WO2017099475A1 - Rumen protecting peptide derivative and use thereof - Google Patents

Rumen protecting peptide derivative and use thereof Download PDF

Info

Publication number
WO2017099475A1
WO2017099475A1 PCT/KR2016/014327 KR2016014327W WO2017099475A1 WO 2017099475 A1 WO2017099475 A1 WO 2017099475A1 KR 2016014327 W KR2016014327 W KR 2016014327W WO 2017099475 A1 WO2017099475 A1 WO 2017099475A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
amino acid
amine
carboxyl
linked
Prior art date
Application number
PCT/KR2016/014327
Other languages
French (fr)
Korean (ko)
Inventor
홍국기
전진우
문준옥
김정현
박연희
박혜민
최수진
박진승
양영렬
Original Assignee
씨제이제일제당 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당 (주) filed Critical 씨제이제일제당 (주)
Publication of WO2017099475A1 publication Critical patent/WO2017099475A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/142Amino acids; Derivatives thereof
    • A23K20/147Polymeric derivatives, e.g. peptides or proteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/10Feeding-stuffs specially adapted for particular animals for ruminants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/06General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/06General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
    • C07K1/061General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using protecting groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a peptide derivative wherein two or more amino acids are linked to each other, a method for producing the peptide derivative, and a feed additive and a feed composition comprising the peptide derivative.
  • the productivity of ruminants can be improved through the supply of energy and amino acids, and if the amino acids are sufficiently supplied for ruminants, the effects of animal breeding and meat quality improvement can be expected.
  • Animal by-products are advantageous as feed ingredients that contain high amounts of amino acids.However, unlike ruminants such as chickens and poultry such as chickens, ruminants are fed protein-rich animal by-products to ruminants due to concerns about mad cow disease. Things are limited all over the world. Therefore, there is a growing interest in plant protein sources capable of supplying essential amino acids sufficiently. However, plant protein sources have a short supply of amino acids compared to animal protein supplementation, and feeds such as corn and corn gluten meal, which are most commonly used for ruminant feed, are unable to meet sufficient supply of amino acids. none. Therefore, efforts were made to improve the properties such as weight gain and meat quality by directly feeding amino acids, which are essential nutrients to livestock. However, amino acids are easily degraded by the microorganisms living in the rumen and could not actually see their effects. Therefore, methods for suppressing rumen degradation of these amino acids have been steadily studied.
  • Known methods of protecting amino acids include amino acid-mineral chelate methods and encapsulation methods using pH-sensitive polymers.
  • Commercially available products include Smartamine M coated with 2-vinylpyridine-co-styrene and stearic acid.
  • TM Mepron M85 coated with ethylcellulose and stearic acid, and METHIO-BY coated with lipid matrix.
  • these products have the disadvantage that the use of excipients in the coating process and the price of the coating material increases.
  • Amino acids have excellent effects such as weight gain and quality improvement of livestock as feed additives.
  • peptides can be decomposed and used by microorganisms present in the rumen. There is difficulty.
  • the inventors have tried to prepare peptide derivatives that can bypass the rumen and break down in the gut.
  • the digestion proceeds slowly in the rumen due to the different chemical structure from the peptide.
  • the rumen bypass rate could be increased.
  • it has an amide bond, such as a peptide bond, only the difference in degradation rate was absorbed and digested by ruminants, and could have an amino acid-like effect.
  • the peptide derivative of the present invention was confirmed that can be usefully used as a component of a feed additive or feed composition of ruminants, and completed the present invention.
  • One object of the present invention is to provide a peptide derivative or salt thereof in which two or more amino acids are linked to each other.
  • Another object of the present invention is to provide a method for preparing the peptide derivative or salt thereof.
  • Still another object of the present invention is to provide a feed additive comprising the peptide derivative or a salt thereof.
  • Still another object of the present invention is to provide a feed composition comprising the feed additive.
  • Yet another object of the present invention is to provide a method of raising an animal, comprising feeding the feed composition to the animal.
  • Still another object of the present invention is to provide a rumen by-pass use of the peptide derivative or salt thereof.
  • Another object of the present invention is to provide a use of the peptide derivative or salt thereof as a feed additive.
  • Another object of the present invention is to provide the use of said peptide derivative or salt thereof for use in the preparation of a feed additive or feed composition.
  • Peptide derivatives of the present invention is a slow digestion in the rumen, high bypass rate (bypass) through this, and can be absorbed by ruminants after passing through the rumen with amide bonds, very useful as amino acid source of ruminants Can be used.
  • 1 shows a dipeptide derivative using an omega amine of lysine.
  • Figure 3 shows a dipeptide derivative using an omega amine of asparagine
  • Figure 4 shows a dipeptide derivative using an omega amine of glutamine.
  • Figure 5 shows a dipeptide derivative using a carboxyl group linked to the beta carbon of aspartate.
  • Figure 6 shows a dipeptide derivative using a carboxyl group linked to the gamma carbon of glutamate.
  • One embodiment embodying the present invention is a peptide derivative or salt thereof in which two or more amino acids are linked to each other, wherein the peptide derivative is
  • Aspartate or glutamate is a peptide derivative or salt thereof, wherein the aspartate or glutamate is linked to each other by an amide bond between an amino acid linked thereto and a carboxyl group located on the R group of the aspartate or glutamate group and an amine group of the amino acid linked thereto.
  • the peptide derivative or salt thereof is an oligopeptide derivative or salt thereof in which 2 to 10 amino acids are linked to each other, and the oligopeptide derivative is
  • Aspartate or glutamate are oligopeptide derivatives or salts thereof comprising those linked to each other by an amide bond between an amino acid linked thereto and a carboxyl group located on the R group of the aspartate or glutamate group and an amine group of the amino acid linked thereto.
  • amino acid refers to all molecules comprising an amino group and a carboxyl group.
  • the amino acid includes both natural amino acids or artificial amino acids, specifically, natural amino acids, but is not limited thereto.
  • amino acids include amine groups, carboxyl groups and side chains (R groups) specific for each amino acid.
  • amino acids examples include glycine, alanine, valine, leucine, isoleucine, serine, threonine, cysteine, methionine, aspartate, asparagine, glutamate, glutamine, lysine, arginine, histidine, phenylalanine, tyrosine, tryptophan or proline. Include.
  • Any amino acid linked with lysine, arginine, asparagine, or glutamine may comprise all kinds of amino acids, and any amino acid linked with aspartate or glutamate may include all kinds of amino acids except proline Can be.
  • amino acids used in the present invention may be described as abbreviations as follows according to the IUPAC-IUB nomenclature.
  • peptide derivative refers to a polymer of two or more amino acids, wherein at least two amino acids are linked by an amide bond between an amine group or a carboxyl group located at the R group of one amino acid and a carboxyl group or an amine group of another amino acid. Says a polymer.
  • oligopeptide derivative refers to a polymer of 2 to 10 amino acids, wherein at least two amino acids are amide bonds between an amine group or a carboxyl group located at the R group of one amino acid and a carboxyl group or an amine group of another amino acid. Refers to a polymer comprising a linked one.
  • the oligopeptide derivatives may be more specifically polymers of two, three, four, five, six, seven, eight, nine, or ten amino acids.
  • Amide bond is an amine group (-NH 2 ) and a carboxyl group (-COOH) is bonded as shown in the formula (1).
  • a peptide refers to a polymer of amino acids formed by an amide bond, ie a peptide bond, between the alpha amine of each amino acid constituting it and the carboxyl group linked to the alpha carbon.
  • the peptide derivative or oligopeptide derivative of the present invention is characterized in that it contains at least one amide bond between an amine group or a carboxyl group located at the R group of an amino acid and a carboxyl group or an amine group of another amino acid, which is not a general peptide bond.
  • the peptide derivative of the present invention includes both polymers in which amino acids are linked to each other only by the above-described characteristic amide bonds, and polymers in which amino acids are linked to each other by peptide bonds, as well as the above-described characteristic amide bonds.
  • lysine, arginine, asparagine, or glutamine when lysine, arginine, asparagine, or glutamine is linked to any amino acid, it is linked to the alpha carbon of the omega amine located at the R group of the lysine, arginine, asparagine or glutamine and the amino acid linked thereto. Amide bonds between carboxyl groups located at the carboxyl or R groups may be linked to each other.
  • an amide bond such as a carboxyl group located on the R group of the aspartate or glutamate group and an amine group linked to the alpha carbon of the amino acid linked thereto or an omega amine group located on the R group Can be connected.
  • the oligopeptide derivative may be a dipeptide derivative in which two amino acids are linked.
  • the dipeptide derivative may be represented by the following Chemical Formula 2 or Chemical Formula 3.
  • X 1 is lysine, arginine, asparagine or glutamine,
  • A is any amino acid
  • X 1 -A is one in which the omega amine of X 1 and the carboxyl group of A are linked by an amide bond;
  • X 2 is aspartate or glutamate
  • A is any amino acid
  • X 2 -A is a carboxyl group located at the R group of X 2 and an amine group of A connected by an amide bond.
  • Any of the above amino acids is a group consisting of glycine, alanine, valine, leucine, isoleucine, serine, threonine, cysteine, methionine, aspartate, asparagine, glutamate, glutamine, lysine, arginine, histidine, phenylalanine, tyrosine, tryptophan and proline It may be a type selected from, but is not limited thereto.
  • the present invention includes salts of the peptide derivative or oligopeptide derivative.
  • Preferred cations for salt preparations are sodium (Na + ), potassium (K + ), lithium (Li + ), magnesium (Mg 2+ ), calcium (Ca 2 + ), barium (Ba 2 + ), strontium (Sr 2) + ) And ammonium (NH 4 + ), but is not limited thereto.
  • Salts can also be prepared from alkali or alkaline earth metals, but are not limited thereto.
  • Salts of the peptide derivatives include all salt forms of suitable forms to be added to the feed, salts of the peptide derivatives can be easily prepared by those skilled in the art.
  • Another embodiment embodying the present invention is a method for producing the peptide derivative.
  • the preparation method includes forming an amide bond between an amino acid having an amine group in the R group and a carboxylic acid of another amino acid, and / or forming an amide bond between an amino acid having a carboxyl group in the R group and an amine group of another amino acid.
  • the amino acid having an amine group in the R group may be lysine, arginine, asparagine or glutamine, and the amino acid having a carboxyl group in the R group may be aspartate or glutamate.
  • the amino acid having an amine group in the R group is protected with amine groups and carboxyl groups other than the amine of the R group, the amino acid having a carboxyl group in the R group is protected with other carboxyl groups and amine groups other than the carboxyl group of the R group
  • the amine group of the amino acid having an amine group in the R group, or the carboxyl group of another amino acid linked with the amino acid having a carboxyl group in the R group may be protected by a protecting group, but is not limited thereto.
  • the manufacturing method may include, but is not limited to, forming an amide bond using an amino acid having a protecting group, and then removing the attached protecting group, that is, deprotecting.
  • protecting group refers to binding of a specific functional group of a compound to prevent the bound functional group from reacting
  • deprotection refers to removing the attached protecting group to return the functional group to its original state.
  • the protecting group may be appropriately selected and used by those skilled in the art as long as it is a known protecting group for a specific functional group, specifically an amine group or a carboxyl group, and is not particularly limited to the kind.
  • the deprotection procedure can vary depending on the protecting group used, and those skilled in the art can use any known method as appropriate, provided that the protecting group is removed and the functional group that was protected can be returned to its original state.
  • the protecting group for the amine in the present invention are carbonyl a benzyloxy group (carbobenzyloxy group), p - methoxybenzyl carbonyl group (p -methoxybenzyl carbonyl group), tert - butyl-oxy-carbonyl group (tert -butyloxycarbonyl group), 9- Floresta carbonyl methyloxy carbonyl group (9-fluorenylmethyloxycarbonyl group), acetyl group (acetyl group), a benzoyl group (benzoyl group), benzyl group (benzyl group), a carbamate group (carbamate group), p - methoxy Siebel chewy (p -methoxybenzyl group), 3,4- dimethoxybenzyl groups (3,4-dimethoxybenzyl group), p - methoxy may be a phenyl group (p -methoxyphenyl group), or a tosyl group
  • Another embodiment embodying the present invention is a feed additive comprising the peptide derivative or salt thereof.
  • the peptide derivative or salt thereof is as described above.
  • feed additive means a substance added to a feed composition.
  • the feed additive may be to improve productivity or health of the target animal, but is not limited thereto.
  • a feed additive including the peptide derivative or a salt thereof is used, and the feed additive may be used in addition to the peptide derivative or salt thereof, such as nucleotides, amino acids, calcium, phosphoric acid, organic acid, etc. It may further include nutrients, but is not limited thereto.
  • the term "feed composition” refers to the food to be given to the animal.
  • the feed composition refers to a substance that supplies organic or inorganic nutrients necessary for maintaining the life of an animal or producing meat, milk, and the like.
  • the feed composition may include a feed additive, and the feed additive of the present invention may correspond to a feed supplement on a feed management method.
  • the kind of the feed is not particularly limited, and may be used a feed commonly used in the art.
  • Non-limiting examples of the feed may include plant feeds such as cereals, fruits, food processing by-products, algae, fibres, pharmaceutical by-products, oils, starches, gourds or grain by-products; Animal feeds such as proteins, minerals, fats, oils, minerals, single-cell proteins, zooplankton or foods. These may be used alone or in combination of two or more thereof.
  • composition for feed of the present invention is not particularly limited and may be applied in any form.
  • animals such as cows, sheep, giraffes, camels, deer, goats, etc., and particularly preferably applicable to ruminants having a rumen, a representative example may include cattle, but is not limited thereto. Do not.
  • the peptide derivative or salt thereof may be used as a rumen protective peptide derivative because the degree of degradation by the rumen microorganism is low. Therefore, the peptide derivative or salt thereof may be effectively used as a feed additive for ruminants, but is not limited thereto.
  • ruminant is a special digestive tract found in some animals of mammalian joiners, and is divided into four rooms, called hump, honeycomb, folds, and wrinkles, for the purpose of rubbing. Also known as ruminwiwi, once swallowed foods in the forest again vomiting and swallowing well called swallowing, this rumen is called stomach rubbing is possible. In the rumen, microbial symbiosis has the ability to decompose and energize the cellulose of plants that cannot be digested by ordinary animals.
  • ruminant refers to an animal having the rumen described above, and includes the animals of the family Camel, Deer, Deer, Giraffe and Bovine. However, the camel family and the baby deer are known to have a rumen consisting of three rooms because the folds and wrinkles are not completely differentiated.
  • the feed additive may be added to the feed composition to include the peptide derivative or salt thereof in an amount of 0.01 to 90% by weight based on the total weight of the feed, but is not limited thereto.
  • the feed additive according to the present invention may be used individually, may be used in combination with a conventionally known feed additive, and may be used sequentially or simultaneously with the conventional feed additive. And single or multiple administrations. Taking all of the above factors into consideration, it is important to administer an amount that can obtain the maximum effect in a minimum amount without side effects, and can be easily determined by those skilled in the art.
  • Another aspect of embodying the present invention is a method of breeding an animal, comprising feeding the animal a feed composition.
  • the feed composition is as described above.
  • Animal breeding method of the present invention in detail (a) mixing the feed composition for animal feed; And (b) feeding the feed to the animal.
  • Step (a) according to the present invention is a step of mixing the feed composition comprising the peptide derivative of the present invention or a salt thereof in a general feed for livestock, 0.01 to 20% by weight, preferably 0.1 to 10% by weight in the mixed feed You can pay in percentage.
  • Step (b) according to the present invention is a step of feeding the animal prepared in step (a) to the animal, the feedable livestock is not particularly limited as described above, in particular may be a ruminant.
  • Another embodiment embodying the present invention is the use of a bypass of the peptide derivative or salt thereof.
  • the peptide derivative or its salt, and the use of the rumen bypass is as described above.
  • Another embodiment embodying the present invention is the use of said peptide derivative or salt thereof as a feed additive.
  • the peptide derivative or its salt, and feed additive use are as described above.
  • Another embodiment embodying the present invention is the use of said peptide derivative or salt thereof for use in the preparation of a feed additive or feed composition.
  • the peptide derivatives or salts thereof, feed additives, and feed compositions are the same as described above.
  • N ⁇ -Boc-L- in order to protect the carboxylic acid functionality of the eggs with, N ⁇ -Boc-L- after the arginine (0.1 mol) was dissolved in methanol, tea from 0 °C chloride (thionyl chloride, 0.15 mol) of Inject slowly and stir for 15 minutes. After reacting for 3 hours, the mixed solution at room temperature, the reaction was complete, EA (Ethyl acetate), and then concentrated under reduced pressure and extracted with N ⁇ -Boc-L- arginine methyl ester (N ⁇ -Boc-L-arginine 4-methylester) was obtained.
  • EA Ethyl acetate
  • Example 2 the same method as in Example 1 was used to protect the amine functional group of the amino acid linked to the omega amine of arginine with tert- Boc.
  • the Boc-protected amino acid (0.1 mol) produced by the above method and the N ⁇ -Boc-L-arginine 4-methyl ester (0.1 mol) prepared above were prepared using DMF (N, N-Diisopropylethylamine, 0.15 mol).
  • HBTU N, N, N ', N'-Tetramethyl-O- (1H-benzotriazol-1-yl) uronium hexafluorophosphate, 0.15 mol
  • the product was extracted with EA and crystallized.
  • the same reaction as in Example 1 was used to remove the tert- Boc protecting group from the dipeptide derivative, and the target product was obtained after removing the ester protecting group of the arginine using an aqueous NaOH solution (FIG. 2).
  • N ⁇ -Boc-L- asparagine (0.1 mol) was dissolved in methanol, tea from 0 °C chloride (thionyl chloride, 0.15 mol) of Inject slowly and stir for 15 minutes. After reacting the mixed solution for 3 hours at room temperature, the reaction solution was extracted with EA (Ethyl acetate) and concentrated under reduced pressure to obtain N ⁇ -Boc-L-asparagine 4-methyl ester (N ⁇ -Boc-L-asparagine). 4-methyl ester) was obtained.
  • Example 2 the same procedure as in Example 1 was used to protect the amine functionality of the amino acid that is linked to asparagine in tert -Boc.
  • Bom-protected amino acid (0.1 mol) produced by the above method and the above prepared N ⁇ -Boc-L-asparagine 4-methyl ester (0.1 mol) DMF (N, N-Dimethylmethanamid) containing DIPEA (0.15 mol) HBTU (0.15 mol) was added to the solution dissolved in the reaction and reacted at room temperature for 4 hours, after which the product was extracted with EA and crystallized. Then, the same reaction as in Example 1 was used to remove the tert- Boc protecting group from the dipeptide derivative, and the target product was obtained after removing the ester protecting group of asparagine using an aqueous NaOH solution (FIG. 3).
  • N ⁇ -Boc-L- in order to protect the carboxylic acid functionality of Glutamine, N ⁇ -Boc-L- after glutamine (0.1 mol) was dissolved in methanol and slowly injected with thionyl chloride (thionyl chloride, 0.15 mol) at 0 °C Then stirred for 15 minutes. After reacting for 3 hours, the mixed solution at room temperature, EA (Ethyl acetate), and then concentrated under reduced pressure to N ⁇ -Boc-L- glutamine methyl ester (N ⁇ -Boc-L-glutamine 4-methyl ester) and extracted with Obtained.
  • EA Ethyl acetate
  • Example 2 the same method as in Example 1 was used to protect the amine functional group of the amino acid linked with glutamine with tert- Boc.
  • the Boc- protected amino acid (0.1 mol) and the N ⁇ -Boc-L- glutamine methyl ester prepared above produced by the above method (N ⁇ -Boc-L-glutamine 4-methylester, 0.1 mol) of DIPEA (0.15 mol HBTU (0.15 mol) was added to a solution dissolved in DMF (N, N-Dimethylmethanamid) containing 4 h) and reacted at room temperature for 4 hours, followed by crystallization by extracting the product with EA.
  • Example 4 the same reaction as in Example 1 was used to remove the tert-Boc protecting group from the dipeptide derivative, and the desired product was obtained after removing the carboxyl protecting group (methylester) of glutamine using an aqueous NaOH solution (FIG. 4).
  • the amino acid (0.1 mol) linked to the carboxyl group of the aspartate residue was dissolved in methanol, and then slowly injected with thionyl chloride (0.15 mol) at 0 ° C., followed by stirring for 15 minutes.
  • the mixed solution was reacted at room temperature for 3 hours, and when the reaction was completed, the mixture was extracted with EA (Ethyl acetate) and concentrated under reduced pressure to obtain an amino acid having a carboxyl group protected with methyl ester.
  • the amino acid (0.1 mol) linked to the carboxyl group of the glutamate residue was dissolved in methanol, and then slowly injected with thionyl chloride (0.15 mol) at 0 ° C., followed by stirring for 15 minutes. After reacting the mixed solution for 3 hours at room temperature, the reaction solution was extracted with EA (Ethyl acetate) and concentrated under reduced pressure to obtain an amino acid in which the carboxyl group was protected with methyl ester.
  • EA Ethyl acetate
  • the rumen fluid was collected at about 10 am on the day of the experiment, and the contents of the rumen were taken out through the cannula, squeezed out of the gastric fluid with gauze, and then bubbled into a thermos bubbled with CO 2 to block the invasion of oxygen. Used after transporting to the laboratory. It took approximately 1 hour to transport to the lab.
  • McDougall's buffer simulation solution is as shown in Table 1 below.
  • Milk feed TM (CJ Cheil Jedang Sugar) was used as the basic feed, and the test feed was prepared by mixing the test material with the basic feed.
  • the test substance was methionine- ⁇ -lysine produced by the amide bond between the omega amine located in the side chain of lysine and the carboxyl group of methionine. Lys-Lys dipeptide and Met-Met dipeptide generated by the binding of the carboxyl group of one amino acid and the amino group of the other amino acid were compared with the control groups 1 and 2 using the test substance. In each experimental group, the culture was carried out in three replicates.
  • the basic feed and the test substance were mixed at a ratio of 4: 1 (based feed 0.4 g, test substance 0.1 g), 0.5 g of the mixed test feed was added to a 125 ml culture bottle, and 50 ml of the prepared anaerobic culture solution were mixed. Incubation was started by standing in a 40 degreeC incubator sealed.
  • the culture was finally performed for 24 hours, and the culture sample was sampled two times (0 hour and 24 hours) after the start of the culture.
  • the specimen left in a 40 ° C. incubator was taken out, the lid was opened, the culture was centrifuged (4000 rpm, 10 minutes), and the amount of test substance present in the supernatant was measured.
  • the rumen bypass rate (%) was calculated based on the LC quantitative analysis of the test material, the value is shown in Table 2 below.
  • the rumen bypass rate (%) was expressed as the relative residual percentage (%) of the 24-hour specimens when the residual amount of test substance at the time of zero hour sampling was converted to 100%.
  • Figure 7 graphically shows the rumen bypass rate (%).
  • methionine- ⁇ -lysine is relatively less degraded by the microorganisms in the rumen compared to Lys-Lys dipeptide and Met-Met dipeptide, which is a general peptide bond, it can be determined that the rumen bypass rate (%) is high.
  • Example 8-1 Small intestine enzyme group
  • a 40-meter collection of Hanwoo (History: KOR005078680400) slaughtered at the Bucheon Livestock Products Fair of the NACF was purchased. After cutting the small intestine to about 1 m, 5 ml of 20 mM sodium phosphate buffer (pH 7.4) was placed in the cut small intestine. Then, both ends of the small intestine were held, and the small intestine was moved from side to side to allow the enzyme in the small intestine to dissolve in sodium phosphate buffer. Approximately 200 ml of the small intestine enzyme solution was obtained at 40 m of the small intestine, and the supernatant was obtained by centrifugation (14000 rpm, 10 minutes) at 4 ° C. It was used diluted twice in 20 mM sodium phosphate buffer (pH 7.4).
  • the acylease I (sigma A3010) extracted from the pig kidney was used as a positive control, and it was decomposed into methionine using N-acetyl-L-methionine (TCI America A2056). It was confirmed. Experimental conditions are shown in Table 3 below, and the reaction proceeded for 24 hours while standing at 37 ° C.
  • Perchloric acid (DEA JUNG, purity 60-62%) was used to remove the trimmed protein of the sample after the reaction was completed.
  • the reaction sample was diluted 10-fold with 0.5% perchloric acid and mixed, followed by centrifugation (14000 rpm, 10
  • the concentrations of N-acetyl-L-methionine and methionine present in the supernatant were measured by LC quantitation.
  • the conversion (%) was obtained by calculating the concentration of N-acetyl-L-methionine (mM) before the reaction and calculating the concentration of methionine after the reaction, in terms of mole%.
  • the molecular weight of N-acetyl-L-methionine is 191.25 g / L
  • the molecular weight of methionine is 149.25 g / L.
  • Example 8-3 Small intestine enzyme reaction
  • Methionine- ⁇ -Lysine Lys-lys Met-met Substrate (Storage Concentration 4 g / L) 500 500 500 Small intestine enzyme group (two-fold dilution) 100 100 100 20 mM Sodium Phosphate Buffer (pH 7.4) 400 400 400 400 Final reaction volume ( ⁇ l) 1000 1000 1000 1000
  • Example 8-4 Small intestine enzyme reaction result
  • the enzymatic reaction was carried out by conducting one sampling (24 hours) after the start of the reaction.
  • 5% perchloric acid was used to remove the cutting bag, and the amount of lysine and methionine to be the amount of the remaining substrate and the product at 24 hours was quantified by LC and converted into mM. It was.
  • the conversion (mole%) was quantified in the same manner as described in Example 8-2 (conversion (mole%): product concentration (mM) / substrate concentration (mM) x 100).
  • Lys-Lys dipeptide was converted to lysine at about 89 mole% and Met-Met dipeptide was converted to methionine at about 89 mole%.
  • methionine- ⁇ -lysine dipeptide was confirmed to have digestion rate of about 83-84% based on Lys and Met concentrations. (Table 6).
  • methionine- ⁇ -lysine showed a slightly reduced level of digestion (mole%) compared to Lys-Lys dipeptide and Met-Met dipeptide.
  • the methionine- ⁇ -lysine dipeptide that passed through the rumen can be absorbed based on the high digestion rate after reaching the small intestine. It was confirmed that it can be applied as an additive.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Animal Husbandry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Birds (AREA)
  • Analytical Chemistry (AREA)
  • Fodder In General (AREA)

