WO2016182228A1 - 대용량의 산발적 패킷 서비스를 지원하는 방법 및 이를 위한 장치 - Google Patents

대용량의 산발적 패킷 서비스를 지원하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2016182228A1
WO2016182228A1 PCT/KR2016/004288 KR2016004288W WO2016182228A1 WO 2016182228 A1 WO2016182228 A1 WO 2016182228A1 KR 2016004288 W KR2016004288 W KR 2016004288W WO 2016182228 A1 WO2016182228 A1 WO 2016182228A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
resource
information
uplink data
base station
Prior art date
Application number
PCT/KR2016/004288
Other languages
English (en)
French (fr)
Inventor
이호재
고현수
최국헌
노광석
김동규
이상림
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US15/555,010 priority Critical patent/US10356754B2/en
Priority to EP16792874.6A priority patent/EP3297377B1/en
Publication of WO2016182228A1 publication Critical patent/WO2016182228A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0069Allocation based on distance or geographical location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0026Interference mitigation or co-ordination of multi-user interference
    • H04J11/0036Interference mitigation or co-ordination of multi-user interference at the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/008Timing of allocation once only, on installation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method and apparatus for supporting a large amount of sporadic packet service.
  • Massive Machine Type Communications which maintains a massive connection and transmits short packets intermittently, is being considered.
  • Massive MTC service has very high Connection Density Requirement, while Data Rate and End-to-End (E2E) Latency Requirement are very free (Connection Density: Up to 200,000 / km2, E2E Latency: Seconds to hours, DL / UL Data) Rate: typically 1-100 kbps).
  • the technical problem to be achieved in the present invention is to provide a method for a terminal to support a large amount of sporadic packet service.
  • Another technical problem to be achieved in the present invention is to provide a terminal supporting a large amount of sporadic packet service.
  • a method for supporting a large amount of sporadic packet service by a terminal includes: receiving control information including predefined timing information for resource synchronization and resource allocation information associated with the terminal from a base station; ; Performing transmission synchronization based on timing information for the predefined synchronization when uplink traffic occurs; Selecting a resource for uplink data transmission based on the resource allocation information; And transmitting uplink data through the selected resource.
  • the control information may further include pilot sequence information specified for the terminal, and the pilot signal to which the pilot sequence is applied may be transmitted by overlapping the uplink data in the selected resource.
  • control information further comprises resource hopping pattern information, receiving a NACK signal for the uplink data transmission from the base station; And selecting a resource for retransmission of the uplink data by performing resource hopping based on the resource hopping pattern information according to the NACK signal.
  • the uplink data may be transmitted in a connectionless state with the base station.
  • the timing information for the predefined synchronization may include periodic timing.
  • the uplink data may be transmitted at the closest timing of the periodic timings included in the timing information for the predefined synchronization from the uplink traffic occurrence time.
  • a terminal supporting a large amount of sporadic packet service comprising: a receiver configured to receive control information, including timing information for predefined synchronization and resource allocation information associated with the terminal from a base station; A processor configured to perform transmission synchronization based on the timing information for the predefined synchronization when uplink traffic occurs, and select a resource for uplink data transmission based on the resource allocation information; And a transmitter configured to transmit uplink data through the selected resource.
  • the control information may further include pilot sequence information specified for the terminal, and the processor may control the transmitter to transmit a pilot signal to which the pilot sequence is applied, overlapping the uplink data in the selected resource.
  • the control information further includes resource hopping pattern information, and the receiver is configured to receive a NACK signal for the uplink data transmission from the base station, and the processor is configured to retransmit the uplink data according to the NACK signal.
  • the resource may be configured to select by performing resource hopping based on the resource hopping pattern information.
  • the uplink data may be transmitted in a connectionless state with the base station.
  • the timing information for the predefined synchronization may include periodic timing.
  • the uplink data may be transmitted at the closest timing of the periodic timings included in the timing information for the predefined synchronization from the uplink traffic occurrence time.
  • FIG. 1 is a block diagram showing the configuration of a base station 105 and a terminal 110 in a wireless communication system 100.
  • FIG. 2 is a diagram illustrating an example of a contention based random access procedure in a 3GPP LTE / LTE-A system.
  • FIG. 3 is a diagram illustrating an uplink procedure of an LTE system.
  • FIG. 4 is a diagram illustrating a transmission and reception procedure for supporting a massive Sporadic Packet transmission by way of example.
  • 5 is a diagram exemplarily illustrating an uplink transmission method between multiple terminals sharing the same resource.
  • FIG. 6 is an exemplary diagram illustrating an improved multiple access based signal flow diagram for massive sporadic packet transmission.
  • FIG. 7 is an exemplary diagram illustrating an improved multiple access based signal flow diagram for massive sporadic packet transmission.
  • FIG. 8 is a diagram illustrating a signal flow for Massive Sporadic Packet Transmission from a multi-user point of view.
  • a terminal collectively refers to a mobile or fixed user terminal device such as a user equipment (UE), a mobile station (MS), an advanced mobile station (AMS), and the like.
  • the base station collectively refers to any node of the network side that communicates with the terminal such as a Node B, an eNode B, a Base Station, and an Access Point (AP).
  • UE user equipment
  • MS mobile station
  • AMS advanced mobile station
  • AP Access Point
  • a terminal or a user equipment may receive information from a base station through downlink, and the terminal may also transmit information through uplink.
  • the information transmitted or received by the terminal includes data and various control information, and various physical channels exist according to the type and purpose of the information transmitted or received by the terminal.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) employs OFDMA in downlink and SC-FDMA in uplink as part of Evolved UMTS (E-UMTS) using E-UTRA.
  • LTE-A Advanced is an evolution of 3GPP LTE.
  • FIG. 1 is a block diagram showing the configuration of a base station 105 and a terminal 110 in a wireless communication system 100.
  • the wireless communication system 100 may include one or more base stations and / or one or more base stations. It may include a terminal.
  • the base station 105 includes a transmit (Tx) data processor 115, a symbol modulator 120, a transmitter 125, a transmit / receive antenna 130, a processor 180, a memory 185, and a receiver ( 190, a symbol demodulator 195, and a receive data processor 197.
  • the terminal 110 transmits (Tx) the data processor 165, the symbol modulator 170, the transmitter 175, the transmit / receive antenna 135, the processor 155, the memory 160, the receiver 140, and the symbol. It may include a demodulator 155 and a receive data processor 150.
  • the base station 105 and the terminal 110 are provided with a plurality of transmit and receive antennas. Accordingly, the base station 105 and the terminal 110 according to the present invention support a multiple input multiple output (MIMO) system. In addition, the base station 105 according to the present invention may support both a single user-MIMO (SU-MIMO) and a multi-user-MIMO (MU-MIMO) scheme.
  • MIMO multiple input multiple output
  • SU-MIMO single user-MIMO
  • MU-MIMO multi-user-MIMO
  • the transmit data processor 115 receives the traffic data, formats the received traffic data, codes it, interleaves and modulates (or symbol maps) the coded traffic data, and modulates the symbols ("data"). Symbols ").
  • the symbol modulator 120 receives and processes these data symbols and pilot symbols to provide a stream of symbols.
  • the symbol modulator 120 multiplexes the data and pilot symbols and sends it to the transmitter 125.
  • each transmission symbol may be a data symbol, a pilot symbol, or a signal value of zero.
  • pilot symbols may be sent continuously.
  • the pilot symbols may be frequency division multiplexed (FDM), orthogonal frequency division multiplexed (OFDM), time division multiplexed (TDM), or code division multiplexed (CDM) symbols.
  • Transmitter 125 receives the stream of symbols and converts it into one or more analog signals, and further adjusts (eg, amplifies, filters, and frequency upconverts) the analog signals to provide a wireless channel. Generates a downlink signal suitable for transmission via the transmission antenna 130, the transmission antenna 130 transmits the generated downlink signal to the terminal.
  • the receiving antenna 135 receives the downlink signal from the base station and provides the received signal to the receiver 140.
  • Receiver 140 adjusts the received signal (eg, filtering, amplifying, and frequency downconverting), and digitizes the adjusted signal to obtain samples.
  • the symbol demodulator 145 demodulates the received pilot symbols and provides them to the processor 155 for channel estimation.
  • the symbol demodulator 145 also receives a frequency response estimate for the downlink from the processor 155 and performs data demodulation on the received data symbols to obtain a data symbol estimate (which is an estimate of the transmitted data symbols). Obtain and provide data symbol estimates to a receive (Rx) data processor 150. Receive data processor 150 demodulates (ie, symbol de-maps), deinterleaves, and decodes the data symbol estimates to recover the transmitted traffic data.
  • the processing by symbol demodulator 145 and receiving data processor 150 is complementary to the processing by symbol modulator 120 and transmitting data processor 115 at base station 105, respectively.
  • the terminal 110 is on the uplink, and the transmit data processor 165 processes the traffic data to provide data symbols.
  • the symbol modulator 170 may receive and multiplex data symbols, perform modulation, and provide a stream of symbols to the transmitter 175.
  • the transmitter 175 receives and processes a stream of symbols to generate an uplink signal.
  • the transmit antenna 135 transmits the generated uplink signal to the base station 105.
  • an uplink signal is received from the terminal 110 through the reception antenna 130, and the receiver 190 processes the received uplink signal to obtain samples.
  • the symbol demodulator 195 then processes these samples to provide received pilot symbols and data symbol estimates for the uplink.
  • the received data processor 197 processes the data symbol estimates to recover the traffic data transmitted from the terminal 110.
  • Processors 155 and 180 of the terminal 110 and the base station 105 respectively instruct (eg, control, coordinate, manage, etc.) operations at the terminal 110 and the base station 105, respectively.
  • Respective processors 155 and 180 may be connected to memory units 160 and 185 that store program codes and data.
  • the memory 160, 185 is coupled to the processor 180 to store the operating system, applications, and general files.
  • the processors 155 and 180 may also be referred to as controllers, microcontrollers, microprocessors, microcomputers, or the like.
  • the processors 155 and 180 may be implemented by hardware or firmware, software, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs Field programmable gate arrays
  • the firmware or software may be configured to include a module, a procedure, or a function for performing the functions or operations of the present invention, and to perform the present invention.
  • the firmware or software configured to be may be provided in the processors 155 and 180 or stored in the memory 160 and 185 to be driven by the processors 155 and 180.
  • the layers of the air interface protocol between the terminal and the base station between the wireless communication system (network) are based on the lower three layers of the open system interconnection (OSI) model, which is well known in the communication system. ), And the third layer L3.
  • the physical layer belongs to the first layer and provides an information transmission service through a physical channel.
  • a Radio Resource Control (RRC) layer belongs to the third layer and provides control radio resources between the UE and the network.
  • the terminal and the base station may exchange RRC messages through the wireless communication network and the RRC layer.
  • the processor 155 of the terminal and the processor 180 of the base station process the signals and data, except for the function of receiving or transmitting the signal and the storage function of the terminal 110 and the base station 105, respectively.
  • the following description does not specifically refer to the processors 155 and 180.
  • the processors 155 and 180 it may be said that a series of operations such as a function of receiving or transmitting a signal and a data processing other than a storage function are performed.
  • the present invention proposes a technique for a multiple access (MA) method suitable for a massive MTC packet service environment.
  • MA multiple access
  • FIG. 2 is a diagram illustrating an example of a contention based random access procedure in a 3GPP LTE / LTE-A system.
  • LTE long-term evolution
  • this access method can be used in ad-hoc networks such as D2D (Device to Device) or V2X (Vehicular to Everything) and cellular-based based methods such as LTE-A (LTE-Advanced) and MTC (Machine Type Communication).
  • D2D Device to Device
  • V2X Vehicle to Everything
  • cellular-based based methods such as LTE-A (LTE-Advanced) and MTC (Machine Type Communication).
  • the contention-based multiple access scheme is initiated by transmitting a scheduling request (SR) from a terminal to a base station and receiving scheduling information from the base station.
  • SR scheduling request
  • the UE transmits a random access preamble to a base station and receives a random access response message from the base station to start a contention-based multiple access scheme.
  • the scheduling information received from the base station by the UE includes timing adjustment (or timing adjustment) information for synchronization between received signals from multiple users, cell ID information, and grant for uplink access.
  • control information including MCS level information or resource allocation (RA) information may be included in the physical downlink control channel (PDCCH) and transmitted.
  • PDCH physical downlink control channel
  • a communication system is a communication system in which a plurality of terminals use limited radio resources. However, since one terminal does not know the state of another terminal, multiple terminals may request resource allocation for the same resource. Can be. Accordingly, the base station resolves the contention resolution of a resource requested by a plurality of terminals in one contention and transmits the information (contention resolution message in FIG. 2). Also, the base station may transmit control information for network access and HARQ to the terminal (L2 / L3 message in FIG. 2), and the terminal transmits uplink data (UL data in FIG. 2).
  • Wireless Sensor Network WSN
  • Massive Machine Type Communication MTC
  • WSN Wireless Sensor Network
  • MTC Massive Machine Type Communication
  • e2e end-to-end latency requirements
  • connection density up to 200,000 / km2
  • e2e latency seconds to hours
  • DL / UL Data Rate typically 1-100 kbps
  • the connection density is determined by the number of terminals that can be supported.
  • the base station controls contention for multiple access by distinguishing a physical random access channel (PRACH) for transmitting a random access preamble of the terminal, thereby satisfying the requirements required by the massive MTC.
  • PRACH physical random access channel
  • Massive MTC sporadic packets that are insensitive to delay and have a small amount of data are mainly transmitted.
  • the existing contention-based multiple access scheme has a large amount of control information that must be exchanged compared to the amount of transport packets.
  • FIG. 3 is a diagram illustrating an uplink procedure of an LTE system.
  • FIG. 3 is a diagram illustrating overhead of control signaling and data transmission according to an uplink processing procedure.
  • the terminal first transmits an SR, receives a grant / timing adjustment from the base station, transmits an L2 / L3 message, and then receives a contention resoultion message and then transmits uplink data.
  • the terminal in the existing LTE system, such a lot of control signaling overhead occurs in order for the UE to transmit uplink data. Accordingly, there is a need for a simplified access procedure for transmitting / receiving massive connection / low cost / low power sporadic packets and a multiple access method capable of controlling multiple connections.
  • the present invention proposes a new multiple access scheme and a resource allocation scheme that can support a plurality of multiple access for simplified control procedure and overhead reduction for Massive MTC Packet service of the next generation 5G system.
  • each terminal transmits data without considering scheduling of other users (or terminals) without receiving scheduling from the base station. Problem may occur and a collision occurrence problem between the multi-terminal data may exist. Accordingly, there is a need for a multiple access scheme for multi-terminal synchronization and collision control without multi-terminal control information of a base station.
  • the present invention proposes a technique for solving the asynchronous problem and the collision problem between multiple terminals caused by the reduction of control signaling for supporting massive sporadic packet transmission.
  • FIG. 4 is a diagram illustrating a transmission and reception procedure for supporting a massive Sporadic Packet transmission by way of example.
  • a detailed technique may be configured as follows. .
  • Each terminal is allocated control information for uplink data transmission from a serving base station through predefined control information.
  • the predefined control information is long-term control information which is shared in advance by the transmitting side (eg, the terminal) and the receiving side (eg, the base station). May be irrelevant and may be shared between the terminal and the base station before the uplink traffic occurs.
