WO2016179934A1 - 一种数据传输方法和节点 - Google Patents

一种数据传输方法和节点 Download PDF

Info

Publication number
WO2016179934A1
WO2016179934A1 PCT/CN2015/089646 CN2015089646W WO2016179934A1 WO 2016179934 A1 WO2016179934 A1 WO 2016179934A1 CN 2015089646 W CN2015089646 W CN 2015089646W WO 2016179934 A1 WO2016179934 A1 WO 2016179934A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
information
data
nodes
time
Prior art date
Application number
PCT/CN2015/089646
Other languages
English (en)
French (fr)
Inventor
王晓妮
张芳
于泳
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016179934A1 publication Critical patent/WO2016179934A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]

Definitions

  • This document refers to, but is not limited to, communication technology, especially a data transmission method and node.
  • wireless communication plays an increasingly important role in people's daily life.
  • users put forward higher requirements for the reliability of wireless communication transmission.
  • a base station or a mobile station may have one or more cooperative partners. Through different degrees of cooperation between base stations, between mobile stations, or between base stations and low-power nodes, a certain degree of cooperation can be obtained. Space diversity gain, greater system capacity, and better immunity to interference.
  • the cooperative node can transmit its own data to the destination node, and can also forward the data of the cooperative partner, but the transmitted self data and the data of the forwarding cooperative partner are independent from each other, so that each time the node The amount of information transmitted to the destination node is relatively small, resulting in a low probability of data recovery after an error occurs, and the reliability of data transmission is not high enough.
  • the embodiment of the invention provides a data transmission method and a node to solve the technical problem of how to increase the amount of information transmitted by the cooperative node to the destination node each time and improve the reliability of the communication system transmission.
  • An embodiment of the present invention provides a data transmission method, where the method includes:
  • a node that sends data to each node forms a coordinated communication set with each of the nodes;
  • the node that receives the data sent by each node performs network coding on the information of the node and the information of each node according to a preset encoding algorithm to obtain coded information;
  • the node that receives the data transmitted by each node transmits the modulated data.
  • the method further includes:
  • the node that receives the data sent by each node determines the node in the coordinated communication set according to a preset rule.
  • the node that receives the data sent by each node performs network coding on the information of the node and the information of each node according to a preset coding algorithm to obtain coded information, including:
  • the preset formula includes:
  • N is the number of nodes in the collaborative communication set
  • j represents a node j in the coordinated communication set
  • n represents a node that receives the data transmitted by each node.
  • S j,it is the information of node j at the time t before time i
  • S j,i is the node j at time i information
  • l is The first output bit
  • L is a positive integer
  • the receiving, by the node that sends the data by each node, the modulated data includes:
  • the node that receives the data transmitted by each node transmits the modulated data according to the space time block coding STBC mode.
  • Another embodiment of the present invention provides a method for data transmission, where the method includes:
  • the node receives the data sent by the N nodes, and separately detects the received data of the N nodes to obtain information of the N nodes; where N is a positive integer;
  • the node that receives the data sent by the N nodes performs network coding on the information of the N nodes according to a preset encoding algorithm to obtain coded information;
  • the node that receives the N nodes transmitting data modulates the encoded information, and transmits the modulated data.
  • the node that receives the data sent by the N nodes performs network coding on the information of the N nodes according to a preset coding algorithm to obtain coded information, including:
  • the preset formula includes:
  • S j,it is the information of the node j at the time t before the time i
  • S j,i is the information of node j at time i
  • l is The first output bit
  • L is a positive integer
  • An embodiment of the present invention provides a node, where the node includes:
  • a receiving module configured to receive data sent by each node that performs cooperative communication with the node, and separately detect the received data of each node to obtain information of each node, and each of the The information of the node is transmitted to the encoding module; wherein the node and the each node form a coordinated communication set;
  • the encoding module is configured to receive the information of each node from the receiving module, perform network coding on the information of the node and the information of each node according to a preset encoding algorithm to obtain encoded information, and obtain the encoded information. Transfer to the modulation module;
  • a modulation module configured to receive the encoding information from the encoding module, modulate information of the node and the encoding information, and transmit the modulated data to a sending module;
  • the sending module is configured to receive the modulated data after receiving the modulated data from the encoding module, and then send the modulated data.
  • the node further includes:
  • a determining module is configured to determine a node in the collaborative communication set according to a preset rule.
  • the encoding module is set to:
  • the preset formula includes:
  • N is the number of nodes in the collaborative communication set
  • j 1, . . . , N
  • j represents the node j in the coordinated communication set
  • n represents the local node
  • n is less than or equal to N.
  • a positive integer, S j,it is the information of node j at the time t before time i
  • m is a positive integer
  • S j,i is the information of node j at time i
  • l is The first output bit
  • L is a positive integer
  • the sending module is configured to:
  • the modulated data is transmitted in a space time block coded STBC mode.
  • An embodiment of the present invention further provides another node, where the node includes:
  • the receiving module is configured to receive data sent by the N nodes, respectively detect the received data of the N nodes to obtain information of the N nodes, and transmit the information of the N nodes to the encoding module; Where N is a positive integer;
  • the encoding module is configured to receive the information of the N nodes from the receiving module, perform network coding on the information of the N nodes according to a preset encoding algorithm, and obtain the encoded information, and transmit the encoded information to the modulation sending module. ;
  • the modulation transmitting module is configured to receive the encoded information from the encoding module, modulate the encoded information, and transmit the modulated data.
  • the encoding module is set to:
  • the preset formula includes:
  • S j,it is the information of the node j at the time t before the time i
  • S j,i is the information of node j at time i
  • l is The first output bit
  • L is a positive integer
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the above method.
  • a data transmission method and a node provided by the embodiment of the present invention include: a node receives data sent by each node that performs cooperative communication with the node, and separately detects data of each node received to obtain information of each node. Wherein, the node and each node form a cooperative communication set; the node performs network coding on the information of the node and the information of each node according to a preset encoding algorithm to obtain coding information; the node information and coding information of the node Modulation is performed; the node transmits the modulated data.
  • the network coding is applied to the cooperative communication system, and the network data of the source node and the coordinated peer data to be forwarded are network-encoded, and the self-data transmitted by the source node and the coordination of the forwarding are performed.
  • the peer data is no longer independent of each other, but has a certain correlation, which increases the amount of information transmitted by the source node to the destination node each time, thereby improving the reliability of the wireless communication system transmission.
  • FIG. 1 is a schematic flowchart of a data transmission method according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of another data transmission method according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a node according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of another node according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a communication system for cooperative communication according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of network coding cooperative communication of two user equipments according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of network coding-space-time block coding cooperative communication of two user equipments according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of another embodiment of a data transmission method according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of comparing bit error rate performance of an AWGN channel QPSK in a case where two user equipments use cooperative coding and network coding without using network coding according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of comparing BER performances of Rayleigh channel QPSK in the case of two-user device space-time block coding cooperative communication using network coding and no network coding.
  • the technical solution provided by the embodiment of the present invention is based on the network coding theory.
  • the Network Coding (NC) theory is originally a new network transmission technology proposed by Ahlswede et al. to increase network transmission capacity and improve throughput.
  • Network coding is an information exchange technology that combines routing and coding. Each node in the network performs linear or non-linear processing on the information received on each channel, and then forwards it to the destination node.
  • the source node in the embodiment of the present invention is not limited to the user equipment, and may be other devices.
  • the relay node is also not limited to devices such as mobile stations and low power nodes.
  • An embodiment of the present invention provides a data transmission method, which is based on a source node side, as shown in FIG. 1 , the method includes:
  • Step 101 The node receives data sent by each node that performs cooperative communication with the local node, and The received data of each node is separately detected to obtain information of each node; wherein the node receiving the data and each node transmitting the data form a cooperative communication set.
  • each node in the coordinated communication set broadcasts its own data, wherein each node can receive data sent by other nodes except itself, and the information of the remaining nodes can be obtained by detecting.
  • Step 102 The node that receives the data sent by each node performs network coding on the information of the node and the information of each node according to a preset encoding algorithm to obtain coded information.
  • the node that receives the data sent by each node receives the information of each of the other nodes in the coordinated communication set, and directly forwards the information.
  • the node The information and each of the other nodes in the collaborative communication set are network coded to obtain the encoded information, so that the amount of information of the node to transmit data each time can be increased, and the reliability of the data transmission can be improved.
  • Step 103 The node that receives the data sent by each node modulates the information of the node and the coded information.
  • the node receiving the data transmitted by each node may modulate the information of the node and the encoded information obtained in step 102 by means of constellation mapping.
  • Step 104 The node that receives the data sent by each node sends the modulated data.
  • the node that receives the data transmitted by each node can transmit the modulated data through the transmitting antenna.
  • the method may further include:
  • Step 100 A node that receives data sent by each node determines a node in the collaborative communication set according to a preset rule.
  • the source node may determine a node that is within a certain range of the source node as a node in the coordinated communication set, or the source node may also determine a node with a good channel state in the preset area and the base station as A node in a collaborative communication set.
  • This is only a schematic illustration, and can actually be determined according to pre-defined rules.
  • step 102 receiving a node that sends data to each node according to a preset encoding algorithm
  • the information of this node is network coded with the information of each other node to obtain coding information, including:
  • Encoding information is obtained by receiving information of a node that transmits data of each node and information of each of the other nodes as an input of a preset formula
  • the preset formulas include:
  • N is the number of nodes in the collaborative communication set
  • n represents the node that receives the data transmitted by each node
  • S j,it is the information of node j at the time t before time i
  • S j,i is the information of node j at time i
  • l is The first output bit
  • L is a positive integer
  • the node that receives the data sent by each node sends the modulated data, including:
  • the node that receives the data transmitted by each node transmits the modulated data according to the space time block coded STBC mode.
  • STBC Space Time Block Coding
  • the node receives data sent by each node that performs cooperative communication with the node, and separately detects data of each node received to obtain information of each node;
  • the node sending the data and each node sending data to it form a cooperative communication set;
  • the node receiving the data sent by each node performs network coding of the information of the node and the information of each of the other nodes according to a preset encoding algorithm.
  • Encoding information; a node that receives each node transmitting data modulates information of the node and encoding information; and the node transmits the data obtained by the modulation.
  • the network coding is applied to the cooperative communication system, and the network data of the source node and the coordinated peer data to be forwarded are network-encoded, and the self-data transmitted by the source node and the coordination of the forwarding are performed.
  • the peer data is no longer independent of each other, but has a certain correlation, which increases the amount of information transmitted by the source node to the destination node each time, thereby improving the reliability of the wireless communication system transmission.
  • the embodiment of the present invention further provides another data transmission method, based on the relay node side, as shown in FIG. 2 Show that the method includes:
  • Step 201 The node receives data sent by the N nodes, and detects data of the received N nodes respectively to obtain information of N nodes; where N is a positive integer.
  • the relay node can receive data sent by all the source nodes, and the information of each source node can be obtained by detecting.
  • Step 202 The node that receives the data sent by the N nodes performs network coding on the information of the N nodes according to a preset encoding algorithm to obtain coded information.
  • the relay node directly forwards the information of each of the other nodes in the coordinated communication set, in the embodiment of the present invention, the relay node performs the information of each source node.
  • the network coding obtains the encoded information, so that the amount of information in the data transmitted by the relay node each time can be increased, and the reliability of the data transmission can be improved.
  • Step 203 The node that receives the data sent by the N nodes modulates the coded information, and sends the modulated data.
  • the relay node may modulate the encoded information obtained in step 202 by means of constellation mapping, and then transmit the modulated data through the transmitting antenna.
  • the node that receives the data sent by the N nodes performs network coding on the information of the N nodes according to a preset coding algorithm to obtain coded information, including:
  • Encoding information is obtained by inputting information of N nodes as an input of a preset formula
  • the preset formulas include:
  • S j,it is the information of the node j at the time t before the time i
  • S j,i is the information of node j at time i
  • l is The first output bit
  • L is a positive integer
  • a node receives data sent by N nodes, and detects data of N nodes respectively, and obtains information of N nodes; where N is a positive integer; receiving N The node of the data sent by the node performs network coding on the information of the N nodes according to a preset coding algorithm to obtain coded information; the node pair that receives the data sent by the N nodes The encoded information is modulated, and the modulated data is transmitted.
  • the network coding is applied to the cooperative communication system, and the relay node does not independently forward the data of each source node, but receives the data sent by each source node, and
