WO2016182195A1 - Anisotropic conductive film and display device using same - Google Patents

Anisotropic conductive film and display device using same Download PDF

Info

Publication number
WO2016182195A1
WO2016182195A1 PCT/KR2016/003210 KR2016003210W WO2016182195A1 WO 2016182195 A1 WO2016182195 A1 WO 2016182195A1 KR 2016003210 W KR2016003210 W KR 2016003210W WO 2016182195 A1 WO2016182195 A1 WO 2016182195A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive film
anisotropic conductive
layer
mpa
epoxy resin
Prior art date
Application number
PCT/KR2016/003210
Other languages
French (fr)
Korean (ko)
Inventor
허건영
강경희
김정섭
김태호
손병근
한재선
김지연
박경수
박영우
신영주
황자영
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to CN201680041228.2A priority Critical patent/CN107848283B/en
Publication of WO2016182195A1 publication Critical patent/WO2016182195A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form

Definitions

  • the present invention relates to an anisotropic conductive film and a display device using the same.
  • Anisotropic conductive film generally refers to a film-like adhesive in which conductive particles are dispersed in a resin such as epoxy.
  • the film is electrically conductive in the film thickness direction and insulated in the plane direction. It means a polymer film having anisotropy and adhesion.
  • the anisotropic conductive film which can be connected at low temperature has mainly used the radical reactive acryl-type hardening part or the anion / cationic reactive epoxy hardening part.
  • the connection temperature when the connection temperature is lowered, there is a problem that the room temperature stability is lowered, and there is a problem that low temperature fast curing cannot be achieved because a latent catalyst must be used for room temperature stability (Korean Patent Application Publication No. 2007-0092639).
  • the present invention is to provide an anisotropic conductive film that can be connected at a low temperature and at the same time excellent in room temperature stability.
  • An object of the present invention is to provide an anisotropic conductive film that can be cured at a cryogenic temperature of 130 ° C. or lower, and is excellent in room temperature stability, and has excellent adhesion and reliability.
  • a first layer comprising an epoxy resin and a thiol compound; And a second layer comprising an epoxy resin and an ionic curing catalyst, wherein the anisotropic conductive film is further provided with conductive particles in either of the first layer or the second layer.
  • an anisotropic conductive film comprising an epoxy resin, a thiol compound, an ionic curing catalyst and conductive particles, the rate of change of the calorific value according to the following formula (1) is 10% or less.
  • H 0 represents the DSC the heat generation amount measuring the anisotropic conductive film at 25 °C 1 day left
  • H 1 represents the DSC the heat value of the anisotropic conductive film was measured at 25 °C and then allowed to stand 7 days.
  • a first connected member containing a first electrode
  • a second to-be-connected member containing a second electrode
  • a display device connected by the anisotropic conductive film described herein, which is located between the first to-be-connected member and the second to-be-connected member to connect the first electrode and the second electrode.
  • Anisotropic conductive film according to an embodiment of the present invention by including a thiol compound and an ionic curing catalyst in different layers, there is an advantage that excellent room temperature stability and cryogenic curing is possible.
  • FIG. 1 shows a first to-be-connected member 50 including a first electrode 70, a second to-be-connected member 60 including a second electrode 80, and the first to-be-connected member and the first to-be-connected member.
  • 2 is a cross-sectional view of a display device 30 according to an embodiment of the present invention, including an anisotropic conductive film described herein positioned between a member to be connected and connecting the first electrode and the second electrode.
  • the first layer comprising an epoxy resin and a thiol compound; And a second layer comprising an epoxy resin and an ionic curing catalyst, and further comprising conductive particles in any one of the first layer and the second layer.
  • thiol compound a compound having a mercapto group (-SH) may be used.
  • thiol compound examples include ethyl mercaptan, propyl mercaptan, benzyl mercaptan, phenylethyl mercaptan, 4-promobenzyl mercaptan, 1-phenylethyl mercaptan, n-dodecyl mercaptan and t-tert-butylbenzyl Mercaptan, 4-fluorobenzyl mercaptan, 2,4,6-trimethylbenzyl mercaptan, (4-nitrobenzyl) mercaptan, 2-trifluoromethylbenzyl mercaptan, 3,4-difluorobenzyl mer Captan, 3-fluorobenzyl mercaptan, 4-trifluoromethylbenzyl mercaptan, 4-bromo-2-fluorobenzyl mercaptan, trimethylolpropanetris-3-mercaptopropionate, pentaerythrito
  • connection temperature or the main crimping temperature of the low temperature fast curing type anisotropic conductive film is generally 130 ° C to 160 ° C.
  • the present invention can achieve cryogenic fast curing by using a thiol compound, can be connected or the main compression in a temperature range of less than 130 °C, specifically 80 °C to 120 °C, more specifically 90 °C to 115 °C temperature range have.
  • the thiol compound may be included in an amount of 10 wt% to 40 wt%, specifically 15 wt% to 35 wt%, based on the total weight of solids of the first layer. It can exhibit the cryogenic fastening and excellent adhesion and high connection reliability within the above range.
  • the ionic curing catalyst is a curing catalyst having a cation part and an anion part can be used without limitation a compound capable of reacting with the thiol compound to initiate curing.
  • the ion Examples of curing catalysts include imidazole ryumgye, piperidinyl nyumgye, sulfo nyumgye, ammonium and phosphonium and the cation part is at least one selected from the group consisting of nyumgye compounds, O -, COO -, S - group-containing compound It may be a complex compound of an anion moiety such as.
  • an ammonium-based, imidazolium-based, or phosphonium-based compound may be used, and more specifically, a phosphonium-based compound may be used.
  • Examples of the imidazolium-based compound include 1-ethyl-3-methylimidazolium, 1-butyl-3-methylimidazolium, 1-n-butyl-3-methylimidazolium, and the like.
  • Examples of the nium compound include ethyl methyl piperidinium, poly-N, N'-dimethyl-3,5-methylene piperidinium, and the like.
  • Examples of the sulfonium compound include aliphatic sulfonium and aromatic sulfonium. Can be mentioned.
  • ammonium-based compound examples include dimethyldialkylammonium, tetrabutylammonium, tetraethylammonium, tetramethylammonium, triethylbenzylammonium and the like.
  • Examples of the phosphonium-based compound include tributylhexylphosphonium, tripropylhexylphosphonium, tributylmethylphosphonium, tributylpentylphosphonium, tributylheptylphosphonium, tributyloctylphosphonium, tributylnonylphosphonium, Tributyldecyl phosphonium, tributyl undecyl phosphonium, tributyl dodecyl phosphonium, tributyl tetradecyl phosphonium, etc. are mentioned.
  • the anion moiety component one capable of forming a complex compound with the cation moiety may be used.
  • O ⁇ , COO ⁇ Compounds having a functional group such as S ⁇ can be used.
  • the anionic compound having the COO - group include acetates or salicylates
  • examples of the anionic compound having the O - group include compounds having an OH group O - of aminophenol, phenylphenol, naphthol or cresol.
  • a compound in which the OH group of phenylphenol is O ⁇ may be used, and more specifically, a compound in which the OH group of 2-phenylphenol or 2,6-diphenylphenol is each O ⁇ may be used.
  • anionic compound having an S ⁇ group examples include compounds in which the SH group of sulfatiazole is S ⁇ .
  • the SH group of sulfatiazole is S ⁇ .
  • tetrabutylammonium 2-phenylphenol, tetrabutylammonium 2,6-diphenylphenol, tributylhexylphosphonium 2,6-diphenylphenol and the like can be used.
  • the ionic curing catalyst which is a complex compound of the cation part and the anion part, unlike other curing catalysts that generate cations to promote the ring-opening reaction of the epoxy resin and advance the curing reaction, does not react with the epoxy resin and does not react with the epoxy resin by the thiol compound. It can serve to promote the curing reaction of.
  • the ionic curing catalyst may be included in an amount of 1% by weight to 20% by weight, and specifically 1% by weight to 15% by weight, based on the total weight of solids of the second layer composition.
  • the epoxy resin that can be used in the first layer and the second layer is not particularly limited and may be an epoxy resin commonly used in the art. In one example, the epoxy resins of the first and second layers may each be the same or different.
  • the epoxy resin examples include bisphenol epoxy compounds such as bisphenol A epoxy resin, bisphenol A epoxy acrylate resin, and bisphenol F epoxy resin; Aromatic epoxy compounds such as polyglycidyl ether epoxy resins, polyglycidyl ester epoxy resins and naphthalene epoxy resins; Alicyclic epoxy compounds; Novolak-type epoxy compounds, such as a cresol novolak-type epoxy resin and a phenol novolak-type epoxy resin; Glycidyl amine epoxy compounds; Glycidyl ester epoxy compounds; And biphenyl diglycidyl ether epoxy compounds.
  • the epoxy resin may be a bisphenol F type epoxy resin, a propylene oxide epoxy resin, or a naphthalene epoxy resin.
  • the epoxy equivalent of the epoxy resin may be in the range of 300 g / eq or less, specifically 100 to 250 g / eq.
  • the epoxy resin may be included in an amount of 10 wt% to 40 wt%, and specifically 15 wt% to 35 wt%, based on the total weight of solids of the first layer or the second layer. Within this range, the physical properties such as adhesion, appearance, etc. may be excellent and stable after reliability.
  • the conductive particles are not particularly limited and may be used conductive particles commonly used in the art.
  • Non-limiting examples of the conductive particles include metal particles including Au, Ag, Ni, Cu, solder and the like; carbon; Particles coated with a metal containing Au, Ag, Ni, etc., using resins containing polyethylene, polypropylene, polyester, polystyrene, polyvinyl alcohol, and the like, and modified resins thereof as particles; Insulated electroconductive particle etc. which coat
  • the size of the conductive particles may be, for example, in the range of 1 ⁇ m to 20 ⁇ m, specifically 1 ⁇ m to 10 ⁇ m, depending on the pitch of the circuit applied.
  • the conductive particles may be included in either the first layer or the second layer.
  • the conductive particles may be included in the second layer including the ionic curing catalyst. Since the thiol compound tends to have a low viscosity, it may be preferable to include the conductive particles and the ionic curing catalyst in the same layer in view of the fluidity control of the conductive particles.
  • the conductive particles may be included in an amount of 1% by weight to 35% by weight, and specifically 1% by weight to 30% by weight, based on the total weight of solids of the first layer or the second layer. In the above range, the conductive particles can be easily pressed between the terminals to ensure stable connection reliability, and the connection resistance can be reduced by improving the conductance.
  • Each of the first layer or the second layer may further include a binder resin.
  • the binder resin is an olefin resin, butadiene resin, ethylene-vinylacetate copolymer, polyimide resin, polyamide resin, phenoxy resin, polymethacrylate resin, polyacrylate resin, polyurethane Resins, polyester resins, polyester urethane resins, polyvinyl butyral resins, styrene-butyrene-styrene (SBS) resins and epoxy modified materials, styrene-ethylene-butylene-styrene (SEBS) resins and their A modified body or an acrylonitrile butadiene rubber (NBR), its hydrogenated body, etc. are mentioned. These can be used individually or in mixture of 2 or more types.
  • the binder resin may use a phenoxy resin.
  • the binder resin may be included in 10% by weight to 60% by weight relative to the total weight of solids of the first layer or the second layer, specifically, may be included in 25% by weight to 55% by weight. In the above range, the flowability and adhesion of the composition for an anisotropic conductive film can be improved.
  • the anisotropic conductive film may further include inorganic particles in any one or more layers of the first layer and the second layer.
  • inorganic particles By including an inorganic particle further, recognition property can be provided to an anisotropic conductive film and the short between electroconductive particles can be prevented.
  • Non-limiting examples of the inorganic particles silica (Si, SiO 2 ), Al 2 O 3 , TiO 2 , ZnO, MgO, ZrO 2 , PbO, Bi 2 O 3 , MoO 3 , V 2 O 5 , Nb 2 O 5 , Ta 2 O 5 , WO 3 or In 2 O 3 .
  • the inorganic particles may be silica.
  • the silica may be a silica produced by a liquid phase method, such as a sol gel method, a precipitation method, or a gas phase method such as flame oxidation, a non-pulverized silica obtained by pulverizing silica gel, or fumed silica. ), Fused silica may be used, and the shape may be spherical, crushed, edgeless, or the like, and may be used alone or in combination of two or more thereof.
  • the inorganic particles may be included in an amount of 5 wt% to 30 wt%, and specifically 10 wt% to 25 wt%, based on the total weight of solids of the first layer or the second layer. It is excellent in the effect which prevents the outflow of the electrically-conductive particle to the space part in the said range.
  • the anisotropic conductive film of the present invention may further include additives such as polymerization inhibitors, antioxidants, heat stabilizers, etc. in the first layer or the second layer in order to provide additional physical properties without impairing the basic physical properties.
  • additives such as polymerization inhibitors, antioxidants, heat stabilizers, etc. in the first layer or the second layer in order to provide additional physical properties without impairing the basic physical properties.
  • an additive may be further included in the second layer.
  • the additive is not particularly limited, but may be included in an amount of 0.01% by weight to 10% by weight based on the total weight of solids of the second layer.
  • the anti-polymerization agent can be selected from the group consisting of hydroquinone, hydroquinone monomethyl ether, p-benzoquinone, phenothiazine and mixtures thereof.
  • the antioxidant may be a phenolic or hydroxy cinnamate-based material, and specifically, tetrakis- (methylene- (3,5-di-t-butyl-4-hydroxycinnamate) methane, 3,5 -Bis (1,1-dimethylethyl) -4-hydroxy benzene propanoic acid thiol di-2,1-ethanediyl ester and the like can be used.
  • a binder resin, an epoxy resin, and a thiol compound are combined in a solvent to prepare a first layer composition, which is coated on a release film to a certain thickness, for example, 1 ⁇ m to 50 ⁇ m, and then dried for a certain time.
  • the 1st layer film can be manufactured by volatilizing a solvent.
  • a binder resin, an epoxy resin, an ionic curing catalyst, and conductive particles may be blended in a solvent to prepare a second layer composition, and dried in the same manner as the first layer composition to prepare a second layer film.
  • the anisotropic conductive film may be obtained by laminating and laminating the prepared first layer and the second layer film.
  • the curing of the anisotropic conductive film is only started when the first layer containing the thiol compound is in contact with the second layer containing the ionic curing catalyst, the curing does not proceed even if left at room temperature, that is, 25 ° C. for a long time. It is characterized by excellent stability.
  • the anisotropic conductive film is a two-layered structure in which a first layer comprising an epoxy resin and a thiol compound and a second layer comprising an epoxy resin, a cationic curing catalyst, and conductive particles are laminated or the first layer is formed on the first layer. It may be a three-layered structure in which two layers are stacked and a third layer containing no conductive particles is laminated on the second layer, and a multilayer structure in which the first layer and the second layer are laminated in four or more layers as necessary. It may be.
  • the third layer may include an epoxy resin and a thiol compound like the first layer.
  • each layer may be variously adjusted as necessary, and specifically, the thickness of the film of the first layer not containing conductive particles may be about 1.5 to 3 times thicker than the second layer film including the conductive particles. .
  • a third layer having a thickness thinner than that of the first layer and the second layer can be laminated on the second layer.
  • laminate means that another layer is formed on one surface of an arbitrary layer, and may be used in combination with a coating or lamination.
  • an anisotropic conductive film having a multilayer structure including the first layer and the second layer separately even if the content of inorganic particles such as silica is high because the layers are separated, it does not affect the conductivity because it does not interfere with the crimping of the conductive particles. Without affecting the flowability of the composition for an anisotropic conductive film, an anisotropic conductive film with controlled fluidity can be produced.
  • Another embodiment of the present invention relates to an anisotropic conductive film containing an epoxy resin, a thiol compound, an ionic curing catalyst, and conductive particles, wherein the rate of change of the calorific value according to the following formula 1 is 10% or less.
  • H 0 represents the DSC the heat generation amount measuring the anisotropic conductive film at 25 °C 1 day left
  • H 1 represents the DSC the heat value of the anisotropic conductive film was measured at 25 °C and then allowed to stand 7 days.
  • the calorific value after 1 day and the calorific value change rate after 7 days may be 10% or less at 25 ° C.
  • the calorific value change rate may be 7% or less, and more specifically 5% or less.
  • the change rate of the calorific value of 10% or less is related to the improvement of storage stability or storage stability of the anisotropic conductive film.
  • Non-limiting examples of measuring the rate of change in calorific value after 25 ° C., 1 day and 7 days are as follows:
  • the anisotropic conductive film according to the above aspect comprises a first layer and a second layer, the first layer comprises an epoxy resin and a thiol compound, and the second layer comprises an epoxy resin, an ionic curing catalyst and conductive particles. It may be to include. In addition, each of the first layer and the second layer may further include a binder resin. The same epoxy resin, thiol compound, ionic curing catalyst, conductive particles, and binder resin can be used.
  • the anisotropic conductive film according to the present invention may have an adhesive strength of 10 MPa or more when the pressure-sensitive adhesive is pressed at 90 ° C. to 110 ° C., 1 to 5 seconds, and 5 MPa to 70 MPa.
  • the adhesion may be 10 MPa or more and 20 MPa or less.
  • an anisotropic conductive film having an adhesive force of less than 10 MPa there is a problem in that the display device using the same is difficult to use for a long time, thereby shortening the life.
  • the measuring method of the adhesive force is not particularly limited, and a method commonly used in the art may be used.
  • Non-limiting examples of methods of measuring adhesion are as follows:
  • the prepared anisotropic conductive film is placed between the first and second to-be-connected members and press-bonded at 60 ° C., 1 second, and 1 MPa and under conditions of 90 ° C. to 110 ° C., 1 to 5 seconds, and 5 MPa to 70 MPa. After crimping, connect. Next, the film is measured for adhesion using a peel strength meter (H5KT, Tinius Olsen, Inc.) at a peel angle of 90 ° and a peel rate of 50 mm / min.
  • H5KT Tinius Olsen, Inc.
  • the curing rate according to the following formula 2 may be 70% or more. Specifically, it may be 80% or more.
  • H 2 is an anisotropic conductive film is measured by the area under the curve at 10 °C / min, -50 °C to 250 °C temperature range using a DSC (thermodifferential scanning calorimeter, TA instruments, Q20)
  • DSC thermodifferential scanning calorimeter, TA instruments, Q20
  • H 3 represents the calorific value measured by the same method after leaving the anisotropic conductive film at 100 °C for 5 seconds.
  • the anisotropic conductive film may have a connection resistance of 0.5 ⁇ or less when the main compression is performed at 90 ° C to 110 ° C, 1 to 5 seconds, and 5 MPa to 70 MPa.
  • connection resistance measurement method are as follows:
  • An anisotropic conductive film was placed between the first to-be-connected member and the second to-be-connected member and press-bonded at 60 ° C., 1 second, 1 MPa, and main compression under conditions of 90 ° C. to 110 ° C., 1 to 5 seconds, and 5 MPa to 70 MPa. Then connect. Next, several specimens are prepared using a film, and the average value is calculated by measuring the connection resistance (according to the ASTM F43-64T method) using the four-terminal measuring method.
  • the first to-be-connected member containing a first electrode; A second to-be-connected member containing a second electrode; And a display device connected between the first to-be-connected member and the second to-be-connected member to connect the first electrode and the second electrode by the anisotropic conductive film according to the present specification.
  • the first to-be-connected member may be, for example, a chip on film (COF) or a flexible printed circuit board (fPCB), and the second to-be-connected member may be, for example, a glass panel, a printed circuit board (PCB) or It may be a flexible printed circuit board (fPCB).
  • COF chip on film
  • fPCB flexible printed circuit board
  • the binder resin portion serving as the matrix for forming the film is 30 wt% of Kupphenoxy resin (PKHH, Inchemrez, USA), and the naphthalene epoxy resin (EPICLON HP) as the curing portion accompanied by the curing reaction.
  • PKHH Kupphenoxy resin
  • EPICLON HP naphthalene epoxy resin
  • the solvent was volatilized for 5 minutes in the 60 degreeC dryer, and the dried conductive layer of 9 micrometers thickness was obtained.
  • the binder resin portion is 42% by weight of phenoxy resin (PKHH, Inchemrez, USA), and the naphthalene epoxy resin (EPICLON HP 4032D, DIC, epoxy equivalent) : 136 ⁇ 148 g / eq) 40% by weight, 18% by weight of pentaerythritol tetrakis-3-mercaptopropionate was mixed and dissolved using PGMEA equivalent to the phenoxy resin to prepare a non-conductive layer composition. .
  • PKHH phenoxy resin
  • EPICLON HP 4032D DIC, epoxy equivalent
  • a solvent was volatilized for 5 minutes in a 60 °C dryer to prepare a non-conductive layer of 9 ⁇ m thickness including pentaerythritol tetrakis-3-mercaptopropionate.
  • a conductive layer was prepared using tetraphenylphosphonium 2,6-dimethyl phenol as the cationic polymerization catalyst, and the non-conductive layer prepared in the non-conductive layer preparation example 1 was laminated on the conductive layer and subjected to lamination.
  • the anisotropic conductive film of Example 1 having a low-temperature curing type two-layer structure was prepared.
  • Example 2 The anisotropic conductive film of Example 2 in Example 1, except that tetrabutylammonium 2-phenylphenol was used instead of tetraphenylphosphonium 2,6-dimethyl phenol as the cationic polymerization catalyst. was prepared.
  • Example 3 The anisotropic conductivity of Example 3 according to the same conditions and methods as in Example 1, except that tetraphenylphosphonium 2-phenylphenol was used instead of tetraphenylphosphonium 2,6-dimethyl phenol as the cationic polymerization catalyst. A film was prepared.
  • Example 1 the anisotropic conductive film of Example 4 was manufactured under the same conditions and methods as in Example 1, except that the weight ratio of the binder resin and the epoxy resin was adjusted from 2: 1 to 4: 1.
  • Example 1 the anisotropic conductive film of Example 5 was manufactured under the same conditions and methods as in Example 1, except that the weight ratio of the binder resin and the epoxy resin was adjusted from 2: 1 to 1: 1.
  • the non-conductive layer prepared in the same manner as in the non-conductive layer Preparation Example 1 was laminated on the conductive layer manufactured by the same method except that the thickness of the conductive layer in the conductive layer preparation example 1 was 6 ⁇ m, and the two-layer structure The anisotropic conductivity of Example 6 having a low-temperature hardening type three-layer structure by laminating and laminating again the non-conductive layer prepared in the same manner as in the non-conductive layer Preparation Example 1, except that the conductive layer was manufactured to have a thickness of 3 ⁇ m. A film was prepared.
  • Comparative example 1 Manufacture of anisotropic conductive film
  • HX3941HP manufactured by Asahi Kasei Co., Ltd.
  • Asahi Kasei Co., Ltd. which is an imidazole-based curing agent
  • the thickness thereof was changed to 6 ⁇ m.
  • a conductive layer was prepared by the method, except that HX3941HP was added instead of pentaerythritol tetrakis-3-mercaptopropionate as a curing agent in the non-conductive layer preparation example 1, and the thickness was changed to 12 ⁇ m.
  • a non-conductive layer prepared in the same manner as in Example 1 was laminated and laminated to prepare an anisotropic conductive film of Comparative Example 1 having a two-layer structure.
  • the binder resin portion is 25 wt% of phenoxy resin (PKHH, Inchemrez, USA), and the naphthalene epoxy resin (EPICLON HP 4032D, DIC, epoxy equivalent) : 136 ⁇ 148) 25% by weight, 10% by weight of pentaerythritol tetrakis-3-mercaptopropionate, 10% by weight of tetraphenylphosphonium 2,6-dimethyl phenol, for imparting conductive performance to the anisotropic conductive film
  • 30% by weight of insulated conductive particles AUL-704, average particle size of 4um, SEKISUI, Japan
  • PGMEA insulated conductive particles
  • the storage stability was measured by the rate of change of the calorific value at 25 ° C., 1 day and the calorific value at 7 day of the anisotropic conductive film, and the anisotropic prepared in each of Examples and Comparative Examples, which were left at 25 ° C. for 1 day and at 25 ° C. for 7 days.
  • a 1 mg aliquot of the conductive film was placed in a range of 25 ° C., 10 ° C./1 min, -50 ° C. to 250 ° C. for 1 day using DSC (thermodifferential scanning calorimeter, TA instruments, Q20), and then a calorific value (H 0 ) And the calorific value (H 1 ) after leaving for 7 days at 25 ° C. was calculated according to Equation 1 below.
  • H 0 represents the DSC the heat generation amount measuring the anisotropic conductive film at 25 °C 1 day left
  • H 1 represents the DSC the heat value of the anisotropic conductive film was measured at 25 °C and then allowed to stand 7 days.
  • anisotropic conductive films prepared in Examples and Comparative Examples were subjected to DSC (thermal differential scanning calorimeter, TA instruments, Q20) using a nitrogen gas atmosphere under nitrogen gas atmosphere at 10 °C / min, -50 °C to 250 °C temperature interval curve Measured by the bottom area (H 2 ), and then leaving the film at 100 °C for 5 seconds and then measured the calorific value in the same way (H 3 ) to calculate the rate of change according to Equation 2 from the results below Table 1 Shown in DSC (thermal differential scanning calorimeter, TA instruments, Q20) using a nitrogen gas atmosphere under nitrogen gas atmosphere at 10 °C / min, -50 °C to 250 °C temperature interval curve Measured by the bottom area (H 2 ), and then leaving the film at 100 °C for 5 seconds and then measured the calorific value in the same way (H 3 ) to calculate the rate of change according to Equation 2 from the results below Table 1 Shown in
  • 70% or more and less than 80%
  • the anisotropic conductive films prepared in Examples and Comparative Examples were placed on a glass substrate (manufactured by Neoview Kolon) with an indium tin oxide circuit having a thickness of 5000 kPa, and pressed at 1 MPa for 1 second at 60 ° C. After the pressure bonding, the release film was removed and the driver IC chip (manufacturer: Samsung LSI) having a bump area of 1430 ⁇ m was placed thereon, and then pressurized and heated at 100 ° C., 130 ° C. and 150 ° C. for 5 seconds and 50 MPa, respectively. After pressing, the case where the chip is stuck without shaking is evaluated as hardenable ( ⁇ ) and the case of chip falling or being pushed as non-hardenable ( ⁇ ) to determine whether it is hardenable.
  • hardenable
  • non-hardenable
  • the anisotropic conductive films prepared in Examples and Comparative Examples were placed on a glass substrate (manufactured by Neoview Kolon) with an indium tin oxide circuit having a thickness of 5000 kPa, and pressed at 1 MPa for 1 second at 60 ° C. After the pressing, the release film was removed and the presence or absence of bubbles between the terminals was observed under a microscope (manufacturer: Olympus). Very good image ( ⁇ ) when the area ratio of bubble formation in the compressed areas is 0% to 5% or less for three observation positions, good image ( ⁇ ) when more than 5% to less than 10%, and bad image (at 10% or more) X).
  • the indentation uniformity was evaluated by pressing and heating a sample on which the driver IC chip (Samsung LSI) having a bump area of 1430 ⁇ m was pressed on the press-bonded substrate under a condition of 50 MPa for 5 seconds at 100 ° C.
  • the uniformity of the indentation was visually observed and determined. Specifically, when the indentations on both sides of the driver IC chip are clear to the same extent as the indents of the center part, the indentation is judged to be uniform and is good ( ⁇ ). When it was cloudy or unclear, it was evaluated as nonuniformity ( ⁇ ).
  • the anisotropic conductive films prepared in Examples and Comparative Examples were placed on a glass substrate (manufactured by Neoview Kolon) having an indium tin oxide circuit having a thickness of 5000 kPa, and pressed at 1 MPa for 1 second at 60 ° C.
  • the release film was removed and the driver IC chip (manufacturer: Samsung LSI) having a bump area of 1430 ⁇ m was placed thereon, and then, the resultant was press-bonded under conditions of 50 MPa for 5 seconds at 100 ° C., and the maximum load: 200kgf, Test speed: 100um / sec was measured by a peel strength tester (Bond tester Dage Series-4000) a total of three or more times for each specimen to calculate their average.
  • the measured adhesive force evaluated 10 MPa or more as ((circle)), 5 MPa or more and less than 10 MPa as ((triangle
  • the anisotropic conductive films prepared in Examples and Comparative Examples were placed on a glass substrate (manufactured by Neoview Kolon) having an indium tin oxide circuit having a thickness of 5000 kPa, and pressed at 1 MPa for 1 second at 60 ° C. After pressing, the release film was removed and the driver IC chip (manufacturer: Samsung LSI) having a bump area of 1430 ⁇ m was placed thereon, and the specimens were pressed by pressing at 50 ° C. for 5 seconds at 100 ° C. to prepare a specimen. The resistance between 4 points was measured using. The resistance measuring instrument applies 1mA and calculates the average of the resistance by using the measured voltage. After measuring the connection resistance of the prepared specimen was evaluated as good ( ⁇ ) when less than 0.5 ⁇ , poor ( ⁇ ) when more than 0.5 ⁇ .