Abstract

The present invention relates to a peptide derivative having two or more amino acids linked to each other, a method for preparing the peptide derivative, and a feed additive and feed composition comprising the peptide derivative. The peptide derivative of the present invention is slowly digested in the rumen, resulting in a high rumen bypass rate, and the peptide derivative can be absorbed by a ruminant after passing through the rumen due to the presence of amide bonds, and thus can be very favorably used as an amino acid source of a ruminant.

Description

반추위 보호 펩타이드 유도체 및 그 용도Rumen protective peptide derivatives and uses thereof
본 발명은 2개 이상의 아미노산이 서로 연결된 펩타이드 유도체, 상기 펩타이드 유도체의 제조방법, 및 상기 펩타이드 유도체를 포함하는 사료 첨가제 및 사료용 조성물에 관한 것이다.The present invention relates to a peptide derivative wherein two or more amino acids are linked to each other, a method for producing the peptide derivative, and a feed additive and a feed composition comprising the peptide derivative.
반추동물의 생산성은 에너지와 아미노산의 공급을 통하여 향상될 수 있으며, 아미노산을 반추동물이 이용할 수 있게 충분히 공급된다면 가축의 증체 및 육질 개량 등의 효과를 기대할 수 있다. The productivity of ruminants can be improved through the supply of energy and amino acids, and if the amino acids are sufficiently supplied for ruminants, the effects of animal breeding and meat quality improvement can be expected.
아미노산이 많이 함유되어 있는 사료 원료로는 동물성 부산물이 유리하나, 닭과 같은 가금류나 돼지와 같은 축종과는 달리 반추동물에 있어서는 광우병 등의 우려로 인해 반추동물에게 단백질 함량이 풍부한 동물성 부산물을 급여하는 것은 전 세계적으로 제한되고 있다. 따라서, 필수아미노산을 충분히 공급할 수 있는 식물성 단백질원에 대한 관심이 커져가고 있다. 그러나, 식물성 단백질원은 동물성 단백질 급여에 비해 아미노산의 공급이 부족하고, 실제로 반추가축 사료에 가장 많이 이용되는 옥수수와 옥수수 글루텐 밀(corn gluten meal)과 같은 사료로는 아미노산의 충분한 공급을 충족시킬 수가 없다. 따라서, 가축에게 필수적인 영양성분인 아미노산을 직접 급여하여 증체율 및 육질 등의 특성을 개선시키려고 노력하였다. 그러나, 아미노산은 반추위에 서식하고 있는 미생물에 의하여 쉽게 분해되어 실제로 그 효능을 볼 수 없었다. 따라서, 이들 아미노산의 반추위 분해를 억제하는 방법이 꾸준히 연구되어 왔다.Animal by-products are advantageous as feed ingredients that contain high amounts of amino acids.However, unlike ruminants such as chickens and poultry such as chickens, ruminants are fed protein-rich animal by-products to ruminants due to concerns about mad cow disease. Things are limited all over the world. Therefore, there is a growing interest in plant protein sources capable of supplying essential amino acids sufficiently. However, plant protein sources have a short supply of amino acids compared to animal protein supplementation, and feeds such as corn and corn gluten meal, which are most commonly used for ruminant feed, are unable to meet sufficient supply of amino acids. none. Therefore, efforts were made to improve the properties such as weight gain and meat quality by directly feeding amino acids, which are essential nutrients to livestock. However, amino acids are easily degraded by the microorganisms living in the rumen and could not actually see their effects. Therefore, methods for suppressing rumen degradation of these amino acids have been steadily studied.
현재까지 알려진 아미노산을 보호하는 방법으로는, 아미노산-광물질 킬레이트 방법, pH에 민감한 고분자를 이용한 캡슐화 방법 등이 있으며, 상용화된 제품으로는 2-비닐피리딘-co-스티렌와 스테아르산으로 코팅 처리된 Smartamine MTM, 에틸셀룰로오스와 스테아르산으로 코팅 처리된 Mepron M85, 및 지질 매트릭스로 코팅 처리된 METHIO-BY가 있다. 그러나, 상기 제품들은 코팅과정에서 부형제의 사용과 코팅물질의 가격이 상승하는 단점이 있다. 또한, 당의기를 사용하여 설탕, 라이신, 아라비아검, 셀룰로오스 등을 물이나 용매에 용해시켜 분사하여 구형 라이신을 제조한 후 유동층 코팅기(fluid bed) 시스템을 사용하여 다시 셀룰로오스, 검류, 당류, 탄산칼슘, 탈크 등을 분사하여 건조함으로 보호 라이신을 제조하는 것이 제시되고 있다. 그러나, 상기 방법은 제조 시간이 오래 걸려 대량생산에 어려움이 있으며, 사료화하기 위해서는 공정 중에 사용된 용매를 완전히 제거해야하고, 셀룰로오스나 검 등의 피복 물질이 반추위에 서식하는 미생물에 의해 영양원으로 사용되어 반추위 보호 능력이 떨어지는 단점이 있다. 또한, 아미노산을 에틸 셀룰로오스, 경화 유지, 왁스 등의 보호물질과 혼합하여 냉동스프레이 하는 방식의 제품이 있으나, 이 경우 부지 및 장치비의 소요가 많으며, 사용되는 냉풍의 온도가 영하 60의 매우 차가운 공기를 사용함으로써 에너지 비용이 많이 들어 제품 생산 비용이 증가하게 된다. 또한, 제품을 순간적인 냉각에 의한 방법으로 생산하기 때문에 제품 내에 거대한 구멍(macropore)이나 기포와 크랙이 형성될 가능성이 있으며, 제품 생산 시 운전 조건이 까다롭다. 또한, 제조된 반추위 보호 아미노산의 표면에 배열된 아미노산에 대해서는 보호하지 못하기 때문에 표면에 위치한 아미노산을 통하여 분해가 진행되어 그 효과가 떨어지는 단점이 있다.Known methods of protecting amino acids include amino acid-mineral chelate methods and encapsulation methods using pH-sensitive polymers. Commercially available products include Smartamine M coated with 2-vinylpyridine-co-styrene and stearic acid. TM , Mepron M85 coated with ethylcellulose and stearic acid, and METHIO-BY coated with lipid matrix. However, these products have the disadvantage that the use of excipients in the coating process and the price of the coating material increases. In addition, sugar, lysine, gum arabic, cellulose and the like are dissolved in water or a solvent using a dragee to prepare spherical lysine, and then cellulose, gums, sugars, calcium carbonate, The manufacture of protective lysine by spraying talc etc. is proposed. However, the method is difficult to mass production due to the long production time, and in order to feed, the solvent used during the process must be completely removed, and the coating material such as cellulose or gum is used as a nutrient source by the microbes in the rumen. It has a disadvantage of poor rumen protection. In addition, there is a product of the method of refrigeration spray by mixing amino acids with protective substances such as ethyl cellulose, hardened fat, wax, etc., but in this case, the site and equipment costs are high, and the cold air temperature used is below 60 degrees C. This increases energy costs and increases product production costs. In addition, since the product is produced by the instant cooling method, there is a possibility of forming macropores, bubbles, and cracks in the product, and operating conditions are difficult in producing the product. In addition, since the amino acid arranged on the surface of the prepared rumen protective amino acid does not protect, there is a disadvantage that the degradation proceeds through the amino acid located on the surface is reduced.
따라서, 장관 내의 물과 반추위에서 서식하고 있는 미생물에 대해 높은 안정성을 유지하면서 반추위를 지나쳐 반추동물이 사용할 수 있는 반추위 보호 아미노산의 개발의 필요성이 절실히 요구되고 있다.Therefore, there is an urgent need for the development of rumen protective amino acids that can be used by ruminants across the rumen while maintaining high stability against microbes inhabiting the rumen and water.
아미노산은 사료 첨가제로서 가축의 증체 및 육질 개량 등의 우수한 효과를 가지고 있으나, 반추동물의 경우 다른 동물과는 달리 반추위에 존재하는 미생물에 의해 펩타이드가 분해되고 사용될 수 있어, 아미노산을 사료 첨가제로 사용하는데 어려움이 있다. Amino acids have excellent effects such as weight gain and quality improvement of livestock as feed additives. However, in the case of ruminants, unlike other animals, peptides can be decomposed and used by microorganisms present in the rumen. There is difficulty.
본 발명자들은 반추위를 우회(bypass)하고 장내에서 분해될 수 있는 펩타이드 유도체를 제조하고자 하였다. 이에 펩타이드 결합이 아닌 다른 아마이드 결합, 구체적으로 아미노산의 곁사슬(R기)에 존재하는 아민기 또는 카복실기를 이용한 아마이드 결합을 통해 펩타이드 유도체를 제조한 결과, 펩타이드와 화학적 구조가 달라 반추위에서 소화가 느리게 진행되고, 이를 통해 반추위 우회율을 높일 수 있었다. 또한, 펩타이드 결합과 같은 아마이드 결합을 가지고 있어 분해 속도의 차이만 있을 뿐 반추동물에 흡수, 소화되어 아미노산과 같은 효과를 나타낼 수 있었다. 이에 본 발명의 펩타이드 유도체는 반추동물의 사료 첨가제 또는 사료 조성물의 성분으로 유용하게 사용할 수 있음을 확인하고 본 발명을 완성하였다.The inventors have tried to prepare peptide derivatives that can bypass the rumen and break down in the gut. As a result of the preparation of the peptide derivative through an amide bond using an amide bond other than an amide bond, specifically, an amino acid side chain (R group), rather than a peptide bond, the digestion proceeds slowly in the rumen due to the different chemical structure from the peptide. Through this, the rumen bypass rate could be increased. In addition, it has an amide bond, such as a peptide bond, only the difference in degradation rate was absorbed and digested by ruminants, and could have an amino acid-like effect. Thus, the peptide derivative of the present invention was confirmed that can be usefully used as a component of a feed additive or feed composition of ruminants, and completed the present invention.
본 발명의 하나의 목적은 2개 이상의 아미노산이 서로 연결된 펩타이드 유도체 또는 이의 염을 제공하는 것이다.One object of the present invention is to provide a peptide derivative or salt thereof in which two or more amino acids are linked to each other.
본 발명의 다른 목적은 상기 펩타이드 유도체 또는 이의 염의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for preparing the peptide derivative or salt thereof.
본 발명의 또 다른 목적은 상기 펩타이드 유도체 또는 이의 염을 포함하는 사료 첨가제를 제공하는 것이다.Still another object of the present invention is to provide a feed additive comprising the peptide derivative or a salt thereof.
본 발명의 또 다른 목적은 상기 사료 첨가제를 포함하는 사료 조성물을 제공하는 것이다.Still another object of the present invention is to provide a feed composition comprising the feed additive.
본 발명의 또 다른 목적은 상기 사료 조성물을 동물에게 급여하는 단계를 포함하는, 동물을 사육하는 방법을 제공하는 것이다.Yet another object of the present invention is to provide a method of raising an animal, comprising feeding the feed composition to the animal.
본 발명의 또 다른 목적은 상기 펩타이드 유도체 또는 이의 염의 반추위 우회(bypass) 용도를 제공하는 것이다.Still another object of the present invention is to provide a rumen by-pass use of the peptide derivative or salt thereof.
본 발명의 또 다른 목적은 상기 펩타이드 유도체 또는 이의 염의 사료 첨가제로서의 용도를 제공하는 것이다.Another object of the present invention is to provide a use of the peptide derivative or salt thereof as a feed additive.
본 발명의 또 다른 목적은 사료 첨가제 또는 사료 조성물의 제조에 사용하기 위한 상기 펩타이드 유도체 또는 이의 염의 용도를 제공하는 것이다.Another object of the present invention is to provide the use of said peptide derivative or salt thereof for use in the preparation of a feed additive or feed composition.
본 발명의 펩타이드 유도체는 반추위에서 소화가 느리게 진행되고, 이를 통해 반추위 우회(bypass)율이 높으며, 아마이드 결합을 가져 반추위를 통과한 뒤 반추동물에 흡수될 수 있으므로, 반추동물의 아미노산 공급원으로 매우 유용하게 사용될 수 있다.Peptide derivatives of the present invention is a slow digestion in the rumen, high bypass rate (bypass) through this, and can be absorbed by ruminants after passing through the rumen with amide bonds, very useful as amino acid source of ruminants Can be used.
도 1은 라이신의 오메가 아민을 이용한 다이펩타이드(dipeptide) 유도체를 나타낸 것이다.1 shows a dipeptide derivative using an omega amine of lysine.
도 2는 알지닌의 오메가 아민을 이용한 다이펩타이드(dipeptide) 유도체를 나타낸 것이다.2 shows a dipeptide derivative using an omega amine of arginine.
도 3은 아스파라진의 오메가 아민을 이용한 다이펩타이드(dipeptide) 유도체를 나타낸 것이다Figure 3 shows a dipeptide derivative using an omega amine of asparagine
도 4는 글루타민의 오메가 아민을 이용한 다이펩타이드(dipeptide) 유도체를 나타낸 것이다.Figure 4 shows a dipeptide derivative using an omega amine of glutamine.
도 5는 아스파테이트의 베타 탄소에 연결된 카복실기를 이용한 다이펩타이드(dipeptide) 유도체를 나타낸 것이다.Figure 5 shows a dipeptide derivative using a carboxyl group linked to the beta carbon of aspartate.
도 6은 글루타메이트의 감마 탄소에 연결된 카복실기를 이용한 다이펩타이드(dipeptide) 유도체를 나타낸 것이다.Figure 6 shows a dipeptide derivative using a carboxyl group linked to the gamma carbon of glutamate.
본 발명을 구현하는 하나의 양태는, 2개 이상의 아미노산이 서로 연결된 펩타이드 유도체 또는 이의 염으로서, 상기 펩타이드 유도체는 One embodiment embodying the present invention is a peptide derivative or salt thereof in which two or more amino acids are linked to each other, wherein the peptide derivative is
(i) 라이신, 알지닌, 아스파라진, 글루타민, 아스파테이트, 및 글루타메이트로 이루어진 군에서 선택된 하나 이상의 아미노산을 포함하고,(i) at least one amino acid selected from the group consisting of lysine, arginine, asparagine, glutamine, aspartate, and glutamate,
(ii) 라이신, 알지닌, 아스파라진, 또는 글루타민이 이와 연결된 아미노산과, 라이신, 알지닌, 아스파라진 또는 글루타민의 곁 사슬(R기)에 위치한 오메가 아민과 이와 연결되는 아미노산의 카복실기 간의 아마이드 결합으로 서로 연결되거나, (ii) an amide linkage between an amino acid to which lysine, arginine, asparagine, or glutamine is linked thereto, and an omega amine located in the side chain of the lysine, arginine, asparagine or glutamine (R group) and a carboxyl group of the amino acid linked thereto; Connected to each other,
아스파테이트 또는 글루타메이트가 이와 연결된 아미노산과, 아스파테이트 또는 글루타메이트의 R기에 위치한 카복실기와 이와 연결되는 아미노산의 아민기 간의 아마이드 결합으로 서로 연결되는 것을 포함하는, 펩타이드 유도체 또는 이의 염이다.Aspartate or glutamate is a peptide derivative or salt thereof, wherein the aspartate or glutamate is linked to each other by an amide bond between an amino acid linked thereto and a carboxyl group located on the R group of the aspartate or glutamate group and an amine group of the amino acid linked thereto.
구체적으로, 상기 펩타이드 유도체 또는 이의 염은 2개 내지 10개의 아미노산이 서로 연결된 올리고펩타이드 유도체 또는 이의 염으로서, 상기 올리고펩타이드 유도체는Specifically, the peptide derivative or salt thereof is an oligopeptide derivative or salt thereof in which 2 to 10 amino acids are linked to each other, and the oligopeptide derivative is
(i) 라이신, 알지닌, 아스파라진, 글루타민, 아스파테이트, 및 글루타메이트로 이루어진 군에서 선택된 하나 이상의 아미노산을 포함하고,(i) at least one amino acid selected from the group consisting of lysine, arginine, asparagine, glutamine, aspartate, and glutamate,
(ii) 라이신, 알지닌, 아스파라진, 또는 글루타민이 이와 연결된 아미노산과, 라이신, 알지닌, 아스파라진 또는 글루타민의 곁 사슬(R기)에 위치한 오메가 아민과 이와 연결되는 아미노산의 카복실기 간의 아마이드 결합으로 서로 연결되거나, (ii) an amide linkage between an amino acid to which lysine, arginine, asparagine, or glutamine is linked thereto, and an omega amine located in the side chain of the lysine, arginine, asparagine or glutamine (R group) and a carboxyl group of the amino acid linked thereto; Connected to each other,