  • predefined control information includes resource hopping pattern information (particularly, resource hopping pattern information may be used when selecting a resource for retransmission), pilot pattern information, and resource zone allocation to support massive sporadic packet transmission.
  • Information control information for multi-user detection (MUD), implicit timing information, MCS level information, and the like. Details of various kinds of information included in the predefined control information will be described in more detail below.
  • the terminal may perform synchronization of transmission viewpoints based on the implicit timing information included in the predefined control information.
  • the base station groups the terminals having similar propagation delay times for synchronization of the reception viewpoints, and allocates the same resource zone to the terminals grouped together, so that a timing offset of the reception viewpoints is within a cyclic prefix (CP) length.
  • CP cyclic prefix
  • Each terminal may select a terminal-specific resource and transmit the uplink data through the selected resource without considering uplink data transmission timing or resource occupancy of another terminal. Then, the base station receiving the uplink data performs the MUD at the symbol level.
  • the power control for uplink data transmission of the terminal can be determined by the terminal itself based on CQI (Channel Quality Information) information from a long-term point of view.
  • CQI Channel Quality Information
  • the UE may transmit pilot (or reference signal, RS) information for uplink channel estimation in a different RE from the data transmission resource element (RE), or superimpose uplink data on the same RE and transmit the same.
  • the base station allocates a terminal-specific pilot (or terminal-specific RS) sequence to each terminal for this purpose, and distinguishes each terminal through a successive decoding scheme such as Successive Interference Cancelation (SIC) or Parallel Interference Cancelation (PIC). Can be.
  • SIC Successive Interference Cancelation
  • PIC Parallel Interference Cancelation
  • a base station uses a multiple access scheme that supports multi-user detection (MUD) for processing uplink data of each terminal. do.
  • MOD multi-user detection
  • the terminal When performing uplink data retransmission of a terminal due to a failure of uplink data decoding of the terminal due to a collision problem between multiple terminals or a deteriorated channel environment, the terminal receives the terminal-specific resource hopping pattern information received in step (1). Can select a resource for retransmission.
  • the base station can support the MUD can be normally performed by assigning the terminal using the same pilot sequence to different resource zones.
  • the base station may variably set resources capable of guaranteeing multiple connections according to the number of terminals.
  • uplink data transmission and reception can be performed without initial control signaling when uplink traffic of a terminal is generated in a massive sporadic packet.
  • a detailed description of this approach is given below.
  • Example 1-1 Multiple access scheme of multiple terminals sharing the same resource
  • 5 is a diagram exemplarily illustrating an uplink transmission method between multiple terminals sharing the same resource.
  • each terminal is allocated control information for uplink data transmission from a serving base station through predefined control information.
  • the uplink transmission scheme of the terminal is performed based on predefined control information, and is performed based on the following techniques.
  • Predefined control information sharing in (1) Each terminal is allocated control information for uplink data transmission from the serving base station through predefined control information.
  • Predefined control information includes implicit timing information for synchronization of a terminal-specific sequence and transmission viewpoint used for multiple terminal simultaneous access, terminal-specific pilot sequence information, MCS level, resource zone allocation information, and frequency hopping for retransmission. Pattern information, control information for MUD, and the like.
  • the predefined control information is long term control information shared between the transmitting side and the receiving side in advance, and may be independent of uplink information transmission time.
  • terminal-specific sequence allocation will be described in detail.
  • the codebook N and K are determined according to the system environment, and the set of codebooks is determined by the determined N and K. Therefore, each user is assigned a column vector index of a codebook and can be used for transmission in a terminal-specific sequence.
  • Sparse Complex Codebook Set A codebook based on complex coefficients and sparsity by zero tone, and is used for overlapping transmission of a mMTC terminal increased by an overlapping factor F for a sequence length N.
  • Each user has a terminal-specific codebook and can select and use a column vector in the codebook according to the information bits.
  • N and F are determined according to the system environment, and the set of codebooks is determined by the determined N and F. Accordingly, each user may be assigned a terminal specific codebook index, and may be used as a terminal-specific sequence for modulation and overlapping of information bits.
  • IMA Interleave Division Multiple Access
  • Interleavers are designed randomly and independently so that interleaved simultaneous transmission sequences are statically independent. Overlapping transmission of the maximum N! MMTC terminal is possible for the sequence length length N.
  • Terminal-specific sequence interleaver 1 [3, 1, 7, 2, 8, 6, 4, 5]
  • terminal-specific interleaver 2 [2, 1, 6, 8, 3, 5, 4, 7]
  • Terminal-specific interleaver K [1, 7, 6, 3, 5, 8, 2, 4].
  • the interleaver N and K are determined according to the system environment, and the set of interleaver is determined by the determined N and K. Accordingly, each user may be assigned an interleaver index and used for transmission in a terminal-specific interleaver pattern.
  • the terminal-specific power index is index information on a quantized power level allocated by a base station.
  • the terminal-specific power index allocates a low power symbol to a user inside a cell and a high power symbol to a cell-edge user.
  • the signals may be transmitted by overlapping symbols between the mMTC terminals by transmitting signals at the allocated power levels.
  • the predefined implicit timing technique illustrated in FIG. 4 will be described.
  • UEs having different uplink transmission requests and traffic sizes consider uplink predefined implicit timing to perform uplink transmission in a multiple access method capable of MUD.
  • the predefined implicit timing scheme refers to a technique for controlling asynchronous operation by performing symbol unit synchronization of a transmission point of view through a predefined periodic timing when uplink data transmission traffic of UEs is generated.
  • the base station groups the terminals having similar propagation delay time. By assigning the same resource zone grouped to the same group, the timing offset (Timing Offset) of the receiving viewpoint is controlled within the CP.
  • the base station performs terminal grouping based on a predefined timing distance, and allocates a resource zone (or resource region) to each terminal group in advance.
  • FIG. 6 is an exemplary diagram for describing a segmentation and resource selection technique of a resource zone.
  • Massive MTC since a plurality of terminals transmit Sporadic packet data insensitive to delay, one resource zone can be divided and used. As the resource zone is subdivided, the speed of uplink data transmission of the terminal may decrease, but the number of terminals that the base station can support simultaneously increases.
  • Each terminal may transmit an uplink signal at a predefined implicit timing closest to when an uplink transmission request occurs. In this case, regardless of the generation order of the transmission request or the traffic size, uplink transmission may be performed through the UE-specific resource zone without considering timing or resource occupancy of other users.
  • Terminal-specific resource selection is defined by the base station through predefined control information. Then, the base station performs MUD at the symbol level or the codeword level according to the multi-user overlapping access technique used.
  • the MUD method may vary according to the overlapping transmission method described above, and may distinguish signals of multiple users through an SIC or PIC method that is an iterative decoding method.
  • a UE-specific superposition index may be predefined.
  • each terminal may arbitrarily select one (eg, resource 1 in FIG. 5) and transmit a fragmented resource zone.
  • the base station transmits a NACK signal to the corresponding terminal when the collision with another terminal cannot be distinguished by the MUD method, and the terminal performs retransmission through a randomly selected granular resource zone.
  • the random sequence selection method used in a random access processor of an existing MTC system or an LTE system has been utilized for contention-based access or synchronization of a terminal.
  • the combination of the above-mentioned random selection of the fragmented resources and the superposition based MA scheme is uplink in connectionless (eg, without RRC connected).
  • the transfer of data can be performed. Therefore, the mMTC terminals may perform contention-based uplink data transmission every moment.
  • Power control for uplink signal transmission of a terminal may be determined by the terminal itself based on CQI information from a long term perspective (Open Loop Power Control).
  • Pilot information for uplink channel estimation may be transmitted to a RE different from a data transmission resource element (RE) or may be transmitted by overlapping uplink data in the same RE.
  • pilots of multiple users may be classified by a code division multiplexing scheme, and each terminal is allocated a pilot consisting of a terminal-specific sequence from a base station.
  • y is an L-length received signal vector
  • n is a noise vector
  • K is the total number of terminals
  • h k is the channel of the k-th terminal.
  • x k is an uplink data vector of the terminal and p k is a pilot vector for channel estimation from the terminal.
  • x k and p k are generated independently of each other, and the pilot vector p k is configured with a terminal-specific sequence.
  • the receiving base station can separate the data and the pilot signal through a successive decoding scheme such as Successive Interference Cancelation (SIC) or Parallel Interference Cancelation (PIC).
  • SIC Successive Interference Cancelation
  • PIC Parallel Interference Cancelation
  • the number of sequences is limited and it is assumed that the base station is pre-allocated to the user at the time of initial access. At this time, if the number of terminals is larger than the number of sequences, it may be allocated redundantly. At this time, since the uplink data and the pilot of the terminal are transmitted overlapping, the transmission power of the data is reduced by the size of the pilot.
  • the transmission power ratio of the uplink data and the pilot may vary depending on the system environment since a correlation exists between the channel estimation accuracy and the data decoding rate. For example, if the transmit power of the pilot is greater than the transmit power of the data, the accuracy of channel estimation can be increased, but the decoding rate of the data can be reduced.
  • the decoding rate of the data may be increased, but the accuracy of channel estimation may decrease.
  • the accuracy reduction of the channel estimation affects the decoding rate of the data again, it is necessary to set an appropriate transmission power ratio according to the channel environment of the system.
  • Multi-user Detection (MUD) Technique When multiple users use one time-frequency resource for multi-user data transmission, multiple access technique is used to distinguish it. For example, IDMA User-specific Interleaver or Index, PDMA or SCMA Codebook or Codeword Index, Power Level Non-Orthogonal Multiple Access (NOMA) or MUST Power Control or Power Control Level may Can be used in a multi-user nesting manner.
  • IDMA User-specific Interleaver or Index PDMA or SCMA Codebook or Codeword Index
  • NOMA Non-Orthogonal Multiple Access
  • MUST Power Control or Power Control Level may Can be used in a multi-user nesting manner.
  • the base station can distinguish the overlapped uplink symbols from the mMTC terminals by using a Maximum Likelihood (ML) method having a high complexity but good MUD performance or Maximum joint A posteriori Probability (MAP).
  • ML and MAP schemes can be applied to both of the above-described multiple overlapping schemes.
  • the base station classifies the overlapped UL symbols from the mMTC terminals based on the Codeword Interference Cancellation (CWIC), Iterative Massage Passing Algorithm (MPA), and SIC based on the MUD scheme which has a relatively low complexity but a loss of decoding performance. I can make it.
  • the CWIC scheme or the SIC scheme may be applied to MUST, and the MPA scheme may be applied to SCMA or PDMA.
  • the base station may distinguish superimposed uplink symbols from the mMTC terminals on the basis of the PIC and have a relatively low complexity and minimize the loss of decoding performance.
  • the PIC scheme can be applied to IDMA.
  • Resource hopping technique initial resource selection and resource selection for retransmission may be performed through a UE-specific hopping pattern.
  • UE A (indicated by A in FIG. 4) in FIG. 4 is 1-1-a A -b A -c A- .
  • the terminal I is a 1-3--b I I I -c - ...
  • UE D is 4-5-a D -b D -c D- .
  • Resource hopping may be performed using a hopping pattern such as the following. Where a A , b A , c A, and so on are some hopping pattern values.
  • Collision avoidance method of the same sequence user Since each terminal performs uplink transmission without considering resource occupancy of other terminals, collision between signals of multiple terminals may occur within the same resource. Even if the MUD-enabled multiple access technology is used to separate data of multiple users, it may not be possible to distinguish the terminal using the same resource using the same pilot sequence. Accordingly, the base station needs to allocate a terminal using the same pilot sequence to another resource zone so that the MUD can be normally performed.
  • Variable resource setting scheme In the multiple access scheme according to the present invention, since multiple terminals share the same resource zone to perform uplink transmission, resources can be variably utilized. To achieve many connections on the Air Interface side, you can configure narrower subcarriers, narrower bandwidths, narrower resource blocks (RBs), or narrower sub-bands. For example, by subdividing 15KHz of sub-carrier spacing of LTE system, and through various subcarrier configurations such as 10KHz, 5KHz, etc., there may be a change in symbol duration, and Even if a change occurs, the multiple access scheme proposed in the present invention can be utilized. Similarly, the above-described multiple access scheme may be utilized even if the RB unit sets various RB unit configurations such as 10 and 14 in 12 subcarriers. In a similar manner, the sub-band can also be configured variably.
  • Example 2 Improved Multiple Access Based Signal Flow for Massive Sporadic Packet Transmission for Example 1
  • FIG. 7 is an exemplary diagram illustrating an improved multiple access based signal flow diagram for massive sporadic packet transmission.
  • Each terminal may receive information used for uplink by receiving through predefined control information from the base station (S610).
  • the predefined control information includes resource hopping pattern information (especially, resource hopping pattern information may be used when selecting a resource for retransmission), terminal-specific pilot sequence information, pilot pattern information, and resource zone to support massive sporadic packet transmission. It may include allocation information, control information for multi-user detection (MUD), implicit timing information, MCS level information, frequency hopping sequence information, and the like.
  • each terminal may perform uplink data transmission regardless of uplink transmission of another user without receiving any control signal from a base station after the uplink traffic occurs (S620). If the base station fails to detect the data, the base station transmits a NACK to the terminal to enable the terminal to perform retransmission (S630).
  • uplink data transmission and reception is possible without initial control signaling when an uplink of a UE occurs in massive sporadic packet transmission.
  • S620 of FIG. 7 exemplifies a structure in which only a data and pilot are transmitted by simplifying a control procedure / overhead of a conventional multiple access method.
  • the base station may inform the terminal of the predefined control information described in the first embodiment periodically or at the time of downlink information transmission.
  • the predefined control information is irrelevant to the timing of generating uplink traffic of the terminal, and the timing of transmitting the predefined control information and the timing of generating uplink traffic may be different.
  • the terminal may perform uplink data transmission based on previously received predefined control information.
  • the uplink transmission is performed regardless of the control of the base station or regardless of resource occupancy of other users.
  • the UE may transmit pilot information for channel estimation in a different RE from the data transmission resource element (RE) or transmit the overlapping uplink data in the same RE.
  • pilots of multiple terminals may be classified by a code division multiplexing scheme, and each terminal is pre-assigned a pilot configured in a terminal-specific sequence from a base station.
  • the base station decodes the pilot and the data through the MUD process, and if it fails to detect, sends a NACK signal to the terminal (S630).
  • the terminal receiving the NACK signal performs retransmission.
  • the base station decodes the pilot and the data and detects the data successfully, the base station sends an ACK to the terminal (S630), and the terminal completes uplink transmission.
  • FIG. 8 is a diagram illustrating a signal flow for Massive Sporadic Packet Transmission from a multi-user point of view.
  • predefined implicit timing is defined in units of symbols, slots, or subframes, and the period may vary according to a symbol period of a corresponding system. In this case, the predefined implicit timing may exist periodically, and the period may be variously defined such as a symbol, a subframe, a frame, and the like.
  • the terminal transmits uplink data at a predefined implicit timing closest to the uplink traffic occurrence time.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • the method and apparatus for supporting a large amount of sporadic packet service can be used industrially in various wireless communication systems such as 3GPP LTE-A, 5G communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