  • the data of each source node received is network-encoded, and the self-data transmitted by the source node and the forwarded companion data are no longer independent of each other, but have a certain correlation, and the relay node is transmitted each time.
  • the amount of information of the destination node thereby improving the reliability of the transmission of the wireless communication system.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the above method.
  • the embodiment of the present invention provides a node 10, which may be a source node. As shown in FIG. 3, the node 10 includes:
  • the receiving module 11 is configured to receive data sent by each node that performs cooperative communication with the node 10, separately detect data of each node received, obtain information of each node, and transmit information of each node to the encoding.
  • Module 12 wherein node 10 and each node form a coordinated communication set;
  • the encoding module 12 is configured to receive the information of each node from the receiving module 11, and perform network coding of the information of the node 10 and the information of each node according to a preset encoding algorithm to obtain the encoded information, and transmit the encoded information to the modulation module 13;
  • the modulation module 13 is configured to receive the encoded information from the encoding module 12, modulate the information of the node 10 and the encoded information, and transmit the modulated data to the transmitting module 14;
  • the transmitting module 14 is configured to receive the modulated data after receiving the modulated data from the encoding module 13, and then transmit the modulated data.
  • the node 10 may further include:
  • the determining module 15 is configured to determine nodes in the collaborative communication set according to a preset rule.
  • the encoding module 13 is configured to:
  • the preset formulas include:
  • N is the number of nodes in the collaborative communication set
  • n represents the node 10
  • n is less than or equal to
  • S j,it is the information of node j at the time t before time i
  • m is a positive integer
  • S j,i is the information of node j at time i
  • l is The first output bit
  • L is a positive integer
  • the sending module 14 is configured to:
  • the modulated data is transmitted in the space-time block coded STBC mode.
  • a node is provided by the embodiment of the present invention, and the node receives data sent by each node that performs cooperative communication with the node, and detects data of each node received to obtain information of each node; wherein, the node and the node Each of the other nodes constitutes a coordinated communication set; the node performs network coding on the information of the node and the information of each of the other nodes according to a preset encoding algorithm to obtain encoded information; the node modulates the information of the node and the encoded information; The node sends the data obtained after modulation.
  • the network coding is applied to the cooperative communication system, and the network data of the source node and the coordinated peer data to be forwarded are network-encoded, and the self-data transmitted by the source node and the coordination of the forwarding are performed.
  • the peer data is no longer independent of each other, but has a certain correlation, which increases the amount of information transmitted by the source node to the destination node each time, thereby improving the reliability of the wireless communication system transmission.
  • the node 20 includes:
  • the receiving module 21 is configured to receive data sent by the N nodes, respectively detect the data of the received N nodes to obtain information of the N nodes, and transmit information of the N nodes to the encoding module 22, where N is Positive integer
  • the encoding module 22 is configured to receive the information of the N nodes from the receiving module 21, perform network coding on the information of the N nodes according to the preset encoding algorithm to obtain the encoded information, and transmit the encoded information to the modulation transmitting module 23;
  • the modulation sending module 23 is configured to receive the encoded information from the encoding module 22, and enter the encoded information into Line modulation, and send the data obtained after modulation.
  • the encoding module 22 can be set to:
  • the preset formulas include:
  • S j,it is the information of the node j at the time t before the time i
  • S j,i is the information of node j at time i
  • l is The first output bit
  • L is a positive integer
  • the node receives data sent by other N nodes except the node, and detects data of the received N nodes to obtain information of N nodes; wherein N is A positive integer; the node performs network coding on the information of the N nodes according to a preset encoding algorithm to obtain encoded information; the node modulates the encoded information, and transmits the modulated data.
  • the network coding is applied to the cooperative communication system, and the relay node does not independently forward the data of each source node, but receives the data sent by each source node, and
  • the data of each source node received is network-encoded, and the self-data transmitted by the source node and the forwarded companion data are no longer independent of each other, but have a certain correlation, and the relay node is transmitted each time.
  • the amount of information of the destination node thereby improving the reliability of the transmission of the wireless communication system.
  • the source node is a user equipment
  • the destination node may be a base station.
  • the source node that is, the user equipment
  • the source node may include: a determining module, a receiving module, an encoding module, a modulation module, and a sending module.
  • the destination node may include: a demodulation module and a decoding module.
  • each module of the user equipment is understood by referring to the corresponding embodiment in FIG. 3,
  • the demodulation module of the destination node is connected to the decoding module.
  • the determining module is configured to determine the user equipment in the collaborative communication set according to a preset rule.
  • the number of user equipments in the coordinated communication set is at least 2.
  • a receiving module configured to receive data sent by each user equipment that performs cooperative communication with the user equipment, and separately detect the received data of each user equipment to obtain information about each user equipment, and The information of each user equipment is transmitted to an encoding module; wherein the user equipment forms a cooperative communication set with each of the other user equipments;
  • An encoding module is configured to receive information about each of the other user equipments from the receiving module, and perform network coding on information of the user equipment and information of each of the user equipments according to a preset encoding algorithm to obtain encoded information, and Transmitting the encoded information to a modulation module;
  • the encoding module is set to:
  • the preset formula includes:
  • N is the number of user equipments in the collaborative communication set
  • j represents user equipment j in the coordinated communication set
  • n represents data received by each user equipment.
  • User equipment, n is a positive integer less than or equal to N
  • S j,it is the information of user equipment j at the time t before time i
  • S j,i is the user equipment j information at time i
  • l is The first output bit
  • L is a positive integer
  • the puncturing scheme that is, rate matching, means that bits on the transmission channel are repeated or punctured to match the carrying capacity of the physical channel. Punching is to knock out the current bit and move the following bits one bit in advance. Repeating is to insert the current bit between the current bit and the following bit.
  • the user equipment n obtains the coding information.
  • the information bits to be sent by the user equipment n are composed.
  • S n,i represents the information bits sent by the user equipment n at time i.
  • a modulation module configured to receive the encoding information from the encoding module, modulate information of the user equipment and the encoding information, and transmit the modulated data to a sending module;
  • the multi-bit obtained by the user equipment n through the modulation module And l ⁇ 0 performs constellation mapping to obtain modulated data
  • the sending module is configured to receive the modulated data after receiving the modulated data from the encoding module, and then send the modulated data.
  • the demodulation module of the destination node is configured to demodulate the received transmission information from each user equipment, and obtain network-coded information sent by each user equipment.
  • the demodulation module demodulates the data
  • the corresponding demodulation mode needs to be selected according to the modulation mode.
  • the decoding module is configured to decode the network coded information of each user equipment demodulated by the demodulation module.
  • the general destination node decodes according to the maximum likelihood criterion.
  • the following describes the decoding process by taking the decoding process of the network-coded information Y n of the user equipment n as an example:
  • the decoding module receives Y n , and the maximum likelihood criterion decoding is based on the maximum log likelihood function p(Y n
  • X n,i ) is the channel transition probability, which is the minimum error probability coding criterion when all codewords are equal probability.
  • the Viterbi decoding algorithm can also be selected as the decoding algorithm.
  • X n ) is called the path metric of X n , and M(Y n
  • X n,j ) are called branch metrics and bit metrics, respectively, as M(Y n,i
  • the Viterbi algorithm finds the path with the largest metric, ie the maximum likelihood path, through the network graph, thereby restoring the original information of the user equipment n.
  • FIG. 5 is a schematic structural diagram of a communication system for cooperative communication according to the present invention.
  • the source node is a user equipment
  • FIG. 5 includes N user equipments and a destination node D.
  • the data transmission process of the N user equipments and the destination node D includes the following steps:
  • the first step the user equipment n determines the number N of user equipments participating in the collaboration according to the corresponding principle, and N ⁇ 2;
  • the second step the user equipment 1 to the user equipment N respectively broadcast and transmit their own data, and the destination node D receives the data from each user equipment;
  • Network coding, coding uses the following scheme:
  • N is the number of user equipments in the collaborative communication set
  • j represents the user equipment j in the collaborative communication set
  • n represents the user equipment
  • n is less than
  • S j,it is the information of user equipment j at the time t before time i
  • m is a positive integer
  • S j,i is the information of user equipment j at time i
  • l is The first output bit
  • L is a positive integer
  • the information sequence of length K is encoded by the above network to obtain an output bit of length L, and the coding efficiency is defined as K/L.
  • the user equipment n After the network coding is completed, the user equipment n obtains the coding information Cn, so that the information bits to be sent by the user equipment n at the time i constitute And l ⁇ 0 multi-bit pairs.
  • S n,i represents the information bits sent by the user equipment n at time i. Indicates the first output coding information bit obtained by the user equipment n after network coding at time i.
  • the user device n will get the multi-bit And l ⁇ 0 is modulated and sent to the destination node.
  • Step 5 The destination node D receives the data from the user equipment n, and performs demodulation to obtain the network coded information Y n of the user equipment n ;
  • Step 6 The coded information sequence Y n obtained by the destination node demodulating the user equipment n is coded and decoded by using the maximum likelihood sequence:
  • the received information of the user equipment n network decoder is Y n
  • the maximum likelihood sequence decoding is based on the maximum log likelihood function p(Y n
  • X n,i ) is the channel transition probability, which is the minimum error probability coding criterion when all codewords are equal probability.
  • the Viterbi decoding algorithm is selected as the decoding algorithm.
  • X n ) is called the path metric of X n , and M(Y n
  • X n,j ) are called branch metrics and bit metrics, respectively, as M(Y n,i
  • the Viterbi algorithm finds the path with the largest metric, ie the maximum likelihood path, through the network graph, thereby restoring the original information of the user equipment n.
  • FIG. 6 is a schematic diagram of network coding cooperative communication of two user equipments according to an embodiment of the present invention.
  • i represents the time of transmission.
  • the user equipment 1 first performs network coding on the information transmitted at the time i, and the network coding information bits Thus, at the i-th moment, the information bits to be sent by the user equipment 1 are composed.
  • Two-bit pair likewise, the information sent by the user equipment 2 at the time i is also first subjected to network coding, and the network coding information bits are Thus, at the i-th moment, the information bits to be sent by the user equipment 2 are composed. Two bit pairs; the initial A 0 and B 0 are both set to zero.
  • FIG. 7 is a schematic diagram of space-time network coding cooperative communication of two user equipments according to an embodiment of the present invention.
  • the embodiment is divided into two phases. In the first phase, the user equipment 1 first performs network coding on the information sent by the i-th moment, and the network coding information bits Thus, at the i-th moment, the information bits to be sent by the user equipment 1 are composed.
  • Two-bit pair likewise, the information sent by the user equipment 2 at the time i is also first subjected to network coding, and the network coding information bits are Thus, at the i-th moment, the information bits to be sent by the user equipment 2 are composed. Double bit pair, the initial A 0 and B 0 are both set to 0; then the double bit after encoding is completed respectively with Perform constellation mapping to get the symbol sent at the i-th moment with In the second stage, orthogonal transmission is performed according to Alamouti's STBC coding mode, and each user equipment separately transmits a complex conjugate signal of the detected companion data. That is, the space-time transmission matrix is
  • FIG. 8 is a schematic diagram of another implementation of a data transmission method according to an embodiment of the present invention.
  • User equipment 1 transmits information in time slot 1
  • user equipment 2 transmits information in time slot 2
  • the relay node receives user equipment 1 and
  • the transmission information of the user equipment 2 uses the coding step of FIG. 5 to perform network coding on the received information, and forwards the network coding information to the destination node in time slot 3, and the destination node receives
  • the information is sent from the user equipment and the relay node, and then the information received in the two stages is jointly decoded, thereby restoring the original information of the user equipment 1 and the user equipment 2.
  • FIG. 9 is a performance comparison of the AWGN channel using network coding and network coding not obtained after the processing steps of FIG. 6.
  • Additive White Gaussian Noise refers to a channel model in communication.
  • the unique signal impairment of the channel model is derived from the linear addition of the bandwidth (Bandwidth). It is either a stable spectral density (expressed in the bandwidth per Hertzwatt) and a white noise with a Gaussian distribution amplitude.
  • QPSK in Figure 9 is Quadrature Phase Shift Keyin, which is a commonly used method in constellation mapping.
  • FIG. 10 is a performance comparison of a Rayleigh channel using space-time cooperative communication using network coding and space-time cooperative communication without network coding, which is obtained after the processing steps of FIG. 7.
  • Rayleigh channel is a channel model of radio signal propagation environment. This channel model assumes that after the signal passes through the wireless channel, its signal amplitude is random, ie "fading," and its envelope follows the Rayleigh distribution.
  • QPSK also refers to Quadrature Phase Shift Keyin.
  • the network coding is applied to the cooperative communication system, and the receiving side uses the Viterbi decoding algorithm to perform network coding on the cooperative node's own data and the peer data to be forwarded.
  • the self-data transmitted by the collaborative user and the forwarded peer data are no longer independent of each other, but have a certain correlation, which increases the amount of information that the collaborative node sends to the destination node each time, thereby improving the reliability of the wireless communication system. Sex.
  • all or part of the steps of the foregoing embodiments may also be implemented by using an integrated circuit, and the steps may be separately fabricated into integrated circuit modules, or multiple modules thereof or The steps are made into a single integrated circuit module.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • each device/function module/functional unit in the above embodiment When each device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the above technical solution realizes that the self-data transmitted by the source node and the forwarded companion data are no longer independent of each other, but have a certain correlation, which increases the amount of information transmitted by the source node to the destination node each time, thereby improving The reliability of wireless communication system transmission.

