WO2016181905A1 - 照明装置及び光学部材 - Google Patents

照明装置及び光学部材 Download PDF

Info

Publication number
WO2016181905A1
WO2016181905A1 PCT/JP2016/063663 JP2016063663W WO2016181905A1 WO 2016181905 A1 WO2016181905 A1 WO 2016181905A1 JP 2016063663 W JP2016063663 W JP 2016063663W WO 2016181905 A1 WO2016181905 A1 WO 2016181905A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical member
emitted
angle
optical axis
Prior art date
Application number
PCT/JP2016/063663
Other languages
English (en)
French (fr)
Inventor
真知子 岩崎
Original Assignee
株式会社光波
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社光波 filed Critical 株式会社光波
Publication of WO2016181905A1 publication Critical patent/WO2016181905A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/08Combinations of only two kinds of elements the elements being filters or photoluminescent elements and reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V14/00Controlling the distribution of the light emitted by adjustment of elements
    • F21V14/06Controlling the distribution of the light emitted by adjustment of elements by movement of refractors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/10Refractors for light sources comprising photoluminescent material

Definitions

  • the present invention relates to an illumination device and an optical member that collects light from a light source and irradiates the light by changing a light distribution angle of the collected light.
  • This illuminating device includes a light source with a wide-angle light distribution, an optical member that condenses light from the light source into parallel light, a first convex lens that condenses the parallel light at the focal point F, and a light source that is closer than the focal point F.
  • a second convex lens located in a distant area, and moving the second convex lens away from the light source, thereby using the focal point F as a virtual light source according to the distance from the focal point F of the second convex lens, The light distribution angle is continuously changed from a narrow angle to a wide angle. Since the light distribution angle is changed after the light from the light source of the wide angle light distribution is condensed, the light use efficiency is high.
  • the conventional illuminating device continuously changes the light distribution angle from a narrow angle to a wide angle while improving the light utilization efficiency.
  • the focus of the second convex lens is used to irradiate parallel light. Even if the distance from F is adjusted, there is a problem that the virtual light source at the focal point F becomes wider than the actual light source and cannot be sufficiently collimated.
  • an object of the present invention is to provide an illuminating device and an optical member that can irradiate light while changing the light distribution angle while improving the light use efficiency, and obtain collimated parallel light. .
  • a first shaping unit that collects a central light beam emitted from the semiconductor light emitting element and emits narrow-angle light in an optical axis direction, and a peripheral light beam emitted from the semiconductor light emitting element to the periphery of the central light beam
  • a first optical member having a second shaping portion that emits narrow-angle light in the optical axis direction
  • a second optical member that is variably provided with a distance in the optical axis direction from the first optical member, and condenses light emitted from the first optical member at a predetermined distance to make parallel light.
  • a lighting device comprising: [2] The illumination device according to [1], wherein the first shaping unit and the second shaping unit have a common focal point.
  • the first shaping unit and the second shaping unit have different focal points
  • the second optical member has a central lens portion that makes light emitted from the first shaping portion parallel light at the predetermined distance, and makes light emitted from the second shaping portion parallel light.
  • a first shaping unit that collects the central light beam emitted from the semiconductor light emitting element and emits narrow-angle light in the optical axis direction; and a peripheral light beam emitted from the semiconductor light emitting element to the periphery of the central light beam.
  • a first optical member having a second shaping section that condenses and emits narrow-angle light in the optical axis direction;
  • a second optical member that is variably provided with a distance in the optical axis direction from the first optical member, and condenses light emitted from the first optical member at a predetermined distance to make parallel light.
  • An optical member comprising:
  • collimated parallel light can be obtained while irradiating light while changing the light distribution angle while improving the light utilization efficiency.
  • FIG. 1 is a longitudinal sectional view showing a schematic configuration example of a lighting apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a schematic view showing an optical path of light emitted from the LED light source.
  • FIG. 3 is a schematic diagram showing an optical path of light emitted from the LED light source when the distance between the first optical member and the second optical member is changed.
  • FIG. 4 is a longitudinal sectional view showing a schematic configuration example of the illumination device according to the second embodiment of the present invention.
  • FIG. 5 is a schematic view showing an optical path of light emitted from the LED light source.
  • FIG. 1 is a longitudinal sectional view showing a schematic configuration example of a lighting apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing an optical path of light emitted from the LED light source 110.
  • FIG. 3 is a schematic diagram showing an optical path of light emitted from the LED light source 110 when the distance between the first optical member and the second optical member is changed.
  • the illumination device 100 has a narrow angle by condensing light emitted from the LED light source 110 with a wide light distribution angle and an LED light source 110 that is a wide angle light distribution light source using LED elements whose energization direction is vertical.
  • the first optical member 130 that emits light at a light distribution angle and the first optical member 130 are movably installed so that the distance between the first optical member 130 and the first optical member 130 is changed.
  • a second optical member 140 that changes the light angle.
  • the LED element is an example of a semiconductor light emitting element.
  • the first optical member 130 and the second optical member 140 are an example of an optical system.
  • the LED light source 110 includes the LED element 1 and, as an example, a heat dissipation structure including a copper block 111 and a radiator 117.
  • the heat dissipation structure may be a resin substrate or an aluminum substrate.