단말이 대용량의 산발적 패킷 서비스를 지원하는 방법은, 기지국으로부터 미리정의된 동기화를 위한 타이밍 정보 및 상기 단말과 관련된 자원 할당 정보를 포함하는 제어 정보를 수신하는 단계; 상향링크 트래픽 발생 시 상기 미리정의된 동기화를 위한 타이밍 정보에 기초하여 전송 동기화를 수행하는 단계; 상기 자원 할당 정보에 기초하여 상향링크 데이터 전송을 위한 자원을 선택하는 단계; 및 상기 선택된 자원을 통하여 상향링크 데이터를 전송하는 단계를 포함할 수 있다.

Description

대용량의 산발적 패킷 서비스를 지원하는 방법 및 이를 위한 장치
본 발명은 무선통신에 관한 것으로, 보다 상세하게는 대용량의 산발적 패킷 서비스를 지원하는 방법 및 이를 위한 장치관한 것이다.
차세대 5G 시스템에서는 Massive Connection을 유지하며 short packet을 간헐적으로 전송하는 Massive MTC(Machine Type Communications) 등이 고려되고 있다. Massive MTC 서비스는 Connection Density Requirement가 매우 높은데 반해, Data Rate과 End-to-End (E2E) Latency Requirement는 매우 자유롭다(Connection Density: Up to 200,000/km2, E2E Latency: Seconds to hours, DL/UL Data Rate: typically 1-100kbps).
또한, 현재 3GPP GRAN에서 논의 되고 있는 Cellular IoT(Internet of Things)의 경우에도 한 셀에 약 50000개 이상의 단말이 존재하는 모델에서의 기술 개발이 이루어지고 있다.
그러나 아직까지 다중 사용자 접속 기반의 대용량의 산발적 패킷을 효율적으로 지원하기 위한 구체적인 방법이 제시된 적이 없다.
본 발명에서 이루고자 하는 기술적 과제는 단말이 대용량의 산발적 패킷 서비스를 지원하는 방법을 제공하는 데 있다.
본 발명에서 이루고자 하는 다른 기술적 과제는 대용량의 산발적 패킷 서비스를 지원하는 단말을 제공하는 데 있다.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기의 다른 기술적 과제를 달성하기 위한, 단말이 대용량의 산발적 패킷 서비스를 지원하는 방법은, 기지국으로부터 미리정의된 동기화를 위한 타이밍 정보 및 상기 단말과 관련된 자원 할당 정보를 포함하는 제어 정보를 수신하는 단계; 상향링크 트래픽 발생 시 상기 미리정의된 동기화를 위한 타이밍 정보에 기초하여 전송 동기화를 수행하는 단계; 상기 자원 할당 정보에 기초하여 상향링크 데이터 전송을 위한 자원을 선택하는 단계; 및 상기 선택된 자원을 통하여 상향링크 데이터를 전송하는 단계를 포함할 수 있다. 상기 제어 정보는 상기 단말을 위해 특정된 파일럿 시퀀스 정보를 더 포함하며, 상기 파일럿 시퀀스가 적용된 파일럿 신호를 상기 선택된 자원에서 상기 상향링크 데이터와 중첩하여 전송할 수 있다.
상기 방법에서, 상기 제어 정보는 자원 호핑 패턴 정보를 더 포함하며, 상기 기지국으로부터 상기 상향링크 데이터 전송에 대해 NACK 신호를 수신하는 단계; 및 상기 NACK 신호에 따라 상기 상향링크 데이터의 재전송을 위한 자원을 상기 자원 호핑 패턴 정보에 기초하여 자원 호핑을 수행하여 선택하는 단계를 더 포함할 수 있다.
상기 상향링크 데이터는 상기 기지국과의 비연결 상태(connectionless)에서 전송된 것일 수 있다. 상기 미리정의된 동기화를 위한 타이밍 정보는 주기적인 타이밍을 포함할 수 있다. 상기 상향링크 데이터는 상기 상향링크 트래픽 발생 시점에서부터 상기 미리정의된 동기화를 위한 타이밍 정보에 포함된 주기적 타이밍 중 가장 가까운 타이밍에 전송될 수 있다.
상기의 다른 기술적 과제를 달성하기 위한, 대용량의 산발적 패킷 서비스를 지원하는 단말은, 기지국으로부터 미리정의된 동기화를 위한 타이밍 정보 및 상기 단말과 관련된 자원 할당 정보를 포함하는 제어 정보를 수신하도록 구성된 수신기; 상향링크 트래픽 발생 시 상기 미리정의된 동기화를 위한 타이밍 정보에 기초하여 전송 동기화를 수행하고, 상기 자원 할당 정보에 기초하여 상향링크 데이터 전송을 위한 자원을 선택하도록 구성된 프로세서; 및 상기 선택된 자원을 통하여 상향링크 데이터를 전송하도록 구성된 송신기를 포함할 수 있다.
상기 제어 정보는 상기 단말을 위해 특정된 파일럿 시퀀스 정보를 더 포함하며, 상기 프로세서는 상기 송신기가 상기 파일럿 시퀀스가 적용된 파일럿 신호를 상기 선택된 자원에서 상기 상향링크 데이터와 중첩하여 전송하도록 제어할 수 있다.
상기 제어 정보는 자원 호핑 패턴 정보를 더 포함하며, 상기 수신기는 상기 기지국으로부터 상기 상향링크 데이터 전송에 대해 NACK 신호를 수신하도록 구성되며, 상기 프로세서는 상기 NACK 신호에 따라 상기 상향링크 데이터의 재전송을 위한 자원을 상기 자원 호핑 패턴 정보에 기초하여 자원 호핑을 수행하여 선택하도록 구성될 수 있다.
상기 상향링크 데이터는 상기 기지국과의 비연결 상태(connectionless)에서 전송된 것일 수 있다. 상기 미리정의된 동기화를 위한 타이밍 정보는 주기적인 타이밍을 포함할 수 있다. 상기 상향링크 데이터는 상기 상향링크 트래픽 발생 시점에서부터 상기 미리정의된 동기화를 위한 타이밍 정보에 포함된 주기적 타이밍 중 가장 가까운 타이밍에 전송될 수 있다.
본 발명의 일 실시예에 따라 Massive MTC Packet Service 환경에 적합한 다중 접속 방식을 효율적으로 지원할 수 있다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 무선통신 시스템(100)에서의 기지국(105) 및 단말(110)의 구성을 도시한 블록도이다.
도 2는 3GPP LTE/LTE-A 시스템에서의 경쟁 기반 랜덤 액세스 프로시저의 일 예를 나타낸 도면이다.
도 3은 LTE 시스템의 상향링크 프로시저를 예시한 도면이다.
도 4는 Massive Sporadic Packet 전송 지원을 위한 송수신 프로시저를 예시적으로 나타낸 도면이다.
도 5는 동일한 자원을 공유하는 다중 단말 간 상향링크 전송 방식을 예시적으로 나타낸 도면이다.
도 6은 Massive Sporadic Packet Transmission을 위한 개선된 다중 접속 기반 신호 흐름도를 예시적으로 나타낸 도면이다.
도 7은 Massive Sporadic Packet Transmission을 위한 개선된 다중 접속 기반 신호 흐름도를 예시적으로 나타낸 도면이다.
도 8은 다중 사용자 관점의 Massive Sporadic Packet Transmission을 위한 신호 흐름도를 예시적으로 나타낸 도면이다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다. 예를 들어, 이하의 상세한 설명은 이동통신 시스템이 3GPP LTE, LTE-A 시스템인 경우를 가정하여 구체적으로 설명하나, 3GPP LTE, LTE-A의 특유한 사항을 제외하고는 다른 임의의 이동통신 시스템에도 적용 가능하다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
아울러, 이하의 설명에 있어서 단말은 UE(User Equipment), MS(Mobile Station), AMS(Advanced Mobile Station) 등 이동 또는 고정형의 사용자단 기기를 통칭하는 것을 가정한다. 또한, 기지국은 Node B, eNode B, Base Station, AP(Access Point) 등 단말과 통신하는 네트워크 단의 임의의 노드를 통칭하는 것을 가정한다. 본 명세서에서는 IEEE 802.16 시스템에 근거하여 설명하지만, 본 발명의 내용들은 각종 다른 통신 시스템에도 적용가능하다.
이동 통신 시스템에서 단말 혹은 사용자 기기(User Equipment)은 기지국으로부터 하향링크(Downlink)를 통해 정보를 수신할 수 있으며, 단말은 또한 상향링크(Uplink)를 통해 정보를 전송할 수 있다. 단말이 전송 또는 수신하는 정보로는 데이터 및 다양한 제어 정보가 있으며, 단말이 전송 또는 수신하는 정보의 종류 용도에 따라 다양한 물리 채널이 존재한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced 데이터 Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부로서 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다.
또한, 이하의 설명에서 사용되는 특정(特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
도 1은 무선통신 시스템(100)에서의 기지국(105) 및 단말(110)의 구성을 도시한 블록도이다.
무선 통신 시스템(100)을 간략화하여 나타내기 위해 하나의 기지국(105)과 하나의 단말(110)(D2D 단말을 포함)을 도시하였지만, 무선 통신 시스템(100)은 하나 이상의 기지국 및/또는 하나 이상의 단말을 포함할 수 있다.
도 1을 참조하면, 기지국(105)은 송신(Tx) 데이터 프로세서(115), 심볼 변조기(120), 송신기(125), 송수신 안테나(130), 프로세서(180), 메모리(185), 수신기(190), 심볼 복조기(195), 수신 데이터 프로세서(197)를 포함할 수 있다. 그리고, 단말(110)은 송신(Tx) 데이터 프로세서(165), 심볼 변조기(170), 송신기(175), 송수신 안테나(135), 프로세서(155), 메모리(160), 수신기(140), 심볼 복조기(155), 수신 데이터 프로세서(150)를 포함할 수 있다. 송수신 안테나(130, 135)가 각각 기지국(105) 및 단말(110)에서 하나로 도시되어 있지만, 기지국(105) 및 단말(110)은 복수 개의 송수신 안테나를 구비하고 있다. 따라서, 본 발명에 따른 기지국(105) 및 단말(110)은 MIMO(Multiple Input Multiple Output) 시스템을 지원한다. 또한, 본 발명에 따른 기지국(105)은 SU-MIMO(Single User-MIMO) MU-MIMO(Multi User-MIMO) 방식 모두를 지원할 수 있다.
하향링크 상에서, 송신 데이터 프로세서(115)는 트래픽 데이터를 수신하고, 수신한 트래픽 데이터를 포맷하여, 코딩하고, 코딩된 트래픽 데이터를 인터리빙하고 변조하여(또는 심볼 매핑하여), 변조 심볼들("데이터 심볼들")을 제공한다. 심볼 변조기(120)는 이 데이터 심볼들과 파일럿 심볼들을 수신 및 처리하여, 심볼들의 스트림을 제공한다.
심볼 변조기(120)는, 데이터 및 파일럿 심볼들을 다중화하여 이를 송신기 (125)로 전송한다. 이때, 각각의 송신 심볼은 데이터 심볼, 파일럿 심볼, 또는 제로의 신호 값일 수도 있다. 각각의 심볼 주기에서, 파일럿 심볼들이 연속적으로 송신될 수도 있다. 파일럿 심볼들은 주파수 분할 다중화(FDM), 직교 주파수 분할 다중화(OFDM), 시분할 다중화(TDM), 또는 코드 분할 다중화(CDM) 심볼일 수 있다.
송신기(125)는 심볼들의 스트림을 수신하여 이를 하나 이상의 아날로그 신호들로 변환하고, 또한, 이 아날로그 신호들을 추가적으로 조절하여(예를 들어, 증폭, 필터링, 및 주파수 업 컨버팅(upconverting) 하여, 무선 채널을 통한 송신에 적합한 하향링크 신호를 발생시킨다. 그러면, 송신 안테나(130)는 발생된 하향링크 신호를 단말로 전송한다.