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Non-Insulated Conductors (AREA)
  • Laminated Bodies (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)

Abstract

The present invention relates to an anisotropic conductive film comprising: a first layer comprising an epoxy resin and a thiol compound; and a second layer comprising an epoxy resin and an ionic curing catalyst, wherein either the first layer or the second layer further comprises conductive particles. In addition, the present invention relates to an anisotropic conductive film comprising an epoxy resin, a thiol compound, an ionic curing catalyst and conductive particles, and having a heating value change ratio, of 10% or less, in accordance with the following formula 1. [Formula 1] Heating value change ratio in (%) = [(H0-H1)/H0]×100 In formula 1, H0 represents the heating value in DSC, measured after leaving an anisotropic conductive film alone at 25°C for one day, and H1 represents the heating value in DSC, measured after leaving the anisotropic conductive film alone at 25°C for seven days. According to one embodiment of the present invention, the anisotropic conductive film comprises a thiol compound and an ionic curing catalyst in different layers, respectively, thereby having advantages of excellent room temperature stability and of allowing ultra-low temperature curing.

Description

이방 도전성 필름 및 이를 이용한 디스플레이 장치Anisotropic conductive film and display device using same
본 발명은 이방 도전성 필름 및 이를 이용한 디스플레이 장치에 관한 것이다.The present invention relates to an anisotropic conductive film and a display device using the same.
이방 도전성 필름(Anisotropic conductive film, ACF)이란 일반적으로 도전 입자를 에폭시 등의 수지에 분산시킨 필름 형상의 접착제를 말하는 것으로, 필름의 막 두께 방향으로는 도전성을 띠고 면 방향으로는 절연성을 띠는 전기 이방성 및 접착성을 갖는 고분자 막을 의미한다. 이방 도전성 필름을 접속시키고자 하는 회로 사이에 상기 필름을 위치시킨 후 일정 조건의 가열, 가압 공정을 거치면, 회로 단자들 사이는 도전성 입자에 의해 전기적으로 접속되고, 인접하는 전극 사이에는 절연성 접착 수지가 충진되어 도전성 입자가 서로 독립하여 존재하게 됨으로써 높은 절연성을 부여하게 된다.Anisotropic conductive film (ACF) generally refers to a film-like adhesive in which conductive particles are dispersed in a resin such as epoxy. The film is electrically conductive in the film thickness direction and insulated in the plane direction. It means a polymer film having anisotropy and adhesion. After placing the film between the circuits to which the anisotropic conductive film is to be connected and subjecting to heating and pressing under a certain condition, the circuit terminals are electrically connected by conductive particles, and an insulating adhesive resin is provided between adjacent electrodes. By filling, the conductive particles are present independently of each other to impart high insulation.
일반적으로 저온 접속이 가능한 이방 도전성 필름은, 라디칼 반응성 아크릴계 경화부 또는 음이온/양이온 반응성 에폭시 경화부를 주로 사용하여 왔다. 그러나, 두 경우 모두 접속 온도를 낮추면 상온 안정성이 떨어지는 문제가 있고, 상온 안정성을 위해서는 잠재성 촉매를 사용해야 하므로 저온 속경화를 달성할 수 없는 문제가 있었다(대한민국 특허 출원 공개 제2007-0092639호).Generally, the anisotropic conductive film which can be connected at low temperature has mainly used the radical reactive acryl-type hardening part or the anion / cationic reactive epoxy hardening part. However, in both cases, when the connection temperature is lowered, there is a problem that the room temperature stability is lowered, and there is a problem that low temperature fast curing cannot be achieved because a latent catalyst must be used for room temperature stability (Korean Patent Application Publication No. 2007-0092639).
따라서, 본 발명은 낮은 온도에서 접속이 가능하며 동시에 상온 안정성이 뛰어난 이방 도전성 필름을 제공하고자 한다.Accordingly, the present invention is to provide an anisotropic conductive film that can be connected at a low temperature and at the same time excellent in room temperature stability.
본 발명의 목적은 130℃ 이하의 극저온에서 경화가 가능한 한편, 상온 안정성이 뛰어나고, 접착력 및 신뢰성이 우수한 이방 도전성 필름을 제공하는 것이다.An object of the present invention is to provide an anisotropic conductive film that can be cured at a cryogenic temperature of 130 ° C. or lower, and is excellent in room temperature stability, and has excellent adhesion and reliability.
본 발명의 일 실시예에서, 에폭시 수지 및 티올 화합물을 포함하는 제1층; 및 에폭시 수지 및 이온성 경화 촉매를 포함하는 제2층을 포함하고, 상기 제1층 또는 제2층 중 어느 하나의 층에 도전 입자가 추가로 포함되는, 이방 도전성 필름이 제공된다.In one embodiment of the present invention, a first layer comprising an epoxy resin and a thiol compound; And a second layer comprising an epoxy resin and an ionic curing catalyst, wherein the anisotropic conductive film is further provided with conductive particles in either of the first layer or the second layer.
본 발명의 다른 실시예에서, 에폭시 수지, 티올 화합물, 이온성 경화 촉매 및 도전 입자를 포함하고, 하기 식 1에 따른 발열량의 변화율이 10% 이하인 이방 도전성 필름이 제공된다.In another embodiment of the present invention, there is provided an anisotropic conductive film comprising an epoxy resin, a thiol compound, an ionic curing catalyst and conductive particles, the rate of change of the calorific value according to the following formula (1) is 10% or less.
[식 1][Equation 1]
발열량 변화율(%) = [(H0-H1)/H0]×100Calorific value change rate (%) = [(H 0- H 1 ) / H 0 ] × 100
상기 식 1에서, H0 는 이방 도전성 필름을 25℃에서 1일 방치 후에 측정한 DSC 상 발열량을 나타내고, H1은 상기 이방 도전성 필름을 25℃에서 7일 방치 후 측정한 DSC 상 발열량을 나타낸다.In the formula 1, H 0 represents the DSC the heat generation amount measuring the anisotropic conductive film at 25 ℃ 1 day left, H 1 represents the DSC the heat value of the anisotropic conductive film was measured at 25 ℃ and then allowed to stand 7 days.
본 발명의 또 다른 실시예에서, 제1 전극을 함유하는 제1 피접속부재; 제2 전극을 함유하는 제2 피접속부재; 및 상기 제1 피접속부재와 상기 제2 피접속부재 사이에 위치하여 상기 제1 전극 및 상기 제2 전극을 접속시키는, 본원에 기재된 이방 도전성 필름에 의해 접속된 디스플레이 장치가 제공된다.In another embodiment of the present invention, a first connected member containing a first electrode; A second to-be-connected member containing a second electrode; And a display device connected by the anisotropic conductive film described herein, which is located between the first to-be-connected member and the second to-be-connected member to connect the first electrode and the second electrode.
본 발명의 일 실시예들에 따른 이방 도전성 필름은, 티올 화합물과 이온성 경화 촉매를 각각 다른 층에 포함함으로써 상온 안정성이 우수하고 극저온 경화가 가능한 장점이 있다.Anisotropic conductive film according to an embodiment of the present invention, by including a thiol compound and an ionic curing catalyst in different layers, there is an advantage that excellent room temperature stability and cryogenic curing is possible.
도 1은 제1 전극(70)을 함유하는 제1 피접속부재(50)와, 제2 전극(80)을 포함하는 제2 피접속부재(60), 및 상기 제1 피접속부재와 상기 제2 피접속부재 사이에 위치하여 상기 제1 전극 및 상기 제2 전극을 접속시키는 본원에 기재된 이방 도전성 필름을 포함하는, 본 발명의 일 구현예에 따른 디스플레이 장치(30)의 단면도이다.1 shows a first to-be-connected member 50 including a first electrode 70, a second to-be-connected member 60 including a second electrode 80, and the first to-be-connected member and the first to-be-connected member. 2 is a cross-sectional view of a display device 30 according to an embodiment of the present invention, including an anisotropic conductive film described herein positioned between a member to be connected and connecting the first electrode and the second electrode.
이하, 본 발명에 대하여 보다 상세히 설명한다. 본 명세서에 기재되지 않은 내용은 본 발명의 기술 분야 또는 유사 분야에서 숙련된 자이면 충분히 인식하고 유추할 수 있는 것이므로 그 설명을 생략한다.Hereinafter, the present invention will be described in more detail. Content not described herein is omitted because it can be sufficiently recognized and inferred by those skilled in the art or similar fields of the present invention.
본 발명의 일 실시예는, 에폭시 수지 및 티올 화합물을 포함하는 제1층; 및 에폭시 수지 및 이온성 경화 촉매를 포함하는 제2층을 포함하고, 상기 제1층 또는 제2층 중 어느 하나의 층에 도전 입자가 추가로 포함되는, 이방 도전성 필름에 관한 것이다.One embodiment of the present invention, the first layer comprising an epoxy resin and a thiol compound; And a second layer comprising an epoxy resin and an ionic curing catalyst, and further comprising conductive particles in any one of the first layer and the second layer.
티올Thiol 화합물 compound
상기 티올 화합물로는 머캅토기(-SH)를 가진 화합물을 사용할 수 있다.As the thiol compound, a compound having a mercapto group (-SH) may be used.
상기 티올 화합물로는, 에틸 머캅탄, 프로필 머캅탄, 벤질 머캅탄, 페닐에틸 머캅탄, 4-프로모벤질 머캅탄, 1-페닐에틸 머캅탄, n-도데실 머캅탄, t-tert-부틸벤질 머캅탄, 4-플루오로벤질 머캅탄, 2,4,6-트리메틸벤질 머캅탄, (4-니트로벤질) 머캅탄, 2-트리플루오로메틸벤질 머캅탄, 3,4-디플루오로벤질 머캅탄, 3-플루오로벤질 머캅탄, 4-트리플루오로메틸벤질 머캅탄, 4-브로로모-2-플루오로벤질 머캅탄, 트리메틸올프로판트리스-3-머캅토프로피오네이트, 펜타에리트리톨테트라키스-3-머캅토프로피오네이트 및 디펜타에리트리톨헥사-3-머캅토프로피오네이트로 이루어진 군에서 선택된 단독 또는 이들의 혼합물을 사용할 수 있으나, 이에 제한되는 것은 아니다. 구체적으로, 상기 티올 화합물은 펜타에리트리톨테트라키스-3-머캅토프로피오네이트일 수 있다.Examples of the thiol compound include ethyl mercaptan, propyl mercaptan, benzyl mercaptan, phenylethyl mercaptan, 4-promobenzyl mercaptan, 1-phenylethyl mercaptan, n-dodecyl mercaptan and t-tert-butylbenzyl Mercaptan, 4-fluorobenzyl mercaptan, 2,4,6-trimethylbenzyl mercaptan, (4-nitrobenzyl) mercaptan, 2-trifluoromethylbenzyl mercaptan, 3,4-difluorobenzyl mer Captan, 3-fluorobenzyl mercaptan, 4-trifluoromethylbenzyl mercaptan, 4-bromo-2-fluorobenzyl mercaptan, trimethylolpropanetris-3-mercaptopropionate, pentaerythritol tetra It can be used alone or a mixture thereof selected from the group consisting of kiss-3-mercaptopropionate and dipentaerythritol hexa-3-mercaptopropionate, but is not limited thereto. Specifically, the thiol compound may be pentaerythritol tetrakis-3-mercaptopropionate.
저온 속경화형 이방 도전성 필름의 접속 온도 혹은 본압착 온도는 일반적으로 130℃ 내지 160℃이다. 본 발명은 티올 화합물을 사용함으로써 극저온 속경화를 달성할 수 있으며, 130℃ 미만의 온도, 구체적으로 80℃ 내지 120℃, 보다 구체적으로 90℃ 내지 115℃의 온도 범위에서 접속 혹은 본 압착이 가능할 수 있다.The connection temperature or the main crimping temperature of the low temperature fast curing type anisotropic conductive film is generally 130 ° C to 160 ° C. The present invention can achieve cryogenic fast curing by using a thiol compound, can be connected or the main compression in a temperature range of less than 130 ℃, specifically 80 ℃ to 120 ℃, more specifically 90 ℃ to 115 ℃ temperature range have.
상기 티올 화합물은 상기 제1층의 고형분 총 중량에 대하여 10중량% 내지 40중량%로 포함될 수 있고, 구체적으로는 15중량% 내지 35중량%로 포함될 수 있다. 상기 범위 내에서 극저온 속경화 및 우수한 접착력과 높은 접속 신뢰성을 나타낼 수 있다. The thiol compound may be included in an amount of 10 wt% to 40 wt%, specifically 15 wt% to 35 wt%, based on the total weight of solids of the first layer. It can exhibit the cryogenic fastening and excellent adhesion and high connection reliability within the above range.
이온성 경화 촉매Ionic curing catalyst
상기 이온성 경화 촉매는 양이온부와 음이온부를 갖는 경화 촉매로 티올 화합물과 반응하여 경화를 개시할 수 있는 화합물을 제한 없이 사용할 수 있다. 상기 이온성 경화 촉매의 예로는 이미다졸륨계, 피페리디늄계, 설포늄계, 암모늄계 및 포스포늄계 화합물로 이루어진 군에서 1종 이상 선택되는 양이온부와, O-, COO-, S-기 함유 화합물과 같은 음이온부의 착화합물일 수 있다. 구체적으로 상기 양이온부로는 암모늄계, 이미다졸륨계, 또는 포스포늄계 화합물을 사용할 수 있으며, 보다 구체적으로 포스포늄계 화합물을 사용할 수 있다.The ionic curing catalyst is a curing catalyst having a cation part and an anion part can be used without limitation a compound capable of reacting with the thiol compound to initiate curing. The ion Examples of curing catalysts include imidazole ryumgye, piperidinyl nyumgye, sulfo nyumgye, ammonium and phosphonium and the cation part is at least one selected from the group consisting of nyumgye compounds, O -, COO -, S - group-containing compound It may be a complex compound of an anion moiety such as. Specifically, as the cationic portion, an ammonium-based, imidazolium-based, or phosphonium-based compound may be used, and more specifically, a phosphonium-based compound may be used.