  • the LED light source 110 may further include a phosphor that emits light of the second color by being excited by the first color of light emitted from the LED element.
  • the phosphor may be a powdery substance attached to the surface of the LED element 1 via a resin, or a phosphor containing a phosphor may be formed on the surface of the LED element 1.
  • an LED element that emits light of a blue color is used as the LED element 1, and a YAG phosphor that converts blue light into yellow light, a BOS phosphor, or the like as a phosphor.
  • the LED light source 110 the blue light emitted from the LED element and the yellow light emitted from the phosphor are mixed and emitted to emit white light.
  • the color of light emitted from the LED light source 110 is not limited to a blue color, and the mixed color is not limited to white.
  • the LED element 1 is formed so as to partially disperse and cover an n-type semiconductor substrate and the surface of the n-type semiconductor substrate, and a difference in refractive index from the n-type semiconductor substrate is 0.15 or less.
  • the first optical member 130 includes a first shaping lens unit 131 that condenses the light beam emitted from the LED light source 110 to form narrow-angle light, and an incident surface 132b on which the light beam emitted from the LED light source 110 is incident.
  • the first and second shaping lens portions 131 and 132 are made of a transparent resin such as an acrylic resin, for example.
  • the first shaping lens unit 131 is an example of a first shaping unit
  • the second shaping lens unit 132 is an example of a second shaping unit.
  • P indicates the position of the point light source.
  • the first optical member 130 has a rotationally symmetric shape around the optical axis 110a, and has a shape with a maximum outer diameter D 4 , a minimum outer diameter D 3 , and a length L 0 in the direction along the optical axis 110a.
  • the space in which the LED element 1 is stored has a substantially cylindrical shape having an inner diameter D 2 and a height L 3 .
  • the first shaping lens portion 131 is constituted by a convex lens having a diameter D 1 and a thickness L 1 and has a flat incident surface 131a and a spherical exit surface 131b.
  • the light beam irradiated through the first shaping lens unit is referred to as a central light beam lc.
  • a convex lens may be provided on the entrance surface to make the exit surface flat, or convex lenses may be provided on the entrance surface and the exit surface.
  • the second shaping lens unit 132 has a reference surface 132a disposed perpendicular to the optical axis 110a of the LED light source 110 and a cylindrical shape on which light (including light in the horizontal direction) emitted from the LED light source 110 is incident.
  • An incident surface 132b, a reflecting surface 132c that reflects light that is refracted by being incident on the incident surface 132b, and an exit surface 132d that emits light reflected by the reflecting surface 132c are provided.
  • a light beam that is irradiated through the second shaping lens unit 132 is referred to as a peripheral light beam lo.
  • the reflecting surface 132c of the second shaping lens unit 132 is designed so that the light refracted by the incident surface 132b can be incident at an angle larger than the critical angle, and the reflected light is inclined to the side opposite to the optical axis 110a.
  • the surface is designed and approximates to a surface obtained by rotating a paraboloid or an aspherical shape such as a Bezier curve obtained by rotating a parabola around the optical axis 110a.
  • a reflecting mirror such as a metal plate may be used instead of the reflecting surface 132c of the second shaping lens portion 132.
  • the emission surface 132d of the second shaping lens unit 132 is an annular plane orthogonal to the optical axis.
  • the exit surface 132d of the second shaping lens 132 may be an annular surface or a curved surface having a predetermined angle with respect to a surface orthogonal to the optical axis.
  • first shaping lens portion 131 and the second shaping lens portion 132 have a common virtual light source position F shown in FIG. That is, the apparent light source position of the central light beam lc and the peripheral light beam lo emitted from the first optical member 130 is the virtual light source position F.
  • the second optical member 140 matches the virtual light source position of the first optical member 130 with the focal point of the second optical member 140 at the distance d0 from the first optical member 130, so that the first optical member 140 This is a convex lens that controls the light distribution of the central light beam lc and the peripheral light beam lo emitted from 130 as parallel light.
  • the second optical member 140 may be provided with a convex lens on the incident surface to make the output surface flat, or may be provided with a convex lens on the incident surface and the output surface.
  • the second optical member 140 may be formed of a concave lens.
  • the second optical member 140 has a central light beam lc emitted from the first optical member 130 and a peripheral portion at d 1 where the distance from the first optical member 130 is greater than d 0.
  • the light beam lo is distributed to the optical axis 110a side from the parallel light (broken line in the figure).
  • the second optical member 140 similarly, has a central light beam lc emitted from the first optical member 130 and a peripheral portion at a distance smaller than d 0 with respect to the first optical member 130.
  • the light beam lo is distributed from the parallel light to the side opposite to the optical axis 110a. That is, the light distribution angle of the emitted light is controlled by moving the second optical member 140.
  • the second optical member 140 has a rotationally symmetric shape about the optical axis 110a.
  • the first optical member 130 and the second optical member 140 may be formed by injection molding a transparent resin, or by cutting out glass.
  • the second embodiment differs from the first embodiment in that the first shaping lens portion 131A and the second shaping lens portion 132A of the first optical member 130A do not have a common virtual light source position. .
  • symbol is attached
  • FIG. 4 is a longitudinal sectional view showing a schematic configuration example of the illumination device according to the second embodiment of the present invention.
  • FIG. 5 is a schematic view showing an optical path of light emitted from the LED light source 110.
  • the illumination device 100A includes an LED light source 110, a first optical member 130A that condenses light emitted from the LED light source 110, and emits light at a narrow light distribution angle, and a first optical member 130A.
  • a second optical member 140A that changes the light distribution angle of the emitted light.