아스파테이트 또는 글루타메이트가 이와 연결된 아미노산과, 아스파테이트 또는 글루타메이트의 R기에 위치한 카복실기와 이와 연결되는 아미노산의 아민기 간의 아마이드 결합으로 서로 연결되는 것을 포함하는, 올리고펩타이드 유도체 또는 이의 염이다.Aspartate or glutamate are oligopeptide derivatives or salts thereof comprising those linked to each other by an amide bond between an amino acid linked thereto and a carboxyl group located on the R group of the aspartate or glutamate group and an amine group of the amino acid linked thereto.
본 발명에서 용어, "아미노산"은 아미노기와 카복실기를 포함하는 모든 분자를 지칭한다. 본 발명에서 상기 아미노산은 천연 아미노산 또는 인공 아미노산을 모두 포함하며, 구체적으로는 천연 아미노산이나, 이에 제한되지 않는다. 구체적으로, 아미노산은 아민기, 카복실기 및 각 아미노산에 특이적인 곁 사슬(side chain, R기)을 포함한다.As used herein, the term "amino acid" refers to all molecules comprising an amino group and a carboxyl group. In the present invention, the amino acid includes both natural amino acids or artificial amino acids, specifically, natural amino acids, but is not limited thereto. Specifically, amino acids include amine groups, carboxyl groups and side chains (R groups) specific for each amino acid.
상기 아미노산의 종류로는 글리신, 알라닌, 발린, 류신, 이소류신, 세린, 트레오닌, 시스테인, 메티오닌, 아스파테이트, 아스파라진, 글루타메이트, 글루타민, 라이신, 알지닌, 히스티딘, 페닐알라닌, 티로신, 트립토판 또는 프롤린을 모두 포함한다.Examples of the amino acids include glycine, alanine, valine, leucine, isoleucine, serine, threonine, cysteine, methionine, aspartate, asparagine, glutamate, glutamine, lysine, arginine, histidine, phenylalanine, tyrosine, tryptophan or proline. Include.
상기 라이신, 알지닌, 아스파라진, 또는 글루타민과 연결되는 임의의 아미노산은 모든 종류의 아미노산을 포함할 수 있고, 상기 아스파테이트 또는 글루타메이트와 연결되는 임의의 아미노산은 프롤린을 제외한 모든 종류의 아미노산을 포함할 수 있다.Any amino acid linked with lysine, arginine, asparagine, or glutamine may comprise all kinds of amino acids, and any amino acid linked with aspartate or glutamate may include all kinds of amino acids except proline Can be.
본 발명에서 사용되는 아미노산은 IUPAC-IUB 명명법에 따라 다음과 같이 약어로 기재될 수 있다.The amino acids used in the present invention may be described as abbreviations as follows according to the IUPAC-IUB nomenclature.
알라닌 A 알지닌 RAlanine A Arginine R
아스파라진 N 아스파테이트 DAsparagine N Aspartate D
시스테인 C 글루타메이트 ECysteine C Glutamate E
글루타민 Q 글리신 GGlutamine Q Glycine G
히스티딘 H 이소류신 IHistidine H isoleucine I
류신 L 라이신 KLeucine L Lysine K
메티오닌 M 페닐알라닌 FMethionine M-Phenylalanine F
프롤린 P 세린 SProline P Serine S
트레오닌 T 트립토판 WThreonine T Tryptophan W
티로신 Y 발린 VTyrosine Y Valine V
본 발명에서 용어, "펩타이드 유도체"는 2개 이상의 아미노산의 중합체로서, 적어도 2개의 아미노산이 하나의 아미노산의 R기에 위치한 아민기 또는 카복실기와 다른 아미노산의 카복실기 또는 아민기 간의 아마이드 결합으로 연결된 것을 포함하는 중합체를 말한다.As used herein, the term “peptide derivative” refers to a polymer of two or more amino acids, wherein at least two amino acids are linked by an amide bond between an amine group or a carboxyl group located at the R group of one amino acid and a carboxyl group or an amine group of another amino acid. Says a polymer.
본 발명에서 용어, "올리고펩타이드 유도체"는 2개 내지 10개의 아미노산의 중합체로서, 적어도 2개의 아미노산이 하나의 아미노산의 R기에 위치한 아민기 또는 카복실기와 다른 아미노산의 카복실기 또는 아민기 간의 아마이드 결합으로 연결된 것을 포함하는 중합체를 말한다. 상기 올리고펩타이드 유도체는 보다 구체적으로 2개, 3개, 4개, 5개, 6개, 7개, 8개, 9개, 또는 10개의 아미노산의 중합체일 수 있다.As used herein, the term “oligopeptide derivative” refers to a polymer of 2 to 10 amino acids, wherein at least two amino acids are amide bonds between an amine group or a carboxyl group located at the R group of one amino acid and a carboxyl group or an amine group of another amino acid. Refers to a polymer comprising a linked one. The oligopeptide derivatives may be more specifically polymers of two, three, four, five, six, seven, eight, nine, or ten amino acids.
아마이드 결합은 아민기(-NH2)와 카복실기(-COOH)가 결합한 것으로 하기 화학식 1과 같이 표시된다.Amide bond is an amine group (-NH 2 ) and a carboxyl group (-COOH) is bonded as shown in the formula (1).
[화학식 1][Formula 1]
Figure PCTKR2016014327-appb-I000001
Figure PCTKR2016014327-appb-I000001
펩타이드는 이를 구성하는 각각의 아미노산의 알파 아민과 알파 탄소에 연결된 카복실기 간의 아마이드 결합, 즉 펩타이드 결합으로 형성된, 아미노산의 중합체를 말한다. 본 발명의 펩타이드 유도체 또는 올리고펩타이드 유도체는 이러한 일반적인 펩타이드 결합이 아닌, 아미노산의 R기에 위치한 아민기 또는 카복실기와 다른 아미노산의 카복실기 또는 아민기 간의 아마이드 결합을 적어도 하나 포함하는 것을 특징으로 한다.A peptide refers to a polymer of amino acids formed by an amide bond, ie a peptide bond, between the alpha amine of each amino acid constituting it and the carboxyl group linked to the alpha carbon. The peptide derivative or oligopeptide derivative of the present invention is characterized in that it contains at least one amide bond between an amine group or a carboxyl group located at the R group of an amino acid and a carboxyl group or an amine group of another amino acid, which is not a general peptide bond.
또한, 본 발명의 펩타이드 유도체는 상기 기술한 특징적인 아마이드 결합으로만 아미노산이 서로 연결된 중합체와 상기 기술한 특징적인 아마이드 결합뿐만 아니라, 펩타이드 결합으로 아미노산이 서로 연결된 중합체를 모두 포함한다.In addition, the peptide derivative of the present invention includes both polymers in which amino acids are linked to each other only by the above-described characteristic amide bonds, and polymers in which amino acids are linked to each other by peptide bonds, as well as the above-described characteristic amide bonds.
보다 구체적으로, 라이신, 알지닌, 아스파라진 또는 글루타민의 R기에 위치한 오메가 아민과 다른 임의의 아미노산의 카복실기 간의 아마이드 결합, 또는 아스파테이트 또는 글루타메이트의 R기에 위치한 카복실기와 다른 임의의 아미노산의 아민기 간의 아마이드 결합 중 적어도 하나를 포함할 수 있다.More specifically, an amide bond between the omega amine located at the R group of lysine, arginine, asparagine or glutamine and the carboxyl group of any other amino acid, or between the carboxyl group located at the R group of aspartate or glutamate and an amine group of any other amino acid It may comprise at least one of the amide bonds.
보다 더 구체적으로, 라이신, 알지닌, 아스파라진, 또는 글루타민이 임의의 아미노산과 연결되는 경우, 상기 라이신, 알지닌, 아스파라진 또는 글루타민의 R기에 위치한 오메가 아민과 이와 연결되는 아미노산의 알파 탄소에 연결된 카복실기 또는 R기에 위치한 카복실기 간의 아마이드 결합으로 서로 연결될 수 있다.More specifically, when lysine, arginine, asparagine, or glutamine is linked to any amino acid, it is linked to the alpha carbon of the omega amine located at the R group of the lysine, arginine, asparagine or glutamine and the amino acid linked thereto. Amide bonds between carboxyl groups located at the carboxyl or R groups may be linked to each other.
또한, 아스파테이트 또는 글루타메이트가 임의의 아미노산과 연결되는 경우, 상기 아스파테이트 또는 글루타메이트의 R기에 위치한 카복실기와 이와 연결되는 아미노산의 알파 탄소에 연결된 아민기 또는 R기에 위치한 오메가 아민기 같의 아마이드 결합으로 서로 연결될 수 있다.In addition, when aspartate or glutamate is linked to any amino acid, an amide bond such as a carboxyl group located on the R group of the aspartate or glutamate group and an amine group linked to the alpha carbon of the amino acid linked thereto or an omega amine group located on the R group Can be connected.
상기 올리고펩타이드 유도체는 두 개의 아미노산이 연결된 다이펩타이드(dipeptide) 유도체일 수 있다. 상기 다이펩타이드 유도체는 하기 화학식 2 또는 화학식 3으로 표시될 수 있다.The oligopeptide derivative may be a dipeptide derivative in which two amino acids are linked. The dipeptide derivative may be represented by the following Chemical Formula 2 or Chemical Formula 3.
[화학식 2][Formula 2]
X1-AX 1 -A
여기서, X1은 라이신, 알지닌, 아스파라진 또는 글루타민이고,Wherein X 1 is lysine, arginine, asparagine or glutamine,
A는 임의의 아미노산이며,A is any amino acid,
X1-A는 X1의 오메가 아민과 A의 카복실기가 아마이드 결합으로 연결된 것임;X 1 -A is one in which the omega amine of X 1 and the carboxyl group of A are linked by an amide bond;
[화학식 3][Formula 3]
X2-AX 2 -A
여기서, X2는 아스파테이트 또는 글루타메이트이고,Wherein X 2 is aspartate or glutamate,
A는 임의의 아미노산이며,A is any amino acid,
X2-A는 X2의 R기에 위치한 카복실기와 A의 아민기가 아마이드 결합으로 연결된 것임.X 2 -A is a carboxyl group located at the R group of X 2 and an amine group of A connected by an amide bond.
상기 임의의 아미노산은 글리신, 알라닌, 발린, 류신, 이소류신, 세린, 트레오닌, 시스테인, 메티오닌, 아스파테이트, 아스파라진, 글루타메이트, 글루타민, 라이신, 알지닌, 히스티딘, 페닐알라닌, 티로신, 트립토판 및 프롤린으로 이루어진 군에서 선택되는 종류일 수 있으나, 이에 제한되지 않는다.Any of the above amino acids is a group consisting of glycine, alanine, valine, leucine, isoleucine, serine, threonine, cysteine, methionine, aspartate, asparagine, glutamate, glutamine, lysine, arginine, histidine, phenylalanine, tyrosine, tryptophan and proline It may be a type selected from, but is not limited thereto.
또한, 본 발명은 상기 펩타이드 유도체 또는 올리고펩타이드 유도체의 염을 포함한다. 염 제제에 대한 바람직한 양이온은 나트륨(Na+), 칼륨(K+), 리튬(Li+), 마그네슘(Mg2+), 칼슘(Ca2 +), 바륨(Ba2 +), 스트론튬(Sr2 +) 및 암모늄(NH4+)으로 이루어진 군으로부터 선택될 수 있으나, 이에 제한되지 않는다. 또한 염은 알칼리 금속 또는 알칼리 토금속으로부터 제조될 수 있으나, 이에 제한되지 않는다. 상기 펩타이드 유도체의 염은 사료에 첨가되기 적합한 형태의 염 형태를 모두 포함하며, 상기 펩타이드 유도체의 염은 당업자가 용이하게 제조할 수 있다.In addition, the present invention includes salts of the peptide derivative or oligopeptide derivative. Preferred cations for salt preparations are sodium (Na + ), potassium (K + ), lithium (Li + ), magnesium (Mg 2+ ), calcium (Ca 2 + ), barium (Ba 2 + ), strontium (Sr 2) + ) And ammonium (NH 4 + ), but is not limited thereto. Salts can also be prepared from alkali or alkaline earth metals, but are not limited thereto. Salts of the peptide derivatives include all salt forms of suitable forms to be added to the feed, salts of the peptide derivatives can be easily prepared by those skilled in the art.
본 발명을 구현하는 다른 양태는, 상기 펩타이드 유도체의 제조방법이다.Another embodiment embodying the present invention is a method for producing the peptide derivative.
보다 구체적으로, 상기 제조방법은 R기에 아민기를 가지는 아미노산과 다른 아미노산의 카복실산 간의 아마이드 결합을 형성시키는 단계, 또는/및 R기에 카복실기를 가지는 아미노산과 다른 아미노산의 아민기 간의 아마이드 결합을 형성시키는 단계를 포함한다.More specifically, the preparation method includes forming an amide bond between an amino acid having an amine group in the R group and a carboxylic acid of another amino acid, and / or forming an amide bond between an amino acid having a carboxyl group in the R group and an amine group of another amino acid. Include.
상기 R기에 아민기를 가지는 아미노산은 라이신, 알지닌, 아스파라진 또는 글루타민일 수 있고, 상기 R기에 카복실기를 가지는 아미노산은 아스파테이트 또는 글루타메이트일 수 있다.The amino acid having an amine group in the R group may be lysine, arginine, asparagine or glutamine, and the amino acid having a carboxyl group in the R group may be aspartate or glutamate.
상기 R기에 아민기를 가지는 아미노산은 R기의 아민 외의 다른 아민기 및 카복실기가 보호기로 보호된 것이고, 상기 R기에 카복실기를 가지는 아미노산은 R기의 카복실기 외의 다른 카복실기 및 아민기가 보호기로 보호된 것일 수 있으며, 상기 R기에 아민기를 가지는 아미노산의 아민기, 또는 R기에 카복실기를 가지는 아미노산과 연결되는 다른 아미노산의 카복실기가 보호기로 보호된 것일 수 있으나, 이에 제한되는 것은 아니다.The amino acid having an amine group in the R group is protected with amine groups and carboxyl groups other than the amine of the R group, the amino acid having a carboxyl group in the R group is protected with other carboxyl groups and amine groups other than the carboxyl group of the R group The amine group of the amino acid having an amine group in the R group, or the carboxyl group of another amino acid linked with the amino acid having a carboxyl group in the R group may be protected by a protecting group, but is not limited thereto.
또한, 이에 제한되는 것은 아니나 상기 제조방법은 보호기가 장착된 아미노산을 이용하여 아마이드 결합을 형성시킨 뒤, 상기 장착된 보호기를 제거하는, 즉, 탈보호하는 단계를 포함할 수 있다.In addition, the manufacturing method may include, but is not limited to, forming an amide bond using an amino acid having a protecting group, and then removing the attached protecting group, that is, deprotecting.
본 발명에서 용어, "보호기"는 화합물의 특정 작용기와 결합함으로써 결합된 작용기가 반응하지 않도록 하는 것을 말하며, "탈보호"는 장착된 보호기를 제거하여 작용기가 원래의 상태로 되돌아가도록 하는 것을 말한다.As used herein, the term "protecting group" refers to binding of a specific functional group of a compound to prevent the bound functional group from reacting, and "deprotection" refers to removing the attached protecting group to return the functional group to its original state.
본 발명에서 상기 보호기는 특정 작용기, 구체적으로 아민기 또는 카복실기에 대하여 공지된 보호기라면 당업자가 적절하게 선택하여 사용할 수 있고 특별히 그 종류에 제한되지 않는다. 또한, 탈보호 과정은 사용된 보호기에 따라 달라질 수 있으며, 당업자는 보호기가 제거되고 보호되었던 작용기가 다시 원래의 상태로 돌아갈 수 있다면 공지된 어떠한 방법도 적절하게 사용할 수 있다.In the present invention, the protecting group may be appropriately selected and used by those skilled in the art as long as it is a known protecting group for a specific functional group, specifically an amine group or a carboxyl group, and is not particularly limited to the kind. In addition, the deprotection procedure can vary depending on the protecting group used, and those skilled in the art can use any known method as appropriate, provided that the protecting group is removed and the functional group that was protected can be returned to its original state.
특히, 본 발명에서 아민에 대한 보호기는 카보벤질옥시기 (carbobenzyloxy group), p-메톡시벤질 카보닐기 (p-methoxybenzyl carbonyl group), tert-뷰틸옥시카보닐기 (tert-butyloxycarbonyl group), 9-플로레닐메틸옥시카보닐기 (9-fluorenylmethyloxycarbonyl group), 아세틸기 (acetyl group), 벤조일기 (benzoyl group), 벤질기 (benzyl group), 카바메이트기 (carbamate group), p-메톡시벨질기 (p-methoxybenzyl group), 3,4-디메톡시벤질기 (3,4-dimethoxybenzyl group), p-메톡시페닐기 (p-methoxyphenyl group), 또는 토실기 (tosyl group)일 수 있고, 카복실기에 대한 보호기는 메틸 에스터 (methyl ester), 벤질 에스터 (benzyl ester), tert-뷰틸 에스터 (tert-butyl ester), 실릴 에스터 (silyl ester), 오쏘에스터 (orthoester), 또는 옥사졸린 (oxazoline)일 수 있으나, 이에 제한되는 것은 아니다.In particular, the protecting group for the amine in the present invention are carbonyl a benzyloxy group (carbobenzyloxy group), p - methoxybenzyl carbonyl group (p -methoxybenzyl carbonyl group), tert - butyl-oxy-carbonyl group (tert -butyloxycarbonyl group), 9- Floresta carbonyl methyloxy carbonyl group (9-fluorenylmethyloxycarbonyl group), acetyl group (acetyl group), a benzoyl group (benzoyl group), benzyl group (benzyl group), a carbamate group (carbamate group), p - methoxy Siebel chewy (p -methoxybenzyl group), 3,4- dimethoxybenzyl groups (3,4-dimethoxybenzyl group), p - methoxy may be a phenyl group (p -methoxyphenyl group), or a tosyl group (tosyl group), protecting groups for carboxyl groups are methyl ester (methyl ester), benzyl ester (benzyl ester), tert - butyl ester (tert -butyl ester), a silyl ester (silyl ester), an ortho ester (orthoester), or may be an oxazoline (oxazoline), that it is limited to no.
