JP2014211386A - Thermostatic chamber for chromatograph - Google Patents

Thermostatic chamber for chromatograph Download PDF

Info

Publication number
JP2014211386A
JP2014211386A JP2013088447A JP2013088447A JP2014211386A JP 2014211386 A JP2014211386 A JP 2014211386A JP 2013088447 A JP2013088447 A JP 2013088447A JP 2013088447 A JP2013088447 A JP 2013088447A JP 2014211386 A JP2014211386 A JP 2014211386A
Authority
JP
Japan
Prior art keywords
temperature
housing
air
control
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013088447A
Other languages
Japanese (ja)
Inventor
秀知佳 林
Hidechika Hayashi
秀知佳 林
崇史 藤井
Takashi Fujii
崇史 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2013088447A priority Critical patent/JP2014211386A/en
Publication of JP2014211386A publication Critical patent/JP2014211386A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/50Conditioning of the sorbent material or stationary liquid
    • G01N30/52Physical parameters
    • G01N30/54Temperature

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Control Of Temperature (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermostatic chamber provided for chromatograph in which no or little overshoot is generated.SOLUTION: A thermostatic chamber 200 is provided with a temperature controller 60 that comprises: a temperature converter 61 that is connected to a temperature sensor 50 and outputs a value indicating air temperature in a housing 10; a temperature control circuit 62 in which the air temperature in the housing output by the temperature converter is regarded as a controlled variable, a target temperature of air in the housing is regarded as a setting value, the amount of heat generated by a heater 30 is regarded as a manipulated variable, and control is performed based on P control, PI control, or PID control; a control parameter setting circuit 63 that instructs the temperature control circuit with a proportional gain and/or an integral gain on the basis of the target temperature of air in the housing and the air temperature in the housing output by the temperature converter; and a power-supply circuit 64 that supplies power to the heater on the basis of the amount of heat generated by the heater that is output from the temperature control circuit.

Description

本発明は、クロマトグラフに設ける、移動相供給手段、試料導入手段、分離カラム、検出手段等を温調するための恒温槽に関する。特に本発明は、室温プラス10℃程度の温度から室温プラス200℃前後の温度までの広い温度範囲で分析可能なクロマトグラフに設ける恒温槽に関する。   The present invention relates to a thermostatic chamber for controlling the temperature of a mobile phase supply unit, a sample introduction unit, a separation column, a detection unit and the like provided in a chromatograph. In particular, the present invention relates to a thermostatic chamber provided in a chromatograph capable of analyzing in a wide temperature range from a temperature of about room temperature plus 10 ° C. to a temperature of about room temperature plus 200 ° C.

クロマトグラフのうち液体クロマトグラフは、移動相(溶離液)供給手段、試料導入手段、分離カラム、検出手段、廃液容器およびそれらを接続する流路から構成されている。試料に含まれる成分を分析するために試料導入手段により分離カラムの上流に試料が導入されると、溶離液供給手段から供給された溶離液により分離カラムに試料が導入される。液体クロマトグラフは試料中の成分毎に分離カラムを通過する時間が異なることを利用して当該試料に含まれる成分を分離し、分離カラムから溶出された成分を分離カラムの下流に設けた検出手段で検出後、溶出液を廃液容器へ廃棄する。なお溶出液は廃液容器に廃棄せずに、複数の容器に受けて回収したり、廃棄口に廃棄したりすることもできる。   Among the chromatographs, the liquid chromatograph includes a mobile phase (eluent) supply means, a sample introduction means, a separation column, a detection means, a waste liquid container, and a flow path connecting them. When the sample is introduced upstream of the separation column by the sample introduction means in order to analyze the components contained in the sample, the sample is introduced into the separation column by the eluent supplied from the eluent supply means. The liquid chromatograph uses the fact that the time to pass through the separation column differs for each component in the sample, and the detection means for separating the component contained in the sample and providing the component eluted from the separation column downstream of the separation column After detection, discard the eluate in a waste container. Note that the eluate can be collected in a plurality of containers without being discarded in a waste liquid container, or discarded in a waste outlet.

液体クロマトグラフによる分析において、分離カラムによる試料中の成分分離能を向上させたり、試料中の成分の溶解性を向上させたりすることを目的に、試料導入手段や分離カラムの温度を上げることが行なわれる。また、溶離液供給手段による溶離液の送液安定性や、分離カラムによるピーク保持時間や、検出手段による信号のベースライン等は温度に依存するので、必要に応じて温調される。またそのため、溶離液供給手段、試料導入手段、分離カラム、検出手段は、個別または複数の手段をまとめて恒温槽に収容し、一定の温度に(必要に応じ加温して)保持される。   In the analysis by liquid chromatography, the temperature of the sample introduction means and separation column can be increased for the purpose of improving the component separation ability in the sample by the separation column and improving the solubility of the component in the sample. Done. In addition, since the eluent supply stability by the eluent supply means, the peak retention time by the separation column, the signal baseline by the detection means, and the like depend on the temperature, the temperature is adjusted as necessary. Therefore, the eluent supply means, the sample introduction means, the separation column, and the detection means are stored individually or in a plurality of means in a constant temperature bath and held at a constant temperature (heated as necessary).

クロマトグラフに設ける、移動相供給手段、試料導入手段、分離カラム(分離手段)、検出手段のいずれか一つ以上を一定の温度に保持する恒温槽は、通常、前記手段のいずれか一つを収容する筐体と、前記筐体内の空気を加温するヒータと、前記筐体内の空気を循環させるファンとを有しており、前記ヒータにより加温させた空気を前記ファンで循環させることで、前記筐体内の温度を一定の温度に保持している。恒温槽に冷却手段を設けていない場合は、通常、筐体空気の目標温度を筐体外の空気温度より10℃以上高く設定すれば、温度制御が可能である。なおクロマトグラフによる測定対象がエンジニアリングプラスチックスなど容易に溶媒に溶解しない合成高分子の場合は、200℃以上に加熱する場合があり、そのときは、筐体を厚い断熱材で包み、断熱性能を強化する。   A constant temperature bath that maintains at least one of the mobile phase supply means, sample introduction means, separation column (separation means), and detection means provided in the chromatograph is usually one of the above means. A housing for housing, a heater for heating the air in the housing, and a fan for circulating the air in the housing; and circulating the air heated by the heater through the fan The temperature inside the casing is kept constant. In the case where no cooling means is provided in the thermostatic bath, temperature control is usually possible if the target temperature of the case air is set 10 ° C. or more higher than the air temperature outside the case. In the case of a synthetic polymer that is not easily dissolved in a solvent such as engineering plastics, the chromatographic measurement target may be heated to 200 ° C. or higher. In that case, wrap the case with a thick heat insulating material to improve the heat insulating performance. Strengthen.