상기 이미다졸륨계 화합물의 예로는 1-에틸-3-메틸이미다졸륨, 1-부틸-3-메틸이미다졸륨, 1-n-부틸-3-메틸이미다졸륨 등을 들 수 있고, 피페리디늄계 화합물의 예로는 에틸메틸피페리디늄, 폴리-N,N'-디메틸-3,5-메틸렌피페리디늄 등을 들 수 있으며, 상기 설포늄계 화합물의 예로는 지방족 설포늄, 방향족 설포늄 등을 들 수 있다.Examples of the imidazolium-based compound include 1-ethyl-3-methylimidazolium, 1-butyl-3-methylimidazolium, 1-n-butyl-3-methylimidazolium, and the like. Examples of the nium compound include ethyl methyl piperidinium, poly-N, N'-dimethyl-3,5-methylene piperidinium, and the like. Examples of the sulfonium compound include aliphatic sulfonium and aromatic sulfonium. Can be mentioned.
또한, 상기 암모늄계 화합물의 예로는 디메틸디알킬암모늄, 테트라부틸암모늄, 테트라에틸암모늄, 테트라메틸암모늄, 트리에틸벤질암모늄 등이 있다.In addition, examples of the ammonium-based compound include dimethyldialkylammonium, tetrabutylammonium, tetraethylammonium, tetramethylammonium, triethylbenzylammonium and the like.
상기 포스포늄계 화합물의 예로는 트리부틸헥실포스포늄, 트리프로필헥실포스포늄, 트리부틸메틸포스포늄, 트리부틸펜틸포스포늄, 트리부틸헵틸포스포늄, 트리부틸옥틸포스포늄, 트리부틸노닐포스포늄, 트리부틸데실포스포늄, 트리부틸운데실포스포늄, 트리부틸도데실포스포늄, 트리부틸테트라데실포스포늄 등을 들 수 있다.Examples of the phosphonium-based compound include tributylhexylphosphonium, tripropylhexylphosphonium, tributylmethylphosphonium, tributylpentylphosphonium, tributylheptylphosphonium, tributyloctylphosphonium, tributylnonylphosphonium, Tributyldecyl phosphonium, tributyl undecyl phosphonium, tributyl dodecyl phosphonium, tributyl tetradecyl phosphonium, etc. are mentioned.
상기 음이온부 성분으로는 상기 양이온부와 착화합물을 형성할 수 있는 것을 사용할 수 있으며, 예를 들어 O-, COO-, S- 와 같은 작용기를 가진 화합물을 사용할 수 있다. 상기 COO-기를 가진 음이온 화합물의 예로는, 아세테이트류 또는 살리실레이트류를 들 수 있고, 상기 O-기를 갖는 음이온 화합물의 예로는 아미노페놀, 페닐페놀, 나프톨 또는 크레졸의 OH기가 O-인 화합물을 들 수 있다. 구체적으로 페닐페놀의 OH기가 O-인 화합물을 사용할 수 있으며, 더욱 더 구체적으로는 2-페닐페놀, 또는 2,6-디페닐페놀의 OH기가 각각 O-인 화합물을 사용할 수 있다.As the anion moiety component, one capable of forming a complex compound with the cation moiety may be used. For example, O , COO , Compounds having a functional group such as S can be used. Examples of the anionic compound having the COO - group include acetates or salicylates, and examples of the anionic compound having the O - group include compounds having an OH group O - of aminophenol, phenylphenol, naphthol or cresol. Can be mentioned. Specifically, a compound in which the OH group of phenylphenol is O may be used, and more specifically, a compound in which the OH group of 2-phenylphenol or 2,6-diphenylphenol is each O may be used.
상기 S-기를 갖는 음이온 화합물의 예로는 설파티아졸의 SH기가 S-인 화합물 등이 있다. 일 예에서, 테트라부틸암모늄 2-페닐페놀, 테트라부틸암모늄 2,6-디페닐페놀, 트리부틸헥실포스포늄 2,6-디페닐페놀 등을 사용할 수 있다.Examples of the anionic compound having an S group include compounds in which the SH group of sulfatiazole is S . In one example, tetrabutylammonium 2-phenylphenol, tetrabutylammonium 2,6-diphenylphenol, tributylhexylphosphonium 2,6-diphenylphenol and the like can be used.
상기 양이온부 및 음이온부의 착화합물인 이온성 경화 촉매는, 양이온을 발생하여 에폭시 수지의 개환 반응을 촉진하여 경화 반응을 진행시키는 다른 경화 촉매와는 달리, 에폭시 수지와 반응하지 않고 티올 화합물에 의한 에폭시 수지의 경화 반응을 촉진하는 역할을 할 수 있다. 상기 이온성 경화 촉매와 티올 화합물을 별도의 층으로 둠으로써 저장 안정성을 확보함과 동시에 티올 화합물의 빠른 경화 반응을 이용하여 극저온 속경화를 달성할 수 있다.The ionic curing catalyst which is a complex compound of the cation part and the anion part, unlike other curing catalysts that generate cations to promote the ring-opening reaction of the epoxy resin and advance the curing reaction, does not react with the epoxy resin and does not react with the epoxy resin by the thiol compound. It can serve to promote the curing reaction of. By placing the ionic curing catalyst and the thiol compound in a separate layer, it is possible to secure storage stability and to achieve cryogenic fast curing by using a fast curing reaction of the thiol compound.
상기 이온성 경화 촉매는, 상기 제2층 조성의 고형분 총 중량에 대하여 1중량% 내지 20중량%로 포함될 수 있으며, 구체적으로 1중량% 내지 15중량%로 포함될 수 있다.The ionic curing catalyst may be included in an amount of 1% by weight to 20% by weight, and specifically 1% by weight to 15% by weight, based on the total weight of solids of the second layer composition.
에폭시 수지Epoxy resin
상기 제1층 및 제2층에 사용될 수 있는 에폭시 수지는 특별히 제한되지 아니하며 당해 기술분야에서 통상적으로 사용하는 에폭시 수지를 사용할 수 있다. 일 예에서, 제1층과 제2층의 에폭시 수지는 각각 동일하거나 상이할 수 있다.The epoxy resin that can be used in the first layer and the second layer is not particularly limited and may be an epoxy resin commonly used in the art. In one example, the epoxy resins of the first and second layers may each be the same or different.
상기 에폭시 수지의 예로, 비스페놀 A형 에폭시 수지, 비스페놀 A형 에폭시 아크릴레이트 수지, 비스페놀 F형 에폭시 수지 등의 비스페놀계 에폭시 화합물; 폴리글리시딜 에테르 에폭시 수지, 폴리글리시딜 에스테르 에폭시 수지, 나프탈렌 에폭시 수지 등의 방향족 에폭시 화합물; 지환식 에폭시 화합물; 크레졸 노볼락형 에폭시 수지, 페놀 노볼락형 에폭시 수지 등의 노볼락형 에폭시 화합물; 글리시딜 아민계 에폭시 화합물; 글리시딜 에스테르계 에폭시 화합물; 비페닐 디글리시딜 에테르 에폭시 화합물 등을 들 수 있다. 구체적으로 에폭시 수지는 비스페놀 F형 에폭시 수지, 프로필렌 옥사이드계 에폭시 수지 또는 나프탈렌 에폭시 수지일 수 있다. 상기 에폭시 수지의 에폭시 당량은 300 g/eq 이하, 구체적으로는 100 내지 250 g/eq 의 범위일 수 있다.Examples of the epoxy resin include bisphenol epoxy compounds such as bisphenol A epoxy resin, bisphenol A epoxy acrylate resin, and bisphenol F epoxy resin; Aromatic epoxy compounds such as polyglycidyl ether epoxy resins, polyglycidyl ester epoxy resins and naphthalene epoxy resins; Alicyclic epoxy compounds; Novolak-type epoxy compounds, such as a cresol novolak-type epoxy resin and a phenol novolak-type epoxy resin; Glycidyl amine epoxy compounds; Glycidyl ester epoxy compounds; And biphenyl diglycidyl ether epoxy compounds. Specifically, the epoxy resin may be a bisphenol F type epoxy resin, a propylene oxide epoxy resin, or a naphthalene epoxy resin. The epoxy equivalent of the epoxy resin may be in the range of 300 g / eq or less, specifically 100 to 250 g / eq.
상기 에폭시 수지의 함량은, 제1층 또는 제2층의 고형분 총 중량에 대하여 각각 10중량% 내지 40중량%로 포함될 수 있고, 구체적으로 15중량% 내지 35중량%로 포함될 수 있다. 상기 범위 내에서, 접착력, 외관 등의 물성이 우수하며 신뢰성 후 안정적일 수 있다.The epoxy resin may be included in an amount of 10 wt% to 40 wt%, and specifically 15 wt% to 35 wt%, based on the total weight of solids of the first layer or the second layer. Within this range, the physical properties such as adhesion, appearance, etc. may be excellent and stable after reliability.
도전 입자Conductive particles
상기 도전 입자는 특별히 제한되지 아니하며 당해 기술분야에서 통상적으로 사용하는 도전 입자를 사용할 수 있다. 상기 도전 입자의 비제한적인 예로는 Au, Ag, Ni, Cu, 땜납 등을 포함하는 금속 입자; 탄소; 폴리에틸렌, 폴리프로필렌, 폴리에스테르, 폴리스타이렌, 폴리비닐알코올 등을 포함하는 수지 및 그 변성 수지를 입자로 하여 Au, Ag, Ni 등을 포함하는 금속으로 도금 코팅한 입자; 그 위에 절연 입자를 추가로 코팅한 절연화 처리된 도전 입자 등을 들 수 있다. 상기 도전 입자의 크기는, 적용되는 회로의 피치(pitch)에 따라, 예를 들어 1㎛ 내지 20㎛ 범위, 구체적으로 1㎛ 내지 10㎛의 범위일 수 있다.The conductive particles are not particularly limited and may be used conductive particles commonly used in the art. Non-limiting examples of the conductive particles include metal particles including Au, Ag, Ni, Cu, solder and the like; carbon; Particles coated with a metal containing Au, Ag, Ni, etc., using resins containing polyethylene, polypropylene, polyester, polystyrene, polyvinyl alcohol, and the like, and modified resins thereof as particles; Insulated electroconductive particle etc. which coat | covered the insulating particle further on it are mentioned. The size of the conductive particles may be, for example, in the range of 1 μm to 20 μm, specifically 1 μm to 10 μm, depending on the pitch of the circuit applied.
상기 도전 입자는 제1층 또는 제2층 중 어느 하나에 포함될 수 있다. 일 예에서 도전 입자는 이온성 경화 촉매를 포함하는 제2층에 포함될 수 있다. 티올 화합물은 점도가 낮은 경향이 있으므로 도전 입자의 유동성 제어 측면에서 도전 입자와 이온성 경화 촉매를 동일한 층에 포함하는 것이 좋을 수 있다.The conductive particles may be included in either the first layer or the second layer. In one example, the conductive particles may be included in the second layer including the ionic curing catalyst. Since the thiol compound tends to have a low viscosity, it may be preferable to include the conductive particles and the ionic curing catalyst in the same layer in view of the fluidity control of the conductive particles.
상기 도전 입자는 제1층 또는 제2층의 고형분 총 중량에 대하여 1중량% 내지 35중량%로 포함될 수 있으며, 구체적으로는 1중량% 내지 30중량%로 포함될 수 있다. 상기 범위에서 도전 입자가 단자 간에 용이하게 압착되어 안정적인 접속 신뢰성을 확보할 수 있으며, 통전성 향상으로 접속 저항을 감소시킬 수 있다.The conductive particles may be included in an amount of 1% by weight to 35% by weight, and specifically 1% by weight to 30% by weight, based on the total weight of solids of the first layer or the second layer. In the above range, the conductive particles can be easily pressed between the terminals to ensure stable connection reliability, and the connection resistance can be reduced by improving the conductance.
바인더 수지Binder resin
상기 제1층 혹은 상기 제2층은, 각각 바인더 수지를 추가로 포함할 수 있다. 상기 바인더 수지의 비제한적인 예로는 올레핀계 수지, 부티디엔계 수지, 에틸렌-비닐아세테이트 공중합체, 폴리이미드 수지, 폴리아미드 수지, 페녹시 수지, 폴리메타크릴레이트 수지, 폴리아크릴레이트 수지, 폴리우레탄 수지, 폴리에스테르 수지, 폴리에스테르우레탄 수지, 폴리비닐 부티랄 수지, 스타이렌-부티렌-스타이렌(SBS) 수지 및 에폭시 변성체, 스타이렌-에틸렌-부틸렌-스타이렌(SEBS) 수지 및 그 변성체, 또는 아크릴로니트릴 부타디엔 고무(NBR) 및 그 수소화체 등을 들 수 있다. 이들은 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다. 구체적으로, 상기 바인더 수지는 페녹시 수지를 사용할 수 있다.Each of the first layer or the second layer may further include a binder resin. Non-limiting examples of the binder resin is an olefin resin, butadiene resin, ethylene-vinylacetate copolymer, polyimide resin, polyamide resin, phenoxy resin, polymethacrylate resin, polyacrylate resin, polyurethane Resins, polyester resins, polyester urethane resins, polyvinyl butyral resins, styrene-butyrene-styrene (SBS) resins and epoxy modified materials, styrene-ethylene-butylene-styrene (SEBS) resins and their A modified body or an acrylonitrile butadiene rubber (NBR), its hydrogenated body, etc. are mentioned. These can be used individually or in mixture of 2 or more types. Specifically, the binder resin may use a phenoxy resin.
상기 바인더 수지는 제1층 또는 제2층의 고형분 총 중량에 대하여 10중량% 내지 60중량%로 포함될 수 있고, 구체적으로는 25중량% 내지 55중량%로 포함될 수 있다. 상기 범위에서 이방 도전성 필름용 조성물의 흐름성 및 접착력이 향상될 수 있다.The binder resin may be included in 10% by weight to 60% by weight relative to the total weight of solids of the first layer or the second layer, specifically, may be included in 25% by weight to 55% by weight. In the above range, the flowability and adhesion of the composition for an anisotropic conductive film can be improved.
무기 입자Inorganic particles
상기 이방 도전성 필름은, 상기 제1층, 및 제2층 중 어느 하나 이상의 층에 무기 입자를 추가로 포함할 수 있다. 무기 입자를 추가로 포함함으로써, 이방 도전성 필름에 인식성을 부여하고 도전 입자 간의 쇼트를 방지할 수 있다.The anisotropic conductive film may further include inorganic particles in any one or more layers of the first layer and the second layer. By including an inorganic particle further, recognition property can be provided to an anisotropic conductive film and the short between electroconductive particles can be prevented.
상기 무기 입자의 비제한적인 예로, 실리카(silica, SiO2), Al2O3, TiO2, ZnO, MgO, ZrO2, PbO, Bi2O3, MoO3, V2O5, Nb2O5, Ta2O5, WO3 또는 In2O3 등을 들 수 있다. 구체적으로, 상기 무기 입자는 실리카일 수 있다. 상기 실리카는 졸겔법, 침전법 등 액상법에 의한 실리카, 화염산화(flame oxidation)법 등 기상법에 의해 생성된 실리카일 수 있으며, 실리카겔을 미분쇄한 비분말 실리카를 사용할 수도 있고, 건식 실리카(fumed silica), 용융 실리카(fused silica)를 사용할 수도 있으며 그 형상은 구형, 파쇄형, 에지리스(edgeless)형 등일 수 있으며, 단독 또는 2종 이상 혼합되어 사용할 수 있다.Non-limiting examples of the inorganic particles, silica (Si, SiO 2 ), Al 2 O 3 , TiO 2 , ZnO, MgO, ZrO 2 , PbO, Bi 2 O 3 , MoO 3 , V 2 O 5 , Nb 2 O 5 , Ta 2 O 5 , WO 3 or In 2 O 3 . Specifically, the inorganic particles may be silica. The silica may be a silica produced by a liquid phase method, such as a sol gel method, a precipitation method, or a gas phase method such as flame oxidation, a non-pulverized silica obtained by pulverizing silica gel, or fumed silica. ), Fused silica may be used, and the shape may be spherical, crushed, edgeless, or the like, and may be used alone or in combination of two or more thereof.