  • the first optical member 130A has a first shaping lens portion 131A that shapes the light beam emitted from the LED light source 110 into narrow-angle light, and an incident surface 132b ′ on which the light beam emitted from the LED light source 110 is incident.
  • a second shaping lens portion 132A having a cylindrical shape and condensing the light beam incident on the incident surface 132b ′ to form narrow-angle light.
  • the first optical member 130A has a rotationally symmetric shape around the optical axis 110a, and has a shape with a maximum outer diameter D 4 , a minimum outer diameter D 3 , and a length L 0 in the direction along the optical axis 110a.
  • the space in which the LED element 1 is stored has a substantially cylindrical shape having an inner diameter D 2 and a height L 3 .
  • the first shaping lens portion 131A is constituted by a convex lens having a diameter D 1 and a thickness L 1 and has a flat incident surface 131a and a spherical exit surface 131b.
  • the light beam irradiated through the first shaping lens unit is referred to as a central light beam lc.
  • a convex lens may be provided on the entrance surface to make the exit surface flat, or convex lenses may be provided on the entrance surface and the exit surface.
  • the second shaping lens unit 132A includes a reference surface 132a ′ arranged perpendicular to the optical axis 110a of the LED light source 110, a cylindrical incident surface 132b ′ on which light emitted from the LED light source 110 is incident, and an incident surface.
  • a reflecting surface 132c ′ for reflecting the light incident on 132b ′ and an emitting surface 132d ′ for emitting the light reflected by the reflecting surface 132c ′ are provided.
  • a light beam transmitted through the second shaping lens unit 132A and irradiated is referred to as a peripheral light beam lo.
  • the reflecting surface 132c ′ of the second shaping lens portion 132A is designed so that light refracted by the incident surface 132b ′ can be incident at an angle larger than the critical angle, and is obtained by rotating a parabola around the optical axis 110a.
  • the surface approximates a surface obtained by rotating an aspherical surface such as a paraboloid of revolution or a Bezier curve.
  • a reflecting mirror such as a metal plate may be used instead of the reflecting surface 132c 'of the second shaping lens portion 132A.
  • the exit surface 132d 'of the second shaping lens portion 132A is an annular surface or curved surface having a predetermined angle with respect to the surface orthogonal to the optical axis.
  • the angle of the exit surface 132d ' is designed such that the light emitted from the exit surface 132d' is inclined to the side opposite to the optical axis 110a.
  • the emission surface 132d ′ of the second shaping lens portion 132A may be an annular plane orthogonal to the optical axis as long as the light emitted from the emission surface 132d ′ is inclined to the side opposite to the optical axis 110a. .
  • the first shaping lens unit 131A and the second shaping lens unit 132A have different virtual light source positions Fc and virtual light source positions Fo as shown in FIG. That is, the apparent light source positions of the central light beam lc and the peripheral light beam lo emitted from the first optical member 130A are the virtual light source position Fc and the virtual light source position Fo, respectively.
  • the second optical member 140A has a peripheral lens portion 141A and a central lens portion 142A.
  • Peripheral lens portion 141A is at a distance d 2 of the first optical member 130A and the second optical member 140A, by matching the focal point of the virtual source position Fo and the peripheral lens portion 141A of the first optical member 130A, the This is a convex lens that shapes the peripheral luminous flux lo emitted from one optical member 130A into parallel light.
  • the center lens portion 142A is at a distance d 2 of the first optical member 130A and the second optical member 140A, by matching the focal point of the virtual source position Fc and the center lens portion 142A of the first optical member 130A
  • This is a convex lens that shapes the central light beam lc emitted from the first optical member 130A into parallel light.
  • the second optical member 140A may be provided with a convex lens on the incident surface and the output surface may be flat, or may be provided with a convex lens on the incident surface and the output surface.
  • the second optical member 140A may be configured by a concave lens.
  • the second optical member 140A in the case the distance between the first optical member 130A is greater than d 2, center beam lc and the optical axis 110a side of the parallel light peripheral light lo emitted from the first optical member 130A Light distribution.
  • the second optical member 140A in the case the distance between the first optical member 130A is d 2 smaller, parallel light center beam lc and peripheral light lo emitted from the first optical member 130A More light is distributed to the side opposite to the optical axis 110a.
  • the second optical member 140A has a rotationally symmetric shape about the optical axis 110a.
  • the first optical member 130A and the second optical member 140A may be formed by injection molding a transparent resin or by cutting glass.
  • the central light beam lc emitted from the first shaping lens portion 131A of the first optical member 130A is shaped by the center lens portion 142A of the second optical member 140A, and the second shaping lens portion of the first optical member 130A.
  • the peripheral light beam lo emitted from 132A is shaped by the peripheral lens part 141A of the second optical member 140A, the design of the first optical member 130A is limited, and the first shaping lens part 131A and the first Even when the first optical member 130A cannot be designed so that the second shaping lens portion 132A has a common virtual light source position, the light emitted from the first optical member 130A is changed from an ultra-small-angle light distribution to a wide-angle light distribution. It is possible to irradiate with light.
  • this invention is not limited to the said embodiment and said Example, A various deformation
  • transformation is possible within the range which does not change the summary of invention.
  • the present invention can be applied to lighting devices such as spotlights and flashlights and optical members used therefor.
  • DESCRIPTION OF SYMBOLS 1 ... LED element, 100, 100A ... LED illumination apparatus, 110 ... LED light source, 110a ... Optical axis, 111 ... Copper block, 117 ... Radiator, 130, 130A ... Optical member, 131, 131A ... Shaping lens part, 131a ... Entrance surface, 131b: exit surface, 132, 132A ... shaping lens portion, 132a ... reference surface, 132b ... entrance surface, 132c ... reflection surface, 132d ... exit surface, 140, 140A ... optical member, 141A ... peripheral lens portion, 142A ... center lens part, lc ... center light flux, lo ... peripheral light flux,

