHEPTAGLUTAMATE FOR METABOLIC STUDIES
MXPA01009610A (en) Compositions for promoting growth.
Cancre et al. Secretagogues and growth factors in fish and crustacean protein hydrolysates
US20030219467A1 (en) Method for the inhibition of methanogensis
WO2016182403A1 (en) Feed additive comprising lysine derivative
Elvehjem et al. The structure and estimation of natural products functionally related to nicotinic acid.
HU183897B (en) Method for improving the milk production
Lee et al. Influence of dietary histidine on tissue histamine concentration, histidine decarboxylase and histamine methyltransferase activity in the rat
EP0017309A1 (en) Cyclic hexapeptide and dipeptide and compositions containing them
CA2468858A1 (en) Breath test
WO2023014072A1 (en) Composition for increasing protein bypass rate and method for increasing protein bypass rate
Metges et al. Intestinal microbial amino acid synthesis and its importance for the amino acid homeostasis of the monogastric host
WO2017099475A1 (en) Rumen protecting peptide derivative and use thereof
Slomiany et al. Susceptibility of growth factors to degradation by Helicobacter pylori protease: Effect of ebrotidine and sucralfate
Simpson et al. Biochemical changes in the jejunal mucosa of dogs with exocrine pancreatic insufficiency following pancreatic duct ligation
Van der Heiden et al. Increased urinary imidazolepropionic acid, n-acetylhistamine and other imidazole compounds in patients with intestinal disorders
WO2019045492A2 (en) Soy protein concentrate hydrolyzed under low moisture condition and preparation method thereof
HU190809B (en) Process for preparing new antibiotic 76-11

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16793049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23.02.2018)