상기 무기 입자는 제1층 또는 제2층의 고형분 총 중량에 대하여 5중량% 내지 30중량%로 포함될 수 있으며, 구체적으로 10중량% 내지 25중량%로 포함될 수 있다. 상기 범위에서 도전 입자의 스페이스부로의 유출을 막는 효과가 뛰어날 수 있다.The inorganic particles may be included in an amount of 5 wt% to 30 wt%, and specifically 10 wt% to 25 wt%, based on the total weight of solids of the first layer or the second layer. It is excellent in the effect which prevents the outflow of the electrically-conductive particle to the space part in the said range.
기타 첨가제Other additives
또한, 본 발명의 이방 도전성 필름은 기본 물성을 저해하지 않으면서 부가적인 물성을 제공하기 위해, 상기 제1층 혹은 상기 제2층에 중합방지제, 산화방지제, 열안정제 등의 첨가제를 추가로 포함할 수 있다. 구체적으로는 상기 제2층에 첨가제를 추가로 포함할 수 있다. 첨가제는 특별히 제한되지 않지만, 제2층의 고형분 총 중량에 대하여 0.01중량% 내지 10중량%로 포함될 수 있다.In addition, the anisotropic conductive film of the present invention may further include additives such as polymerization inhibitors, antioxidants, heat stabilizers, etc. in the first layer or the second layer in order to provide additional physical properties without impairing the basic physical properties. Can be. Specifically, an additive may be further included in the second layer. The additive is not particularly limited, but may be included in an amount of 0.01% by weight to 10% by weight based on the total weight of solids of the second layer.
비제한적인 예로, 중합방지제는 하이드로퀴논, 하이드로퀴논 모노메틸에테르, p-벤조퀴논, 페노티아진 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있다. 또한 산화방지제는 페놀릭계 또는 하이드록시 신나메이트계 물질 등을 사용할 수 있으며, 구체적으로 테트라키스-(메틸렌-(3,5-디-t-부틸-4-하이드록신나메이트)메탄, 3,5-비스(1,1-디메틸에틸)-4-하이드록시 벤젠 프로판산 티올 디-2,1-에탄다일 에스테르 등을 사용할 수 있다.As a non-limiting example, the anti-polymerization agent can be selected from the group consisting of hydroquinone, hydroquinone monomethyl ether, p-benzoquinone, phenothiazine and mixtures thereof. In addition, the antioxidant may be a phenolic or hydroxy cinnamate-based material, and specifically, tetrakis- (methylene- (3,5-di-t-butyl-4-hydroxycinnamate) methane, 3,5 -Bis (1,1-dimethylethyl) -4-hydroxy benzene propanoic acid thiol di-2,1-ethanediyl ester and the like can be used.
이방 도전성 필름의 제조방법Manufacturing method of anisotropic conductive film
본 발명의 실시예들에 따른 이방 도전성 필름을 형성하는 데에는 특별한 장치나 설비가 필요하지 않다. 예를 들면, 용매에 바인더 수지, 에폭시 수지 및 티올 화합물을 배합하여 제1층 조성물을 제조하고, 이를 이형 필름 위에 일정한 두께, 예를 들면 1㎛ 내지 50㎛의 두께로 도포한 다음 일정 시간 건조시켜 용매를 휘발시킴으로써 제1층 필름을 제조할 수 있다. 또한, 용매에 바인더 수지, 에폭시 수지, 이온성 경화 촉매, 및 도전 입자를 배합하여 제2층 조성물을 제조하고, 제1층 조성물과 같은 방식으로 건조시켜 제2층 필름을 제조할 수 있다.No special apparatus or equipment is required to form the anisotropic conductive film according to embodiments of the present invention. For example, a binder resin, an epoxy resin, and a thiol compound are combined in a solvent to prepare a first layer composition, which is coated on a release film to a certain thickness, for example, 1 μm to 50 μm, and then dried for a certain time. The 1st layer film can be manufactured by volatilizing a solvent. In addition, a binder resin, an epoxy resin, an ionic curing catalyst, and conductive particles may be blended in a solvent to prepare a second layer composition, and dried in the same manner as the first layer composition to prepare a second layer film.
상기 제조된 제1층 및 제2층 필름을 적층하고 라미네이트하여 이방 도전성 필름을 얻을 수 있다.The anisotropic conductive film may be obtained by laminating and laminating the prepared first layer and the second layer film.
상기 이방 도전성 필름은, 티올 화합물을 포함하는 제1층이 이온성 경화 촉매를 포함하는 제2층과 접촉되었을 때 비로소 경화가 개시되므로, 상온, 즉 25℃에서 장시간 방치하더라도 경화가 진행되지 않아 보관 안정성이 우수한 특징이 있다.Since the curing of the anisotropic conductive film is only started when the first layer containing the thiol compound is in contact with the second layer containing the ionic curing catalyst, the curing does not proceed even if left at room temperature, that is, 25 ° C. for a long time. It is characterized by excellent stability.
다른 실시예에서, 이방 도전성 필름은 에폭시 수지 및 티올 화합물을 포함하는 제1층 및 에폭시 수지, 양이온 경화 촉매 및 도전 입자를 포함하는 제2층이 적층된 2층형 구조이거나 상기 제1층에 상기 제2층이 적층되어 있고, 상기 제2층에 도전 입자를 포함하지 않는 제3층이 적층된 3층형 구조일 수도 있으며, 필요에 따라 제1층 및 제2층이 4층 이상으로 적층된 복층형 구조일 수도 있다. 상기 제3층은 상기 제1층과 같이 에폭시 수지 및 티올 화합물을 포함할 수 있다.In another embodiment, the anisotropic conductive film is a two-layered structure in which a first layer comprising an epoxy resin and a thiol compound and a second layer comprising an epoxy resin, a cationic curing catalyst, and conductive particles are laminated or the first layer is formed on the first layer. It may be a three-layered structure in which two layers are stacked and a third layer containing no conductive particles is laminated on the second layer, and a multilayer structure in which the first layer and the second layer are laminated in four or more layers as necessary. It may be. The third layer may include an epoxy resin and a thiol compound like the first layer.
각 층의 두께는 필요에 따라 다양하게 조절할 수 있으며, 구체적으로 도전 입자를 포함한 제2층 필름보다, 도전 입자를 포함하지 않은 제1층의 필름의 두께가 1.5배 내지 3배 정도 더 두꺼울 수 있다. 3층형 구조인 경우, 제1층 및 제2층보다 얇은 두께를 갖는 제3층을 제2층 위에 적층할 수 있다.The thickness of each layer may be variously adjusted as necessary, and specifically, the thickness of the film of the first layer not containing conductive particles may be about 1.5 to 3 times thicker than the second layer film including the conductive particles. . In the case of a three-layer structure, a third layer having a thickness thinner than that of the first layer and the second layer can be laminated on the second layer.
상기 용어 “적층”이란, 임의의 층의 일면에 다른 층이 형성되는 것을 의미하며, 코팅 또는 라미네이션과 혼용하여 사용할 수 있다. 제1층과 제2층을 별도로 포함하는 복층형 구조의 이방 도전성 필름의 경우, 층이 분리되어 있으므로 실리카 등의 무기 입자의 함량이 높더라도, 도전 입자의 압착을 방해하지 않기 때문에 도전성에 영향을 주지 않고, 이방 도전성 필름용 조성물의 흐름성에는 영향을 줄 수 있으므로, 유동성이 제어된 이방 도전성 필름을 제조할 수 있다.The term “lamination” means that another layer is formed on one surface of an arbitrary layer, and may be used in combination with a coating or lamination. In the case of an anisotropic conductive film having a multilayer structure including the first layer and the second layer separately, even if the content of inorganic particles such as silica is high because the layers are separated, it does not affect the conductivity because it does not interfere with the crimping of the conductive particles. Without affecting the flowability of the composition for an anisotropic conductive film, an anisotropic conductive film with controlled fluidity can be produced.
본 발명의 다른 실시예는, 에폭시 수지, 티올 화합물, 이온성 경화 촉매 및 도전 입자를 포함하고, 하기 식 1에 따른 발열량의 변화율이 10% 이하인, 이방 도전성 필름에 관한 것이다.Another embodiment of the present invention relates to an anisotropic conductive film containing an epoxy resin, a thiol compound, an ionic curing catalyst, and conductive particles, wherein the rate of change of the calorific value according to the following formula 1 is 10% or less.
[식 1][Equation 1]
발열량 변화율(%) = [(H0-H1)/H0]×100Calorific value change rate (%) = [(H 0- H 1 ) / H 0 ] × 100
상기 식 1에서, H0 는 이방 도전성 필름을 25℃에서 1일 방치 후에 측정한 DSC 상 발열량을 나타내고, H1은 상기 이방 도전성 필름을 25℃에서 7일 방치 후 측정한 DSC 상 발열량을 나타낸다.In the formula 1, H 0 represents the DSC the heat generation amount measuring the anisotropic conductive film at 25 ℃ 1 day left, H 1 represents the DSC the heat value of the anisotropic conductive film was measured at 25 ℃ and then allowed to stand 7 days.
상기 이방 도전성 필름은, 25℃에서 1일 경과 후의 발열량과 7일 경과 후의 발열량 변화율이 10% 이하일 수 있다. 구체적으로, 발열량 변화율이 7% 이하일 수 있으며, 보다 구체적으로 5% 이하일 수 있다. 상기 발열량 변화율이 10% 이하인 것은 이방 도전성 필름의 저장 안정성 혹은 보관 안정성의 개선과 관련이 있다. 상기 25℃, 1일 및 7일 경과 후의 발열량 변화율을 측정하는 비제한적인 예는 다음과 같다:In the anisotropic conductive film, the calorific value after 1 day and the calorific value change rate after 7 days may be 10% or less at 25 ° C. Specifically, the calorific value change rate may be 7% or less, and more specifically 5% or less. The change rate of the calorific value of 10% or less is related to the improvement of storage stability or storage stability of the anisotropic conductive film. Non-limiting examples of measuring the rate of change in calorific value after 25 ° C., 1 day and 7 days are as follows:
이방 도전성 필름을 1mg 분취하여 25℃에서 시차열량주사열량계, 예를 들어, TA社 Q20 model을 사용하여 10℃/1min, 25℃ 에서 1일 방치 후 초기 발열량을 측정(H0)하고, 이후 상기 필름을 25℃ 에서 7일 방치한 후 동일한 방법으로 발열량을 측정(H1)하여 이로부터 상기 식 1에 따른 변화율을 계산한다.1 mg aliquot of anisotropic conductive film was measured using a differential calorimetry scanning calorimeter at 25 ° C, for example, TA company Q20 model, the initial calorific value measured after 1 day at 10 ° C / 1 min, 25 ° C (H 0 ), and then After leaving the film at 25 ° C. for 7 days, the calorific value was measured in the same manner (H 1 ), and the rate of change according to Equation 1 was calculated therefrom.
상기 양태에 따른 이방 도전성 필름은, 제1층과 제2층을 포함하고, 상기 제1층은 에폭시 수지 및 티올 화합물을 포함하며, 상기 제2층은 에폭시 수지, 이온성 경화 촉매 및 도전 입자를 포함하는 것일 수 있다. 또한 상기 제1층 및 제2층 각각에 바인더 수지를 추가로 포함하는 것일 수 있다. 상기 에폭시 수지, 티올 화합물, 이온성 경화 촉매, 도전 입자 및 바인더 수지는 앞에서 언급한 것과 동일한 것을 사용할 수 있다.The anisotropic conductive film according to the above aspect comprises a first layer and a second layer, the first layer comprises an epoxy resin and a thiol compound, and the second layer comprises an epoxy resin, an ionic curing catalyst and conductive particles. It may be to include. In addition, each of the first layer and the second layer may further include a binder resin. The same epoxy resin, thiol compound, ionic curing catalyst, conductive particles, and binder resin can be used.
본 발명에 따른 이방 도전성 필름은 90℃ 내지 110℃, 1 내지 5초 및 5MPa 내지 70MPa로 본 압착시켰을 때 피접속부재와의 접착력이 10MPa 이상일 수 있다. 일 예에서, 접착력은 10MPa 이상 20MPa 이하일 수 있다. 접착력이 10MPa 미만인 이방 도전성 필름의 경우, 이를 이용한 디스플레이 장치의 장기간 사용이 어려워 수명이 단축되는 문제가 있다.The anisotropic conductive film according to the present invention may have an adhesive strength of 10 MPa or more when the pressure-sensitive adhesive is pressed at 90 ° C. to 110 ° C., 1 to 5 seconds, and 5 MPa to 70 MPa. In one example, the adhesion may be 10 MPa or more and 20 MPa or less. In the case of an anisotropic conductive film having an adhesive force of less than 10 MPa, there is a problem in that the display device using the same is difficult to use for a long time, thereby shortening the life.
본 발명에서 접착력의 측정 방법은 특별히 제한되지 아니하며 당해 기술 분야에서 통상적으로 사용하는 방법을 사용할 수 있다. 접착력 측정 방법의 비제한적인 예는 다음과 같다:In the present invention, the measuring method of the adhesive force is not particularly limited, and a method commonly used in the art may be used. Non-limiting examples of methods of measuring adhesion are as follows:
제조된 이방 도전성 필름을 제 1 피접속부재와 제 2 피접속부재 사이에 위치시키고 60℃, 1초, 1MPa로 가압착 및 90℃ 내지 110℃, 1 내지 5초 및 5MPa 내지 70 MPa의 조건으로 본 압착한 후 접속한다. 그 다음, 필름을 필강도(Peel Strength) 측정기(H5KT, Tinius Olsen社)를 이용하여 필 각도 90° 및 필 속도 50mm/min인 조건으로 접착력을 측정한다.The prepared anisotropic conductive film is placed between the first and second to-be-connected members and press-bonded at 60 ° C., 1 second, and 1 MPa and under conditions of 90 ° C. to 110 ° C., 1 to 5 seconds, and 5 MPa to 70 MPa. After crimping, connect. Next, the film is measured for adhesion using a peel strength meter (H5KT, Tinius Olsen, Inc.) at a peel angle of 90 ° and a peel rate of 50 mm / min.
또한 상기 이방 도전성 필름은, 하기 식 2에 따른 경화율이 70% 이상일 수 있다. 구체적으로, 80% 이상일 수 있다.In addition, the anisotropic conductive film, the curing rate according to the following formula 2 may be 70% or more. Specifically, it may be 80% or more.
[식 2][Equation 2]
경화율(%) = [H3/H2]×100Cure Rate (%) = [H 3 / H 2 ] × 100