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

【課題】光の利用効率を高めつつ、配光角を変化させて光を照射するとともに、コリメートされた平行光を得ることができる照明装置及び光学部材を提供する。 【解決手段】LED照明装置100は、LED素子1と、LED素子1から出射される中心光束lcを集光して光軸110a方向に狭角光を出射する第1の整形レンズ部131と、LED素子1から中心光束lcの周辺に出射される周辺光束loを集光して光軸110a方向に狭角光を出射する第2の整形レンズ部132とを有する第1の光学部材130と、第1の光学部材130との光軸110a方向の距離を可変に設けられ、予め定めた距離d0において第1の光学部材130から出射される光を集光して平行光にする第2の光学部材140とを備える。

Description

照明装置及び光学部材
 本発明は、光源からの光を集光し、集光した光の配光角を変化させて照射する照明装置及び光学部材に関する。
 近年、光源からの光を集光し、集光した光の配光角を変化させて照射するものがある(特許文献1参照)。
 この照明装置は、広角配光の光源と、光源からの光を集光して平行光とする光学部材と、平行光を焦点Fに集光する第1の凸レンズと、焦点Fよりも光源から離れた領域に位置する第2の凸レンズとを有して、第2の凸レンズを光源から遠ざける方向に動かすことで、焦点Fを仮想光源として第2の凸レンズの焦点Fからの距離に応じて、光の配光角を狭角から広角に連続的に変化させる。広角配光の光源からの光を集光してから配光角を変化させるため、光の利用効率が高い。
特開2012-59575号公報
 しかし、従来の照明装置は、光の利用効率を高めつつ、光の配光角を狭角から広角に連続的に変化させるものであるが、平行光を照射するために第2の凸レンズの焦点Fからの距離を調整したとしても、焦点Fの仮想光源が実際の光源よりも広がりをもったものとなり、十分にコリメートできない、という問題がある。
 したがって、本発明の目的は、光の利用効率を高めつつ、配光角を変化させて光を照射するとともに、コリメートされた平行光を得ることができる照明装置及び光学部材を提供することにある。
[1]半導体発光素子と、
 前記半導体発光素子から出射される中心光束を集光して光軸方向に狭角光を出射する第1整形部と、前記半導体発光素子から前記中心光束の周辺に出射される周辺光束を集光して前記光軸方向に狭角光を出射する第2整形部とを有する第1の光学部材と、
 前記第1の光学部材との前記光軸方向の距離を可変に設けられ、予め定めた距離において前記第1の光学部材から出射される光を集光して平行光にする第2の光学部材とを備える照明装置。
[2]前記第1整形部及び前記第2整形部は、共通の焦点を有する前記1に記載の照明装置。
[3]前記第1整形部及び前記第2整形部は、それぞれ異なる焦点を有し、
 前記第2の光学部材は、前記予め定めた距離において、前記第1整形部から出射される光を平行光とする中央レンズ部と、前記第2整形部から出射される光を平行光とする周辺レンズ部とを有する前記[1]に記載の照明装置。
[4]前記第1の光学部材の第2整形部は、前記半導体発光素子から出射される前記周辺光束を全反射する全反射面を有する前記[1]-[3]に記載の照明装置。
[5]半導体発光素子から出射される中心光束を集光して光軸方向に狭角光を出射する第1整形部と、前記半導体発光素子から前記中心光束の周辺に出射される周辺光束を集光して前記光軸方向に狭角光を出射する第2整形部とを有する第1の光学部材と、
 前記第1の光学部材との前記光軸方向の距離を可変に設けられ、予め定めた距離において前記第1の光学部材から出射される光を集光して平行光にする第2の光学部材とを備える光学部材。
 本発明によれば、光の利用効率を高めつつ、配光角を変化させて光を照射するとともに、コリメートされた平行光を得ることができる。
図1は、本発明の第1の実施の形態に係る照明装置の概略の構成例を示す縦断面図である。 図2は、LED光源から出射された光の光路を示す概略図である。 図3は、第1の光学部材と第2の光学部材との距離を変更した場合のLED光源から出射された光の光路を示す概略図である。 図4は、本発明の第2の実施の形態に係る照明装置の概略の構成例を示す縦断面図である。 図5は、LED光源から出射された光の光路を示す概略図である。
 以下、本発明の実施の形態及び実施例について図面を参照して説明する。なお、各図中、実質的に同一の機能を有する構成要素については、同一の符号を付してその重複した説明を省略する。
[実施の形態]