본 발명을 구현하는 또 다른 양태는, 상기 펩타이드 유도체 또는 이의 염을 포함하는 사료 첨가제이다.Another embodiment embodying the present invention is a feed additive comprising the peptide derivative or salt thereof.
상기 펩타이드 유도체 또는 이의 염에 대해서는 앞서 설명한 바와 같다.The peptide derivative or salt thereof is as described above.
본 발명에서 용어, "사료 첨가제"는 사료 조성물에 첨가되는 물질을 의미한다. 상기 사료 첨가제는 대상 동물의 생산성 향상이나 건강을 증진시키기 위한 것일 수 있으나, 이에 제한되지 않는다.As used herein, the term "feed additive" means a substance added to a feed composition. The feed additive may be to improve productivity or health of the target animal, but is not limited thereto.
본 발명에서는 상기 펩타이드 유도체 또는 이의 염을 포함하는 사료 첨가제를 사용하며, 상기 사료 첨가제는 상기 펩타이드 유도체 또는 이의 염 이외에도 대상 동물의 생산성 또는 건강 증진을 위한 뉴클레오티드류, 아미노산, 칼슘, 인산, 유기산 등의 영양소를 추가로 포함할 수 있으나, 이에 제한되지 않는다.In the present invention, a feed additive including the peptide derivative or a salt thereof is used, and the feed additive may be used in addition to the peptide derivative or salt thereof, such as nucleotides, amino acids, calcium, phosphoric acid, organic acid, etc. It may further include nutrients, but is not limited thereto.
본 발명에서 용어, "사료 조성물"은 동물에게 주는 먹이를 말한다. 상기 사료 조성물은 동물의 생명을 유지, 또는 고기, 젖 등을 생산하는데 필요한 유기 또는 무기 영양소를 공급하는 물질을 말한다. 상기 사료 조성물은 사료 첨가제를 포함할 수 있으며, 본 발명의 사료 첨가제는 사료 관리법 상의 보조사료에 해당할 수 있다.In the present invention, the term "feed composition" refers to the food to be given to the animal. The feed composition refers to a substance that supplies organic or inorganic nutrients necessary for maintaining the life of an animal or producing meat, milk, and the like. The feed composition may include a feed additive, and the feed additive of the present invention may correspond to a feed supplement on a feed management method.
상기 사료의 종류는 특별히 제한되지 아니하며, 당해 기술 분야에서 통상적으로 사용되는 사료를 사용할 수 있다. 상기 사료의 비제한적인 예로는, 곡물류, 근과류, 식품 가공 부산물류, 조류, 섬유질류, 제약 부산물류, 유지류, 전분류, 박류 또는 곡물 부산물류 등과 같은 식물성 사료; 단백질류, 무기물류, 유지류, 광물성류,단세포 단백질류, 동물성 플랑크톤류 또는 음식물 등과 같은 동물성 사료를 들 수 있다. 이들은 단독으로 사용되거나 2 종 이상을 혼합하여 사용될 수 있다.The kind of the feed is not particularly limited, and may be used a feed commonly used in the art. Non-limiting examples of the feed may include plant feeds such as cereals, fruits, food processing by-products, algae, fibres, pharmaceutical by-products, oils, starches, gourds or grain by-products; Animal feeds such as proteins, minerals, fats, oils, minerals, single-cell proteins, zooplankton or foods. These may be used alone or in combination of two or more thereof.
본 발명의 사료용 조성물을 적용할 수 있는 개체는 특별히 한정되지 않고, 어떠한 형태의 것이든 적용 가능하다. 예를 들면, 소, 양, 기린, 낙타, 사슴, 염소 등과 같은 동물에 제한없이 적용가능하며, 특히 바람직하게는 반추위를 가지는 반추동물에 적용가능하고, 대표적인 예로 축우를 들 수 있으나, 이에 제한되지 않는다.The individual to which the composition for feed of the present invention can be applied is not particularly limited and may be applied in any form. For example, it is applicable without limitation to animals such as cows, sheep, giraffes, camels, deer, goats, etc., and particularly preferably applicable to ruminants having a rumen, a representative example may include cattle, but is not limited thereto. Do not.
본 발명의 일 구현예에 따르면, 상기 펩타이드 유도체 또는 이의 염은 반추위 미생물에 의한 분해 정도가 낮아 반추위 보호 펩타이드 유도체로 이용될 수 있다. 따라서, 상기 펩타이드 유도체 또는 이의 염은 반추동물용 사료 첨가제로서 효과적으로 사용될 수 있으나, 이에 제한되지 않는다.According to one embodiment of the present invention, the peptide derivative or salt thereof may be used as a rumen protective peptide derivative because the degree of degradation by the rumen microorganism is low. Therefore, the peptide derivative or salt thereof may be effectively used as a feed additive for ruminants, but is not limited thereto.
본 발명의 용어, "반추위"란 포유류 소목의 일부 동물에서 볼 수 있는 특수한 소화관으로, 일명 되새김을 하기 위해 혹위, 벌집위, 겹주름위, 및 주름위의 4개의 방으로 나뉘어 있다. 일명 되새김위라고도 하며, 한번 삼킨 음식물을 다시 임안으로 토하여 잘 씹은 후에 삼키는 것을 반추라고 하고, 이런 반추를 가능하게 하는 위를 반추위라고 한다. 반추위에는 미생물이 공생하고 있어서 일반적인 동물들이 소화하지 못하는 식물의 셀룰로스를 분해하여 에너지화할 수 있는 능력을 갖게 된다.As used herein, the term "ruminant" is a special digestive tract found in some animals of mammalian joiners, and is divided into four rooms, called hump, honeycomb, folds, and wrinkles, for the purpose of rubbing. Also known as ruminwiwi, once swallowed foods in the forest again vomiting and swallowing well called swallowing, this rumen is called stomach rubbing is possible. In the rumen, microbial symbiosis has the ability to decompose and energize the cellulose of plants that cannot be digested by ordinary animals.
본 발명의 용어, "반추동물"이란 상기 설명한 반추위를 갖는 동물을 의미하며, 이에는 낙타과, 애기사슴과, 사슴과, 기린과 및 소과의 동물들이 포함된다. 다만, 낙타과와 애기사슴과는 겹주름위와 주름위가 완벽하게 분화되지 않아 3개의 방으로 이루어진 반추위를 가지고 있는 것으로 알려져 있다.As used herein, the term "ruminant" refers to an animal having the rumen described above, and includes the animals of the family Camel, Deer, Deer, Giraffe and Bovine. However, the camel family and the baby deer are known to have a rumen consisting of three rooms because the folds and wrinkles are not completely differentiated.
상기 사료 첨가제는 사료 총 중량에 대하여 0.01 내지 90 중량%로 상기 펩타이드 유도체 또는 이의 염이 포함되도록 사료 조성물에 첨가되는 것일 수 있으나, 이에 제한되지 않는다.The feed additive may be added to the feed composition to include the peptide derivative or salt thereof in an amount of 0.01 to 90% by weight based on the total weight of the feed, but is not limited thereto.
또한, 본 발명에 따른 사료 첨가제는 개별적으로 사용될 수 있고, 종래 공지된 사료 첨가제와 병용하여 사용될 수 있으며, 종래의 사료 첨가제와 순차적 또는 동시에 사용될 수 있다. 그리고 단일 또는 다중 투여될 수 있다. 상기 요소를 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 당업자에 의해 용이하게 결정될 수 있다.In addition, the feed additive according to the present invention may be used individually, may be used in combination with a conventionally known feed additive, and may be used sequentially or simultaneously with the conventional feed additive. And single or multiple administrations. Taking all of the above factors into consideration, it is important to administer an amount that can obtain the maximum effect in a minimum amount without side effects, and can be easily determined by those skilled in the art.
본 발명을 구현하는 또 다른 양태는, 상기 사료용 조성물을 동물에게 급여하는 단계를 포함하는, 동물의 사육방법이다.Another aspect of embodying the present invention is a method of breeding an animal, comprising feeding the animal a feed composition.
상기 사료용 조성물에 대해서는 앞서 설명한 바와 같다.The feed composition is as described above.
본 발명의 동물의 사육방법은 자세하게는 (a) 상기 사료용 조성물을 동물용 사료에 혼합하는 단계; 및 (b) 상기의 사료를 동물에 급여하는 단계를 포함할 수 있다.Animal breeding method of the present invention in detail (a) mixing the feed composition for animal feed; And (b) feeding the feed to the animal.
본 발명에 따른 상기 (a) 단계는 본 발명의 펩타이드 유도체 또는 이의 염을 포함하는 사료용 조성물을 가축용 일반사료에 혼합하는 단계로, 혼합사료내 0.01 내지 20 중량%, 바람직하게는 0.1 내지 10 중량%로 혼합하여 급여할 수 있다.Step (a) according to the present invention is a step of mixing the feed composition comprising the peptide derivative of the present invention or a salt thereof in a general feed for livestock, 0.01 to 20% by weight, preferably 0.1 to 10% by weight in the mixed feed You can pay in percentage.
본 발명에 따른 상기 (b) 단계는 상기 (a) 단계에서 제조된 사료를 동물에게 급여하는 단계로, 급여할 수 있는 가축은 상기 설명한 바와 같이 특별히 제한되지 않으며, 특히 반추동물일 수 있다.Step (b) according to the present invention is a step of feeding the animal prepared in step (a) to the animal, the feedable livestock is not particularly limited as described above, in particular may be a ruminant.
본 발명에 따른 사료용 조성물을 가축에 급여할 경우, 가축의 증체 및 육질 개량 등 우수한 효과를 기대할 수 있다.When feeding the feed composition according to the present invention to livestock, excellent effects such as weight gain and meat quality improvement of the livestock can be expected.
본 발명을 구현하는 또 다른 양태는, 상기 펩타이드 유도체 또는 이의 염의 반추위 우회(bypass) 용도이다.Another embodiment embodying the present invention is the use of a bypass of the peptide derivative or salt thereof.
상기 펩타이드 유도체 또는 이의 염, 및 반추위 우회 용도에 대하여는 앞서 설명한 바와 같다.The peptide derivative or its salt, and the use of the rumen bypass is as described above.
본 발명을 구현하는 또 다른 양태는, 상기 펩타이드 유도체 또는 이의 염의 사료 첨가제로서의 용도이다.Another embodiment embodying the present invention is the use of said peptide derivative or salt thereof as a feed additive.
상기 펩타이드 유도체 또는 이의 염, 및 사료 첨가제 용도에 대하여는 앞서 설명한 바와 같다.The peptide derivative or its salt, and feed additive use are as described above.
본 발명을 구현하는 또 다른 양태는, 사료 첨가제 또는 사료 조성물의 제조에 사용하기 위한 상기 펩타이드 유도체 또는 이의 염의 용도이다.Another embodiment embodying the present invention is the use of said peptide derivative or salt thereof for use in the preparation of a feed additive or feed composition.
상기 펩타이드 유도체 또는 이의 염, 사료 첨가제, 및 사료 조성물에 대하여는 앞서 설명한 바와 같다.The peptide derivatives or salts thereof, feed additives, and feed compositions are the same as described above.
이하 실시예를 통하여 본 발명을 더욱 상세하게 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것으로 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다.Hereinafter, the present invention will be described in more detail with reference to the following examples. These examples are only intended to illustrate the invention and are not to be construed as limiting the scope of the invention by these examples.
실시예Example 1.  One. 라이신의Lysine 오메가  omega 아민을Amines 이용한  Used 다이펩타이드Dipeptide ( ( dipeptidedipeptide ) 유도체의 제조) Preparation of Derivatives
라이신-구리 복합체 (Lysine-copper complex)를 제조하기 위해서, 라이신 염산염과 CuCO3 ·Cu(OH)2 수용액을 2 시간 동안 가열 환류한 다음 동일 온도에서 반응 용액을 여과시킨 후 여액을 20 ℃로 냉각하였다. 여액에 아세톤을 소량 첨가한 후, 결정이 생기기 시작하면 밤새 4°C에서 생성물을 침전시켰다. 침전물을 여과하여 건조시킨 후, 아세톤-물에서 결정화하였다. 한편, 라이신과 연결되는 아미노산의 아민 작용기를 tert-Boc (Butyloxycarbonyl)으로 보호하기 위해서, 해당 아미노산을 THF (tetrahydrofuran)에 녹이고 tert-뷰틸 디카보네이트 (butyl dicarbonate)와 TEA (triethylamine)를 첨가 후 2 시간 동안 실온에서 교반하였다. 생성된 Boc-아미노산 (0.1 mol)을 TEA (0.01 mol)와 함께 20 내지 30 ml의 THF에 녹인 후 -10 ℃로 냉각한 다음, 0.01 mol의 에틸 클로로카보네이트 (ethyl chlorocarbonate)를 첨가하여 5 분 동안 교반하였다. 상기 혼합용액에 위에서 제조한 0.01 mol의 라이신-구리 복합체 수용액 10 ml를 넣고 반응시킨 다음 물 200 내지 300 ml을 첨가하여 침전된 생성물을 여과하였다. 수득한 침전물을 물 100 ml에 녹인 다음 황화 수소 (hydrogen sulfide) 가스를 주입하여 3 시간 동안 가열하며 교반하였다. 이때 생성된 황산구리 (copper sulfate)를 여과한 후 남은 목적 화합물을 고온의 물에서 2 번 결정화 시켰다. 그 다음 라이신을 이용한 다이펩타이드 유도체로부터 보호기 (tert-Boc)를 제거하기 위하여, 상기 유도체를 30 % (v/v) 트리플로로아세틱 액시드 (trifluoroacetic acid)가 녹아있는 메틸렌 클로라이드 (methylene chloride, 200 ml)에 다시 녹인 후, 6 시간 동안 반응시켜 목적한 생성물을 얻었다 (도 1). To prepare a Lysine-copper complex, lysine hydrochloride and CuCO 3 · Cu (OH) 2 The aqueous solution was heated to reflux for 2 hours, and then the reaction solution was filtered at the same temperature and the filtrate was cooled to 20 ° C. After a small amount of acetone was added to the filtrate, the product precipitated at 4 ° C. overnight when crystals began to form. The precipitate was filtered off and dried and then crystallized in acetone-water. Meanwhile, in order to protect the amine functional group of the amino acid linked with lysine with tert- Boc (Butyloxycarbonyl), the amino acid was dissolved in THF (tetrahydrofuran) and 2 hours after the addition of tert -butyl dicarbonate and TEA (triethylamine). Stirred at room temperature. The resulting Boc-amino acid (0.1 mol) was dissolved in 20-30 ml of THF with TEA (0.01 mol) and then cooled to -10 ° C, followed by addition of 0.01 mol of ethyl chlorocarbonate for 5 minutes. Stirred. 10 ml of the 0.01 mol lysine-copper composite aqueous solution prepared above was added to the mixed solution, followed by reaction, and then 200 to 300 ml of water was added to precipitate the precipitated product. The obtained precipitate was dissolved in 100 ml of water and then hydrogen sulfide gas was injected and heated with stirring for 3 hours. At this time, the produced copper sulfate was filtered, and the remaining target compound was crystallized twice in hot water. Then, in order to remove the protecting group ( tert- Boc) from the dipeptide derivative using lysine, the derivative was dissolved in methylene chloride (30% (v / v) trifluoroacetic acid). 200 ml), and then reacted for 6 hours to obtain the desired product (FIG. 1).
실시예Example 2.  2. 알지닌의Arginine 오메가  omega 아민을Amines 이용한  Used 다이펩타이드Dipeptide ( ( dipeptidedipeptide ) 유도체의 제조) Preparation of Derivatives