前述した恒温槽では、筐体内の空気温度を測定(制御量)し、当該空気温度が所定の温度(設定値)となるように、ヒータの発熱量を制御(ヒータとして電熱ヒータを使用した場合は、当該ヒータに供給する電力を制御)する。ヒータとして電熱ヒータを使用した場合における発熱量の制御方法として、通常、設定値と制御量との差に比例する電力(比例項)を電熱ヒータに供給するP制御(比例制御)や、設定値と制御量との差に比例する電力(比例項)と、設定値と制御量との差の時間に対する積分値に比例する電力(積分項)とを電熱ヒータに供給するPI制御や、設定値と制御量との差に比例する電力(比例項)と、設定値と制御量との差の時間に対する積分値(積分項)に比例する電力に加えて、さらに制御量の時間に対する変化率に比例する電力(微分項)を電熱ヒータに供給するPID制御が使われる。PI制御やPID制御において、前記積分項は、温調開始して目標温度に達した後のオーバーシュート(行き過ぎ)の原因となるため、多くの場合、制御量が設定値の近傍の温度に達した時にリセットされる。   In the above-described thermostatic chamber, the air temperature in the housing is measured (control amount), and the heating value of the heater is controlled so that the air temperature becomes a predetermined temperature (set value) (when an electric heater is used as the heater) Controls the power supplied to the heater. As a method of controlling the amount of heat generated when an electric heater is used as the heater, normally, P control (proportional control) for supplying the electric heater with electric power (proportional term) proportional to the difference between the set value and the control amount, or a set value PI control that supplies electric heaters with power (proportional term) that is proportional to the difference between the control value and the control amount, and power (integral term) that is proportional to the integral value with respect to the time of the difference between the set value and the control amount. In addition to the power proportional to the difference between the control amount and the power (proportional term) and the power proportional to the integral value (integral term) of the difference between the set value and the control amount, PID control is used to supply proportional power (differential term) to the electric heater. In PI control and PID control, the integral term causes overshoot (overshoot) after starting temperature regulation and reaching the target temperature, and in many cases, the controlled variable reaches a temperature near the set value. It is reset when

前述した恒温槽では、ヒータの熱が空気に伝わる速度が遅いため、オーバーシュート(行き過ぎ)を生じやすいという問題がある。特に筐体内の設定温度を筐体外の空気温度(環境温度)に近い温度から室温より200℃前後高い温度まで大きく変化させる場合、当該高い温度まで昇温するのに必要な発熱量を有したヒータを設ける必要があり、かつ筐体の断熱性能もあげる必要がある。その場合、筐体内空気の温度を環境温度に近い温度に設定すると、前記積分項をリセットしてもオーバーシュートが長く続く。   In the above-described constant temperature bath, there is a problem that overshoot (overshoot) is likely to occur because the speed at which the heat of the heater is transmitted to the air is slow. In particular, when the set temperature in the housing is greatly changed from a temperature close to the air temperature outside the housing (environmental temperature) to a temperature about 200 ° C. higher than room temperature, a heater having a heat generation amount necessary to raise the temperature to the high temperature It is necessary to provide heat insulation performance of the housing. In that case, if the temperature of the air in the housing is set to a temperature close to the environmental temperature, the overshoot continues for a long time even if the integral term is reset.

前記問題を解消するため、筐体内空気の設定温度によって、ヒータを交換したり、供給電圧を変えたりして、ヒータの発熱量を変更する方法がある。しかしながら、最適なヒータに交換したり、最適な供給電圧に変えたりするには手間がかかる。   In order to solve the above problem, there is a method in which the amount of heat generated by the heater is changed by replacing the heater or changing the supply voltage depending on the set temperature of the air in the housing. However, it takes time to replace the heater with an optimum heater or to change to an optimum supply voltage.

そこで本発明の目的は、移動相供給手段と、試料導入手段と、分離手段と、検出手段とを備えたクロマトグラフに設ける、前記手段のいずれか一つ以上を収容する筐体と、前記筐体内の空気に熱を供給するヒータと、前記筐体内の空気を循環させるファンとを有した、前記手段のいずれか一つ以上を温調する恒温槽において、オーバーシュートがない、または少ない恒温槽を提供することにある。   Accordingly, an object of the present invention is to provide a chromatograph provided with a mobile phase supply means, a sample introduction means, a separation means, and a detection means, and a casing that houses any one or more of the means, and the casing. A thermostat bath having a heater for supplying heat to the air in the body and a fan for circulating the air in the housing to control the temperature of any one or more of the above means, with no or little overshoot Is to provide.

上記課題を鑑みてなされた本発明は、以下の態様を包含する。   This invention made | formed in view of the said subject includes the following aspects.

すなわち本発明の第一の態様は、
移動相供給手段と、試料導入手段と、分離手段と、検出手段とを備えたクロマトグラフに設ける、前記手段のいずれか一つ以上を収容する筐体と、前記筐体内の空気に熱を供給する電熱ヒータと、前記筐体内の空気温度を検知する温度センサと、前記筐体内の空気温度を制御する温度調整器と、前記筐体内の空気を循環させるファンとを有した、前記手段のいずれか一つ以上を温調する恒温槽であって、前記温度調整器が、
温度センサに接続されて筐体内の空気温度を指示する値を出力する温度変換器と、
前記温度変換器で出力された筐体内の空気温度を制御量とし、筐体内空気の目標温度を設定値とし、ヒータによる発熱量を操作量とし、比例制御(P制御)、比例−積分制御(PI制御)または比例−積分−微分制御(PID制御)に基づき制御を行なう、温度制御回路と、
筐体内空気の目標温度と温度変換器で出力された筐体内の空気温度とに基づき、比例ゲインおよび/または積分ゲインを温度制御回路に指示する制御パラメータ設定回路と、
温度制御回路から出力されたヒータによる発熱量に基づき、ヒータに電力を供給する電力供給回路と、
を有した、前記恒温槽である。
That is, the first aspect of the present invention is:
Provided in a chromatograph including a mobile phase supply means, a sample introduction means, a separation means, and a detection means, and a case that houses any one or more of the means, and supplies heat to the air in the case Any of the above-mentioned means comprising: an electric heater that detects the temperature of the air in the housing; a temperature controller that controls the air temperature in the housing; and a fan that circulates the air in the housing. Or a thermostat that regulates the temperature of one or more of the temperature regulators,
A temperature converter connected to the temperature sensor and outputting a value indicating the air temperature in the housing;
The air temperature in the housing output from the temperature converter is set as a control amount, the target temperature of the air in the housing is set as a set value, the heat generation amount by the heater is set as an operation amount, and proportional control (P control), proportional-integral control ( A temperature control circuit that performs control based on (PI control) or proportional-integral-derivative control (PID control);
A control parameter setting circuit for instructing the temperature control circuit of a proportional gain and / or an integral gain based on the target temperature of the air in the housing and the air temperature in the housing output by the temperature converter;
A power supply circuit that supplies power to the heater based on the amount of heat generated by the heater output from the temperature control circuit;
It is the said thermostat which had.

また本発明の第二の態様は、制御パラメータ設定回路が、筐体内空気の目標温度と温度変換器で出力された筐体内の空気温度との差に基づき、比例ゲインおよび/または積分ゲインを温度制御回路に指示する回路である、前記第一の態様に記載の恒温槽である。   According to a second aspect of the present invention, the control parameter setting circuit sets the proportional gain and / or integral gain to a temperature based on a difference between the target temperature of the air in the housing and the air temperature in the housing output by the temperature converter. It is a thermostat as described in said 1st aspect which is a circuit which instruct | indicates to a control circuit.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の恒温槽は、クロマトグラフにおいて、移動相供給手段、試料導入手段、分離手段(分離カラム)、検出手段のいずれか一つ以上を一定温度に保持(温調)するためにクロマトグラフに設けている。   The constant temperature bath of the present invention is a chromatograph for maintaining (temperature controlling) one or more of mobile phase supply means, sample introduction means, separation means (separation column), and detection means at a constant temperature. Provided.

クロマトグラフ用恒温槽に備えるヒータとしては、ヒータに接した空気に直接、熱を伝える電熱ヒータが多く用いられる。電熱ヒータは、加える電力量によって発熱量を制御可能である。電熱ヒータには、細長い電熱線を渦巻状またはらせん状に巻いたヒータや、金属(例えばステンレス)、ガラスまたはセラミックなどの筒の中に封入したヒータや、パワートランジスタなどの半導体素子の発熱を利用したヒータや、半導体セラミックで作られたPTCヒータなどが知られているが、いずれのヒータを使ってもよい。なお前述した電熱ヒータのうち、ステンレス製の筒の中に封入したヒータを使う場合、外側にフィンを設けると、ヒータに接触する空気の量が増えることにより筐体内空気への熱伝達がよくなるため、好ましい。またパワートランジスタを使う場合はヒートシンクなどに取り付ければよい。恒温槽に設ける電熱ヒータの数は一個でもよいし、複数でもよい。   As the heater provided in the thermostat for the chromatograph, an electric heater that directly transfers heat to the air in contact with the heater is often used. The electric heater can control the amount of heat generated by the amount of electric power applied. Electric heaters use the heat generated by semiconductor elements such as heaters with spiral or spiral wound wires, heaters sealed in tubes made of metal (for example, stainless steel), glass or ceramics, and power transistors. There are known heaters and PTC heaters made of semiconductor ceramic, but any heater may be used. Of the electric heaters described above, when using a heater sealed in a stainless steel cylinder, providing fins on the outside increases the amount of air that contacts the heater, which improves heat transfer to the air inside the housing. ,preferable. If a power transistor is used, it may be attached to a heat sink or the like. One or more electric heaters may be provided in the thermostatic chamber.

本発明の恒温槽では、筐体内の空気温度を検知する温度センサを有している。前記温度センサは、筐体内の位置によって空気温度が変化することから、筐体に収容する各手段(例えば、送液ポンプなどの移動相供給手段や分離カラム)の温度と、センサを設置する箇所の空気温度との差が小さく、しかも風がよくあたる位置に設けると好ましい。前記温度センサで使用可能な温度センサの種類としては、白金抵抗測温体、熱電対、サーミスタなどがあげられ、使用する温度範囲に応じて適宜選択すればよい。前記温度センサは空気温度を測定するため、時間応答性のよい、小型のセンサを用いると好ましい。前記温度センサのリード線の被覆に用いる材料は、塩化ビニール、ポリエチレン、フッ素樹脂、ガラス繊維、セラミック等の中から使用する温度範囲に応じて適宜選択すればよい。   The thermostat of the present invention has a temperature sensor that detects the air temperature in the housing. Since the temperature of the air temperature varies depending on the position in the casing, the temperature of each means (for example, mobile phase supply means such as a liquid feed pump or a separation column) accommodated in the casing and the location where the sensor is installed It is preferable to provide it at a position where the difference from the air temperature is small and the wind is well. Examples of the temperature sensor that can be used for the temperature sensor include a platinum resistance thermometer, a thermocouple, a thermistor, and the like, and may be appropriately selected according to the temperature range to be used. Since the temperature sensor measures the air temperature, it is preferable to use a small sensor with good time response. The material used for covering the lead wire of the temperature sensor may be appropriately selected from vinyl chloride, polyethylene, fluororesin, glass fiber, ceramic, etc. according to the temperature range to be used.

本発明の恒温槽に設ける温度調整器のうち、温度変換器は、使用する温度センサの種類に応じて公知の温度変換器から選択することができる。温度センサとして白金抵抗測温体やサーミスタを用いる場合は、通常、定電流電源または定電圧電源に接続したホイートストンブリッジの一辺に組込み、二つの中点の電位差を増幅して温度信号を得る。なお温度と温度信号の間の非直線性が大きい場合には、補正回路をさらに使用すればよい。温度センサとして熱電対を用いる場合は、温度を検知する測温接点と冷接点(基準接点)を設け、当該冷接点を所定の一定温度、例えば水の三重点温度に保った状態で、同種金属からなるリード線の間の電位差を増幅すればよい。冷接点を一定温度に保つ代わりに、冷接点の温度を測定し、電位差を補償してもよい。   Among the temperature regulators provided in the thermostat of the present invention, the temperature converter can be selected from known temperature converters according to the type of temperature sensor used. When a platinum resistance thermometer or thermistor is used as a temperature sensor, it is usually incorporated into one side of a Wheatstone bridge connected to a constant current power source or a constant voltage power source, and a temperature signal is obtained by amplifying the potential difference between the two midpoints. If the nonlinearity between the temperature and the temperature signal is large, a correction circuit may be further used. When using a thermocouple as the temperature sensor, provide a temperature measuring contact and a cold junction (reference contact) that detect the temperature, and keep the cold junction at a predetermined constant temperature, for example, the triple point temperature of water. What is necessary is just to amplify the potential difference between the lead wires consisting of. Instead of keeping the cold junction at a constant temperature, the temperature of the cold junction may be measured to compensate for the potential difference.

本発明の恒温槽に設ける温度調整器のうち、温度制御回路は、筐体内の空気温度を検知する温度センサに接続された温度変換器から出力される筐体内の空気温度を制御量(PV)とし、筐体内空気の目標温度を設定値(SV)とし、電熱ヒータによる発熱量を操作量(MV)とした回路であり、比例制御(P制御)、PI制御またはPID制御のいずれかで制御する。PID制御は、比例ゲインをKp、積分時間をTi、微分時間をTdとすると、
MV=Kp×{(PV−SV)+∫(PV−SV)dt/Ti+d(PV−SV)/dt×Td}
で表される。ここで設定量が一定であれば、カッコ内の第3項はdPV/dt×Tdと表わしてもよい。なおPI制御ではTd=0、P制御ではTd=0かつTi=∞である。なお本発明の恒温槽における温度制御回路では、積分時間(Ti)、微分時間(Td)の代わりに、積分ゲインKi(=Kp/Ti)、微分ゲインKd(=Kp・Td)を使用する。これらの制御パラメータは、空気温度が安定するように、適宜決めればよい。
Among the temperature regulators provided in the thermostatic chamber of the present invention, the temperature control circuit controls the air temperature in the casing output from the temperature converter connected to the temperature sensor that detects the air temperature in the casing. The circuit is a circuit in which the target temperature of the air in the housing is set to a set value (SV) and the amount of heat generated by the electric heater is the manipulated variable (MV), and is controlled by either proportional control (P control), PI control or PID control To do. In PID control, if the proportional gain is Kp, the integration time is Ti, and the derivative time is Td,
MV = Kp × {(PV−SV) + ∫ (PV−SV) dt / Ti + d (PV−SV) / dt × Td}
It is represented by Here, if the set amount is constant, the third term in parentheses may be expressed as dPV / dt × Td. In the PI control, Td = 0, and in the P control, Td = 0 and Ti = ∞. In the temperature control circuit in the thermostat according to the present invention, an integral gain Ki (= Kp / Ti) and a differential gain Kd (= Kp · Td) are used instead of the integral time (Ti) and the derivative time (Td). These control parameters may be appropriately determined so that the air temperature is stabilized.

本発明の恒温槽に設ける温度調整器のうち、制御パラメータ設定回路は、筐体内の目標温度と温度変換器で出力された筐体内の空気温度とに基づき、比例ゲインおよび/または積分ゲインを温度制御回路に指示する回路であり、少なくとも電熱ヒータにより筐体内の空気に熱を供給するとき(昇温時)に、定常時より低下した比例ゲインおよび/または積分ゲインを温度制御回路に指示可能な回路である。筐体内空気の目標温度と筐体外の空気温度との差が小さい場合、電熱ヒータによる発熱量が大きいと、筐体内の空気温度が筐体内空気の目標温度に達した後で電熱ヒータによる発熱をカットしても温度が上昇し続ける(オーバーシュート)。そこで、電熱ヒータによる発熱量を減らせばオーバーシュートを減らすことができる。最初から発熱量を減らしてもよいが、筐体内の空気温度が筐体内空気の目標温度に近づいた時点で発熱量を減らすと、短時間で筐体内空気の目標温度まで昇温することができるため好ましい。一例として、筐体内の空気温度が筐体内空気の目標温度から10℃低い温度、15℃低い温度、または20℃低い温度となった時点で、電熱ヒータによる発熱量を減らす、すなわち定常時より低下した比例ゲインおよび/または積分ゲインを温度制御回路に指示すればよい。また、それらの指示に加えて、定常時より低下した微分ゲインを温度制御回路に指示してもよい。比例ゲインおよび/または積分ゲインの低下のさせ方は、例えば、1段階や2段階や3段階にステップワイズで低下させてもよく、連続的に低下させてもよい。ステップワイズまたは連続的に低下させる場合は、例えば、筐体内空気の目標温度と温度変換器で出力された筐体内の空気温度との差に基づき、低下させればよい。低下させた後の比例ゲインの値は、オーバーシュートと昇温速度を考慮して決めればよい。一例として、定常時の比例ゲインを0.005倍した値を低下させた後の比例ゲインの値として用いることができる。   Among the temperature regulators provided in the thermostat according to the present invention, the control parameter setting circuit sets the proportional gain and / or integral gain to the temperature based on the target temperature in the casing and the air temperature in the casing output from the temperature converter. This is a circuit for instructing the control circuit, and at least when the heat is supplied to the air in the housing by the electric heater (at the time of temperature rise), the proportional gain and / or integral gain decreased from the steady state can be instructed to the temperature control circuit Circuit. If the difference between the target air temperature inside the housing and the air temperature outside the housing is small, if the amount of heat generated by the electric heater is large, the electric heater generates heat after the air temperature inside the housing reaches the target temperature of the air inside the housing. Even after cutting, the temperature continues to rise (overshoot). Therefore, overshoot can be reduced by reducing the amount of heat generated by the electric heater. The amount of heat generated may be reduced from the beginning, but if the amount of heat generated is reduced when the air temperature in the housing approaches the target temperature of the air in the housing, the temperature can be raised to the target temperature of the air in the housing in a short time. Therefore, it is preferable. As an example, when the air temperature in the housing reaches a temperature that is 10 ° C., 15 ° C., or 20 ° C. lower than the target temperature of the air in the housing, the amount of heat generated by the electric heater is reduced, that is, lower than the steady state. The proportional gain and / or integral gain may be indicated to the temperature control circuit. Further, in addition to these instructions, a differential gain that has decreased from the steady state may be instructed to the temperature control circuit. For example, the proportional gain and / or the integral gain may be decreased stepwise in one step, two steps, or three steps, or may be decreased continuously. In the case of stepwise or continuous reduction, for example, the reduction may be performed based on the difference between the target temperature of the air in the housing and the air temperature in the housing output by the temperature converter. The value of the proportional gain after being lowered may be determined in consideration of the overshoot and the heating rate. As an example, it can be used as the value of the proportional gain after a value obtained by multiplying the proportional gain at the time of 0.005 by 0.005 is lowered.

制御パラメータ設定回路で温度制御回路に指示する比例ゲインおよび/または積分ゲインは、例えば、温度制御を開始した後、筐体内の空気温度が筐体内空気の目標温度より10℃低い温度(または15℃低い温度、20℃低い温度)に達するまでは、定常時の比例ゲインおよび/または積分ゲインを指示し、筐体内の空気温度が筐体内空気の目標温度より10℃低い温度(または15℃低い温度、20℃低い温度)から筐体内空気の目標温度に達するまでは、定常時よりも低下させた比例ゲインおよび/または積分ゲインを指示すればよい。なお筐体内の空気温度が筐体内空気の目標温度に達した後は、定常時の比例ゲインおよび/または積分ゲインに戻して指示してもよい。また、一旦、筐体内の空気温度が定常状態に達した後で筐体内空気の目標温度を上げる場合の、制御パラメータ設定回路で温度制御回路に指示する比例ゲインおよび/または積分ゲインは、例えば、温度制御を開始した場合同様、筐体内空気の目標温度を上げた後、筐体内の空気温度が筐体内空気の目標温度より10℃低い温度(または15℃低い温度、20℃低い温度)に達するまでは、定常時の比例ゲインおよび/または積分ゲインを指示し、筐体内の空気温度が筐体内空気の目標温度より10℃低い温度(または15℃低い温度、20℃低い温度)から筐体内空気の目標温度に達するまでは、定常時よりも低下させた比例ゲインおよび/または積分ゲインを指示すればよい。   The proportional gain and / or integral gain instructed to the temperature control circuit by the control parameter setting circuit is, for example, a temperature (or 15 ° C.) lower than the target temperature of the air in the housing by 10 ° C. after the temperature control is started. Until the temperature reaches a low temperature (20 ° C. lower temperature), the proportional gain and / or integral gain in the steady state is indicated, and the temperature of the air in the housing is 10 ° C. lower than the target temperature of the air in the housing (or 15 ° C. lower) Until the target temperature of the air in the housing is reached from the temperature 20 ° C.), the proportional gain and / or the integral gain lower than those in the steady state may be indicated. In addition, after the air temperature in the housing reaches the target temperature of the air in the housing, it may be instructed to return to the proportional gain and / or integral gain in the steady state. In addition, when the target temperature of the air in the housing is raised once the air temperature in the housing reaches a steady state, the proportional gain and / or integral gain instructed to the temperature control circuit by the control parameter setting circuit is, for example, As in the case of starting the temperature control, after raising the target temperature of the air in the housing, the air temperature in the housing reaches a temperature that is 10 ° C. lower than the target temperature of the air in the housing (or a temperature that is 15 ° C. lower or 20 ° C. lower). Until, the proportional gain and / or integral gain in the steady state is instructed, and the air temperature in the housing is 10 ° C. lower than the target temperature of the air in the housing (or 15 ° C. lower temperature, 20 ° C. lower temperature). Until the target temperature is reached, the proportional gain and / or the integral gain reduced from the steady state may be indicated.

温度制御回路で出力した電熱ヒータによる発熱量に基づき、電熱ヒータに与える電力を変化させるためには、通常知られているように、ヒータに流す電流または電圧をトランジスタやFET(電界効果トランジスタ)などで連続的に変化させて電力を調整してもよいし、トランジスタやFETやサイリスタなどのスイッチングデバイスを用いて一定の周期ごとに電流または電圧をON/OFFさせ、そのデューティ比を変えることによって電力を調整してもよい。なお直流電源を使ってもよく、交流電源を使ってもよい。   In order to change the electric power applied to the electric heater based on the amount of heat generated by the electric heater output from the temperature control circuit, the current or voltage flowing through the heater is changed to a transistor or FET (field effect transistor), as is generally known. The power may be adjusted by continuously changing the power by switching the current or voltage at regular intervals using a switching device such as a transistor, FET, or thyristor, and changing the duty ratio. May be adjusted. A DC power supply may be used, or an AC power supply may be used.

本発明の恒温槽は、移動相供給手段、試料導入手段、分離手段、検出手段のいずれか一つ以上を収容する筐体と、前記筐体内の空気に熱を供給する電熱ヒータと、前記筐体内の空気温度を検知する温度センサと、前記筐体内の空気温度を制御する温度調整器と、前記筐体内の空気を循環させるファンとを有し、かつ、前記温度調整器が、温度センサに接続されて筐体内の空気温度を指示する値を出力する温度変換器と、前記温度変換器で出力された筐体内の空気温度を制御量とし筐体内空気の目標温度を設定値としヒータによる発熱量を操作量とし比例制御(P制御)、比例−積分制御(PI制御)または比例−積分−微分制御(PID制御)に基づき制御を行なう温度制御回路と、筐体内空気の目標温度と温度変換器で出力された筐体内の空気温度とに基づき比例ゲインおよび/または積分ゲインを温度制御回路に指示する制御パラメータ設定回路と、温度制御回路から出力されたヒータによる発熱量に基づきヒータに電力を供給する電力供給回路と、を有していることを特徴としている。   The constant temperature bath of the present invention includes a casing that houses any one or more of a mobile phase supply means, a sample introduction means, a separation means, and a detection means, an electric heater that supplies heat to the air in the casing, and the casing. A temperature sensor that detects an air temperature in the body, a temperature regulator that controls the air temperature in the housing, and a fan that circulates the air in the housing; and the temperature regulator serves as a temperature sensor. A temperature converter connected to output a value indicating the air temperature in the housing, and a heat generated by the heater using the air temperature in the housing output by the temperature converter as a control amount and a target temperature of the air in the housing as a set value A temperature control circuit that performs control based on proportional control (P control), proportional-integral control (PI control), or proportional-integral-derivative control (PID control) using the amount as an operation amount, and a target temperature and temperature conversion of the air in the housing In the case output by the instrument A control parameter setting circuit for instructing the temperature control circuit on the proportional gain and / or integral gain based on the air temperature, and a power supply circuit for supplying power to the heater based on the amount of heat generated by the heater output from the temperature control circuit, It is characterized by having.

本発明の恒温槽は、恒温槽による筺体内空気温度の制御において、筐体内空気温度の目標温度に対する筐体内空気温度のオーバーシュートが少ない、またはほとんど発生しない恒温槽であり、筐体内空気を短時間かつ安定的に目標温度に達することができる。すなわち、電熱ヒータによる筐体内空気温度の制御を開始してからクロマトグラフによる分析が可能になるまでの時間が短縮されることから、待ち時間が減り、クロマトグラフの利用効率を向上させることができる。   The thermostat of the present invention is a thermostat that has little or almost no overshoot of the air temperature inside the housing with respect to the target temperature of the air temperature inside the housing in the control of the air temperature inside the housing by the thermostat, and the air inside the housing is short. The target temperature can be reached in a timely and stable manner. That is, since the time from the start of control of the air temperature in the housing by the electric heater to the time when the analysis by the chromatograph becomes possible is shortened, the waiting time is reduced and the use efficiency of the chromatograph can be improved. .

従来の恒温槽の一態様を示す図。The figure which shows the one aspect | mode of the conventional thermostat. 本発明の恒温槽の一態様を示す図。The figure which shows the one aspect | mode of the thermostat of this invention. 比較例1の結果を示す図。The figure which shows the result of the comparative example 1. 比較例1の結果を示す図。The figure which shows the result of the comparative example 1. 実施例1の結果を示す図。FIG. 4 is a diagram showing the results of Example 1. 実施例1の結果を示す図。FIG. 4 is a diagram showing the results of Example 1. 実施例2の結果を示す図。The figure which shows the result of Example 2. FIG. 実施例2の結果を示す図。The figure which shows the result of Example 2. FIG.

以下、比較例および実施例を用いて本発明をさらに詳細に説明するが、これらの例は本発明を限定するものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail using a comparative example and an Example, these examples do not limit this invention.

比較例1
図1に示す従来の恒温槽を用いて電熱ヒータによる筐体内空気温度の制御を試みた。
Comparative Example 1
An attempt was made to control the air temperature in the housing with an electric heater using the conventional thermostat shown in FIG.

図1に示す従来の恒温槽100は、分離カラム20を収容するための筐体10と、筐体内の空気に熱を供給するための電熱ヒータ30と、筐体内の空気を循環するためのファン40と、筐体内の空気温度を検知する温度センサ50と、前記筐体内の空気温度を制御する温度調整器60を有している。温度調整器60は、温度センサ50に接続されて筐体内の空気温度を指示する値を出力する温度変換器61と、温度変換器61で出力された筐体内の空気温度を制御量とし筐体内空気の目標温度を設定値とし電熱ヒータ30による発熱量を操作量とする温度制御回路62と、温度制御回路62で出力されたヒータによる発熱量に基づき電熱ヒータ30に電力を供給する電力供給回路66と、を有している。   A conventional thermostat 100 shown in FIG. 1 includes a housing 10 for housing the separation column 20, an electric heater 30 for supplying heat to the air in the housing, and a fan for circulating the air in the housing. 40, a temperature sensor 50 for detecting the air temperature in the housing, and a temperature regulator 60 for controlling the air temperature in the housing. The temperature regulator 60 is connected to the temperature sensor 50 and outputs a value indicating the air temperature in the housing. The temperature regulator 60 uses the air temperature in the housing output from the temperature converter 61 as a control amount. A temperature control circuit 62 that uses a target temperature of air as a set value and an amount of heat generated by the electric heater 30 as an operation amount, and a power supply circuit that supplies electric power to the electric heater 30 based on the amount of heat generated by the heater output from the temperature control circuit 62 66.

筐体10の容量は30Lであり、厚さ20mmの断熱材によって、外気に対し断熱される。温度センサ50は小型白金抵抗測温体を使用する。温度センサ50による検知結果は、定電流電源と電圧増幅器と補正回路から構成される温度変換器61により温度信号71に変換され、温度制御回路62に入力される。温度制御回路62はPI制御に基づき制御する。温度制御回路62は、温度信号71と筐体内空気の目標温度(設定値指示信号72)とを入力し、デューティ比0から1に対応する電圧信号(発熱量指示信号73)を出力する。電力供給回路64は、一周期2秒のうち、2秒にデューティ比をかけた時間だけ電熱ヒータ30に電力を供給74し、残りの時間は電力供給をカットする(比例ON/OFF制御)。電熱ヒータ30に供給する平均電力はデューティ比に比例し、デューティ比が1の時に400Wである。   The capacity | capacitance of the housing | casing 10 is 30L, and is thermally insulated with respect to external air with the heat insulating material of thickness 20mm. The temperature sensor 50 uses a small platinum resistance temperature sensor. A detection result by the temperature sensor 50 is converted into a temperature signal 71 by a temperature converter 61 including a constant current power source, a voltage amplifier, and a correction circuit, and is input to the temperature control circuit 62. The temperature control circuit 62 performs control based on PI control. The temperature control circuit 62 inputs the temperature signal 71 and the target temperature (set value instruction signal 72) of the air in the housing, and outputs a voltage signal (heat generation amount instruction signal 73) corresponding to a duty ratio of 0 to 1. The electric power supply circuit 64 supplies electric power 74 to the electric heater 30 only during a period of 2 seconds in a cycle of 2 seconds, and cuts off the electric power supply for the remaining time (proportional ON / OFF control). The average power supplied to the electric heater 30 is proportional to the duty ratio, and is 400 W when the duty ratio is 1.

温度制御回路62における比例ゲインKpを1に、積分ゲインKiを1/250に、微分ゲインKdを0(PI制御のため)に、それぞれ設定し、筐体内の空気温度が初めて筐体内空気の目標温度に達した時点と、筐体内空気の目標温度を変更後、当該変更した目標温度に初めて達した時点で、温度制御回路におけるPI制御の積分項をゼロにリセットした。   In the temperature control circuit 62, the proportional gain Kp is set to 1, the integral gain Ki is set to 1/250, and the differential gain Kd is set to 0 (for PI control). The integral term of PI control in the temperature control circuit was reset to zero when the temperature reached and when the changed target temperature was reached for the first time after changing the target temperature of the air in the housing.

筐体外の空気温度が25℃であって、筐体内空気の目標温度を当初は45℃、100分後(6000秒後)に55℃に変更した場合の温度パターンの一例を図3に示し、筐体外の空気温度が25℃であって、筐体内空気の目標温度を当初は45℃、80分後(4800秒後)に150℃に変更した場合の温度パターンの一例を図4に示す。特に、筐体内空気の目標温度が低く、筐体外の空気温度の差が小さいとき(図3)に、大きなオーバーシュートが長く続くことがわかる。   FIG. 3 shows an example of a temperature pattern when the air temperature outside the housing is 25 ° C., and the target temperature of the air inside the housing is initially 45 ° C. and changed to 55 ° C. after 100 minutes (6000 seconds), FIG. 4 shows an example of a temperature pattern when the air temperature outside the housing is 25 ° C. and the target temperature of the air inside the housing is initially changed to 45 ° C. and 150 ° C. after 80 minutes (after 4800 seconds). In particular, it can be seen that a large overshoot continues for a long time when the target temperature of the air in the housing is low and the difference in the air temperature outside the housing is small (FIG. 3).

実施例1
図2に示す本発明の恒温槽を用いて電熱ヒータによる筐体内空気温度の制御を試みた。
Example 1
Using the thermostat of the present invention shown in FIG. 2, an attempt was made to control the air temperature in the housing with an electric heater.

図2に示す恒温槽200は、図1に示す恒温槽のうち、温度調整器60が、温度センサ50に接続されて筐体内の空気温度を指示する値を出力する温度変換器61と、温度変換器61で出力された筐体内の空気温度を制御量とし筐体内空気の目標温度を設定値とし電熱ヒータ30による発熱量を操作量としPI制御に基づき制御する温度制御回路62と、温度変換器61で出力された筐体内の空気温度と筐体内空気の目標温度とに基づき比例ゲインおよび積分ゲインを温度制御回路62に指示する制御パラメータ設定回路63と、温度制御回路62から出力された電熱ヒータ30による発熱量に基づき、電熱ヒータ30に電力を供給する電力供給回路64と、を有した調整器となっている。   The thermostat 200 shown in FIG. 2 includes a temperature converter 61 in which the temperature regulator 60 is connected to the temperature sensor 50 and outputs a value indicating the air temperature in the housing, and the temperature of the thermostat shown in FIG. A temperature control circuit 62 for controlling the air temperature in the housing output from the converter 61 as a control amount, a target temperature of the air in the housing as a set value, a heat generation amount by the electric heater 30 as an operation amount, and controlling based on PI control; A control parameter setting circuit 63 for instructing the temperature control circuit 62 on the proportional gain and the integral gain based on the air temperature in the housing output from the vessel 61 and the target temperature of the air in the housing, and the electric heat output from the temperature control circuit 62 The regulator includes a power supply circuit 64 that supplies power to the electric heater 30 based on the amount of heat generated by the heater 30.

温度制御回路62は、温度変換器61から出力された温度信号71と筐体内空気の目標温度(設定値温度信号72)とを比較し、PI制御に基づき、電熱ヒータ30による発熱量を指示する信号73を出力する。電力供給回路74は発熱量指示信号73に基づき、電熱ヒータ30に電力を供給74する。   The temperature control circuit 62 compares the temperature signal 71 output from the temperature converter 61 with the target temperature (set value temperature signal 72) of the air in the housing, and instructs the amount of heat generated by the electric heater 30 based on PI control. A signal 73 is output. The power supply circuit 74 supplies 74 power to the electric heater 30 based on the heat generation amount instruction signal 73.

制御パラメータ設定回路73から温度制御回路72に指示する比例ゲインKpおよび積分ゲインKiは、
温度制御を開始してから筐体内の空気温度が筐体内空気の目標温度より10℃低い温度に達するまではKpを1に、Kiを1/250に、それぞれ設定し、
その後筐体内の空気温度が筐体内空気の目標温度に達するまではKpを0.005に、Kiを0.005/250に、それぞれ設定し、
筐体内の空気温度が筐体内空気の目標温度に達した後は、Kpを1に、Kiを1/250に、それぞれ設定した。なお図2に示す恒温槽200における温度制御回路62はPI制御で温度を制御するため、微分ゲインKdは常にゼロである。また筐体内の空気温度が初めて筐体内空気の目標温度に達した時点と、筐体内空気の目標温度を変更後、当該変更した目標温度に初めて達した時点で、温度制御回路におけるPI制御の積分項をゼロにリセットした。
The proportional gain Kp and integral gain Ki instructed from the control parameter setting circuit 73 to the temperature control circuit 72 are:
Kp is set to 1 and Ki is set to 1/250 until the air temperature in the housing reaches a temperature 10 ° C. lower than the target temperature of the air in the housing after the temperature control is started.
Then, until the air temperature in the housing reaches the target temperature of the air in the housing, set Kp to 0.005 and Ki to 0.005 / 250,
After the air temperature in the housing reached the target temperature of the air in the housing, Kp was set to 1 and Ki was set to 1/250. Since the temperature control circuit 62 in the thermostat 200 shown in FIG. 2 controls the temperature by PI control, the differential gain Kd is always zero. Also, the integration of PI control in the temperature control circuit when the air temperature in the housing first reaches the target temperature of the air in the housing for the first time and when the target temperature of the air in the housing is changed and reaches the changed target temperature for the first time. The term was reset to zero.

筐体外の空気温度が25℃であって、筐体内空気の目標温度を当初は45℃、100分後(6000秒後)に55℃に変更した場合の温度パターンの一例を図5に示し、筐体外の空気温度が25℃であって、筐体内空気の目標温度を当初は45℃、80分後(4800秒後)に150℃に変更した場合の温度パターンの一例を図6に示す。設定温度の高低にかかわらず、図1に示す従来の恒温槽を用いた場合(比較例1)の温度パターンと比較し、オーバーシュートが少なくなっていることがわかる。   FIG. 5 shows an example of a temperature pattern when the air temperature outside the housing is 25 ° C. and the target temperature of the air inside the housing is initially 45 ° C. and changed to 55 ° C. after 100 minutes (6000 seconds later). FIG. 6 shows an example of a temperature pattern when the air temperature outside the housing is 25 ° C. and the target temperature of the air inside the housing is initially changed to 45 ° C. and 150 ° C. after 80 minutes (after 4800 seconds). It can be seen that overshoot is reduced compared to the temperature pattern in the case where the conventional thermostatic bath shown in FIG. 1 is used (Comparative Example 1) regardless of the set temperature.

実施例2
制御パラメータ設定回路73から温度制御回路72に指示する比例ゲインKpおよび積分ゲインKiを、
温度制御を開始してから筐体内の空気温度が筐体内空気の目標温度より10℃低い温度に達するまではKpを1に、Kiを1/250に、それぞれ設定し、
その後筐体内の空気温度が筐体内空気の目標温度に達するまではKpを0.02に、Kiを0.02/250に、それぞれ設定し、
筐体内の空気温度が筐体内空気の目標温度に達した後は、Kpを1に、Kiを1/250に、それぞれ設定した他は、実施例1と同様な方法で電熱ヒータによる筐体内空気温度の制御を試みた。
Example 2
The proportional gain Kp and the integral gain Ki instructed from the control parameter setting circuit 73 to the temperature control circuit 72 are
Kp is set to 1 and Ki is set to 1/250 until the air temperature in the housing reaches a temperature 10 ° C. lower than the target temperature of the air in the housing after the temperature control is started.
Then, Kp is set to 0.02 and Ki is set to 0.02 / 250 until the air temperature in the housing reaches the target temperature of the air in the housing.
After the air temperature in the housing reaches the target temperature of the air in the housing, Kp is set to 1 and Ki is set to 1/250, respectively. I tried to control the temperature.

筐体外の空気温度が25℃であって、筐体内空気の目標温度を当初は45℃、100分後(6000秒後)に55℃に変更した場合の温度パターンの一例を図7に示し、筐体外の空気温度が25℃であって、筐体内空気の目標温度を当初は45℃、80分後(4800秒後)に150℃に変更した場合の温度パターンの一例を図8に示す。実施例1の場合と同様、設定温度の高低にかかわらず、図1に示す従来の恒温槽を用いた場合(比較例1)の温度パターンと比較し、オーバーシュートが少なくなっていることがわかる。   FIG. 7 shows an example of a temperature pattern when the air temperature outside the housing is 25 ° C., and the target temperature of the air inside the housing is initially 45 ° C. and changed to 55 ° C. after 100 minutes (6000 seconds), FIG. 8 shows an example of a temperature pattern when the air temperature outside the housing is 25 ° C., and the target temperature of the air inside the housing is initially 45 ° C. and changed to 150 ° C. after 80 minutes (after 4800 seconds). Similar to the case of Example 1, it can be seen that the overshoot is reduced compared to the temperature pattern in the case of using the conventional thermostatic bath shown in FIG. 1 (Comparative Example 1) regardless of the set temperature. .

本発明は、移動相供給手段、試料導入手段、分離手段、検出手段のいずれか一つ以上を収容する空気循環式恒温槽において、温度の立上り特性や外乱に対する応答が改善されるため、設定可能な温度の範囲が広く、しかも高い安定性や高温保持が必要とされるクロマトグラフに対し、特に有用である。   The present invention can be set in an air circulating thermostat housing any one or more of mobile phase supply means, sample introduction means, separation means, and detection means, since the temperature rise characteristics and response to disturbance are improved. This is particularly useful for chromatographs that require a wide temperature range and high stability and high temperature retention.

100・200:恒温槽
10:筐体
20:分離カラム
30:電熱ヒータ
40:ファン
50:温度センサ
60:温度調整器
61:温度変換器
62:温度制御回路
63:制御パラメータ設定回路
64:電力供給回路
71:温度信号
72:設定値温度信号
73:発熱量指示信号
74:供給電力
100/200: Thermostatic bath 10: Housing 20: Separation column 30: Electric heater 40: Fan 50: Temperature sensor 60: Temperature regulator 61: Temperature converter 62: Temperature control circuit 63: Control parameter setting circuit 64: Power supply Circuit 71: Temperature signal 72: Set value temperature signal 73: Heat generation amount instruction signal 74: Supply power

Claims (2)

移動相供給手段と、試料導入手段と、分離手段と、検出手段とを備えたクロマトグラフに設ける、前記手段のいずれか一つ以上を収容する筐体と、前記筐体内の空気に熱を供給する電熱ヒータと、前記筐体内の空気温度を検知する温度センサと、前記筐体内の空気温度を制御する温度調整器と、前記筐体内の空気を循環させるファンとを有した、前記手段のいずれか一つ以上を温調する恒温槽であって、前記温度調整器が、
温度センサに接続されて筐体内の空気温度を指示する値を出力する温度変換器と、
前記温度変換器で出力された筐体内の空気温度を制御量とし、筐体内空気の目標温度を設定値とし、ヒータによる発熱量を操作量とし、比例制御(P制御)、比例−積分制御(PI制御)または比例−積分−微分制御(PID制御)に基づき制御を行なう、温度制御回路と、
筐体内空気の目標温度と温度変換器で出力された筐体内の空気温度とに基づき、比例ゲインおよび/または積分ゲインを温度制御回路に指示する制御パラメータ設定回路と、
温度制御回路から出力されたヒータによる発熱量に基づき、ヒータに電力を供給する電力供給回路と、
を有した、前記恒温槽。
Provided in a chromatograph including a mobile phase supply means, a sample introduction means, a separation means, and a detection means, and a case that houses any one or more of the means, and supplies heat to the air in the case Any of the above-mentioned means comprising: an electric heater that detects the temperature of the air in the housing; a temperature controller that controls the air temperature in the housing; and a fan that circulates the air in the housing. Or a thermostat that regulates the temperature of one or more of the temperature regulators,
A temperature converter connected to the temperature sensor and outputting a value indicating the air temperature in the housing;
The air temperature in the housing output from the temperature converter is set as a control amount, the target temperature of the air in the housing is set as a set value, the heat generation amount by the heater is set as an operation amount, and proportional control (P control), proportional-integral control ( A temperature control circuit that performs control based on (PI control) or proportional-integral-derivative control (PID control);
A control parameter setting circuit for instructing the temperature control circuit of a proportional gain and / or an integral gain based on the target temperature of the air in the housing and the air temperature in the housing output by the temperature converter;
A power supply circuit that supplies power to the heater based on the amount of heat generated by the heater output from the temperature control circuit;
The thermostat having the above.
制御パラメータ設定回路が、筐体内空気の目標温度と温度変換器で出力された筐体内の空気温度との差に基づき、比例ゲインおよび/または積分ゲインを温度制御回路に指示する回路である、請求項1に記載の恒温槽。 The control parameter setting circuit is a circuit for instructing the temperature control circuit of a proportional gain and / or an integral gain based on a difference between a target temperature of the air in the housing and an air temperature in the housing output by the temperature converter. Item 2. The thermostatic bath according to item 1.
JP2013088447A 2013-04-19 2013-04-19 Thermostatic chamber for chromatograph Pending JP2014211386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013088447A JP2014211386A (en) 2013-04-19 2013-04-19 Thermostatic chamber for chromatograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013088447A JP2014211386A (en) 2013-04-19 2013-04-19 Thermostatic chamber for chromatograph

Publications (1)

Publication Number Publication Date
JP2014211386A true JP2014211386A (en) 2014-11-13

Family

ID=51931240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013088447A Pending JP2014211386A (en) 2013-04-19 2013-04-19 Thermostatic chamber for chromatograph

Country Status (1)

Country Link
JP (1) JP2014211386A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016181853A1 (en) * 2015-05-13 2016-11-17 日本写真印刷株式会社 Gas chromatograph, temperature controller for same, and gas chromatograph temperature control method
CN114047275A (en) * 2022-01-17 2022-02-15 华谱科仪(北京)科技有限公司 Temperature control method and device for chromatograph

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016181853A1 (en) * 2015-05-13 2016-11-17 日本写真印刷株式会社 Gas chromatograph, temperature controller for same, and gas chromatograph temperature control method
JP2016212043A (en) * 2015-05-13 2016-12-15 日本写真印刷株式会社 Gas chromatograph, and temperature adjusting device and temperature adjusting method therefor
CN114047275A (en) * 2022-01-17 2022-02-15 华谱科仪(北京)科技有限公司 Temperature control method and device for chromatograph
CN114047275B (en) * 2022-01-17 2022-04-08 华谱科仪(北京)科技有限公司 Temperature control method and device for chromatograph

Similar Documents

Publication Publication Date Title
US20230021550A1 (en) Power converter for a thermal system
US10908195B2 (en) System and method for controlling power to a heater
KR101738282B1 (en) Adjustment device, control method, and control program
US10161995B2 (en) Temperature control system and method thereof
WO2019112652A1 (en) System and method for controlling power to a heater
CN108872825B (en) Online testing method for high-power IGBT module
JP3929699B2 (en) Requirements prediction control system for high efficiency ultrapure fluid heater
US20130022340A1 (en) Apparatus for delivering a medium at an adjustable temperature
JP2014211386A (en) Thermostatic chamber for chromatograph
JP2014211385A (en) Thermostatic chamber for chromatograph
JP2000353830A (en) Method and device for driving peltier element
US20110286138A1 (en) Temperature Controller
JP2014117824A (en) Regulator, operation amount output method, program, and storage medium
US20220291703A1 (en) Power supply control apparatus
JP6115132B2 (en) Thermostat for liquid chromatograph
JP2014163731A (en) Constant temperature bath for chromatograph
JP2023540531A (en) Method and system for the control of electric heaters using energy control
US11973409B2 (en) Heating system and method of heating a process fluid
Malaoui Precise electric measurements with temperature using 10-bit embedded system: Application on photovoltaic junctions
JPH09287881A (en) Temperature control method of heating furnace
JPS58145084A (en) Temperature control system for heater
TW201925968A (en) Device and method for controlling temperature
KR101849079B1 (en) Electronic temperature control apparatus, cooler using the same, heater using the same, and control method thereof
US20230130591A1 (en) Heating system and method of heating a process medium
CN114115378A (en) Constant temperature control device of thermal conductivity detector