 図1は、本発明の第1の実施の形態に係る照明装置の概略の構成例を示す縦断面図である。また、図2は、LED光源110から出射された光の光路を示す概略図である。また、図3は、第1の光学部材と第2の光学部材との距離を変更した場合のLED光源110から出射された光の光路を示す概略図である。
(照明装置の構成)
 この照明装置100は、通電方向が縦方向のLED素子を用いた広角配光の光源であるLED光源110と、LED光源110から広角の配光角で出射された光を集光して狭角の配光角で光を出射する第1の光学部材130と、第1の光学部材130との距離を変化させるように移動可能に設置され、第1の光学部材130から出射された光の配光角を変化させる第2の光学部材140とを備える。なお、LED素子は、半導体発光素子の一例である。第1の光学部材130及び第2の光学部材140は、光学系の一例である。
(LED光源の構成)
 LED光源110は、LED素子1と、一例として、銅ブロック111及び放熱器117を含む放熱構造とを有する。なお、放熱構造は樹脂基板やアルミ基板を用いてもよい。また、LED光源110は、LED素子が発する第1の色の光で励起して第2の色の光を発する蛍光体をさらに備えてもよい。蛍光体は、LED素子1の表面に樹脂を介して粉末状のものを付着させてもよく、樹脂に蛍光体を含有させたものをLED素子1の表面に形成してもよい。例えば、LED素子1として、青色系の色の光を発するLED素子を用い、蛍光体として、青色系の色の光を黄色系の色の光に変換するYAG系蛍光体、BOS系蛍光体等を用いることにより、LED光源110は、LED素子が発する青色系の色の光と蛍光体が変換して出力する黄色系の色の光とが混合されて白色光を出射する。また、LED光源110から出射する光の色は、青色系の色に限定されず、また混合色も白色に限定されない。
 LED素子1は、一例として、n型半導体基板と、n型半導体基板の表面を部分的に分散して覆うように形成され、n型半導体基板との屈折率の差が0.15以下である誘電体層と、n型半導体基板上に誘電体層を介して形成され、誘電体層、及びn型半導体基板の表面の誘電体層に覆われていない部分に接触するn型半導体層と、n型半導体層上に形成された発光層と、発光層上に形成されたp型半導体層と、n型半導体基板の誘電体層が形成された面と反対側に形成されたn型電極と、p型半導体層上に形成されたp型電極とを備える。
(第1の光学部材の構成)
 第1の光学部材130は、LED光源110から出射される光束を集光して狭角光とする第1の整形レンズ部131と、LED光源110から出射される光束が入射される入射面132bが略円柱状を有し、入射面132bに入射した光束を集光して狭角光とする第2の整形レンズ部132とを備える。
 第1及び第2の整形レンズ部131、132は、例えば、アクリル樹脂等の透明樹脂から形成される。ここで、第1の整形レンズ部131は、第1の整形部の一例であり、第2の整形レンズ部132は、第2の整形部の一例である。図1中、Pは点光源の位置を示す。
 第1の光学部材130は、光軸110aを中心として回転対称な形状を有しており、最大外径D、最小外径D、光軸110aに沿う方向の長さLの形状を有する。また、LED素子1が格納される空間は内径D、高さLの略円柱形状を有する。
 第1の整形レンズ部131は、直径D、厚みLの凸レンズにより構成され、平坦な入射面131aと、球面状の出射面131bとを有する。ここで、第1の整形レンズ部を透過して照射される光束を中心光束lcと呼ぶこととする。なお、中心光束lcを狭角とするものであれば、入射面に凸レンズを設けて出射面を平坦としてもよいし、入射面及び出射面に凸レンズを設けてもよい。
 第2の整形レンズ部132は、LED光源110の光軸110aに垂直に配置される基準面132aと、LED光源110から出射された光(水平方向の光も含む。)が入射する円柱状の入射面132bと、入射面132bに入射して屈折した光を反射させる反射面132cと、反射面132cで反射した光が出射する出射面132dとを備える。ここで、第2の整形レンズ部132を透過して照射される光束を周辺光束loと呼ぶこととする。
 第2の整形レンズ部132の反射面132cは、入射面132bで屈折した光が臨界角より大きい角度で入射できるように設計され、かつ、反射した光が光軸110aと反対側へ傾くように設計されるものであり、光軸110aを中心とし、放物線を回転して得られる回転放物面又はベジェ曲線等の非球面形状を回転して得られる面に近似した面となっている。なお、第2の整形レンズ部132の反射面132cの代わりに金属板等の反射鏡を用いてもよい。