Abstract

一种数据传输方法和节点,包括:节点接收与该节点进行协同通信的每个节点发送的数据,对接收到的每个节点的数据分别进行检测得到每个节点的信息;其中,该节点与每个节点组成一个协同通信集合;该节点按照预设编码算法将该节点的信息与每个节点的信息进行网络编码得到编码信息;该节点对该节点的信息以及编码信息进行调制;该节点发送调制后得到的数据。上述技术方案中,能够增加协作节点每次传输给目的节点的信息量,提高通信系统传输的可靠性。

Description

一种数据传输方法和节点 技术领域
本文涉及但不限于通信技术,尤指一种数据传输方法和节点。
背景技术
随着无线通信技术的发展,无线通信在人们的日常生活中扮演着越来越重要的角色,与此相应的是,用户对无线通信传输的可靠性提出了更高的要求。
协同通信的基本思想是在系统中基站或者移动台会有一个或多个协作伙伴,通过基站之间、移动台之间或者基站与低功率节点之间所执行的不同程度的合作,可以获取一定的空间分集增益、更大的系统容量以及更好的抗干扰性能。
相关的协同通信方案中,协同节点可以向目的节点传输自身的数据,同时还可以转发协同伙伴的数据,但是所传输的自身数据和转发协同伙伴的数据之间是相互独立的,这样节点每次向目的节点传输的信息量比较少,导致发生错误后数据恢复的概率较低,数据传输的可靠性不够高。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供了一种数据传输方法和节点,以解决如何增加协作节点每次传输给目的节点的信息量,提高通信系统传输的可靠性的技术问题。
本发明实施例提供了一种数据传输方法,所述方法包括:
节点接收与所述节点进行协同通信的每个节点发送的数据,对接收到的所述每个节点的数据分别进行检测得到所述每个节点的信息;其中,接收所 述每个节点发送数据的节点与所述每个节点组成一个协同通信集合;
接收所述每个节点发送数据的节点按照预设编码算法将本节点的信息与所述每个节点的信息进行网络编码得到编码信息;
接收所述每个节点发送数据的节点对本节点的信息以及所述编码信息进行调制;
接收所述每个节点发送数据的节点发送调制后得到的数据。
可选的,所述方法还包括:
节点接收与所述节点进行协同通信的每个节点发送的数据之前,接收所述每个节点发送数据的节点根据预设规则确定所述协同通信集合中的节点。
可选的,接收所述每个节点发送数据的节点按照预设编码算法将本节点的信息与所述每个节点的信息进行网络编码得到编码信息,包括:
将接收所述每个节点发送数据的节点的信息与所述每个节点的信息作为预设公式的输入得到所述编码信息;
所述预设公式包括:
Figure PCTCN2015089646-appb-000001
其中,N为所述协同通信集合中的节点的个数,j=1,...,N,j表示所述协同通信集合中的节点j,n表示接收所述每个节点发送数据的节点,n为小于或等于N的正整数,Sj,i-t为节点j在时刻i的前t时刻的信息,m为正整数,当t=0时,Sj,i为节点j在时刻i的信息,
Figure PCTCN2015089646-appb-000002
表示在时刻i所述节点n的编码信息,l为
Figure PCTCN2015089646-appb-000003
的第l个输出比特,且
Figure PCTCN2015089646-appb-000004
L为正整数,αj,l
Figure PCTCN2015089646-appb-000005
的第l个输出比特时节点j的编码系数,αj,l=0或αj,l=1,
Figure PCTCN2015089646-appb-000006
表示模2加运算。
可选的,所述接收所述每个节点发送数据的节点发送调制后得到的数据包括:
接收所述每个节点发送数据的节点按照空时分组编码STBC方式发送所述调制后得到的数据。
本发明实施例还提供了另一种数据传输的方法,所述方法包括:
节点接收N个节点发送的数据,对接收到的所述N个节点的数据分别进行检测得到所述N个节点的信息;其中,N为正整数;
接收N个节点发送数据的节点按照预设编码算法将所述N个节点的信息进行网络编码得到编码信息;
接收N个节点发送数据的节点对所述编码信息进行调制,并发送调制后得到的数据。
可选的,接收N个节点发送数据的节点按照预设编码算法将所述N个节点的信息进行网络编码得到编码信息,包括:
将所述N个节点的信息作为预设公式的输入得到所述编码信息;
所述预设公式包括:
Figure PCTCN2015089646-appb-000007
其中,j=1,...,N,j表示所述N个节点中的节点j,Sj,i-t为节点j在时刻i的前t时刻的信息,m为正整数,当t=0时,Sj,i为节点j在时刻i的信息,
Figure PCTCN2015089646-appb-000008
表示在时刻i所述节点的编码信息,l为
Figure PCTCN2015089646-appb-000009
的第l个输出比特,L为正整数,αj,l
Figure PCTCN2015089646-appb-000010
的第l个输出比特时节点j的编码系数,αj,l=0或αj,l=1,
Figure PCTCN2015089646-appb-000011
表示模2加运算。
本发明实施例提供了一种节点,所述节点包括:
接收模块,设置为接收与所述节点进行协同通信的每个节点发送的数据,对接收到的所述每个节点的数据分别进行检测得到所述每个节点的信息,并将所述每个节点的信息传输给编码模块;其中,本节点与所述每个节点组成一个协同通信集合;
编码模块,设置为从所述接收模块接收所述每个节点的信息,按照预设编码算法将本节点的信息与所述每个节点的信息进行网络编码得到编码信息,并将所述编码信息传输给调制模块;
调制模块,设置为从所述编码模块接收所述编码信息,对本节点的信息以及所述编码信息进行调制,并将所述调制后得到的数据传输给发送模块;
发送模块,设置为从所述编码模块接收所述调制后得到的数据后发送所述调制后得到的数据。
可选的,所述节点还包括:
确定模块,设置为根据预设规则确定所述协同通信集合中的节点。
可选的,所述编码模块是设置为:
将本节点的信息与所述每个节点的信息作为预设公式的输入得到所述编码信息;
所述预设公式包括:
Figure PCTCN2015089646-appb-000012
其中,N为所述协同通信集合中的节点的个数,j=1,...,N,j表示所述协同通信集合中的节点j,n表示本节点,n为小于或等于N的正整数,Sj,i-t为节点j在时刻i的前t时刻的信息,m为正整数,当t=0时,Sj,i为节点j在时刻i的信息,
Figure PCTCN2015089646-appb-000013
表示在时刻i所述节点n的编码信息,l为
Figure PCTCN2015089646-appb-000014
的第l个输出比特,且
Figure PCTCN2015089646-appb-000015
L为正整数,αj,l
Figure PCTCN2015089646-appb-000016
的第l个输出比特时节点j的编码系数,αj,l=0或αj,l=1,
Figure PCTCN2015089646-appb-000017
表示模2加运算。
可选的,所述发送模块是设置为:
按照空时分组编码STBC方式发送所述调制后得到的数据。
本发明实施例还提供另一种节点,所述节点包括:
接收模块,设置为接收N个节点发送的数据,对接收到的所述N个节点的数据分别进行检测得到所述N个节点的信息,并将所述N个节点的信息传输给编码模块;其中,N为正整数;
编码模块,设置为从所述接收模块接收所述N个节点的信息,按照预设编码算法将所述N个节点的信息进行网络编码得到编码信息,并将所述编码信息传输给调制发送模块;
调制发送模块,设置为从所述编码模块接收所述编码信息,对所述编码信息进行调制,并发送调制后得到的数据。
可选的,所述编码模块是设置为:
将所述N个节点的信息作为预设公式的输入得到所述编码信息;
所述预设公式包括:
Figure PCTCN2015089646-appb-000018
其中,j=1,...,N,j表示所述N个节点中的节点j,Sj,i-t为节点j在时刻i的前t时刻的信息,m为正整数,当t=0时,Sj,i为节点j在时刻i的信息,
Figure PCTCN2015089646-appb-000019
表示在时刻i所述节点的编码信息,l为
Figure PCTCN2015089646-appb-000020
的第l个输出比特,L为正整数,αj,l
Figure PCTCN2015089646-appb-000021
的第l个输出比特时节点j的编码系数,αj,l=0或αj,l=1,
Figure PCTCN2015089646-appb-000022
表示模2加运算。
本发明实施例还提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行上述的方法。
本发明实施例提供的一种数据传输方法和节点,包括:节点接收与该节点进行协同通信的每个节点发送的数据,对接收到的每个节点的数据分别进行检测得到每个节点的信息;其中,该节点与每个节点组成一个协同通信集合;该节点按照预设编码算法将该节点的信息与每个节点的信息进行网络编码得到编码信息;该节点对该节点的信息以及编码信息进行调制;该节点发送调制后得到的数据。在本发明实施例提供的技术方案中,将网络编码应用于协同通信系统中,对信源节点的自身数据及所要转发的协同同伴数据进行网络编码,信源节点传输的自身数据和转发的协同同伴数据之间不再相互独立,而是具有一定的相关性,增加了信源节点每次传输给目的节点的信息量,从而提高了无线通信系统传输的可靠性。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明实施例提供的一种数据传输方法的流程示意图;
图2为本发明实施例提供的另一种数据传输方法的流程示意图;
图3为本发明实施例提供的一种节点的结构示意图;
图4为本发明实施例提供的另一种节点的结构示意图;
图5为本发明实施例提供的一种协同通信的通信系统架构示意图;
图6为本发明实施例提供的一种两个用户设备网络编码协同通信示意 图;
图7为本发明实施例提供的一种两个用户设备网络编码-空时分组编码协同通信示意图;
图8为本发明实施例提供另一种数据传输方法实施时的示意图;
图9为本发明实施例提供的一种两个用户设备协同通信时采用网络编码和不采用网络编码两种情况下的AWGN信道QPSK下的误码率性能对比示意图;
图10为本发明实施例提供的一种两个用户设备空时分组编码协同通信时采用网络编码和不采用网络编码两种情况下的瑞利信道QPSK下的误码率性能对比示意图。
本发明的实施方式
下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
本发明实施例提供的技术方案基于网络编码理论,网络编码(Network Coding,NC)理论最初是由Ahlswede等人提出的用来增加网络传输容量、提高吞吐量的一种新的网络传输技术。网络编码是一种融合了路由和编码的信息交换技术,由网络中的每个节点对每条信道上接收到的信息进行线性或非线性的处理,然后转发给目的节点。本发明实施例中的信源节点并不限于用户设备,还可以是其他的设备。中继节点也并不限于移动台、低功率节点等设备。
本发明实施例提供一种数据传输方法,基于信源节点侧,如图1所示,该方法包括:
步骤101、节点接收与本节点进行协同通信的每个节点发送的数据,对 接收到的每个节点的数据分别进行检测得到每个节点的信息;其中,所述接收数据的节点与发送数据的每个节点组成一个协同通信集合。
示例性的,协同通信集合中的每个节点各自广播发送自己的数据,其中,每个节点都可以接收到除自身外其余的节点发送的数据,通过检测可以获取其余的节点的信息。
步骤102、接收每个节点发送数据的节点按照预设编码算法将本节点的信息与所述每个节点的信息进行网络编码得到编码信息。
需要说明的是,相对于相关的技术方案,接收每个节点发送数据的节点接收到协同通信集合中其他每个节点的信息时直接进行转发,在本发明实施例中,该节点将该节点的信息与协同通信集合中其他每个节点的信息进行网络编码得到编码信息,这样的话,可以增加该节点每次传输数据的信息量,并且提高数据传输的可靠性。
步骤103、接收每个节点发送数据的节点对本节点的信息以及编码信息进行调制。
示例性的,接收每个节点发送数据的节点可以利用星座映射的方式对该节点的信息以及步骤102得到的编码信息进行调制。
步骤104、接收每个节点发送数据的节点发送调制后得到的数据。
示例性的,接收每个节点发送数据的节点可以通过发射天线将调制后得到的数据发送出去。
可选的,在步骤101之前,所述方法还可以包括:
步骤100、接收每个节点发送数据的节点根据预设规则确定协同通信集合中的节点。
示例性的,信源节点可以将距离该信源节点一定位置范围的节点确定为协同通信集合中的节点,或者信源节点还可以将预设区域内与基站之间信道状态良好的节点确定为协同通信集合中的节点。这里只是示意性的说明,实际上可以按照事先预定义好的规则来确定。
可选的,步骤102:接收每个节点发送数据的节点按照预设编码算法将 本节点的信息与其他每个节点的信息进行网络编码得到编码信息,包括:
将接收每个节点发送数据的节点的信息与其他每个节点的信息作为预设公式的输入得到编码信息;
预设公式包括:
Figure PCTCN2015089646-appb-000023
其中,N为所述协同通信集合中的节点的个数,j=1,...,N,j表示所述协同通信集合中的节点j,n表示接收每个节点发送数据的节点,n为小于或等于N的正整数,Sj,i-t为节点j在时刻i的前t时刻的信息,m为正整数,当t=0时,Sj,i为节点j在时刻i的信息,
Figure PCTCN2015089646-appb-000024
表示在时刻i所述节点n的编码信息,l为
Figure PCTCN2015089646-appb-000025
的第l个输出比特,且
Figure PCTCN2015089646-appb-000026
L为正整数,αj,l
Figure PCTCN2015089646-appb-000027
的第l个输出比特时节点j的编码系数,αj,l=0或αj,l=1,
Figure PCTCN2015089646-appb-000028
表示模2加运算。
可选的,对于步骤104:接收每个节点发送数据的节点发送调制后得到的数据,包括:
接收每个节点发送数据的节点按照空时分组编码STBC方式发送所述调制后得到的数据。
需要说明的是,空时分组编码(Space Time Block Coding,STBC)就是在空间域和时间域两维方向上对信号进行编码。
本发明实施例提供的数据传输方法,节点接收与该节点进行协同通信的每个节点发送的数据,对接收到的每个节点的数据分别进行检测得到每个节点的信息;其中,接收每个节点发送数据的节点与其他向其发送数据的每个节点组成一个协同通信集合;接收每个节点发送数据的节点按照预设编码算法将本节点的信息与其他每个节点的信息进行网络编码得到编码信息;接收每个节点发送数据的节点对本节点的信息以及编码信息进行调制;节点发送调制后得到的数据。在本发明实施例提供的技术方案中,将网络编码应用于协同通信系统中,对信源节点的自身数据及所要转发的协同同伴数据进行网络编码,信源节点传输的自身数据和转发的协同同伴数据之间不再相互独立,而是具有一定的相关性,增加了信源节点每次传输给目的节点的信息量,从而提高了无线通信系统传输的可靠性。
本发明实施例还提供另一种数据传输方法,基于中继节点侧,如图2所 示,该方法包括:
步骤201、节点接收N个节点发送的数据,对接收到的N个节点的数据分别进行检测得到N个节点的信息;其中,N为正整数。
示例性的,中继节点可以接收所有信源节点发送的数据,通过检测可以获取每个信源节点的信息。
步骤202、接收N个节点发送的数据的节点按照预设编码算法将所述N个节点的信息进行网络编码得到编码信息。
示例性的,相对于相关的技术方案,中继节点接收到协同通信集合中其他每个节点的信息时直接进行转发,在本发明实施例中,中继节点将每个信源节点的信息进行网络编码得到编码信息,这样的话,可以增加中继节点每次传输的数据中的信息量,并且提高数据传输的可靠性。步骤203、接收N个节点发送的数据的节点对编码信息进行调制,并发送调制后得到的数据。
示例性的,中继节点可以利用星座映射的方式对步骤202得到的编码信息进行调制,然后可以通过发射天线将调制后得到的数据发送出去。可选的,对于步骤202:接收N个节点发送的数据的节点按照预设编码算法将所述N个节点的信息进行网络编码得到编码信息,包括:
将N个节点的信息作为预设公式的输入得到编码信息;
预设公式包括:
Figure PCTCN2015089646-appb-000029
其中,j=1,...,N,j表示所述N个节点中的节点j,Sj,i-t为节点j在时刻i的前t时刻的信息,m为正整数,当t=0时,Sj,i为节点j在时刻i的信息,
Figure PCTCN2015089646-appb-000030
表示在时刻i所述节点的编码信息,l为
Figure PCTCN2015089646-appb-000031
的第l个输出比特,L为正整数,αj,l
Figure PCTCN2015089646-appb-000032
的第l个输出比特时节点j的编码系数,αj,l=0或αj,l=1,
Figure PCTCN2015089646-appb-000033
表示模2加运算。
本发明实施例提供的另一种数据传输方法,节点接收N个节点发送的数据,对接收到的N个节点的数据分别进行检测得到N个节点的信息;其中,N为正整数;接收N个节点发送的数据的节点按照预设编码算法将所述N个节点的信息进行网络编码得到编码信息;接收N个节点发送的数据的节点对 编码信息进行调制,并发送调制后得到的数据。在本发明实施例提供的技术方案中,将网络编码应用于协同通信系统中,中继节点并不是独立转发每个信源节点的数据,而是接收每个信源节点发送的数据,并对接收的每个信源节点的数据进行网络编码,信源节点传输的自身数据和转发的协同同伴数据之间不再相互独立,而是具有一定的相关性,增加了中继节点每次传输给目的节点的信息量,从而提高了无线通信系统传输的可靠性。
本发明实施例还提供一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行上述的方法。
本发明实施例提供一种节点10,该节点10可以是信源节点,如图3所示,该节点10包括:
接收模块11,设置为接收与节点10进行协同通信的每个节点发送的数据,对接收到的每个节点的数据分别进行检测得到每个节点的信息,并将每个节点的信息传输给编码模块12;其中,节点10与每个节点组成一个协同通信集合;
编码模块12,设置为从接收模块11接收每个节点的信息,按照预设编码算法将节点10的信息与每个节点的信息进行网络编码得到编码信息,并将编码信息传输给调制模块13;
调制模块13,设置为从编码模块12接收编码信息,对节点10的信息以及编码信息进行调制,并将调制后得到的数据传输给发送模块14;
发送模块14,设置为从编码模块13接收调制后得到的数据后发送调制后得到的数据。
可选的,如图3所示,节点10还可以包括:
确定模块15,设置为根据预设规则确定协同通信集合中的节点。
可选的,编码模块13是设置为:
将节点10的信息与其他每个节点的信息作为预设公式的输入得到所述编码信息;
预设公式包括:
Figure PCTCN2015089646-appb-000034
其中,N为所述协同通信集合中的节点的个数,j=1,...,N,j表示所述协同通信集合中的节点j,n表示所述节点10,n为小于或等于N的正整数,Sj,i-t为节点j在时刻i的前t时刻的信息,m为正整数,当t=0时,Sj,i为节点j在时刻i的信息,
Figure PCTCN2015089646-appb-000035
表示在时刻i所述节点n(也即节点10)的编码信息,l为
Figure PCTCN2015089646-appb-000036
的第l个输出比特,且
Figure PCTCN2015089646-appb-000037
L为正整数,αj,l
Figure PCTCN2015089646-appb-000038
的第l个输出比特时节点j的编码系数,αj,l=0或αj,l=1,
Figure PCTCN2015089646-appb-000039
表示模2加运算。
可选的,发送模块14是设置为:
按照空时分组编码STBC方式发送调制后得到的数据。
本发明实施例提供的一种节点,节点接收与该节点进行协同通信的每个节点发送的数据,对接收到的每个节点的数据分别进行检测得到每个节点的信息;其中,该节点与其他每个节点组成一个协同通信集合;该节点按照预设编码算法将该节点的信息与其他每个节点的信息进行网络编码得到编码信息;该节点对该节点的信息以及编码信息进行调制;该节点发送调制后得到的数据。在本发明实施例提供的技术方案中,将网络编码应用于协同通信系统中,对信源节点的自身数据及所要转发的协同同伴数据进行网络编码,信源节点传输的自身数据和转发的协同同伴数据之间不再相互独立,而是具有一定的相关性,增加了信源节点每次传输给目的节点的信息量,从而提高了无线通信系统传输的可靠性。
本发明实施例还提供另一种节点20,该节点20可以是中继节点,如图4所示,该节点20包括:
接收模块21,设置为接收N个节点发送的数据,对接收到的N个节点的数据分别进行检测得到N个节点的信息,并将N个节点的信息传输给编码模块22;其中,N为正整数;
编码模块22,设置为从接收模块21接收N个节点的信息,按照预设编码算法将N个节点的信息进行网络编码得到编码信息,并将编码信息传输给调制发送模块23;
调制发送模块23,设置为从编码模块22接收编码信息,对编码信息进 行调制,并发送调制后得到的数据。
可选的,编码模块22可以是设置为:
将N个节点的信息作为预设公式的输入得到所述编码信息;
预设公式包括:
Figure PCTCN2015089646-appb-000040
其中,j=1,...,N,j表示所述N个节点中的节点j,Sj,i-t为节点j在时刻i的前t时刻的信息,m为正整数,当t=0时,Sj,i为节点j在时刻i的信息,
Figure PCTCN2015089646-appb-000041
表示在时刻i所述节点20的编码信息,l为
Figure PCTCN2015089646-appb-000042
的第l个输出比特,L为正整数,αj,l
Figure PCTCN2015089646-appb-000043
的第l个输出比特时节点j的编码系数,αj,l=0或αj,l=1,
Figure PCTCN2015089646-appb-000044
表示模2加运算。
本发明实施例提供的另一种节点,该节点接收除该节点外的其他N个节点发送的数据,对接收到的N个节点的数据分别进行检测得到N个节点的信息;其中,N为正整数;该节点按照预设编码算法将所述N个节点的信息进行网络编码得到编码信息;该节点对编码信息进行调制,并发送调制后得到的数据。在本发明实施例提供的技术方案中,将网络编码应用于协同通信系统中,中继节点并不是独立转发每个信源节点的数据,而是接收每个信源节点发送的数据,并对接收的每个信源节点的数据进行网络编码,信源节点传输的自身数据和转发的协同同伴数据之间不再相互独立,而是具有一定的相关性,增加了中继节点每次传输给目的节点的信息量,从而提高了无线通信系统传输的可靠性。
为了使本领域技术人员能够更清楚地理解本申请提供的技术方案,下面通过的实施例,对本申请提供的技术方案进行详细说明:
实施例一
本实施例中,信源节点以用户设备为例,目的节点可以是基站,如图3所示,信源节点也即用户设备可以包括:确定模块、接收模块、编码模块、调制模块、发送模块。相应的,目的节点可以包括:解调模块以及译码模块。
其中,用户设备的每个模块的结构和功能参照图3对应的实施例理解, 目的节点的解调模块和译码模块相连。
该实施例的实现过程如下:
确定模块,设置为根据预设规则确定所述协同通信集合中的用户设备。其中,协同通信集合中的用户设备数至少为2。
接收模块,设置为接收与所述用户设备进行协同通信的每个用户设备发送的数据,对接收到的所述每个用户设备的数据分别进行检测得到所述每个用户设备的信息,并将所述每个用户设备的信息传输给编码模块;其中,所述用户设备与其他所述每个用户设备组成一个协同通信集合;
编码模块,设置为从所述接收模块接收其他所述每个用户设备的信息,按照预设编码算法将本用户设备的信息与其他所述每个用户设备的信息进行网络编码得到编码信息,并将所述编码信息传输给调制模块;
可选的,编码模块是设置为:
将本用户设备的信息与其他所述每个用户设备的信息作为预设公式的输入得到所述编码信息;
所述预设公式包括:
Figure PCTCN2015089646-appb-000045
其中,N为所述协同通信集合中的用户设备的个数,j=1,...,N,j表示所述协同通信集合中的用户设备j,n表示接收每个用户设备发送的数据的用户设备,n为小于或等于N的正整数,Sj,i-t为用户设备j在时刻i的前t时刻的信息,m为正整数,当t=0时,Sj,i为用户设备j在时刻i的信息,
Figure PCTCN2015089646-appb-000046
表示在时刻i所述用户设备n的编码信息,l为
Figure PCTCN2015089646-appb-000047
的第l个输出比特,且
Figure PCTCN2015089646-appb-000048
L为正整数,αj,l
Figure PCTCN2015089646-appb-000049
的第l个输出比特时用户设备j的编码系数,αj,l=0或αj,l=1,
Figure PCTCN2015089646-appb-000050
表示模2加运算。
需要说明的是,实际中,我们可以通过打孔方案,提高编码效率。
打孔方案也即速率匹配,是指传输信道上的比特被重发(repeated)或者被打孔(punctured),以匹配物理信道的承载能力。打孔就是将当前的比特打掉,同时将后面的比特依次前移一位,重复就是在当前比特和后面的比特之间插入一次当前比特。
通过上述编码模块,用户设备n得到编码信息
Figure PCTCN2015089646-appb-000051
这样在时刻i用户设备n所要发的信息比特就组成
Figure PCTCN2015089646-appb-000052
且l≠0多比特位。这里Sn,i表示时刻i用户设备n发送的信息比特,
Figure PCTCN2015089646-appb-000053
表示时刻i用户设备n进行网络编码后得到的第l个输出编码信息比特。
调制模块,设置为从所述编码模块接收所述编码信息,对本用户设备的信息以及所述编码信息进行调制,并将所述调制后得到的数据传输给发送模块;
示例性的,用户设备n通过调制模块将得到的多比特位
Figure PCTCN2015089646-appb-000054
且l≠0进行星座映射后得到调制后的数据;
发送模块,设置为从所述编码模块接收所述调制后得到的数据后发送所述调制后得到的数据。
目的节点的解调模块,设置为将接收到的来自每个用户设备的发送信息进行解调,得到每个用户设备发送的经过网络编码的信息。
需要说明的是,解调模块对数据进行解调时需根据调制的方式选择对应的解调方式,
译码模块,设置为对解调模块解调得到的每个用户设备的经过网络编码的信息进行译码。
示例性的,一般目的节点译码时按照最大似然准则进行译码,以下以用户设备n的经过网络编码的信息Yn的译码过程为例对译码过程进行说明:
译码模块接收到Yn,最大似然准则译码是按照最大化对数似然函数p(Yn|Xn)作为选择Xn的准则:
Figure PCTCN2015089646-appb-000055
两边取对数得:
Figure PCTCN2015089646-appb-000056
其中,p(Yn,i|Xn,i)是信道转移概率,当所有码字等概率时,这是个最小错误概率译码准则。
还可以选择维特比译码算法作为译码时的算法,在维特比译码算法中,似然函数logp(Yn|Xn)称为Xn的路径度量,用M(Yn|Xn)表示。而logp(Yn,i|Xn,i)和logp(Yn,j|Xn,j)分别称为分支度量和比特度量,分别以M(Yn,i|Xn,i)和M(Yn,j|Xn,j),由此可得:
Figure PCTCN2015089646-appb-000057
对于接收序列Yn,维特比算法就是通过网络图找到具有最大度量的路径,即最大似然路径,从而恢复出用户设备n的原始信息。
实施例二
如图5为本发明提供的一种协同通信的通信系统架构示意图,其中,信源节点以用户设备为例,图5中包括N个用户设备和一个目的节点D。在本实施例中,N个用户设备与目的节点D的数据传输过程包括以下步骤:
第一步:用户设备n根据相应的原则确定参与协作的用户设备的数目N,且N≥2;
第二步:用户设备1到用户设备N分别广播发送自己的数据,目的节点D接收来自每个用户设备的数据;
第三步:每个用户设备n接收其他同伴用户设备的数据,并检测得到其他同伴用户设备数据的信息Sj,i,i=1,...,K,j=1,..,N且j≠n,这里K为信息序列Sj的长度。
第四步:用户设备n在时刻i把自己所发送的信息序列Sn.i,i=1,...K和从协同用户设备中接收到的前若干时刻t=0,..,m-1的信息序列(实际上这里接收到的数据是用户设备n检测后得到的估计值)Sj,i,i=1,...,K,j=1,..,N且j≠n进行网络编码,编码采用如下方案:
Figure PCTCN2015089646-appb-000058
其中,N为所述协同通信集合中的用户设备的个数,j=1,...,N,j表示所述协同通信集合中的用户设备j,n表示所述用户设备,n为小于或等于N 的正整数,Sj,i-t为用户设备j在时刻i的前t时刻的信息,m为正整数,当t=0时,Sj,i为用户设备j在时刻i的信息,
Figure PCTCN2015089646-appb-000059
表示在时刻i所述用户设备n的编码信息,l为
Figure PCTCN2015089646-appb-000060
的第l个输出比特,且
Figure PCTCN2015089646-appb-000061
L为正整数,Dj,l为
Figure PCTCN2015089646-appb-000062
的第l个输出比特时用户设备j的编码系数,αj,l=0或αj,l=1,
Figure PCTCN2015089646-appb-000063
表示模2加运算。这样,长度为K的信息序列经过上述网络编码得到长度为L的输出比特,编码效率定义为K/L。
实际中,我们可以通过打孔方案,提高编码效率。
网络编码完成后,用户设备n得到编码信息Cn,这样在时刻i用户设备n所要发的信息比特就组成
Figure PCTCN2015089646-appb-000064
且l≠0多比特对。这里Sn,i表示时刻i用户设备n发送的信息比特,
Figure PCTCN2015089646-appb-000065
表示时刻i用户设备n进行网络编码后得到的第l个输出编码信息比特。
然后用户设备n将得到的多比特位
Figure PCTCN2015089646-appb-000066
且l≠0经过调制后发送给目的节点。
第五步:目的节点D接收到来自用户设备n的数据,先进行解调,得到用户设备n网络编码后的信息Yn
第六步:目的节点对用户设备n解调后得到的编码信息序列Yn采用最大似然序列进行网络编码译码:
用户设备n网络译码器的接收的信息为Yn,最大似然序列译码是按照最大化对数似然函数p(Yn|Xn)作为选择Xn的准则:
Figure PCTCN2015089646-appb-000067
两边取对数得:
Figure PCTCN2015089646-appb-000068
其中,p(Yn,i|Xn,i)是信道转移概率,当所有码字等概率时,这是个最小错误概率译码准则。
可选的,选择维特比译码算法作为译码时的算法,在维特比译码算法中,似然函数logp(Yn|Xn)称为Xn的路径度量,用M(Yn|Xn)表示。而logp(Yn,i|Xn,i)和 logp(Yn,j|Xn,j)分别称为分支度量和比特度量,分别以M(Yn,i|Xn,i)和M(Yn,j|Xn,j),由此可得:
Figure PCTCN2015089646-appb-000069
对于接收到的信息Yn,维特比算法就是通过网络图找到具有最大度量的路径,即最大似然路径,从而恢复出用户设备n的原始信息。
图6是本发明实施例提供的一种两个用户设备网络编码协同通信示意图。用户设备1的信息序列为Ai,i=1,2,...;用户设备2的信息序列为Bi,i=1,2,...;i表示发送的时刻。用户设备1对第i时刻发送的信息先进行网络编码,网络编码信息比特
Figure PCTCN2015089646-appb-000070
这样在第i时刻用户设备1所要发的信息比特就组成
Figure PCTCN2015089646-appb-000071
双比特对;同样,用户设备2在第i时刻发送的信息也要先进行网络编码,网络编码信息比特
Figure PCTCN2015089646-appb-000072
这样在第i时刻用户设备2所要发的信息比特就组成
Figure PCTCN2015089646-appb-000073
双比特对;初始的A0和B0都设为0。
图7是本发明实施例提供的一种两个用户设备空时网络编码协同通信示意图,用户设备1的信息序列为Ai,i=1,2,...;用户设备2的信息序列为Bi,i,1,2,...;i表示发送的时刻。该实施例分为两个阶段;第一阶段,用户设备1对第i时刻发送的信息先进行网络编码,网络编码信息比特
Figure PCTCN2015089646-appb-000074
Figure PCTCN2015089646-appb-000075
这样在第i时刻用户设备1所要发的信息比特就组成
Figure PCTCN2015089646-appb-000076
双比特对;同样,用户设备2在第i时刻发送的信息也要先进行网络编码,网络编码信息比特
Figure PCTCN2015089646-appb-000077
这样在第i时刻用户设备2所要发的信息比特就组成
Figure PCTCN2015089646-appb-000078
双比特对,初始的A0和B0都设为0;然后分别对编码完成后的双比特位
Figure PCTCN2015089646-appb-000079
Figure PCTCN2015089646-appb-000080
进行星座映射,得到第i时刻发送的符号
Figure PCTCN2015089646-appb-000081
Figure PCTCN2015089646-appb-000082
第二阶段,根据Alamouti的STBC编码方式进行正交发送,每个用户设备分别发送检测到的同伴数据的复共扼信号
Figure PCTCN2015089646-appb-000083
即空时发送矩阵为
Figure PCTCN2015089646-appb-000084
图8为本发明实施例提供的另一种数据传输方法的实施示意图,用户设备1在时隙1中发送信息,用户设备2在时隙2中发送信息,中继节点接收到用户设备1和用户设备2的发送信息,采用图5的编码步骤将接收到的信息进行网络编码,在时隙3将网络编码信息转发给目的节点,目的节点接收 到来自用户设备及中继节点的发送信息,然后对两阶段接收到的信息进行联合译码,从而恢复出用户设备1和用户设备2的原始信息。
图9为采用图6的处理步骤后得到的采用网络编码和不采用网络编码的AWGN信道下的性能对比。
其中,加性高斯白噪声AWGN(Additive White Gaussian Noise,AWGN),在通信上指的是一种信道模型(channel model),该信道模型唯一的信号减损是来自于宽带(Bandwidth)的线性加成或是稳定谱密度(以每赫兹瓦特的带宽表示)与高斯分布振幅的白噪声。另外,图9中QPSK为正交相移键控(Quadrature Phase Shift Keyin),属于星座映射中一种常用的方式。
图10为采用图7的处理步骤后得到的采用网络编码的空时协同通信与不采用网络编码的空时协同通信的瑞利信道下的性能对比。
其中,瑞利信道是一种无线电信号传播环境的信道模型。这种信道模型假设信号通过无线信道之后,其信号幅度是随机的,即“衰落”,并且其包络服从瑞利分布。图10中QPSK也是指正交相移键控(Quadrature Phase Shift Keyin)。
最后需要说明的是,在上述几个实施例中,将网络编码应用于协同通信系统中,且接收侧采用维特比译码算法,对协同节点的自身数据及所要转发的同伴数据进行网络编码,协同用户传输的自身数据和转发的同伴数据之间不再相互独立,而是具有一定的相关性,增加了协同节点户每次发送给目的节点的信息量,从而提高了无线通信系统传输的可靠性。
以上内容是结合具体的实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如系统、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或 步骤制作成单个集成电路模块来实现。
上述实施例中的各装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的各装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
工业实用性
上述技术方案实现了信源节点传输的自身数据和转发的协同同伴数据之间不再相互独立,而是具有一定的相关性,增加了信源节点每次传输给目的节点的信息量,从而提高了无线通信系统传输的可靠性。

Claims (14)

  1. 一种数据传输方法,包括:
    节点接收与所述节点进行协同通信的每个节点发送的数据,对接收到的所述每个节点的数据分别进行检测得到所述每个节点的信息;其中,接收所述每个节点发送数据的节点与所述每个节点组成一个协同通信集合;
    接收所述每个节点发送数据的节点按照预设编码算法将本节点的信息与所述每个节点的信息进行网络编码得到编码信息;
    接收所述每个节点发送数据的节点对本节点的信息以及所述编码信息进行调制;
    接收所述每个节点发送数据的节点发送调制后得到的数据。
  2. 根据权利要求1所述的方法,所述方法还包括:
    节点接收与所述节点进行协同通信的每个节点发送的数据之前,接收所述每个节点发送数据的节点根据预设规则确定所述协同通信集合中的节点。
  3. 根据权利要求1或2所述的方法,其中,接收所述每个节点发送数据的节点按照预设编码算法将本节点的信息与所述每个节点的信息进行网络编码得到编码信息,包括:
    将接收所述每个节点发送数据的节点的信息与所述每个节点的信息作为预设公式的输入得到所述编码信息;
    所述预设公式包括:
    Figure PCTCN2015089646-appb-100001
    其中,N为所述协同通信集合中的节点的个数,j=1,...,N,j表示所述协同通信集合中的节点j,n表示所述接收所述每个节点发送数据的节点,n为小于或等于N的正整数,Sj,i-t为节点j在时刻i的前t时刻的信息,m为正整数,当t=0时,Sj,i为节点j在时刻i的信息,
    Figure PCTCN2015089646-appb-100002
    表示在时刻i所述节点n的编码信息,l为
    Figure PCTCN2015089646-appb-100003
    的第l个输出比特,且
    Figure PCTCN2015089646-appb-100004
    L为正整数,αj,l
    Figure PCTCN2015089646-appb-100005
    的第l个输出比特时节点j的编码系数,αj,l=0或αj,l=1,
    Figure PCTCN2015089646-appb-100006
    表示模2加运算。
  4. 根据权利要求3所述的方法,其中,所述接收所述每个节点发送数据 的节点发送调制后得到的数据包括:
    接收所述每个节点发送数据的节点按照空时分组编码STBC方式发送所述调制后得到的数据。
  5. 一种数据传输的方法,包括:
    节点接收N个节点发送的数据,对接收到的所述N个节点的数据分别进行检测得到所述N个节点的信息;其中,N为正整数;
    接收N个节点发送数据的节点按照预设编码算法将所述N个节点的信息进行网络编码得到编码信息;
    接收N个节点发送数据的节点对所述编码信息进行调制,并发送调制后得到的数据。
  6. 根据权利要求5所述的方法,其中,接收N个节点发送数据的节点按照预设编码算法将所述N个节点的信息进行网络编码得到编码信息包括:
    将所述N个节点的信息作为预设公式的输入得到所述编码信息;
    所述预设公式包括:
    Figure PCTCN2015089646-appb-100007
    其中,j=1,...,N,j表示所述N个节点中的节点j,Sj,i-t为节点j在时刻i的前t时刻的信息,m为正整数,当t=0时,Sj,i为节点j在时刻i的信息,
    Figure PCTCN2015089646-appb-100008
    表示在时刻i所述节点的编码信息,l为
    Figure PCTCN2015089646-appb-100009
    的第l个输出比特,L为正整数,αj,l
    Figure PCTCN2015089646-appb-100010
    的第l个输出比特时节点j的编码系数,αjl=0或αjl=1,
    Figure PCTCN2015089646-appb-100011
    表示模2加运算。
  7. 一种节点,包括:
    接收模块,设置为接收与所述节点进行协同通信的每个节点发送的数据,对接收到的所述每个节点的数据分别进行检测得到所述每个节点的信息,并将所述每个节点的信息传输给编码模块;其中,本节点与所述每个节点组成一个协同通信集合;
    编码模块,设置为从所述接收模块接收所述每个节点的信息,按照预设编码算法将本节点的信息与所述每个节点的信息进行网络编码得到编码信息,并将所述编码信息传输给调制模块;
    调制模块,设置为从所述编码模块接收所述编码信息,对本节点的信息以及所述编码信息进行调制,并将所述调制后得到的数据传输给发送模块;
    发送模块,设置为从所述编码模块接收所述调制后得到的数据后发送所述调制后得到的数据。
  8. 根据权利要求7所述的节点,所述节点还包括:
    确定模块,设置为根据预设规则确定所述协同通信集合中的节点。
  9. 根据权利要求7或8所述的节点,其中,所述编码模块是设置为:
    将本节点的信息与所述每个节点的信息作为预设公式的输入得到所述编码信息;
    所述预设公式包括:
    Figure PCTCN2015089646-appb-100012
    其中,N为所述协同通信集合中的节点的个数,j=1,...,N,j表示所述协同通信集合中的节点j,n表示本节点,n为小于或等于N的正整数,Sj,i-t为节点j在时刻i的前t时刻的信息,m为正整数,当t=0时,Sj,i为节点j在时刻i的信息,
    Figure PCTCN2015089646-appb-100013
    表示在时刻i所述节点n的编码信息,l为
    Figure PCTCN2015089646-appb-100014
    的第l个输出比特,且
    Figure PCTCN2015089646-appb-100015
    L为正整数,αj,l
    Figure PCTCN2015089646-appb-100016
    的第l个输出比特时节点j的编码系数,αj,l=0或αj,l=1,
    Figure PCTCN2015089646-appb-100017
    表示模2加运算。
  10. 根据权利要求9所述的节点,其中,所述发送模块是设置为:
    按照空时分组编码STBC方式发送所述调制后得到的数据。
  11. 一种节点,包括:
    接收模块,设置为接收N个节点发送的数据,对接收到的所述N个节点的数据分别进行检测得到所述N个节点的信息,并将所述N个节点的信息传输给编码模块;其中,N为正整数;
    编码模块,设置为从所述接收模块接收所述N个节点的信息,按照预设编码算法将所述N个节点的信息进行网络编码得到编码信息,并将所述编码信息传输给调制发送模块;
    调制发送模块,设置为从所述编码模块接收所述编码信息,对所述编码信息进行调制,并发送调制后得到的数据。
  12. 根据权利要求11所述的节点,其中,所述编码模块是设置为:
    将所述N个节点的信息作为预设公式的输入得到所述编码信息;
    所述预设公式包括:
    Figure PCTCN2015089646-appb-100018
    其中,j=1,...,N,j表示所述N个节点中的节点j,Sj,i-t为节点j在时刻i的前t时刻的信息,m为正整数,当t=0时,Sj,i为节点j在时刻i的信息,
    Figure PCTCN2015089646-appb-100019
    表示在时刻i所述节点的编码信息,l为
    Figure PCTCN2015089646-appb-100020
    的第l个输出比特,L为正整数,αj,l
    Figure PCTCN2015089646-appb-100021
    的第l个输出比特时节点j的编码系数,αj,l=0或αj,l=1,
    Figure PCTCN2015089646-appb-100022
    表示模2加运算。
  13. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1~4中任一项所述的方法。
  14. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于权利要求5~6中任一项所述方法。
PCT/CN2015/089646 2015-05-14 2015-09-15 一种数据传输方法和节点 WO2016179934A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510246037.7A CN106304197A (zh) 2015-05-14 2015-05-14 一种数据传输方法和节点
CN201510246037.7 2015-05-14

Publications (1)

Publication Number Publication Date
WO2016179934A1 true WO2016179934A1 (zh) 2016-11-17

Family

ID=57247651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089646 WO2016179934A1 (zh) 2015-05-14 2015-09-15 一种数据传输方法和节点

Country Status (2)

Country Link
CN (1) CN106304197A (zh)
WO (1) WO2016179934A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108762348A (zh) * 2018-05-08 2018-11-06 重庆工业职业技术学院 一种温室自动化控制系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101917247A (zh) * 2010-07-09 2010-12-15 上海交通大学 基于qam调制的多用户中继网络信息处理方法
CN101977096A (zh) * 2010-11-04 2011-02-16 电子科技大学 一种对mpsk信号进行网络编码的放大前传协同通信方法
CN101986585A (zh) * 2010-11-04 2011-03-16 电子科技大学 多用户下信道与网络联合编码的解调前传协作通信方法
CN103095439A (zh) * 2013-01-10 2013-05-08 周亚建 基于网络编码的双向协作中继传输数据的方法和设备
CN104066141A (zh) * 2014-07-10 2014-09-24 中国科学院自动化研究所 一种基于全空时网络编码的协同通信方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101917247A (zh) * 2010-07-09 2010-12-15 上海交通大学 基于qam调制的多用户中继网络信息处理方法
CN101977096A (zh) * 2010-11-04 2011-02-16 电子科技大学 一种对mpsk信号进行网络编码的放大前传协同通信方法
CN101986585A (zh) * 2010-11-04 2011-03-16 电子科技大学 多用户下信道与网络联合编码的解调前传协作通信方法
CN103095439A (zh) * 2013-01-10 2013-05-08 周亚建 基于网络编码的双向协作中继传输数据的方法和设备
CN104066141A (zh) * 2014-07-10 2014-09-24 中国科学院自动化研究所 一种基于全空时网络编码的协同通信方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN, YINGDA ET AL.: "Wireless Diversity through Network Coding", WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, 2006. WCNC 2006., vol. 3, 6 April 2006 (2006-04-06), pages 1681, 1682, XP031387455, ISSN: 1525-3511 *

Also Published As

Publication number Publication date
CN106304197A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
Stefanov et al. Cooperative coding for wireless networks
JP5167393B2 (ja) 無線通信システムにおいて受信信号を復号化するための受信機及び方法
JP5060473B2 (ja) 協調符号化システムのための適応的な変調
JP2007243951A (ja) 多重入力多重出力方式を使用する通信システムの信号送受信装置及び方法
Zou et al. Outage analysis of opportunistic cooperation over Rayleigh fading channels
Ding et al. Blind transmission and detection designs with unique identification and full diversity for noncoherent two-way relay networks
Leung et al. Uniquely factorable hexagonal constellation designs for noncoherent SIMO systems
Xiong et al. Energy-efficient uniquely factorable constellation designs for noncoherent SIMO channels
Zhang et al. A power allocation-based overlapping transmission scheme in Internet of vehicles
CN102487315B (zh) 多源多中继协作通信方法、通信设备及协作通信系统
CN103516484A (zh) 双向中继信道模型的正交差分空时网络编码方法
WO2016179934A1 (zh) 一种数据传输方法和节点
KR20110088200A (ko) 수신기들의 채널 상황 차이를 고려하는 네트워크 코딩 방법 및 시스템
CN112787733B (zh) 一种双向中继方案自适应选择方法、系统、存储介质及终端
Wang et al. Complex field network-coded cooperation based on multi-user detection in wireless networks
Cui et al. Physical layer differential network coding for two-way relay channels
Latif et al. ARQ-based secret key sharing
Geyer et al. Euclidean and space–time block codes: Relationship, optimality, performance analysis revisited
TW201406092A (zh) 基於位元重排的中繼轉發方法和裝置
Yiu et al. Decentralized distributed space-time trellis coding
Mazinani et al. Orthogonal OQPSK modulation with physical layer network coding systems over two-way relay
Zeng et al. Polar coded cooperative differential spatial modulation based on plotkin construction and quasi-uniform puncturing
Bai et al. Performance evaluation of STBC based cooperative systems over slow Rayleigh fading channel
Ji et al. A new differential space-time modulation scheme based on weyl group
Shen et al. Energy efficient cooperative MIMO systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15891637

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15891637

Country of ref document: EP

Kind code of ref document: A1