WO2016181853A1 - Gas chromatograph, temperature controller for same, and gas chromatograph temperature control method - Google Patents

Gas chromatograph, temperature controller for same, and gas chromatograph temperature control method Download PDF

Info

Publication number
WO2016181853A1
WO2016181853A1 PCT/JP2016/063327 JP2016063327W WO2016181853A1 WO 2016181853 A1 WO2016181853 A1 WO 2016181853A1 JP 2016063327 W JP2016063327 W JP 2016063327W WO 2016181853 A1 WO2016181853 A1 WO 2016181853A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
column
power supply
set temperature
separation column
Prior art date
Application number
PCT/JP2016/063327
Other languages
French (fr)
Japanese (ja)
Inventor
順子 柳谷
翁長 一夫
Original Assignee
日本写真印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本写真印刷株式会社 filed Critical 日本写真印刷株式会社
Publication of WO2016181853A1 publication Critical patent/WO2016181853A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/50Conditioning of the sorbent material or stationary liquid
    • G01N30/52Physical parameters
    • G01N30/54Temperature

Definitions

  • the present invention relates to a gas chromatograph, a temperature control device therefor, and a gas chromatograph temperature control method.
  • Patent Document 1 in the temperature adjustment of the thermostat of the gas chromatograph, the proportional gain and / or the integral gain are instructed to the temperature control circuit based on the air temperature and the target temperature in the thermostat, Techniques have been proposed to suppress temperature overshoot.
  • the temperature of the separation column reaches the column temperature at which the sample is separated in a short time, it is difficult to suppress overshoot.
  • the voltage of the power source that supplies power to the heater is selected from an allowable voltage range such as 100 V to 240 V, and further set to any voltage within this allowable voltage range.
  • the difference in temperature control parameters tends to cause a difference in the heat generation status of the heater, which makes it difficult to suppress overshoot.
  • a gas chromatograph includes a separation column for separating a sample introduced by a carrier gas into a plurality of components at a predetermined column temperature, a column heater for heating the separation column, and a separation column.
  • a temperature adjusting device for adjusting the temperature to the column temperature.
  • the temperature control device includes a set temperature indicating unit for indicating the set temperature of the separation column, a temperature measuring unit for measuring the temperature of the separation column, a set temperature indicated by the set temperature indicating unit, and a temperature measured by the temperature measuring unit.
  • a temperature control unit that controls the power output from the external power source to the column heater in accordance with the temperature difference between them and controls the temperature of the separation column to a set temperature.
  • the set temperature instructing unit changes the set temperature so as to gradually approach the column temperature as time elapses during the set temperature change period until the column temperature is reached.
  • the set temperature indicating unit changes the set temperature so as to gradually approach the column temperature as time passes during the set temperature changing period until the column temperature is reached. Therefore, if such control is not performed, the set temperature becomes lower than the column temperature during a period in which overshoot occurs. Thus, overshoot can be suppressed by generating the difference between the set temperature and the column temperature in the period.
  • the column heater may be configured to be able to supply power from an external power supply having a power supply voltage selected from a predetermined allowable voltage range.
  • the temperature adjustment device may be configured to be able to control power output to the column heater from an external power supply having the power supply voltage.
  • the gas chromatograph described above may further include a power supply voltage detection unit that detects the power supply voltage of the external power supply.
  • the temperature control unit may be configured to change the pulse width setting according to the power supply voltage detected by the power supply voltage detection unit and perform PWM control on the power output from the external power supply to the column heater.
  • the separation column may have a cylindrical resin molded product and a metal coating covering the outer surface of the resin molded product.
  • the column heater may be arranged in close contact with the metal coating and configured to heat the metal coating.
  • the set temperature instructing unit may be set so that the rate of change of the temperature difference between the set temperature and the column temperature decreases with time.
  • a temperature control device for a gas chromatograph includes a separation column for separating a sample introduced by a carrier gas into a plurality of components at a predetermined column temperature, and a column heater for heating the separation column. Used for gas chromatographs.
  • the temperature adjusting device is a device for adjusting the temperature of the separation column to the column temperature.
  • the temperature control device includes a set temperature indicating unit for indicating the set temperature of the separation column, a temperature measuring unit for measuring the temperature of the separation column, a set temperature indicated by the set temperature indicating unit, and a temperature measured by the temperature measuring unit.
  • a temperature control unit that controls the power output from the external power source to the column heater in accordance with the temperature difference between them and controls the temperature of the separation column to a set temperature.
  • the set temperature instruction unit changes the set temperature so as to gradually approach the column temperature as time elapses during the set temperature change period until the column temperature is reached.
  • the set temperature indicating unit is changed so that the set temperature gradually approaches the column temperature as time passes during the set temperature changing period until the column temperature is reached. To do. Therefore, if such control is not performed, the set temperature is lower than the column temperature during a period in which overshoot has occurred.
  • the column heater may be configured to be able to supply power from an external power supply having a power supply voltage selected from a predetermined allowable voltage range.
  • the temperature control unit includes a power supply voltage detection unit that detects the power supply voltage of the external power supply, and changes the pulse width setting according to the power supply voltage so as to PWM-control the power output from the external power supply to the column heater. It may be configured.
  • a gas chromatograph temperature control method includes a separation column for separating a sample introduced by a carrier gas into a plurality of components at a predetermined column temperature, and a column heater for heating the separation column. Used for gas chromatographs.
  • the temperature adjustment method is a method of adjusting the temperature of the separation column to the column temperature.
  • the temperature adjustment method includes a set temperature indicating step for indicating the set temperature of the separation column, a temperature measuring step for measuring the temperature of the separation column, a set temperature indicated in the set temperature indicating step, and a temperature measured in the temperature measuring step.
  • the set temperature instruction step the set temperature is changed so as to gradually approach the column temperature as time elapses in the set temperature change period until the column temperature is reached.
  • the set temperature is changed so that the set temperature gradually approaches the column temperature as time elapses in the set temperature indication step until the column temperature is reached. To do. Therefore, if such control is not performed, the set temperature becomes lower than the column temperature during a period in which overshoot occurs. Thus, overshoot can be suppressed by generating the difference between the set temperature and the column temperature in the period.
  • the temperature of the separation column can be reached in a short time while suppressing overshoot.
  • the temperature of the separation column can be reached in a short time while suppressing overshoot even with an inexpensive gas chromatograph.
  • the conceptual diagram which shows an example of a structure of the gas chromatograph which concerns on embodiment of this invention.
  • the top view which shows an example of the separation column used with the gas chromatograph of FIG.
  • the top view which shows the state by which the column heater was wound around the separation column of FIG.
  • FIG. 4 is a schematic diagram showing a cross-sectional structure cut along a line II in FIG. 3.
  • the top view which shows the state by which the heat insulating material was wound around the separation column of FIG.
  • the conceptual diagram which shows an example of the gas sensor used with the gas chromatograph of FIG.
  • the block diagram for demonstrating the structure of the gas chromatograph of FIG. The block diagram for demonstrating an example of a structure of the temperature control apparatus used with the gas chromatograph of FIG.
  • a waveform diagram of a triangular wave generated inside the PWM control circuit (b) a waveform diagram showing an example of a PWM signal when the power supply voltage of the external power supply is high, and (c) a case where the power supply voltage of the external power supply is low Waveform diagram showing an example of a PWM signal, (d) Waveform diagram showing an example of a voltage waveform applied to the column heater when the power supply voltage of the external power supply is high, (e) Application to the column heater when the power supply voltage of the external power supply is low The wave form diagram which shows an example of the voltage waveform performed. The graph which shows the change of the temperature of a separation column when setting temperature is constant when the power supply voltage of an external power supply is high.
  • the graph which shows the change of the temperature of a separation column when setting temperature is constant when the power supply voltage of an external power supply is low.
  • the graph which shows the change of the temperature of a separation column when setting temperature is brought close to column temperature gradually when the power supply voltage of an external power supply is high.
  • the graph which shows the change of the temperature of a separation column when setting temperature is made to approach column temperature gradually when the power supply voltage of an external power supply is low.
  • the gas chromatograph 10 includes an air pump 11, a gas purification device 12, a flow rate regulator 13, a flow rate sensor 14, a separation column 15, a semiconductor gas sensor 16, and a column heater. 20 and a temperature control device 30. Many of the components constituting the temperature adjustment device 30 are mounted on the control board 50.
  • the separation column 15, the semiconductor gas sensor 16, and the column heater 20 are included in the sensor column block 60.
  • a control thermistor 33 which is one of the components constituting the temperature adjustment device 30, is included in the sensor column block 60.
  • the control thermistor 33 is, for example, an NTC thermistor.
  • the carrier gas of the gas chromatograph 10 is air.
  • the air pump 11 is a device for flowing air as a carrier gas to the gas chromatograph 10.
  • the gas purification device 12 is a device that purifies the carrier gas, and includes, for example, a gas adsorbent and a gas decomposition catalyst in order to purify the carrier gas.
  • the gas adsorbent is, for example, activated carbon or silica gel.
  • the gas decomposition catalyst is an oxidation catalyst.
  • the flow rate adjuster 13 adjusts the flow rate of the carrier gas sent to the separation column 15 to be a constant amount.
  • a linear valve having a characteristic that the flow rate is proportional to the valve opening within a predetermined range is used.
  • the flow sensor 14 measures the flow rate of the carrier gas sent to the separation column 15.
  • the separation column 15 is a cylindrical device that separates a sample introduced by a carrier gas into a plurality of components at a predetermined column temperature.
  • a capillary column may be used as the separation column 15.
  • a sample introduction part 17 for introducing a sample is provided on the upstream side of the separation column 15.
  • the semiconductor gas sensor 16 is disposed on the downstream side of the separation column 15 and detects the component of the sample that has passed through the separation column 15.
  • the semiconductor gas sensor 16 is a semiconductor sensor as described later, for example.
  • the separation column 15 separates the sample at a predetermined column temperature.
  • a column heater 20 is attached to the separation column 15.
  • the column heater 20 is a rubber heater that is a planar heating element. The temperature of the column heater 20 is adjusted by the temperature adjustment device 30.
  • FIG. 2 shows the appearance of the separation column 15.
  • FIG. 3 shows a state in which the column heater 20 is wound around the separation column 15.
  • FIG. 4 is a schematic view of a cross section taken along the line II of FIG.
  • the separation column 15 has a cylindrical resin molded product 15a (FIG. 4) and a metal coating 15b that covers the outer surface of the resin molded product 15a.
  • the resin molded product 15a is made of, for example, a polyfluorinated ethylene resin, more specifically, for example, polytetrafluoroethylene.
  • the metal coating 15b is formed using, for example, a copper tube or a copper foil. As shown in FIG.
  • a cylindrical resin molded product 15a is filled with a filler 15c that forms a stationary phase.
  • the filler 15c is, for example, diatomaceous earth, molecular sieve, porous polymer, or alumina.
  • the filler 15c may be coated with a liquid phase.
  • a measurement thermistor 32 and a control thermistor 33 are attached to a central portion in the longitudinal direction of the separation column 15 by a binding band 31.
  • Thermal fuses 34 are attached to positions on both sides of the measurement thermistor 32 and the control thermistor 33.
  • a heat insulating material 35 is further wound on the separation column 15 around which the column heater 20 is wound.
  • the heat insulating material 35 is, for example, a foamed urethane sheet.
  • FIG. 6 is a conceptual diagram showing a semiconductor gas sensor 16 as an example of a gas sensor used in the gas chromatograph 10 of FIG.
  • a semiconductor gas sensor 16 includes a gas sensitive body 16a mainly composed of a metal oxide semiconductor, a coiled heater combined electrode 16b embedded in the gas sensitive body 16a, and the center of the coil of the heater combined electrode 16b.
  • a semiconductor resistance detection electrode 16c embedded in the gas sensitive body 16a so as to penetrate the vicinity thereof, and electrode pads 16d and 16e are provided. Both ends of the heater combined electrode 16b are connected to two electrode pads 16d.
  • the semiconductor resistance detection electrode 16c is connected to the electrode pad 16e.
  • the electrode pads 61d and 16e are used for taking out a change in load resistance between the heater electrode 16b and the semiconductor resistance detection electrode 16c.
  • the semiconductor gas sensor 16 detects a gas component to be detected based on a change in the resistance value of the gas sensitive body 16a.
  • gas components to be detected include volatile sulfides (VSC) that cause bad breath, and examples of VSCs include hydrogen sulfide, methyl mercaptan, ethyl mercaptan, and dimethyl sulfide.
  • VSC volatile sulfides
  • the metal oxide that forms the gas sensitive body 16a include SnO 2 , In 2 O 3 , ZnO, and WO 3 .
  • FIG. 7 is a block diagram of the gas chromatograph 10 for explaining the temperature control device 30 and the configuration around it. 7 shows the air pump 11, the gas purification device 12, the flow rate regulator 13, the flow rate sensor 14, the semiconductor gas sensor 16, the column heater 20, and the temperature adjustment device 30 shown in FIG. Also shown is a sensor column block 60 including a control substrate 50 and a separation column 15 (see FIG. 1). Connected to the control board 50 are various switches (not shown) and a switch / LED board 70 on which a power LED 71, an error LED 72, a ready LED 73, and a buzzer 74 for notifying the operation state of the gas chromatograph 10 are mounted. Has been.
  • the control board 50 is connected to a personal computer 80 for storing data transmitted to and received from the control board 50 and displaying the data on the display screen 81. Furthermore, an external power supply 100 is connected to the control board 50.
  • the external power supply 100 that can be connected to the control board 50 is a commercial AC power supply having a power supply voltage selected from an allowable voltage range of 90 V to 264 V, for example. In Japan, for example, a single-phase 100V or single-phase 200V AC power supply is connected.
  • the power LED 71 is lit when connected to the external power supply 100.
  • the ready LED 73 is lit when the gas chromatograph 10 becomes measurable.
  • the error LED 72 is lit when the gas chromatograph 10 malfunctions.