Nα-Boc-L-알지닌의 카복실산 작용기를 보호하기 위해서, Nα-Boc-L-알지닌 (0.1 mol)을 메탄올에 녹인 후, 0 ℃에서 티오닐 클로라이드 (thionyl chloride, 0.15 mol)를 천천히 주입한 다음 15 분 동안 교반하였다. 상기 혼합용액을 실온에서 3 시간 동안 반응시킨 후, 반응이 완료되면 EA (Ethyl acetate)로 추출한 다음 감압농축하여 Nα-Boc-L-알지닌 4-메틸 에스터 (Nα-Boc-L-arginine 4-methylester)를 수득하였다. 한편, 알지닌의 오메가 아민과 연결되는 아미노산의 아민 작용기를 tert-Boc으로 보호하기 위해서는 실시예 1과 동일한 방법을 이용하였다. 상기 방법으로 생성된 Boc-보호 아미노산 (0.1 mol)과 위에서 제조한 Nα-Boc-L-알지닌 4-메틸 에스터 (0.1 mol)를 DIPEA (N,N-Diisopropylethylamine, 0.15 mol)를 포함한 DMF (N,N-Dimethylmethanamid)에 녹인 다음 HBTU (N,N,N',N'-Tetramethyl-O-(1H-benzotriazol-1-yl)uronium hexafluorophosphate, 0.15 mol)를 첨가하여 실온에서 4 시간 반응시켰다. 반응이 완료되면 EA로 생성물을 추출한 후 결정화하였다. 그 다음 다이펩타이드 유도체로부터 tert-Boc보호기를 제거하기 위해서 실시예 1과 동일한 반응을 이용하였으며, NaOH 수용액을 이용하여 알지닌의 에스터 보호기를 제거한 뒤 목적한 생성물을 얻었다 (도 2).N α -Boc-L- in order to protect the carboxylic acid functionality of the eggs with, N α -Boc-L- after the arginine (0.1 mol) was dissolved in methanol, tea from 0 ℃ chloride (thionyl chloride, 0.15 mol) of Inject slowly and stir for 15 minutes. After reacting for 3 hours, the mixed solution at room temperature, the reaction was complete, EA (Ethyl acetate), and then concentrated under reduced pressure and extracted with N α -Boc-L- arginine methyl ester (N α -Boc-L-arginine 4-methylester) was obtained. On the other hand, the same method as in Example 1 was used to protect the amine functional group of the amino acid linked to the omega amine of arginine with tert- Boc. The Boc-protected amino acid (0.1 mol) produced by the above method and the N α -Boc-L-arginine 4-methyl ester (0.1 mol) prepared above were prepared using DMF (N, N-Diisopropylethylamine, 0.15 mol). After dissolving in N, N-Dimethylmethanamid), HBTU (N, N, N ', N'-Tetramethyl-O- (1H-benzotriazol-1-yl) uronium hexafluorophosphate, 0.15 mol) was added and reacted at room temperature for 4 hours. After the reaction was completed, the product was extracted with EA and crystallized. Then, the same reaction as in Example 1 was used to remove the tert- Boc protecting group from the dipeptide derivative, and the target product was obtained after removing the ester protecting group of the arginine using an aqueous NaOH solution (FIG. 2).
실시예Example 3.  3. 아스파라진의Asparagine 오메가  omega 아민을Amines 이용한  Used 다이펩타이드Dipeptide (( dipeptidedipeptide ) 유도체의 제조) Preparation of Derivatives
Nα-Boc-L-아스파라진의 카복실산 작용기를 보호하기 위해서, Nα-Boc-L-아스파라진 (0.1 mol)을 메탄올에 녹인 후, 0 ℃ 에서 티오닐 클로라이드 (thionyl chloride, 0.15 mol)를 천천히 주입한 다음 15 분 동안 교반하였다. 상기 혼합용액을 실온에서 3 시간 동안 반응시킨 후, 반응이 완료되면 EA (Ethyl acetate)로 추출한 다음 감압농축하여 Nα-Boc-L-아스파라진 4-메틸 에스터 (Nα-Boc-L-asparagine 4-methyl ester)를 수득하였다. 한편, 아스파라진과 연결되는 아미노산의 아민 작용기를 tert-Boc으로 보호하기 위해서는 실시예 1과 동일한 방법을 이용하였다. 상기 방법으로 생성된 Boc-보호 아미노산(0.1 mol)과 위에서 제조한 Nα-Boc-L-아스파라진 4-메틸 에스터 (0.1 mol)를 DIPEA(0.15 mol)를 포함한 DMF (N,N-Dimethylmethanamid)에 녹인 용액에 HBTU (0.15 mol)를 첨가하여 실온에서 4 시간 반응시킨 후, EA로 생성물을 추출하여 결정화하였다. 그 다음 다이펩타이드 유도체로부터 tert-Boc보호기를 제거하기 위해서 실시예 1과 동일한 반응을 이용하였으며, NaOH 수용액을 이용하여 아스파라진의 에스터 보호기를 제거한 뒤 목적한 생성물을 얻었다 (도 3). N α -Boc-L- in order to protect the carboxylic acid functional groups of the asparagine, N α -Boc-L- asparagine (0.1 mol) was dissolved in methanol, tea from 0 ℃ chloride (thionyl chloride, 0.15 mol) of Inject slowly and stir for 15 minutes. After reacting the mixed solution for 3 hours at room temperature, the reaction solution was extracted with EA (Ethyl acetate) and concentrated under reduced pressure to obtain N α -Boc-L-asparagine 4-methyl ester (N α -Boc-L-asparagine). 4-methyl ester) was obtained. On the other hand, the same procedure as in Example 1 was used to protect the amine functionality of the amino acid that is linked to asparagine in tert -Boc. Bom-protected amino acid (0.1 mol) produced by the above method and the above prepared N α -Boc-L-asparagine 4-methyl ester (0.1 mol) DMF (N, N-Dimethylmethanamid) containing DIPEA (0.15 mol) HBTU (0.15 mol) was added to the solution dissolved in the reaction and reacted at room temperature for 4 hours, after which the product was extracted with EA and crystallized. Then, the same reaction as in Example 1 was used to remove the tert- Boc protecting group from the dipeptide derivative, and the target product was obtained after removing the ester protecting group of asparagine using an aqueous NaOH solution (FIG. 3).
실시예Example 4. 글루타민의 오메가  4. Glutamine Omega 아민을Amines 이용한  Used 다이펩타이드Dipeptide (( dipeptidedipeptide ) 유도체의 제조) Preparation of Derivatives
Nα-Boc-L-글루타민의 카복실산 작용기를 보호하기 위해서, Nα-Boc-L-글루타민 (0.1 mol)을 메탄올에 녹인 후, 0 ℃에서 티오닐 클로라이드 (thionyl chloride, 0.15 mol)를 천천히 주입한 다음 15 분 동안 교반하였다. 상기 혼합용액을 실온에서 3 시간 동안 반응시킨 후, EA (Ethyl acetate)로 추출한 다음 감압농축하여 Nα-Boc-L-글루타민 4-메틸 에스터 (Nα-Boc-L-glutamine 4-methyl ester)를 수득하였다. 한편, 글루타민과 연결되는 아미노산의 아민 작용기를 tert-Boc으로 보호하기 위해서 실시예 1과 동일한 방법을 이용하였다. 상기 방법으로 생성된 Boc-보호 아미노산 (0.1 mol)과 위에서 제조한 Nα-Boc-L-글루타민 4-메틸 에스터 (Nα-Boc-L-glutamine 4-methylester, 0.1 mol)를 DIPEA (0.15 mol)를 포함한 DMF (N,N-Dimethylmethanamid)에 녹인 용액에 HBTU (0.15 mol)를 첨가하여 실온에서 4 시간 반응시킨 후, EA로 생성물을 추출하여 결정화를 진행하였다. 그 다음 다이펩타이드 유도체로부터 tert-Boc 보호기를 제거하기 위해서 실시예 1과 동일한 반응을 이용하였으며, NaOH 수용액을 이용하여 글루타민의 카복실기 보호기 (methylester)를 제거한 뒤 목적한 생성물을 얻었다 (도 4).N α -Boc-L- in order to protect the carboxylic acid functionality of Glutamine, N α -Boc-L- after glutamine (0.1 mol) was dissolved in methanol and slowly injected with thionyl chloride (thionyl chloride, 0.15 mol) at 0 ℃ Then stirred for 15 minutes. After reacting for 3 hours, the mixed solution at room temperature, EA (Ethyl acetate), and then concentrated under reduced pressure to N α -Boc-L- glutamine methyl ester (N α -Boc-L-glutamine 4-methyl ester) and extracted with Obtained. On the other hand, the same method as in Example 1 was used to protect the amine functional group of the amino acid linked with glutamine with tert- Boc. The Boc- protected amino acid (0.1 mol) and the N α -Boc-L- glutamine methyl ester prepared above produced by the above method (N α -Boc-L-glutamine 4-methylester, 0.1 mol) of DIPEA (0.15 mol HBTU (0.15 mol) was added to a solution dissolved in DMF (N, N-Dimethylmethanamid) containing 4 h) and reacted at room temperature for 4 hours, followed by crystallization by extracting the product with EA. Then, the same reaction as in Example 1 was used to remove the tert-Boc protecting group from the dipeptide derivative, and the desired product was obtained after removing the carboxyl protecting group (methylester) of glutamine using an aqueous NaOH solution (FIG. 4).
실시예Example 5.  5. 아스파테이트Aspartate 잔기의Residue 카복실기를Carboxyl group 이용한  Used 다이펩타이드Dipeptide (dipeptide) 유도체의 제조 of dipeptide derivatives
아스파테이트 잔기의 카복실기에 연결되는 아미노산 (0.1 mol)을 메탄올에 녹인 후, 0 ℃에서 티오닐 클로라이드 (thionyl chloride, 0.15 mol)를 천천히 주입한 다음 15 분 동안 교반하였다. 상기 혼합용액을 실온에서 3 시간 동안 반응시킨 후, 반응이 완료되면 EA (Ethyl acetate)로 추출한 다음 감압농축하여 카복실기가 메틸 에스터 (methyl ester)로 보호된 아미노산을 수득하였다. 상기 화합물 (0.1 mol)과 N-Boc-L-아스파틱 액시드 1-벤질 에스터 (N-Boc-L-aspartic acid 1-benzyl ester, 0.1 mol)를 DIPEA (0.15 mol)을 포함한 DMF (N,N-Dimethylmethanamid)에 녹인 용액에 HBTU (0.15 mol)를 첨가하여 실온에서 3-4 시간 반응시켰다. 반응 이후 EA로 생성물을 추출/결정화 한 뒤 다이펩타이드 유도체로부터 tert-Boc 보호기를 제거하기 위해 실시예 1과 동일한 반응을 이용하였으며, NaOH 수용액을 이용하여 아스파테이트의 카복실기 보호기 (benzyl ester)를 제거한 뒤 목적한 생성물을 얻었다 (도 5).The amino acid (0.1 mol) linked to the carboxyl group of the aspartate residue was dissolved in methanol, and then slowly injected with thionyl chloride (0.15 mol) at 0 ° C., followed by stirring for 15 minutes. The mixed solution was reacted at room temperature for 3 hours, and when the reaction was completed, the mixture was extracted with EA (Ethyl acetate) and concentrated under reduced pressure to obtain an amino acid having a carboxyl group protected with methyl ester. The compound (0.1 mol) and N-Boc-L-aspartic acid 1-benzyl ester (0.1 mol) were converted into DMF (N, HBTU (0.15 mol) was added to the solution dissolved in N-Dimethylmethanamid) and reacted at room temperature for 3-4 hours. After the reaction, the product was extracted / crystallized with EA, and the same reaction as in Example 1 was used to remove the tert-Boc protecting group from the dipeptide derivative, and the carboxyl protecting group (benzyl ester) of aspartate was removed using an aqueous NaOH solution. The desired product was obtained later (FIG. 5).
실시예Example 6.  6. 글루타메이트Glutamate 잔기의Residue 카복실기를Carboxyl group 이용한  Used 다이펩타이드Dipeptide (( dipeptidedipeptide ) 유도체의 제조) Preparation of Derivatives
글루타메이트 잔기의 카복실기에 연결되는 아미노산 (0.1 mol)을 메탄올에 녹인 후, 0 ℃에서 티오닐 클로라이드 (thionyl chloride, 0.15 mol)를 천천히 주입한 다음 15분 동안 교반하였다. 상기 혼합용액을 실온에서 3시간 동안 반응시킨 후, 반응이 완료되면 EA (Ethyl acetate)로 추출한 다음 감압농축하여 카복실기가 메틸 에스터 (methyl ester)로 보호된 아미노산을 수득하였다. 상기 화합물 0.1 mol과 N-Boc-L-글루타믹 액시드 1-벤질 에스터 (N-Boc-L-glutamic acid 1-benzyl ester, 0.1 mol)를 DIPEA (0.15 mol)가 포함된 DMF (N,N-Dimethyl methanamide)에 녹인 용액에 HBTU (0.15 mol)를 첨가하여 실온에서 3-4시간 반응시켰다. 반응 이후 EA로 생성물을 추출/결정화 한 뒤, 다이펩타이드 유도체로부터 tert-Boc보호기를 제거하기 위해 실시예 1과 동일한 반응을 이용하였으며, NaOH수용액을 이용해 글루타메이트의 카복실기 보호기 (benzyl ester)를 제거한 뒤 목적한 생성물을 얻었다 (도 6).The amino acid (0.1 mol) linked to the carboxyl group of the glutamate residue was dissolved in methanol, and then slowly injected with thionyl chloride (0.15 mol) at 0 ° C., followed by stirring for 15 minutes. After reacting the mixed solution for 3 hours at room temperature, the reaction solution was extracted with EA (Ethyl acetate) and concentrated under reduced pressure to obtain an amino acid in which the carboxyl group was protected with methyl ester. 0.1 mol of the compound and N-Boc-L-glutamic acid 1-benzyl ester (0.1 mol) were converted into DMF (N, HBTU (0.15 mol) was added to the solution dissolved in N-Dimethyl methanamide) and reacted at room temperature for 3-4 hours. After the reaction, the product was extracted / crystallized with EA, the same reaction as in Example 1 was used to remove the tert- Boc protecting group from the dipeptide derivative, and the carboxyl protecting group (benzyl ester) of glutamate was removed using an aqueous NaOH solution. The desired product was obtained (FIG. 6).
실시예Example 7.  7. 다이펩타이드Dipeptide ( ( dipeptidedipeptide ) 유도체의 반추위 우회 (bypass) 및 소화 분해 평가Evaluation of Bypass and Digestion Degradation of Derivatives
7-1. 반추위 bypass 평가7-1. Rumen bypass evaluation
7-1-1. 반추위액 채취7-1-1. Rumen juice collection
반추위 캐뉼라 장착 홀스테인 (Holstein) 거세우 (체중 630 ~ 650 kg 내외) 1 두를 공시하였으며, 공시축은 하루에 2 회 (오전 7 시 30 분, 오후 3 시) 당사에서 개발하여 시판하고 있는 사료 밀크젠 및 볏짚을 급여하여 사육하였다.Holstein cows with rumen cannula (Weighing between 630 and 650 kg) 1 dog and 2 dogs per day (7:30 am, 3 pm). And rice straw was fed by breeding.
반추위액의 채취는 실험 당일 오전 10 시경에 진행하였으며, 캐뉼라를 통해 반추위 내용물을 꺼낸 뒤 거즈로 위액을 짜서 추출한 다음, 보온병에 담아 CO2로 버블링 (bubbling)하여, 산소의 침입을 차단한 상태로 실험실로 운반한 뒤 사용하였다. 실험실까지 운반하는데 대략 1 시간 소요되었다.The rumen fluid was collected at about 10 am on the day of the experiment, and the contents of the rumen were taken out through the cannula, squeezed out of the gastric fluid with gauze, and then bubbled into a thermos bubbled with CO 2 to block the invasion of oxygen. Used after transporting to the laboratory. It took approximately 1 hour to transport to the lab.
7-1-2. 혐기 배양 진행7-1-2. Anaerobic Culture Progress
실험실로 운반된 반추위액은 2 겹의 거즈로 여과 후 반추위 실험에서 일반적으로 사용되고 있는 McDougall's buffer (Troelsen and Donna, 1966)의 모사액과 1 : 3의 비율로 혼합하여 혐기 배양액으로 사용하였다. McDougall's buffer 모사액의 조성은 하기 표 1에서 보는 것과 같다.The rumen solution transported to the laboratory was mixed with a simulated solution of McDougall's buffer (Troelsen and Donna, 1966), which is generally used in rumen experiments after filtration with two layers of gauze, and used as an anaerobic culture solution. The composition of McDougall's buffer simulation solution is as shown in Table 1 below.
McDougall's buffer 모사액의 조성Composition of McDougall's Buffer Simulation
buffer (1L 기준)buffer (based on 1L)
NaH2PO4·2H2ONaH 2 PO 4 · 2H 2 O 9.3 g9.3 g
NaHCO3 NaHCO 3 9.8 g9.8 g
NaClNaCl 0.47 g0.47 g
KClKCl 0.57 g0.57 g
MgCl2 MgCl 2 0.256 g0.256 g
CaCl2 CaCl 2 0.106 g0.106 g
EZMIX N-ZAMINEZMIX N-ZAMIN 2.5 g2.5 g
resazulin (0.1%)resazulin (0.1%) 1.5 ml1.5 ml
기초 사료는 밀크젠TM(CJ 제일제당)을 사용하였으며, 기초사료에 시험물질을 혼합하여 시험사료를 제조하였다. 시험물질은 라이신의 곁사슬에 위치한 오메가 아민과 메티오닌 (methionine)의 카복실기 간의 아마이드 결합으로 생성되는 메티오닌-ε-라이신 다이펩타이드(methionine-ε-lysine)이고, 이를 실험군 1로 하여, 일반적인 펩타이드 결합인 한쪽 아미노산의 카복실기와 다른 한쪽 아미노산의 아미노기의 결합으로 생성된 Lys-Lys 다이펩타이드 및 Met-Met 다이펩타이드를 시험물질로 사용한 대조군 1 및 2와 비교하였다. 각 실험군 마다 3 반복으로 배양을 진행하였다. Milk feed TM (CJ Cheil Jedang Sugar) was used as the basic feed, and the test feed was prepared by mixing the test material with the basic feed. The test substance was methionine-ε-lysine produced by the amide bond between the omega amine located in the side chain of lysine and the carboxyl group of methionine. Lys-Lys dipeptide and Met-Met dipeptide generated by the binding of the carboxyl group of one amino acid and the amino group of the other amino acid were compared with the control groups 1 and 2 using the test substance. In each experimental group, the culture was carried out in three replicates.
기초사료와 시험물질을 4 : 1의 비율로 혼합하였고 (기초사료 0.4 g, 시험물질 0.1 g), 125 ml 배양병에 혼합된 시험사료 0.5 g을 첨가하고, 준비된 혐기 배양액 50 ml을 혼합한 후에 밀폐하여 40 ℃ 인큐베이터에 정치함으로써 배양을 개시하였다.The basic feed and the test substance were mixed at a ratio of 4: 1 (based feed 0.4 g, test substance 0.1 g), 0.5 g of the mixed test feed was added to a 125 ml culture bottle, and 50 ml of the prepared anaerobic culture solution were mixed. Incubation was started by standing in a 40 degreeC incubator sealed.