상기 식 2에서, H2는 이방 도전성 필름을 DSC(열시차주사열량계, TA instruments, Q20)를 이용하여 질소 가스 분위기 하에서 10℃/min, -50℃ 내지 250℃ 온도 구간에서 곡선아래 면적으로 측정한 초기 발열량이고, H3은 상기 이방 도전성 필름을 100℃ 에서 5초간 방치한 후 동일한 방법으로 측정한 발열량을 나타낸다.In Equation 2, H 2 is an anisotropic conductive film is measured by the area under the curve at 10 ℃ / min, -50 ℃ to 250 ℃ temperature range using a DSC (thermodifferential scanning calorimeter, TA instruments, Q20) One initial heating value, H 3 represents the calorific value measured by the same method after leaving the anisotropic conductive film at 100 ℃ for 5 seconds.
또한 상기 이방 도전성 필름은 90℃ 내지 110℃, 1 내지 5초 및 5MPa 내지 70MPa로 본압착시켰을 때 접속 저항이 0.5Ω 이하일 수 있다. 상기 접속 저항 측정 방법의 비제한적인 예는 다음과 같다:In addition, the anisotropic conductive film may have a connection resistance of 0.5 Ω or less when the main compression is performed at 90 ° C to 110 ° C, 1 to 5 seconds, and 5 MPa to 70 MPa. Non-limiting examples of the connection resistance measurement method are as follows:
이방 도전성 필름을 제 1 피접속부재와 제 2 피접속부재 사이에 위치시키고 60℃, 1초, 1MPa로 가압착 및 90℃ 내지 110℃, 1 내지 5초 및 5MPa 내지 70MPa의 조건으로 본압착한 후 접속한다. 그 다음, 필름을 이용하여 몇 개의 시편을 준비하고, 이들을 4 단자 측정 방법으로 접속 저항을 측정(ASTM F43-64T 방법에 준함)하여 평균값을 계산한다.An anisotropic conductive film was placed between the first to-be-connected member and the second to-be-connected member and press-bonded at 60 ° C., 1 second, 1 MPa, and main compression under conditions of 90 ° C. to 110 ° C., 1 to 5 seconds, and 5 MPa to 70 MPa. Then connect. Next, several specimens are prepared using a film, and the average value is calculated by measuring the connection resistance (according to the ASTM F43-64T method) using the four-terminal measuring method.
본 발명의 또 다른 실시예는, 제1 전극을 함유하는 제1 피접속부재; 제2 전극을 함유하는 제2 피접속부재; 및 상기 제1 피접속부재와 상기 제2 피접속부재 사이에 위치하여 상기 제1 전극 및 상기 제2 전극을 접속시키는, 본 명세서에 따른 이방 도전성 필름에 의해 접속된 디스플레이 장치에 관한 것이다.Another embodiment of the present invention, the first to-be-connected member containing a first electrode; A second to-be-connected member containing a second electrode; And a display device connected between the first to-be-connected member and the second to-be-connected member to connect the first electrode and the second electrode by the anisotropic conductive film according to the present specification.
상기 제1 피접속부재는 예를 들어, COF(chip on film) 또는 fPCB(flexible printed circuit board)일 수 있고, 상기 제2 피접속부재는 예를 들어, 유리 패널, PCB(printed circuit board) 또는 fPCB(flexible printed circuit board)일 수 있다.The first to-be-connected member may be, for example, a chip on film (COF) or a flexible printed circuit board (fPCB), and the second to-be-connected member may be, for example, a glass panel, a printed circuit board (PCB) or It may be a flexible printed circuit board (fPCB).
도 1을 참조하여 디스플레이 장치(30)를 설명하면, 제1 전극(70)을 함유하는 제1 접속부재(50)와, 제2 전극(80)을 포함하는 제2 피접속부재(60)는, 상기 제1 피접속부재와 상기 제2 피접속부재 사이에 위치하여 상기 제1 전극 및 상기 제2 전극을 접속시키는 본원에 기재된 도전 입자(3)을 포함하는 이방 도전성 필름(10)을 통해 상호 접착될 수 있다.Referring to FIG. 1, the display device 30 will be described. The first connected member 50 including the first electrode 70 and the second connected member 60 including the second electrode 80 And mutually via an anisotropic conductive film 10 including conductive particles 3 described herein, which are located between the first to-be-connected member and the second to-be-connected member to connect the first electrode and the second electrode. Can be glued.
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.Hereinafter, the configuration and operation of the present invention through the preferred embodiment of the present invention will be described in more detail. However, this is presented as a preferred example of the present invention and in no sense can be construed as limiting the present invention.
여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략하기로 한다.Details that are not described herein will be omitted since those skilled in the art can sufficiently infer technically.
실시예Example
도전층Conductive layer 제조예Production Example 1 One
도전층 조성물의 고형 중량을 기준으로, 필름 형성을 위한 매트릭스 역할의 바인더 수지부로는 페녹시 수지(PKHH, Inchemrez사, 미국) 30중량%, 경화 반응이 수반되는 경화부로서는 나프탈렌 에폭시 수지(EPICLON HP 4032D, DIC사, 에폭시 당량: 136~148 g/eq) 30중량%, 양이온 중합 촉매 10중량%, 이방 전도성 필름에 도전 성능을 부여해주기 위한 필러로서 절연화 처리된 도전성 입자(AUL-704, 평균입경 4㎛, SEKISUI사, 일본) 30중량%를 혼합하고 페녹시 수지와 동등한 양의 PGMEA를 사용하여 용해한 후 도전층 조성물을 제조하였다.Based on the solid weight of the conductive layer composition, the binder resin portion serving as the matrix for forming the film is 30 wt% of Kupphenoxy resin (PKHH, Inchemrez, USA), and the naphthalene epoxy resin (EPICLON HP) as the curing portion accompanied by the curing reaction. 4032D, DIC Co., Epoxy Equivalent: 136 to 148 g / eq) 30 wt%, 10 wt% of cationic polymerization catalyst, electrically insulated conductive particles (AUL-704, average as filler for imparting conductive performance to anisotropic conductive films) A particle diameter of 4 µm, SEKISUI, Japan) 30% by weight was mixed and dissolved using PGMEA in an amount equivalent to that of a phenoxy resin to prepare a conductive layer composition.
상기 도전층 조성물을 이형필름 위에 도포한 후, 60℃ 건조기에서 5분간 용제를 휘발시켜 9㎛ 두께의 건조된 도전층을 얻었다.After apply | coating the said conductive layer composition on a release film, the solvent was volatilized for 5 minutes in the 60 degreeC dryer, and the dried conductive layer of 9 micrometers thickness was obtained.
비도전층Non-conductive layer 제조예Production Example 1One
비도전층 조성물의 고형 중량을 기준으로, 바인더 수지부로는 페녹시 수지(PKHH, Inchemrez사, 미국) 42중량%, 경화 반응이 수반되는 경화부로서는 나프탈렌 에폭시 수지(EPICLON HP 4032D, DIC사, 에폭시 당량: 136~148 g/eq ) 40중량%, 펜타에리트리톨테트라키스-3-머캅토프로피오네이트 18중량%를 혼합하고 페녹시 수지와 동등한 양의 PGMEA를 사용하여 용해한 후 비도전층 조성물을 제조하였다.Based on the solid weight of the non-conductive layer composition, the binder resin portion is 42% by weight of phenoxy resin (PKHH, Inchemrez, USA), and the naphthalene epoxy resin (EPICLON HP 4032D, DIC, epoxy equivalent) : 136 ~ 148 g / eq) 40% by weight, 18% by weight of pentaerythritol tetrakis-3-mercaptopropionate was mixed and dissolved using PGMEA equivalent to the phenoxy resin to prepare a non-conductive layer composition. .
상기 비도전층 조성물을 이형필름 위에 도포한 후, 60℃ 건조기에서 5분간 용제를 휘발시켜 펜타에리트리톨테트라키스-3-머캅토프로피오네이트를 포함한 두께 9 ㎛의 비도전층을 제조하였다.After applying the non-conductive layer composition on the release film, a solvent was volatilized for 5 minutes in a 60 ℃ dryer to prepare a non-conductive layer of 9 ㎛ thickness including pentaerythritol tetrakis-3-mercaptopropionate.
실시예Example  And 비교예Comparative example : 이방 도전성 필름의 제조 : Production of Anisotropic Conductive Film
실시예Example 1 One
도전층 제조예 1에서 양이온 중합 촉매로 테트라페닐포스포늄 2,6-디메틸 페놀을 사용하여 도전층을 제조하고, 상기 도전층에 비도전층 제조예 1에서 제조된 비도전층을 적층하고 라미네이트를 실시하여, 저온경화형 2층 구조를 갖는 실시예 1의 이방 도전성 필름을 제조하였다.In the conductive layer preparation example 1, a conductive layer was prepared using tetraphenylphosphonium 2,6-dimethyl phenol as the cationic polymerization catalyst, and the non-conductive layer prepared in the non-conductive layer preparation example 1 was laminated on the conductive layer and subjected to lamination. , The anisotropic conductive film of Example 1 having a low-temperature curing type two-layer structure was prepared.
실시예Example 2 2
실시예 1에 있어서, 양이온 중합 촉매로 테트라페닐포스포늄 2,6-디메틸 페놀 대신 테트라부틸암모늄 2-페닐페놀을 사용한 것을 제외하고는 실시예 1과 동일한 조건 및 방법으로 실시예 2의 이방 도전성 필름을 제조하였다.The anisotropic conductive film of Example 2 in Example 1, except that tetrabutylammonium 2-phenylphenol was used instead of tetraphenylphosphonium 2,6-dimethyl phenol as the cationic polymerization catalyst. Was prepared.
실시예Example 3 3
실시예 1에 있어서, 양이온 중합 촉매로 테트라페닐포스포늄 2,6-디메틸 페놀 대신 테트라페닐포스포늄 2-페닐페놀을 사용한 것을 제외하고는 실시예 1과 동일한 조건 및 방법으로 실시예 3의 이방 도전성 필름을 제조하였다.The anisotropic conductivity of Example 3 according to the same conditions and methods as in Example 1, except that tetraphenylphosphonium 2-phenylphenol was used instead of tetraphenylphosphonium 2,6-dimethyl phenol as the cationic polymerization catalyst. A film was prepared.
실시예Example 4 4
실시예 1에 있어서, 바인더 수지와 에폭시 수지의 중량비를 2:1에서 4:1로 조정한 것을 제외하고는 실시예 1과 동일한 조건 및 방법으로 실시예 4의 이방 도전성 필름을 제조하였다.In Example 1, the anisotropic conductive film of Example 4 was manufactured under the same conditions and methods as in Example 1, except that the weight ratio of the binder resin and the epoxy resin was adjusted from 2: 1 to 4: 1.
실시예Example 5 5
실시예 1에 있어서, 바인더 수지와 에폭시 수지의 중량비를 2:1에서 1:1로 조정한 것을 제외하고는 실시예 1과 동일한 조건 및 방법으로 실시예 5의 이방 도전성 필름을 제조하였다.In Example 1, the anisotropic conductive film of Example 5 was manufactured under the same conditions and methods as in Example 1, except that the weight ratio of the binder resin and the epoxy resin was adjusted from 2: 1 to 1: 1.
실시예Example 6 6
도전층 제조예 1에서 도전층의 두께를 6㎛으로 제조한 것을 제외하고는 동일한 방법으로 제조된 도전층 위에, 비도전층 제조예 1과 동일한 방법으로 제조된 비도전층을 적층하고, 상기 2층 구조의 도전층 아래에 3㎛ 두께로 제조한 것을 제외하고는 비도전층 제조예 1과 동일한 방법으로 제조된 비도전층을 다시 적층하고 라미네이트를 실시하여, 저온경화형 3층 구조를 갖는 실시예 6의 이방 도전성 필름을 제조하였다.The non-conductive layer prepared in the same manner as in the non-conductive layer Preparation Example 1 was laminated on the conductive layer manufactured by the same method except that the thickness of the conductive layer in the conductive layer preparation example 1 was 6 μm, and the two-layer structure The anisotropic conductivity of Example 6 having a low-temperature hardening type three-layer structure by laminating and laminating again the non-conductive layer prepared in the same manner as in the non-conductive layer Preparation Example 1, except that the conductive layer was manufactured to have a thickness of 3 μm. A film was prepared.
비교예Comparative example 1: 이방 도전성 필름의 제조 1: Manufacture of anisotropic conductive film
도전층 제조예 1에서 도전층 경화제로 이미다졸계 경화제인 HX3941HP (아사히카세이(주) 제조)를 양이온 중합 촉매 대신 첨가하고, 두께를 6㎛로 변경한 것을 제외하고는 도전층 제조예 1과 동일한 방법으로 도전층을 제조하고, 그 위에 비도전층 제조예 1에서 경화제로 HX3941HP를 펜타에리트리톨테트라키스-3-머캅토프로피오네이트 대신 첨가하고 두께를 12㎛로 변경한 것을 제외하고는 비도전층 제조예 1과 동일한 방법으로 제조된 비도전층을 적층하고 라미네이트를 실시하여 2층 구조를 갖는 비교예 1의 이방 도전성 필름을 제조하였다.In the conductive layer preparation example 1, HX3941HP (manufactured by Asahi Kasei Co., Ltd.), which is an imidazole-based curing agent, was added instead of the cationic polymerization catalyst as the conductive layer curing agent, and the thickness thereof was changed to 6 µm. A conductive layer was prepared by the method, except that HX3941HP was added instead of pentaerythritol tetrakis-3-mercaptopropionate as a curing agent in the non-conductive layer preparation example 1, and the thickness was changed to 12 µm. A non-conductive layer prepared in the same manner as in Example 1 was laminated and laminated to prepare an anisotropic conductive film of Comparative Example 1 having a two-layer structure.
비교예Comparative example 2: 이방 도전성 필름의 제조 2: Preparation of Anisotropic Conductive Film