단말(110)의 구성에서, 수신 안테나(135)는 기지국으로부터의 하향링크 신호를 수신하여 수신된 신호를 수신기(140)로 제공한다. 수신기(140)는 수신된 신호를 조정하고(예를 들어, 필터링, 증폭, 및 주파수 다운컨버팅(downconverting)), 조정된 신호를 디지털화하여 샘플들을 획득한다. 심볼 복조기(145)는 수신된 파일럿 심볼들을 복조하여 채널 추정을 위해 이를 프로세서(155)로 제공한다.
또한, 심볼 복조기(145)는 프로세서(155)로부터 하향링크에 대한 주파수 응답 추정치를 수신하고, 수신된 데이터 심볼들에 대해 데이터 복조를 수행하여, (송신된 데이터 심볼들의 추정치들인) 데이터 심볼 추정치를 획득하고, 데이터 심볼 추정치들을 수신(Rx) 데이터 프로세서(150)로 제공한다. 수신 데이터 프로세서 (150)는 데이터 심볼 추정치들을 복조(즉, 심볼 디-매핑(demapping))하고, 디인터리빙(deinterleaving)하고, 디코딩하여, 전송된 트래픽 데이터를 복구한다.
심볼 복조기(145) 및 수신 데이터 프로세서(150)에 의한 처리는 각각 기지국(105)에서의 심볼 변조기(120) 및 송신 데이터 프로세서(115)에 의한 처리에 대해 상보적이다.
단말(110)은 상향링크 상에서, 송신 데이터 프로세서(165)는 트래픽 데이터를 처리하여, 데이터 심볼들을 제공한다. 심볼 변조기(170)는 데이터 심볼들을 수신하여 다중화하고, 변조를 수행하여, 심볼들의 스트림을 송신기(175)로 제공할 수 있다. 송신기(175)는 심볼들의 스트림을 수신 및 처리하여, 상향링크 신호를 발생시킨다. 그리고 송신 안테나(135)는 발생된 상향링크 신호를 기지국(105)으로 전송한다.
기지국(105)에서, 단말(110)로부터 상향링크 신호가 수신 안테나(130)를 통해 수신되고, 수신기(190)는 수신한 상향링크 신호를 처리되어 샘플들을 획득한다. 이어서, 심볼 복조기(195)는 이 샘플들을 처리하여, 상향링크에 대해 수신된 파일럿 심볼들 및 데이터 심볼 추정치를 제공한다. 수신 데이터 프로세서(197)는 데이터 심볼 추정치를 처리하여, 단말(110)로부터 전송된 트래픽 데이터를 복구한다.
단말(110) 및 기지국(105) 각각의 프로세서(155, 180)는 각각 단말(110) 및 기지국(105)에서의 동작을 지시(예를 들어, 제어, 조정, 관리 등)한다. 각각의 프로세서들(155, 180)은 프로그램 코드들 및 데이터를 저장하는 메모리 유닛(160, 185)들과 연결될 수 있다. 메모리(160, 185)는 프로세서(180)에 연결되어 오퍼레이팅 시스템, 어플리케이션, 및 일반 파일(general files)들을 저장한다.
프로세서(155, 180)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 호칭될 수 있다. 한편, 프로세서(155, 180)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. 하드웨어를 이용하여 본 발명의 실시예를 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(155, 180)에 구비될 수 있다.
한편, 펌웨어나 소프트웨어를 이용하여 본 발명의 실시예들을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며, 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서(155, 180) 내에 구비되거나 메모리(160, 185)에 저장되어 프로세서(155, 180)에 의해 구동될 수 있다.
단말과 기지국이 무선 통신 시스템(네트워크) 사이의 무선 인터페이스 프로토콜의 레이어들은 통신 시스템에서 잘 알려진 OSI(open system interconnection) 모델의 하위 3개 레이어를 기초로 제 1 레이어(L1), 제 2 레이어(L2), 및 제 3 레이어(L3)로 분류될 수 있다. 물리 레이어는 상기 제 1 레이어에 속하며, 물리 채널을 통해 정보 전송 서비스를 제공한다. RRC(Radio Resource Control) 레이어는 상기 제 3 레이어에 속하며 UE와 네트워크 사이의 제어 무선 자원들을 제공한다. 단말, 기지국은 무선 통신 네트워크와 RRC 레이어를 통해 RRC 메시지들을 교환할 수 있다.
본 명세서에서 단말의 프로세서(155)와 기지국의 프로세서(180)는 각각 단말(110) 및 기지국(105)이 신호를 수신하거나 송신하는 기능 및 저장 기능 등을 제외하고, 신호 및 데이터를 처리하는 동작을 수행하지만, 설명의 편의를 위하여 이하에서 특별히 프로세서(155, 180)를 언급하지 않는다. 특별히 프로세서(155, 180)의 언급이 없더라도 신호를 수신하거나 송신하는 기능 및 저장 기능이 아닌 데이터 처리 등의 일련의 동작들을 수행한다고 할 수 있다.
본 발명에서는 Massive MTC 패킷 서비스 환경에 적합한 다중 접속 방식(Multiple Access, MA)에 관한 기법을 제안한다.
도 2는 3GPP LTE/LTE-A 시스템에서의 경쟁 기반 랜덤 액세스 프로시저의 일 예를 나타낸 도면이다.
도 2는 LTE (Long-Term Evolution) 통신 시스템에서의 상향링크 접속 방식을 도시하고 있다. 또한, 이러한 접속 방식은 D2D (Device to Device) 또는 V2X (Vehicular to Everything)와 같은 ad-hoc 네트워크와 LTE-A (LTE-Advanced), MTC (Machine Type Communication)와 같은 셀룰러 기반 기반 방식에서도 사용될 수 있다.
경쟁 기반의 다중 접속 방식은 단말에서 기지국으로 스케줄링 요청(Scheduling Request, SR)를 전송하여, 기지국으로부터 스케줄링 정보를 수신함으로써 시작된다. 도 2에서는 단말이 기지국으로 랜덤 액세스 프리앰블(Random Access Preamble)을 전송하고, 기지국으로부터 랜덤 액세스 응답(Random Access Response) 메시지를 수신함으로써 경쟁 기반의 다중 접속 방식이 시작된다. 단말이 기지국으로부터 수신되는 스케줄링 정보는 다중 사용자들로부터의 수신 신호 간 동기화를 위한 타이밍 조정(Timing Adjustment)(또는 Timing Advance, TA) 정보와 셀 ID(IDentifier) 정보, 상향링크 접속을 위한 Grant(예를 들어, MCS 레벨 정보나 자원 할당(Resource Allocation, RA) 정보를 포함하는 제어 정보를 PDCCH(Physical Downlink Control CHannel)에 포함되어 전송될 수 있다.
일반적으로 통신 시스템은 한정된 무선자원을 다수의 단말이 사용하는 통신 시스템인데 반해, 하나의 단말은 다른 단말의 상태를 알 수 없으므로, 동시에 같은 자원에 대해서 다수의 단말이 자원할당을 요청하는 경우가 발생할 수 있다. 따라서, 기지국은 하나의 경쟁에 다수의 단말이 요청한 자원의 경쟁을 해결하고 그 정보를 전송한다(도 2에서 contention Resolution Message). 또한, 기지국은 단말에게 네트워크 접속과 HARQ를 위한 제어 정보를 전송해 줄 수 있고(도 2에서 L2/L3 Message), 단말은 상향링크 데이터를 전송한다(도 2에서 UL Data).
차세대 5G 시스템에서는 Massive Connection/Low cost/Low power Service를 target으로 작은 패킷을 간헐적으로 전송하는 Wireless Sensor Network (WSN), Massive Machine Type Communication (MTC) 등이 고려되고 있다. Massive MTC 서비스는 Connection Density Requirement가 매우 엄격한데 반해, Data Rate과 End-to-End (E2E) Latency Requirement는 매우 자유롭다(일 예로, Connection Density: Up to 200,000/km2, E2E Latency: Seconds to hours, DL/UL Data Rate: typically 1-100kbps).
일반적으로 Connection Density는 지원할 수 있는 단말의 수에 의해 결정된다. 기존 경쟁 기반 다중 접속 방식은, 도 2에서와 같이 기지국이 단말의 랜덤 액세스 프리앰블을 전송하는 PRACH(Physical Random Access CHannel)를 구분함으로써 다중 접속의 경쟁을 제어하기 때문에, Massive MTC에서 요구하는 Requirement를 만족시키기에는 무리가 있다. 또한, Massive MTC의 경우, 지연에 둔감하며 적은 데이터 양을 가지는 산발적 패킷(Sporadic Packet)을 주로 전송하는 특성을 가지고 있다. 그러나, 기존 경쟁 기반 다중 접속 방식은 전송 패킷의 양 대비 교환해야 하는 제어 정보의 양이 많다.
도 3은 LTE 시스템의 상향링크 프로시저를 예시한 도면이다.
도 3은 구체적으로 상향링크 처리 절차에 따른 제어 시그널링의 오버헤드와 데이터 전송을 표시한 도면이다. 도 3에 도시한 바와 같이, 단말은 먼저 SR을 전송하고 기지국으로부터 grant/timing adjustment를 수신하고, L2/L3 메시지를 전송하고, 이후 contention resoultion message를 수신한 후 상향링크 데이터 전송이 가능하다. 이와 같이, 기존 LTE 시스템에서는 단말이 상향링크 데이터를 전송하기 위해 이러한 많은 제어 시그널링 오버헤드가 발생하게 된다. 따라서, Massive Connection/Low cost/Low power Sporadic Packet 송수신을 위한 제어 프로시저의 간소화와 다수의 접속을 제어할 수 있는 다중 접속 방식이 필요하다.
본 발명에서는 차세대 5G 시스템의 Massive MTC Packet 서비스를 위해, 간소화된 제어 프로시저 및 오버헤드 감소를 위한 다수의 다중 접속을 지원할 수 있는 새로운 다중 접속 방식 및 자원할당 방식을 제시한다.
실시예 1: Massive Sporadic Packet 전송을 위한 개선된 다중 접속(Advanced Multiple Access for Massive Sporadic Packet Transmission)
Massive Sporadic Packet Transmission을 위해, 각 단말은 기지국으로부터 스케줄링을 받지 않으면서 다른 사용자(혹은 단말)의 자원 점유를 고려하지 않은 상태로 데이터를 전송하면, 수신하는 기지국 입장에서는 다수 단말의 데이터 수신 동기가 맞지 않는 문제와 다중 단말 데이터 간의 충돌 발생 문제가 존재할 수 있다. 따라서, 기지국의 다중 단말간 제어 정보 없이 다중 단말간 동기화와 충돌 제어를 위한 다중 접속 방식이 필요하다.
본 발명에서는 대용량 간헐적(Massive Sporadic) 패킷 전송 지원을 위한 제어 시그널링 감소에 의해 발생하는 다중 단말간 비동기 문제와 충돌 문제를 해결하는 기법을 제시한다.
도 4는 Massive Sporadic Packet 전송 지원을 위한 송수신 프로시저를 예시적으로 나타낸 도면이다.
도 4에서와 같이, Massive Sporadic Packet 전송 지원을 위해, 단말의 상향링크 트래픽 발생시 초기 제어 시그널링 없이 상향링크 데이터 송수신을 수행할 수 있도록 할 필요가 있고, 이를 위해 다음과 같이 세부 기술을 구성할 수 있다.