 なお、第2の整形レンズ部132の出射面132dは、光軸と直交する環状の平面である。また、第2の整形レンズ132の出射面132dは、光軸と直交する面に対して所定の角度を有する環状の面又は曲面であってもよい。
 第1の整形レンズ部131と第2の整形レンズ部132とは図2に示す共通の仮想光源位置Fを有するものとする。つまり、第1の光学部材130から出射される中心光束lcと周辺光束loの見かけ上の光源位置は仮想光源位置Fとなる。
(第2の光学部材)
 第2の光学部材140は、第1の光学部材130との距離d0において、第1の光学部材130の仮想光源位置と第2の光学部材140の焦点を一致させることで、第1の光学部材130から出射される中心光束lc及び周辺光束loを平行光として配光制御する凸レンズである。なお、第2の光学部材140は、入射面に凸レンズを設けて出射面を平坦としてもよいし、入射面及び出射面に凸レンズを設けてもよい。また、仮想光源位置が第1の光学部材130と第2の光学部材140とのある場合は、第2の光学部材140を凹レンズで構成してもよい。
 また、図3に示すように、第2の光学部材140は、第1の光学部材130との距離がdより大きいdにおいて、第1の光学部材130から出射される中心光束lc及び周辺光束loを平行光(図中破線)より光軸110a側に配光する。なお、図示していないが同様に、第2の光学部材140は、第1の光学部材130との距離がdより小さい距離において、第1の光学部材130から出射される中心光束lc及び周辺光束loを平行光より光軸110aと反対側に配光する。つまり、第2の光学部材140を移動することで出射光の配光角が制御される。
 なお、第2の光学部材140は、光軸110aを中心として回転対称な形状を有する。また、第1の光学部材130及び第2の光学部材140は、透明樹脂を射出成型してもよく、ガラスを削り出し加工して形成してもよい。
(第1の実施の形態の効果)
 上記第1の実施の形態によれば、以下の効果を奏する。
(1)LED素子1の出射する広角配光の光を第1の光学部材130により集光して狭角配光とし、第1の光学部材130と第2の光学部材140との距離を可変として、距離dにおいて第1の光学部材130から出射される光束を第2の光学部材140で平行光に整形するよう構成したため第1の光学部材130と第2の光学部材140との距離を変化させることで、第1の光学部材から出射される光の配光角を変化させることができる。
(2)第1の光学部材130により広角配光のLED素子1から出射される光を集光したため、光の利用効率の高い照明装置を実現できる。
(3)第1の光学部材130は共通化し、第2の光学部材の曲率を変更することで照明装置のバリエーションを容易に増やすことができる。
[第2の実施の形態]
 第2の実施の形態は、第1の光学部材130Aの第1の整形レンズ部131Aと第2の整形レンズ部132Aとが共通の仮想光源位置を有しない点で第1の実施の形態と異なる。なお、第1の実施の形態と共通する構成については共通の符号を付している。
 図4は、本発明の第2の実施の形態に係る照明装置の概略の構成例を示す縦断面図である。また、図5は、LED光源110から出射された光の光路を示す概略図である。
(照明装置の構成)
 この照明装置100Aは、LED光源110と、LED光源110から出射された光を集光して狭角の配光角で光を出射する第1の光学部材130Aと、第1の光学部材130Aから出射された光の配光角を変化させる第2の光学部材140Aとを備える。
(第1の光学部材の構成)
 第1の光学部材130Aは、LED光源110から出射される光束を狭角光に整形する第1の整形レンズ部131Aと、LED光源110から出射される光束が入射される入射面132b’が略円柱状を有し、入射面132b’に入射した光束を集光して狭角光とする第2の整形レンズ部132Aとを備える。
 第1の光学部材130Aは、光軸110aを中心として回転対称な形状を有しており、最大外径D、最小外径D、光軸110aに沿う方向の長さLの形状を有する。また、LED素子1が格納される空間は内径D、高さLの略円柱形状を有する。
 第1の整形レンズ部131Aは、直径D、厚みLの凸レンズにより構成され、平坦な入射面131aと、球面状の出射面131bとを有する。ここで、第1の整形レンズ部を透過して照射される光束を中心光束lcと呼ぶこととする。なお、中心光束lcを狭角とするものであれば、入射面に凸レンズを設けて出射面を平坦としてもよいし、入射面及び出射面に凸レンズを設けてもよい。