반추위액 희석을 포함한 배양개시까지의 전 과정 동안 O2 free CO2를 분사하여 반추위액이 산소에 노출되지 않도록 혐기 상태를 유지하고자 하였다.During the whole process up to the start of the culture including the dilution of the rumen liquid, O 2 free CO 2 was injected to maintain the anaerobic state so that the rumen liquid was not exposed to oxygen.
7-1-3. 샘플링 (sampling) 및 시험물질의 반추위 우회 (bypass) 효율 측정 결과7-1-3. Sampling and Bypass Efficiency Measurements of Test Substances
배양은 최종적으로 24 시간 동안 진행하였고, 배양액 샘플링은 배양 개시 후, 총 2 차례 (0 시간 및 24 시간) 진행하였다. 각 샘플링 시, 40 ℃ 인큐베이터에 정치시킨 표본을 꺼내 뚜껑을 연 후, 배양액을 원심분리 (4000 rpm, 10 분)하여 상층액 내에 존재하는 시험물질의 양을 측정하였다.The culture was finally performed for 24 hours, and the culture sample was sampled two times (0 hour and 24 hours) after the start of the culture. At each sampling, the specimen left in a 40 ° C. incubator was taken out, the lid was opened, the culture was centrifuged (4000 rpm, 10 minutes), and the amount of test substance present in the supernatant was measured.
시험물질의 LC 정량분석 결과를 토대로 반추위 우회율 (%)를 계산했고, 그 값은 하기 표 2로 나타내었다. The rumen bypass rate (%) was calculated based on the LC quantitative analysis of the test material, the value is shown in Table 2 below.
메티오닌-ε-라이신의 반추위 우회율 (%) Rumen bypass rate of methionine-ε-lysine (%)
반추위 우회율 (%)Rumen bypass rate (%)
0h 0h 24h24h
1One 22 33 평균값medium SDSD 1One 22 33 평균값medium SD SD
대조군 1Control group 1 100.0100.0 100.0100.0 100.0100.0 100.0100.0 0.00.0 0.00.0 0.00.0 0.00.0 0.00.0 0.00.0
(Lys-Lys 다이펩타이드)(Lys-Lys Dipeptide)
대조군 2 Control 2 100.0100.0 100.0100.0 100.0100.0 100.0100.0 0.00.0 -- 8.078.07 6.166.16 7.17.1 1.41.4
(Met-Met 다이펩타이드)(Met-Met Dipeptide)
실험군 1 Experimental group 1 100.0100.0 100.0100.0 100.0100.0 100.0100.0 0.00.0 71.871.8 69.869.8 68.168.1 69.969.9 1.91.9
(메티오닌-ε-라이신)(Methionine-ε-lysine)
반추위 우회율 (%)은 0 시간 샘플링 시점의 시험 물질의 잔존량을 100 %로 환산했을 때 24 시간 표본의 상대적인 잔존량 (%)으로 나타냈다. 도 7은 반추위 우회율 (%)을 그래프로 나타낸 것이다.The rumen bypass rate (%) was expressed as the relative residual percentage (%) of the 24-hour specimens when the residual amount of test substance at the time of zero hour sampling was converted to 100%. Figure 7 graphically shows the rumen bypass rate (%).
결과적으로, 대조군인 Lys-Lys 다이펩타이드, Met-Met 다이펩타이드 모두 0 시간 대비, 24 시간 이후의 반추위 우회율 (%)이 0 % 로, 반추위 미생물에 의해 거의 대부분 소화된 것을 확인할 수 있었고, 실험군인 메티오닌-ε-라이신은 라이신은 0 시간 대비, 24 시간에 69.9 %의 반추위 우회율 (%)을 보였다.As a result, the control group Lys-Lys dipeptide and Met-Met dipeptide were 0%, and the rumen bypass rate (%) after 24 hours was 0%, which was almost digested by rumen microorganisms. Phosphorus methionine-ε-lysine showed lysine bypass rate (%) of 69.9% at 24 hours compared to 0 hours.
따라서, 메티오닌-ε-라이신은 일반적인 펩타이드 결합인 Lys-Lys 다이펩타이드 및 Met-Met 다이펩타이드 대비, 반추위 내 미생물에 의해 상대적으로 적게 분해되어 반추위 우회율 (%)이 높은 것으로 판단할 수 있다.Thus, methionine-ε-lysine is relatively less degraded by the microorganisms in the rumen compared to Lys-Lys dipeptide and Met-Met dipeptide, which is a general peptide bond, it can be determined that the rumen bypass rate (%) is high.
실시예 8. 다이펩타이드(dipeptide) 유도체의 소화 시험Example 8 Digestion Test of Dipeptide Derivatives
실시예 8-1. 소장 효소군 확보Example 8-1. Small intestine enzyme group
농협 중앙회 부천 축산물 공판장에서 도축된 한우 (이력변호: KOR005078680400)의 소장을 40 m 구매하였다. 소장을 1 m 내외로 자른 후에, 자른 소장 안에 20 mM 소듐 포스페이트 완충액 (pH 7.4) 5 ml을 넣었다. 그 다음 소장의 양쪽 끝은 잡고 상하, 좌우로 소장을 움직여 최대한 소장 안의 효소가 소듐 포스페이트 완충액에 녹아날 수 있도록 하였다. 소장 40 m에서 대략 200 ml의 소장 효소액을 확보하였으며, 4 ℃에서 원심분리 (14000 rpm, 10 분)하여 상층액을 확보하였다. 이를 20 mM 소듐 포스페이트 완충액 (pH 7.4)에 2 배로 희석하여 사용하였다.A 40-meter collection of Hanwoo (History: KOR005078680400) slaughtered at the Bucheon Livestock Products Fair of the NACF was purchased. After cutting the small intestine to about 1 m, 5 ml of 20 mM sodium phosphate buffer (pH 7.4) was placed in the cut small intestine. Then, both ends of the small intestine were held, and the small intestine was moved from side to side to allow the enzyme in the small intestine to dissolve in sodium phosphate buffer. Approximately 200 ml of the small intestine enzyme solution was obtained at 40 m of the small intestine, and the supernatant was obtained by centrifugation (14000 rpm, 10 minutes) at 4 ° C. It was used diluted twice in 20 mM sodium phosphate buffer (pH 7.4).
실시예 8-2. 확보한 소장 효소능 평가Example 8-2. Evaluation of Small Intestine Enzyme Capacity
확보한 소장의 효소군이 작용하는지 알아보기 위해서 돼지의 신장에서 추출된 아실레이제 I (sigma A3010)을 양성 대조군으로 하고, N-아세틸-L-메티오닌 (TCI America A2056)을 이용하여 메티오닌으로 분해되는지를 확인하였다. 실험 조건은 하기 표 3와 같으며, 반응은 37 ℃에 정치된 상태로 24 시간 진행하였다.To determine whether the enzyme group of the small intestine is secured, the acylease I (sigma A3010) extracted from the pig kidney was used as a positive control, and it was decomposed into methionine using N-acetyl-L-methionine (TCI America A2056). It was confirmed. Experimental conditions are shown in Table 3 below, and the reaction proceeded for 24 hours while standing at 37 ° C.
  아실레이제 I (1 mg/ml) Acylate I (1 mg / ml) 소장 효소군Small intestine enzyme group
N-아세틸-L-메티오닌 (8 g/L)N-acetyl-L-methionine (8 g / L) 500500 500500
아실레이제 I (1 mg/ml)Acylate I (1 mg / ml) 100100  
소장 효소군 (2 배 희석)Small intestine enzyme group (two-fold dilution)   100100
20 mM 소듐 포스페이트 완충액 (pH 7.4)20 mM sodium phosphate buffer (pH 7.4) 400400 400400
최종 반응 부피 (㎕)Final reaction volume (μl) 10001000 10001000
반응이 끝나고 난 표본의 재단백질을 제거하기 위해서 과염소산 (DEA JUNG, 순도 60 ~ 62 %)을 이용하였으며, 반응이 끝난 표본을 0.5 % 과염소산에 10 배로 희석하여 섞은 후, 원심분리 (14000 rpm, 10 분)하여 상층액 내에 존재하는 N-아세틸-L-메티오닌과 메티오닌의 농도를 LC 정량분석으로 측정하였다. 전환율 (%)은 반응 전 N-아세틸-L-메티오닌의 농도 (mM)를 구하고, 반응 후에 메티오닌의 농도를 구하여 mole % 값으로 환산하여 나타내었다. N-아세틸-L-메티오닌의 분자량은 191.25g/L, 메티오닌의 분자량은 149.25g/L이다. Perchloric acid (DEA JUNG, purity 60-62%) was used to remove the trimmed protein of the sample after the reaction was completed.The reaction sample was diluted 10-fold with 0.5% perchloric acid and mixed, followed by centrifugation (14000 rpm, 10 The concentrations of N-acetyl-L-methionine and methionine present in the supernatant were measured by LC quantitation. The conversion (%) was obtained by calculating the concentration of N-acetyl-L-methionine (mM) before the reaction and calculating the concentration of methionine after the reaction, in terms of mole%. The molecular weight of N-acetyl-L-methionine is 191.25 g / L, and the molecular weight of methionine is 149.25 g / L.
반응 결과, 양성 대조군인 아실레이제 I과 동일하게 소장 효소군을 이용한 효소 반응에서도 N-아세틸-L-메티오닌이 메티오닌으로 100 % 전환되는 것을 확인 하였으며, 이를 바탕으로 실시예 8-1을 통해 확보한 소장 효소군이 다이펩타이드의 소화분해 평가에 적합한 활성을 가지고 있다는 사실을 확인하였다 (표 4). As a result, it was confirmed that N-acetyl-L-methionine was converted to methionine by 100% in the enzyme reaction using the small intestine enzyme group as in the positive control group Asilase I, and secured through Example 8-1. One group of small intestine enzymes was found to have a suitable activity for the digestion of dipeptides (Table 4).
  아실레이제IAsilase I
  N-아세틸-L-메티오닌 (g/L)N-acetyl-L-methionine (g / L) 메티오닌 (g/L)Methionine (g / L) 전환율 (%)% Conversion
반응 전Before the reaction 3.85 3.85 0.000.00  
반응 후After the reaction 0.000.00 3.13 3.13 100100
  소장효소군Small intestine
  N-아세틸-L-메티오닌 (g/L)N-acetyl-L-methionine (g / L) 메티오닌 (g/L)Methionine (g / L) 전환율 (%)% Conversion
반응 전Before the reaction 3.85 3.85 0.000.00  
반응 후After the reaction 0.000.00 3.14 3.14 100100
* 전환율: 생성물질 (methionine) 농도 (mM) / 기질 (N-acetyl-L-methionine) 농도 (mM) × 100* Conversion rate: Method (methionine) concentration (mM) / Substrate (N-acetyl-L-methionine) concentration (mM) × 100
실시예 8-3. 소장 효소 반응 진행Example 8-3. Small intestine enzyme reaction
상기 실시예 1 내지 6의 과정을 통해서 제작된 메티오닌-ε-라이신 다이펩타이드와 동일한 아미노산으로 만들어진 Lys-Lys 또는 Met-Met 다이펩타이드의 소장의 소화 분해 정도를 비교, 확인하기 위해 소장 효소군에 의한 소화 분해 실험을 진행하였다. 평가에 사용된 다이펩타이드의 농도는 하기 실시예 8-4의 LC 정량 결과 (g/L)에 명기되어 있다. 그리고 반응의 최종 볼륨은 1000 μl이며, 기질, 소장효소, 버퍼가 사용된 양은 하기 표 5에 나타내었다. By the small intestine enzyme group to compare and confirm the degree of digestion and digestion of the small intestine of Lys-Lys or Met-Met dipeptide made of the same amino acid as the methionine-ε-lysine dipeptide prepared through the procedures of Examples 1 to 6 above. Digestion digestion experiments were conducted. The concentration of dipeptide used for the evaluation is specified in the LC quantification results (g / L) of Examples 8-4 below. And the final volume of the reaction is 1000 μl, the amount used the substrate, small intestine, buffer is shown in Table 5 below.
  메티오닌-ε-라이신Methionine-ε-Lysine Lys-Lys Lys-lys Met-MetMet-met
기질 (저장 농도 4 g/L)Substrate (Storage Concentration 4 g / L) 500500 500500 500500
소장 효소군 (2 배 희석)Small intestine enzyme group (two-fold dilution) 100100 100100 100100
20mM 소듐 포스페이트 완충액 (pH 7.4)20 mM Sodium Phosphate Buffer (pH 7.4) 400400 400400 400400
최종 반응 부피 (㎕)Final reaction volume (μl) 10001000 10001000 10001000
실시예 8-4. 소장 효소군 반응 결과Example 8-4. Small intestine enzyme reaction result
효소반응은 반응 개시 후, 1 차례 (24 시간) 샘플링을 진행하여 수행하였다. 상기 실시예 8-2에서 명기된 방법과 동일하게 재단백을 제거하기 위해서 5 % 과염소산을 이용하였으며, 24 시간째에 남아있는 기질의 양과 생성물이 되는 라이신과 메치오닌 농도를 LC로 정량화 하여 mM로 환산하였다. 전환율 (mole %)은 실시예 8-2에 명기된 방법과 동일하게 하여 수치화하였다 (전환율 (mole%): 생성물질 농도 (mM) / 기질 농도 (mM) × 100). 그리고 Lys-Lys, Met-Met 다이펩타이드는 분해가 되었을 때, Met 2 mole, Lys 2 mole로 되기 때문에 mole 농도로 환산한 후 2를 나눈 값을 mM 농도로 계산한 후, 전환율 (mole %)을 계산하였다.The enzymatic reaction was carried out by conducting one sampling (24 hours) after the start of the reaction. In the same manner as described in Example 8-2, 5% perchloric acid was used to remove the cutting bag, and the amount of lysine and methionine to be the amount of the remaining substrate and the product at 24 hours was quantified by LC and converted into mM. It was. The conversion (mole%) was quantified in the same manner as described in Example 8-2 (conversion (mole%): product concentration (mM) / substrate concentration (mM) x 100). When Lys-Lys and Met-Met dipeptides are decomposed, they become Met 2 mole and Lys 2 mole. Therefore, after converting to mole concentration, the value of 2 divided by the mM concentration is calculated and the conversion rate (mole%) is calculated. Calculated.
24 시간 소장 효소군 반응 결과에서 Lys-Lys 다이펩타이드는 라이신으로의 전환율이 약 89 mole %였으며, Met-Met 다이펩타이드 역시 메치오닌으로 전환되는 비율이 약 89 mole % 수준으로 확인되었다. 반면 메티오닌-ε-라이신 다이펩타이드는 Lys 및 Met 농도를 기준으로 약 83~84% 수준의 소화 분해율을 확인하였다. (표 6). Lys-Lys dipeptide was converted to lysine at about 89 mole% and Met-Met dipeptide was converted to methionine at about 89 mole%. On the other hand, methionine-ε-lysine dipeptide was confirmed to have digestion rate of about 83-84% based on Lys and Met concentrations. (Table 6).
1. 메티오닌-ε-라이신1.Methionine-ε-Lysine 분자량Molecular Weight 반응전 Before reaction 반응 후 After the reaction 전환율(mole%) Conversion rate (mole%)
g/L g / L mM mM g/L g / L mMmM 생성물(mM)/기질(mM)*100Product (mM) / Substrate (mM) * 100
메티오닌-ε-라이신Methionine-ε-Lysine 277.4277.4 1.671.67 6.026.02      
LYS LYS 146.2146.2     0.7310.731 5.005.00 83.183.1
Met Met 149.2149.2     0.7530.753 5.055.05 83.883.8
2. Lys-Lys2. Lys-Lys 분자량Molecular Weight 반응전 Before reaction 반응 후 After the reaction 전환율(mole%) Conversion rate (mole%)
g/L g / L mM mM g/L g / L mM mM 기질 내 Lys 2배수 고려 시 (mM)Considering Lys double factor in substrate (mM) 생성물(mM)/기질(mM)*100Product (mM) / Substrate (mM) * 100
Lys-Lys Lys-lys 274.4274.4 2.382.38 8.678.67        
LYS LYS 146.2146.2     2.252.25 15.3915.39 7.697.69 88.888.8
3. Met-Met 3. Met-Met 분자량Molecular Weight 반응전 Before reaction 반응 후After the reaction 전환율(mole%) Conversion rate (mole%)
g/L g / L mM mM g/L g / L mM mM 기질 내 Met 2배수 고려 시 (mM)  Considering Met 2 fold in substrate (mM)   생성물(mM)/기질(mM)*100Product (mM) / Substrate (mM) * 100
Met-Met Met-met 280.4280.4 1.991.99 7.107.10        
Met Met 149.2149.2     1.891.89 12.6712.67 6.336.33 89.289.2
결론적으로 소장 효소반응 결과에서 메티오닌-ε-라이신은 Lys-Lys 다이펩타이드 및 Met-Met 다이펩타이드 대비 약간 감소한 수준의 소화 분해율(mole %)을 보였다. 하지만, 상기 반추위 우회율 결과와 더불어 종합적으로 판단할 경우 반추위를 통과한 메티오닌-ε-라이신 다이펩타이드가 소장에 도달한 뒤 높은 소화분해율을 바탕으로 흡수될 수 있음을 확인하였기 때문에, 반추동물용 사료 첨가제로써 적용이 가능함을 확인하였다. In conclusion, methionine-ε-lysine showed a slightly reduced level of digestion (mole%) compared to Lys-Lys dipeptide and Met-Met dipeptide. However, when judging together with the rumen bypass rate result, it was confirmed that the methionine-ε-lysine dipeptide that passed through the rumen can be absorbed based on the high digestion rate after reaching the small intestine. It was confirmed that it can be applied as an additive.
이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.From the above description, those skilled in the art will appreciate that the present invention can be implemented in other specific forms without changing the technical spirit or essential features. In this regard, it should be understood that the embodiments described above are exemplary in all respects and not limiting. The scope of the present invention should be construed that all changes or modifications derived from the meaning and scope of the following claims and equivalent concepts rather than the detailed description are included in the scope of the present invention.

Claims (16)

  1. 2개 이상의 아미노산이 서로 연결된 펩타이드 유도체 또는 이의 염으로서,Peptide derivatives or salts thereof in which two or more amino acids are linked to each other,
    상기 펩타이드 유도체는 The peptide derivative is
    (i) 라이신, 알지닌, 아스파라진, 글루타민, 아스파테이트, 및 글루타메이트로 이루어진 군에서 선택된 하나 이상의 아미노산을 포함하고,(i) at least one amino acid selected from the group consisting of lysine, arginine, asparagine, glutamine, aspartate, and glutamate,
    (ii) 라이신, 알지닌, 아스파라진, 또는 글루타민이 이와 연결된 아미노산과, 라이신, 알지닌, 아스파라진 또는 글루타민의 곁 사슬(R기)에 위치한 오메가 아민과 이와 연결되는 아미노산의 카복실기 간의 아마이드 결합으로 서로 연결되거나, (ii) an amide linkage between an amino acid to which lysine, arginine, asparagine, or glutamine is linked thereto, and an omega amine located in the side chain of the lysine, arginine, asparagine or glutamine (R group) and a carboxyl group of the amino acid linked thereto; Connected to each other,
    아스파테이트 또는 글루타메이트가 이와 연결된 아미노산과, 아스파테이트 또는 글루타메이트의 R기에 위치한 카복실기와 이와 연결되는 아미노산의 아민기 간의 아마이드 결합으로 서로 연결되는 것을 포함하는,Comprising aspartate or glutamate linked to each other by an amide bond between an amino acid linked thereto and a carboxyl group located on the R group of aspartate or glutamate and an amine group of the amino acid linked thereto;
    펩타이드 유도체 또는 이의 염.Peptide derivatives or salts thereof.
  2. 제1항에 있어서, 상기 올리고펩타이드 유도체는 2개 내지 10개의 아미노산이 서로 연결된 올리고펩타이드 유도체인, 펩타이드 유도체 또는 이의 염.The peptide derivative or salt thereof according to claim 1, wherein the oligopeptide derivative is an oligopeptide derivative having 2 to 10 amino acids linked to each other.
  3. 제1항에 있어서, 상기 펩타이드 유도체는 하기 화학식 2 또는 화학식 3으로 표시되는 다이펩타이드(dipeptide) 유도체인, 펩타이드 유도체 또는 이의 염:The peptide derivative or salt thereof according to claim 1, wherein the peptide derivative is a dipeptide derivative represented by Formula 2 or Formula 3 below:
    [화학식 2][Formula 2]
    X1-AX 1 -A
    여기서, X1은 라이신, 알지닌, 아스파라진 또는 글루타민이고,Wherein X 1 is lysine, arginine, asparagine or glutamine,
    A는 임의의 아미노산이며,A is any amino acid,
    X1-A는 X1의 R기에 위치한 오메가 아민과 A의 카복실기 간의 아마이드 결합으로 서로 연결된 것임;X 1 -A are linked to each other by an amide bond between an omega amine located in the R group of X 1 and a carboxyl group of A;
    [화학식 3][Formula 3]
    X2-AX 2 -A
    여기서 X2는 아스파테이트 또는 글루타메이트이고,Wherein X 2 is aspartate or glutamate,
    A는 임의의 아미노산이며,A is any amino acid,
    X2-A는 X2의 R기에 위치한 카복실기와 A의 아민기 간의 아마이드 결합으로 서로 연결된 것임.X 2 -A is connected to each other by an amide bond between the carboxyl group located at the R group of X 2 and the amine group of A.
  4. 제1항에 있어서, 상기 펩타이드 유도체 또는 이의 염은 반추위 우회(bypass) 용인, 펩타이드 유도체 또는 이의 염.The peptide derivative or salt thereof according to claim 1, wherein the peptide derivative or salt thereof is for bypass of the rumen.
  5. 제1항에 있어서, 상기 펩타이드 유도체 또는 이의 염은 사료 첨가제용인, 펩타이드 유도체 또는 이의 염.The peptide derivative or salt thereof of claim 1, wherein the peptide derivative or salt thereof is for feed additive.
  6. R기에 아민기를 가지는 아미노산의 R기의 아민기와 다른 아미노산의 카복실기 간의 아마이드 결합을 형성시키거나, R기에 카복실기를 가지는 아미노산의 R기의 카복실기와 다른 아미노산의 아민기 간의 아마이드 결합을 형성시키는 단계를 포함하는, 제1항의 펩타이드 유도체 또는 이의 염의 제조방법으로서,Forming an amide bond between the amine group of the R group of an amino acid having an amine group in the R group and the carboxyl group of another amino acid, or forming an amide bond between the carboxyl group of the R group of the amino acid having a carboxyl group in the R Group and an amine group of another amino acid A method of preparing a peptide derivative or salt thereof according to claim 1,
    상기 R기에 아민기를 가지는 아미노산은 라이신, 알지닌, 아스파라진, 및 글루타민으로 이루어진 군에서 선택되는 것이고,The amino acid having an amine group in the R group is selected from the group consisting of lysine, arginine, asparagine, and glutamine,
    상기 R기에 카복실기를 가지는 아미노산은 아스파테이트 또는 글루타메이트인, 제조방법.The amino acid having a carboxyl group in the R group is aspartate or glutamate.
  7. 제6항에 있어서, The method of claim 6,
    R기에 아민기를 가지는 아미노산은 R기의 아민 외의 다른 아민기 및 카복실기가 보호기로 보호된 것이고,An amino acid having an amine group in the R group is protected by a protecting group with an amine group and a carboxyl group other than the amine of the R group,
    R기에 카복실기를 가지는 아미노산은 R기의 카복실기 외의 다른 카복실기 및 아민기가 보호기로 보호된 것인, 제조방법.The amino acid which has a carboxyl group in R group is a carboxyl group and amine group other than the carboxyl group of R group protected by a protecting group.
  8. 제6항에 있어서,The method of claim 6,
    R기에 아민기를 가지는 아미노산과 연결되는 다른 아미노산의 아민기가 보호기로 보호된 것이고,An amine group of another amino acid linked to an amino acid having an amine group in the R group is protected with a protecting group,
    R기에 카복실기를 가지는 아미노산과 연결되는 다른 아미노산의 카복실기가 보호기로 보호된 것인, 제조방법.The carboxyl group of another amino acid linked with the amino acid which has a carboxyl group in R group is protected by a protecting group.
  9. 제7항에 있어서,The method of claim 7, wherein
    R기에 아민기를 가지는 아미노산의 R기의 아민기와 다른 아미노산의 카복실기간의 아마이드 결합을 형성시키거나, R기에 카복실기를 가지는 아미노산의 R기의 카복실기와 다른 아미노산의 아민기 간의 아마이드 결합을 형성시키는 단계 후에, 상기 보호기를 탈보호하는 단계를 포함하는, 제조방법.After the step of forming an amide bond of the amine group of the R group of the amino acid having an amine group in the R group with another amino acid, or an amide bond of the carboxyl group of the R group of the amino acid having a carboxyl group in the R group with an amine group of another amino acid , Deprotecting the protecting group.
  10. 제7항 내지 제9항 중 어느 한 항에 있어서, The method according to any one of claims 7 to 9,
    아민에 대한 보호기는 카보벤질옥시기 (carbobenzyloxy group), p-메톡시벤질 카보닐기 (p-methoxybenzyl carbonyl group), tert-뷰틸옥시카보닐기 (tert-butyloxycarbonyl group), 9-플로레닐메틸옥시카보닐기 (9-fluorenylmethyloxycarbonyl group), 아세틸기 (acetyl group), 벤조일기 (benzoyl group), 벤질기 (benzyl group), 카바메이트기 (carbamate group), p-메톡시벨질기 (p-methoxybenzyl group), 3,4-디메톡시벤질기 (3,4-dimethoxybenzyl group), p-메톡시페닐기 (p-methoxyphenyl group), 및 토실기 (tosyl group)로 이루어진 군에서 선택되는 하나 이상이고,Protecting groups for amines include carbonyl a benzyloxy group (carbobenzyloxy group), p - methoxybenzyl carbonyl group (p -methoxybenzyl carbonyl group), tert - butyl-oxy-carbonyl group (tert -butyloxycarbonyl group), 9- Floresta carbonyl methyloxy carbonyl group (9-fluorenylmethyloxycarbonyl group), acetyl group (acetyl group), a benzoyl group (benzoyl group), benzyl group (benzyl group), a carbamate group (carbamate group), p - methoxy Siebel chewy (p -methoxybenzyl group), 3, 4-dimethoxybenzyl group (3,4-dimethoxybenzyl group), p - is methoxy group (p -methoxyphenyl group), and a tosyl group (tosyl group) one or more selected from the group consisting of,
    카복실기에 대한 보호기는 메틸 에스터 (methyl ester), 벤질 에스터 (benzyl ester), tert-뷰틸 에스터 (tert-butyl ester), 실릴 에스터 (silyl ester), 오쏘에스터 (orthoester), 및 옥사졸린 (oxazoline)으로 이루어진 군에서 선택되는 하나 이상인 것인, 제조방법.Protecting groups for carboxyl groups are methyl ester (methyl ester), benzyl ester (benzyl ester), tert - butyl ester with (tert -butyl ester), a silyl ester (silyl ester), an ortho ester (orthoester), and oxazoline (oxazoline) It is one or more selected from the group consisting of, manufacturing method.
  11. 제1항 내지 제5항 중 어느 한 항의 펩타이드 유도체 또는 이의 염을 포함하는 사료 첨가제.A feed additive comprising the peptide derivative of any one of claims 1 to 5 or a salt thereof.
  12. 제11항에 있어서, 상기 사료 첨가제는 반추동물용인, 사료 첨가제.The feed additive of claim 11, wherein the feed additive is for ruminants.
  13. 제11항의 사료 첨가제를 포함하는, 사료 조성물.A feed composition comprising the feed additive of claim 11.
  14. 제13항에 있어서, 상기 사료 조성물은 반추동물용인, 사료 조성물.The feed composition of claim 13, wherein the feed composition is for ruminants.
  15. 제13항의 사료 조성물을 동물에게 급여하는 단계를 포함하는, 동물의 사육방법.A method of breeding an animal, the method comprising feeding the feed composition of claim 13 to the animal.
  16. 제15항에 있어서, 상기 동물은 반추동물인, 사육방법.The method of claim 15, wherein the animal is a ruminant.
PCT/KR2016/014327 2015-12-09 2016-12-07 Rumen protecting peptide derivative and use thereof WO2017099475A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0174824 2015-12-09
KR20150174824 2015-12-09