(1) 각 단말은 서빙 기지국으로부터 사전에 미리정의된 제어 정보를 통해 상향링크 데이터 전송을 위한 제어 정보를 할당받는다. 여기서, 미리정의된 제어 정보는 송신 측(예를 들어, 단말)과 수신 측(예를 들어, 기지국)이 사전에 공유하고 있는 롱-텀(Long-term) 제어 정보로서 상향링크 정보 전송 시점과는 무관할 수 있고, 상향링크 트래픽 발생 이전에 단말과 기지국 간에 공유하고 있을 수 있다. 도 4를 참조하면, 미리정의된 제어 정보에는 Massive Sporadic Packet 전송 지원을 위해 자원 호핑 패턴 정보(특히, 자원 호핑 패턴 정보는 재전송을 위한 자원 선택시 이용될 수 있음), 파일럿 패턴 정보, 자원 존 할당 정보, 다중 사용자 검출(Multi-User Detection, MUD)을 위한 제어 정보, 암시적인 타이밍 정보, MCS 레벨 정보 등을 포함할 수 있다. 상기 미리정의된 제어 정보에 포함된 각종 정보들에 대한 구체적 사항은 이하에서 더 구체적으로 설명할 것이다.
(2) 단말은 미리 정의된 제어 정보에 포함된 암시적인 타이밍 정보에 기반하여 전송 관점의 동기화를 수행할 수 있다. 기지국은 수신 관점의 동기화를 위해 유사한 전파지연 시간을 가지는 단말들을 단말 그룹핑하고, 함께 그룹핑된 단말들에게 동일 자원 존을 할당하여, 수신 관점의 타이밍 옵셋(Timing Offset)을 CP(Cyclic Prefix) 길이 이내로 제어한다.
(3) 각 단말은 다른 단말의 상향링크 데이터 전송 타이밍이나 자원 점유를 고려하지 않고, 단말-특정한 자원을 선택하여 선택된 자원을 통해 상향링크 데이터를 전송할 수 있다. 그러면, 상향링크 데이터를 수신하는 기지국은 심볼 레벨에서 MUD를 수행한다.
(4) 단말의 상향링크 데이터 전송을 위한 전력 제어는 롱텀(Long-term) 관점의 CQI(Channel Quality Information) 정보를 기반으로 단말 스스로 결정할 ㅅ수 있다.
(5) 단말은 상향링크 채널 추정을 위한 파일럿(혹은 Reference Signal, RS)) 정보는 데이터 전송 Resource Element(RE)와는 다른 RE에서 전송하거나, 같은 RE에 상향링크 데이터와 중첩(Superposition)하여 전송할 수도 있다. 기지국은 이를 위해 단말-특정한 파일럿(혹은 단말-특정한 RS) 시퀀스를 각 단말에 할당하며, 반복적 복호 방식인 Successive Interference Cancelation (SIC) 또는 Parallel Interference Cancelation (PIC) 방식 등을 통해 각 단말을 구분해 낼 수 있다.
(6) 하나의 시간-주파수 자원에서 다수의 단말이 상향링크 데이터 전송에 사용할 경우, 기지국이 각 단말의 상향링크 데이터 구분하여 처리하기 위한 Multi-user Detection (MUD)를 지원하는 다중 접속 기법을 사용한다.
(7) 다중 단말 간 충돌 문제 또는 채널 환경 악화로 인한 단말의 상향링크 데이터 복호 실패에 따른 단말의 상향링크 데이터 재전송 수행 시에, 단말은 상기 (1) 단계에서 수신한 단말-특정한 자원 호핑 패턴 정보에 기초하여 재전송을 위한 자원을 선택할 수 있다.
(8) 기지국은 동일한 파일럿 시퀀스를 사용하는 단말을 다른 자원 존에 할당하여 MUD가 정상적으로 수행될 수 있도록 지원할 수 있다.
(9) 기지국은 단말 수에 따라 다수의 Connection을 보장할 수 있는 가변적으로 자원을 설정할 수 있다.
상술한 제안 방식을 사용하면, Massive Sporadic 패킷에서 단말의 상향링크 트래픽 발생시 초기 제어 시그널링 없이 상향링크 데이터 송수신이 가능하다. 상기 방식에 대한 상세한 설명은 이하에서 설명한다.
실시예 1-1: 동일 자원을 공유하는 다수 단말의 다중 접속 기법
도 5는 동일한 자원을 공유하는 다중 단말 간 상향링크 전송 방식을 예시적으로 나타낸 도면이다.
도 5에서는 동일한 자원을 공유하는 다중 단말들의 상향링크 전송 방식을 예시하고 있다. 각 단말은 서빙 기지국으로부터 사전에 미리정의된 제어 정보를 통해 상향링크 데이터 전송을 위한 제어 정보를 할당 받았다고 가정한다. 단말의 상향링크 전송 방식은 미리정의된 제어 정보를 기반으로 수행되며, 다음과 같은 기법들을 기반으로 수행된다.
1. 상기 (1)에서의 미리정의된 제어 정보 공유: 각 단말은 서빙 기지국으로부터 사전에 미리정의된 제어 정보를 통해 상향링크 데이터 전송을 위한 제어 정보를 할당받는다. 미리정의된 제어 정보는 다중 단말 동시 접속에 사용하는 단말-특정한 시퀀스와 전송 관점의 동기화 수행을 위한 암시적 타이밍 정보, 단말-특정한 파일럿 시퀀스 정보, MCS 레벨, 자원 존 할당 정보, 재전송을 위한 주파수 호핑 패턴 정보, MUD를 위한 제어 정보 등을 포함할 수 있다. 미리 정의된 제어 정보는 송신 측과 수신 측이 사전에 공유하고 있는 롱텀 제어 정보로서 상향링크 정보 전송 시점과는 무관할 수 있다.
예를 들어, 단말-특정한 시퀀스 할당에 대해 구체적으로 설명한다. 동일 자원 내에서 기존 LTE/LTE-A 시스템의 직교 다중 접속 방식보다 더 많은 단말의 동시 접속을 허용하여 다수의 massive MTC 단말을 지원할 수 있는데, 이를 위한 방법을 설명한다.
A, 패턴 분할 다중 접속(Pattern Division Multiple Access, PDMA)
1) 이진 코드북 세트(Binary Codebook Set): 이진 확산(Binary Spreading) 시퀀스를 통해, 시퀀스 길이 N에 대하여 최대 2N-1 (= NC1+ NC2 + NC3 + …+ NCN)의 massive MTC(mMTC) 단말의 중첩 전송에 사용될 수 있다. If N=3, 사용자의 수 K=2N-1 이고 시퀀스 세트 S=[s1, s2, …, sK] =
Figure PCTKR2016004288-appb-I000001
이다.
상기 코드북
Figure PCTKR2016004288-appb-I000002
는 시스템 환경에 따라 N과 K가 결정되며, 결정된 N과 K에 의해 코드북의 세트가 결정된다. 따라서, 각 사용자는 코드북의 Column vector Index를 할당받아, 단말-특정한 시퀀스로 전송에 사용할 수 있다.
B. Sparse Code Multiple Access (SCMA)
Sparse Complex Codebook Set: 복소 계수들(Complex coefficients)와 Zero tone에 의한 Sparsity를 기반으로 하는 코드북을 통해, 시퀀스 길이 N에 대하여 오버랩핑 (Overlapping) Factor F만큼 증대된 mMTC 단말의 중첩 전송에 사용된다. 각 사용자는 단말-특정한 코드북을 보유하고 있으며, 정보 비트에 따라 코드북 내의 Column vector를 선택해 사용할 수 있다.
If N=4 and F=1.5, 사용자의 수 K=N*F=6 및 단말-특정한 코드북 C = [c1, c2, …, cK], 여기서,
Figure PCTKR2016004288-appb-I000003
이 코드북은 시스템 환경에 따라 N과 F가 결정되며, 결정된 N과 F에 의해 코드북의 세트가 결정된다. 따라서, 각 사용자는 단말 특정 코드북 인덱스를 할당 받아, 정보 비트에 대한 변조(Modulation)와 중첩을 위한 단말-특정 시퀀스로 사용할 수 있다.
C. Interleave Division Multiple Access (IDMA)
단말-특정한 인터리버(User Specific Interleaver): 인터리버들은 랜덤하고 독립적으로 디자인되어 인터리빙된 동시 전송 시퀀스들이 정적으로(statically) 독립적이다. 시퀀스 길이 길이 N에 대하여 최대 N!의 mMTC 단말의 중첩 전송이 가능하다.
오리지널 시퀀스: [1, 2, 3, 4, 5, 6, 7, 8], 단말-특정 시퀀스 인터리버 1: [3, 1, 7, 2, 8, 6, 4, 5], 단말-특정 인터리버 2: [2, 1, 6, 8, 3, 5, 4, 7], …, 단말-특정 인터리버 K: [1, 7, 6, 3, 5, 8, 2, 4].
상기 인터리버는 시스템 환경에 따라 N과 K가 결정되며, 결정된 N과 K에 의해 인터리버의 세트가 결정된다. 따라서, 각 사용자는 인터리버 인덱스를 할당받아서 단말-특정 인터리버 패턴으로 전송에 사용할 수 있다.
D. Multiuser Superposition Transmission (MUST)
전력 제어(Power Control): 다중 사용자간 심볼 사이의 전력 차이와 Hierarchical Modulation을 통해 mMTC 단말 간 심볼들은 중첩되어 전송될 수 있다단말-특정 전력 인덱스= P1, 단말-특정 전력 인덱스 2= P2이다. 상기 단말-특정 전력 인덱스는 기지국이 할당한 Quantized Power Level에 대한 인덱스 정보로서, 셀 내부 사용자에 낮은 파워 심볼을 할당하고, 셀-에지(Cell-edge) 사용자에 높은 전력 심볼을 할당하여, mMTC 단말은 각각 할당받은 전력 레벨로 신호를 전송함으로써 mMTC 단말 간 심볼을 중첩하여 신호가 전송될 수 있다.
상기 도 4에 도시한 미리정의된 암시적인 타이밍(Pre-defined Implicit Timing) 기법에 대해 설명한다. 서로 다른 상향링크 전송 요구와 트래픽 크기를 가지는 단말들은 미리정의된 암시적인 타이밍만을 고려하여, MUD가 가능한 다중 접속 방식으로 상향링크 전송을 수행한다. 미리정의된 암시적인 타이밍 방식은, 단말들의 상향링크 데이터 전송 트래픽 발생 시, 사전에 정의된 주기적 타이밍을 통해 전송 관점의 심볼 단위 동기화 수행을 통해 비동기를 제어하는 기법을 말한다. 또한, 기지국은 유사한 전파지연 시간을 가지는 단말들을 단말 그룹핑하고. 동일한 그룹에 그룹핑된 동일 자원 존을 할당하여, 수신관점의 타이밍 옵셋(Timing Offset)을 CP 이내로 제어한다. 기지국은 단말 그룹핑을 사전에 정의된 타이밍 거리(Timing Distance)에 기초하여 수행하고, 사전에 각 단말 그룹에 자원 존(혹은 자원 영역)을 할당한다.
도 6은 자원 존의 세분화 및 자원 선택 기법을 설명하기 위한 예시적 도면이다.
Massive MTC의 경우, 다수 단말이 Sporadic 패킷 데이터를 지연에 둔감하게 전송하므로, 하나의 자원 존을 세분화하여 사용할 수 있다. 자원 존의 세분화 함에 따라 단말의 상향링크 데이터 전송의 속도는 감소할 수 있으나, 기지국이 동시에 지원할 수 있는 단말의 수가 증가한다. 각 단말은 상향링크 전송 요구 발생시점으로부터 가장 가까운 미리정의된 암시적인 타이밍에서 상향링크 신호를 전송할 수 있다. 이 때, 전송요구의 발생 순서나 트래픽 크기와 무관하게, 다른 사용자의 타이밍이나 자원 점유를 고려하지 않고, 단말-특정 자원 존을 통해 상향링크 전송을 수행할 수 있다. 단말-특정 자원 선택은 사전에 미리정의된 제어 정보를 통해 기지국에 의해 정의된다. 그러면, 기지국은 사용된 다중 사용자 중첩 접속 기술에 따라 심볼 레벨 또는 코드워드(codeword) 레벨에서 MUD를 수행한다.
MUD 방식은 앞서 설명한 중첩 전송 방식에 따라 다를 수 있으며, 반복적 복호 방식인 SIC 또는 PIC 방식 등을 통해 다중 사용자의 신호를 구분해 낼 수 있다. 상술한 중첩 전송 방식에 따라 단말-특정한 중첩 인덱스(User Specific Superposition Index)는 미리정의될 수 있다. 이 때, 각 단말은 세분화된 자원(fragmented resource) 존을 임의로 어느 하나(예를 들어, 도 5에서 resource 1)를 선택하여 전송할 수 있다. 기지국은 다른 단말과의 충돌이 MUD 방식으로 구분해 낼 수 없으면, 해당 단말에 NACK 신호를 전송하고, 해당 단말은 임의로 선택한 세분화된 자원 존을 통해 재전송을 수행한다. 기존 MTC 시스템이나 LTE 시스템의 랜덤 액세스 프로세서(Random Access Process)에서 사용되는 랜덤 시퀀스 선택 방식은 단말의 경쟁 기반 접속 또는 동기화에 활용되어 왔다. 반면에 상기 언급된 세분화된 자원(Fragmented Resource)의 랜덤 선택 방식과 중첩 기반 MA(Superposition based MA) 방식의 결합은 비연결 상태(Connectionless)에서(예를 들어, RRC connected 되지 않은 상태에서) 상향링크 데이터의 전송을 수행할 수 있다. 따라서, mMTC 단말들은 매 순시 경쟁 기반 상향링크 데이터 전송을 수행할 수 있다.