 第2の整形レンズ部132Aは、LED光源110の光軸110aに垂直に配置される基準面132a’と、LED光源110から出射された光が入射する円柱状の入射面132b’と、入射面132b’に入射した光を反射させる反射面132c’と、反射面132c’で反射した光が出射する出射面132d’とを備える。ここで、第2の整形レンズ部132Aを透過して照射される光束を周辺光束loと呼ぶこととする。
 第2の整形レンズ部132Aの反射面132c’は、入射面132b’で屈折した光が臨界角より大きい角度で入射できるように設計され、光軸110aを中心とし、放物線を回転して得られる回転放物面又はベジェ曲線等の非球面形状を回転して得られる面に近似した面となっている。なお、第2の整形レンズ部132Aの反射面132c’の代わりに金属板等の反射鏡を用いてもよい。
 なお、第2の整形レンズ部132Aの出射面132d’は、光軸と直交する面に対して所定の角度を有する環状の面又は曲面である。出射面132d’の角度は、出射面132d’から出射する光が光軸110aと反対側へ傾くような角度に設計される。また、第2の整形レンズ部132Aの出射面132d’は、出射面132d’から出射する光が光軸110aと反対側へ傾くものであれば光軸と直交する環状の平面であってもよい。
 第1の整形レンズ部131Aと第2の整形レンズ部132Aとは図5に示すようにそれぞれ異なる仮想光源位置Fcと仮想光源位置Foとを有するものとする。つまり、第1の光学部材130Aから出射される中心光束lcと周辺光束loの見かけ上の光源位置はそれぞれ仮想光源位置Fcと仮想光源位置Foとなる。
(第2の光学部材)
 第2の光学部材140Aは、周辺レンズ部141A及び中心レンズ部142Aを有する。周辺レンズ部141Aは、第1の光学部材130Aと第2の光学部材140Aの距離dにおいて、第1の光学部材130Aの仮想光源位置Foと周辺レンズ部141Aの焦点を一致させることで、第1の光学部材130Aから出射される周辺光束loを平行光に整形する凸レンズである。また、中心レンズ部142Aは、第1の光学部材130Aと第2の光学部材140Aの距離dにおいて、第1の光学部材130Aの仮想光源位置Fcと中心レンズ部142Aの焦点を一致させることで、第1の光学部材130Aから出射される中心光束lcを平行光に整形する凸レンズである。なお、第2の光学部材140Aは、入射面に凸レンズを設けて出射面を平坦としてもよいし、入射面及び出射面に凸レンズを設けてもよい。また、仮想光源位置が第1の光学部材130Aと第2の光学部材140Aとのある場合は、第2の光学部材140Aを凹レンズで構成してもよい。
 第2の光学部材140Aは、第1の光学部材130Aとの距離がdより大きい場合において、第1の光学部材130Aから出射される中心光束lc及び周辺光束loを平行光より光軸110a側に配光する。また、同様に、第2の光学部材140Aは、第1の光学部材130Aとの距離がdより小さい場合において、第1の光学部材130Aから出射される中心光束lc及び周辺光束loを平行光より光軸110aと反対側に配光する。
 なお、第2の光学部材140Aは、光軸110aを中心として回転対称な形状を有する。また、第1の光学部材130A及び第2の光学部材140Aは、透明樹脂を射出成型してもよく、ガラスを削り出し加工して形成してもよい。
(第2の実施の形態の効果)
 上記第2の実施の形態によれば、第1の実施の形態の効果に加えて以下の効果を奏する。
 第1の光学部材130Aの第1の整形レンズ部131Aから出射される中心光束lcを第2の光学部材140Aの中心レンズ部142Aで整形し、第1の光学部材130Aの第2の整形レンズ部132Aから出射される周辺光束loを第2の光学部材140Aの周辺レンズ部141Aで整形するように構成したため、第1の光学部材130Aの設計に制限があり、第1の整形レンズ部131Aと第2の整形レンズ部132Aとが共通の仮想光源位置を有するように第1の光学部材130Aを設計できない場合でも、第1の光学部材130Aから出射される光を超狭角配光から広角配光に変化させて光を照射することができる。
 なお、本発明は、上記実施の形態及び上記実施例に限定されず、発明の要旨を変更しない範囲内で種々に変形可能である。
 本発明は、スポットライト照明、懐中電灯等の照明装置及びそれに用いられる光学部材に適用することができる。
1…LED素子、100、100A…LED照明装置、110…LED光源、110a…光軸、111…銅ブロック、117…放熱器、130、130A…光学部材、131、131A…整形レンズ部、131a…入射面、131b…出射面、132、132A…整形レンズ部、132a…基準面、132b…入射面、132c…反射面、132d…出射面、140、140A…光学部材、141A…周辺レンズ部、142A…中心レンズ部、lc…中心光束、lo…周辺光束、

Claims (5)

  1.  半導体発光素子と、
     前記半導体発光素子から出射される中心光束を集光して光軸方向に狭角光を出射する第1整形部と、前記半導体発光素子から前記中心光束の周辺に出射される周辺光束を集光して前記光軸方向に狭角光を出射する第2整形部とを有する第1の光学部材と、
     前記第1の光学部材との前記光軸方向の距離を可変に設けられ、予め定めた距離において前記第1の光学部材から出射される光を集光して平行光にする第2の光学部材とを備える照明装置。
  2.  前記第1整形部及び前記第2整形部は、共通の仮想光源位置を有する請求項1に記載の照明装置。
  3.  前記第1整形部及び前記第2整形部は、それぞれ異なる仮想光源位置を有し、
     前記第2の光学部材は、前記予め定めた距離において、前記第1整形部から出射される光を平行光とする中央レンズ部と、前記第2整形部から出射される光を平行光とする周辺レンズ部とを有する請求項1に記載の照明装置。
  4.  前記第1の光学部材の第2整形部は、前記半導体発光素子から出射される前記周辺光束を全反射する全反射面を有する請求項1-3のいずれか1項に記載の照明装置。
  5.  半導体発光素子から出射される中心光束を集光して光軸方向に狭角光を出射する第1整形部と、前記半導体発光素子から前記中心光束の周辺に出射される周辺光束を集光して前記光軸方向に狭角光を出射する第2整形部とを有する第1の光学部材と、
     前記第1の光学部材との前記光軸方向の距離を可変に設けられ、予め定めた距離において前記第1の光学部材から出射される光を集光して平行光にする第2の光学部材とを備える光学部材。
     
PCT/JP2016/063663 2015-05-14 2016-05-06 照明装置及び光学部材 WO2016181905A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-099167 2015-05-14
JP2015099167A JP2016219113A (ja) 2015-05-14 2015-05-14 照明装置及び光学部材

Publications (1)

Publication Number Publication Date
WO2016181905A1 true WO2016181905A1 (ja) 2016-11-17

Family

ID=57248003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063663 WO2016181905A1 (ja) 2015-05-14 2016-05-06 照明装置及び光学部材

Country Status (2)

Country Link
JP (1) JP2016219113A (ja)
WO (1) WO2016181905A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7236695B2 (ja) * 2018-11-09 2023-03-10 パナソニックIpマネジメント株式会社 照明装置
JP7235801B2 (ja) * 2021-05-12 2023-03-08 ミネベアミツミ株式会社 照明装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7411742B1 (en) * 2007-02-20 2008-08-12 Sekonix Co., Ltd. Focusing lens for LED
JP2014175126A (ja) * 2013-03-07 2014-09-22 Toshiba Lighting & Technology Corp スポットライト

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7411742B1 (en) * 2007-02-20 2008-08-12 Sekonix Co., Ltd. Focusing lens for LED
JP2014175126A (ja) * 2013-03-07 2014-09-22 Toshiba Lighting & Technology Corp スポットライト

Also Published As

Publication number Publication date
JP2016219113A (ja) 2016-12-22

Similar Documents

Publication Publication Date Title
CN106066019B (zh) 发光模块
JP5323998B2 (ja) 蛍光体、励起光源、光学システム、およびヒートシンクを備えた照明器具
US10240755B2 (en) Optical lens assembly and illumination device comprising the same
US9903562B2 (en) Light emitting apparatus
US10309601B2 (en) Light source device, lighting apparatus, and vehicle lamp device
CN107859968B (zh) 车灯照明系统、车灯总成及汽车
CN106051572B (zh) 车用灯具
CN105588012B (zh) 发光设备
US10267473B2 (en) Lighting device for vehicle having a reflective fluorescent body and prism
US9239144B2 (en) Light module
US20170343718A1 (en) Lighting system
JP6407407B2 (ja) 光源装置及び照明装置
KR20170079355A (ko) 발광 장치, 이 장치를 포함하는 광학 모듈, 및 이 모듈을 포함하는 차량
CN107408613B (zh) 光电子组件
US10151439B2 (en) Dual beam headlamp
CN106895335B (zh) 由透明材料制成的发光模块
WO2016175214A1 (ja) 照明装置及び光学部材
WO2016181905A1 (ja) 照明装置及び光学部材
US10125951B2 (en) Light flux control member, light-emitting device and lighting device
JPWO2019181506A1 (ja) 車両用灯具
EP3356875B1 (en) Led module with output lens
US10883691B2 (en) Illumination structure and light distributing method for the illumination structure
TW201000822A (en) Optical adder
JP2010153402A (ja) 照明灯具
KR101756413B1 (ko) 발광모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16792630

Country of ref document: EP

Kind code of ref document: A1