이방 도전성 필름의 고형 중량을 기준으로, 바인더 수지부로는 페녹시 수지(PKHH, Inchemrez사, 미국) 25중량%, 경화 반응이 수반되는 경화부로서는 나프탈렌 에폭시 수지(EPICLON HP 4032D, DIC사, 에폭시 당량: 136~148) 25중량%, 펜타에리트리톨테트라키스-3-머캅토프로피오네이트 10중량%, 테트라페닐포스포늄 2,6-디메틸 페놀 10중량%, 이방 전도성 필름에 도전 성능을 부여해주기 위한 필러로서 절연화 처리된 도전성 입자(AUL-704, 평균입경 4um, SEKISUI사, 일본) 30중량%를 혼합하고 페녹시 수지와 동등한 양의 PGMEA를 사용하여 용해한 후 18㎛의 두께로 코팅한 것을 제외하고는 도전층 제조예 1과 동일한 조건으로 제조하여 단층 구조의 이방 도전성 필름을 제조하였다.Based on the solid weight of the anisotropic conductive film, the binder resin portion is 25 wt% of phenoxy resin (PKHH, Inchemrez, USA), and the naphthalene epoxy resin (EPICLON HP 4032D, DIC, epoxy equivalent) : 136 ~ 148) 25% by weight, 10% by weight of pentaerythritol tetrakis-3-mercaptopropionate, 10% by weight of tetraphenylphosphonium 2,6-dimethyl phenol, for imparting conductive performance to the anisotropic conductive film As a filler, 30% by weight of insulated conductive particles (AUL-704, average particle size of 4um, SEKISUI, Japan) were mixed and dissolved using PGMEA in an amount equivalent to phenoxy resin, and then coated with a thickness of 18 μm. Then, it manufactured on the same conditions as the conductive layer manufacture example 1, and produced the anisotropic conductive film of single layer structure.
실험예Experimental Example : 이방 도전성 필름의 물성 평가 : Evaluation of Physical Properties of Anisotropic Conductive Film
상기 제조된 실시예 1 내지 6 및 비교예 1 내지 2의 이방 도전성 필름에 대해 하기 조건 및 방법으로 저장안정성, 경화율, 저온 경화성, 가압착성과 본딩 후 압흔 균일성, 접착력 및 접속저항을 측정하고 그 결과를 아래 표 1에 나타내었다. For the anisotropic conductive films of Examples 1 to 6 and Comparative Examples 1 to 2 prepared above, storage stability, curing rate, low temperature curability, pressure adhesion and indentation after bonding were measured, uniformity and adhesion were measured. The results are shown in Table 1 below.
저장 안정성Storage stability
저장안정성은 이방 도전성 필름의 25℃, 1일에서의 발열량과 7일에서의 발열량 변화율로 측정되었으며, 25℃에서 1일 및 25℃에서 7일 방치한 각각의 실시예 및 비교예에서 제조된 이방 도전성 필름을 1mg 분취하고 DSC(열시차주사열량계, TA instruments, Q20)를 이용하여 25℃, 10℃/1min, -50℃ 내지 250℃의 범위에서 25℃에서 1일 방치 후 발열량(H0)과 25℃에서 7일 방치한 이후의 발열량(H1)을 측정하여 발열량의 변화율을 하기 식 1에 따라 산출하였다.The storage stability was measured by the rate of change of the calorific value at 25 ° C., 1 day and the calorific value at 7 day of the anisotropic conductive film, and the anisotropic prepared in each of Examples and Comparative Examples, which were left at 25 ° C. for 1 day and at 25 ° C. for 7 days. A 1 mg aliquot of the conductive film was placed in a range of 25 ° C., 10 ° C./1 min, -50 ° C. to 250 ° C. for 1 day using DSC (thermodifferential scanning calorimeter, TA instruments, Q20), and then a calorific value (H 0 ) And the calorific value (H 1 ) after leaving for 7 days at 25 ° C. was calculated according to Equation 1 below.
[식 1][Equation 1]
발열량 변화율(%) = [(H0-H1)/H0]×100Calorific value change rate (%) = [(H 0- H 1 ) / H 0 ] × 100
상기 식 1에서, H0 는 이방 도전성 필름을 25℃에서 1일 방치 후에 측정한 DSC 상 발열량을 나타내고, H1은 상기 이방 도전성 필름을 25℃에서 7일 방치 후 측정한 DSC 상 발열량을 나타낸다.In the formula 1, H 0 represents the DSC the heat generation amount measuring the anisotropic conductive film at 25 ℃ 1 day left, H 1 represents the DSC the heat value of the anisotropic conductive film was measured at 25 ℃ and then allowed to stand 7 days.
5% 이하: ●, 5% 초과 10% 이하: ◎, 10% 초과 15% 이하: ○, 15% 초과: △5% or less: ●, more than 5% and less than 10%: ◎, more than 10% and less than 15%: ○, more than 15%: △
경화율 Hardening rate
실시예 및 비교예에서 제조된 이방 도전성 필름을 DSC(열시차주사열량계, TA instruments, Q20)를 이용하여 질소 가스 분위기 하에서 10℃/min, -50℃ 내지 250℃ 온도 구간에서의 초기 발열량을 곡선아래 면적으로 측정(H2)하고, 이후 상기 필름을 100℃에서 5초간 방치한 후 동일한 방법으로 발열량을 측정(H3)하여 이로부터 하기 식 2에 따른 변화율을 계산하여 그 결과를 아래 표 1에 나타내었다. The anisotropic conductive films prepared in Examples and Comparative Examples were subjected to DSC (thermal differential scanning calorimeter, TA instruments, Q20) using a nitrogen gas atmosphere under nitrogen gas atmosphere at 10 ℃ / min, -50 ℃ to 250 ℃ temperature interval curve Measured by the bottom area (H 2 ), and then leaving the film at 100 ℃ for 5 seconds and then measured the calorific value in the same way (H 3 ) to calculate the rate of change according to Equation 2 from the results below Table 1 Shown in
[식 2][Equation 2]
경화율(%) = [H3/H2]×100Cure Rate (%) = [H 3 / H 2 ] × 100
● : 80% 이상 ●: 80% or more
◎ : 70% 이상 80% 미만◎: 70% or more and less than 80%
○ : 60% 이상 70% 미만○: 60% or more but less than 70%
△ : 60% 미만 △: less than 60%
저온 경화성Low temperature curability
상기 실시예 및 비교예에서 제조한 이방 도전성 필름을 5000Å의 두께를 갖는 인듐틴옥사이드 회로가 있는 유리 기판(제조원: 네오뷰 코오롱)에 놓고 각각 60℃에서, 1초 동안 1MPa로 가압착하였다. 상기 가압착 후, 이형 필름을 제거하고 범프면적 1430㎛인 드라이버 IC 칩(제조원: 삼성 LSI)을 올린 뒤 이를 100℃, 130℃ 및 150℃에서 각각 5초, 50MPa의 조건으로 가압, 가열하여 본압착한 후 칩이 흔들림 없이 붙어있는 경우를 경화 가능(○)으로, 칩이 떨어지거나 밀리는 경우를 경화 불가능(×)으로 평가하여 경화 가능 여부를 판단하였다.The anisotropic conductive films prepared in Examples and Comparative Examples were placed on a glass substrate (manufactured by Neoview Kolon) with an indium tin oxide circuit having a thickness of 5000 kPa, and pressed at 1 MPa for 1 second at 60 ° C. After the pressure bonding, the release film was removed and the driver IC chip (manufacturer: Samsung LSI) having a bump area of 1430 μm was placed thereon, and then pressurized and heated at 100 ° C., 130 ° C. and 150 ° C. for 5 seconds and 50 MPa, respectively. After pressing, the case where the chip is stuck without shaking is evaluated as hardenable (○) and the case of chip falling or being pushed as non-hardenable (×) to determine whether it is hardenable.
가압착성과Adhesion 본딩Bonding  after 압흔Indentation 균일성  Uniformity
상기 실시예 및 비교예에서 제조한 이방 도전성 필름을 5000Å의 두께를 갖는 인듐틴옥사이드 회로가 있는 유리 기판(제조원: 네오뷰 코오롱)에 놓고 각각 60℃에서, 1초 동안 1MPa로 가압착하였다. 상기 가압착 후, 이형 필름을 제거하고 현미경(제조사: 올림푸스)으로 단자와 단자간의 버블 유무를 관찰하였다. 압착 부위 중 버블형성의 면적비율이 3개의 관찰 위치에 대해 0% 내지 5% 이하일 때 매우 양호 이미지(○), 5% 초과 내지 10% 미만일 때 양호 이미지(△), 10% 이상일 때는 불량 이미지(×)로 평가하였다. The anisotropic conductive films prepared in Examples and Comparative Examples were placed on a glass substrate (manufactured by Neoview Kolon) with an indium tin oxide circuit having a thickness of 5000 kPa, and pressed at 1 MPa for 1 second at 60 ° C. After the pressing, the release film was removed and the presence or absence of bubbles between the terminals was observed under a microscope (manufacturer: Olympus). Very good image (○) when the area ratio of bubble formation in the compressed areas is 0% to 5% or less for three observation positions, good image (△) when more than 5% to less than 10%, and bad image (at 10% or more) X).
본딩 후 압흔 균일성 평가는, 상기 가압착된 기판에 범프면적 1430㎛인 드라이버 IC 칩(제조원: 삼성 LSI)을 올린 샘플을 100℃에서 5초, 50MPa의 조건으로 가압, 가열하여 본압착한 후 압흔의 균일성을 육안 관찰하여 판별하였다. 구체적으로, 드라이버 IC 칩의 양쪽 측면부의 압흔이 중앙 부분의 압흔과 동등한 정도로 선명할 때 이를 압흔이 균일하다고 판단하여 양호(○)로, 드라이버 IC 칩의 양쪽 측면부의 압흔이 중앙 부분의 압흔에 비해 흐리거나 불분명할 때 이를 불균일(×)로 평가하였다.After bonding, the indentation uniformity was evaluated by pressing and heating a sample on which the driver IC chip (Samsung LSI) having a bump area of 1430 µm was pressed on the press-bonded substrate under a condition of 50 MPa for 5 seconds at 100 ° C. The uniformity of the indentation was visually observed and determined. Specifically, when the indentations on both sides of the driver IC chip are clear to the same extent as the indents of the center part, the indentation is judged to be uniform and is good (○). When it was cloudy or unclear, it was evaluated as nonuniformity (×).
접착력Adhesion
상기 실시예 및 비교예에서 제조된 이방 도전성 필름을 5000Å의 두께를 갖는 인듐틴옥사이드 회로가 있는 유리 기판(제조원: 네오뷰 코오롱)에 놓고 각각 60℃에서, 1초 동안 1MPa로 가압착하였다. 상기 가압착 후, 이형 필름을 제거하고 범프면적 1430㎛인 드라이버 IC 칩(제조원: 삼성 LSI)을 올린 뒤 이를 100℃에서 5초, 50MPa의 조건으로 본압착하여 시편을 제조하고, 이를 Maximum load: 200kgf, Test speed : 100um/sec의 조건으로 필 강도 측정기(Bond tester Dage Series-4000)를 이용하여 각 시편당 총 3회 이상 측정하여 이들의 평균을 계산하였다. 측정된 접착력이 10MPa 이상을 (○)로, 5MPa 이상 10MPa 미만을 (△)로, 접착력 측정 불가를 (×)로 평가하였다.The anisotropic conductive films prepared in Examples and Comparative Examples were placed on a glass substrate (manufactured by Neoview Kolon) having an indium tin oxide circuit having a thickness of 5000 kPa, and pressed at 1 MPa for 1 second at 60 ° C. After the pressure bonding, the release film was removed and the driver IC chip (manufacturer: Samsung LSI) having a bump area of 1430 μm was placed thereon, and then, the resultant was press-bonded under conditions of 50 MPa for 5 seconds at 100 ° C., and the maximum load: 200kgf, Test speed: 100um / sec was measured by a peel strength tester (Bond tester Dage Series-4000) a total of three or more times for each specimen to calculate their average. The measured adhesive force evaluated 10 MPa or more as ((circle)), 5 MPa or more and less than 10 MPa as ((triangle | delta)), and the impossibility of adhesive force measurement as (x).
접속저항Connection resistance
상기 실시예 및 비교예에서 제조된 이방 도전성 필름을 5000Å의 두께를 갖는 인듐틴옥사이드 회로가 있는 유리 기판(제조원: 네오뷰 코오롱)에 놓고 각각 60℃에서, 1초 동안 1MPa로 가압착하였다. 상기 가압착 후, 이형 필름을 제거하고 범프면적 1430㎛인 드라이버 IC 칩(제조원: 삼성 LSI)을 올린 뒤 이를 100℃에서 5초, 50MPa의 조건으로 본압착하여 시편을 제조하고, 4 point probe법을 사용하여 4 point 사이에서의 저항을 측정하였다. 저항측정기기는 1mA를 인가하며 이때 측정되는 전압으로 저항을 계산하여 평균을 내어 표시하였다. 제조된 시편의 접속저항을 측정한 후 0.5Ω 이하일 때 양호(○), 0.5Ω 초과일 때는 불량(×)으로 평가하였다.The anisotropic conductive films prepared in Examples and Comparative Examples were placed on a glass substrate (manufactured by Neoview Kolon) having an indium tin oxide circuit having a thickness of 5000 kPa, and pressed at 1 MPa for 1 second at 60 ° C. After pressing, the release film was removed and the driver IC chip (manufacturer: Samsung LSI) having a bump area of 1430 μm was placed thereon, and the specimens were pressed by pressing at 50 ° C. for 5 seconds at 100 ° C. to prepare a specimen. The resistance between 4 points was measured using. The resistance measuring instrument applies 1mA and calculates the average of the resistance by using the measured voltage. After measuring the connection resistance of the prepared specimen was evaluated as good (○) when less than 0.5Ω, poor (×) when more than 0.5Ω.
실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4 실시예 5Example 5 실시예 6Example 6 비교예 1Comparative Example 1 비교예 2Comparative Example 2
발열량의 변화율(저장 안정성)Rate of change of heat generation (storage stability)
경화율Hardening rate
저온 경화성Low temperature curability 100℃100 ℃ ××
130℃130 ℃ ××
150℃150 ℃
가압착성Pressure adhesion ××
압흔 균일성Indentation Uniformity ××
접착력Adhesion ××
접속저항Connection resistance ×× ××
상기 표 1에서 나타난 바와 같이 실시예 1 내지 6은 발열량의 변화율이 모두 10% 이하인 것으로 나타나, 저장 안정성이 우수한 것으로 나타났다. 또한 저온에서 압착하였음에도 접착력이 우수하였고, 그 외에도 저온 경화성, 경화율, 가압착성, 압흔 균일성 및 접속저항 모두 양호한 것으로 나타났다. 반면, 이미다졸계 경화 촉매를 도전층 및 비도전층 모두에 포함하는 비교예 1은 저온 경화가 불가능하고 가압착성, 압흔 균일성, 접착력 및 접속저항 모두에서 불충분한 결과가 얻어졌고, 티올 화합물과 이온성 경화 촉매를 같은 층에 포함하는 비교예 2는 저장 안정성이 특히 저하되었다.As shown in Table 1, Examples 1 to 6, the rate of change of the calorific value was all 10% or less, it was shown that the storage stability is excellent. In addition, even when pressed at low temperature, the adhesion was excellent, and in addition, low temperature curability, curing rate, pressure adhesion, indentation uniformity and connection resistance were all good. On the other hand, Comparative Example 1 containing an imidazole-based curing catalyst in both the conductive layer and the non-conductive layer was unable to cure at low temperatures, and insufficient results were obtained in all of the pressure adhesion, indentation uniformity, adhesion, and connection resistance. The storage stability of Comparative Example 2 containing the curing catalyst in the same layer was particularly reduced.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시예일뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.Having described the specific parts of the present invention in detail, it will be apparent to those skilled in the art that such specific descriptions are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. will be. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (15)

  1. 에폭시 수지 및 티올 화합물을 포함하는 제1층; 및A first layer comprising an epoxy resin and a thiol compound; And
    에폭시 수지 및 이온성 경화 촉매를 포함하는 제2층을 포함하고,A second layer comprising an epoxy resin and an ionic curing catalyst,
    상기 제1층 또는 제2층 중 어느 하나의 층에 도전 입자가 추가로 포함되는, 이방 도전성 필름.The anisotropic conductive film which electroconductive particle is further contained in any one of the said 1st layer or the 2nd layer.
  2. 제1항에 있어서, 상기 티올 화합물이 제1층의 고형분 총 중량을 기준으로 10중량% 내지 40중량%로 포함되는, 이방 도전성 필름.The anisotropic conductive film of claim 1, wherein the thiol compound is included in an amount of 10 wt% to 40 wt% based on the total weight of solids of the first layer.
  3. 제1항에 있어서, 상기 이온성 경화 촉매가 제2층의 고형분 총 중량을 기준으로 1중량% 내지 20중량%로 포함되는, 이방 도전성 필름.The anisotropic conductive film of claim 1, wherein the ionic curing catalyst is included in an amount of 1 wt% to 20 wt% based on the total weight of solids of the second layer.
  4. 제1항에 있어서, 상기 제1층 및 제2층 각각에 바인더 수지를 추가로 포함하는, 이방 도전성 필름.The anisotropic conductive film according to claim 1, further comprising a binder resin in each of the first layer and the second layer.
  5. 제1항에 있어서, 상기 티올 화합물이 트리메틸올프로판트리스-3-머캅토프로피오네이트, 펜타에리트리톨테트라키스-3-머캅토프로피오네이트, 디펜타에리트리톨헥사-3-머캅토프로피오네이트로 이루어진 군에서 선택되는 1종 이상인, 이방 도전성 필름.The thiol compound according to claim 1, wherein the thiol compound is trimethylolpropanetris-3-mercaptopropionate, pentaerythritol tetrakis-3-mercaptopropionate, dipentaerythritol hexa-3-mercaptopropionate An anisotropic conductive film which is 1 or more types chosen from the group which consists of.
  6. 제1항에 있어서, 상기 이온성 경화 촉매가 암모늄계, 포스포늄계, 설포늄계, 이미다졸륨계 및 피페리디늄계로 이루어진 군에서 1종 이상 선택된 양이온부와 음이온부의 착화합물인, 이방 도전성 필름.The anisotropic conductive film according to claim 1, wherein the ionic curing catalyst is a complex compound of at least one cation part and an anion part selected from the group consisting of ammonium, phosphonium, sulfonium, imidazolium and piperidinium.
  7. 제6항에 있어서, 상기 음이온부는 O-, COO-, S- 로 이루어진 군에서 1종 이상 선택된 작용기를 갖는 , 이방 도전성 필름.7. The method of claim 6, wherein the anionic portion O -, COO -, An anisotropic conductive film having at least one functional group selected from the group consisting of S .
  8. 제1항에 있어서, 상기 이방 도전성 필름을 90℃ 내지 110℃, 1 내지 5초 및 5MPa 내지 70MPa로 압착시켰을 때 피접속부재와의 접착력이 10MPa 이상인, 이방 도전성 필름.The anisotropically conductive film of Claim 1 which is 10 Mpa or more of adhesive force with a to-be-connected member, when the anisotropically conductive film is crimped | bonded by 90 degreeC-110 degreeC, 1 to 5 second, and 5 MPa-70 MPa.
  9. 제1항에 있어서, 하기 식 2의 경화율이 70% 이상인, 이방 도전성 필름.The anisotropic conductive film of Claim 1 whose hardening rate of following formula 2 is 70% or more.
    [식 2][Equation 2]
    경화율(%) = [H3/H2]×100Cure Rate (%) = [H 3 / H 2 ] × 100
    상기 식 2에서, H2는 이방 도전성 필름을 DSC(열시차주사열량계, TA instruments, Q20)를 이용하여 질소 가스 분위기 하에서 10℃/min, -50℃ 내지 250℃ 온도 구간에서 곡선아래 면적으로 측정한 초기 발열량이고, H3은 100℃ 에서 5초간 방치한 후 동일한 방법으로 측정한 발열량을 나타낸다.In Equation 2, H 2 is an anisotropic conductive film is measured by the area under the curve at 10 ℃ / min, -50 ℃ to 250 ℃ temperature range using a DSC (thermodifferential scanning calorimeter, TA instruments, Q20) One initial calorific value and H 3 represents the calorific value measured by the same method after being left at 100 ° C. for 5 seconds.
  10. 제1항에 있어서, 상기 이방 도전성 필름을 90℃ 내지 110℃, 1 내지 5초 및 5MPa 내지 70MPa로 압착시켰을 때 접속 저항이 0.5Ω 이하인, 이방 도전성 필름.The anisotropic conductive film of Claim 1 whose connection resistance is 0.5 ohm or less when crimping | bonding the said anisotropic conductive film at 90 degreeC-110 degreeC, 1 to 5 second, and 5 MPa-70 MPa.
  11. 에폭시 수지, 티올 화합물, 이온성 경화 촉매 및 도전 입자를 포함하고, 하기 식 1에 따른 발열량의 변화율이 10% 이하인, 이방 도전성 필름.An anisotropic conductive film containing an epoxy resin, a thiol compound, an ionic curing catalyst, and conductive particles, wherein the rate of change of the calorific value according to the following formula 1 is 10% or less.
    [식 1][Equation 1]
    발열량 변화율(%) = [(H0-H1)/H0]×100Heat generation rate change (%) = [(H 0 -H 1 ) / H 0 ] × 100
    상기 식 1에서, H0는 이방 도전성 필름을 25℃에서 1일 방치 후에 측정한 DSC 상 발열량을 나타내고, H1은 상기 이방 도전성 필름을 25℃에서 7일 방치 후 측정한 DSC 상 발열량을 나타낸다.In the formula 1, H 0 represents the DSC the heat generation amount measuring the anisotropic conductive film at 25 ℃ 1 day left, H 1 represents the DSC the heat value of the anisotropic conductive film was measured at 25 ℃ and then allowed to stand 7 days.
  12. 제11항에 있어서, 상기 이방 도전성 필름이 90℃ 내지 110℃, 1 내지 5초 및 5MPa 내지 70MPa로 압착시켰을 때 피접속부재와의 접착력이 10MPa 이상인, 이방 도전성 필름.The anisotropically conductive film of Claim 11 whose adhesive force with a to-be-connected member is 10 Mpa or more when the said anisotropic conductive film is crimped | bonded by 90 degreeC-110 degreeC, 1 to 5 second, and 5 MPa-70 MPa.
  13. 제11항에 있어서, 상기 이방 도전성 필름이 제1층 및 제2층을 포함하고,The method of claim 11, wherein the anisotropic conductive film comprises a first layer and a second layer,
    상기 제1층은 에폭시 수지 및 티올 화합물을 포함하고,The first layer comprises an epoxy resin and a thiol compound,
    상기 제2층은 에폭시 수지, 이온성 경화 촉매 및 도전 입자를 포함하는, 이방 도전성 필름.The second layer is an anisotropic conductive film containing an epoxy resin, an ionic curing catalyst and conductive particles.
  14. 제11항에 있어서, 상기 이방 도전성 필름이 바인더 수지를 추가로 포함하는, 이방 도전성 필름.The anisotropic conductive film of Claim 11 in which the said anisotropic conductive film further contains binder resin.
  15. 제1 전극을 함유하는 제1 피접속부재;A first to-be-connected member containing a first electrode;
    제2 전극을 함유하는 제2 피접속부재; 및A second to-be-connected member containing a second electrode; And
    상기 제1 피접속부재와 상기 제2 피접속부재 사이에 위치하여 상기 제1 전극 및 상기 제2 전극을 접속시키는, 제1항 내지 제14항 중 어느 하나의 항에 따른 이방 도전성 필름에 의해 접속된 디스플레이 장치.The connection by the anisotropic conductive film of any one of Claims 1-14 which is located between the said 1st to-be-connected member and the said 2nd to-be-connected member, and connects the said 1st electrode and the said 2nd electrode. Display device.
PCT/KR2016/003210 2015-05-13 2016-03-29 Anisotropic conductive film and display device using same WO2016182195A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680041228.2A CN107848283B (en) 2015-05-13 2016-03-29 Anisotropic conductive film and display device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0066937 2015-05-13
KR1020150066937A KR101845129B1 (en) 2015-05-13 2015-05-13 Anisotropic conductive film and the semiconductor device using thereof

Publications (1)

Publication Number Publication Date
WO2016182195A1 true WO2016182195A1 (en) 2016-11-17

Family

ID=57248110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003210 WO2016182195A1 (en) 2015-05-13 2016-03-29 Anisotropic conductive film and display device using same

Country Status (3)

Country Link
KR (1) KR101845129B1 (en)
CN (1) CN107848283B (en)
WO (1) WO2016182195A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100044144A (en) * 2007-07-26 2010-04-29 아지노모토 가부시키가이샤 Resin composition
JP2013143292A (en) * 2012-01-11 2013-07-22 Sekisui Chem Co Ltd Anisotropic conductive film material, connection structure, and method for manufacturing connection structure
JP2013149467A (en) * 2012-01-19 2013-08-01 Sekisui Chem Co Ltd Anisotropic conductive film, connection structure and method for producing connection structure
JP2013157416A (en) * 2012-01-30 2013-08-15 Sekisui Chem Co Ltd Anisotropic conductive film material, connection structure, and method for manufacturing connection structure
KR20140103855A (en) * 2013-02-19 2014-08-27 데쿠세리아루즈 가부시키가이샤 Anisotropic conductive film, connecting method, and joined structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070213429A1 (en) 2006-03-10 2007-09-13 Chih-Min Cheng Anisotropic conductive adhesive

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100044144A (en) * 2007-07-26 2010-04-29 아지노모토 가부시키가이샤 Resin composition
JP2013143292A (en) * 2012-01-11 2013-07-22 Sekisui Chem Co Ltd Anisotropic conductive film material, connection structure, and method for manufacturing connection structure
JP2013149467A (en) * 2012-01-19 2013-08-01 Sekisui Chem Co Ltd Anisotropic conductive film, connection structure and method for producing connection structure
JP2013157416A (en) * 2012-01-30 2013-08-15 Sekisui Chem Co Ltd Anisotropic conductive film material, connection structure, and method for manufacturing connection structure
KR20140103855A (en) * 2013-02-19 2014-08-27 데쿠세리아루즈 가부시키가이샤 Anisotropic conductive film, connecting method, and joined structure

Also Published As

Publication number Publication date
KR101845129B1 (en) 2018-04-03
KR20160133864A (en) 2016-11-23
CN107848283B (en) 2021-04-13
CN107848283A (en) 2018-03-27

Similar Documents

Publication Publication Date Title
WO2011055887A1 (en) Conductive adhesive, method for manufacturing same, and electronic device including the conductive adhesive
WO2012046923A1 (en) Anisotropic conductive film
WO2012053830A2 (en) Adhesive composition for touch panel
KR101163436B1 (en) Insulation-coated electroconductive particles
KR101362868B1 (en) A double layered anistropic conductive film
JP3408301B2 (en) Anisotropic conductive film
US20130168847A1 (en) Anisotropic conductive film and electronic device including the same
KR102584123B1 (en) Anisotropic conductive film and display device comprising the same
WO2010076990A2 (en) Compositions for an anisotropic conductive film, and anisotropic conductive film using same
WO2012138030A1 (en) Adhesive film for an organic el device, composite included in the adhesive film for an organic el device, and organic el display device including the adhesive film for an organic el device
WO2017078488A1 (en) Optical adhesive composition and optical adhesive film
WO2017183833A1 (en) Optical adhesive composition and optical adhesive layer containing cured product thereof
WO2016182195A1 (en) Anisotropic conductive film and display device using same
TWI580757B (en) Anisotropic conductive film and semiconductor device connected by the same
WO2016199983A1 (en) Macromolecular resin of chemical formula 1 or 2, adhesive film comprising same, and display device connected by means of the adhesive film
TW201515851A (en) Anisotropic conductive film and semiconductor device using the same
WO2020013660A1 (en) Low-dielectric adhesive film for touch panel
WO2017090875A1 (en) Anisotropic conductive film, and connection structure using same
WO2016208816A1 (en) Polymer resin of chemical formula 1, adhesive film comprising same, and display device connected by adhesive film
WO2016010252A1 (en) Adhesive composition, anisotropic conductive film, and semiconductor device using same
KR100622578B1 (en) Anisotropic conductive adhesive film with excellent electric connection reliability
WO2017057920A1 (en) Anisotropic conductive film and display device using same
WO2016032067A1 (en) Anisotropic conductive film and semiconductor device using same
WO2016068444A1 (en) Anisotropic conductive film and semiconductor device using same
WO2016013758A1 (en) Adhesive composition, anisotropic conductive film and semiconductor device using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792841

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16792841

Country of ref document: EP

Kind code of ref document: A1