전력 제어(Power Control) 기법: 단말의 상향링크 신호 전송을 위한 전력 제어는 롱텀 관점의 CQI 정보를 기반으로 단말 스스로 결정할 수 있다(Open Loop Power Control).
채널 추정(Channel Estimation) 기법: 상향링크 채널 추정을 위한 파일럿 정보는 데이터 전송 Resource Element (RE)와는 다른 RE에 전송되거나, 같은 RE에 상향링크 데이터와 중첩되어 전송될 수 있다. 여기서 다중 사용자의 파일럿은 코드 분할 다중화 방식으로 구분할 수 있으며, 각 단말은 기지국으로부터 단말-특정한 시퀀스로 구성된 파일럿을 할당받는다. 상향링크 데이터와 파일럿이 중첩되어 전송될 때, 수신하는 기지국에서의 신호는 다음 수학식 1과 같다.
수학식 1
Figure PCTKR2016004288-appb-M000001
여기서, y는 L 길이의 수신 신호 벡터이고, n은 잡음 벡터, K는 전체 단말의 수, hk는 k번째 단말의 채널을 의미한다. xk는 단말의 상향링크 데이터 벡터이며, pk는 단말로부터의 채널 추정을 위한 파일럿 벡터이다. xk와 pk는 서로 독립적으로 생성되었으며, 파일럿 벡터 pk는 단말-특정 시퀀스 구성되어 있다. 수신하는 기지국에서 반복적 복호 방식인 Successive Interference Cancelation (SIC) 또는 Parallel Interference Cancelation (PIC) 방식 등을 통해 데이터와 파일럿 신호를구분해 낼 수 있다. pk의 길이 L에 따라, 시퀀스의 수는 한계가 있으며, 기지국이 초기 접속 시점에 사용자에게 미리 할당한다고 가정한다. 이 때, 시퀀스의 수보다 단말의 수가 많으면 중복하여 할당할 수도 있다. 이 때, 단말의 상향링크 데이터와 파일럿이 중첩되어 전송되므로, 데이터의 전송 전력은 파일럿의 크기만큼 감소한다. 상향링크 데이터와 파일럿의 전송 전력 비율의 선정은 채널 추정 정확도와 데이터 복호율 사이에 상관관계가 존재하므로, 시스템 환경에 따라 다양할 수 있다. 예를 들어, 파일럿의 전송 전력이 데이터의 전송 전력보다 크면 채널 추정의 정확도를 높일 수 있지만, 데이터의 복호율이 감소할 수 있다. 반대로 데이터의 전송 전력이 파일럿의 전송 전력보다 크면 데이터의 복호율은 높일 수 있지만, 채널 추정의 정확도가 감소할 수 있다. 여기서, 채널 추정의 정확도 감소는 다시 데이터의 복호율 감소에 영향을 미치기 때문에, 시스템의 채널 환경에 따라 적절한 전송 전력 비율 설정을 해야할 필요가 있다.
Multi-user Detection (MUD) 기법: 다중 사용자 데이터 전송을 위해 하나의 시간-주파수 자원을 다수의 사용자가 사용할 경우, 이를 구분해 내기 위한 다중 접속 기법을 사용한다. 예를 들어, IDMA의 User-specific Interleaver 방식 또는 Index, PDMA 또는 SCMA의 코드북 방식 또는 코드워드 인덱스, 전력 레벨 Non-Orthogonal Multiple Access (NOMA) 또는 MUST의 전력 제어 방식 또는 전력 제어 레벨 등이 mMTC 사용자를 위한 다중 사용자 중첩 방식으로 사용될 수 있다.
기지국은 높은 복잡도를 가지나 MUD 성능이 좋은 Maximum Likelihood (ML) 방식이나 Maximum joint A posteriori Probability (MAP)을 통해 mMTC 단말들로부터의 중첩된 상향링크 심볼들을 구분해 낼 수 있다. ML과 MAP 방식은 상술한 다중 중첩 방식에 모두 적용될 수 있다. 기지국은 Codeword Interference Cancellation (CWIC), Iterative Massage Passing Algorithm (MPA), SIC을 기반으로 상대적으로 낮은 복잡도를 가지나 복호 성능의 손해를 가지는 MUD 방식을 기반으로 mMTC 단말들로부터의 중첩된 UL Symbols를 구분해 낼 수 있다. CWIC 방식 또는 SIC 방식은 MUST에, MPA 방식은 SCMA 또는 PDMA에 적용될 수 있다. 기지국은 PIC를 기반으로 상대적으로 낮은 복잡도를 가지면서 복호 성능의 손해를 최소화하는 MUD 방식을 기반으로 mMTC 단말들로부터의 중첩된 상향링크 심볼들을 구분해 낼 수 있다. PIC 방식은 IDMA에 적용될 수 있다.
자원 호핑(Resource Hopping) 기법: 초기 자원 선택과 재전송 수행 시에 사용할 자원의 선택은 단말-특정한 호핑 패턴을 통해 수행 될 수 있다. 예를 들어, 8개의 자원 후보가 있을 때, 도 4에서 단말 A(도 4에서 A로 표시됨)는 1-1-aA-bA-cA-…의 호핑 패턴을 가지고, 단말 I는 1-3-aI-bI-cI-…, 단말 D는 4-5-aD-bD-cD-…와 같은 호핑 패턴으로 자원 호핑을 수행할 수 있다. 여기서 aA, bA, cA 등은 어떤 호핑 패턴 값이다.
동일 시퀀스 사용자의 충돌 회피 방법: 각 단말은 다른 단말의 자원 점유를 고려치 않고 상향링크 전송을 수행하기 때문에, 동일 자원 내에서 다수 단말들의 신호 간에 충돌이 발생할 수 있다. 다수 사용자의 데이터를 구분해 내기 위해 MUD가 가능한 다중 접속 기술을 활용하더라도, 같은 파일럿 시퀀스를 사용하는 단말이 동일 자원을 사용하게 되면 구분이 불가능 할 수 있다. 따라서, 기지국은 같은 파일럿 시퀀스를 사용하는 단말을 다른 자원 존에 할당하여 MUD가 정상적으로 수행될 수 있도록 해야할 필요가 있다.
가변적 자원 설정 기법: 본 발명의 다중 접속 방식은 다중 단말들이 동일한 자원 존을 공유하여 상향링크 전송을 수행하기 때문에, 자원을 가변적으로 활용할 수 있다. Air Interface 측면의 많은 연결(Connection) 달성을 위해, 더 좁은 서브캐리어, 더 좁은 대역폭, 더 좁은 RB(Resource Block) 또는 더 좁은 Sub-band를 구성할 수 있다. 예를 들어, LTE의 시스템의 서브캐리어 간격(Sub-carrier Spacing) 15KHz를 나누어, 10KHz, 5KHz, 등 다양한 서브캐리어 구성을 통해, 심볼 구간(Symbol Duration)의 변화가 있을 수 있으며, 서브캐리어 간격의 변화가 발생하더라도, 본 발명에서 제시하는 다중 접속 방식이 활용될 수 있다. 마찬가지로 RB의 단위가 12개의 서브캐리어에서 10개, 14개 등 다양한 RB 단위 구성을 설정하더라도 상기 언급된 다중 접속 방식이 활용될 수 있다. 유사한 방식으로 Sub-band 또한 가변적으로 구성할 수 있다.
실시예 2: 상기 실시예 1에 대해 Massive Sporadic Packet Transmission을 위한 개선된 다중 접속 기반 신호 흐름
도 7은 Massive Sporadic Packet Transmission을 위한 개선된 다중 접속 기반 신호 흐름도를 예시적으로 나타낸 도면이다.
상기 실시예 1에서 제시한 다중 사용자 접속 방식 수행을 위한 송수신단 관점의 신호 흐름을 제안한다. 각 단말은 소속 기지국으로부터 사전에 미리정의된 제어 정보를 통해 수신하여 상향링크에 사용되는 정보들을 획득할 수 있다(S610). 미리정의된 제어 정보는 Massive Sporadic Packet 전송 지원을 위해 자원 호핑 패턴 정보(특히, 자원 호핑 패턴 정보는 재전송을 위한 자원 선택시 이용될 수 있음), 단말-특정 파일럿 시퀀스 정보, 파일럿 패턴 정보, 자원 존 할당 정보, 다중 사용자 검출(Multi-User Detection, MUD)을 위한 제어 정보, 암시적인 타이밍 정보, MCS 레벨 정보, 주파수 호핑 시퀀스 정보 등을 포함할 수 있다.
상향링크 트래픽 발생 시, 각 단말은 상기 상향링크 트래픽 발생 시 이후의 기지국으로부터 어떠한 제어 신호도 받지 않은 상태에서 다른 사용자의 상향링크 전송과 무관하게 상향링크 데이터 전송을 수행할 수 있다(S620). 기지국은 데이터 검출하는데 실패하면, 해당 단말이 재전송을 수행할 수 있도록 하기 위해 NACK를 해당 단말에게 전송한다(S630).
본 발명에서 제안하는 방식을 사용하면, Massive Sporadic Packet Transmission에서 단말의 상향링크 발생시 초기 제어 시그널링 없이 상향링크 데이터 송수신이 가능하다.
상기 도 7의 S620에서는 기존의 다중 접속 방식의 제어 프로시저/오버헤드를 간소화하여 데이터와 파일럿만을 전송하는 구조를 예시한다. 기지국은 상기 실시예 1에서 기술된 미리정의된 제어 정보를 주기적으로 또는 하향링크 정보 전송시에 단말에게 알려줄 수 있다. 상술한 바와 같이 미리정의된 제어 정보는 단말의 상향링크 트래픽 발생 시점과는 무관하며, 미리정의된 제어 정보 전송 시점과 상향링크 트래픽 발생 시점은 상이할 수 있다. 단말은 상향링크 트래픽 발생시, 이전에 수신한 미리정의된 제어 정보에 기초하여 상향링크 데이터 전송을 수행할 수 있다. 상향링크 데이터 전송 시 기지국의 제어를 받거나, 다른 사용자의 자원 점유와 무관하게 상향링크 전송을 수행한다. 이 때, 단말은 채널 추정을 위한 파일럿 정보를 데이터 전송 Resource Element (RE)와는 다른 RE에서 전송하거나, 같은 RE에 상향링크 데이터를 중첩하여 전송할 수 있다. 여기서 다중 단말의 파일럿은 코드 분할 다중화 방식으로 구분할 수 있으며, 각 단말은 기지국으로부터 단말-특정 시퀀스로 구성된 파일럿을 사전에 할당 받는다.
기지국은 MUD 프로세스를 통해 파일럿과 데이터를 복호하고, 검출에 실패 하면 단말에게 NACK 신호를 보낸다(S630). NACK 신호를 받은 단말은 재전송을 수행한다. 이와 달리, 기지국이 파일럿과 데이터를 복호하고 검출에 성공하면, 단말에게 ACK를 보내고(S630), 단말은 상향링크 전송을 완료한다.
도 8은 다중 사용자 관점의 Massive Sporadic Packet Transmission을 위한 신호 흐름도를 예시적으로 나타낸 도면이다.
각 단말(예를 들어, 도 7의 UE1, UE2)은 데이터 전송 요구 발생시 이후에 기지국으로부터 어떠한 제어 신호를 받지 않은 상태에서 상향링크 전송을 수행하기 때문에, 도 7에서와 같이 미리정의된 암시적인 타이밍에서 상향링크 전송을 수행한다. 상기 미리정의된 암시적인 타이밍은 심볼, 슬롯 또는 서브프레임 등의 단위로 정의되며, 해당 시스템의 심볼 구간에 따라 그 주기는 다를 수 있다. 이 때, 미리정의된 암시적인 타이밍은 주기적으로 존재할 수 있으며, 그 주기는 심볼, 서브프레임, 프레임 등 다양하게 정의될 수 있다.
단말은 상향링크 트래픽 발생 시점에서부터 가장 가까운 미리정의된 암시적 타이밍에 상향링크 데이터를 전송한다. 이러한 본 발명의 기법을 통해, 다중 사용자는 초기 제어 시그널링에 대한 오버헤드 없이 다수 사용자의 연결(Connection)을 보장하면서 다중 접속이 가능하다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
대용량의 산발적 패킷 서비스를 지원하는 방법 및 이를 위한 장치는 3GPP LTE-A, 5G 통신 시스템 등 다양한 무선통신 시스템에서 산업상으로 이용이 가능하다.