  • the control board 50 further includes an analog-digital conversion unit 51, a VH control unit 52, a linear valve control unit 53, and a DC voltage control unit 54.
  • the control board 50 includes a central processing unit (CPU) 38, a power supply voltage detection unit 36, a temperature control unit 37, and a zero-cross semiconductor relay (hereinafter referred to as ZCSSR) 39 as components constituting the temperature adjustment device 30. And have been implemented.
  • the analog / digital converter (A / D converter) 51 is connected to the electrode pads 16d and 16e.
  • the analog-to-digital conversion unit 51 performs the resistance of the gas sensitive body 16a.
  • the output voltage of the semiconductor gas sensor 16 that changes according to the value is converted into a digital signal and output to the CPU 38 of the temperature control device 30.
  • the VH controller 52 is connected to the two electrode pads 16d of the semiconductor gas sensor 16, and controls the temperature of the gas sensitive body 16a by controlling the voltage applied to the heater electrode 16b.
  • the temperature control device 30 is a device that adjusts the temperature of the separation column 15 to the column temperature.
  • the temperature adjustment device 30 includes a control thermistor 33, a power supply voltage detection unit 36, a temperature control unit 37, a CPU 38, a ZCSSR 39, and a resistor 44.
  • the temperature control unit 37 of the temperature adjustment device 30 includes a proportional-integral control circuit (hereinafter referred to as a PI control circuit) 41, a PWM control circuit 42, and a thermistor disconnection detection circuit 43.
  • the CPU 38 forms a set temperature instruction unit 38a by executing software.
  • the set temperature instruction unit 38 a instructs the set temperature of the separation column 15.
  • a control thermistor 33 and a CPU 38 are connected to the PI control circuit 41 of the temperature control unit 37.
  • the control thermistor 33 is a temperature measurement unit for measuring the temperature of the separation column 15.
  • the temperature control unit 37 controls the power output from the external power source 100 to the column heater 20 according to the temperature difference between the set temperature indicated by the set temperature indicating unit 38a and the temperature measured by the control thermistor 33, thereby separating the separation column.
  • 15 has a function of controlling the temperature of 15 to the set temperature.
  • the PI control circuit 41 compares the set temperature indicated by the set temperature indicating unit 38a of the CPU 38 with the temperature of the separation column 15 measured by the control thermistor 33, and compares the set temperature thus compared with the temperature of the separation column 15. An output voltage OV corresponding to the temperature difference is output.
  • a power supply voltage detection unit 36 is also connected to the PI control circuit 41.
  • the power supply voltage detector 36 determines whether the power supply voltage of the external power supply 100 is greater than or equal to the value near the center of the allowable voltage range or smaller than the value near the center, and outputs the determination result. For example, if the allowable voltage range is from 90V to 264V, for example, the value near the center of the allowable voltage range is a value selected from 130V to 200V.
  • the power supply voltage detection unit 36 outputs “Low” when the external power supply 100 is 100 V, and the power supply voltage detection unit 36 outputs “Low” when the external power supply 100 is 200 V. “High” is output.
  • the PI control circuit 41 has a fluctuation range of the output voltage OV2 when the power supply voltage detection unit 36 outputs “High” rather than a fluctuation range ROV1 of the output voltage OV1 when the power supply voltage detection unit 36 outputs “Low”.
  • ROV2 is set to be small (see FIG. 9A).
  • the PWM control circuit 42 outputs a pulse signal PS having a length corresponding to the output voltage OV of the PI control circuit 41 to the ZCSSR 39.
  • the column heater 20 and the external power supply 100 are connected in series between the two terminals of the ZCSSR 39 of the temperature control device 30.
  • the ZCSSR 39 When the ZCSSR 39 is turned on, power is supplied from the external power supply 100 by the column heater 20, and when the ZCCSR 39 is turned off, the supply of power from the external power supply 100 to the column heater 20 is stopped.
  • the ZCCSR 39 has a built-in zero cross circuit for triggering when the AC voltage of the external power supply 100 is near zero voltage.
  • the application of the voltage of the external power supply 100 to the column heater 20 is started at the first zero voltage after the pulse signal PS of the PWM control circuit 42 is output, and the column heater 20 is started at the first zero voltage after the output of the pulse signal PS is finished.
  • the application of the voltage of the external power supply 100 is stopped.
  • a voltage having the shape of a triangular wave TW is generated inside the PWM control circuit. If the period of the triangular wave TW is 120 ms, for example, the period of the PWM signal generated by the PWM control circuit 42 is 120 ms. When there is no temperature difference between the set temperature and the temperature of the separation column 15 or when the temperature of the separation column 15 is higher than the set temperature, the output voltage OV becomes 0V. The PWM control circuit 42 does not output a PWM signal when the output voltage OV of the PI control circuit 41 is 0V. As shown in FIGS.
  • the PWM signal P1 is output only during the period when the voltage of the triangular wave TW is below the upper limit value.
  • the maximum value (duty) of the PWM signal P1 when the power supply voltage of the external power supply 100 is 100 V is set to 80 ms.
  • the upper limit value of the fluctuation range ROV2 of the output voltage OV2 when the power supply voltage detection unit 36 outputs “High” is input.
  • the PWM signal P2 is output.
  • the maximum value (duty) of the PWM signal P1 when the power supply voltage of the external power supply 100 is 200 V is set to 20 ms.
  • the power supply voltage of the external power supply 100 is high (for example, 200 V)
  • the voltage applied to the column heater 20 is high, but supplied from the external power supply 100.
  • the time required for this is shortened.
  • the power supply voltage of the external power supply 100 is low (for example, 100 V)
  • the voltage applied to the column heater 20 is low, but supplied from the external power supply 100. The time will be longer.
  • the maximum power supplied to the column heater 20 is adjusted to a close value.
  • the waveform indicated by the solid line is the waveform of the voltage applied to the column heater 20.
  • FIG. 10 is a graph showing the measured temperature of the separation column 15 when the power supply voltage of the external power supply 100 is 264V
  • FIG. 11 shows the measured temperature of the separation column 15 when the power supply voltage of the external power supply 100 is 90V. It is a graph.
  • the atmospheric temperature when these measurements are performed is 10 ° C.
  • the gas chromatograph 10 is set so that the temperature of the separation column 15 is stabilized at the column temperature necessary for measurement in a short time within 30 minutes so as to be suitable for use in, for example, a medical field or a school laboratory. .
  • the temperature of the separation column 15 is set to be stable to the column temperature necessary for measurement within 30 minutes. ing. Therefore, when the power supply voltage is 264 V, that is, when the temperature is relatively easy to rise, the temperature of the separation column 15 greatly overshoots.
  • FIG. 12 and 13 show changes with time in the measurement temperature of the separation column 15 when the set temperature instruction unit 38a gradually brings the set temperature close to the column temperature, for example, 35 ° C.
  • FIG. 12 is a graph showing the measured temperature of the separation column 15 when the power supply voltage of the external power supply 100 is 264V
  • FIG. 13 shows the measured temperature of the separation column 15 when the power supply voltage of the external power supply 100 is 90V. It is a graph. 12 and 13, the thick line is the temperature, and the thin line is the control output from the set temperature instruction unit 38a.
  • the set temperature instruction unit 38a gradually brings the set temperature closer to the column temperature during the set temperature change period St.
  • the value of this hyperbolic function f becomes the set temperature.
  • is a constant appropriately selected through experiments
  • x is a time (sec) variable.
  • the set temperature change period St is set from the beginning of the heating of the column heater 20.
  • the initial period Bt corresponds to 60% of the amount of heat necessary to reach the column temperature from the ambient temperature. You may make it give electric energy.
  • the power supply voltage of the external power supply 100 is applied without performing PWM control.
  • the external power supply 100 is directly connected to the column heater 20 for an initial period Bt of about 1 and a half minutes, and in the case of the 90V external power supply 100, the external power supply 100 is connected to the column heater for an initial period Bt of about 3 minutes. Directly connected to 20.
  • the set temperature instruction unit 38a matches the set temperature with the column temperature. After the set temperature instruction unit 38a matches the set temperature to the column temperature, the temperature control performed by the PI control circuit 41 is normal PI control.
  • the temperature of the separation column 15 is set to be stable to the column temperature necessary for measurement within 30 minutes.
  • the power supply voltage is 264 V, that is, when the temperature is relatively easy to rise, the temperature of the separation column 15 hardly overshoots as shown in FIG.
  • the set temperature instruction unit 38 a instructs the set temperature of the separation column 15.
  • a control thermistor 33 that is a temperature measuring unit measures the temperature of the separation column 15.
  • the temperature control unit 37 controls the power output from the external power source 100 to the column heater 20 according to the temperature difference between the set temperature indicated by the set temperature indicating unit 38a and the temperature measured by the control thermistor 33, thereby separating the separation column.
  • the temperature of 15 is controlled to the set temperature.
  • the set temperature instructing unit 38a changes the set temperature so as to gradually approach the column temperature as time elapses during the set temperature changing period until the column temperature is reached. As described in the above example, in the set temperature change period St until the set temperature instruction unit 38a reaches the column temperature (35 ° C.
  • the set temperature is gradually increased to the column temperature as time elapses. Change to get closer.
  • the set temperature is made constant without performing such control, overshoot occurs as it appears remarkably in FIG. 10 of the reference example.
  • the set temperature is changed so as to gradually approach the column temperature as time elapses, as shown in FIG. 12 of the embodiment, the set temperature is higher than the column temperature during the period when the overshoot has occurred. Also lower. Thus, overshoot can be suppressed by generating a difference between the set temperature and the column temperature during the period.
  • the column heater 20 is configured to be able to supply power from the external power supply 100 having a power supply voltage selected from an allowable voltage range of 90 V to 264 V.
  • the temperature control apparatus 30 is comprised so that control of the electric power output with respect to the column heater 20 from the external power supply 100 which has such a power supply voltage is possible.
  • the example at the time of selecting 100V and 200V from the allowable voltage range is demonstrated.
  • setting of the temperature control device 30 is difficult in the prior art. .
  • the set temperature instructing unit 38a changes the set temperature so as to gradually approach the column temperature as time elapses during the set temperature changing period St until the column temperature is reached. Therefore, overshoot can be easily suppressed while reducing the time to reach the column temperature over the entire allowable voltage range.
  • the temperature adjustment device 30 includes a power supply voltage detection unit 36 that detects the power supply voltage of the external power supply 100.
  • the temperature control unit 37 is configured to change the setting of the pulse width according to the power supply voltage detected by the power supply voltage detection unit 36 and to perform PWM control of the power output from the external power supply 100 to the column heater 20. Yes.
  • the power supply voltage detection unit 36 detects 100 V lower than 160 V
  • the maximum value (duty) of the period during which the PWM signal P1 is output becomes as long as 80 ms.
  • the power supply voltage detection unit 36 detects 200 V higher than 160 V, the maximum value of the period during which the PWM signal P2 is output becomes 20 ms.
  • the amount of power supplied to the column heater 20 can be made close, and temperature control that is difficult to overshoot can be easily performed.
  • the determination based on one threshold value 160 V in the above-described embodiment
  • the maximum value of the period during which the PWM signal is output may be changed continuously.
  • the separation column 15 has a cylindrical resin molded product 15a and a metal coating 15b covering the outer surface of the resin molded product 15a, and the column heater 20 is disposed in close contact with the metal coating 15b to heat the metal coating 15b. Is configured to do. Since the heat capacities of the resin molded product 15a and the metal coating 15b are small, the temperature of the separation column 15 can be quickly reached the column temperature. On the other hand, conventionally, in the separation column 15 constituted by using the resin molded product 15a and the metal coating 15b, overshoot at the time of temperature adjustment tends to occur. On the other hand, in the present embodiment, the set temperature instructing unit 38a changes the set temperature so as to gradually approach the column temperature as time elapses during the set temperature change period St until the column temperature is reached. Can be sufficiently suppressed.
  • the set temperature instruction unit 38a is set so that the change rate of the temperature difference between the set temperature and the column temperature decreases with time using a hyperbolic function f as shown in FIG. Since such setting is performed, the effect of suppressing the overshoot is higher than when the rate of change of the temperature difference between the set temperature and the column temperature is constant regardless of the passage of time.
  • the temperature adjustment device 30 is configured using the PI control circuit 41, but the temperature adjustment device 30 may have other configurations.
  • the temperature adjusting device 30 is configured by another control circuit that controls the power output from the external power source to the column heater in accordance with the temperature difference between the set temperature indicated by the set temperature indicating unit and the temperature measured by the temperature measuring unit. May be.
  • a proportional control circuit P control circuit
  • P control circuit that performs proportional control
  • the separation column 15 is configured to include the cylindrical resin molded product 15a and the metal coating 15b covering the outer surface thereof.
  • the configuration of the separation column 15 is not limited to this. It is not something that can be done.
  • a cylindrical glass molded product and / or a cylindrical metal molded product can be used instead of the cylindrical resin molded product 15a and the metal coating 15b covering its outer surface.
  • the control thermistor 33 is used for the temperature measurement unit.
  • the members constituting the temperature measurement unit are not limited to the thermistor, and for example, a thermocouple, a diode, a transistor, or an IC may be used. it can.
  • the control thermistor 33 which is a temperature measuring element used for measurement is not limited to one, and a plurality of thermistors can be used. For example, an average value or a median value can be used as the measurement value output from the temperature measurement unit when a plurality of temperature measurement units are used.
  • the set temperature instruction unit 38a is formed by the CPU 38 using software has been described.
  • the set temperature instruction unit 38a may be configured by, for example, hardware of an electronic circuit.
  • the function used for changing the set temperature so as to gradually approach the column temperature as time passes in the change period St is not limited to this.
  • a function obtained by expanding the above function into a polynomial of x may be used.
  • the set temperature may be changed so as to gradually approach the column temperature as time passes by using a polynomial of x that is not related to the above function.
  • the present invention can be widely applied to a gas chromatograph, its temperature control device, and a gas chromatograph temperature control method.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Control Of Temperature (AREA)

Abstract

[Problem] To provide an inexpensive gas chromatograph capable of suppressing overshoot while causing a separation column temperature to quickly stabilize at a column temperature at which a sample is separated. [Solution] A setting temperature request unit 38a requests a separation column 15 setting temperature. A control thermistor 33 that serves as a temperature measurement unit measures the temperature of a separation column 15. A temperature control unit 37 controls the power output from an external power supply 100 to a column heater 20 according to the temperature difference between the setting temperature requested by the setting temperature request unit 38a and the temperature measured by the control thermistor 33 and controls the separation column 15 temperature such that the same becomes the setting temperature. During a setting temperature variation period until a column temperature is reached, the setting temperature request unit 38a changes the setting temperature such that the same gradually approaches the column temperature over time.

Description

ガスクロマトグラフ及びその温度調節装置並びにガスクロマトグラフの温度調節方法Gas chromatograph, temperature control device thereof, and temperature control method of gas chromatograph
 本発明は、ガスクロマトグラフ及びその温度調節装置並びにガスクロマトグラフの温度調節方法に関する。 The present invention relates to a gas chromatograph, a temperature control device therefor, and a gas chromatograph temperature control method.
 従来のガスクロマトグラフの温度調整では、例えば特許文献1(特開2014-211386号公報)に記載されているように、ヒータによる発熱量を操作量として比例制御(P制御)、比例積分制御(PI制御)、又は比例積分微分制御(PID制御)に基づき制御を行う温度制御回路がしばしば用いられる。しかし、比例制御(P制御)、比例積分制御(PI制御)、又は比例積分微分制御(PID制御)に基づきヒータによる発熱量を操作量として制御しても、温度がカラム温度に達した後にオーバーシュートする場合がある。 In conventional temperature adjustment of a gas chromatograph, for example, as described in Patent Document 1 (Japanese Patent Laid-Open No. 2014-212386), the amount of heat generated by a heater is used as a manipulated variable for proportional control (P control) and proportional integral control (PI). Control), or a temperature control circuit that performs control based on proportional-integral-derivative control (PID control) is often used. However, even if the amount of heat generated by the heater is controlled as the manipulated variable based on proportional control (P control), proportional integral control (PI control), or proportional integral derivative control (PID control), the temperature will exceed after reaching the column temperature. May shoot.
特開2014-211386号公報Japanese Patent Application Laid-Open No. 2014-212386
 そこで、特許文献1には、ガスクロマトグラフの恒温槽の温度調整において、恒温槽内の空気温度と目標温度とに基づき比例ゲイン及び/又は積分ゲインを温度制御回路に指示することで、恒温槽の温度のオーバーシュートを抑える技術が提案されている。
 しかし、短い時間で分離カラムの温度を試料の分離を行うカラム温度に到達させようとすると、オーバーシュートの抑制が難しくなる。特に、ヒータに電力を供給する電源の電圧を、例えば100Vから240Vなどのように許容電圧範囲の中から選択して、さらにこの許容電圧範囲内のいずれかの電圧に設定すればよい場合には、温度制御のパラメータの違いが原因でヒータの発熱状況に差異が生じる傾向があり、そのためオーバーシュートの抑制が難しくなる。
Therefore, in Patent Document 1, in the temperature adjustment of the thermostat of the gas chromatograph, the proportional gain and / or the integral gain are instructed to the temperature control circuit based on the air temperature and the target temperature in the thermostat, Techniques have been proposed to suppress temperature overshoot.
However, if the temperature of the separation column reaches the column temperature at which the sample is separated in a short time, it is difficult to suppress overshoot. In particular, when the voltage of the power source that supplies power to the heater is selected from an allowable voltage range such as 100 V to 240 V, and further set to any voltage within this allowable voltage range. The difference in temperature control parameters tends to cause a difference in the heat generation status of the heater, which makes it difficult to suppress overshoot.
 本発明の課題は、分離カラムの温度を、オーバーシュートを抑えながら試料の分離を行うカラム温度に短い時間で到達させることのできる安価なガスクロマトグラフ及びそのようなガスクロマトグラフに用いられる温度調節装置を提供することである。
 本発明の他の課題は、高価なガスクロマトグラフを用いなくても、分離カラムの温度を、オーバーシュートを抑えながら試料の分離を行うカラム温度に短い時間で到達させることのできるガスクロマトグラフの温度調節方法を提供することである。
An object of the present invention is to provide an inexpensive gas chromatograph capable of allowing the temperature of a separation column to reach the column temperature for separating a sample in a short time while suppressing overshoot, and a temperature control device used for such a gas chromatograph. Is to provide.
Another object of the present invention is to control the temperature of a gas chromatograph that allows the temperature of a separation column to reach the column temperature for separating a sample in a short time while suppressing overshoot without using an expensive gas chromatograph. Is to provide a method.
 以下に、課題を解決するための手段として複数の態様を説明する。これら態様は、必要に応じて任意に組み合せることができる。
 本発明の一見地に係るガスクロマトグラフは、キャリアガスにより導入される試料を、所定のカラム温度において複数の成分に分離するための分離カラムと、分離カラムを加熱するためのカラムヒータと、分離カラムの温度をカラム温度に調節するための温度調節装置と、を備えている。温度調節装置は、分離カラムの設定温度を指示する設定温度指示部と、分離カラムの温度を測定するための温度測定部と、設定温度指示部が指示する設定温度と温度測定部が測定した温度との温度差に応じて外部電源からカラムヒータに対して出力される電力を制御して分離カラムの温度を設定温度に制御する温度制御部と、を含んでいる。設定温度指示部は、カラム温度に達すまでの間の設定温度変更期間では、設定温度を時間経過に従って徐々にカラム温度に近づけるように変更するものである。
 本発明の一見地に係るガスクロマトグラフでは、設定温度指示部が、カラム温度に達すまでの間の設定温度変更期間では、設定温度を時間経過に従って徐々にカラム温度に近づけるように変更する。したがって、このような制御を行わなければオーバーシュートが発生していた期間では、設定温度がカラム温度よりも低くなる。このように上記期間に設定温度とカラム温度との差分を発生させることで、オーバーシュートを抑制できる。
Hereinafter, a plurality of modes will be described as means for solving the problems. These aspects can be arbitrarily combined as necessary.
A gas chromatograph according to an aspect of the present invention includes a separation column for separating a sample introduced by a carrier gas into a plurality of components at a predetermined column temperature, a column heater for heating the separation column, and a separation column. A temperature adjusting device for adjusting the temperature to the column temperature. The temperature control device includes a set temperature indicating unit for indicating the set temperature of the separation column, a temperature measuring unit for measuring the temperature of the separation column, a set temperature indicated by the set temperature indicating unit, and a temperature measured by the temperature measuring unit. And a temperature control unit that controls the power output from the external power source to the column heater in accordance with the temperature difference between them and controls the temperature of the separation column to a set temperature. The set temperature instructing unit changes the set temperature so as to gradually approach the column temperature as time elapses during the set temperature change period until the column temperature is reached.
In the gas chromatograph according to an aspect of the present invention, the set temperature indicating unit changes the set temperature so as to gradually approach the column temperature as time passes during the set temperature changing period until the column temperature is reached. Therefore, if such control is not performed, the set temperature becomes lower than the column temperature during a period in which overshoot occurs. Thus, overshoot can be suppressed by generating the difference between the set temperature and the column temperature in the period.
 上述のガスクロマトグラフにおいて、カラムヒータは、所定の許容電圧範囲から選択された電源電圧を有する外部電源から電力を供給可能に構成されてもよい。温度調節装置は、当該電源電圧を有する外部電源からカラムヒータに対して出力される電力を制御可能に構成されてもよい。
 上述のガスクロマトグラフは、外部電源の電源電圧を検出する電源電圧検出部をさらに備えていてもよい。温度制御部は、電源電圧検出部で検出された電源電圧に応じてパルス幅の設定を変更して外部電源からカラムヒータに対して出力される電力をPWM制御するように構成されてもよい。
 上述のガスクロマトグラフにおいて、分離カラムは、筒状の樹脂成形品と、樹脂成形品の外面を覆う金属被覆とを有していてもよい。カラムヒータは、金属被覆に密接して配設され、金属被覆を加熱するように構成されてもよい。
 上述のガスクロマトグラフにおいて、設定温度指示部は、設定温度とカラム温度との温度差の変化率が時間経過とともに減少するように設定されていてもよい。
In the gas chromatograph described above, the column heater may be configured to be able to supply power from an external power supply having a power supply voltage selected from a predetermined allowable voltage range. The temperature adjustment device may be configured to be able to control power output to the column heater from an external power supply having the power supply voltage.
The gas chromatograph described above may further include a power supply voltage detection unit that detects the power supply voltage of the external power supply. The temperature control unit may be configured to change the pulse width setting according to the power supply voltage detected by the power supply voltage detection unit and perform PWM control on the power output from the external power supply to the column heater.
In the gas chromatograph described above, the separation column may have a cylindrical resin molded product and a metal coating covering the outer surface of the resin molded product. The column heater may be arranged in close contact with the metal coating and configured to heat the metal coating.
In the gas chromatograph described above, the set temperature instructing unit may be set so that the rate of change of the temperature difference between the set temperature and the column temperature decreases with time.
 本発明の一見地に係るガスクロマトグラフの温度調節装置は、キャリアガスにより導入される試料を、所定のカラム温度において複数の成分に分離するための分離カラムと分離カラムを加熱するためのカラムヒータとを備えるガスクロマトグラフに用いられる。温度調節装置は、分離カラムの温度をカラム温度に調節するための装置である。温度調節装置は、分離カラムの設定温度を指示する設定温度指示部と、分離カラムの温度を測定するための温度測定部と、設定温度指示部が指示する設定温度と温度測定部が測定した温度との温度差に応じて外部電源からカラムヒータに対して出力される電力を制御して分離カラムの温度を設定温度に制御する温度制御部と、を含んでいる。設定温度指示部は、カラム温度に達すまでの間の設定温度変更期間では、設定温度を時間経過に従って徐々にカラム温度に近づけるように変更する。
 本発明の一見地に係るガスクロマトグラフの温度調節装置では、設定温度指示部が、カラム温度に達すまでの間の設定温度変更期間では、設定温度を時間経過に従って徐々にカラム温度に近づけるように変更する。したがって、このような制御を行わなければオーバーシュートが発生しいていた期間では、設定温度がカラム温度よりも低い。このように上記期間に設定温度とカラム温度との差分を発生させることで、オーバーシュートを抑制できる。
 上述の温度調節装置において、カラムヒータは、所定の許容電圧範囲から選択された電源電圧を有する外部電源から電力を供給可能に構成されていてもよい。温度制御部は、外部電源の電源電圧を検出する電源電圧検出部を含み、電源電圧に応じてパルス幅の設定を変更して外部電源からカラムヒータに対して出力される電力をPWM制御するように構成されてもよい。
A temperature control device for a gas chromatograph according to an aspect of the present invention includes a separation column for separating a sample introduced by a carrier gas into a plurality of components at a predetermined column temperature, and a column heater for heating the separation column. Used for gas chromatographs. The temperature adjusting device is a device for adjusting the temperature of the separation column to the column temperature. The temperature control device includes a set temperature indicating unit for indicating the set temperature of the separation column, a temperature measuring unit for measuring the temperature of the separation column, a set temperature indicated by the set temperature indicating unit, and a temperature measured by the temperature measuring unit. And a temperature control unit that controls the power output from the external power source to the column heater in accordance with the temperature difference between them and controls the temperature of the separation column to a set temperature. The set temperature instruction unit changes the set temperature so as to gradually approach the column temperature as time elapses during the set temperature change period until the column temperature is reached.
In the temperature control device for a gas chromatograph according to an aspect of the present invention, the set temperature indicating unit is changed so that the set temperature gradually approaches the column temperature as time passes during the set temperature changing period until the column temperature is reached. To do. Therefore, if such control is not performed, the set temperature is lower than the column temperature during a period in which overshoot has occurred. Thus, overshoot can be suppressed by generating the difference between the set temperature and the column temperature in the period.
In the above-described temperature control apparatus, the column heater may be configured to be able to supply power from an external power supply having a power supply voltage selected from a predetermined allowable voltage range. The temperature control unit includes a power supply voltage detection unit that detects the power supply voltage of the external power supply, and changes the pulse width setting according to the power supply voltage so as to PWM-control the power output from the external power supply to the column heater. It may be configured.
 本発明の一見地に係るガスクロマトグラフの温度調節方法は、キャリアガスにより導入される試料を、所定のカラム温度において複数の成分に分離するための分離カラムと分離カラムを加熱するためのカラムヒータとを備えるガスクロマトグラフに用いられる。温度調節方法は、分離カラムの温度をカラム温度に調節する方法である。温度調節方法は、分離カラムの設定温度を指示する設定温度指示ステップと、分離カラムの温度を測定する温度測定ステップと、設定温度指示ステップで指示された設定温度と温度測定ステップで測定された温度との温度差に応じて外部電源からカラムヒータに対して出力される電力を制御して分離カラムの温度を設定温度に制御する温度制御ステップと、を含んでいる。設定温度指示ステップでは、カラム温度に達すまでの間の設定温度変更期間では、設定温度が時間経過に従って徐々にカラム温度に近づくように変更されるものである。
 本発明の一見地に係るガスクロマトグラフの温度調節方法では、設定温度指示ステップで、カラム温度に達すまでの間の設定温度変更期間では、設定温度を時間経過に従って徐々にカラム温度に近づけるように変更する。したがって、このような制御を行わなければオーバーシュートが発生していた期間では、設定温度がカラム温度よりも低くなる。このように上記期間に設定温度とカラム温度との差分を発生させることで、オーバーシュートを抑制できる。
A gas chromatograph temperature control method according to an aspect of the present invention includes a separation column for separating a sample introduced by a carrier gas into a plurality of components at a predetermined column temperature, and a column heater for heating the separation column. Used for gas chromatographs. The temperature adjustment method is a method of adjusting the temperature of the separation column to the column temperature. The temperature adjustment method includes a set temperature indicating step for indicating the set temperature of the separation column, a temperature measuring step for measuring the temperature of the separation column, a set temperature indicated in the set temperature indicating step, and a temperature measured in the temperature measuring step. And a temperature control step of controlling the power output from the external power source to the column heater in accordance with the temperature difference between the separation column and the temperature of the separation column to a set temperature. In the set temperature instruction step, the set temperature is changed so as to gradually approach the column temperature as time elapses in the set temperature change period until the column temperature is reached.
In the gas chromatograph temperature adjustment method according to an aspect of the present invention, the set temperature is changed so that the set temperature gradually approaches the column temperature as time elapses in the set temperature indication step until the column temperature is reached. To do. Therefore, if such control is not performed, the set temperature becomes lower than the column temperature during a period in which overshoot occurs. Thus, overshoot can be suppressed by generating the difference between the set temperature and the column temperature in the period.
 本発明のガスクロマトグラフ又はガスクロマトグラフの温度調節装置によれば、分離カラムの温度を、オーバーシュートを抑えながらカラム温度に短い時間で到達させることができる。
 本発明のガスクロマトグラフの温度調節方法によれば、安価なガスクロマトグラフであっても、分離カラムの温度を、オーバーシュートを抑えながらカラム温度に短い時間で到達させることができる。
According to the gas chromatograph or the gas chromatograph temperature control apparatus of the present invention, the temperature of the separation column can be reached in a short time while suppressing overshoot.
According to the gas chromatograph temperature adjustment method of the present invention, the temperature of the separation column can be reached in a short time while suppressing overshoot even with an inexpensive gas chromatograph.
本発明の実施形態に係るガスクロマトグラフの構成の一例を示す概念図。The conceptual diagram which shows an example of a structure of the gas chromatograph which concerns on embodiment of this invention. 図1のガスクロマトグラフで用いられる分離カラムの一例を示す平面図。The top view which shows an example of the separation column used with the gas chromatograph of FIG. 図2の分離カラムにカラムヒータが巻きつけられた状態を示す平面図。The top view which shows the state by which the column heater was wound around the separation column of FIG. 図3のI-I線で切断した断面の構造を示す模式図。FIG. 4 is a schematic diagram showing a cross-sectional structure cut along a line II in FIG. 3. 図3の分離カラムにさらに保温材が巻きつけられた状態を示す平面図。The top view which shows the state by which the heat insulating material was wound around the separation column of FIG. 図1のガスクロマトグラフで用いられるガスセンサの一例を示す概念図。The conceptual diagram which shows an example of the gas sensor used with the gas chromatograph of FIG. 図1のガスクロマトグラフの構成を説明するためのブロック図。The block diagram for demonstrating the structure of the gas chromatograph of FIG. 図1のガスクロマトグラフで用いられる温度調節装置の構成の一例を説明するためのブロック図。The block diagram for demonstrating an example of a structure of the temperature control apparatus used with the gas chromatograph of FIG. (a)PWM制御回路の内部で発生される三角波の波形図、(b)外部電源の電源電圧が高い場合のPWM信号の一例を示す波形図、(c)外部電源の電源電圧が低い場合のPWM信号の一例を示す波形図、(d)外部電源の電源電圧が高い場合にカラムヒータに印加される電圧波形の一例を示す波形図、(e)外部電源の電源電圧が低い場合にカラムヒータに印加される電圧波形の一例を示す波形図。(A) A waveform diagram of a triangular wave generated inside the PWM control circuit, (b) a waveform diagram showing an example of a PWM signal when the power supply voltage of the external power supply is high, and (c) a case where the power supply voltage of the external power supply is low Waveform diagram showing an example of a PWM signal, (d) Waveform diagram showing an example of a voltage waveform applied to the column heater when the power supply voltage of the external power supply is high, (e) Application to the column heater when the power supply voltage of the external power supply is low The wave form diagram which shows an example of the voltage waveform performed. 外部電源の電源電圧が高い場合に設定温度を一定としたときの分離カラムの温度の変化を示すグラフ。The graph which shows the change of the temperature of a separation column when setting temperature is constant when the power supply voltage of an external power supply is high. 外部電源の電源電圧が低い場合に設定温度を一定としたときの分離カラムの温度の変化を示すグラフ。The graph which shows the change of the temperature of a separation column when setting temperature is constant when the power supply voltage of an external power supply is low. 外部電源の電源電圧が高い場合に設定温度をカラム温度に徐々に近づけたときの分離カラムの温度の変化を示すグラフ。The graph which shows the change of the temperature of a separation column when setting temperature is brought close to column temperature gradually when the power supply voltage of an external power supply is high. 外部電源の電源電圧が低い場合に設定温度をカラム温度に徐々に近づけたときの分離カラムの温度の変化を示すグラフ。The graph which shows the change of the temperature of a separation column when setting temperature is made to approach column temperature gradually when the power supply voltage of an external power supply is low. 設定温度を変化させる関数の一例を説明するためのグラフ。The graph for demonstrating an example of the function which changes preset temperature.
 本発明の一実施形態に係るガスクロマトグラフ及びその温度調節装置について図面を用いて説明する。
 (1)ガスクロマトグラフの構成の概要
 図1に示されているように、ガスクロマトグラフ10は、エアポンプ11とガス浄化装置12と流量調整器13と流量センサ14と分離カラム15と半導体ガスセンサ16とカラムヒータ20と温度調節装置30とを備えている。温度調節装置30を構成する部品の多くは、制御基板50に実装されている。分離カラム15と半導体ガスセンサ16とカラムヒータ20とは、センサカラムブロック60に含まれている。温度調節装置30を構成する部品のうちの一つである制御サーミスタ33は、センサカラムブロック60に含まれている。制御サーミスタ33は、例えばNTCサーミスタである。
 ガスクロマトグラフ10のキャリアガスは、空気である。エアポンプ11は、キャリアガスとしての空気をガスクロマトグラフ10に流す装置である。ガス浄化装置12は、キャリアガスを浄化する装置であり、キャリアガスを浄化するために例えばガス吸着剤やガス分解触媒を備えている。ガス吸着剤は、例えば活性炭やシリカゲルである。また、ガス分解触媒は、酸化触媒である。
A gas chromatograph and a temperature control device thereof according to an embodiment of the present invention will be described with reference to the drawings.
(1) Outline of configuration of gas chromatograph As shown in FIG. 1, the gas chromatograph 10 includes an air pump 11, a gas purification device 12, a flow rate regulator 13, a flow rate sensor 14, a separation column 15, a semiconductor gas sensor 16, and a column heater. 20 and a temperature control device 30. Many of the components constituting the temperature adjustment device 30 are mounted on the control board 50. The separation column 15, the semiconductor gas sensor 16, and the column heater 20 are included in the sensor column block 60. A control thermistor 33, which is one of the components constituting the temperature adjustment device 30, is included in the sensor column block 60. The control thermistor 33 is, for example, an NTC thermistor.
The carrier gas of the gas chromatograph 10 is air. The air pump 11 is a device for flowing air as a carrier gas to the gas chromatograph 10. The gas purification device 12 is a device that purifies the carrier gas, and includes, for example, a gas adsorbent and a gas decomposition catalyst in order to purify the carrier gas. The gas adsorbent is, for example, activated carbon or silica gel. The gas decomposition catalyst is an oxidation catalyst.
 流量調整器13は、分離カラム15に送られるキャリアガスの流量が一定量になるように調整する。流量調整器13には、例えば所定の範囲で流量が弁開度に比例する特性を有するリニアバルブが用いられる。流量センサ14は、分離カラム15に送られるキャリアガスの流量を測定する。
 分離カラム15は、キャリアガスにより導入される試料を、所定のカラム温度において複数の成分に分離する筒状の器材である。ここでは、分離カラム15が充填カラムである場合について説明するが、分離カラム15にキャピラリーカラムを使用してもよい。分離カラム15の上流側には、試料を導入するための試料導入部17が設けられている。
 半導体ガスセンサ16は、分離カラム15の下流側に配置され、分離カラム15を通過してきた試料の成分を検知する。半導体ガスセンサ16は、例えば、後述するような半導体センサである。
 分離カラム15は、例えば所定のカラム温度で試料の分離を行う。分離カラム15を所定のカラム温度にするために、分離カラム15にはカラムヒータ20が取り付けられている。カラムヒータ20は、面状発熱体であるラバーヒータである。カラムヒータ20の温度は、温度調節装置30によって調節される。
The flow rate adjuster 13 adjusts the flow rate of the carrier gas sent to the separation column 15 to be a constant amount. As the flow rate regulator 13, for example, a linear valve having a characteristic that the flow rate is proportional to the valve opening within a predetermined range is used. The flow sensor 14 measures the flow rate of the carrier gas sent to the separation column 15.
The separation column 15 is a cylindrical device that separates a sample introduced by a carrier gas into a plurality of components at a predetermined column temperature. Here, although the case where the separation column 15 is a packed column will be described, a capillary column may be used as the separation column 15. A sample introduction part 17 for introducing a sample is provided on the upstream side of the separation column 15.
The semiconductor gas sensor 16 is disposed on the downstream side of the separation column 15 and detects the component of the sample that has passed through the separation column 15. The semiconductor gas sensor 16 is a semiconductor sensor as described later, for example.
For example, the separation column 15 separates the sample at a predetermined column temperature. In order to set the separation column 15 to a predetermined column temperature, a column heater 20 is attached to the separation column 15. The column heater 20 is a rubber heater that is a planar heating element. The temperature of the column heater 20 is adjusted by the temperature adjustment device 30.
 (2)分離カラム周辺の構成
 図2から図5を用いて、分離カラム15の周辺の構成について説明する。図2には、分離カラム15の外観が示されている。図3には、分離カラム15にカラムヒータ20が巻きつけられた状態が示されている。図4は、図3のI-I線で切断した断面の模式図である。
 分離カラム15は、円筒状の樹脂成形品15a(図4)と、樹脂成形品15aの外面を覆う金属被覆15bを有している。樹脂成形品15aは、例えばポリフッ化エチレン樹脂、さらに詳しくは例えばポリテトラフルオロエチレンで形成される。金属被覆15bは、例えば銅管又は銅箔を用いて形成される。
 図4に示すように、円筒状の樹脂成形品15aの内部には、固定相を形成する充填材15cが充填されている。充填材15cは、例えば珪藻土、モレキュラシーブ、ポーラスポリマー、又はアルミナである。また、固定相を形成するために、充填材15cには液相がコーティングさせていてもよい。
 図3に示すように、分離カラム15の長手方向の中央部分に測定サーミスタ32と制御サーミスタ33が結束バンド31によって取り付けられている。測定サーミスタ32と制御サーミスタ33の両側の位置に温度ヒューズ34が取り付けられている。
 図5に示すように、カラムヒータ20が巻きつけられている分離カラム15の上には、さらに保温材35が巻きつけられている。保温材35は、例えば発泡ウレタンシートである。
(2) Configuration around the separation column The configuration around the separation column 15 will be described with reference to FIGS. FIG. 2 shows the appearance of the separation column 15. FIG. 3 shows a state in which the column heater 20 is wound around the separation column 15. FIG. 4 is a schematic view of a cross section taken along the line II of FIG.
The separation column 15 has a cylindrical resin molded product 15a (FIG. 4) and a metal coating 15b that covers the outer surface of the resin molded product 15a. The resin molded product 15a is made of, for example, a polyfluorinated ethylene resin, more specifically, for example, polytetrafluoroethylene. The metal coating 15b is formed using, for example, a copper tube or a copper foil.
As shown in FIG. 4, a cylindrical resin molded product 15a is filled with a filler 15c that forms a stationary phase. The filler 15c is, for example, diatomaceous earth, molecular sieve, porous polymer, or alumina. Moreover, in order to form a stationary phase, the filler 15c may be coated with a liquid phase.
As shown in FIG. 3, a measurement thermistor 32 and a control thermistor 33 are attached to a central portion in the longitudinal direction of the separation column 15 by a binding band 31. Thermal fuses 34 are attached to positions on both sides of the measurement thermistor 32 and the control thermistor 33.
As shown in FIG. 5, a heat insulating material 35 is further wound on the separation column 15 around which the column heater 20 is wound. The heat insulating material 35 is, for example, a foamed urethane sheet.
 (3)半導体ガスセンサ16
 図6は、図1のガスクロマトグラフ10で用いられるガスセンサの一例として半導体ガスセンサ16を示す概念図である。図6には、半導体ガスセンサ16は、金属酸化物半導体を主成分とする感ガス体16aと、感ガス体16a中に埋設したコイル状のヒータ兼用電極16bと、ヒータ兼用電極16bのコイルの中心又はその近傍を貫通するように感ガス体16a中に埋設した半導体抵抗検出用電極16cと、電極パッド16d,16eとを備えている。ヒータ兼用電極16bの両端は2つの電極パッド16dに接続されている。半導体抵抗検出用電極16cは電極パッド16eに接続されている。電極パッド61d,16eは、ヒータ兼用電極16bと半導体抵抗検出用電極16cとの間の負荷抵抗の変化を取り出すために用いられる。
 半導体ガスセンサ16は、感ガス体16aの抵抗値の変化に基づいて検知対象のガス成分を検出する。検知対象のガス成分としては、例えば口臭の要因となる揮発性硫化物(VSC:Volatile Sulphur Compounds)があり、VSCとしては例えば、硫化水素、メチルメルカプタン、エチルメルカプタン及びジメチルサルファイドがある。感ガス体16aを形成する金属酸化物としては、例えば、SnO、In、ZnO、WOが挙げられる。
(3) Semiconductor gas sensor 16
FIG. 6 is a conceptual diagram showing a semiconductor gas sensor 16 as an example of a gas sensor used in the gas chromatograph 10 of FIG. In FIG. 6, a semiconductor gas sensor 16 includes a gas sensitive body 16a mainly composed of a metal oxide semiconductor, a coiled heater combined electrode 16b embedded in the gas sensitive body 16a, and the center of the coil of the heater combined electrode 16b. Alternatively, a semiconductor resistance detection electrode 16c embedded in the gas sensitive body 16a so as to penetrate the vicinity thereof, and electrode pads 16d and 16e are provided. Both ends of the heater combined electrode 16b are connected to two electrode pads 16d. The semiconductor resistance detection electrode 16c is connected to the electrode pad 16e. The electrode pads 61d and 16e are used for taking out a change in load resistance between the heater electrode 16b and the semiconductor resistance detection electrode 16c.
The semiconductor gas sensor 16 detects a gas component to be detected based on a change in the resistance value of the gas sensitive body 16a. Examples of gas components to be detected include volatile sulfides (VSC) that cause bad breath, and examples of VSCs include hydrogen sulfide, methyl mercaptan, ethyl mercaptan, and dimethyl sulfide. Examples of the metal oxide that forms the gas sensitive body 16a include SnO 2 , In 2 O 3 , ZnO, and WO 3 .
 (4)温度調節装置30の周辺の構成
 図7は、温度調節装置30及びその周辺の構成を説明するためのガスクロマトグラフ10のブロック図である。図7には、図1に示されているエアポンプ11とガス浄化装置12と流量調整器13と流量センサ14と半導体ガスセンサ16とカラムヒータ20と温度調節装置30とが示されている。また、制御基板50及び、分離カラム15(図1参照)を含むセンサカラムブロック60が示されている。
 制御基板50には、各種のスイッチ(図示せず)並びに、ガスクロマトグラフ10の動作状態を報知するためのパワーLED71、エラーLED72、レディーLED73及びブザー74が実装されているスイッチ・LED基板70が接続されている。また、制御基板50には、制御基板50との間で送受信されるデータを記憶したり、表示画面81に表示したりするためのパーソナルコンピュータ80が接続されている。さらに、制御基板50には、外部電源100が接続されている。制御基板50に接続可能な外部電源100としては、例えば90Vから264Vまでの許容電圧範囲より選択された電源電圧を有する商用交流電源である。日本では、例えば単相100V又は単相200Vの交流電源が接続される。
(4) Configuration around the temperature control device 30 FIG. 7 is a block diagram of the gas chromatograph 10 for explaining the temperature control device 30 and the configuration around it. 7 shows the air pump 11, the gas purification device 12, the flow rate regulator 13, the flow rate sensor 14, the semiconductor gas sensor 16, the column heater 20, and the temperature adjustment device 30 shown in FIG. Also shown is a sensor column block 60 including a control substrate 50 and a separation column 15 (see FIG. 1).
Connected to the control board 50 are various switches (not shown) and a switch / LED board 70 on which a power LED 71, an error LED 72, a ready LED 73, and a buzzer 74 for notifying the operation state of the gas chromatograph 10 are mounted. Has been. The control board 50 is connected to a personal computer 80 for storing data transmitted to and received from the control board 50 and displaying the data on the display screen 81. Furthermore, an external power supply 100 is connected to the control board 50. The external power supply 100 that can be connected to the control board 50 is a commercial AC power supply having a power supply voltage selected from an allowable voltage range of 90 V to 264 V, for example. In Japan, for example, a single-phase 100V or single-phase 200V AC power supply is connected.
 パワーLED71は、外部電源100に接続されたときに点灯する。レディーLED73は、ガスクロマトグラフ10が測定可能な状態になったときに点灯する。エラーLED72は、ガスクロマトグラフ10が誤動作したときに点灯する。
 制御基板50には、さらに、アナログデジタル変換部51とVH制御部52とリニアバルブ制御部53とDC電圧制御部54とが実装されている。また、制御基板50には、温度調節装置30を構成する部品として、中央演算装置(CPU)38と、電源電圧検出部36と、温度制御部37と、ゼロクロス半導体リレー(以下、ZCSSRという)39とが実装されている。
 アナログデジタル変換部(A/D変換部)51は、電極パッド16d,16eに接続されている。ヒータ兼用電極16bをヒータとして機能させない期間において、ヒータ兼用電極16bと半導体抵抗検出用電極16cとの間の負荷抵抗を測定することを目的として、アナログデジタル変換部51は、感ガス体16aの抵抗値に応じて変化する半導体ガスセンサ16の出力電圧をデジタル信号に変換して温度調節装置30のCPU38に出力する。
 VH制御部52は、半導体ガスセンサ16の2つの電極パッド16dに接続されており、ヒータ兼用電極16bに印加する電圧を制御して感ガス体16aの温度を制御する。
The power LED 71 is lit when connected to the external power supply 100. The ready LED 73 is lit when the gas chromatograph 10 becomes measurable. The error LED 72 is lit when the gas chromatograph 10 malfunctions.
The control board 50 further includes an analog-digital conversion unit 51, a VH control unit 52, a linear valve control unit 53, and a DC voltage control unit 54. The control board 50 includes a central processing unit (CPU) 38, a power supply voltage detection unit 36, a temperature control unit 37, and a zero-cross semiconductor relay (hereinafter referred to as ZCSSR) 39 as components constituting the temperature adjustment device 30. And have been implemented.
The analog / digital converter (A / D converter) 51 is connected to the electrode pads 16d and 16e. For the purpose of measuring the load resistance between the heater serving electrode 16b and the semiconductor resistance detecting electrode 16c during the period in which the heater serving electrode 16b does not function as a heater, the analog-to-digital conversion unit 51 performs the resistance of the gas sensitive body 16a. The output voltage of the semiconductor gas sensor 16 that changes according to the value is converted into a digital signal and output to the CPU 38 of the temperature control device 30.
The VH controller 52 is connected to the two electrode pads 16d of the semiconductor gas sensor 16, and controls the temperature of the gas sensitive body 16a by controlling the voltage applied to the heater electrode 16b.
 (4-1)温度調節装置30の構成
 温度調節装置30は、分離カラム15の温度をカラム温度に調節する装置である。図8に示されているように、温度調節装置30は、制御サーミスタ33と、電源電圧検出部36と、温度制御部37と、CPU38と、ZCSSR39と、抵抗44とを備えている。また、温度調節装置30の温度制御部37は、比例積分制御回路(以下、PI制御回路という)41と、PWM制御回路42と、サーミスタ断線検知回路43とを備えている。さらに、CPU38は、ソフトウェアの実行によって設定温度指示部38aを形成する。設定温度指示部38aは、分離カラム15の設定温度を指示する。
 温度制御部37のPI制御回路41には、制御サーミスタ33とCPU38が接続されている。制御サーミスタ33は、分離カラム15の温度を測定するための温度測定部である。温度制御部37は、設定温度指示部38aが指示する設定温度と制御サーミスタ33が測定した温度との温度差に応じて外部電源100からカラムヒータ20に対して出力される電力を制御して分離カラム15の温度を設定温度に制御する機能を有している。PI制御回路41は、CPU38の設定温度指示部38aが指示する設定温度と制御サーミスタ33によって測定された分離カラム15の温度とを比較して、比較された設定温度と分離カラム15の温度との温度差に応じた出力電圧OVを出力する。
(4-1) Configuration of Temperature Control Device 30 The temperature control device 30 is a device that adjusts the temperature of the separation column 15 to the column temperature. As shown in FIG. 8, the temperature adjustment device 30 includes a control thermistor 33, a power supply voltage detection unit 36, a temperature control unit 37, a CPU 38, a ZCSSR 39, and a resistor 44. The temperature control unit 37 of the temperature adjustment device 30 includes a proportional-integral control circuit (hereinafter referred to as a PI control circuit) 41, a PWM control circuit 42, and a thermistor disconnection detection circuit 43. Further, the CPU 38 forms a set temperature instruction unit 38a by executing software. The set temperature instruction unit 38 a instructs the set temperature of the separation column 15.
A control thermistor 33 and a CPU 38 are connected to the PI control circuit 41 of the temperature control unit 37. The control thermistor 33 is a temperature measurement unit for measuring the temperature of the separation column 15. The temperature control unit 37 controls the power output from the external power source 100 to the column heater 20 according to the temperature difference between the set temperature indicated by the set temperature indicating unit 38a and the temperature measured by the control thermistor 33, thereby separating the separation column. 15 has a function of controlling the temperature of 15 to the set temperature. The PI control circuit 41 compares the set temperature indicated by the set temperature indicating unit 38a of the CPU 38 with the temperature of the separation column 15 measured by the control thermistor 33, and compares the set temperature thus compared with the temperature of the separation column 15. An output voltage OV corresponding to the temperature difference is output.
 また、PI制御回路41には、電源電圧検出部36も接続されている。電源電圧検出部36は、外部電源100の電源電圧が、許容電圧範囲の中央近傍の値以上か、中央近傍の値よりも小さいかを判断して、その判断結果を出力する。例えば許容電圧範囲が90Vから264Vまでの範囲であれば例えば許容電圧範囲の中央近傍の値が130V~200Vの間から選択された値になる。ここで、中央近傍の値が160Vであるとすると、外部電源100が100Vのときに電源電圧検出部36が「Low」を出力し、外部電源100が200Vのときに電源電圧検出部36が「High」を出力する。
 PI制御回路41は、電源電圧検出部36が「Low」を出力したときの出力電圧OV1の変動範囲ROV1よりも、電源電圧検出部36が「High」を出力したときの出力電圧OV2の変動範囲ROV2が小さくなるように設定されている(図9(a)参照)。
A power supply voltage detection unit 36 is also connected to the PI control circuit 41. The power supply voltage detector 36 determines whether the power supply voltage of the external power supply 100 is greater than or equal to the value near the center of the allowable voltage range or smaller than the value near the center, and outputs the determination result. For example, if the allowable voltage range is from 90V to 264V, for example, the value near the center of the allowable voltage range is a value selected from 130V to 200V. Here, assuming that the value in the vicinity of the center is 160 V, the power supply voltage detection unit 36 outputs “Low” when the external power supply 100 is 100 V, and the power supply voltage detection unit 36 outputs “Low” when the external power supply 100 is 200 V. “High” is output.
The PI control circuit 41 has a fluctuation range of the output voltage OV2 when the power supply voltage detection unit 36 outputs “High” rather than a fluctuation range ROV1 of the output voltage OV1 when the power supply voltage detection unit 36 outputs “Low”. ROV2 is set to be small (see FIG. 9A).
 PWM制御回路42は、PI制御回路41の出力電圧OVに応じた長さのパルス信号PSをZCSSR39に出力する。
 温度調節装置30のZCSSR39の2つの端子の間には、カラムヒータ20と外部電源100が直列に接続されている。ZCSSR39がオンすると外部電源100からカラムヒータ20で電力が供給され、ZCSSR39がオフすると外部電源100からカラムヒータ20への電力の供給が停止される。
 このZCSSR39は、ノイズを低減して半導体ガスセンサ16の検出精度を向上させるために、外部電源100の交流電圧がゼロ電圧付近の時点でトリガを掛けるためのゼロクロス回路を内蔵している。従って、PWM制御回路42のパルス信号PSが出力されてから始めてのゼロ電圧でカラムヒータ20に外部電源100の電圧の印加を開始し、パルス信号PSの出力が終わってから始めてのゼロ電圧でカラムヒータ20に外部電源100の電圧の印加を停止する。
The PWM control circuit 42 outputs a pulse signal PS having a length corresponding to the output voltage OV of the PI control circuit 41 to the ZCSSR 39.
The column heater 20 and the external power supply 100 are connected in series between the two terminals of the ZCSSR 39 of the temperature control device 30. When the ZCSSR 39 is turned on, power is supplied from the external power supply 100 by the column heater 20, and when the ZCCSR 39 is turned off, the supply of power from the external power supply 100 to the column heater 20 is stopped.
In order to reduce noise and improve the detection accuracy of the semiconductor gas sensor 16, the ZCCSR 39 has a built-in zero cross circuit for triggering when the AC voltage of the external power supply 100 is near zero voltage. Therefore, the application of the voltage of the external power supply 100 to the column heater 20 is started at the first zero voltage after the pulse signal PS of the PWM control circuit 42 is output, and the column heater 20 is started at the first zero voltage after the output of the pulse signal PS is finished. The application of the voltage of the external power supply 100 is stopped.
 (4-2)温度調節装置30の動作
 図9(a)に示されているように、PWM制御回路42の内部で、三角波TWの形状を呈する電圧が発生されている。三角波TWの周期が例えば120msであるとすると、PWM制御回路42の発生するPWM信号の周期は120msになる。
 設定温度と分離カラム15の温度との温度差がないか又は設定温度以上に分離カラム15の温度が高いときには、出力電圧OVが0Vになる。PWM制御回路42は、PI制御回路41の出力電圧OVが0Vのときは、PWM信号が出力されない。図9(a)及び図9(c)に示されているように、電源電圧検出部36が「Low」を出力したときの出力電圧OV1の変動範囲ROV1の上限値が入力されているときには、三角波TWの電圧がその上限値以下になっている期間だけPWM信号P1が出力される。例えば、外部電源100の電源電圧が100VのときのPWM信号P1の最大値(デューティー)は80msに設定されている。それに対して、図9(a)及び図9(b)に示されているように、電源電圧検出部36が「High」を出力したときの出力電圧OV2の変動範囲ROV2の上限値が入力されているときには、三角波TWの電圧がその上限値以下になっている期間だけPWM信号P2が出力される。例えば、外部電源100の電源電圧が200VのときのPWM信号P1の最大値(デューティー)は20msに設定されている。
(4-2) Operation of Temperature Control Device 30 As shown in FIG. 9A, a voltage having the shape of a triangular wave TW is generated inside the PWM control circuit. If the period of the triangular wave TW is 120 ms, for example, the period of the PWM signal generated by the PWM control circuit 42 is 120 ms.
When there is no temperature difference between the set temperature and the temperature of the separation column 15 or when the temperature of the separation column 15 is higher than the set temperature, the output voltage OV becomes 0V. The PWM control circuit 42 does not output a PWM signal when the output voltage OV of the PI control circuit 41 is 0V. As shown in FIGS. 9A and 9C, when the upper limit value of the fluctuation range ROV1 of the output voltage OV1 when the power supply voltage detector 36 outputs “Low” is input, The PWM signal P1 is output only during the period when the voltage of the triangular wave TW is below the upper limit value. For example, the maximum value (duty) of the PWM signal P1 when the power supply voltage of the external power supply 100 is 100 V is set to 80 ms. On the other hand, as shown in FIGS. 9A and 9B, the upper limit value of the fluctuation range ROV2 of the output voltage OV2 when the power supply voltage detection unit 36 outputs “High” is input. When the voltage of the triangular wave TW is lower than the upper limit value, the PWM signal P2 is output. For example, the maximum value (duty) of the PWM signal P1 when the power supply voltage of the external power supply 100 is 200 V is set to 20 ms.
 その結果、図9(d)に示されているように、外部電源100の電源電圧が高い(例えば、200V)場合には、カラムヒータ20に印加される電圧が高い反面、外部電源100から供給される時間が短くなる。また、図9(e)に示されているように、外部電源100の電源電圧が低い場合(例えば、100V)には、カラムヒータ20に印加される電圧が低い反面、外部電源100から供給される時間が長くなる。このように、外部電源100の電源電圧が大きく異なる場合でも、カラムヒータ20に供給される最大電力が近い値になるように調節される。なお、図9(d)及び図9(e)において、実線で示されている波形がカラムヒータ20に印加される電圧の波形になる。 As a result, as shown in FIG. 9D, when the power supply voltage of the external power supply 100 is high (for example, 200 V), the voltage applied to the column heater 20 is high, but supplied from the external power supply 100. The time required for this is shortened. As shown in FIG. 9E, when the power supply voltage of the external power supply 100 is low (for example, 100 V), the voltage applied to the column heater 20 is low, but supplied from the external power supply 100. The time will be longer. Thus, even when the power supply voltage of the external power supply 100 is greatly different, the maximum power supplied to the column heater 20 is adjusted to a close value. In FIG. 9D and FIG. 9E, the waveform indicated by the solid line is the waveform of the voltage applied to the column heater 20.
 (4-3)設定温度を一定にした場合と徐々にカラム温度に近づけた場合の比較
 (4-3-1)設定温度を一定値に固定した場合(比較例)
 図10及び図11には、設定温度指示部38aがカラム温度(例えば、35℃)に設定温度が固定されている場合の分離カラム15の測定温度の経時変化が示されている。図10は、外部電源100の電源電圧が264Vの場合の分離カラム15の測定温度を示すグラフであり、図11は、外部電源100の電源電圧が90Vの場合の分離カラム15の測定温度を示すグラフである。これらの測定を行ったときの雰囲気温度は、10℃である。
 ガスクロマトグラフ10は、例えば、医療現場や学校の実験室での用途に適するように30分以内の短時間で、分離カラム15の温度が、測定に必要なカラム温度に安定するように設定される。このような用途を想定して、電源電圧が90Vであってつまり比較的温度が上がり難い場合でも、30分以内に分離カラム15の温度が、測定に必要なカラム温度に安定するように設定されている。したがって、電源電圧が264Vであってつまり比較的温度が上がり易い場合には、分離カラム15の温度が大きくオーバーシュートしている。
(4-3) Comparison between the case where the set temperature is made constant and gradually approaching the column temperature (4-3-1) Case where the set temperature is fixed at a constant value (comparative example)
10 and 11 show the change over time in the measured temperature of the separation column 15 when the set temperature instruction section 38a is fixed at the column temperature (for example, 35 ° C.). FIG. 10 is a graph showing the measured temperature of the separation column 15 when the power supply voltage of the external power supply 100 is 264V, and FIG. 11 shows the measured temperature of the separation column 15 when the power supply voltage of the external power supply 100 is 90V. It is a graph. The atmospheric temperature when these measurements are performed is 10 ° C.
The gas chromatograph 10 is set so that the temperature of the separation column 15 is stabilized at the column temperature necessary for measurement in a short time within 30 minutes so as to be suitable for use in, for example, a medical field or a school laboratory. . Assuming such an application, even when the power supply voltage is 90 V, that is, when the temperature is relatively difficult to rise, the temperature of the separation column 15 is set to be stable to the column temperature necessary for measurement within 30 minutes. ing. Therefore, when the power supply voltage is 264 V, that is, when the temperature is relatively easy to rise, the temperature of the separation column 15 greatly overshoots.
 (4-3-2)設定温度を徐々にカラム温度に近づけた場合(実施例)
 図12及び図13には、設定温度指示部38aがカラム温度例えば35℃に設定温度を徐々に近づけた場合の分離カラム15の測定温度の経時変化が示されている。図12は、外部電源100の電源電圧が264Vの場合の分離カラム15の測定温度を示すグラフであり、図13は、外部電源100の電源電圧が90Vの場合の分離カラム15の測定温度を示すグラフである。図12及び図13では、太線が温度であり、細線が設定温度指示部38aからの制御出力である。
 設定温度指示部38aは、設定温度変更期間Stでは、設定温度を徐々にカラム温度に近づける。例えば、図14に示されているような双曲線関数f(λ,x)=カラム温度*tanh{λ*(x/St)/2}を用いる。この双曲線関数fの値が設定温度になる。ここで、λは、実験を通じて適当に選ばれる定数であり、xは時間(sec)の変数である。9分間の設定温度変更期間Stで、設定温度をカラム温度の近傍まで変化するようにするには、例えば、λ=4とすれば、x=540のときに、f≒カラム温度×0.96になる。この場合、例えば、4分30秒が経過した時点では、f≒カラム温度×0.75になる。
(4-3-2) When the set temperature is gradually brought close to the column temperature (Example)
12 and 13 show changes with time in the measurement temperature of the separation column 15 when the set temperature instruction unit 38a gradually brings the set temperature close to the column temperature, for example, 35 ° C. FIG. 12 is a graph showing the measured temperature of the separation column 15 when the power supply voltage of the external power supply 100 is 264V, and FIG. 13 shows the measured temperature of the separation column 15 when the power supply voltage of the external power supply 100 is 90V. It is a graph. 12 and 13, the thick line is the temperature, and the thin line is the control output from the set temperature instruction unit 38a.
The set temperature instruction unit 38a gradually brings the set temperature closer to the column temperature during the set temperature change period St. For example, a hyperbolic function f (λ, x) = column temperature * tanh {λ * (x / St) / 2} as shown in FIG. 14 is used. The value of this hyperbolic function f becomes the set temperature. Here, λ is a constant appropriately selected through experiments, and x is a time (sec) variable. In order to change the set temperature to the vicinity of the column temperature in the set temperature change period St of 9 minutes, for example, when λ = 4, when x = 540, f≈column temperature × 0.96 become. In this case, for example, when 4 minutes and 30 seconds have elapsed, f≈column temperature × 0.75.
 なお、設定温度変更期間Stがカラムヒータ20の加熱の初期から設定されていることは必要なく、例えば、初期期間Btには、雰囲気温度からカラム温度に達するのに必要な熱量の60%に相当する電力量を与えるようにしてもよい。この場合には、PWM制御を行わずに外部電源100の電源電圧を印加する。例えば、264Vの外部電源100の場合は1分半ほどの初期期間Btだけ外部電源100をカラムヒータ20に直結し、90Vの外部電源100の場合は3分ほどの初期期間Btだけ外部電源100をカラムヒータ20に直結する。
 また、設定温度変更期間Stが経過した後の通常期間Atでは、設定温度指示部38aが設定温度をカラム温度に一致させる。設定温度指示部38aが設定温度をカラム温度に一致させた後、PI制御回路41が行う温度制御は、通常のPI制御になる。
It is not necessary that the set temperature change period St is set from the beginning of the heating of the column heater 20. For example, the initial period Bt corresponds to 60% of the amount of heat necessary to reach the column temperature from the ambient temperature. You may make it give electric energy. In this case, the power supply voltage of the external power supply 100 is applied without performing PWM control. For example, in the case of the 264V external power supply 100, the external power supply 100 is directly connected to the column heater 20 for an initial period Bt of about 1 and a half minutes, and in the case of the 90V external power supply 100, the external power supply 100 is connected to the column heater for an initial period Bt of about 3 minutes. Directly connected to 20.
In the normal period At after the set temperature change period St has elapsed, the set temperature instruction unit 38a matches the set temperature with the column temperature. After the set temperature instruction unit 38a matches the set temperature to the column temperature, the temperature control performed by the PI control circuit 41 is normal PI control.
 実施例においても、電源電圧が90Vであってつまり比較的温度が上がり難い場合でも、30分以内に分離カラム15の温度が、測定に必要なカラム温度に安定するように設定されている。しかし、電源電圧が264Vであってつまり比較的温度が上がり易い場合であっても、図12に示すように、分離カラム15の温度がほとんどオーバーシュートしていない。 Also in the embodiment, even when the power supply voltage is 90 V, that is, when the temperature is relatively difficult to rise, the temperature of the separation column 15 is set to be stable to the column temperature necessary for measurement within 30 minutes. However, even when the power supply voltage is 264 V, that is, when the temperature is relatively easy to rise, the temperature of the separation column 15 hardly overshoots as shown in FIG.
 (5)特徴
 (5-1)
 設定温度指示部38aは、分離カラム15の設定温度を指示する。温度測定部である制御サーミスタ33は分離カラム15の温度を測定する。温度制御部37は、設定温度指示部38aが指示する設定温度と制御サーミスタ33が測定した温度との温度差に応じて外部電源100からカラムヒータ20に対して出力される電力を制御して分離カラム15の温度を設定温度に制御する。設定温度指示部38aは、カラム温度に達すまでの間の設定温度変更期間では、設定温度を時間経過に従って徐々にカラム温度に近づけるように変更する。
 上記実施例で説明したように、設定温度指示部38aが、カラム温度(上記実施形態では35℃)に達すまでの間の設定温度変更期間Stでは、設定温度を時間経過に従って徐々にカラム温度に近づけるように変更する。このような制御を行わずに設定温度を一定にした場合には、参考例の図10に顕著に現れているようにオーバーシュートが発生する。それに対して、設定温度を時間経過に従って徐々にカラム温度に近づけるように変更すると、実施例の図12に示されているように、オーバーシュートが発生していた期間では、設定温度がカラム温度よりも低くなる。このように、上記期間に設定温度とカラム温度との差分を発生させることで、オーバーシュートを抑制できる。
(5) Features (5-1)
The set temperature instruction unit 38 a instructs the set temperature of the separation column 15. A control thermistor 33 that is a temperature measuring unit measures the temperature of the separation column 15. The temperature control unit 37 controls the power output from the external power source 100 to the column heater 20 according to the temperature difference between the set temperature indicated by the set temperature indicating unit 38a and the temperature measured by the control thermistor 33, thereby separating the separation column. The temperature of 15 is controlled to the set temperature. The set temperature instructing unit 38a changes the set temperature so as to gradually approach the column temperature as time elapses during the set temperature changing period until the column temperature is reached.
As described in the above example, in the set temperature change period St until the set temperature instruction unit 38a reaches the column temperature (35 ° C. in the above embodiment), the set temperature is gradually increased to the column temperature as time elapses. Change to get closer. When the set temperature is made constant without performing such control, overshoot occurs as it appears remarkably in FIG. 10 of the reference example. On the other hand, when the set temperature is changed so as to gradually approach the column temperature as time elapses, as shown in FIG. 12 of the embodiment, the set temperature is higher than the column temperature during the period when the overshoot has occurred. Also lower. Thus, overshoot can be suppressed by generating a difference between the set temperature and the column temperature during the period.
 (5-2)
 カラムヒータ20は、許容電圧範囲の90Vから264Vまでの中から選択された電源電圧を有する外部電源100から電力を供給可能に構成されている。そして、温度調節装置30は、このような電源電圧を有する外部電源100からカラムヒータ20に対して出力される電力を制御可能に構成されている。上記実施形態では、許容電圧範囲の中から100Vと200Vを選択した場合の例が説明されている。
 このように、カラムヒータ20を、許容電圧範囲の90Vから264Vまでの中から選択された電源電圧を有する外部電源100から電力を供給可能に構成すると、従来であれば温度調節装置30の設定が難しい。例えば、オーバーシュートし易い電源電圧に合わせて装置を調整するとオーバーシュートし難い電源電圧でカラム温度に達するのが遅くなり、オーバーシュートし難い電源電圧に合わせて装置を調整するとオーバーシュートし易い電源電圧で大きなオーバーシュートが発生してしまう。それに対して、本実施形態では、設定温度指示部38aが、カラム温度に達すまでの間の設定温度変更期間Stで設定温度を時間経過に従って徐々にカラム温度に近づけるように変更している。したがって、許容電圧範囲の全ての範囲にわたって、カラム温度に達するまでの時間を短縮しながらオーバーシュートを抑制することが容易に行える。
(5-2)
The column heater 20 is configured to be able to supply power from the external power supply 100 having a power supply voltage selected from an allowable voltage range of 90 V to 264 V. And the temperature control apparatus 30 is comprised so that control of the electric power output with respect to the column heater 20 from the external power supply 100 which has such a power supply voltage is possible. In the said embodiment, the example at the time of selecting 100V and 200V from the allowable voltage range is demonstrated.
As described above, if the column heater 20 is configured to be able to supply power from the external power supply 100 having a power supply voltage selected from the allowable voltage range of 90 V to 264 V, setting of the temperature control device 30 is difficult in the prior art. . For example, if the device is adjusted to a power supply voltage that is likely to overshoot, it will slow down to reach the column temperature at a power supply voltage that is difficult to overshoot, and if the device is adjusted to a power supply voltage that is difficult to overshoot, a power supply voltage that is likely to overshoot Will cause a large overshoot. On the other hand, in the present embodiment, the set temperature instructing unit 38a changes the set temperature so as to gradually approach the column temperature as time elapses during the set temperature changing period St until the column temperature is reached. Therefore, overshoot can be easily suppressed while reducing the time to reach the column temperature over the entire allowable voltage range.
 (5-3)
 温度調節装置30は、外部電源100の電源電圧を検出する電源電圧検出部36を備えている。温度制御部37は、電源電圧検出部36で検出された電源電圧に応じてパルス幅の設定を変更して外部電源100からカラムヒータ20に対して出力される電力をPWM制御するように構成されている。上記実施形態の例では、160Vよりも低い100Vを電源電圧検出部36が検出すると、PWM信号P1が出力される期間の最大値(デューティー)が80msと長くなる。それに対して、160Vよりも高い200Vを電源電圧検出部36が検出すると、PWM信号P2が出力される期間の最大値が20msと長くなる。
 その結果、電源電圧が高い場合(200V)と低い場合(100V)に、カラムヒータ20に対して供給される電力量を近づけることができ、オーバーシュートのし難い温度制御を行い易くなる。
 なお、上記実施形態では、一つの閾値(上記実施形態では160V)による判別を行って電源電圧が高い場合と低い場合の2通りの変更しか行っていないが、2つ以上の閾値を用いて3通り以上の変更を行ってもよい。また、PWM信号が出力される期間の最大値が連続的に変更するように構成されてもよい。
(5-3)
The temperature adjustment device 30 includes a power supply voltage detection unit 36 that detects the power supply voltage of the external power supply 100. The temperature control unit 37 is configured to change the setting of the pulse width according to the power supply voltage detected by the power supply voltage detection unit 36 and to perform PWM control of the power output from the external power supply 100 to the column heater 20. Yes. In the example of the above-described embodiment, when the power supply voltage detection unit 36 detects 100 V lower than 160 V, the maximum value (duty) of the period during which the PWM signal P1 is output becomes as long as 80 ms. On the other hand, when the power supply voltage detection unit 36 detects 200 V higher than 160 V, the maximum value of the period during which the PWM signal P2 is output becomes 20 ms.
As a result, when the power supply voltage is high (200 V) and low (100 V), the amount of power supplied to the column heater 20 can be made close, and temperature control that is difficult to overshoot can be easily performed.
In the above-described embodiment, the determination based on one threshold value (160 V in the above-described embodiment) is performed, and only two kinds of changes are performed, when the power supply voltage is high and when the power supply voltage is low. More changes may be made on the street. Further, the maximum value of the period during which the PWM signal is output may be changed continuously.
 (5-4)
 分離カラム15は、筒状の樹脂成形品15aと、樹脂成形品15aの外面を覆う金属被覆15bとを有し、カラムヒータ20は、金属被覆15bに密接して配設され、金属被覆15bを加熱するように構成されている。これら樹脂成形品15aと金属被覆15bとの熱容量が小さいことから、分離カラム15の温度を早くカラム温度に到達させることができる。その反面、従来であれば、樹脂成形品15aと金属被覆15bを用いて構成された分離カラム15では温度調節時のオーバーシュートが発生しやすくなる。それに対して、本実施形態では、設定温度指示部38aが、カラム温度に達すまでの間の設定温度変更期間Stで設定温度を時間経過に従って徐々にカラム温度に近づけるように変更するので、オーバーシュートを十分に抑制できる。
(5-4)
The separation column 15 has a cylindrical resin molded product 15a and a metal coating 15b covering the outer surface of the resin molded product 15a, and the column heater 20 is disposed in close contact with the metal coating 15b to heat the metal coating 15b. Is configured to do. Since the heat capacities of the resin molded product 15a and the metal coating 15b are small, the temperature of the separation column 15 can be quickly reached the column temperature. On the other hand, conventionally, in the separation column 15 constituted by using the resin molded product 15a and the metal coating 15b, overshoot at the time of temperature adjustment tends to occur. On the other hand, in the present embodiment, the set temperature instructing unit 38a changes the set temperature so as to gradually approach the column temperature as time elapses during the set temperature change period St until the column temperature is reached. Can be sufficiently suppressed.
 (5-5)
 設定温度指示部38aは、図14に示されているような双曲線関数fを用いて、設定温度とカラム温度との温度差の変化率が時間経過とともに減少するように設定されていている。このような設定が行われているので、設定温度とカラム温度との温度差の変化率が時間経過によらず一定である場合よりも、さらにオーバーシュートを抑制する効果が高くなっている。
(5-5)
The set temperature instruction unit 38a is set so that the change rate of the temperature difference between the set temperature and the column temperature decreases with time using a hyperbolic function f as shown in FIG. Since such setting is performed, the effect of suppressing the overshoot is higher than when the rate of change of the temperature difference between the set temperature and the column temperature is constant regardless of the passage of time.
 (6)変形例
 以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。特に、本明細書に書かれた実施形態及び変形例は必要に応じて任意に組み合せ可能である。
 (6-1)
 上記実施形態では、温度調節装置30はPI制御回路41を用いて構成されているが、温度調節装置30は、他の構成であってもよい。温度調節装置30は、設定温度指示部が指示する設定温度と温度測定部が測定した温度との温度差に応じて外部電源からカラムヒータに対して出力される電力を制御する他の制御回路で構成されてもよい。例えば、PI制御回路41に代えて、比例制御を行う比例制御回路(P制御回路)を用いてもよい。
 (6-2)
 上記実施形態では、分離カラム15が筒状の樹脂成形品15aとその外面を覆う金属被覆15bとを備えて構成されている場合について説明したが、分離カラム15の構成はこのようなものに限られるものではない。例えば、筒状の樹脂成形品15aとその外面を覆う金属被覆15bの代わりに、筒状のガラス成形品及び/又は筒状の金属成形品を用いることができる。
(6) Modifications One embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of the invention. In particular, the embodiments and modifications described in the present specification can be arbitrarily combined as necessary.
(6-1)
In the above embodiment, the temperature adjustment device 30 is configured using the PI control circuit 41, but the temperature adjustment device 30 may have other configurations. The temperature adjusting device 30 is configured by another control circuit that controls the power output from the external power source to the column heater in accordance with the temperature difference between the set temperature indicated by the set temperature indicating unit and the temperature measured by the temperature measuring unit. May be. For example, instead of the PI control circuit 41, a proportional control circuit (P control circuit) that performs proportional control may be used.
(6-2)
In the above embodiment, the case where the separation column 15 is configured to include the cylindrical resin molded product 15a and the metal coating 15b covering the outer surface thereof has been described. However, the configuration of the separation column 15 is not limited to this. It is not something that can be done. For example, instead of the cylindrical resin molded product 15a and the metal coating 15b covering its outer surface, a cylindrical glass molded product and / or a cylindrical metal molded product can be used.
 (6-3)
 上記実施形態では、温度測定部に制御サーミスタ33を用いる場合について説明したが、温度測定部を構成する部材はサーミスタに限られるものではなく、例えば熱電対、ダイオード、トランジスタ、又はICを用いることができる。また、測定に用いられる温度測定素子である制御サーミスタ33は1つに限られるものではなく、複数用いることもできる。複数用いた場合には温度測定部が出力する測定値として、例えば平均値又は中央値を用いることもできる。
 (6-4)
 上記実施形態では、設定温度指示部38aがCPU38によってソフトウェアを用いて形成される場合について説明したが、設定温度指示部38aを例えば電子回路のハードウェアで構成してもよい。
 (6-5)
 上記実施形態では、f(λ,x)=カラム温度*tanh{λ*(x/St)/2}のように、tanhという双曲線関数を用いたが、カラム温度に達すまでの間の設定温度変更期間Stで、設定温度を時間経過に従って徐々にカラム温度に近づけるように変更するために用いられる関数はこれに限られるものではない。例えば、上述の関数をxの多項式に展開した関数を用いてもよい。また、上述の関数とは関係の無いxの多項式を用いて、設定温度を時間経過に従って徐々にカラム温度に近づけるように変更してもよい。
(6-3)
In the above embodiment, the case where the control thermistor 33 is used for the temperature measurement unit has been described. However, the members constituting the temperature measurement unit are not limited to the thermistor, and for example, a thermocouple, a diode, a transistor, or an IC may be used. it can. Further, the control thermistor 33 which is a temperature measuring element used for measurement is not limited to one, and a plurality of thermistors can be used. For example, an average value or a median value can be used as the measurement value output from the temperature measurement unit when a plurality of temperature measurement units are used.
(6-4)
In the above embodiment, the case where the set temperature instruction unit 38a is formed by the CPU 38 using software has been described. However, the set temperature instruction unit 38a may be configured by, for example, hardware of an electronic circuit.
(6-5)
In the above embodiment, a hyperbolic function called tanh is used, such as f (λ, x) = column temperature * tanh {λ * (x / St) / 2}, but the set temperature until the column temperature is reached. The function used for changing the set temperature so as to gradually approach the column temperature as time passes in the change period St is not limited to this. For example, a function obtained by expanding the above function into a polynomial of x may be used. Alternatively, the set temperature may be changed so as to gradually approach the column temperature as time passes by using a polynomial of x that is not related to the above function.
 本発明は、ガスクロマトグラフ及びその温度調節装置並びにガスクロマトグラフの温度調節方法に広く適用できる。 The present invention can be widely applied to a gas chromatograph, its temperature control device, and a gas chromatograph temperature control method.
10   ガスクロマトグラフ
15   分離カラム
15a   樹脂成形品
15b   金属被覆
16   半導体ガスセンサ
20   カラムヒータ
30   温度調節装置
33   制御サーミスタ(温度測定部の例)
36   電源電圧検出部
37   温度制御部
38   CPU
38a   設定温度指示部
100   外部電源
DESCRIPTION OF SYMBOLS 10 Gas chromatograph 15 Separation column 15a Resin molding 15b Metal coating 16 Semiconductor gas sensor 20 Column heater 30 Temperature control apparatus 33 Control thermistor (example of temperature measurement part)
36 Power supply voltage detector 37 Temperature controller 38 CPU
38a Set temperature instruction unit 100 External power supply

Claims (8)

  1.  キャリアガスにより導入される試料を、所定のカラム温度において複数の成分に分離するための分離カラムと、
     前記分離カラムを加熱するためのカラムヒータと、
     前記分離カラムの温度を前記カラム温度に調節するための温度調節装置と、
    を備え、
     前記温度調節装置は、
     前記分離カラムの設定温度を指示する設定温度指示部と、
     前記分離カラムの温度を測定するための温度測定部と、
     前記設定温度指示部が指示する前記設定温度と前記温度測定部が測定した温度との温度差に応じて外部電源から前記カラムヒータに対して出力される電力を制御して前記分離カラムの温度を前記設定温度に制御する温度制御部と、
    を含み、
     前記設定温度指示部は、前記カラム温度に達すまでの間の設定温度変更期間では、前記設定温度を時間経過に従って徐々に前記カラム温度に近づけるように変更する、ガスクロマトグラフ。
    A separation column for separating a sample introduced by a carrier gas into a plurality of components at a predetermined column temperature;
    A column heater for heating the separation column;
    A temperature adjusting device for adjusting the temperature of the separation column to the column temperature;
    With
    The temperature control device is:
    A set temperature indicating unit for indicating the set temperature of the separation column;
    A temperature measuring unit for measuring the temperature of the separation column;
    The temperature of the separation column is controlled by controlling the power output from the external power source to the column heater according to the temperature difference between the set temperature indicated by the set temperature indicating unit and the temperature measured by the temperature measuring unit. A temperature control unit for controlling the set temperature;
    Including
    The gas temperature chromatograph, wherein the set temperature instruction unit changes the set temperature so as to gradually approach the column temperature as time elapses during a set temperature change period until the column temperature is reached.
  2.  前記カラムヒータは、所定の許容電圧範囲から選択された電源電圧を有する前記外部電源から電力を供給可能に構成され、
     前記温度調節装置は、当該電源電圧を有する前記外部電源から前記カラムヒータに対して出力される電力を制御可能に構成されている、
    請求項1に記載のガスクロマトグラフ。
    The column heater is configured to be able to supply power from the external power supply having a power supply voltage selected from a predetermined allowable voltage range,
    The temperature adjusting device is configured to be able to control electric power output to the column heater from the external power supply having the power supply voltage.
    The gas chromatograph according to claim 1.
  3.  前記外部電源の前記電源電圧を検出する電源電圧検出部をさらに備え、
     前記温度制御部は、前記電源電圧検出部で検出された前記電源電圧に応じてパルス幅の設定を変更して前記外部電源から前記カラムヒータに対して出力される電力をPWM制御する、
    請求項2に記載のガスクロマトグラフ。
    A power supply voltage detection unit for detecting the power supply voltage of the external power supply;
    The temperature control unit changes the setting of the pulse width according to the power supply voltage detected by the power supply voltage detection unit, and performs PWM control of the power output from the external power supply to the column heater,
    The gas chromatograph according to claim 2.
  4.  前記分離カラムは、筒状の樹脂成形品と、前記樹脂成形品の外面を覆う金属被覆とを有し、
     前記カラムヒータは、前記金属被覆に密接して配設され、前記金属被覆を加熱する、
    請求項1から請求項3のいずれか一項に記載のガスクロマトグラフ。
    The separation column has a cylindrical resin molded product and a metal coating covering an outer surface of the resin molded product,
    The column heater is disposed in close contact with the metal coating to heat the metal coating;
    The gas chromatograph according to any one of claims 1 to 3.
  5.  前記設定温度指示部は、前記設定温度と前記カラム温度との温度差の変化率が時間経過とともに減少するように設定されている、
    請求項1から請求項4のいずれか一項に記載のガスクロマトグラフ。
    The set temperature instruction unit is set so that the rate of change of the temperature difference between the set temperature and the column temperature decreases with time.
    The gas chromatograph according to any one of claims 1 to 4.
  6.  キャリアガスにより導入される試料を、所定のカラム温度において複数の成分に分離するための分離カラムと前記分離カラムを加熱するためのカラムヒータとを備えるガスクロマトグラフの前記分離カラムの温度を前記カラム温度に調節するための温度調節装置であって、
     前記分離カラムの設定温度を指示する設定温度指示部と、
     前記分離カラムの温度を測定するための温度測定部と、
     前記設定温度指示部が指示する前記設定温度と前記温度測定部が測定した温度との温度差に応じて外部電源から前記カラムヒータに対して出力される電力を制御して前記分離カラムの温度を前記設定温度に制御する温度制御部と、
    を含み、
     前記設定温度指示部は、前記カラム温度に達すまでの間の設定温度変更期間では、前記設定温度を時間経過に従って徐々に前記カラム温度に近づけるように変更する、ガスクロマトグラフの温度調節装置。
    A temperature of the separation column of a gas chromatograph including a separation column for separating a sample introduced by a carrier gas into a plurality of components at a predetermined column temperature and a column heater for heating the separation column is set to the column temperature. A temperature control device for adjusting,
    A set temperature indicating unit for indicating the set temperature of the separation column;
    A temperature measuring unit for measuring the temperature of the separation column;
    The temperature of the separation column is controlled by controlling the power output from the external power source to the column heater according to the temperature difference between the set temperature indicated by the set temperature indicating unit and the temperature measured by the temperature measuring unit. A temperature control unit for controlling the set temperature;
    Including
    The temperature adjustment device for a gas chromatograph, wherein the set temperature instruction unit changes the set temperature so as to gradually approach the column temperature as time elapses during a set temperature change period until the column temperature is reached.
  7.  前記カラムヒータは、所定の許容電圧範囲から選択された電源電圧を有する前記外部電源から電力を供給可能に構成され、
     前記温度制御部は、前記外部電源の前記電源電圧を検出する電源電圧検出部を含み、前記電源電圧に応じてパルス幅の設定を変更して前記外部電源から前記カラムヒータに対して出力される電力をPWM制御する、
    請求項6に記載のガスクロマトグラフの温度調節装置。
    The column heater is configured to be able to supply power from the external power supply having a power supply voltage selected from a predetermined allowable voltage range,
    The temperature control unit includes a power supply voltage detection unit that detects the power supply voltage of the external power supply, and changes the setting of the pulse width according to the power supply voltage and is output from the external power supply to the column heater PWM control,
    The temperature control apparatus of the gas chromatograph of Claim 6.
  8.  キャリアガスにより導入される試料を、所定のカラム温度において複数の成分に分離するための分離カラムと前記分離カラムを加熱するためのカラムヒータとを備えるガスクロマトグラフの前記分離カラムの温度を前記カラム温度に調節する温度調節方法であって、
     前記分離カラムの設定温度を指示する設定温度指示ステップと、
     前記分離カラムの温度を測定する温度測定ステップと、
     前記設定温度指示ステップで指示された前記設定温度と前記温度測定ステップで測定された温度との温度差に応じて外部電源から前記カラムヒータに対して出力される電力を制御して前記分離カラムの温度を前記設定温度に制御する温度制御ステップと、
    を含み、
     前記設定温度指示ステップでは、前記カラム温度に達すまでの間の設定温度変更期間では、前記設定温度が時間経過に従って徐々に前記カラム温度に近づくように変更される、
    ガスクロマトグラフの温度調節方法。
    A temperature of the separation column of a gas chromatograph including a separation column for separating a sample introduced by a carrier gas into a plurality of components at a predetermined column temperature and a column heater for heating the separation column is set to the column temperature. A temperature control method for adjusting,
    A set temperature indicating step for indicating a set temperature of the separation column;
    A temperature measuring step for measuring the temperature of the separation column;
    The temperature of the separation column is controlled by controlling the power output from the external power source to the column heater according to the temperature difference between the set temperature instructed in the set temperature instructing step and the temperature measured in the temperature measuring step. A temperature control step for controlling the temperature to the set temperature;
    Including
    In the set temperature instruction step, in the set temperature change period until the column temperature is reached, the set temperature is changed so as to gradually approach the column temperature as time elapses.
    Gas chromatograph temperature control method.
PCT/JP2016/063327 2015-05-13 2016-04-28 Gas chromatograph, temperature controller for same, and gas chromatograph temperature control method WO2016181853A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-098190 2015-05-13
JP2015098190A JP6479566B2 (en) 2015-05-13 2015-05-13 Gas chromatograph, temperature control device therefor, and temperature control method for gas chromatograph

Publications (1)

Publication Number Publication Date
WO2016181853A1 true WO2016181853A1 (en) 2016-11-17

Family

ID=57249525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063327 WO2016181853A1 (en) 2015-05-13 2016-04-28 Gas chromatograph, temperature controller for same, and gas chromatograph temperature control method

Country Status (2)

Country Link
JP (1) JP6479566B2 (en)
WO (1) WO2016181853A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210025856A1 (en) * 2018-03-14 2021-01-28 Shimadzu Corporation Supercritical fluid separation apparatus
CN111060636A (en) * 2018-10-17 2020-04-24 株式会社岛津制作所 Temperature control analysis device and online analysis system provided with same
JP7095797B2 (en) * 2019-02-25 2022-07-05 株式会社島津製作所 Analytical system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05113434A (en) * 1991-10-21 1993-05-07 Yamatake Honeywell Co Ltd Gas chromatograph
JP2007276189A (en) * 2006-04-04 2007-10-25 Nissei Plastics Ind Co Temperature control method of injection moulding machine
JP2011106833A (en) * 2009-11-12 2011-06-02 Tosoh Corp Column pipe for liquid chromatograph
JP2014211386A (en) * 2013-04-19 2014-11-13 東ソー株式会社 Thermostatic chamber for chromatograph

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508890A (en) * 2008-01-02 2011-03-17 ウオーターズ・テクノロジーズ・コーポレイシヨン Liquid chromatography conduit assembly having a high pressure seal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05113434A (en) * 1991-10-21 1993-05-07 Yamatake Honeywell Co Ltd Gas chromatograph
JP2007276189A (en) * 2006-04-04 2007-10-25 Nissei Plastics Ind Co Temperature control method of injection moulding machine
JP2011106833A (en) * 2009-11-12 2011-06-02 Tosoh Corp Column pipe for liquid chromatograph
JP2014211386A (en) * 2013-04-19 2014-11-13 東ソー株式会社 Thermostatic chamber for chromatograph

Also Published As

Publication number Publication date
JP2016212043A (en) 2016-12-15
JP6479566B2 (en) 2019-03-06

Similar Documents

Publication Publication Date Title
WO2016181853A1 (en) Gas chromatograph, temperature controller for same, and gas chromatograph temperature control method
JP4561350B2 (en) Discharge lamp lighting device, lighting fixture, and lighting system
US7442902B2 (en) Adaptive temperature controller
US10274356B2 (en) Liquid level detection circuit, liquid level meter, container provided with liquid level meter, and vaporizer using container
US20090045187A1 (en) Adaptive Temperature Controller
US11506622B2 (en) Gas detector comprising plural gas sensors and gas detection method thereby
JP2006313653A (en) Thermostat for heater and medicine packing apparatus equipped with the same
JP5130786B2 (en) PTC heater control device
JP5277809B2 (en) Power regulator
JP2007115680A (en) Circuit device for actuating ptc electric heating element used as heater element
JP7317318B2 (en) GAS DETECTION DEVICE INCLUDING PLURAL GAS SENSORS AND GAS DETECTION METHOD
JP2018136134A (en) Humidity sensor and adjusting method therefor
JP6459788B2 (en) Sensor applied voltage control device
JP2005257702A (en) Co detector
JPH11142356A (en) Semiconductor gas sensor
WO2016143114A1 (en) Ac power regulator and output control method
JP2020161477A (en) Heater system, heater control device, and heater control program
KR101867871B1 (en) Apparatus for detecting state of heater
JP2019153437A (en) Heating device and method for detecting abnormality in heating device
KR20160068491A (en) Temperature control system and method of hair iron
JP5903353B2 (en) Gas detector
JP7348353B2 (en) exhaust gas heater
WO2004057433A3 (en) Device for regulating the temperature of a heating wire with few emitted disturbances
JP2010067974A (en) Method of increasing dielectric strength of metal oxide transistor and circuit device
JP6896554B2 (en) Gas alarm

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16792578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16792578

Country of ref document: EP

Kind code of ref document: A1