WO2016180361A1 - 单侧定流量的阀门装置及其流体供应系统 - Google Patents
单侧定流量的阀门装置及其流体供应系统 Download PDFInfo
- Publication number
- WO2016180361A1 WO2016180361A1 PCT/CN2016/081979 CN2016081979W WO2016180361A1 WO 2016180361 A1 WO2016180361 A1 WO 2016180361A1 CN 2016081979 W CN2016081979 W CN 2016081979W WO 2016180361 A1 WO2016180361 A1 WO 2016180361A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fluid
- mode
- water
- area
- handle
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K11/00—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
- F16K11/02—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
- F16K11/06—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
- F16K11/072—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members
- F16K11/074—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members with flat sealing faces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K11/00—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
- F16K11/02—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
- F16K11/06—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
- F16K11/072—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members
- F16K11/074—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members with flat sealing faces
- F16K11/0746—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members with flat sealing faces with two or more closure plates comprising a single lever control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K11/00—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
- F16K11/10—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit
- F16K11/20—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by separate actuating members
- F16K11/22—Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit operated by separate actuating members with an actuating member for each valve, e.g. interconnected to form multiple-way valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K3/00—Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
- F16K3/02—Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor
- F16K3/04—Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor with pivoted closure members
- F16K3/06—Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor with pivoted closure members in the form of closure plates arranged between supply and discharge passages
- F16K3/08—Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing with flat sealing faces; Packings therefor with pivoted closure members in the form of closure plates arranged between supply and discharge passages with circular plates rotatable around their centres
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K3/00—Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
- F16K3/30—Details
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K3/00—Gate valves or sliding valves, i.e. cut-off apparatus with closing members having a sliding movement along the seat for opening and closing
- F16K3/30—Details
- F16K3/314—Forms or constructions of slides; Attachment of the slide to the spindle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/44—Mechanical actuating means
- F16K31/60—Handles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K31/00—Actuating devices; Operating means; Releasing devices
- F16K31/44—Mechanical actuating means
- F16K31/60—Handles
- F16K31/605—Handles for single handle mixing valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16K—VALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
- F16K49/00—Means in or on valves for heating or cooling
Definitions
- the invention belongs to the field of valves, and particularly relates to the technical field of valve cores used in faucets, in particular to a single-handle double-connected water-saving valve core.
- valves are used to control the flow of fluids, such as controlling the type of fluid passing through and controlling the flow of fluid through.
- the faucets used by ordinary people to understand and contact the most are the faucets used in daily life.
- the faucet can be generally divided into a screw type, a wrench type, a lift type, and an induction type according to the opening method.
- the screw handle is opened by screwing, and when it is opened, it is rotated a lot of turns, and the flow rate of water is adjusted by the number of turns of the screw. The more the number of turns, the larger the flow rate; the wrench handle is opened by horizontal rotation, and the angle of opening is opened.
- the size is used to control the flow rate of water.
- the maximum angle is usually 90°.
- the lift-type handle is opened by vertical lifting. Similarly, the opening angle is used to control the water flow.
- the opening angle is larger.
- the larger the flow rate, the smaller the angle is usually less than 45°; the inductive faucet only needs to reach under the faucet to automatically discharge water through induction, but usually the outlet flow is fixed and cannot be adjusted.
- the single-handle double spool is the most common faucet spool in life and production, especially the ceramic single-handle double spool. It is the hot and cold water faucet valve commonly used in kitchens and bathrooms.
- the valve core comprises a sealing piece composed of a fixing piece and a moving piece, and the operating mechanism is a control handle for controlling the sliding sliding of the moving piece relative to the fixed piece.
- the fixing piece is provided with a cold water inlet hole, a hot water inlet hole and a water outlet hole, and the moving piece is provided with a passage.
- the passage is configured to communicate the hot water inlet hole and the water outlet hole, or the cold water inlet hole and the water outlet hole, or the hot water inlet hole, the cold water inlet hole and the water outlet hole when the movable piece is sealed and sliding relative to the fixed piece.
- the normal operation standard in China is that the control handle is turned left to the vicinity of the limit position, and only the hot water is discharged from the outlet hole. At this time, the water outlet only passes through the hot water inlet hole.
- the passage is connected; the right handle is turned to the vicinity of the limit position, and only the cold water is discharged from the outlet hole.
- the outlet hole only communicates with the cold inlet hole through the passage; and between the two is a mixed water area where the hot and cold water is mixed.
- the water outlet hole communicates with the cold and hot water inlet holes through the passage, and the control handle turns to the left.
- the proportion of hot water in the cold and hot water inlet ratio is larger, and the hotter the water, until it becomes pure hot water; the handle is turned to the right.
- the greater the proportion of cold water in the ratio of spin, cold and hot water the colder the water until it becomes pure cold water.
- the flow rate of the water at the moment is adjusted by the upward lifting angle of the lifting handle, and the larger the angle, the larger the flow rate.
- the single-handle double valve core of the ceramic piece has the advantages of convenient and flexible adjustment of hot and cold water, smooth and light operation of the control handle, good sealing of the ceramic piece (fixed piece, moving piece) and long service life of the valve core.
- a hot fluid supply device that supplies a hot fluid (eg, hot water), a hot fluid outlet of the hot fluid supply device, and a hot fluid of the valve device.
- a hot fluid supply device that supplies a hot fluid (eg, hot water), a hot fluid outlet of the hot fluid supply device, and a hot fluid of the valve device.
- the inlet end is connected, and the common hot fluid supply devices in daily life are various water heaters, such as gas water heaters and electric water heaters.
- the hot fluid supply device such as a water heater
- the hot water remaining in the water tank of the water heater will also cause the scale of the water tank to be rapidly generated, reducing the service life and heating efficiency of the water heater.
- the high heat will continue to continue to heat the hot water remaining in the water tank.
- the water in the water tank will be heated to a significantly higher temperature than the original control temperature.
- the valve is used to continue to use hot water, when the remaining hot water in the water tank is discharged from the valve, the user will notice that the temperature of the water is significantly higher. High, affecting the experience of use, and even causing burns in severe cases.
- the hot water control area is on the left side, and the cold water control area is on the right side.
- the user can directly close the handle to turn off the hot water;
- users often forget to rotate the handle to the cold water control area after turning off the hot water, which will cause the water heater to be started directly when the next lift handle opens the valve. If hot water is not needed at this time, hot water will be generated. Waste.
- fluids are currently controlled by valves, in particular thermal fluids, for fluid supply devices that supply fluid to valves, in particular thermal fluid supply devices that supply hot fluids, since the temperature of the hot fluid (eg hot water) can only be supplied to the hot fluid.
- the device for example, a water heater
- the device is centrally controlled, and the temperatures of the different water points are uniform, and the fluid supply temperature of the hot fluid supply device (e.g., water heater) cannot be controlled by the valves of the respective water points.
- the requirements for water temperature are different at different water points/uses. For example, washing the bathroom is a certain temperature A is usually appropriate; while kitchen washing may be more suitable for temperature D, bathroom bath is the temperature E is more appropriate.
- the user can only repeatedly adjust the temperature of the hot fluid supply repeatedly in the hot fluid supply device (such as a water heater), or The water temperature is roughly controlled on the valve by roughly adjusting the mixing ratio of cold water and hot water.
- One of the objects of the present invention is to provide a valve device that is advantageous for saving fluid passing through the valve device.
- the valve device can provide feedback information for the fluid supply device, particularly the thermal fluid supply device, which is beneficial to the valve through the valve.
- Control of the fluid supply device particularly control of the hot fluid supply temperature of the thermal fluid supply device; and when used in conjunction with the thermal fluid supply device, can facilitate normal use of the thermal fluid supply device.
- Another object of the present invention is to provide a thermal fluid supply system that facilitates the normal use of the thermal fluid supply of the thermal fluid supply system.
- a third object of the present invention is to provide a fluid supply system using the valve device of the present patent.
- the fourth object of the present invention is to provide a single-handle double-connected water-saving valve core, which is beneficial to save water and facilitate the normal use of the water heater.
- a valve device comprising a valve device that controls a fluid passage state when a fluid passes, and an operating mechanism that achieves the aforementioned control by operating in an operating region thereof, the valve device having a first fluid inlet end, a second fluid inlet end, and a fluid At the outlet end, the operating area of the operating mechanism is divided into a mixing degree adjusting area for adjusting the degree of mixing of the first fluid and the second fluid, and a flow regulating area for adjusting the flow rate of the fluid outlet end in the mixing degree adjusting area, and the mixing degree adjusting area includes a necessary
- the fluid outlet end is only the first fluid region of the first fluid, and the fluid outlet end is only the second fluid region of the second fluid, and the fluid outlet end of the fluid outlet is a mixture of the first fluid and the second fluid mixture.
- the flow rate of the minimum stop of the flow regulating region of the first fluid region of the operating mechanism is greater than zero, and the flow of the minimum stop of the flow regulating region of the second fluid region is equal to zero.
- the first fluid and the second fluid may be the same kind of fluid, or different kinds of fluids, such as water and other fluids, or water, etc.; and at the same time, may be different
- the same type of fluid in the state may also be the same type of fluid in the same state, such as cold water and hot water, or both cold water or hot water.
- the cold and heat are only relative in relative terms, and the absolute meaning is that the hot water is only water with a higher temperature than the cold water.
- Cold water usually refers to normal temperature water. The most common is tap water in daily life. At the same time, cold water can also be lower temperature water obtained by further cooling normal temperature water.
- Hot water in general, refers to water that is heated to a temperature that is further heated by normal temperature water.
- first fluid and the second fluid are only used to distinguish two fluids, and are not absolutely defined.
- cold water and hot water cold water can be used as the first fluid, and hot water is relatively the second fluid.
- hot water can also be used as the first fluid, and cold water naturally becomes the second fluid.
- the degree of mixing In the pitch region is optional, that is, the fluid outlet end can only discharge the first fluid or the second fluid, but not the mixed fluid; and in the degree of mixing, when the first fluid accounts for 100% and the second fluid accounts for When the ratio is 0%, that is, only the first fluid region of the first fluid is discharged at the fluid outlet end; conversely, when the first fluid accounts for 0% and the second fluid accounts for 100%, that is, only the second fluid is discharged at the fluid outlet end.
- the second fluid zone is optional, that is, the fluid outlet end can only discharge the first fluid or the second fluid, but not the mixed fluid; and in the degree of mixing, when the first fluid accounts for 100% and the second fluid accounts for When the ratio is 0%, that is, only the first fluid region of the first fluid is discharged at the fluid outlet end; conversely, when the first fluid accounts for 0% and the second fluid accounts for 100%, that is, only the second fluid is discharged at the fluid outlet end.
- the flow adjustment area refers to an operable physical range in which the operating mechanism adjusts the flow, including the minimum adjustment position (minimum stop/minimum stop position), the adjustment area, and the maximum adjustable position (maximum stop/maximum) Stop position); likewise, the handle placement position refers to an operable physical position of the handle to adjust the flow; for the lift type open tap (typically a single handle double valve), the lift handle By vertically lifting up, the angle of the raised angle is used to control the flow of water.
- the faucet When the angle is zero, the faucet is closed, and the handle position is the lower stop position, which is the minimum adjustment position (minimum stop/minimum stop position);
- the handle position When the lifting angle is maximum (the flow rate is usually the largest at this time), the handle position is the upper stop position, which is the maximum adjustment position (maximum stop position/maximum stop position).
- the wrench handle is opened by horizontal rotation, and the flow angle is controlled by the angle of opening. The larger the opening angle is, the larger the flow rate is.
- the point with the angle of 0° (usually the closed position) is the minimum adjustment position (minimum The bit/minimum stop position), and the other point with the largest angle (usually the maximum flow position) is the maximum adjustment position (maximum stop/maximum stop position).
- the flow regulating area has the closed position of the minimum stop flow rate equal to zero in the prior art, and the large adjustment.
- the flow rate of the minimum stop position of the flow regulating region of the first and second fluid regions of the existing valve is equal to zero, that is, both positions are closed positions, and the patent is Change one of them to a control location for a specific flow with a flow greater than zero.
- the flow rate of this minimum stop is designed to be suitable for hand washing flow A, and the operating mechanism can be simply and quickly placed at this position to obtain a flow suitable for hand washing.
- the common single-handle double spool Take the common single-handle double spool as an example.
- the leftmost lowermost operating position of the handle of the existing single-handle double spool usually the first fluid area, such as the closed position of the hot water) and the lowest rightmost position.
- the operating position (usually the second fluid region, such as the closed position of the cold water) is the closed position, and the patent places the handle in the leftmost lowermost operating position to obtain a specific flow rate A suitable for hand washing, and the handle is placed
- the rightmost lowermost operating position is the same as the existing single-handle double spool; vice versa, this patent can also place the handle in the lowest rightmost operating position to obtain a specific flow suitable for hand washing.
- A, and placing the handle in the leftmost lowermost operating position is the same as the existing single-handle double spool.
- the present invention can design different minimum stops with the flow adjustment area of the operating mechanism in the first fluid region according to different water points/use occasions, for example, forming a flow rate corresponding to the flow rate suitable for the washroom of the restroom.
- the valve of the present invention has a specific state of a specific flow rate in addition to the closed state and the maximum flow state, the specific state of the specific flow rate can become the identification signal/control signal of the valve, and the fluid supply device can The valve is identified based on the specific flow information, thereby correspondingly taking corresponding control operations.
- the water temperature control device for example, a water heater
- the operating mechanism is first directly turned to the specific state, and the water heater is activated, and the water heater can detect (sensing) the specific valve to the toilet.
- Specific signal corresponding to flow rate A (such as flow value or dynamic pressure / static pressure ratio or dynamic pressure / full pressure ratio or static pressure / dynamic pressure ratio, etc.), the valve identified as the toilet is performing hand washing operation, directly adjusting the water temperature To the prefabricated temperature A suitable for hand washing; when the user washes the dishes in the kitchen, the operating mechanism is first directly transferred to the specific state, the water heater is activated, and the water heater receives a specific signal of the specific flow D of the valve of the kitchen, and is identified as The kitchen valve is subjected to a dishwashing operation, and the outlet water temperature is directly adjusted to a prefabricated temperature D suitable for dishwashing; similarly, the bathroom bath is also the same.
- flow rate A such as flow value or dynamic pressure / static pressure ratio or dynamic pressure / full pressure ratio or static pressure / dynamic pressure ratio, etc.
- the quick-opening valve core is a common faucet valve core in daily life and production, especially the ceramic chip quick-opening valve core, which is a commonly used faucet valve core.
- the ceramic chip quick-opening valve core has the advantages that the control handle is smooth and light, the ceramic piece (fixing piece, moving piece) is sealed, and the valve core has a long service life. On the other hand, since the control handle is smooth and light, it is easy to open the water flow to the maximum value when opening, and waste is caused by excessive water flow.
- the flow adjustment stroke of the control handle is short, it is not suitable for controlling the water flow more accurately. That is, in daily life, although the faucet can obtain the maximum flow when the handle is opened to the maximum, in most cases, the maximum flow will not be used, even if large flow is required, it is usually a less than the maximum flow. One of the second largest traffic. However, the existing faucet cannot quickly adjust the handle to this position, and can only be adjusted slowly to obtain the flow value. In this option of the patent, the flow rates of the two maximum stops can meet the requirements of different fluids, and the fluid can be saved to the utmost, and the different maximum flow rates can be further selected according to different use requirements.
- the first fluid inlet end, the second fluid inlet end, and the fluid outlet end of the valve device are integrated into a single device, or the first fluid inlet end, the second fluid inlet end, and the fluid outlet end are separately disposed in two Or three single packs Set inside.
- the valve means may be a single unit in which the first fluid inlet end, the second fluid inlet end and the fluid outlet end are integrated into a single unit, or may be separate or separate split units.
- a typical representative of a single unit is the existing daily water taps, such as a single-handle double spool faucet.
- the unit device generally includes a valve core, a valve core seat and a valve core housing, and a device housing, and the valve core seat is provided with an inlet and outlet respectively communicating with the first fluid inlet end, the second fluid inlet end and the fluid outlet end of the valve core respectively
- the split device typically represented as a remote control valve, generally, the fluid outlet end and the operating mechanism are integrated, and the operating mechanism opens and closes the remote first fluid inlet end and the second fluid inlet end respectively. flow control.
- the operating mechanism of the valve device including the external operating mechanism, and the internal operating mechanism connecting the external operating mechanism and the spool, may be a control handle, a control knob, a control ring or even a control button and a touch screen.
- the valve device comprises a sealing piece composed of a fixing piece and a moving piece
- the operating mechanism is a control handle for controlling the sliding sliding of the movable piece relative to the fixed piece
- the fixed piece is provided with a separated first fluid inlet end, a second fluid inlet end and At the fluid outlet end
- the movable piece is provided with a passage for communicating the first fluid inlet end and the fluid outlet end, or the second fluid inlet end and the fluid outlet end, or the first fluid inlet when the rotor is sealingly sliding relative to the fixed piece.
- the first fluid inlet end and the fluid outlet end are communicated through the passage on the rotor when the handle is in the first fluid region, and the second fluid inlet is in the second fluid region when the handle is in the second fluid region
- the end and the fluid outlet end communicate with each other through a passage on the moving piece.
- the valve device of the present patent is preferably a typical valve including a sealing piece composed of a fixing piece and a moving piece.
- the first fluid inlet end has an extension with respect to the second fluid inlet end that is bent toward the fluid outlet end, the control stem being at the minimum stop of the flow regulating region of the first fluid region, first
- the extension portion of the fluid inlet end and the fluid outlet end communicate through the passage on the rotor, and as the adjustment value increases, the area of the overlap region of the passage on the rotor and the extension increases, as the control handle moves from the first fluid region to the second fluid. The area is adjusted and the area of the overlap area is reduced.
- the first fluid inlet end is inclined toward the fluid outlet end relative to the second fluid inlet end, and the first fluid inlet end is relatively close when the control stem is at the minimum stop of the flow regulating region of the first fluid region
- the region of the fluid outlet end and the fluid outlet end communicate through the passage on the moving piece, and as the adjustment value increases, the area of the overlapping area of the passage on the moving piece and the area increases, and the control handle is adjusted from the first fluid area to the second fluid area. The area of the overlap area is reduced.
- the distance between the first fluid inlet end and the second fluid inlet end is the same as the fluid outlet end, but the distance between the passage on the rotor and the first fluid inlet end of the control handle in the first fluid region is
- the first fluid inlet end and the fluid outlet are closer to the second fluid region than when the control handle is in the second fluid region, the distance between the passage on the rotor and the second fluid inlet end is smaller, and the control handle is at the minimum stop of the flow adjustment region of the first fluid region
- the end communicates through the passage on the moving piece, and as the adjustment value increases, the area of the overlapping area of the passage on the moving piece and the first fluid inlet end increases, and the area of the overlapping area decreases as the control handle is adjusted from the first fluid area to the second fluid area.
- the valve device comprises a casing and an external handle, and the valve body and the valve core casing and the control handle are arranged therein.
- the external handle is connected to and operated by the control handle.
- the valve core comprises a sealing piece formed by a fixing piece and a moving piece.
- the limiting device is disposed on the moving piece and/or the fixed piece, or the limiting device is disposed on the moving piece and/or
- the valve core housing, or the limiting device is disposed on the control handle and/or the valve core housing, or the limiting device is disposed on the control handle and/or the outer casing, or the limiting device is disposed on the outer handle and/or the outer casing.
- the first fluid inlet end of the valve means is a hot fluid inlet end
- the flow rate of the minimum stop of the flow regulating region of the first fluid region of the operating mechanism is greater than zero less than 3 liters/minute, or greater than 3 less than 5 liters/ Points, or greater than 5 liters / minute.
- the flow rate of the minimum stop position of the operating mechanism in the flow regulating region of the first fluid region is smaller than that of most of the hot fluid supply devices (for example, water heaters, especially gas water heaters).
- the minimum flow rate of the heating system facilitates the normal use of the hot fluid supply.
- valve device is a single-handle double-spool
- the operating mechanism is a control handle
- the minimum stop of the control handle in the flow regulation area is the lower stop
- the control handle is the single-heat of the spool mode in the first fluid region.
- the mode is a single cooling mode of the spool mode in the second fluid region;
- the valve device has an open state in which the fluid outlet end flow is greater than zero is the spool state, and the fluid outlet end flow is equal to zero is the spool state closed state;
- the fluid outlet end flow is greater than zero, at which time the spool is in a single cold mode critical state or saved state, or, when the control handle is in the single thermal mode, the fluid outlet end flow Greater than zero, the spool is in a single thermal mode critical state or saved state.
- the single heat mode means that only the hot water is discharged at the fluid outlet end, and when the first fluid is hot water, it is the first fluid region; likewise, the single cold mode means that only the cold water is discharged from the fluid outlet end. When the second fluid is cold water, it is the second fluid region.
- the maximum stop of the handle in the flow adjustment zone is the upper stop position, and the adjustment zone is between the upper stop position and the lower stop position; when the control handle is in the lower stop position of the single cold mode, the fluid When the outlet end flow is greater than zero, the spool is in the single cold mode critical state or saving state, and the spool is in the closed state when the control lever is in the bottom stop position of the single heat mode, from the single cold mode to the single cooling mode.
- the top stop position is the single cold mode large flow adjustment area, and the stop position from the single cold mode In the single-heat mode, the stop position is the single-cool mode small flow adjustment area; or, when the control handle is in the single-heat mode, the fluid outlet end flow is greater than zero, and the spool is in the single-heat mode critical state or saves State, and the spool is in the closed state when the lever is in the bottom stop position of the single-cool mode.
- the stop position from the single-heat mode to the single-heat mode is the single-heat mode large flow adjustment area, and the single-heat mode is terminated.
- the stop position in the single-cool mode is the single-heat mode small flow adjustment area.
- a thermal fluid supply system comprising the aforementioned valve device, and a thermal fluid supply device having a heating system for heating the fluid therein, the hot fluid outlet of the thermal fluid supply device being in communication with the first fluid inlet end of the valve device, and
- the operating mechanism of the valve device controls (including direct control or indirect control) that the thermal fluid supply device turns its thermal fluid supply on or off, the thermal fluid supply device has a minimum flow rate to shut down its heating system, and the flow rate at the first fluid inlet end of the valve device is low At the lowest flow rate, the hot fluid supply device will shut down its heating system.
- the operating mechanism of the valve device is at the minimum stop position of the flow regulating region of the first fluid region, the flow rate at the first fluid inlet end is greater than zero, but lower than the The hot fluid supply shuts down the minimum flow of its heating system.
- the hot fluid only relative to the cold fluid, does not have an absolute meaning, that is, the hot fluid is only a fluid having a higher temperature than the cold fluid.
- Cold fluid usually refers to a normal temperature fluid. Taking water as an example, the most common is tap water in daily life. At the same time, the cold fluid can also be a lower temperature water obtained by further cooling the normal temperature water.
- Hot water in general, refers to water that is heated to a temperature that is further heated by normal temperature water.
- the hot fluid supply device is a device having a fluid heating function (heating its internal fluid through a heating system), such as various water heaters (gas water heaters, electric water heaters, etc.).
- a fluid supply system comprising at least one of the aforementioned valve means, and a fluid supply means, the fluid outlets of the fluid supply means are respectively in communication with the first fluid inlet end of each valve means, and the first fluid inlet is controlled in accordance with the operating mechanism of the valve means End flow control (including direct or indirect control) fluid supply to the fluid supply.
- the fluid supply device has an identification device that identifies a flow signal of each valve device at a minimum stop of the flow adjustment region of its operating mechanism in the first fluid region, and controls for controlling its internal operation based on the recognition result of the identification device Device.
- the fluid supply device is a thermal fluid supply device having a heating system for heating the fluid therein, the hot fluid outlet of the thermal fluid supply device being in communication with the first fluid inlet end of each valve device, and operated by the valve device The mechanism controls the flow of hot fluid to the first fluid inlet end flow control (including direct or indirect control) of the thermal fluid supply.
- the valve device of the present patent is combined with an existing fluid supply device into a fluid supply system. Since the valve device of the present patent has the aforementioned specific flow information, when the specific flow information is utilized by the fluid supply device, the existing fluid supply device is made There is the potential to form an intelligent fluid supply system that outputs different fluids for different valve devices. For example, after the identification device of the fluid supply device recognizes the signal, the fluid corresponding to the valve can be controlled by the control device, whereby different valve devices can obtain the fluid most suitable for its use. For example, if the fluid supply device is a hot fluid supply device (for example, a water heater), different specific flow information may be assigned to different fluid temperatures according to different use occasions/requirements, and thus, each valve device may be suitable for use thereof.
- a hot fluid supply device for example, a water heater
- the water temperature control device for example, a water heater
- the operating mechanism when the user washes the hand in the bathroom, the operating mechanism is placed into the minimum stop position of the flow regulating area of the first fluid region, and the water heater can continuously detect (sensing) and The specific flow rate corresponding to the continuous flow rate A of the valve of the restroom (such as the flow value or dynamic pressure / static pressure ratio or dynamic pressure / full pressure ratio or dynamic pressure / static pressure ratio, etc.), the valve identified as the toilet is washing hands
- the operation directly adjusts the outlet water temperature to a pre-made temperature A suitable for hand washing; and when the user washes the dishes in the kitchen, the operating mechanism is also placed in the minimum stop position of the flow adjustment area of the first fluid region, and the water heater can continuously detect (induction) a specific signal corresponding to the continuous specific flow D of the valve of the kitchen, the valve identified as the kitchen is performing a dishwashing operation, and the outlet water temperature is directly adjusted to a pre-made temperature D suitable for
- the utility model relates to a single-handle double-saving water-saving valve core.
- the spool mode has a single cooling mode and a single heat mode, and the control handle is placed in an adjustment area and a lower stop position, the spool state has an open state and a closed state, and the control handle is placed.
- the single cold mode is in the stop position
- the water-saving spool is in the single-cool mode saving state; or, when the control handle is placed in the single-heat mode, the water-saving spool is in the single-heat mode saving state.
- the cold water inlet and the water outlet are communicated between the cold water inlet hole and the water outlet hole on the fixed piece through the passage of the upper passage of the moving piece.
- the water-saving spool is in a single-cooling mode to save the state; or, when the control handle is placed in the single-heat mode, the hot water inlet hole and the water outlet hole on the fixed piece pass through the communication of the upper channel of the moving piece, The hot water inlet hole communicates with the water outlet hole, so that the water saving valve core is in a single heat mode saving state.
- a single-handle double-water-saving spool has a single-cold mode and a single-heat mode in the spool mode, and the control handle is placed in the upper stop position, the adjustment area and the lower stop position, and the spool state has an open state.
- the closed state when the control handle is placed in the single cold mode, the water saving spool is in the single cold mode critical state, and the water saving spool is closed when the control handle is placed in the single thermal mode, from the single cooling mode
- the stop position to the single cold mode upper stop position is the water saving spool single cooling mode large flow adjustment area, from the single cold mode stop position to the single heat mode stop position is the water saving spool single cold mode small flow adjustment area; or
- the water spool is closed, from the single-heat mode to the single-heat mode, the upper stop is the water-saving spool single-heat mode large flow adjustment area, from the single-heat mode stop to the single-cool mode stop. Water spool single heat mode small flow adjustment area.
- the cold water inlet and the water outlet are communicated between the cold water inlet hole and the water outlet hole on the fixed piece through the passage of the upper passage of the moving piece.
- the hot water inlet hole communicates with the water outlet hole, so that the water saving valve core is in a single heat mode critical state.
- the handle-position position refers to the control handle Adjust the operable physical position of the flow.
- the lift-type handle is opened by vertical lifting, and the angle of the lift is used to control the flow of water.
- the faucet When the angle is zero, the faucet is closed, and the handle position is the lower stop position, which is the minimum adjustment position (lower stop position/minimum stop position); when the lift angle is maximum (the flow rate is usually the largest at this time), the handle position is The upper stop position is the maximum adjustment position (top stop/maximum stop position), and the adjustment area is between the upper stop position and the lower stop position.
- the wrench handle is opened by horizontal rotation, and the flow angle is controlled by the angle of opening. The larger the opening angle is, the larger the flow rate is.
- the point with the angle of 0° (usually the closed position) is the minimum adjustment position (bottom stop position)
- the bit/minimum stop position) is the other point with the largest angle (usually the maximum flow position) is the maximum adjustment position (top stop/maximum stop position).
- the single heat mode means that only the hot water is discharged from the outlet end of the spool (outlet hole).
- the single cold mode means that only the cold water is discharged from the outlet end of the spool.
- the flow rate at the outlet end of the spool is greater than zero, which is the open state of the spool state, and the flow at the outlet end of the spool is equal to zero, which is the closed state of the spool state; when the control handle is in the lower stop position of the single cooling mode, the flow at the outlet end of the spool is greater than zero.
- the spool is in the single cold mode critical state or saved state, or when the control handle is in the bottom stop position of the single heat mode, the flow rate of the spool outlet is greater than zero, and the spool is in the single thermal mode critical state or saved state. .
- the spool mode may further include a hot-hot mixing mode.
- the hot and cold mixing mode the water outlet of the valve core is mixed with cold water and hot water.
- the cold water inlet hole and the hot water inlet hole on the fixed piece are simultaneously connected to the water outlet hole through the passage on the moving piece. It also has a top stop and a bottom stop. Generally, the top stop flow is the largest and the bottom stop is the closed state.
- the hot water inlet hole has an extension portion bent toward the water outlet hole with respect to the cold water inlet hole, and the control handle is thermally advanced when the control handle is stopped in the single heat mode.
- the extension portion of the water hole and the water outlet hole communicate through the passage on the moving piece, and the area of the overlapping area of the passage on the upper moving piece and the extending portion increases with the lower stop position, and the control handle is adjusted from the single heat mode to the single cooling mode.
- the area of the overlapping area is reduced; or, the cold water inlet hole has an extension portion bent toward the water outlet hole relative to the hot water inlet hole, and the extension portion and the water outlet hole of the cold water inlet hole pass when the control handle is stopped in the single cooling mode.
- the passages on the moving piece are connected, and the area of the overlapping area of the channel on the moving piece and the extending portion increases with the lower stop position, and the area of the overlapping area decreases as the control handle is adjusted from the single cooling mode to the single heating mode.
- the hot water inlet hole is inclined toward the water outlet hole with respect to the cold water inlet hole, and the heat inlet hole is relatively close when the control handle is stopped in the single heat mode.
- the area of the water outlet hole and the water outlet hole communicate with each other through the passage on the moving piece, and the area of the overlapping area of the channel on the upper moving piece and the area increases with the lower stop position, and the area of the overlapping area is adjusted from the single heat mode to the single cooling mode with the control handle.
- the cold inlet hole is inclined toward the outlet hole with respect to the hot water inlet hole, and when the control handle is stopped in the single cooling mode, the area of the cold inlet hole relatively close to the outlet hole and the outlet hole communicate with the passage on the moving piece. And the area of the overlapping area of the channel on the upper moving piece and the area increases with the lower stop position, and the area of the overlapping area decreases as the control handle is adjusted from the single cooling mode to the single heating mode.
- the hot water inlet hole and the cold water inlet hole have the same distance from the water outlet hole, but the control handle is in the single heat mode between the passage on the moving piece and the hot water inlet hole.
- the distance between the channel on the moving piece and the cold water inlet hole is closer than that of the control handle in the single cooling mode.
- the cold water inlet hole and the water outlet hole communicate with each other through the passage on the moving piece, and the area of the overlapping area of the passage on the upper moving piece and the cold water inlet hole increases with the lower stop position. , with the handle from single cooling mode to single thermal mode The area of the overlapping area is reduced.
- the distance between the channel on the moving piece and the hot water inlet hole of the control handle in the single heat mode by the limiting device is compared with the channel and the cold water inlet on the moving piece of the control handle in the single cooling mode.
- the distance between the holes is closer; or, by the limiting device, the distance between the channel on the moving piece and the cold water inlet hole in the single cooling mode is compared with the channel and the heat in the moving piece of the control handle in the single heating mode.
- the valve device comprises a casing and an external handle
- the valve body is provided with a valve core and a valve core casing and a control handle
- the external handle is connected with the operation handle and operates thereof
- the valve core comprises a fixed piece and a movement a sealing piece formed by a sheet
- the limiting device is disposed on the moving piece and/or the fixed piece
- the limiting device is disposed on the moving piece and/or the valve core housing
- the limiting device is disposed on the control handle and/or the valve core housing
- the upper or the limiting device is disposed on the handle and/or the outer casing, or the limiting device is disposed on the outer handle and/or the outer casing.
- the flow rate of the hot water inlet hole is greater than zero or less than 3 liters/min.
- a thermal fluid supply system comprising a valve device and a thermal fluid supply device having a heating system for heating the fluid therein, the hot fluid outlet of the thermal fluid supply device being in communication with the fluid inlet end of the valve device and operated by the valve device
- the mechanism controls the thermal fluid supply to open or close its hot fluid supply, the thermal fluid supply having a minimum flow that shuts off its heating system, the flow of the fluid inlet of the valve device being lower than the minimum flow, the thermal fluid supply will close a heating system
- the valve device is the aforementioned single-handle double-connected water-saving valve core
- the hot fluid supply device The port is connected with the hot water inlet of the single-handle double water-saving spool, and the handle of the single-handle double-water-saving valve spool has a flow rate of the hot water inlet hole greater than zero when the single-heat mode saves the state or the critical state, but Below the minimum flow rate at which the thermal fluid supply shuts down its heating system.
- a fluid supply system comprising at least one valve device, and a fluid supply device, the fluid outlets of the fluid supply device are respectively in communication with the fluid inlet ends of the respective valve devices, and the fluid inlet end flow control fluid supply device is controlled according to the operating mechanism of the valve device
- the fluid supply condition is characterized in that: the valve device is the aforementioned single-handle double-connected water-saving valve core, and the fluid outlets of the fluid supply device are respectively associated with the single-handle double-saving water-saving valves having the single-heat mode saving state or the critical state.
- the hot water inlet holes of the core are in communication or communicate with the cold inlet holes of the single-handle double water-saving spools having a single-cool mode saving state or a critical state.
- the fluid supply device has identification means for identifying flow signals of the single-handle double-water-saving spools in their single-heat mode or single-cooling mode, and is controlled according to the recognition result of the identification means Its internal operating controls.
- the fluid supply device is a thermal fluid supply device having a heating system for heating the internal fluid thereof, the hot fluid outlet of the thermal fluid supply device being in communication with the hot water inlet of each of the single-handle double water-saving spools,
- the hot fluid supply of the hot fluid supply device is controlled by the control handle of the single-handle double-water-saving spool.
- the control handle is usually placed in the lower stop position to set the spool to the closed state, and the lower stop to the upper stop is the spool flow adjustment area; for the single handle double common spool, the valve When the core is in the closed state, its handle is placed in the single-cool mode stop position and the single-heat mode stop position.
- the single-handle double-saving water-saving valve core of the invention sets the control handle into the single-cool mode (or single-heat mode), and the stop position is set to the critical state of the water-saving spool single-cooling mode (or single-heat mode) (or Saving state/spool saving state), placing the control handle into single heat mode (or single cooling mode), the lower stop position is set to the spool closed state, that is, as described above, the operating mechanism is in the flow regulating area of the second fluid region.
- the minimum stop flow is equal to zero. Therefore, the water-saving spool of the present invention increases the critical state/saving state that is easy to handle.
- the water-saving spool in the critical state/saving state can be set according to factors such as the type of water-saving spool, the way of use, and the water-saving requirements.
- the easy-to-operate operation refers to the operation difficulty of the water-saving valve core placing the control handle into the lower stop position (making the water-saving valve core in a certain open state), which is obviously lower than that of the ordinary valve core to put the control handle into the adjustment area.
- the difficulty of operation in a specific position (making the normal spool in a specific open state).
- the critical state/saving state means that the water-saving spool is in a specific open state (corresponding to a specific open state in which the spool is placed when the control spool is placed in a certain position in the flow regulating region), that is, the foregoing
- the operating mechanism has a flow rate of a minimum stop in the flow regulating region of the first fluid region that is greater than a specific flow state of zero.
- the flow regulating area in the single cooling mode (or single heating mode) of the water saving spool of the present invention is divided into a large flow regulating area and a small flow regulating area, that is, from a single cold mode (or single heat mode) to a single stop.
- the cold mode (or single thermal mode) top stop is the water-saving spool single-cool mode (or single-heat mode) large flow (greater than critical state flow) adjustment area, ie before As described in the flow regulation area; from single cooling mode (or single thermal mode) to the single thermal mode (or single cooling mode), the bottom stop is the water saving spool single cooling mode (or single heating mode) small flow (less than the critical state flow) the adjustment zone, that is, the first or second fluid zone in the mixing degree adjustment zone as described above.
- the adjustment stroke of the control shank of the water-saving valve core of the present invention in the single-cooling mode is expanded, that is, the stroke expansion is regulated by the ordinary valve core one-stage (lower stop--top stop) Adjust the stroke to the two-stage water-saving spool (lower stop - upper stop + lower stop - lower stop).
- the water-saving valve core of the present invention is: when the control handle is placed in a single cold mode (or single heat mode), the fixed position is fixed.
- the cold water inlet hole (or the hot water inlet hole) and the water outlet hole on the sheet pass through the communication of the upper passage of the moving piece, and the cold water inlet hole (or the hot water inlet hole) communicates with the water outlet hole to make the water saving valve core
- single cooling mode or single thermal mode
- critical state or saving state / spool saving state.
- the single-handle double-saving water-saving valve core made of the above structure, for example, the ceramic sealing piece single-handle double-saving water-saving valve core, the main components thereof are a control handle, a ceramic fixing piece and a ceramic moving piece.
- the ceramic fixing piece is provided with a hot water inlet hole, a cold water inlet hole and a water outlet hole
- the ceramic moving piece is provided with a passage.
- the state flow is adjustable; (2) When the control handle is placed in the single cold mode, the channel on the ceramic moving piece connects the cold water inlet hole on the ceramic fixed piece with the water outlet hole, and the water saving valve core is in the single cooling mode critical state. , the flow rate is the specific flow value of the critical state flow; (3) when the control handle is placed into the single cold mode small flow adjustment area, the channel on the ceramic moving piece will be the cold water inlet hole and the water outlet hole on the ceramic fixed piece The water-saving spool is in a single-cooling mode with a small flow opening state, and the flow rate is smaller than the critical state flow rate and adjustable; (4) when the control handle is placed in the single-heat mode adjustment area, the passage on the ceramic moving piece will heat the ceramic fixed piece The water inlet hole is connected with the water outlet hole, the water saving valve core is in a single heat mode, and the flow rate is adjustable; (5) when the control handle is placed in the single heat mode, the water outlet hole on the ceramic fixing piece is not connected with the cold water inlet.
- the invention has the beneficial effects that the valve device is beneficial for saving the fluid passing through the valve device; at the same time, the valve device can provide feedback information for the fluid supply device, in particular the hot fluid supply device, and is beneficial to the fluid supply through the valve.
- the control of the device in particular the control of the hot fluid supply temperature of the hot fluid supply device, and the use of the thermal fluid supply device, can facilitate the normal use of the thermal fluid supply device. in particular:
- the water-saving spool adopts a similar opening and closing operation method as the ordinary spool, and retains the advantages of the ordinary spool, for example, the hot and cold water adjustment is convenient and flexible, the control handle is smooth and light, and the valve core has a long service life.
- the water-saving spool with the single-heat mode critical state is adopted, and the flow value of the water-saving spool single-heat mode critical state is set to be smaller than the lowest closed flow value of the gas water heater, not only It can save hot water and is especially beneficial for the normal use of gas water heaters.
- the operation mode is as follows: (a) If hot water is not required during the use of hot water, the control handle can be placed in a small flow adjustment area (or critical state).
- the small flow regulating area is smaller than the critical state flow, that is, less than the minimum closing flow rate of the gas water heater, the gas water heater does not consume gas when it is turned off; on the other hand, since the water saving valve core is in the small flow regulating area (or critical state), hot and cold
- the water system (stored in the hot water line and inside the gas water heater) still has a small flow of hot water flowing out to meet the short-term hot water demand. (b) When the hot water is turned off, the control handle is placed in the (single heat mode or hot and cold mixed mode) large flow adjustment area in advance (single heat mode), the small flow adjustment area or the critical state, and the large flow of hot water is switched to small.
- the flow of hot water, and finally the handle is placed in the closed state by the small flow adjustment area (or critical state).
- the above operation can not only save hot water and gas, but also effectively prevent scaling of the inner wall of the gas water heater. (The water heater is turned off in the state of saving the spool, the internal hot water continues to flow out for use, and the cold water enters the water heater and lowers the temperature of the water heater), which is conducive to maintaining the water heater. Normal heat transfer efficiency Long service life.
- FIG. 1 is a schematic cross-sectional view of a water-saving valve core in Embodiment 3.
- Figure 2 is a cross-sectional view showing the water-saving valve core of the third embodiment.
- Figure 3 is a cross-sectional view showing the water-saving spool of the third embodiment.
- Figure 4 is a cross-sectional view showing the water-saving spool of the third embodiment.
- Fig. 5 is a cross-sectional view showing the water-saving valve core of the third embodiment.
- Fig. 6 is a schematic cross-sectional view showing the water saving valve core of the third embodiment.
- Figure 7 is a cross-sectional view showing the water-saving valve core of the fourth embodiment.
- Figure 8 is a cross-sectional view showing the water-saving valve core of the fourth embodiment.
- Figure 9 is a cross-sectional view showing the water-saving valve core of the fourth embodiment.
- Figure 10 is a cross-sectional view showing the water-saving valve core of the fourth embodiment.
- Figure 11 is a cross-sectional view showing the water-saving valve core of the fourth embodiment.
- Figure 12 is a cross-sectional view showing the water-saving spool of the fourth embodiment.
- Figure 13 is a cross-sectional view showing the water-saving valve core of the fifth embodiment.
- Figure 14 is a cross-sectional view showing the water-saving valve core of the fifth embodiment.
- Figure 15 is a cross-sectional view showing the water-saving spool of the fifth embodiment.
- Figure 16 is a cross-sectional view showing the water-saving spool of the fifth embodiment.
- Figure 17 is a cross-sectional view showing the water-saving valve core of the fifth embodiment.
- Figure 18 is a cross-sectional view showing the water-saving spool of the fifth embodiment.
- Figure 19 is a flow chart showing the apparatus of the sixth embodiment.
- a valve device comprising a valve device that controls a fluid passage state when a fluid passes, and an operating mechanism that achieves the aforementioned control by operating in an operating region thereof, the valve device having a first fluid inlet end, a second fluid inlet end, and a fluid At the outlet end, the operating area of the operating mechanism is divided into a mixing degree adjusting area for adjusting the degree of mixing of the first fluid and the second fluid, and a flow regulating area for adjusting the flow rate of the fluid outlet end in the mixing degree adjusting area, and the mixing degree adjusting area includes a necessary The fluid outlet end only exits the first fluid region of the first fluid, and the fluid outlet end only exits the second fluid second The fluid region, and the fluid outlet end of the fluid outlet, the mixed region of the first fluid and the second fluid mixture fluid, the flow rate of the minimum stop of the flow regulating region of the first fluid region is greater than zero, and the second fluid region The flow rate of the minimum stop of the flow regulation area is equal to zero.
- the valve device comprises a sealing piece composed of a fixing piece and a moving piece
- the operating mechanism is a control handle for controlling the sliding sliding of the movable piece relative to the fixed piece.
- the fixed piece is provided with a separated first fluid inlet end, a second fluid inlet end and a fluid.
- the movable piece is provided with a passage for communicating the first fluid inlet end and the fluid outlet end, or the second fluid inlet end and the fluid outlet end, or the first fluid inlet end when the rotor is sealingly sliding relative to the fixed piece.
- the first fluid inlet end and the fluid outlet end are communicated through the passage on the rotor when the handle is in the first fluid region, and the second fluid inlet end is in the second fluid region when the handle is in the second fluid region And the fluid outlet end communicates with the passage on the moving piece.
- the control handle When the control handle is in the mixing area, the first fluid inlet end, the second fluid inlet end and the fluid outlet end communicate through the passage on the moving piece; when the control handle is adjusted in the flow regulating area, the movement is controlled The area of the overlap between the channel on the sheet and the first fluid inlet end, the second fluid inlet end and the fluid outlet end changes; the handle is in the When the flow control region of the fluid region has a minimum stop position, the first fluid inlet end and the fluid outlet end communicate through the passage on the rotor, and at the minimum stop of the flow regulation region of the second fluid region, the second fluid inlet end and The fluid outlet end is disconnected.
- valve device is a single-handle double-spool valve
- the operating mechanism is a control handle
- the minimum stop position of the control handle in the flow regulation area is a lower stop
- the control handle is a single-heat of the spool mode in the first fluid region.
- the mode is a single cooling mode of the spool mode in the second fluid region;
- the valve device has an open state in which the fluid outlet end flow is greater than zero is the spool state, and the fluid outlet end flow is equal to zero is the spool state closed state;
- the fluid outlet end flow is greater than zero, at which time the spool is in a single cold mode critical state or saved state, or, when the control handle is in the single thermal mode, the fluid outlet end flow Greater than zero, the spool is in a single thermal mode critical state or saved state.
- the maximum stop position of the handle in the flow adjustment area is the upper stop position, and the adjustment area is between the upper stop position and the lower stop position; when the control handle is in the lower stop position of the single cold mode, the flow rate at the fluid outlet end is greater than zero.
- the spool is in the single-cool mode critical state or saved state, and the spool is in the closed state when the control lever is in the bottom stop position of the single-heat mode, and the single-cold mode is the single stop mode from the single-cool mode to the single-cool mode.
- the single-cold mode low-flow adjustment area is from the single-cool mode stop position to the single-heat mode stop position; or the fluid outlet end flow rate is greater than zero when the control handle is in the single-heat mode lower stop position.
- the spool is in the single thermal mode critical state or saving state, and the control lever is in the bottom stop position of the single cooling mode, the spool is closed, from the single thermal mode stop to the single thermal mode, the upper stop is the single thermal mode.
- the stop position from the single thermal mode to the single cold mode is the single heat mode small flow adjustment area.
- a single-handle double-water-saving spool is exemplified, with cold water as the first fluid and hot water as the second fluid.
- the spool mode has a single thermal mode and a single cold mode, and the handle is placed in the upper position (ie, the most in the flow adjustment area).
- the spool state has an open state (ie the fluid outlet end flow is greater than zero) ) and the closed state (ie, the fluid outlet end flow is equal to zero), when the control handle is placed in the single cold mode, the water saving spool is in the single cold mode critical state (or saved state), and the control handle is placed into the single heat mode.
- the water-saving spool is closed, from the single-cool mode to the single-cool mode, the upper stop is the water-saving spool single-cooling mode large flow adjustment area, from the single-cool mode to the single-heat mode.
- the lower stop position is the water-saving spool single-cooling mode small flow adjustment area.
- the critical state means that the water-saving spool is in a specific open state (corresponding to a specific open state in which the spool is located when the normal spool is placed in a specific position of the flow regulating region).
- the adjustment area of the water-saving spool in the single cooling mode of the present invention is divided into a large flow adjustment area and a small flow adjustment area, that is, from the single cold mode to the single cold mode, the upper stop is the water saving spool single cooling mode.
- the large flow rate (greater than the critical state flow) adjustment area, from the single cold mode stop position to the single heat mode stop position is the water saving spool single cooling mode small flow (less than the critical state flow) adjustment area.
- the adjustment stroke of the control handle of the water-saving valve core of the invention in the single-cooling mode is expanded, that is, the adjustment stroke is extended from the ordinary valve core (stop position in the single cooling mode to the upper cooling mode) to the section.
- Water spool stop position in single cooling mode to stop position in single cooling mode, stop in single cooling mode to stop in single thermal mode).
- the flow rate value of the water-saving spool in a critical state can be set according to factors such as the type of the water-saving spool, the mode of use, and the water-saving requirement. For example, for a kitchen faucet of size DN15, the maximum flow rate of the single-handle double-water-saving spool is 20 liters/min, and the critical flow value is set to 5 liters/min. Then, the water-saving spool of the embodiment has a single-cold mode high-flow (>5 liter/min) adjustment region from the single-cold mode stop position to the single-cool mode upper stop position, from the single-cool mode to the single-heat mode. The bottom stop is the single cold mode small flow ( ⁇ 5 l/min) adjustment zone.
- the stop position in the single cooling mode is set to a critical state, which is advantageous for saving cold water.
- the control handle is placed into the small flow adjustment area, the large flow adjustment area or the critical state, and then the handle is fine-tuned according to the real-time water condition (the adjustment stroke is extended to facilitate the control handle to finely adjust the water volume), which satisfies the water consumption.
- Demand also saves water.
- Embodiment 2 is similar to Embodiment 1, except that in this embodiment, the critical state is set in the single thermal mode, and in the single cooling mode, the stop is the spool closed state.
- the valve device of this embodiment and a thermal fluid supply device (for example, various water heaters) having a heating system for heating the internal fluid thereof constitute a thermal fluid supply system, and the thermal fluid outlet of the thermal fluid supply device and the valve device a fluid inlet end (hot fluid inlet end, such as a hot water inlet) is in communication and is controlled by an operating mechanism of the valve device (including direct or indirect control) to supply or shut off its hot fluid supply, the thermal fluid supply Have one The lowest flow rate of the heating system is closed, and the flow rate of the first fluid inlet end (the hot fluid inlet end, such as the hot water inlet port) of the valve device is lower than the minimum flow rate, the hot fluid supply device will close its heating system, the valve device
- the operating mechanism has a flow rate at the first fluid inlet end that is greater than zero when the flow control region of the first fluid region has a minimum stop (stop in the single thermal mode), but is lower than the lowest temperature of the heating fluid system. flow.
- the single-heat mode critical state flow value is set to 3 liters/min, which is smaller than the common domestic gas water heater minimum closing flow value, which not only saves hot water but also is particularly beneficial for the normal use of the gas water heater.
- the operation mode is as follows: (a) In the process of using hot water, if a large flow of hot water is not required, the control handle can be placed in a single heat mode small flow adjustment area or a critical state.
- the gas water heater does not consume gas when it is turned off; on the other hand, since the water saving valve core is in the single heat mode small flow regulating area or critical state, cold
- the hot water system (stored in the hot water pipeline and inside the gas water heater) still has a small flow of hot water flowing out to meet the short-term hot water demand.
- the control handle When the hot water is turned off, the control handle is placed in a (single heat mode or hot and cold mixed mode) large flow of hot water in advance (single heat mode), small flow of hot water or critical state, and finally the handle is heated by a small flow.
- Water or critical state is placed in the off state.
- the above operation can not only save hot water and gas, but also effectively prevent scaling of the inner wall of the gas water heater (the internal hot water continues to flow out after the water heater is turned off, and the cold water enters the water heater and lowers the temperature of the inner wall of the water heater), which is particularly beneficial for maintaining the normal heat transfer efficiency of the water heater. And extend the service life.
- the embodiment is basically the same as the first embodiment, and more specifically, is a single-handle double-saving water-saving valve core of a ceramic piece, and the valve core mode has a single heat mode and a single cooling mode, and the control handle is disposed.
- the in-position position has a top stop position, an adjustment area and a bottom stop position, and the spool state has an open state and a closed state.
- the control handle is placed in the single-heat mode
- the water-saving spool is in a single-heat mode critical state, and the handle is controlled.
- the single cooling mode is placed in the stop position, the water-saving spool is closed.
- the upper stop is the water-saving spool single-heat mode large flow adjustment area, and the single-heat mode is terminated.
- the stop position in the single-cool mode is the water-saving spool single-heat mode small flow adjustment area.
- the first fluid inlet end (hot water inlet hole) has an extension portion bent toward the fluid outlet end (water outlet hole) with respect to the second fluid inlet end (cold water inlet hole), and the control handle is at the
- the flow control region of a fluid region has a minimum stop position (single stop in the single thermal mode)
- the extension portion and the fluid outlet end of the first fluid inlet end communicate with the passage on the moving piece, and the passage on the moving piece becomes larger with the adjustment value.
- the area of the overlap region with the extension increases, and the area of the overlap region decreases as the lever is adjusted from the first fluid region to the second fluid region.
- 1 is a schematic cross-sectional view of the fixing piece 1, in which the upper left side is a cold water inlet hole 1-1, and the upper right side is a hot water inlet hole. 1-2, the lower part is the water outlet hole 1-3.
- 2 is a schematic cross-sectional view of the movable piece 2, and the middle portion (in the figure) is a channel 2-1.
- the hot water inlet hole 1-2 on the fixing piece 1 of the present embodiment extends downward (in the figure), when the control handle of the embodiment is placed in the single thermal mode, the hot water inlet on the fixed piece 1 Between the hole 1-2 and the water outlet hole 1-3, through the communication of the channel 2-1 on the movable piece 2, the hot water inlet hole 1-2 communicates with the water outlet hole 1-3, so that the embodiment is in the single heat mode.
- Critical state see Figure 3.
- the stop position from the single-heat mode to the single-heat mode is the water-saving spool single-heat mode large flow adjustment area, see FIG. 5; from the single-heat mode stop to the single-cool mode
- the position is the water-saving spool single-heat mode small flow adjustment area, see Figure 6.
- the arrows in the figure show the direction of movement of the rotor 2 during flow adjustment.
- this embodiment is similar to the embodiment 3 except that the first fluid inlet end (hot water inlet hole) of the valve device is oriented toward the second fluid inlet end (cold water inlet hole).
- the fluid outlet end (water outlet hole) is inclined close to the smallest stop of the flow regulating region of the first fluid region (stop in the single heat mode), the region of the first fluid inlet end relatively close to the fluid outlet end and the fluid outlet end
- the area of the overlapping area of the channel on the moving piece and the area increases as the adjustment value increases, and the area of the overlapping area decreases as the control handle is adjusted from the first fluid area to the second fluid area.
- FIG. 7 is a schematic cross-sectional view of the fixing piece 1, in which the upper left side is a cold water inlet hole 1-1, the upper right side is a hot water inlet hole 1-2, and the lower part is a water outlet hole 1-3.
- the position of the hot water inlet hole 1-2 on the fixed piece 1 is changed (the hot water inlet hole and the cold water inlet hole on the common valve core fixing piece are bilaterally symmetric).
- the shape of the upper right portion of the water outlet hole 1-3 (in the drawing) is reduced.
- Fig. 8 is a schematic cross-sectional view of the movable piece 2, compared with the single-handle double common valve core of the ceramic piece, the shape of the right upper portion of the channel 2-1 (in the figure) on the movable piece 2 is reduced, and the rest of the structure is the same.
- the fixing piece 1 since the position of the hot water inlet hole 1-2 on the fixed piece 1 is inclined downward (in the drawing), when the control handle of the embodiment is placed in the single thermal mode, the fixing piece 1 is placed on the fixed piece 1.
- the hot water inlet hole 1-2 and the water outlet hole 1-3 communicate with each other through the passage 2-1 of the movable piece 2, and the hot water inlet hole 1-2 communicates with the water outlet hole 1-3, so that the embodiment is at Single thermal mode critical state, see Figure 9.
- the stop position from the single-heat mode to the single-heat mode is the water-saving spool single-heat mode large flow adjustment area, see FIG. 11; from the single-heat mode stop to the single-cool mode.
- the position is the water-saving spool single-heat mode small flow adjustment area, see Figure 12.
- the arrows in the figure show the direction of movement of the rotor 2 during flow adjustment.
- this embodiment is basically the same as Embodiment 1, and more specifically, is a single-handle double-joint water-saving valve core of a ceramic piece, and the valve core mode has a single heat mode, a single cooling mode, and a hot and cold mixing.
- the handle In the mode, the handle is placed in the upper stop position, the adjustment area and the lower stop position, and the spool state has an open state and a closed state.
- the control handle is placed in the single thermal mode, the water saving spool is in the single thermal mode critical state.
- the water-saving spool is closed, and the single-heat mode stop position to the single-heat mode upper stop position is the water-saving spool single-heat mode large flow adjustment area, from In the single-heat mode, the stop position to the single-cool mode is the water-saving spool single-heat mode small flow adjustment area.
- the first fluid inlet end (hot water inlet hole) and the second fluid inlet end (cold water inlet hole) of the valve device are at the same distance from the fluid outlet end (water outlet hole), but the passage of the control handle on the movable piece in the first fluid region
- the distance from the inlet end of the first fluid is closer than the distance between the passage on the rotor and the second fluid inlet end of the control fluid in the second fluid region, and the control handle is at the minimum of the flow regulation region of the first fluid region
- the first fluid inlet end and the fluid outlet end communicate through the passage on the moving piece, and as the adjustment value increases, the area of the overlapping area of the passage on the moving piece and the first fluid inlet end increases,
- the handle is adjusted from the first fluid region to the second fluid region and the area of the overlap region is reduced.
- FIG. 13 is a schematic cross-sectional view of the fixing piece 1.
- the upper left side is the cold water inlet hole 1-1
- the upper right side is the hot water inlet hole 1-2
- the lower part is the water outlet hole 1-3.
- Figure 14 is a schematic cross-sectional view of the movable piece 2, in the middle of the figure, the channel 2-1.
- 15 is a schematic diagram of the stop position in the single-heat mode, and FIG.
- 16 is a schematic diagram of the stop position in the single-cool mode, and the stop position in the single-heat mode in the present embodiment is compared with the single-handle double-sleeve spool of the ceramic piece (in the figure) Offset in the upper right, there is no change in the position of the stop in single cooling mode.
- the hot water inlet hole 1-2 and the water outlet hole on the fixed piece 1 when the control handle is placed in the single thermal mode stop position are shifted to the upper right (in the figure) in the single heat mode in the embodiment.
- the hot water inlet hole 1-2 communicates with the water outlet hole 1-3, so that the present embodiment is in a single thermal mode critical state, see FIG.
- the stop position from the single-heat mode to the single-heat mode is the water-saving spool single-heat mode large flow adjustment area, see FIG. 17; from the single-heat mode stop to the single-cool mode
- the position is the water-saving spool single-heat mode small flow adjustment area, see Figure 18.
- the arrows in the figure show the direction of movement of the rotor 2 during flow adjustment.
- the manner in which the stop position in the single thermal mode is shifted to the upper right is: the passage of the valve device through the limiting device such that the control handle is in the first fluid region and the first fluid inlet The distance between the ends is closer than the distance between the passage on the rotor and the second fluid inlet end of the control handle in the second fluid region, the valve device includes a housing and an external handle, and the valve core and the valve core housing are disposed therein And the control handle, the external handle is connected to and operated by the control handle, the valve core comprises a sealing piece formed by the fixing piece and the moving piece, the limiting device is arranged on the moving piece and/or the fixed piece, or the limiting device is arranged to move The sheet and/or the valve core housing, or the limiting device is disposed on the control handle and/or the valve core housing, or the limiting device is disposed on the control handle and/or the outer casing, or the limiting device is disposed on the outer handle and/or Or on the outer casing.
- the limiting device is respectively disposed on the movable piece and the fixed piece at the same time or at the same time; the limiting device is respectively disposed on the moving piece and the valve core housing separately or simultaneously; and the limiting device is disposed on the control handle and the valve core housing respectively Providing a limit device on the handle and the faucet casing separately or at the same time; respectively or simultaneously setting a limit device on the faucet handle and the faucet casing.
- this embodiment is substantially identical to Embodiments 1, 2, except that the first fluid inlet end, the second fluid inlet end, and the fluid outlet end of the valve device are separately disposed in two or three single devices. Inside.
- the fluid outlet end and the operating mechanism are integrated together at the operating end, and the operating mechanism performs on, off and flow control on the remote first fluid inlet end and the second fluid inlet end, respectively.
- the first fluid inlet end and the second fluid inlet end are respectively electrically controlled valves, the fluid of the two is collected to the fluid outlet end, and the operating mechanism of the operating end is an electronic control device, which is controlled by a control line or wireless (dashed line in the figure)
- the first fluid inlet end and the second fluid inlet end are respectively controlled to open, close, and flow.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Multiple-Way Valves (AREA)
Abstract
一种阀门装置及其流体供应系统,阀门装置具有第一流体入口端(1-2)、第二流体入口端(1-1)和流体出口端(1-3),操作机构的操作区域分为调节第一流体和第二流体混合程度的混合程度调节区域,以及在整个混合程度调节区域始终能调节其流体出口端(1-3)流量的流量调节区域,混合程度调节区域分为流体出口端(1-3)仅出第一流体的第一流体区域,流体出口端(1-3)出第一流体和第二流体混合流体的混和区域,以及流体出口端(1-3)仅出第二流体的第二流体区域,操作机构在第一流体区域的流量调节区域的最小止位的流量大于零,且在第二流体区域的流量调节区域的最小止位的流量等于零。该阀门装置及其热流体供应系统,有利于节约阀门装置通过的流体,有利于热流体供应装置的正常使用。
Description
本发明属于阀门领域,尤其涉及水龙头所用阀芯技术领域,特别涉及一种单柄双联节水阀芯。
阀门作为生产生活中最常用的控制设备之一,用于控制流体通过状态,比如控制通过的流体类型、控制通过的流体流量。普通人了解、接触最多的就是日常生活中所用的水龙头。水龙头按开启方式通常可分为螺旋式、扳手式、抬启式和感应式等。螺旋式手柄通过旋拧打开,而且打开时,要旋转很多圈,通过旋拧的圈数调节出水流量,旋拧圈数越多,流量越大;扳手式手柄通过水平旋转打开,用开启的角度大小来控制出水流量,开启角度越大,流量越大,最大角度通常是90°;抬启式手柄通过竖直上抬打开,同样,用开启的角度大小来控制出水流量,开启角度越大,流量越大,最大角度通常小于45°;感应式水龙头只要把手伸到水龙头下,通过感应自动出水,但通常出水流量是固定的,无法调节。
单柄双联阀芯是生活、生产中最常见的水龙头阀芯,尤其是陶瓷片单柄双联阀芯,已是目前厨房、卫生间中普遍使用的冷热水龙头阀芯。阀芯包括固定片和动片构成的密封片,操作机构为控制动片相对固定片密封滑动的控制柄,固定片上设有冷进水孔、热进水孔和出水孔,动片上设有通道,该通道用以在动片相对固定片密封滑动时连通热进水孔和出水孔,或者冷进水孔和出水孔,或者热进水孔、冷进水孔和出水孔。以抬启式的单柄双联阀芯为例,我国国内的通常操作标准为,控制柄左转至极限位置附近区域为出水孔仅出热水,此时出水孔仅与热进水孔通过通道连通;控制柄右转至极限位置附近区域为出水孔仅出冷水,此时出水孔仅与冷进水孔通过通道连通;而在两者之间则是冷热水混合的混水区域,此时出水孔同时与冷、热进水孔通过通道连通,控制柄越往左旋,冷、热进水比例中热水比例越大,水越热,直至变成纯粹热水;控制柄越往右旋,冷、热进水比例中冷水比例越大,水越冷,直至变成纯粹冷水。而在控制柄左右旋转中,通过上抬控制柄的上抬角度调节此刻的出水流量,角度越大流量越大。
陶瓷片单柄双联阀芯具有冷热水调节方便灵活、控制柄操作顺滑轻巧、陶瓷片(固定片、动片)密封好以及阀芯寿命长等优点。
然而,不管现有各种阀门的控制方式如何变化,特别是日常生活中所使用的各种水龙头,其只有两个固定流量调节位置,关闭水的关闭位置和出水流量最大的调节极限位置,只有在这两个位置,使用者可以轻松迅速地将操作机构调节到位,对应流量调节到固定大
小(对于最常见的单柄双联阀芯而言,就是关闭位置,和手柄上抬至最高极限点的最大流量位置)。而使用者要获得关闭至最大流量之间的任一流量时,则需要缓慢仔细地调节操作机构才能实现(对于最常见的单柄双联阀芯而言,就需要反复上下调节手柄角度)。但实际生活中,使用者需要的流量又恰恰是关闭至最大流量之间的某一流量,在使用者花费较长时间将操作机构调节至所需流量时,在这段时间已然造成了不少水资源的浪费。
同时,在日常使用中,不同的用水点/使用场合,对于合适的出水流量是不同的:比如,洗手间洗手是某个流量A通常比较合适,即能满足清洗的需求,同时又不会造成水的过多浪费;而厨房洗蔬果则可能是流量B比较合适,生活阳台洗衣服又是流量C比较合适。而通常而言,流量A、B、C之间并不相同,使用者在各种不同用水点/使用场合下,无法迅速准确地将操作机构调节到位,实现所需的流量控制。
此外,对于通过阀门控制热流体流量,常见的为控制热水流量时,对应具有一个提供热流体(例如热水)的热流体供应装置,热流体供应装置的热流体出口与阀门装置的热流体入口端连通,日常生活中常见的热流体供应装置为各种热水器,比如燃气热水器、电热水器等。在热流体供应装置(例如热水器)到阀门之间具有一段管路,当热水使用完毕,关闭阀门以后,这段管路里以及热水器水箱里存留的热水无法得到利用,热量被浪费。同时,热水器水箱里存留的热水也会导致水箱水垢的迅速产生,降低热水器使用寿命和加热效率。此外,在使用热水过程中,暂停使用热水的情况下,关闭阀门以后,由于水箱仍吸收有很高热量,此时该高热量将仍然继续对水箱里存留的热水继续加热,此时水箱里的水会被加热到显著高出原始控制温度,此时打开阀门继续使用热水时,当这部分水箱里的存留热水从阀门放出时,使用者会明显发现这部分水温度显著过高,影响使用体验,严重时甚至造成烫伤。而且,对于常见的单柄双联阀芯而言,热水控制区域在左侧,而冷水控制区域在右侧,热水使用完毕后,使用者直接下压手柄到底即可关闭热水;但日常生活中,使用者往往在关闭热水以后忘了将手柄旋转至冷水控制区域,导致下一次上抬手柄开启阀门时会直接启动热水器,如果此时并不需要热水,就会造成热水的浪费。
同时,目前通过阀门控制流体,特别是控制热流体,对于为阀门提供流体的流体供应装置,特别是供应热流体的热流体供应装置,由于热流体(例如热水)温度只能在热流体供应装置(例如热水器)进行集中控制,各个不同用水点的温度都是一致的,无法通过各个用水点的阀门控制热流体供应装置(例如热水器)的流体供应温度。而日常生活中,在不同用水点/使用场合,对水温的要求是不同的。比如,洗手间洗手是某个温度A通常比较合适;而厨房洗碗则可能是温度D比较合适,浴室洗澡又是温度E比较合适。在现有技术下,使用者只能频繁地在热流体供应装置(例如热水器)反复调节热流体供应温度,或者
在阀门上通过大致调节冷水、热水混合比来粗略控制出水温度。
我国淡水资源匮乏,随着水资源日益短缺,厨房、卫生间等用水点节约用水问题愈加突出,迫切需要节水效果更好、使用更方便、灵活的阀芯。
发明内容
本发明的目的之一在于:提供一种阀门装置,有利于节约阀门装置通过的流体;同时,该阀门装置能够为流体供应装置,特别是热流体供应装置提供反馈信息,有利于通过阀门实现对流体供应装置的控制,特别是对热流体供应装置的热流体供应温度的控制;且当与热流体供应装置配合使用时,能有利于该热流体供应装置的正常使用。
本发明的目的之二在于:提供一种热流体供应系统,有利于该热流体供应系统的热流体供应装置的正常使用。
本发明的目的之三在于:提供一种采用本专利阀门装置的流体供应系统。
本发明的目的之四在于:提供一种单柄双联节水阀芯,有利于节约用水,并利于热水器正常使用。
本发明目的通过下述技术方案来实现:
一种阀门装置,包括在流体通过时控制流体通过状态的阀装置,以及通过在其操作区域内进行操作实现前述控制的操作机构,阀装置具有第一流体入口端、第二流体入口端和流体出口端,操作机构的操作区域分为调节第一流体和第二流体混合程度的混合程度调节区域,以及在混合程度调节区域调节其流体出口端流量的流量调节区域,混合程度调节区域包括必有的流体出口端仅出第一流体的第一流体区域,和流体出口端仅出第二流体的第二流体区域,以及可有的流体出口端出第一流体和第二流体混合流体的混和区域,操作机构在第一流体区域的流量调节区域的最小止位的流量大于零,且在第二流体区域的流量调节区域的最小止位的流量等于零。
本发明方案中,所述第一流体、第二流体可以为相同种类的流体,也可以是不同种类的流体,比如分别为水和其他流体,或者都是水,等等;同时,可以为不同状态的同一种类流体,也可以是同状态的同一种类流体,比如分别为冷水和热水,或者都是冷水,或者都是热水。所述冷、热,仅仅是两者之间相对而言,并不具备绝对意义,即热水仅仅是相对冷水温度更高的水。冷水通常是指常温水,最常见的就是日常生活的自来水,同时,冷水也可以是将常温水进一步降温得到的温度更低的水。而热水,则通常指的是对常温水进一步加热提高温度的水。此外,第一流体、第二流体仅仅用于区别定义两路流体,并不是绝对定义,比如,对于冷水和热水而言,可以将冷水作为第一流体,而热水相对成为第二流体,反过来也可以将热水作为第一流体,而冷水自然相对成为第二流体。所述混合程度调
节区域中,混合区域是可选的,即流体出口端可以只出第一流体或第二流体,而不能出混合流体;而混合程度中,当第一流体占比100%而第二流体占比0%时,即流体出口端仅出第一流体的第一流体区域;反过来,当第一流体占比0%而第二流体占比100%时,即流体出口端仅出第二流体的第二流体区域。所述流量调节区域是指操作机构调节流量的可操作物理区间,包括必有的最小调节位置(最小止位/最小停止位置),调节区域,以及可有的最大调节位置(最大止位/最大停止位置);同样地,所述控制柄置入位置是指控制柄调节流量的可操作物理位置;对于抬启式开启方式的水龙头而言(典型为单柄双联阀),抬启式手柄通过竖直上抬打开,用抬起的角度大小来控制出水流量,角度为零时,水龙头关闭,此时手柄位置为下止位,为最小调节位置(最小止位/最小停止位置);而抬起角度最大时(此时通常流量最大),此时手柄位置为上止位,为最大调节位置(最大止位/最大停止位置)。同样地,扳手式手柄通过水平旋转打开,用开启的角度大小来控制出水流量,开启角度越大,流量越大,角度为0°的这个点(通常为关闭位置)为最小调节位置(最小止位/最小停止位置),而角度最大的另一个点(通常为最大流量位置)为最大调节位置(最大止位/最大停止位置)。
本发明方案,相对现有的各种阀门,特别是相对现有的普通单柄双联阀芯,其流量调节区域除了具备现有技术共有的最小止位的流量等于零的关闭位置,和大调节值的位置之外,还具备两者之间的一个固定流量的极限位置的最小止位。其与现有的阀门的区别在于,现有阀门的操作机构在第一、二流体区域的流量调节区域的最小止位的流量均等于零,即这两个位置均为关闭位置,而本专利则将其中一个改为流量大于零的特定流量的控制位置。比如将这个最小止位的流量设计为适合洗手的流量A,将操作机构简单迅速地置于该位置即可得到适合洗手的流量。以常见的单柄双联阀芯为例,现有单柄双联阀芯的手柄最左边的最下操作位置(通常为第一流体区域,如热水的关闭位置)和最右边的最下操作位置(通常为第二流体区域,如冷水的关闭位置)都是关闭位置,而本专利将手柄置于最左边的最下操作位置即可得到适合洗手的特定流量A,而将手柄置于最右边的最下操作位置则和现有单柄双联阀芯一样为关闭状态;反过来也一样,本专利也可以将手柄置于最右边的最下操作位置即可得到适合洗手的特定流量A,而将手柄置于最左边的最下操作位置则和现有单柄双联阀芯一样为关闭状态。
基于前述设计,以日常用水为例,本发明可以根据不同用水点/使用场合,设计具有操作机构在第一流体区域的流量调节区域的不同最小止位,比如形成分别流量对应适合洗手间洗手的流量A、适合厨房洗蔬果的流量B、适合生活阳台洗衣服的流量C,等等的系列型号的阀门,分别应用于各自用水点/使用场合,实现使用的最人性化和便利化同时最大化节
水。
更进一步地,由于本发明的阀门除了具有关闭状态和最大流量状态,还具有一个特定流量的特定状态,那么这个特定流量的特定状态就可以成为该阀门的识别信号/控制信号,流体供应装置可以根据该特定流量信息识别该阀门,从而对应采取相应的控制操作。以热流体供应装置(例如热水器)进行水温控制为例,使用者在洗手间洗手时,首先将操作机构直接转到该特定状态,启动热水器,热水器能探测(感应)到与该洗手间的阀门的特定流量A相对应的特定信号(比如流量值或者动压/静压比或者动压/全压比或者静压/动压比等),识别为洗手间的阀门在进行洗手操作,直接将出水温度调节至预制的适合洗手的温度A;而使用者在厨房洗碗时,同样首先将操作机构直接转到该特定状态,启动热水器,热水器收到该厨房的阀门的特定流量D的特定信号,识别为厨房的阀门在进行洗碗操作,直接将出水温度调节至预制的适合洗碗的温度D;同样的,浴室洗澡也是如此。
同时,现有技术的热流体供应装置(例如燃气热水器)具有一个关闭其加热系统的最低流量,低于该最低流量时该热水器将关闭加热系统(熄火),而本发明的操作机构可以在第一流体区域(热水区域)的流量调节区域的最小止位的流量大于零,当这个最小止位的流量小于热水器关闭的最低流量时,热水器中加热系统将关闭,而阀门至热水器之间管路以及热水器水箱里的存留热水仍然可以从阀门中排出,后续的冷水也会跟着进入水箱,冷却水箱,由此,既实现了热水的充分利用,又解决了水箱结垢和继续使用热水,部分热水温度显著偏高的问题。
作为选择,操作机构在第一流体区域的流量调节区域的最大止位的流量,和在第二流体区域的流量调节区域的最大止位的流量不相等。该方案中,快开阀芯是生活、生产中常见的水龙头阀芯,尤其是陶瓷片快开阀芯,已是目前普遍使用的水龙头阀芯。陶瓷片快开阀芯具有控制柄操作顺滑轻巧、陶瓷片(固定片、动片)密封好以及阀芯寿命长等优点。另一方面,由于控制柄顺滑轻巧,开启时容易将水流量开到最大值,形成过大水流造成浪费;同时,由于控制柄流量调节行程较短,不利于较为精确地控制水流量。即,日常生活中,虽然水龙头将控制柄开启至最大时能获得最大流量,但是在绝大多数使用情况下,都不会用到最大流量,即使需要大流量使用,通常也是一个少小于最大流量的一个次大流量。而现有水龙头都无法迅速地将控制柄调节至该位置,只能缓慢地调节才能获得该流量值。而在本专利的该选择方案中,两个最大止位的流量不同可以在满足不同流体使用需求的同时,可以最大限度地节约流体,可以进一步根据使用需求的不同选择不同的最大流量。
作为选择1,阀装置的第一流体入口端、第二流体入口端和流体出口端集成于某一单一装置,或者第一流体入口端、第二流体入口端和流体出口端分开布置于两个或三个单一装
置内。该方案中,阀装置可以是第一流体入口端、第二流体入口端和流体出口端集成于某一单一装置的单体装置,也可以是各部分或全部分开的分体装置。单体装置的典型代表就是现有的各种日常生活用水龙头,比如单柄双联阀芯水龙头。单体装置通常包括阀芯、阀芯座和阀芯外壳以及装置外壳,阀芯座上设有与阀芯上第一流体入口端、第二流体入口端和流体出口端分别各自连通的进出口;而分体装置,典型代表就是远程控制阀门,通常而言,流体出口端和操作机构集成在一起,而操作机构对远程的第一流体入口端、第二流体入口端分别进行通、断和流量控制。阀门装置的操作机构,包括外部操作机构,以及连接外部操作机构和阀芯的内部操作机构,可以是控制柄、控制旋钮、控制环乃至控制按钮和触摸屏等。
作为选择2,阀装置包括固定片和动片构成的密封片,操作机构为控制动片相对固定片密封滑动的控制柄,固定片上设有分离的第一流体入口端、第二流体入口端和流体出口端,动片上设有通道,该通道用以在动片相对固定片密封滑动时连通第一流体入口端和流体出口端,或者第二流体入口端和流体出口端,或者第一流体入口端、第二流体入口端和流体出口端;控制柄在第一流体区域时,第一流体入口端和流体出口端通过动片上的通道连通,控制柄在第二流体区域时,第二流体入口端和流体出口端通过动片上的通道连通,控制柄在混和区域时,第一流体入口端、第二流体入口端和流体出口端通过动片上的通道连通;控制柄在流量调节区域调节时,动片上的通道与第一流体入口端、第二流体入口端和流体出口端的重叠区域面积发生变化;控制柄在在第一流体区域的流量调节区域的最小止位时,第一流体入口端和流体出口端通过动片上的通道连通,且在第二流体区域的流量调节区域的最小止位时,第二流体入口端和流体出口端断开。该方案中,本专利阀装置优选为包括固定片和动片构成的密封片的典型阀门。
作为选择2的进一步选择3,第一流体入口端相对第二流体入口端具有一朝向流体出口端弯折的延伸部,控制柄在第一流体区域的流量调节区域的最小止位时,第一流体入口端的该延伸部和流体出口端通过动片上的通道连通,且随调节值变大动片上的通道与该延伸部的重叠区域面积增大,随控制柄从第一流体区域向第二流体区域调整而重叠区域面积减少。
作为选择2的进一步选择4,第一流体入口端相对第二流体入口端朝向流体出口端倾斜靠近,控制柄在第一流体区域的流量调节区域的最小止位时,第一流体入口端的相对靠近流体出口端的区域和流体出口端通过动片上的通道连通,且随调节值变大动片上的通道与该区域的重叠区域面积增大,随控制柄从第一流体区域向第二流体区域调整而重叠区域面积减少。
作为选择2的进一步选择5,第一流体入口端和第二流体入口端相对流体出口端距离一致,但控制柄在第一流体区域时动片上的通道与第一流体入口端间的距离,相比控制柄在第二流体区域时动片上的通道与第二流体入口端间的距离更近,控制柄在第一流体区域的流量调节区域的最小止位时,第一流体入口端和流体出口端通过动片上的通道连通,且随调节值变大动片上的通道与第一流体入口端的重叠区域面积增大,随控制柄从第一流体区域向第二流体区域调整而重叠区域面积减少。
作为选择5的进一步选择6,通过限位装置使得控制柄在第一流体区域时动片上的通道与第一流体入口端间的距离(距离小于零,部分重叠),相比控制柄在第二流体区域时动片上的通道与第二流体入口端间的距离(距离大于零,相互分离)更近,阀装置包括外壳和外部手柄,外壳内设有阀芯及其阀芯外壳和控制柄,外部手柄与控制柄连接并对其进行操作,阀芯包括固定片和动片构成的密封片,该限位装置设置于动片和/或固定片上,或者限位装置设置于动片和/或阀芯外壳上,或者限位装置设置于控制柄和/或阀芯外壳上,或者限位装置设置于控制柄和/或外壳上,或者限位装置设置于与外部手柄和/或外壳上。
作为选择7,阀装置的第一流体入口端为热流体入口端,操作机构在第一流体区域的流量调节区域的最小止位的流量大于零小于3升/分,或者大于3小于5升/分,或者大于5升/分。该方案中,其中流量大于零小于3升/分,操作机构在第一流体区域的流量调节区域的最小止位的流量小于绝大部分热流体供应装置(例如热水器,特别是燃气热水器)的关闭加热系统的最低流量,如前所述,有利于热流体供应装置的正常使用。
作为选择8,阀装置为单柄双联阀芯,操作机构为控制柄,控制柄在流量调节区域的最小止位为下止位;控制柄在第一流体区域时为阀芯模式的单热模式,在第二流体区域时为阀芯模式的单冷模式;阀装置具有流体出口端流量大于零为阀芯状态的开启状态,流体出口端流量等于零为阀芯状态的关闭状态;当控制柄在单冷模式的下止位时,流体出口端流量大于零,此时阀芯处于单冷模式临界状态或节省状态,或者,当控制柄在单热模式的下止位时,流体出口端流量大于零,此时阀芯处于单热模式临界状态或节省状态。该方案中,单热模式指的是流体出口端仅出热水,当第一流体为热水时,即为第一流体区域;同样的,单冷模式指的是流体出口端仅出冷水,当第二流体为冷水时,即为第二流体区域。该单热模式和单冷模式的概念适用于本专利全文,后文不再重复。
作为选择8的进一步选择9,控制柄在流量调节区域的最大止位为上止位,上止位和下止位之间为调节区域;当控制柄在单冷模式的下止位时,流体出口端流量大于零,此时阀芯处于单冷模式临界状态或节省状态,且控制柄在单热模式的下止位时,阀芯处于关闭状态,从单冷模式下止位至单冷模式上止位为单冷模式大流量调节区域,从单冷模式下止位
至单热模式下止位为单冷模式小流量调节区域;或者,当控制柄在单热模式的下止位时,流体出口端流量大于零,此时阀芯处于单热模式临界状态或节省状态,且控制柄在单冷模式的下止位时,阀芯处于关闭状态,从单热模式下止位至单热模式上止位为单热模式大流量调节区域,从单热模式下止位至单冷模式下止位为单热模式小流量调节区域。
作为选择9的进一步选择10,控制柄置入单冷模式下止位时,在固定片上的第一流体入口端(冷进水孔)与流体出口端(出水孔)之间,通过动片上通道的连通作用,所述第一流体入口端(冷进水孔)与与流体出口端(出水孔)相通,使(水)阀芯处于单冷模式临界状态;或者,控制柄置入或单热模式下止位时,在固定片上的第二流体入口端(热进水孔)与流体出口端(出水孔)之间,通过动片上通道的连通作用,所述第二流体入口端(热进水孔)与流体出口端(出水孔)相通,使(水)阀芯处于单热模式临界状态。反过来亦然,即第一流体入口端为热进水孔,第二流体入口端为冷进水孔。
一种热流体供应系统,包括前述的阀门装置,以及具有对其内流体加热的加热系统的热流体供应装置,热流体供应装置的热流体出口与阀门装置的第一流体入口端连通,并由阀门装置的操作机构控制(包括直接控制或者间接控制)热流体供应装置开启或关闭其热流体供应,热流体供应装置具有一个关闭其加热系统的最低流量,阀门装置的第一流体入口端的流量低于该最低流量时该热流体供应装置将关闭其加热系统,阀门装置的操作机构在第一流体区域的流量调节区域的最小止位时,其第一流体入口端的流量大于零,但低于该热流体供应装置关闭其加热系统的最低流量。
上述方案中,所述热流体,仅仅是相对冷流体而言,并不具备绝对意义,即热流体仅仅是相对冷流体温度更高的流体。冷流体通常是指常温流体,以水为例,最常见的就是日常生活的自来水,同时,冷流体也可以是将常温水进一步降温得到的温度更低的水。而热水,则通常指的是对常温水进一步加热提高温度的水。热流体供应装置是具备流体加热功能的装置(通过加热系统对其内流体加热),比如各种热水器(燃气热水器、电热水器等)。
一种流体供应系统,包括至少一个前述的阀门装置,以及流体供应装置,流体供应装置的流体出口分别与各阀门装置的第一流体入口端连通,并根据阀门装置的操作机构控制第一流体入口端流量控制(包括直接控制或者间接控制)流体供应装置的流体供应情况。
作为选择11,该流体供应装置具有识别各阀门装置在其操作机构在第一流体区域的流量调节区域的最小止位的流量信号的识别装置,以及根据识别装置的识别结果控制其内部操作的控制装置。
作为选择12,该流体供应装置为具有对其内流体加热的加热系统的热流体供应装置,热流体供应装置的热流体出口与各阀门装置的第一流体入口端连通,并由阀门装置的操作
机构控制第一流体入口端流量控制(包括直接控制或者间接控制)热流体供应装置的热流体供应情况。
采用本专利的阀门装置与现有的流体供应装置组合成流体供应系统,由于本专利的阀门装置具有前述的特定流量信息,当这些特定流量信息被流体供应装置利用时,使得现有流体供应装置具有形成针对不同阀门装置输出不同流体的智能流体供应系统的潜力。比如,流体供应装置的识别装置识别该信号后,对应可以通过控制装置控制输出适合该阀门的流体,由此,不同的阀门装置可以得到最适合其使用的流体。比如,该流体供应装置为热流体供应装置(例如热水器),那么可以根据不同的使用场合/需求,约定不同的特定流量信息对应不同的流体温度,由此,各个阀门装置可获得适合其使用场合/需求的流体温度。以热流体供应装置(例如热水器)进行水温控制为例,使用者在洗手间洗手时,将操作机构置入第一流体区域的流量调节区域的最小止位,热水器持续能探测(感应)到与该洗手间的阀门的持续的特定流量A相对应的特定信号(比如流量值或者动压/静压比或者动压/全压比或者动压/静压比等),识别为洗手间的阀门在进行洗手操作,直接将出水温度调节至预制的适合洗手的温度A;而使用者在厨房洗碗时,同样将操作机构置入第一流体区域的流量调节区域的最小止位,热水器持续能探测(感应)到与该厨房的阀门的持续的特定流量D相对应的特定信号,识别为厨房的阀门在进行洗碗操作,直接将出水温度调节至预制的适合洗碗的温度D;同样的,浴室洗澡也是如此。
一种单柄双联节水阀芯,阀芯模式具有单冷模式和单热模式,控制柄置入位置有调节区域和下止位,阀芯状态具有开启状态和关闭状态,控制柄置入单冷模式下止位时,节水阀芯处于单冷模式节省状态;或者,控制柄置入单热模式下止位时,节水阀芯处于单热模式节省状态。
作为选择1′,控制柄置入单冷模式下止位时,在固定片上的冷进水孔与出水孔之间,通过动片上通道的连通作用,所述冷进水孔与出水孔相通,使节水阀芯处于单冷模式节省状态;或者,控制柄置入单热模式下止位时,在固定片上的热进水孔与出水孔之间,通过动片上通道的连通作用,所述热进水孔与出水孔相通,使节水阀芯处于单热模式节省状态。
更进一步地,一种单柄双联节水阀芯,阀芯模式具有单冷模式和单热模式,控制柄置入位置有上止位、调节区域和下止位,阀芯状态具有开启状态和关闭状态,控制柄置入单冷模式下止位时节水阀芯处于单冷模式临界状态,控制柄置入单热模式下止位时节水阀芯处于关闭状态,从单冷模式下止位至单冷模式上止位为节水阀芯单冷模式大流量调节区域,从单冷模式下止位至单热模式下止位为节水阀芯单冷模式小流量调节区域;或者,控制柄置入单热模式下止位时节水阀芯处于单热模式临界状态,控制柄置入单冷模式下止位时节
水阀芯处于关闭状态,从单热模式下止位至单热模式上止位为节水阀芯单热模式大流量调节区域,从单热模式下止位至单冷模式下止位为节水阀芯单热模式小流量调节区域。
作为选择1〞,控制柄置入单冷模式下止位时,在固定片上的冷进水孔与出水孔之间,通过动片上通道的连通作用,所述冷进水孔与出水孔相通,使节水阀芯处于单冷模式临界状态;或者,控制柄置入单热模式下止位时,在固定片上的热进水孔与出水孔之间,通过动片上通道的连通作用,所述热进水孔与出水孔相通,使节水阀芯处于单热模式临界状态。
如前所述,作为前述阀门装置的一种具体的单柄双联节水阀芯,其各概念如前所述,并再次重申:本专利中,所述控制柄置入位置是指控制柄调节流量的可操作物理位置,对于抬启式开启方式的水龙头而言(典型为单柄双联阀),抬启式手柄通过竖直上抬打开,用抬起的角度大小来控制出水流量,角度为零时,水龙头关闭,此时手柄位置为下止位,为最小调节位置(下止位/最小停止位置);而抬起角度最大时(此时通常流量最大),此时手柄位置为上止位,为最大调节位置(上止位/最大停止位置),上止位和下止位之间为调节区域。同样地,扳手式手柄通过水平旋转打开,用开启的角度大小来控制出水流量,开启角度越大,流量越大,角度为0°的这个点(通常为关闭位置)为最小调节位置(下止位/最小停止位置),而角度最大的另一个点(通常为最大流量位置)为最大调节位置(上止位/最大停止位置)。单热模式指的是阀芯出水端(出水孔)仅出热水,同样的,单冷模式指的是阀芯出水端仅出冷水。阀芯出水端流量大于零为阀芯状态的开启状态,阀芯出水端流量等于零为阀芯状态的关闭状态;当控制柄在单冷模式的下止位时,阀芯出水端流量大于零,此时阀芯处于单冷模式临界状态或节省状态,或者,当控制柄在单热模式的下止位时,阀芯出水端流量大于零,此时阀芯处于单热模式临界状态或节省状态。前述单柄双联节水阀芯,其阀芯模式还可以进一步包括冷热混合模式。冷热混合模式下阀芯出水端出冷水和热水的混水,对于单柄双联阀芯而言,固定片上的冷进水孔和热进水孔同时通过动片上的通道连通出水孔,其同样具有上止位和下止位,通常而言,上止位流量最大,下止位为关闭状态。
作为前述两种单柄双联节水阀芯的进一步选择A,热进水孔相对冷进水孔具有一朝向出水孔弯折的延伸部,控制柄在单热模式下止位时,热进水孔的该延伸部和出水孔通过动片上的通道连通,且随下止位向上动片上的通道与该延伸部的重叠区域面积增大,随控制柄从单热模式向单冷模式调整而重叠区域面积减少;或者,冷进水孔相对热进水孔具有一朝向出水孔弯折的延伸部,控制柄在单冷模式下止位时,冷进水孔的该延伸部和出水孔通过动片上的通道连通,且随下止位向上动片上的通道与该延伸部的重叠区域面积增大,随控制柄从单冷模式向单热模式调整而重叠区域面积减少。
作为前述两种单柄双联节水阀芯的进一步选择B,热进水孔相对冷进水孔朝向出水孔倾斜靠近,控制柄在单热模式下止位时,热进水孔的相对靠近出水孔的区域和出水孔通过动片上的通道连通,且随下止位向上动片上的通道与该区域的重叠区域面积增大,随控制柄从单热模式向单冷模式调整而重叠区域面积减少;或者,冷进水孔相对热进水孔朝向出水孔倾斜靠近,控制柄在单冷模式下止位时,冷进水孔的相对靠近出水孔的区域和出水孔通过动片上的通道连通,且随下止位向上动片上的通道与该区域的重叠区域面积增大,随控制柄从单冷模式向单热模式调整而重叠区域面积减少。
作为前述两种单柄双联节水阀芯的进一步选择C,热进水孔和冷进水孔相对出水孔距离一致,但控制柄在单热模式时动片上的通道与热进水孔间的距离,相比控制柄在单冷模式时动片上的通道与冷进水孔间的距离更近,控制柄在单热模式下止位时,热进水孔和出水孔通过动片上的通道连通,且随下止位向上动片上的通道与热进水孔的重叠区域面积增大,随控制柄从单热模式向单冷模式调整而重叠区域面积减少;或者,热进水孔和冷进水孔相对出水孔距离一致,但控制柄在单冷模式时动片上的通道与冷进水孔间的距离,相比控制柄在单热模式时动片上的通道与热进水孔间的距离更近,控制柄在单冷模式下止位时,冷进水孔和出水孔通过动片上的通道连通,且随下止位向上动片上的通道与冷进水孔的重叠区域面积增大,随控制柄从单冷模式向单热模式调整而重叠区域面积减少。
作为选择C的进一步选择D,通过限位装置使得控制柄在单热模式时动片上的通道与热进水孔间的距离,相比控制柄在单冷模式时动片上的通道与冷进水孔间的距离更近;或者,通过限位装置使得控制柄在单冷模式时动片上的通道与冷进水孔间的距离,相比控制柄在单热模式时动片上的通道与热进水孔间的距离更近;阀装置包括外壳和外部手柄,外壳内设有阀芯及其阀芯外壳和控制柄,外部手柄与控制柄连接并对其进行操作,阀芯包括固定片和动片构成的密封片,该限位装置设置于动片和/或固定片上,或者限位装置设置于动片和/或阀芯外壳上,或者限位装置设置于控制柄和/或阀芯外壳上,或者限位装置设置于控制柄和/或外壳上,或者限位装置设置于与外部手柄和/或外壳上。
作为前述两种单柄双联节水阀芯的进一步选择E,节水阀芯处于单热模式节省状态或临界状态时,其热进水孔的流量大于零小于等于3升/分。
一种热流体供应系统,包括阀门装置,以及具有对其内流体加热的加热系统的热流体供应装置,热流体供应装置的热流体出口与阀门装置的流体入口端连通,并由阀门装置的操作机构控制热流体供应装置开启或关闭其热流体供应,热流体供应装置具有一个关闭其加热系统的最低流量,阀门装置的该流体入口端的流量低于该最低流量时该热流体供应装置将关闭其加热系统,该阀门装置为前述的单柄双联节水阀芯,热流体供应装置的热流体出
口与单柄双联节水阀芯的热进水孔连通,单柄双联节水阀芯的控制柄在单热模式节省状态或临界状态时,其热进水孔的流量大于零,但低于该热流体供应装置关闭其加热系统的最低流量。
一种流体供应系统,包括至少一个阀门装置,以及流体供应装置,流体供应装置的流体出口分别与各阀门装置的流体入口端连通,并根据阀门装置的操作机构控制流体入口端流量控制流体供应装置的流体供应情况,其特征在于:该阀门装置为前述的单柄双联节水阀芯,流体供应装置的流体出口分别与具有单热模式节省状态或临界状态的各单柄双联节水阀芯的热进水孔连通,或者与具有单冷模式节省状态或临界状态的各单柄双联节水阀芯的冷进水孔连通。
作为选择A′,该流体供应装置具有识别各单柄双联节水阀芯在其控制柄在单热模式或单冷模式下止位的流量信号的识别装置,以及根据识别装置的识别结果控制其内部操作的控制装置。
作为选择B′,该流体供应装置为具有对其内流体加热的加热系统的热流体供应装置,热流体供应装置的热流体出口与各单柄双联节水阀芯的热进水孔连通,并由单柄双联节水阀芯的控制柄控制热进水孔流量控制热流体供应装置的热流体供应情况。
就普通阀芯来讲,为方便操控,通常将控制柄置入下止位设置为阀芯关闭状态,下止位至上止位为阀芯流量调节区域;对于单柄双联普通阀芯,阀芯处于关闭状态时其控制柄置入位置有单冷模式下止位和单热模式下止位。本发明所述单柄双联节水阀芯,将控制柄置入单冷模式(或单热模式)下止位设置为节水阀芯单冷模式(或单热模式)临界状态(或者叫节省状态/阀芯节省状态),将控制柄置入单热模式(或单冷模式)下止位设置为阀芯关闭状态,即前文所述,操作机构在第二流体区域的流量调节区域的最小止位的流量等于零。因此,本发明所述节水阀芯增加了易于操控的临界状态/节省状态。处于临界状态/节省状态的节水阀芯,其特定流量值可根据节水阀芯型号、使用方式以及节水要求等因素设定。所述易于操控是指:节水阀芯将控制柄置入下止位(使节水阀芯处于特定开启状态)的操作难度,明显低于普通阀芯将控制柄置入调节区域中某一特定位置(使普通阀芯处于特定开启状态)的操作难度。所述临界状态/节省状态是指:节水阀芯处于特定开启状态(相当于普通阀芯将控制柄置入流量调节区域中某一特定位置时阀芯所处的特定开启状态),即前文所述,操作机构在第一流体区域的流量调节区域的最小止位的流量大于零的特定流量状态。这样,本发明节水阀芯单冷模式(或单热模式)下的流量调节区域分为大流量调节区域和小流量调节区域,即从单冷模式(或单热模式)下止位至单冷模式(或单热模式)上止位为节水阀芯单冷模式(或单热模式)大流量(大于临界状态流量)调节区域,即前
文所述,流量调节区域;从单冷模式(或单热模式)下止位至单热模式(或单冷模式)下止位为节水阀芯单冷模式(或单热模式)小流量(小于临界状态流量)调节区域,即前文所述,混合程度调节区域中的第一或第二流体区域。与此同时,本发明节水阀芯在单冷模式下(或单热模式下)控制柄的调节行程得以扩展,即由普通阀芯一段式(下止位--上止位)调节行程扩展到节水阀芯二段式(下止位--上止位+下止位--下止位)调节行程。
针对目前常用的阀芯结构,例如,密封片(固定片、动片)结构,本发明节水阀芯是:将控制柄置入单冷模式(或单热模式)下止位时,在固定片上的冷进水孔(或热进水孔)与出水孔之间,通过动片上通道的连通作用,所述冷进水孔(或热进水孔)与出水孔相通,使节水阀芯处于单冷模式(或单热模式)临界状态(或者叫节省状态/阀芯节省状态)。
采用上述结构制成的密封片单柄双联节水阀芯,例如陶瓷密封片单柄双联节水阀芯,其主要部件有控制柄、陶瓷固定片、陶瓷动片。其中,陶瓷固定片上设置有热进水孔、冷进水孔和出水孔,陶瓷动片上设置有通道。以下列举(具有单冷模式临界状态/节省状态)节水阀芯的几种典型状态:当控制柄置入单冷模式调节区域,陶瓷动片上的通道将陶瓷固定片上的冷进水孔与出水孔连通,节水阀芯处于单冷模式开启状态,其流量可调;单冷模式调节区域分为单冷模式大流量调节区域、单冷模式临界状态和单冷模式小流量调节区域:(1)当控制柄置入单冷模式大流量调节区域,陶瓷动片上的通道将陶瓷固定片上的冷进水孔与出水孔连通,节水阀芯处于单冷模式大流量开启状态,其流量大于临界状态流量并可调;(2)当控制柄置入单冷模式下止位,陶瓷动片上的通道将陶瓷固定片上的冷进水孔与出水孔连通,节水阀芯处于单冷模式临界状态,其流量为临界状态流量的特定流量值;(3)当控制柄置入单冷模式小流量调节区域,陶瓷动片上的通道将陶瓷固定片上的冷进水孔与出水孔连通,节水阀芯处于单冷模式小流量开启状态,其流量小于临界状态流量并可调;(4)当控制柄置入单热模式调节区域,陶瓷动片上的通道将陶瓷固定片上的热进水孔与出水孔连通,节水阀芯处于单热模式开启状态,其流量可调;(5)当控制柄置入单热模式下止位,陶瓷固定片上的出水孔没有与冷进水孔、热进水孔连通,节水阀芯处于关闭状态。
前述本发明主方案及其各进一步选择方案可以自由组合以形成多个方案,均为本发明可采用并要求保护的方案:如本发明,各非冲突选择(例如选择3、4、5以及A、B、C为冲突选择,相互之间不能组合,而只能与其他主方案或选择组合)选择之间或和主方案之间任意组合,等等,本领域技术人员在了解本发明方案后根据现有技术和公知常识可明了有多种组合,均为本发明所要保护的技术方案,在此不做穷举。
本发明的有益效果:阀门装置,有利于节约阀门装置通过的流体;同时,该阀门装置能够为流体供应装置,特别是热流体供应装置提供反馈信息,有利于通过阀门实现对流体供
应装置的控制,特别是对热流体供应装置的热流体供应温度的控制;且当与热流体供应装置配合使用时,能有利于该热流体供应装置的正常使用。具体而言:
(1)设置阀芯临界状态,分隔大流量与小流量。通过设置临界状态并将节水阀芯流量调节区域分隔为大流量调节区域(大于临界状态流量)与小流量调节区域(小于临界状态流量),方便用水者选择适宜的流量调节区域或临界状态,利于节约用水。
(2)便捷的操作方法,节水阀芯将控制柄置入临界状态(节省状态)的操作,类似普通阀芯将控制柄置入关闭状态的操作,其操作方法简单、快捷。增加控制柄调节行程,利于调节流量。将普通阀芯控制柄的一段式调节行程扩展为节水阀芯的二段式调节行程,由于调节行程扩展使得控制柄流量调节更加准确、方便。
(3)兼顾普通阀芯操作方法,并保留普通阀芯优点。节水阀芯采用与普通阀芯类似的开启、关闭操作方法,并保留了普通阀芯的优点,例如,冷热水调节方便灵活、控制柄操作顺滑轻巧以及阀芯寿命长等优点。与本发明相比:有一种采用弹性元件设置分段档位的阀芯,当操控这种多档位阀芯时,需要压制档位弹力方能进行档位之间的转换,既失去了控制柄顺滑轻巧的操作手感,又缩短了阀芯使用寿命。
(4)节水又节能。使用(具有单热模式临界状态的)节水阀芯,不仅利于节约用水,而且可以减少热水开启频率并节约能源。原因如下:由于上述节水阀芯的单热模式下止位为临界状态,引导用水者在关闭节水阀芯时将控制柄置入其它模式下止位(例如,单冷模式下止位),使用冷水时就可以尽量避免将控制柄置入单热模式调节区域,从而降低开启热水频率并减少能源浪费。
(5)利于热水器正常使用。对于以燃气热水器为热源的冷热水系统,采用具有单热模式临界状态的节水阀芯,并将节水阀芯单热模式临界状态的流量值设置为小于燃气热水器最低关闭流量值,不仅可以节约热水还特别利于燃气热水器正常使用。其操作方式为:(a)在使用热水过程中,若不需要大流量热水,可将控制柄置入小流量调节区域(或临界状态)。一方面,由于小流量调节区域小于临界状态流量,即小于燃气热水器最低关闭流量,燃气热水器熄火不消耗燃气;另一方面,由于节水阀芯处于小流量调节区域(或临界状态),冷热水系统(热水管路中及燃气热水器内部储存)仍有小流量热水流出可满足短时间热水需求。(b)关闭热水时,提前将控制柄由(单热模式或者冷热混合模式)大流量调节区域置入(单热模式)小流量调节区域或者临界状态,把大流量热水切换为小流量热水,最后将控制柄由小流量调节区域(或临界状态)置入关闭状态。上述操作不仅可以节约热水、燃气,还可以有效防止燃气热水器内壁结垢(阀芯节省状态下热水器熄火,其内部热水继续流出供使用,同时冷水进入热水器并降低热水器温度),利于保持热水器正常传热效率并延
长使用寿命。
图1是实施例3中节水阀芯的剖面示意图。
图2是实施例3中节水阀芯的剖面示意图。
图3是实施例3中节水阀芯的剖视示意图。
图4是实施例3中节水阀芯的剖视示意图。
图5是实施例3中节水阀芯的剖视示意图。
图6是实施例3中节水阀芯的剖视示意图。
图7是实施例4中节水阀芯的剖面示意图。
图8是实施例4中节水阀芯的剖面示意图。
图9是实施例4中节水阀芯的剖视示意图。
图10是实施例4中节水阀芯的剖视示意图。
图11是实施例4中节水阀芯的剖视示意图。
图12是实施例4中节水阀芯的剖视示意图。
图13是实施例5中节水阀芯的剖面示意图。
图14是实施例5中节水阀芯的剖面示意图。
图15是实施例5中节水阀芯的剖视示意图。
图16是实施例5中节水阀芯的剖视示意图。
图17是实施例5中节水阀芯的剖视示意图。
图18是实施例5中节水阀芯的剖视示意图。
图19是实施例6的装置流程示意图。
图中1.固定片,1-1.冷进水孔,1-2.热进水孔,1-3.出水孔,2.动片,2-1.通道。
下列非限制性实施例用于说明本发明。
实施例1:
一种阀门装置,包括在流体通过时控制流体通过状态的阀装置,以及通过在其操作区域内进行操作实现前述控制的操作机构,阀装置具有第一流体入口端、第二流体入口端和流体出口端,操作机构的操作区域分为调节第一流体和第二流体混合程度的混合程度调节区域,以及在混合程度调节区域调节其流体出口端流量的流量调节区域,混合程度调节区域包括必有的流体出口端仅出第一流体的第一流体区域,和流体出口端仅出第二流体的第二
流体区域,以及可有的流体出口端出第一流体和第二流体混合流体的混和区域,操作机构在第一流体区域的流量调节区域的最小止位的流量大于零,且在第二流体区域的流量调节区域的最小止位的流量等于零。阀装置的第一流体入口端、第二流体入口端和流体出口端集成于某一单一装置。
作为选择,阀装置包括固定片和动片构成的密封片,操作机构为控制动片相对固定片密封滑动的控制柄,固定片上设有分离的第一流体入口端、第二流体入口端和流体出口端,动片上设有通道,该通道用以在动片相对固定片密封滑动时连通第一流体入口端和流体出口端,或者第二流体入口端和流体出口端,或者第一流体入口端、第二流体入口端和流体出口端;控制柄在第一流体区域时,第一流体入口端和流体出口端通过动片上的通道连通,控制柄在第二流体区域时,第二流体入口端和流体出口端通过动片上的通道连通,控制柄在混和区域时,第一流体入口端、第二流体入口端和流体出口端通过动片上的通道连通;控制柄在流量调节区域调节时,动片上的通道与第一流体入口端、第二流体入口端和流体出口端的重叠区域面积发生变化;控制柄在在第一流体区域的流量调节区域的最小止位时,第一流体入口端和流体出口端通过动片上的通道连通,且在第二流体区域的流量调节区域的最小止位时,第二流体入口端和流体出口端断开。
更进一步地,阀装置为单柄双联阀芯,操作机构为控制柄,控制柄在流量调节区域的最小止位为下止位;控制柄在第一流体区域时为阀芯模式的单热模式,在第二流体区域时为阀芯模式的单冷模式;阀装置具有流体出口端流量大于零为阀芯状态的开启状态,流体出口端流量等于零为阀芯状态的关闭状态;当控制柄在单冷模式的下止位时,流体出口端流量大于零,此时阀芯处于单冷模式临界状态或节省状态,或者,当控制柄在单热模式的下止位时,流体出口端流量大于零,此时阀芯处于单热模式临界状态或节省状态。控制柄在流量调节区域的最大止位为上止位,上止位和下止位之间为调节区域;当控制柄在单冷模式的下止位时,流体出口端流量大于零,此时阀芯处于单冷模式临界状态或节省状态,且控制柄在单热模式的下止位时,阀芯处于关闭状态,从单冷模式下止位至单冷模式上止位为单冷模式大流量调节区域,从单冷模式下止位至单热模式下止位为单冷模式小流量调节区域;或者,当控制柄在单热模式的下止位时,流体出口端流量大于零,此时阀芯处于单热模式临界状态或节省状态,且控制柄在单冷模式的下止位时,阀芯处于关闭状态,从单热模式下止位至单热模式上止位为单热模式大流量调节区域,从单热模式下止位至单冷模式下止位为单热模式小流量调节区域。
作为优选,以一种单柄双联节水阀芯为例,冷水作为第一流体,而热水相对成为第二流体。阀芯模式具有单热模式和单冷模式,控制柄置入位置有上止位(即流量调节区域的最
大止位)、调节区域(即流量调节区域的最大和最小止位之间)和下止位(即流量调节区域的最小止位),阀芯状态具有开启状态(即流体出口端流量大于零)和关闭状态(即流体出口端流量等于零),将控制柄置入单冷模式下止位时节水阀芯处于单冷模式临界状态(或者叫节省状态),将控制柄置入单热模式下止位时节水阀芯处于关闭状态,从单冷模式下止位至单冷模式上止位为节水阀芯单冷模式大流量调节区域,从单冷模式下止位至单热模式下止位为节水阀芯单冷模式小流量调节区域。
在本实施例中,所述临界状态是指节水阀芯处于特定开启状态(相当于普通阀芯将控制柄置入流量调节区域某一特定位置时阀芯所处的特定开启状态)。这样,本发明节水阀芯单冷模式下的调节区域分为大流量调节区域和小流量调节区域,即从单冷模式下止位至单冷模式上止位为节水阀芯单冷模式大流量(大于临界状态流量)调节区域,从单冷模式下止位至单热模式下止位为节水阀芯单冷模式小流量(小于临界状态流量)调节区域。与此同时,本发明节水阀芯在单冷模式下控制柄的调节行程得以扩展,即由普通阀芯(单冷模式下止位至单冷模式上止位)一段调节行程,扩展到节水阀芯(单冷模式下止位至单冷模式上止位、单冷模式下止位至单热模式下止位)二段调节行程。
在本实施例中,节水阀芯处于临界状态的流量值可根据节水阀芯型号、使用方式以及节水要求等因素设定。例如,对规格为DN15的厨房水龙头,单柄双联节水阀芯开启状态最大流量值为20升/分,临界状态流量值设置为5升/分。那么,本实施例节水阀芯从单冷模式下止位至单冷模式上止位为单冷模式大流量(>5升/分)调节区域,从单冷模式下止位至单热模式下止位为单冷模式小流量(<5升/分)调节区域。
在本实施例中,将单冷模式下止位设置为临界状态,利于节约冷水。使用冷水时,首先根据用水量大小将控制柄置入小流量调节区域、大流量调节区域或者临界状态,然后依照实时用水情况微调控制柄(调节行程扩展后利于控制柄微调水量),既满足用水需求又节约用水。
实施例2:
本实施例与实施例1类似,所不同的是,本实施例中临界状态设置在单热模式下止位,单冷模式下止位为阀芯关闭状态。
该实施例的阀门装置,以及具有对其内流体加热的加热系统的热流体供应装置(例如各种热水器)等构成一种热流体供应系统,热流体供应装置的热流体出口与阀门装置的第一流体入口端(热流体入口端,如热进水孔)连通,并由阀门装置的操作机构控制(包括直接控制或者间接控制)热流体供应装置开启或关闭其热流体供应,热流体供应装置具有一
个关闭其加热系统的最低流量,阀门装置的第一流体入口端(热流体入口端,如热进水孔)的流量低于该最低流量时该热流体供应装置将关闭其加热系统,阀门装置的操作机构在第一流体区域的流量调节区域的最小止位(单热模式下止位)时,其第一流体入口端的流量大于零,但低于该热流体供应装置关闭其加热系统的最低流量。作为优选,操作机构在第一流体区域(热流体区域)的流量调节区域的最小止位(单热模式下止位)的流量大于零小于等于3升/分。
在本实施例中,单热模式临界状态流量值设置为3升/分,小于常见的家用燃气热水器最低关闭流量值,不仅可以节约热水还特别利于燃气热水器正常使用。其操作方式为:(a)在使用热水过程中,若不需要大流量热水,可将控制柄置入单热模式小流量调节区域或者临界状态。一方面,由于小流量调节区域或者临界状态的流量值小于燃气热水器最低关闭流量,燃气热水器熄火不消耗燃气;另一方面,由于节水阀芯处于单热模式小流量调节区域或者临界状态,冷热水系统(热水管路中及燃气热水器内部储存)仍有小流量热水流出可满足短时间热水需求。(b)关闭热水时,提前将控制柄由(单热模式或者冷热混合模式)大流量热水置入(单热模式)小流量热水或者临界状态,最后将控制柄由小流量热水或者临界状态置入关闭状态。上述操作不仅可以节约热水、燃气,还可以有效防止燃气热水器内壁结垢(热水器熄火后内部热水继续流出供使用,同时冷水进入热水器并降低热水器内壁温度),特别利于保持热水器正常传热效率并延长使用寿命。
实施例3:
如图1~图6所示,本实施例与实施例1基本相同,更具体地,为陶瓷片单柄双联节水阀芯,阀芯模式具有单热模式和单冷模式,控制柄置入位置有上止位、调节区域和下止位,阀芯状态具有开启状态和关闭状态,将控制柄置入单热模式下止位时节水阀芯处于单热模式临界状态,将控制柄置入单冷模式下止位时节水阀芯处于关闭状态,从单热模式下止位至单热模式上止位为节水阀芯单热模式大流量调节区域,从单热模式下止位至单冷模式下止位为节水阀芯单热模式小流量调节区域。
该实施例的阀门装置,第一流体入口端(热进水孔)相对第二流体入口端(冷进水孔)具有一朝向流体出口端(出水孔)弯折的延伸部,控制柄在第一流体区域的流量调节区域的最小止位(单热模式下止位)时,第一流体入口端的该延伸部和流体出口端通过动片上的通道连通,且随调节值变大动片上的通道与该延伸部的重叠区域面积增大,随控制柄从第一流体区域向第二流体区域调整而重叠区域面积减少。
图1为固定片1剖面示意图,(图中)上部左方为冷进水孔1-1,上部右方为热进水孔
1-2,下部为出水孔1-3。图2为动片2剖面示意图,(图中)中部为通道2-1。与陶瓷片单柄双联普通阀芯相比,仅固定片1上热进水孔1-2的形状有变化(普通阀芯固定片上的热进水孔与冷进水孔为左右对称形状),其余结构相同。
由于本实施例固定片1上热进水孔1-2的形状向(图中)下方延伸,当本实施例控制柄置入单热模式下止位时,在固定片1上的热进水孔1-2与出水孔1-3之间,通过动片2上通道2-1的连通作用,上述热进水孔1-2与出水孔1-3相通,使本实施例处于单热模式临界状态,参见图3。
与陶瓷片单柄双联普通阀芯相比,本实施例中单冷模式下止位阀芯状态没有变化,节水阀芯处于关闭状态,参见图4。
在本实施例中,从单热模式下止位至单热模式上止位为节水阀芯单热模式大流量调节区域,参见图5;从单热模式下止位至单冷模式下止位为节水阀芯单热模式小流量调节区域,参见图6。图中箭头所示为流量调节时动片2运动方向。
实施例4:
如图7~图12所示,本实施例与实施例3类似,所不同的是:阀门装置的第一流体入口端(热进水孔)相对第二流体入口端(冷进水孔)朝向流体出口端(出水孔)倾斜靠近,控制柄在第一流体区域的流量调节区域的最小止位(单热模式下止位)时,第一流体入口端的相对靠近流体出口端的区域和流体出口端通过动片上的通道连通,且随调节值变大动片上的通道与该区域的重叠区域面积增大,随控制柄从第一流体区域向第二流体区域调整而重叠区域面积减少。
具体而言,其一,固定片1上的热进水孔1-2、出水孔1-3有变化;其二,动片2上通道2-1有变化。图7为固定片1剖面示意图,(图中)上部左方为冷进水孔1-1,上部右方为热进水孔1-2,下部为出水孔1-3。与陶瓷片单柄双联普通阀芯相比,固定片1上热进水孔1-2的位置有变化(普通阀芯固定片上的热进水孔与冷进水孔为左右对称位置),出水孔1-3(图中)右上部形状缩小。图8为动片2剖面示意图,与陶瓷片单柄双联普通阀芯相比,动片2上通道2-1(图中)右上部形状缩小,其余结构相同。
在本实施例中,由于固定片1上热进水孔1-2的位置向(图中)下方倾斜,当本实施例控制柄置入单热模式下止位时,在固定片1上的热进水孔1-2与出水孔1-3之间,通过动片2上通道2-1的连通作用,上述热进水孔1-2与出水孔1-3相通,使本实施例处于单热模式临界状态,参见图9。
与陶瓷片单柄双联普通阀芯相比,本实施例中单冷模式下止位阀芯状态没有变化,节水
阀芯处于关闭状态,参见图10。
在本实施例中,从单热模式下止位至单热模式上止位为节水阀芯单热模式大流量调节区域,参见图11;从单热模式下止位至单冷模式下止位为节水阀芯单热模式小流量调节区域,参见图12。图中箭头所示为流量调节时动片2运动方向。
实施例5:
如图13~图18所示,本实施例与实施例1基本相同,更具体地,为陶瓷片单柄双联节水阀芯,阀芯模式具有单热模式、单冷模式和冷热混合模式,控制柄置入位置有上止位、调节区域和下止位,阀芯状态具有开启状态和关闭状态,将控制柄置入单热模式下止位时节水阀芯处于单热模式临界状态,将控制柄置入单冷模式下止位时节水阀芯处于关闭状态,从单热模式下止位至单热模式上止位为节水阀芯单热模式大流量调节区域,从单热模式下止位至单冷模式下止位为节水阀芯单热模式小流量调节区域。
阀门装置的第一流体入口端(热进水孔)和第二流体入口端(冷进水孔)相对流体出口端(出水孔)距离一致,但控制柄在第一流体区域时动片上的通道与第一流体入口端间的距离,相比控制柄在第二流体区域时动片上的通道与第二流体入口端间的距离更近,控制柄在第一流体区域的流量调节区域的最小止位(单热模式下止位)时,第一流体入口端和流体出口端通过动片上的通道连通,且随调节值变大动片上的通道与第一流体入口端的重叠区域面积增大,随控制柄从第一流体区域向第二流体区域调整而重叠区域面积减少。
具体而言,图13为固定片1剖面示意图,(图中)上部左方为冷进水孔1-1,上部右方为热进水孔1-2,下部为出水孔1-3。图14为动片2剖面示意图,(图中)中部为通道2-1。图15为单热模式下止位示意图,图16为单冷模式下止位示意图,与陶瓷片单柄双联普通阀芯相比,本实施例中单热模式下止位向(图中)右上方偏移,单冷模式下止位的位置没有变化。
由于本实施例中单热模式下止位向(图中)右上方偏移,当控制柄置入单热模式下止位时,在固定片1上的热进水孔1-2与出水孔1-3之间,通过动片2上通道2-1的连通作用,上述热进水孔1-2与出水孔1-3相通,使本实施例处于单热模式临界状态,参见图15。
与陶瓷片单柄双联普通阀芯相比,本实施例中单冷模式下止位阀芯状态没有变化,节水阀芯处于关闭状态,参见图16。
在本实施例中,从单热模式下止位至单热模式上止位为节水阀芯单热模式大流量调节区域,参见图17;从单热模式下止位至单冷模式下止位为节水阀芯单热模式小流量调节区域,参见图18。图中箭头所示为流量调节时动片2运动方向。
在本实施例中,使单热模式下止位向(图中)右上方偏移的方式有:阀门装置通过限位装置使得控制柄在第一流体区域时动片上的通道与第一流体入口端间的距离,相比控制柄在第二流体区域时动片上的通道与第二流体入口端间的距离更近,阀装置包括外壳和外部手柄,外壳内设有阀芯及其阀芯外壳和控制柄,外部手柄与控制柄连接并对其进行操作,阀芯包括固定片和动片构成的密封片,该限位装置设置于动片和/或固定片上,或者限位装置设置于动片和/或阀芯外壳上,或者限位装置设置于控制柄和/或阀芯外壳上,或者限位装置设置于控制柄和/或外壳上,或者限位装置设置于与外部手柄和/或外壳上。
具体而言,分别或者同时在动片上与固定片上设置限位装置;分别或者同时在动片上与阀芯外壳上设置限位装置;分别或者同时在控制柄上与阀芯外壳上设置限位装置;分别或者同时在控制柄上与水龙头外壳上设置限位装置;分别或者同时在水龙头手柄上与水龙头外壳上设置限位装置等方法。
实施例6:
参考图19所示,本实施例与实施例1、2基本相同,其区别在于:阀装置的第一流体入口端、第二流体入口端和流体出口端分开布置于两个或三个单一装置内。作为优选,如本实施例所示,流体出口端和操作机构集成在一起位于操作端,而操作机构对远程的第一流体入口端、第二流体入口端分别进行通、断和流量控制,通常而言,第一流体入口端、第二流体入口端分别为电控阀门,两者的流体汇集到流体出口端,操作端的操作机构为电控装置,通过控制线或无线(图中虚线)对第一流体入口端、第二流体入口端分别进行通、断和流量控制。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
Claims (28)
- 一种阀门装置,包括在流体通过时控制流体通过状态的阀装置,以及通过在其操作区域内进行操作实现前述控制的操作机构,阀装置具有第一流体入口端、第二流体入口端和流体出口端,操作机构的操作区域分为调节第一流体和第二流体混合程度的混合程度调节区域,以及在混合程度调节区域调节其流体出口端流量的流量调节区域,混合程度调节区域包括必有的流体出口端仅出第一流体的第一流体区域,和流体出口端仅出第二流体的第二流体区域,以及可有的流体出口端出第一流体和第二流体混合流体的混和区域,其特征在于:操作机构在第一流体区域的流量调节区域的最小止位的流量大于零,且在第二流体区域的流量调节区域的最小止位的流量等于零。
- 如权利要求1所述的阀门装置,其特征在于:阀装置的第一流体入口端、第二流体入口端和流体出口端集成于某一单一装置,或者第一流体入口端、第二流体入口端和流体出口端分开布置于两个或三个单一装置内。
- 如权利要求1所述的阀门装置,其特征在于:阀装置包括固定片和动片构成的密封片,操作机构为控制动片相对固定片密封滑动的控制柄,固定片上设有分离的第一流体入口端、第二流体入口端和流体出口端,动片上设有通道,该通道用以在动片相对固定片密封滑动时连通第一流体入口端和流体出口端,或者第二流体入口端和流体出口端,或者第一流体入口端、第二流体入口端和流体出口端;控制柄在第一流体区域时,第一流体入口端和流体出口端通过动片上的通道连通,控制柄在第二流体区域时,第二流体入口端和流体出口端通过动片上的通道连通,控制柄在混和区域时,第一流体入口端、第二流体入口端和流体出口端通过动片上的通道连通;控制柄在流量调节区域调节时,动片上的通道与第一流体入口端、第二流体入口端和流体出口端的重叠区域面积发生变化;控制柄在在第一流体区域的流量调节区域的最小止位时,第一流体入口端和流体出口端通过动片上的通道连通,且在第二流体区域的流量调节区域的最小止位时,第二流体入口端和流体出口端断开。
- 如权利要求3所述的阀门装置,其特征在于:第一流体入口端相对第二流体入口端具有一朝向流体出口端弯折的延伸部,控制柄在第一流体区域的流量调节区域的最小止位时,第一流体入口端的该延伸部和流体出口端通过动片上的通道连通,且随调节值变大动片上的通道与该延伸部的重叠区域面积增大,随控制柄从第一流体区域向第二流体区域调整而重叠区域面积减少。
- 如权利要求3所述的阀门装置,其特征在于:第一流体入口端相对第二流体入口端朝向流体出口端倾斜靠近,控制柄在第一流体区域的流量调节区域的最小止位时,第一流体入口端的相对靠近流体出口端的区域和流体出口端通过动片上的通道连通,且随调节值变大动片上的通道与该区域的重叠区域面积增大,随控制柄从第一流体区域向第二流体区域调整而重叠 区域面积减少。
- 如权利要求3所述的阀门装置,其特征在于:第一流体入口端和第二流体入口端相对流体出口端距离一致,但控制柄在第一流体区域时动片上的通道与第一流体入口端间的距离,相比控制柄在第二流体区域时动片上的通道与第二流体入口端间的距离更近,控制柄在第一流体区域的流量调节区域的最小止位时,第一流体入口端和流体出口端通过动片上的通道连通,且随调节值变大动片上的通道与第一流体入口端的重叠区域面积增大,随控制柄从第一流体区域向第二流体区域调整而重叠区域面积减少。
- 如权利要求6所述的阀门装置,其特征在于:通过限位装置使得控制柄在第一流体区域时动片上的通道与第一流体入口端间的距离,相比控制柄在第二流体区域时动片上的通道与第二流体入口端间的距离更近,阀装置包括外壳和外部手柄,外壳内设有阀芯及其阀芯外壳和控制柄,外部手柄与控制柄连接并对其进行操作,阀芯包括固定片和动片构成的密封片,该限位装置设置于动片和/或固定片上,或者限位装置设置于动片和/或阀芯外壳上,或者限位装置设置于控制柄和/或阀芯外壳上,或者限位装置设置于控制柄和/或外壳上,或者限位装置设置于与外部手柄和/或外壳上。
- 如权利要求1所述的阀门装置,其特征在于:阀装置的第一流体入口端为热流体入口端,操作机构在第一流体区域的流量调节区域的最小止位的流量大于零小于3升/分,或者大于3小于5升/分,或者大于5升/分。
- 如权利要求1或3所述的阀门装置,其特征在于:阀装置为单柄双联阀芯,操作机构为控制柄,控制柄在流量调节区域的最小止位为下止位;控制柄在第一流体区域时为阀芯模式的单热模式,在第二流体区域时为阀芯模式的单冷模式;阀装置具有流体出口端流量大于零为阀芯状态的开启状态,流体出口端流量等于零为阀芯状态的关闭状态;当控制柄在单冷模式的下止位时,流体出口端流量大于零,此时阀芯处于单冷模式临界状态或节省状态,或者,当控制柄在单热模式的下止位时,流体出口端流量大于零,此时阀芯处于单热模式临界状态或节省状态。
- 如权利要求9所述的阀门装置,其特征在于:控制柄在流量调节区域的最大止位为上止位,上止位和下止位之间为调节区域;当控制柄在单冷模式的下止位时,流体出口端流量大于零,此时阀芯处于单冷模式临界状态或节省状态,且控制柄在单热模式的下止位时,阀芯处于关闭状态,从单冷模式下止位至单冷模式上止位为单冷模式大流量调节区域,从单冷模式下止位至单热模式下止位为单冷模式小流量调节区域;或者,当控制柄在单热模式的下止位时,流体出口端流量大于零,此时阀芯处于单热模式临界状态或节省状态,且控制柄在单冷模式的下止位时,阀芯处于关闭状态,从单热模式下止位至单热模式上止位为单热模式大 流量调节区域,从单热模式下止位至单冷模式下止位为单热模式小流量调节区域。
- 如权利要求1所述的阀门装置,其特征在于:操作机构在第一流体区域的流量调节区域的最大止位的流量,和在第二流体区域的流量调节区域的最大止位的流量不相等。
- 一种热流体供应系统,包括阀门装置,以及具有对其内流体加热的加热系统的热流体供应装置,热流体供应装置的热流体出口与阀门装置的流体入口端连通,并由阀门装置的操作机构控制热流体供应装置开启或关闭其热流体供应,热流体供应装置具有一个关闭其加热系统的最低流量,阀门装置的该流体入口端的流量低于该最低流量时该热流体供应装置将关闭其加热系统,其特征在于:该阀门装置为权利要求1-11中任一权利要求的阀门装置,热流体供应装置的热流体出口与阀门装置的第一流体入口端连通,阀门装置的操作机构在第一流体区域的流量调节区域的最小止位时,其第一流体入口端的流量大于零,但低于该热流体供应装置关闭其加热系统的最低流量。
- 一种流体供应系统,包括至少一个阀门装置,以及流体供应装置,流体供应装置的流体出口分别与各阀门装置的流体入口端连通,并根据阀门装置的操作机构控制流体入口端流量控制流体供应装置的流体供应情况,其特征在于:该阀门装置为权利要求1至11中任一权利要求的阀门装置,流体供应装置的流体出口分别与各阀门装置的第一流体入口端连通。
- 如权利要求13所述的流体供应系统,其特征在于:该流体供应装置具有识别各阀门装置在其操作机构在第一流体区域的流量调节区域的最小止位的流量信号的识别装置,以及根据识别装置的识别结果控制其内部操作的控制装置。
- 如权利要求13或14所述的流体供应系统,其特征在于:该流体供应装置为具有对其内流体加热的加热系统的热流体供应装置,热流体供应装置的热流体出口与各阀门装置的第一流体入口端连通,并由阀门装置的操作机构控制第一流体入口端流量控制热流体供应装置的热流体供应情况。
- 一种单柄双联节水阀芯,阀芯模式具有单冷模式和单热模式,控制柄置入位置有调节区域和下止位,阀芯状态具有开启状态和关闭状态,其特征在于,控制柄置入单冷模式下止位时节水阀芯处于单冷模式节省状态或临界状态,或者,控制柄置入单热模式下止位时节水阀芯处于单热模式节省状态或临界状态。
- 如权利要求16所述的单柄双联节水阀芯,其特征在于,控制柄置入位置还有上止位;控制柄置入单冷模式下止位时节水阀芯处于单冷模式节省状态或临界状态,控制柄置入单热模式下止位时节水阀芯处于关闭状态,从单冷模式下止位至单冷模式上止位为节水阀芯单冷模式大流量调节区域,从单冷模式下止位至单热模式下止位为节水阀芯单冷模式小流量调节区域;或者,控制柄置入单热模式下止位时节水阀芯处于单热模式节省状态或临界状态,控制 柄置入单冷模式下止位时节水阀芯处于关闭状态,从单热模式下止位至单热模式上止位为节水阀芯单热模式大流量调节区域,从单热模式下止位至单冷模式下止位为节水阀芯单热模式小流量调节区域。
- 如权利要求16或17所述的单柄双联节水阀芯,其特征在于,阀芯模式还包括冷热混合模式。
- 如权利要求16或17或18所述的单柄双联节水阀芯,其特征在于,控制柄置入单冷模式下止位时,在固定片上的冷进水孔与出水孔之间,通过动片上通道的连通作用,所述冷进水孔与出水孔相通,使节水阀芯处于单冷模式节省状态或临界状态;或者,控制柄置入单热模式下止位时,在固定片上的热进水孔与出水孔之间,通过动片上通道的连通作用,所述热进水孔与出水孔相通,使节水阀芯处于单热模式节省状态或临界状态。
- 如权利要求19所述的单柄双联节水阀芯,其特征在于,热进水孔相对冷进水孔具有一朝向出水孔弯折的延伸部,控制柄在单热模式下止位时,热进水孔的该延伸部和出水孔通过动片上的通道连通,且随下止位向上动片上的通道与该延伸部的重叠区域面积增大,随控制柄从单热模式向单冷模式调整而重叠区域面积减少;或者,冷进水孔相对热进水孔具有一朝向出水孔弯折的延伸部,控制柄在单冷模式下止位时,冷进水孔的该延伸部和出水孔通过动片上的通道连通,且随下止位向上动片上的通道与该延伸部的重叠区域面积增大,随控制柄从单冷模式向单热模式调整而重叠区域面积减少。
- 如权利要求19所述的单柄双联节水阀芯,其特征在于,热进水孔相对冷进水孔朝向出水孔倾斜靠近,控制柄在单热模式下止位时,热进水孔的相对靠近出水孔的区域和出水孔通过动片上的通道连通,且随下止位向上动片上的通道与该区域的重叠区域面积增大,随控制柄从单热模式向单冷模式调整而重叠区域面积减少;或者,冷进水孔相对热进水孔朝向出水孔倾斜靠近,控制柄在单冷模式下止位时,冷进水孔的相对靠近出水孔的区域和出水孔通过动片上的通道连通,且随下止位向上动片上的通道与该区域的重叠区域面积增大,随控制柄从单冷模式向单热模式调整而重叠区域面积减少。
- 如权利要求19所述的单柄双联节水阀芯,其特征在于,热进水孔和冷进水孔相对出水孔距离一致,但控制柄在单热模式时动片上的通道与热进水孔间的距离,相比控制柄在单冷模式时动片上的通道与冷进水孔间的距离更近,控制柄在单热模式下止位时,热进水孔和出水孔通过动片上的通道连通,且随下止位向上动片上的通道与热进水孔的重叠区域面积增大,随控制柄从单热模式向单冷模式调整而重叠区域面积减少;或者,热进水孔和冷进水孔相对出水孔距离一致,但控制柄在单冷模式时动片上的通道与冷进水孔间的距离,相比控制柄在单热模式时动片上的通道与热进水孔间的距离更近,控制柄在单冷模式下止位时,冷进水孔 和出水孔通过动片上的通道连通,且随下止位向上动片上的通道与冷进水孔的重叠区域面积增大,随控制柄从单冷模式向单热模式调整而重叠区域面积减少。
- 如权利要求22所述的单柄双联节水阀芯,其特征在于,通过限位装置使得控制柄在单热模式时动片上的通道与热进水孔间的距离,相比控制柄在单冷模式时动片上的通道与冷进水孔间的距离更近;或者,通过限位装置使得控制柄在单冷模式时动片上的通道与冷进水孔间的距离,相比控制柄在单热模式时动片上的通道与热进水孔间的距离更近;阀装置包括外壳和外部手柄,外壳内设有阀芯及其阀芯外壳和控制柄,外部手柄与控制柄连接并对其进行操作,阀芯包括固定片和动片构成的密封片,该限位装置设置于动片和/或固定片上,或者限位装置设置于动片和/或阀芯外壳上,或者限位装置设置于控制柄和/或阀芯外壳上,或者限位装置设置于控制柄和/或外壳上,或者限位装置设置于与外部手柄和/或外壳上。
- 如权利要求19所述的单柄双联节水阀芯,其特征在于:节水阀芯处于单热模式节省状态或临界状态时,其热进水孔的流量大于零小于等于3升/分。
- 一种热流体供应系统,包括阀门装置,以及具有对其内流体加热的加热系统的热流体供应装置,热流体供应装置的热流体出口与阀门装置的流体入口端连通,并由阀门装置的操作机构控制热流体供应装置开启或关闭其热流体供应,热流体供应装置具有一个关闭其加热系统的最低流量,阀门装置的该流体入口端的流量低于该最低流量时该热流体供应装置将关闭其加热系统,其特征在于:该阀门装置为权利要求16至24中任一权利要求的单柄双联节水阀芯,热流体供应装置的热流体出口与单柄双联节水阀芯的热进水孔连通,单柄双联节水阀芯的控制柄在单热模式节省状态或临界状态时,其热进水孔的流量大于零,但低于该热流体供应装置关闭其加热系统的最低流量。
- 一种流体供应系统,包括至少一个阀门装置,以及流体供应装置,流体供应装置的流体出口分别与各阀门装置的流体入口端连通,并根据阀门装置的操作机构控制流体入口端流量控制流体供应装置的流体供应情况,其特征在于:该阀门装置为权利要求16至24中任一权利要求的单柄双联节水阀芯,流体供应装置的流体出口分别与具有单热模式节省状态或临界状态的各单柄双联节水阀芯的热进水孔连通,或者与具有单冷模式节省状态或临界状态的各单柄双联节水阀芯的冷进水孔连通。
- 如权利要求26所述的流体供应系统,其特征在于:该流体供应装置具有识别各单柄双联节水阀芯在其控制柄在单热模式或单冷模式下止位的流量信号的识别装置,以及根据识别装置的识别结果控制其内部操作的控制装置。
- 如权利要求26或27所述的流体供应系统,其特征在于:该流体供应装置为具有对其内流体加热的加热系统的热流体供应装置,热流体供应装置的热流体出口与各单柄双联节水阀 芯的热进水孔连通,并由单柄双联节水阀芯的控制柄控制热进水孔流量控制热流体供应装置的热流体供应情况。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510243195.7 | 2015-05-14 | ||
CN201510243204.2 | 2015-05-14 | ||
CN201510243195 | 2015-05-14 | ||
CN201510243204 | 2015-05-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016180361A1 true WO2016180361A1 (zh) | 2016-11-17 |
Family
ID=57248441
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/081979 WO2016180361A1 (zh) | 2015-05-14 | 2016-05-13 | 单侧定流量的阀门装置及其流体供应系统 |
Country Status (3)
Country | Link |
---|---|
CN (4) | CN205715811U (zh) |
TW (1) | TWI610042B (zh) |
WO (1) | WO2016180361A1 (zh) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI610042B (zh) * | 2015-05-14 | 2018-01-01 | 單側定流量的閥門裝置及其流體供應系統 | |
CN107191624A (zh) * | 2016-05-13 | 2017-09-22 | 成都菁易科技有限公司 | 双模式阀门装置及其流体供应系统 |
CN107269887A (zh) * | 2016-05-13 | 2017-10-20 | 成都菁易科技有限公司 | 一种流体供应系统 |
CN107559484B (zh) * | 2016-12-14 | 2023-10-27 | 海普电器有限公司 | 一种环保节能龙头 |
CN107218416B (zh) * | 2017-06-27 | 2023-12-05 | 广东吉宝电器科技有限公司 | 一种液体燃料炉具的液体控制阀 |
MX2020007097A (es) * | 2017-09-29 | 2020-12-03 | I Components Studio S L | Cartucho monomando inteligente para griferia, griferia inteligente monomando, sistema y metodo de gestion inteligente de griferia monomando. |
CN108468819A (zh) * | 2018-05-24 | 2018-08-31 | 广东乐华家居有限责任公司 | 一种常规可控温阀芯 |
CN110578809A (zh) * | 2019-10-21 | 2019-12-17 | 安徽理工大学 | 一种便于控温的水龙头调控阀陶瓷阀芯 |
CN111396585A (zh) * | 2020-03-13 | 2020-07-10 | 陈宗仁 | 阀芯、水龙头、具有该水龙头的回路流体供应系统 |
WO2021179301A1 (zh) * | 2020-03-13 | 2021-09-16 | 陈宗仁 | 阀芯、水龙头、具有该水龙头的回路流体供应系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN86209734U (zh) * | 1986-12-01 | 1987-08-26 | 上海市川沙县顾路五金厂 | 单柄双液控制阀 |
JP2008169890A (ja) * | 2007-01-10 | 2008-07-24 | Toto Ltd | 湯水混合水栓及びそれを備えた吐水装置 |
CN102109048A (zh) * | 2011-01-11 | 2011-06-29 | 郝晓谷 | 一种水龙头及冷热水调度系统 |
CN202955282U (zh) * | 2012-10-25 | 2013-05-29 | 熊贤堂 | 淋浴龙头 |
CN203571117U (zh) * | 2013-10-11 | 2014-04-30 | 泉州欧联实业有限公司 | 一种改进型淋浴龙头 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2549287Y (zh) * | 2002-06-12 | 2003-05-07 | 武军 | 一种调温混水阀 |
CN2634218Y (zh) * | 2003-07-07 | 2004-08-18 | 谢庆俊 | 分档调节水流量的节水水嘴陶瓷阀芯 |
JP5632807B2 (ja) * | 2011-08-24 | 2014-11-26 | 株式会社タカギ | 湯水混合栓 |
US9347207B2 (en) * | 2013-03-15 | 2016-05-24 | Chung-Chia Chen | Faucet assembly |
CN204328060U (zh) * | 2014-08-11 | 2015-05-13 | 东陶(大连)有限公司 | 一种浴室用立式单柄冷热水混合水龙头 |
CN204164426U (zh) * | 2014-08-15 | 2015-02-18 | 珠海市舒丽玛温控卫浴设备有限公司 | 一种单柄双控恒温阀 |
CN104265953B (zh) * | 2014-09-17 | 2016-08-17 | 山东省分析测试中心 | 一种热水器混水阀 |
TWI610042B (zh) * | 2015-05-14 | 2018-01-01 | 單側定流量的閥門裝置及其流體供應系統 |
-
2016
- 2016-05-13 TW TW105114894A patent/TWI610042B/zh not_active IP Right Cessation
- 2016-05-13 CN CN201620437830.5U patent/CN205715811U/zh not_active Withdrawn - After Issue
- 2016-05-13 WO PCT/CN2016/081979 patent/WO2016180361A1/zh active Application Filing
- 2016-05-13 CN CN201610318229.9A patent/CN106151596B/zh active Active
- 2016-05-13 CN CN201610317069.6A patent/CN106151595B/zh active Active
- 2016-05-13 CN CN201620438070.XU patent/CN205715812U/zh not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN86209734U (zh) * | 1986-12-01 | 1987-08-26 | 上海市川沙县顾路五金厂 | 单柄双液控制阀 |
JP2008169890A (ja) * | 2007-01-10 | 2008-07-24 | Toto Ltd | 湯水混合水栓及びそれを備えた吐水装置 |
CN102109048A (zh) * | 2011-01-11 | 2011-06-29 | 郝晓谷 | 一种水龙头及冷热水调度系统 |
CN202955282U (zh) * | 2012-10-25 | 2013-05-29 | 熊贤堂 | 淋浴龙头 |
CN203571117U (zh) * | 2013-10-11 | 2014-04-30 | 泉州欧联实业有限公司 | 一种改进型淋浴龙头 |
Also Published As
Publication number | Publication date |
---|---|
CN106151596A (zh) | 2016-11-23 |
TWI610042B (zh) | 2018-01-01 |
TW201640040A (zh) | 2016-11-16 |
CN205715811U (zh) | 2016-11-23 |
CN106151595A (zh) | 2016-11-23 |
CN205715812U (zh) | 2016-11-23 |
CN106151595B (zh) | 2019-05-07 |
CN106151596B (zh) | 2019-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI610042B (zh) | 單側定流量的閥門裝置及其流體供應系統 | |
CN201306472Y (zh) | 自动冷水回收恒温龙头 | |
US11821538B2 (en) | Mechanical and electronic dual control water tap | |
CN204647433U (zh) | 一种智能温控淋浴龙头 | |
TWI642866B (zh) | Two-side constant flow valve device and fluid supply system thereof | |
CN204555334U (zh) | 一种热水器节水装置 | |
CN203906881U (zh) | 可提升暖气热交换器使用安全的水龙头 | |
CN202203444U (zh) | 一种无手柄温控台盆龙头 | |
CN208535302U (zh) | 一种电热水龙头 | |
CN209926624U (zh) | 一种智能节水装置 | |
CN206268584U (zh) | 一种智能关闭水龙头装置 | |
CN107269887A (zh) | 一种流体供应系统 | |
CN201909068U (zh) | 自动恒温出水装置 | |
CN201396509Y (zh) | 一种家用恒温阀 | |
CN106468364A (zh) | 一种双水路出水阀芯 | |
CN102080876A (zh) | 一种热水器的节水装置 | |
CN220287733U (zh) | 一种即开即热恒温供水系统 | |
CN86204004U (zh) | 多用途水龙头 | |
WO2017165992A1 (zh) | 家用定温水龙头混水阀 | |
CN205859249U (zh) | 一种智能按键预埋式水龙头 | |
CN113124169B (zh) | 一种快热节水自动阀 | |
CN220749231U (zh) | 一种双水路双阀集成龙头 | |
CN202188164U (zh) | 一种洗菜盆水龙头 | |
CN107191624A (zh) | 双模式阀门装置及其流体供应系统 | |
CN202091559U (zh) | 台面式渐进龙头 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16792211 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/04/2018) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16792211 Country of ref document: EP Kind code of ref document: A1 |