Claims (12)

  1. 단말이 대용량의 산발적 패킷 서비스를 지원하는 방법에 있어서,
    기지국으로부터 미리정의된 동기화를 위한 타이밍 정보 및 상기 단말과 관련된 자원 할당 정보를 포함하는 제어 정보를 수신하는 단계;
    상향링크 트래픽 발생 시 상기 미리정의된 동기화를 위한 타이밍 정보에 기초하여 전송 동기화를 수행하는 단계;
    상기 자원 할당 정보에 기초하여 상향링크 데이터 전송을 위한 자원을 선택하는 단계; 및
    상기 선택된 자원을 통하여 상향링크 데이터를 전송하는 단계를 포함하는, 대용량의 산발적 패킷 서비스를 지원하는 방법.
  2. 제 1항에 있어서,
    상기 제어 정보는 상기 단말을 위해 특정된 파일럿 시퀀스 정보를 더 포함하며,
    상기 파일럿 시퀀스가 적용된 파일럿 신호를 상기 선택된 자원에서 상기 상향링크 데이터와 중첩하여 전송하는, 대용량의 산발적 패킷 서비스를 지원하는 방법.
  3. 제 1항에 있어서,
    상기 제어 정보는 자원 호핑 패턴 정보를 더 포함하며,
    상기 기지국으로부터 상기 상향링크 데이터 전송에 대해 NACK 신호를 수신하는 단계; 및
    상기 NACK 신호에 따라 상기 상향링크 데이터의 재전송을 위한 자원을 상기 자원 호핑 패턴 정보에 기초하여 자원 호핑을 수행하여 선택하는 단계를 더 포함하는, 대용량의 산발적 패킷 서비스를 지원하는 방법.
  4. 제 1항에 있어서,
    상기 상향링크 데이터는 상기 기지국과의 비연결 상태(connectionless)에서 전송된 것인, 대용량의 산발적 패킷 서비스를 지원하는 방법.
  5. 제 1항에 있어서,
    상기 미리정의된 동기화를 위한 타이밍 정보는 주기적인 타이밍을 포함하는, 대용량의 산발적 패킷 서비스를 지원하는 방법.
  6. 제 1항에 있어서,
    상기 상향링크 데이터는 상기 상향링크 트래픽 발생 시점에서부터 상기 미리정의된 동기화를 위한 타이밍 정보에 포함된 주기적 타이밍 중 가장 가까운 타이밍에 전송되는, 대용량의 산발적 패킷 서비스를 지원하는 방법.
  7. 대용량의 산발적 패킷 서비스를 지원하는 단말에 있어서,
    기지국으로부터 미리정의된 동기화를 위한 타이밍 정보 및 상기 단말과 관련된 자원 할당 정보를 포함하는 제어 정보를 수신하도록 구성된 수신기;
    상향링크 트래픽 발생 시 상기 미리정의된 동기화를 위한 타이밍 정보에 기초하여 전송 동기화를 수행하고, 상기 자원 할당 정보에 기초하여 상향링크 데이터 전송을 위한 자원을 선택하도록 구성된 프로세서; 및
    상기 선택된 자원을 통하여 상향링크 데이터를 전송하도록 구성된 송신기를 포함하는, 단말.
  8. 제 7항에 있어서,
    상기 제어 정보는 상기 단말을 위해 특정된 파일럿 시퀀스 정보를 더 포함하며,
    상기 프로세서는 상기 송신기가 상기 파일럿 시퀀스가 적용된 파일럿 신호를 상기 선택된 자원에서 상기 상향링크 데이터와 중첩하여 전송하도록 제어하는, 단말.
  9. 제 7항에 있어서,
    상기 제어 정보는 자원 호핑 패턴 정보를 더 포함하며,
    상기 수신기는 상기 기지국으로부터 상기 상향링크 데이터 전송에 대해 NACK 신호를 수신하도록 구성되며,
    상기 프로세서는 상기 NACK 신호에 따라 상기 상향링크 데이터의 재전송을 위한 자원을 상기 자원 호핑 패턴 정보에 기초하여 자원 호핑을 수행하여 선택하도록 구성되는, 단말.
  10. 제 7항에 있어서,
    상기 상향링크 데이터는 상기 기지국과의 비연결 상태(connectionless)에서 전송된 것인, 단말.
  11. 제 7항에 있어서,
    상기 미리정의된 동기화를 위한 타이밍 정보는 주기적인 타이밍을 포함하는, 단말.
  12. 제 7항에 있어서,
    상기 상향링크 데이터는 상기 상향링크 트래픽 발생 시점에서부터 상기 미리정의된 동기화를 위한 타이밍 정보에 포함된 주기적 타이밍 중 가장 가까운 타이밍에 전송되는, 단말.
PCT/KR2016/004288 2015-05-10 2016-04-25 대용량의 산발적 패킷 서비스를 지원하는 방법 및 이를 위한 장치 WO2016182228A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/555,010 US10356754B2 (en) 2015-05-10 2016-04-25 Method for supporting sporadic high-capacity packet service and apparatus therefor
EP16792874.6A EP3297377B1 (en) 2015-05-10 2016-04-25 Method for supporting sporadic high-capacity packet service and apparatus therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562159282P 2015-05-10 2015-05-10
US62/159,282 2015-05-10