Publications (1)

Publication Number Publication Date
WO2017099475A1 true WO2017099475A1 (en) 2017-06-15

Family

ID=59013452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/014327 WO2017099475A1 (en) 2015-12-09 2016-12-07 Rumen protecting peptide derivative and use thereof

Country Status (2)

Country Link
KR (1) KR20170069152A (en)
WO (1) WO2017099475A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5167957A (en) * 1990-09-06 1992-12-01 Virginia Tech Intellectual Properties, Inc. Compositions and methods for the treatment of dietary deficiencies
US20150231194A1 (en) * 2008-06-13 2015-08-20 Westfälische Wilhelms-Universität Münster Biotechnological production of cyanophycin dipeptides

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5167957A (en) * 1990-09-06 1992-12-01 Virginia Tech Intellectual Properties, Inc. Compositions and methods for the treatment of dietary deficiencies
US20150231194A1 (en) * 2008-06-13 2015-08-20 Westfälische Wilhelms-Universität Münster Biotechnological production of cyanophycin dipeptides

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CSILLA: "Transition Metal Complexes of Amino Acid and Peptide Derivatives Containing Carboxylate and Imidazole Side Chains", PROPOSITIONS OF PHD THESIS, 2005, pages 1 - 10, XP055598822 *
MCGEE: "Efficient and Directed Peptide Bond Formation in the Gas Phase via Ion/Ion Reactions", PNAS, vol. 111, no. 4, 28 January 2014 (2014-01-28), pages 1288 - 1292, XP055598826 *
NUVOBNT: "Development of Feed Additives for Improving Milk-Protein by Rumen Preotected Amino Acid and Choline", DEVELOPMENT OF FEED ADD, 18 July 2014 (2014-07-18), pages 11 - 13 *

Also Published As

Publication number Publication date
KR20170069152A (en) 2017-06-20

Similar Documents

Publication Publication Date Title
US5006651A (en) Phosphinic acid derivatives
US4652552A (en) Tetrapeptide methyl ketone inhibitors of viral proteases
IE843127L (en) Growth promotants
JPS6351159B2 (en)
AU2003245928B2 (en) Antibacterial amide macrocycles
CN102378580B (en) Dipeptide as feedstuff additive
AU2004240704A1 (en) Hepatitis C inhibitor compounds
WO2015186956A1 (en) Feed additive composition for reducing methane production of ruminants
EP0000330B1 (en) Lipopeptides, process for their preparation and pharmaceutical compositions containing them
NO148957B (en) ANALOGY PROCEDURE FOR THE PREPARATION OF THERAPEUTICALLY ACTIVE CYCLOPEPTIDES.
US20060258571A1 (en) Antibacterial ester macrocycles
WO2017099475A1 (en) Rumen protecting peptide derivative and use thereof
DE2308362A1 (en) PSYCHOPHARMACOLOGICALLY ACTIVE PEPTIDES AND PEPTIDE DERIVATIVES
US3896103A (en) Acylated derivatives of trp-met-asp-phe-nh' 2'hardy; paul martin<kenner; george wallace<sheppard; robert charles<morley; john selwyn<macleod; john keith
EP3362573A1 (en) Bio-based n-acetyl-l-methionine and use thereof
CA1254700A (en) Process for preparing biologically active heptapeptides
DE1643345A1 (en) Method of making glucagon
DE4215874A1 (en) Dithiolanylglycine-containing HIV protease inhibitors of the hydroxyethylene isostear type
Wilkinson 23. α γ-Diaminobutyric acid
SE461042B (en) PEPTIDES WITH GROWTH PROMOTIONAL ACTIVITY BASED VETERINARY COMPOSITIONS CONTAINING THESE PEPTIDES
WO2016182403A1 (en) Feed additive comprising lysine derivative
JPS61143398A (en) Animal growth promotor
SE464814B (en) GONADOLIBER INGREDIENTS CONTAINING A BETA-PARTY GROUP, A PROCEDURE FOR PREPARING THEREOF AND PHARMACEUTICAL PREPARATIONS CONTAINING THEM
JPH10150923A (en) Feed additive composition for ruminant
DE1941511C2 (en) Calcitonin analogs and their α-desamino and N → α → acylamino derivatives, pharmaceutical preparations containing these peptides, and synthetic processes for their production and for the production of calcitonin M.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16873340

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22.08.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16873340

Country of ref document: EP

Kind code of ref document: A1