Publications (1)

Publication Number Publication Date
WO2016182228A1 true WO2016182228A1 (ko) 2016-11-17

Family

ID=57248354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/004288 WO2016182228A1 (ko) 2015-05-10 2016-04-25 대용량의 산발적 패킷 서비스를 지원하는 방법 및 이를 위한 장치

Country Status (3)

Country Link
US (1) US10356754B2 (ko)
EP (1) EP3297377B1 (ko)
WO (1) WO2016182228A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019156331A1 (ko) * 2018-02-08 2019-08-15 삼성전자 주식회사 무선 통신 시스템에서 개선된 동기화를 수행하는 방법 및 장치

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107078833B (zh) * 2014-10-28 2019-11-05 索尼公司 通信控制设备、无线通信设备、通信控制方法、无线通信方法和程序
WO2017024564A1 (zh) * 2015-08-12 2017-02-16 华为技术有限公司 一种发送上行信息的方法及装置
CN106797660B (zh) * 2015-08-28 2020-11-27 华为技术有限公司 一种随机接入中的上行传输方法及装置
WO2017045176A1 (zh) * 2015-09-16 2017-03-23 广东欧珀移动通信有限公司 调整通信参数的方法和设备
US10911281B2 (en) * 2015-10-20 2021-02-02 Huawei Technologies Co., Ltd. System and method for pilot signal transmission
US10448285B2 (en) 2015-12-22 2019-10-15 Huawei Technologies Co., Ltd. Mobility handling in ultra dense networks
US10517082B2 (en) 2016-04-01 2019-12-24 Huawei Technologies Co., Ltd. Mechanisms for multi-tier distributed co-operative multi-point technology
CN107508652A (zh) * 2016-06-14 2017-12-22 索尼公司 用于交织多址接入通信的电子设备和方法
CN109526057A (zh) * 2017-09-18 2019-03-26 株式会社Ntt都科摩 一种用于生成扩展符号的方法及装置
US10749713B2 (en) * 2017-11-13 2020-08-18 Qualcomm Incorporated Resource pattern for uplink transmissions
US10327123B1 (en) * 2018-04-06 2019-06-18 University Of South Florida System and method for machine-to-machine communication in an internet-of-things network
US10412691B1 (en) * 2018-12-06 2019-09-10 Sprint Spectrum, L.P. Use of power headroom as basis to control configuration of MU-MIMO service
JP7334746B2 (ja) * 2019-01-07 2023-08-29 ソニーグループ株式会社 通信装置及び通信方法
US11672013B2 (en) * 2019-06-10 2023-06-06 Qualcomm Incorporated Considerations for a random access response for a two-step random access procedure
CN114175826A (zh) * 2019-12-30 2022-03-11 华为技术有限公司 资源分配方法、装置及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090109912A1 (en) * 2007-10-25 2009-04-30 Interdigital Patent Holdings, Inc. Method and apparatus for pre-allocation of uplink channel resources
US20110292936A1 (en) * 2008-12-17 2011-12-01 Weiqiang Wang Method and System for Transmitting Multichannel Data Packets
WO2012023819A2 (ko) * 2010-08-18 2012-02-23 엘지전자 주식회사 무선 접속 시스템에서 상향링크 데이터 전송 방법 및 장치

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8908570B2 (en) * 2008-02-01 2014-12-09 BlackBerrry Limited Control signal management system and method
EP2728786A1 (en) * 2012-11-05 2014-05-07 Alcatel Lucent Apparatuses, methods, and computer programs for a receiver and a transmitter of a wireless system
US10028302B2 (en) 2013-03-08 2018-07-17 Huawei Technologies Co., Ltd. System and method for uplink grant-free transmission scheme
CN105210417B (zh) * 2013-05-10 2019-05-03 华为技术有限公司 用于控制网络外设备到设备通信的系统和方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090109912A1 (en) * 2007-10-25 2009-04-30 Interdigital Patent Holdings, Inc. Method and apparatus for pre-allocation of uplink channel resources
US20110292936A1 (en) * 2008-12-17 2011-12-01 Weiqiang Wang Method and System for Transmitting Multichannel Data Packets
WO2012023819A2 (ko) * 2010-08-18 2012-02-23 엘지전자 주식회사 무선 접속 시스템에서 상향링크 데이터 전송 방법 및 장치

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ETRI: "Link Performance of Uplink Data Transmission for MTC", R1-150517, 3GPP TSG RAN WG1 MEETING #80, 18 February 2015 (2015-02-18), XP050933725 *
NEC: "Performance of Uplink Frequency Hopping for LTE Rel-13 MTC", R1-150288, 3GPP TSG RAN WG1 MEETING #80, 18 February 2015 (2015-02-18), XP050933498 *
See also references of EP3297377A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019156331A1 (ko) * 2018-02-08 2019-08-15 삼성전자 주식회사 무선 통신 시스템에서 개선된 동기화를 수행하는 방법 및 장치
US11202270B2 (en) 2018-02-08 2021-12-14 Samsung Electronics Co., Ltd. Method and apparatus for performing enhanced synchronization in wireless communication system

Also Published As

Publication number Publication date
US10356754B2 (en) 2019-07-16
EP3297377B1 (en) 2020-07-15
US20180041988A1 (en) 2018-02-08
EP3297377A4 (en) 2018-12-19
EP3297377A1 (en) 2018-03-21

Similar Documents

Publication Publication Date Title
WO2016182228A1 (ko) 대용량의 산발적 패킷 서비스를 지원하는 방법 및 이를 위한 장치
WO2017018620A1 (ko) 비직교 다중 접속 방식에서의 단말 그룹핑 정보를 송신 및 수신하는 방법
WO2018080151A1 (ko) 무선 통신 시스템에서 v2x 통신을 위한 harq 수행 방법 및 이를 위한 장치
WO2016032225A1 (ko) 무선 통신 시스템에서 장치 대 장치 단말의 데이터 전송 방법 및 장치
WO2017196129A1 (ko) 무선 통신 시스템에서 ue의 사이드링크 신호 송수신 방법
WO2015156605A1 (ko) 무선 통신 시스템에서 장치 대 장치 단말의 데이터 전송 방법 및 장치
WO2017057834A1 (ko) 비직교 다중 접속 방식에 기초하여 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2013043008A2 (ko) 무선 통신 시스템에서 랜덤 액세스 방법 및 장치
WO2018143725A1 (ko) 무선 통신 시스템에서 단말이 cr을 측정하고 전송을 수행하는 방법 및 장치
WO2016178477A1 (ko) 저지연 서비스를 위한 비동기 기반 다중 접속 방법 및 장치
WO2018048273A1 (ko) 무선 통신 시스템에서 v2x 통신을 위한 신호 전송 방법 및 이를 위한 장치
WO2018084570A1 (ko) 무선 통신 시스템에서 오프셋을 적용한 d2d 신호 전송 방법 및 장치
WO2018038496A1 (ko) 무선 통신 시스템에서 단말의 측정을 통한 자원 선택 및 데이터 전송 방법 및 장치
WO2018164450A1 (ko) 무선 통신 시스템에서 ack/nack 자원 할당 방법 및 이를 위한 장치
WO2017026700A1 (ko) 비직교 다중 접속 방식에 기초하여 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2018084568A1 (ko) 무선 통신 시스템에서 자원을 선택하고 pssch를 전송하는 방법 및 장치
WO2017111466A1 (ko) 무선 통신 시스템에서 참조신호와 데이터를 생성하고 전송하는 방법 및 장치
WO2018093113A1 (ko) 무선 통신 시스템에서 v2x 통신을 위한 신호 송수신 방법 및 이를 위한 장치
WO2018043997A1 (ko) 다중화된 상향링크 제어 채널 및 국부적인 사운딩 참조 심볼의 전송 및 수신 방법과 이를 위한 장치
WO2018101738A1 (ko) 무선 통신 시스템에서 v2x 통신을 위한 자원 할당 방법 및 이를 위한 장치
WO2017111565A1 (ko) 무선 통신 시스템에서 v2x 단말의 데이터 송신 방법 및 장치
WO2018021784A1 (ko) 무선 통신 시스템에서 플래툰 통신에 관련된 신호 송수신 방법
JP7263311B2 (ja) 無線通信システムにおいて他の端末から信号を受信した端末がフィードバックを送信する方法及び装置
WO2018021591A1 (ko) Otfs 전송 방식을 이용하는 무선통신 시스템에서 otfs 기저 할당 방법
WO2017191999A1 (ko) 무선 통신 시스템에서 ue의 사이드링크 신호 송수신 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792874

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15555010

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016792874

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE