WO2016179743A1 - 一种编码装置及方法 - Google Patents

一种编码装置及方法 Download PDF

Info

Publication number
WO2016179743A1
WO2016179743A1 PCT/CN2015/078544 CN2015078544W WO2016179743A1 WO 2016179743 A1 WO2016179743 A1 WO 2016179743A1 CN 2015078544 W CN2015078544 W CN 2015078544W WO 2016179743 A1 WO2016179743 A1 WO 2016179743A1
Authority
WO
WIPO (PCT)
Prior art keywords
transport block
outer code
encoding
code encoding
bits
Prior art date
Application number
PCT/CN2015/078544
Other languages
English (en)
French (fr)
Inventor
吴强
黎超
周永行
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15891450.7A priority Critical patent/EP3276837A4/en
Priority to PCT/CN2015/078544 priority patent/WO2016179743A1/zh
Priority to CN201580072343.1A priority patent/CN107251440A/zh
Publication of WO2016179743A1 publication Critical patent/WO2016179743A1/zh
Priority to US15/805,996 priority patent/US20180062669A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/29Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/29Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
    • H03M13/2906Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes using block codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/29Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
    • H03M13/2933Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes using a block and a convolutional code
    • H03M13/2936Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes using a block and a convolutional code comprising an outer Reed-Solomon code and an inner convolutional code
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/29Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
    • H03M13/2957Turbo codes and decoding
    • H03M13/296Particular turbo code structure
    • H03M13/2966Turbo codes concatenated with another code, e.g. an outer block code
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/35Unequal or adaptive error protection, e.g. by providing a different level of protection according to significance of source information or by adapting the coding according to the change of transmission channel characteristics
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/61Aspects and characteristics of methods and arrangements for error correction or error detection, not provided for otherwise
    • H03M13/613Use of the dual code
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/63Joint error correction and other techniques
    • H03M13/635Error control coding in combination with rate matching
    • H03M13/6356Error control coding in combination with rate matching by repetition or insertion of dummy data, i.e. rate reduction
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/65Purpose and implementation aspects
    • H03M13/6508Flexibility, adaptability, parametrability and configurability of the implementation
    • H03M13/6516Support of multiple code parameters, e.g. generalized Reed-Solomon decoder for a variety of generator polynomials or Galois fields
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/09Error detection only, e.g. using cyclic redundancy check [CRC] codes or single parity bit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • H03M13/15Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes
    • H03M13/151Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes using error location or error correction polynomials
    • H03M13/1515Reed-Solomon codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • H03M13/15Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes
    • H03M13/151Cyclic codes, i.e. cyclic shifts of codewords produce other codewords, e.g. codes defined by a generator polynomial, Bose-Chaudhuri-Hocquenghem [BCH] codes using error location or error correction polynomials
    • H03M13/152Bose-Chaudhuri-Hocquenghem [BCH] codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/27Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques
    • H03M13/2703Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques the interleaver involving at least two directions
    • H03M13/2707Simple row-column interleaver, i.e. pure block interleaving
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/27Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes using interleaving techniques
    • H03M13/2778Interleaver using block-wise interleaving, e.g. the interleaving matrix is sub-divided into sub-matrices and the permutation is performed in blocks of sub-matrices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/29Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
    • H03M13/2933Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes using a block and a convolutional code

Definitions

  • the present application relates to the field of communication networks, and in particular, to an encoding apparatus and method.
  • the general data encoding is implemented by means of outer code and inner code cascading, that is, the data is first input into the outer code encoder for outer code encoding, and after the outer code is completed, the inner code encoder is input to the inner code. coding. The data after completion of the inner code encoding will be transmitted through the transmission resource.
  • the outer code usually adopts a Reed-Solomon Code (RS code)
  • the inner code usually adopts a Turbo code
  • the input data is usually outer code encoded using the same RS outer code coding method.
  • the RS outer code coding mode is expressed as (n, n-2t, t), n is the number of coded symbols, n-2t is the number of symbols before coding, and t is the error correction capability.
  • the present application mainly provides an encoding apparatus and method, which can improve the utilization rate of transmission resources, reduce the error code platform of the inner code encoding, and improve the reliability of data transmission.
  • a first aspect of the present application provides an encoding method, the method comprising: a communication device determining a second transport block, wherein the second transport block includes a first transport block and the first transport block Corresponding verification information; the communication device determines, according to the scheduling information of the second transport block, a manner of performing outer code encoding on the second transport block; the communication device determines a third transport block, when the scheduling When the information meets the preset condition, the third transport block is a transport block after the second transport block is encoded by the outer code, and when the scheduling information does not satisfy the preset condition, the third transport block is specific. And being the second transport block; the communication device performs inner code encoding on the third transport block according to a predefined rule.
  • the scheduling information includes a number of bits of the second transport block
  • the communications device is configured according to the scheduling information of the second transport block, Determining the outer code encoding of the second transport block, including: when the number of bits of the second transport block is greater than a first threshold, the communications device performs first outer code encoding on the second transport block And when the number of bits of the second transport block is not greater than the first threshold, the communications device performs second outer code encoding on the second transport block, or does not perform outer code encoding.
  • the scheduling information includes a number of bits of the second transport block and a modulation mode of the second transport block; Determining, by the scheduling information of the second transport block, a manner of performing outer code encoding on the second transport block, including: the communications device determining a second threshold according to a modulation manner of the second transport block, when the second transmission When the number of bits of the block is greater than the second threshold, the communication device determines to perform third outer code encoding on the second transport block; when the number of bits of the second transport block is not greater than the second threshold, The communication device determines to perform the fourth outer code encoding on the second transport block, or does not perform the outer code encoding; wherein the modulation manner of the second transport block is specifically the first modulation mode, the second modulation mode, or the third modulation a combination of one or at least two of the modes, the modulation order of the first modulation mode is higher than the modulation order of the second modulation
  • the scheduling information includes an encoding efficiency of the inner code encoding; the communication Determining, by the device according to the scheduling information of the second transport block, the manner of performing outer code encoding on the second transport block, when the coding efficiency of the inner code encoding is the first coding efficiency, the communications device determines The second transport block performs fifth outer code encoding; when the inner code When the encoding efficiency of the encoding is the second encoding efficiency, the communication device determines to perform sixth outer code encoding on the second transport block; wherein the first encoding efficiency is higher than the second encoding efficiency, the fifth outer The coding efficiency of the code coding is lower than the coding efficiency of the sixth outer code coding.
  • the outer code includes a Reed-Solomon Code (RS code) and a Reed-Muller Code (RM).
  • RS code Reed-Solomon Code
  • RM Reed-Muller Code
  • the outer code includes at least one outer code encoding.
  • the second aspect of the present application provides a communication device, where the communication device includes: a first determining module, an outer code encoding module, a second determining module, and an inner code encoding module;
  • the module is configured to determine a second transport block, where the second transport block includes a first transport block and parity information corresponding to the first transport block;
  • the outer code encoding module is configured to use the first determining module Determining the scheduling information of the second transport block, determining a manner of performing outer code encoding on the second transport block, and performing outer code encoding on the second transport block by using the determined outer code encoding manner;
  • the second determining module is configured to determine a third transport block according to the scheduling information of the second transport block, where the third transport block is outside the second transport block when the scheduling information meets a preset condition a code-coded transport block, where the third transport block is specifically the second transport block when the scheduling information does not satisfy the preset condition;
  • the inner code encoding module is configured to perform, according to
  • the scheduling information includes a number of bits of the second transport block
  • the outer code encoding module is specifically configured to be used by the second transmission When the number of bits of the block is greater than the first threshold, performing coding of the first outer code on the second transport block; and when the number of bits of the second transport block is not greater than the first threshold, performing the Second outer code encoding, or no outer code encoding.
  • the scheduling information includes a number of bits of the second transport block and a modulation mode of the second transport block;
  • the module is specifically configured to determine a second threshold according to a modulation manner of the second transport block, and when the number of bits of the second transport block is greater than a second threshold, determine to perform third outer code encoding on the second transport block;
  • the modulation manner of the second transport block Specifically, in the first modulation mode, the second modulation mode, or the third modulation mode a combination of one or at least two, the modulation order of the first modulation mode is higher than the modulation order of the second modulation mode, and the second threshold corresponding to the first modulation mode is greater than the second modulation mode The second threshold.
  • the scheduling information includes an encoding efficiency of the inner code encoding;
  • the code encoding module is specifically configured to: when the encoding efficiency of the inner code encoding is the first encoding efficiency, determine to perform fifth outer code encoding on the second transport block; when the encoding efficiency of the inner code encoding is the second encoding In efficiency, determining to perform sixth outer code encoding on the second transport block; wherein, the first encoding efficiency is higher than the second encoding efficiency, and the encoding efficiency of the fifth outer code encoding is lower than the sixth outer encoding The coding efficiency of code coding.
  • the outer code includes a Reed-Solomon Code (RS code) and a Reed-Muller Code (RM).
  • RS code Reed-Solomon Code
  • RM Reed-Muller Code
  • the outer code includes at least one outer code encoding.
  • a third aspect of the present application provides a communication device, including: a memory and a processor; the memory is configured to store data; and the processor is configured to determine a second transport block, where The second transport block includes the first transport block and the check information corresponding to the first transport block, and the processor is further configured to determine, according to the scheduling information of the second transport block, the second transport a method of performing outer code encoding on the block, and performing outer code encoding on the second transport block by using the determined outer code encoding manner; the processor is further configured to determine, according to scheduling information of the second transport block, a third transport block, when the scheduling information meets a preset condition, the third transport block is a transport block after the second transport block is encoded by an outer code, when the scheduling information does not satisfy the preset condition
  • the third transport block is specifically the second transport block; the processor is further configured to perform inner code encoding on the third transport block according to a predefined rule.
  • the scheduling information includes a number of bits of the second transport block, and the processor is specifically configured to be used by the second transport block When the number of bits is greater than the first threshold, performing a first outer code encoding on the second transport block; when the number of bits in the second transport block is not greater than the first threshold, performing a second outer Code coding, or no outer code coding.
  • the scheduling information includes a bit number of the second transport block and a modulation mode of the second transport block;
  • the processor is specifically configured to determine a second threshold according to a modulation manner of the second transport block, and when the number of bits of the second transport block is greater than a second threshold, determine to perform third outer code encoding on the second transport block;
  • the number of bits of the second transport block is not greater than the second threshold, determining to perform fourth outer code encoding on the second transport block, or not performing outer code encoding;
  • the mode is specifically a combination of one or at least two of the first modulation mode, the second modulation mode, or the third modulation mode, where the modulation order of the first modulation mode is higher than the modulation order of the second modulation mode,
  • the second threshold corresponding to the first modulation mode is greater than the second threshold corresponding to the second modulation mode.
  • the scheduling information includes an encoding efficiency of the inner code encoding; Specifically, when the coding efficiency of the inner code coding is the first coding efficiency, determining to perform fifth outer code coding on the second transmission block; when the coding efficiency of the inner code coding is the second coding efficiency Determining, performing a sixth outer code encoding on the second transport block; wherein, the first coding efficiency is higher than the second coding efficiency, and the coding efficiency of the fifth outer code coding is lower than the sixth outer code coding The coding efficiency.
  • the outer code includes a Reed-Solomon Code (RS code) and a Reed-Muller Code (RM).
  • RS code Reed-Solomon Code
  • RM Reed-Muller Code
  • the outer code includes at least one outer code encoding.
  • the communication device determines the second code of the second transport block by determining the second transport block and determining the outer code encoding of the second transport block according to the scheduling information of the second transport block, and the communication device After the third transport block is determined, the third transport block is coded according to a predefined rule, which can effectively utilize the transmission resource, improve the utilization of the transmission resource, reduce the error code platform of the inner code encoding, and improve the data transmission. reliability.
  • FIG. 2 is a flow chart of another embodiment of the encoding method of the present application.
  • FIG. 3 is a schematic structural diagram of an embodiment of a communication device of the present application.
  • FIG. 4 is a schematic structural diagram of another embodiment of a communication device of the present application.
  • FIG. 1 is a flowchart of an embodiment of an encoding method of the present application.
  • the execution entity of this embodiment is a communication device, and the communication device may be a base station or a terminal.
  • the communication device is a base station
  • the transmitting end is a base station
  • the receiving end is a terminal
  • the communication channel between the base station and the terminal is a Physical Downlink Shared Channel (PDSCH)
  • PDSCH Physical Downlink Shared Channel
  • the transmitting end is a terminal
  • the receiving end is a base station
  • the communication channel between the base station and the terminal is a Physical Uplink Shared Channel (PUSCH).
  • the PDSCH is used as an example.
  • the encoding method of the PUSCH is similar to the encoding method of the PDSCH. This embodiment includes the following steps:
  • the communication device determines a second transport block, where the second transport block includes a first transport block and parity information corresponding to the first transport block.
  • a communication device checks a first transport block (TB) to obtain a second transport block.
  • TB transport block
  • the first transport block is the original data to be transmitted
  • the second transport block includes the first transport block and the check information corresponding to the first transport block.
  • the units of the first transport block and the second transport block are bits.
  • the verification information may be a Cyclic Redundancy Check (CRC) information, a parity check information, a Hamming check information, etc., and is not limited herein.
  • the verification information is CRC check information
  • the communication device cyclically checks the first transport block by adding a 24-bit CRC check bit after the first transport block.
  • the first transport block may also be subjected to parity check, or Hamming check, or the like. Please refer to the related implementation methods for the specific verification methods of parity and Hamming check, which are not described here.
  • the communications device determines, according to the scheduling information of the second transport block, a manner of performing outer code encoding on the second transport block.
  • the scheduling information included in the second transport block determining, according to the scheduling information of the second transport block, a manner of performing outer code encoding on the second transport block; or determining, according to the scheduling information of the second transport block, the second transport block Perform outer code encoding.
  • the scheduling information is used to identify information that the base station schedules resource blocks (RBs) from the available transmission resources, and the RBs are used to transmit data included in the second transport block.
  • RBs resource blocks
  • the base station Scheduling with RB as the granularity.
  • the minimum unit of base station scheduling is a Physical Resource Block Pair (PRB).
  • PRB Physical Resource Block Pair
  • the scheduling information included in the second transport block may be at least one of or a combination of at least two of: a number of bits of the second transport block, a modulation scheme of the second transport block, and an encoding efficiency of the inner code encoding of the second transport block.
  • the inner code can be a turbo code, but is not limited thereto, and can also be other inner codes.
  • the number of bits of the second transport block is used to identify the number of bits occupied by the data contained in the second transport block.
  • the communication device may determine, according to the number of bits of the second transport block and the maximum number of bits allowed by the outer code encoding mode, how to perform outer code encoding on the second transport block; or determine, according to the scheduling information of the second transport block, The second transport block performs outer code encoding.
  • the modulation mode of the second transport block is used to identify the modulation mode used by the data contained in the second transmission fast.
  • the communication device may determine, according to a modulation manner of the second transport block, a manner of performing outer code encoding on the second transport block; or determining, according to scheduling information of the second transport block, not performing outer code encoding on the second transport block.
  • the modulation method may include Quadrature Phase Shift Keying (QPSK), Quadrature Amplitude Modulation (16QAM), and Quadrature Amplitude Modulation (64QAM).
  • QPSK Quadrature Phase Shift Keying
  • 16QAM Quadrature Amplitude Modulation
  • 64QAM Quadrature Amplitude Modulation
  • the modulation mode of the second transport block is high, the second transport block may be outer code encoded by selecting an outer code encoding with a lower coding efficiency.
  • the modulation mode of the second transport block is low and the error platform satisfies the requirement, the second transport block may not be outer code encoded.
  • the coding efficiency of the inner code encoding of the second transport block is used to identify the ratio of the number of bits of the coded input in the second transport block to the number of bits output.
  • the higher the coding efficiency of the inner code coding of the second transport block the higher the error code of the inner code coding of the second transport block, the weaker the error correction capability, and the lower the reliability of data transmission.
  • the outer code encoding of the second transport block may be performed by selecting an outer code encoding with a lower coding efficiency.
  • the second transport block may not be outer code encoded.
  • the outer code includes one or a combination of a Reed-Solomon Code (RS code) and a Reed-Muller Code (RM), and the outer code includes at least one outer code coding method.
  • RS code Reed-Solomon Code
  • RM Reed-Muller Code
  • the outer code coding mode is preset. When there is only one outer code coding mode, it is determined that the outer code coding mode of the second transport block is a unique outer code coding mode.
  • one of the at least two outer code coding modes is selected according to the scheduling information of the second transport block, and the outer code coding mode is matched with the scheduling information.
  • the outer code is an RS code.
  • the RS code is expressed as (n, n-2t, t), where n is the number of encoded symbols, n-2t is the number of symbols before encoding, t is the error correction capability, and one symbol corresponds to 8 bits.
  • n is the number of encoded symbols
  • n-2t is the number of symbols before encoding
  • t is the error correction capability
  • one symbol corresponds to 8 bits.
  • the outer code is also a combination of an R M code, a BCH code, or at least two outer codes, which is not limited herein.
  • the communication device determines a third transport block.
  • the third transport block is a transport block after the outer code is encoded by the second transport block, when the scheduling information is used.
  • the third transport block is specifically the second transport block.
  • the communication device determines the third transport block according to the scheduling information of the second transport block.
  • the communications device performs outer code encoding on the second transport block by using the determined outer code encoding, and the third transport block is the second transport block encoded by the outer code encoding. Piece.
  • the second transport block may include one or at least two code blocks.
  • the communication device separately performs outer code encoding on each code block by using the determined outer code encoding manner, and sequentially sequentially connects the outer code encoded blocks encoded by the outer code, thereby sequentially The outer code code block blocks are connected in series to obtain a third transport block.
  • the communication device when the number of bits of the second transmission fast is less than or equal to the maximum number of bits allowed by the determined outer code coding mode, the communication device does not perform code block segmentation on the second transmission block, and the second transmission block includes a code block, directly
  • the second transport block is outer code encoded by using the determined outer code coding manner, and the second transport block after the outer code encoding is the third transport block.
  • the communication device When the number of bits of the second transmission fast is greater than the maximum number of bits allowed by the determined outer code coding mode, the communication device performs code block division on the second transmission block, and divides the second transmission block into at least two code blocks, and then Each code block is separately coded by using a determined outer code coding method, and The outer code coded block coded by the outer code is sequentially connected in order, so that the outer code code block blocks are connected in series to obtain a third transport block.
  • the number of bits of the first transport block is 3752
  • the number of bits of the second transport block is 3776.
  • the communication device needs to divide the second transport block into 2 code blocks to perform outer code encoding on the second transport block.
  • the communication device adds 24 padding bits at the head or the tail of each code block before the second transmission block needs to be outer code encoded, so that each code block is input.
  • the outer code coding blocks encoded by the outer code are sequentially connected in sequence, thereby connecting the outer code coding block blocks in series to obtain the third transmission. Piece.
  • the communications device does not perform outer code encoding on the second transport block, and the third transport block is specifically the second transport block.
  • the preset condition is a rule that is preset and stored in the communication device.
  • the preset condition may be set according to the error platform of the inner code corresponding to the second transport block, so that the error code platform after the inner code is encoded by the second transport block can meet the current data transmission requirement and ensure the reliability of data transmission.
  • the error platform of the inner code corresponding to the second transport block can meet the current data transmission requirement, it is determined that the scheduling information of the second transport block does not satisfy the preset condition, and the outer code encoding of the second transport block is not required.
  • the error platform of the inner code corresponding to the second transport block cannot meet the current data transmission requirement, it is determined that the scheduling information of the second transport block satisfies a preset condition, and the second transport block needs to be outer code encoded.
  • the preset requirement may be that the number of bits of the transport block included in the scheduling information meets a preset requirement, or that the modulation mode of the transport block included in the scheduling information is a preset modulation mode, and the number of bits of the transport block satisfies a preset requirement.
  • the modulation mode of the transport block is a preset modulation mode, but is not limited thereto, and may be other preset conditions.
  • S104 The communication device performs inner code encoding on the third transport block according to a predefined rule.
  • the communication device After the communication device determines the third transport block, the communication device performs inner code encoding on the third transport block according to a predefined rule, so that the error code platform of the third transport block after the inner code encoding can satisfy the current data transmission. Requirements to ensure the reliability of data transmission.
  • the predefined rule may be a method of encoding the inner code in the prior art.
  • an encoding method in which an inner code is a turbo code is used as an example.
  • the present invention is not limited thereto, and the inner code may be a convolutional code or another inner code.
  • the encoding method of the Turbo code is as follows:
  • the communication device determines whether the number of bits of the third transport block exceeds 6144, and when the number of bits of the third transport block exceeds 6144, performs code block partitioning on the third transport block and checks each of the divided code blocks. .
  • the communication device acquires the number of bits of the third transport block and determines whether the number of bits of the third transport block exceeds 6144. When the number of bits of the third transport block is greater than 6144, the third transport block is subjected to code block partitioning and each of the divided code blocks is checked to meet the requirements of the next channel coding (internal code coding) mode.
  • the third transport block is divided into code blocks of equal size. Assuming that the third transport block is divided into C code blocks, the recorded code block is Where r is the sequence number of the code block, 0 ⁇ r ⁇ C, and Kr is the number of bits in the rth code block.
  • the communication device cyclically checks the redundancy of each code block included in the third transport block, that is, adds a 24-bit CRC check bit after each code block included in the third transport block.
  • each code block included in the third transport block may also be subjected to parity check, or Hamming check or the like. Please refer to the related implementation methods for the specific verification methods of parity and Hamming check, which are not described here.
  • the communication device When the number of bits of the third transport block is less than or equal to 6144, the communication device performs step (2).
  • the communication device performs Turbo coding on the third transport block.
  • the communication device separately performs channel coding on each of the code blocks included in the third transport block.
  • the third transport block when the number of bits of the third transport block is less than or equal to 6144, the third transport block includes one code block, and the communication device performs inner code encoding on the third transport block.
  • the third transport block includes at least two code blocks, and the communication device respectively performs inner code encoding on each of the verified code blocks.
  • the Turbo coding method is the same as the Turbo coding method in the prior art. For details, refer to the prior art Turbo coding method, which is not described here.
  • the communication device performs rate matching on each Turbo coded block.
  • the communication device After completing the Turbo coding for each code block of the third transport block, the communication device performs sub-block interleaving on the three encoded streams of each code block to perform rate matching on each code block.
  • G The number of bits available for transmission of one transport block is denoted as G, that is, G is a resource at the bit level indicating that one transport block can occupy.
  • each code block is sequentially connected in sequence to obtain a final coded bit.
  • the final number of coded bits is G.
  • the communication device After completing the inner code encoding on the third transport block, the communication device modulates the G coded bits of one transport block, maps the encoded data into modulation symbols, and then puts the modulation symbols into corresponding resources (RBs) of one subframe. Transfer on.
  • the Turbo coding (channel coding) method, the rate matching method, and the rate are the same as those in the prior art.
  • the Turbo coding (channel coding) method, the rate matching method, and the rate are the same as those in the prior art.
  • the rate matching method, and the rate are the same as those in the prior art.
  • the coding method of the PUSCH is similar to the coding method of the PDSCH.
  • Decoding is the inverse of encoding, and the decoding process will not be described here.
  • the communication device determines the second code of the second transport block by determining the second transport block and determining the outer code encoding of the second transport block according to the scheduling information of the second transport block, where the communication device is After the third transport block is determined, the third transport block is coded according to a predefined rule, which can effectively utilize the transmission resource, improve the utilization of the transmission resource, reduce the error code platform of the inner code coding, and improve the reliability of the data transmission. Sex.
  • FIG. 2 is a flowchart of another embodiment of the encoding method of the present application.
  • the execution entity of this embodiment is a communication device, and the communication device may be a base station or a terminal.
  • the communication device is In the case of a base station, the transmitting end is a base station, the receiving end is a terminal, and the communication channel between the base station and the terminal is a Physical Downlink Shared Channel (PDSCH); when the communication device is a terminal, the transmitting end is a terminal, and the receiving end is a base station.
  • the communication channel between the base station and the terminal is a Physical Uplink Shared Channel (PUSCH).
  • PUSCH Physical Uplink Shared Channel
  • the communication device determines a second transport block, where the second transport block includes a first transport block and parity information corresponding to the first transport block.
  • a communication device checks a first transport block (TB) to obtain a second transport block.
  • TB transport block
  • the first transport block is the original data to be transmitted
  • the second transport block includes the first transport block and the check information corresponding to the first transport block.
  • the units of the first transport block and the second transport block are bits.
  • the verification information may be a Cyclic Redundancy Check (CRC) information, a parity check information, a Hamming check information, etc., and is not limited herein.
  • the verification information is CRC check information
  • the communication device cyclically checks the first transport block by adding a 24-bit CRC check bit after the first transport block.
  • the first transport block may also be subjected to parity check, or Hamming check, or the like. Please refer to the related implementation methods for the specific verification methods of parity and Hamming check, which are not described here.
  • the communication device determines, according to the scheduling information of the second transport block, a manner of performing outer code encoding on the second transport block, where the scheduling information includes a number of bits and a location of the second transport block.
  • the second transmission fast modulation method and the inner code coding coding efficiency are described.
  • the scheduling information included in the second transport block determining, according to the scheduling information of the second transport block, a manner of performing outer code encoding on the second transport block; or determining, according to the scheduling information of the second transport block, the second transport block Perform outer code encoding.
  • the scheduling information includes the number of bits of the second transport block, the modulation mode of the second transmission fast, and the coding efficiency of the inner code encoding, but is not limited thereto, and the scheduling information may further include other information.
  • the scheduling information is used to identify information that the base station schedules resource blocks (RBs) from the available transmission resources, and the RBs are used to transmit data included in the second transport block.
  • RBs resource blocks
  • the base station performs scheduling with RB granularity.
  • the minimum unit of base station scheduling is a Physical Resource Block Pair (PRB).
  • PRB Physical Resource Block Pair
  • the outer code includes Reed-Solomon Code (RS code) and Reed Miller code. (Reed-Muller Code, RM)
  • RS code Reed-Solomon Code
  • RM Reed Miller code
  • the outer code includes at least one outer code encoding.
  • the outer code coding mode is preset. When there is only one outer code coding mode, it is determined that the outer code coding mode of the second transport block is a unique outer code coding mode. When there are at least two outer code coding modes, one of the at least two outer code coding modes is selected according to the scheduling information of the second transport block, and the outer code coding mode is matched with the scheduling information.
  • the outer code is an RS code.
  • the RS code is expressed as (n, n-2t, t), where n is the number of encoded symbols, n-2t is the number of symbols before encoding, t is the error correction capability, and one symbol corresponds to 8 bits.
  • n is the number of encoded symbols
  • n-2t is the number of symbols before encoding
  • t is the error correction capability
  • one symbol corresponds to 8 bits.
  • the outer code is also a combination of an R M code, a BCH code, or at least two outer codes, which is not limited herein.
  • the communication device determines, according to the scheduling information of the second transport block, a step of performing outer code encoding on the second transport block. Specifically:
  • the communication device determines a manner of performing outer code encoding on the second transport block according to the number of bits of the second transport block. Wherein, when the number of bits of the second transport block is greater than the first threshold, the communications device performs first outer code encoding on the second transport block; when the number of bits of the second transport block is not greater than the first threshold, the communications device pairs the second The transport block performs second outer code encoding or no outer code encoding.
  • Table 1 is a TBS table with a codeword mapped to a layer. Among them, one TB in the transport layer is regarded as one codeword. A TBS table in which a codeword is mapped to one layer is stored in a communication device (base station, and terminal).
  • I TBS is the index value of the TBS in the scheduling information
  • N PRB is the number of RBs in the scheduling information
  • N PRB is used to identify the number of RBs of the data contained in the transport block.
  • the communications device After determining the second transport block, the communications device obtains I TBS and N PRB from the scheduling information of the second transport block, and queries Table 1 according to the I TBS and the N PRB to obtain the number of bits of the second transport block.
  • the communication device After acquiring the number of bits of the second transport block, the communication device compares the number of bits of the second transport block with the first threshold to determine a manner of encoding the second transport block by outer code.
  • the first threshold value corresponding to the number of bits of the second transport block, the first outer code code, and the second outer code code are pre-stored in the communication device.
  • the first threshold is preset by the user considering the number of bits allowed in the outer code encoding mode, the error correction capability of the outer code encoding mode, and the error code of the inner code encoding, so that the inner code of the second transport block is encoded incorrectly.
  • the code platform can meet the output requirements of the second transport block.
  • the communication device When the outer code (RS code) coding mode is only one type, and the number of bits of the second transmission block is greater than the first threshold value of 120 bits, the communication device performs the outer code on the second transmission block by using the first outer code (15, 11, 2). Encoding; when the number of bits of the second transport block is less than or equal to the first threshold of 120 bits, the second transport block is not outer code encoded.
  • the first outer code 15, 11, 2).
  • the communication device When there are at least two outer code (RS code) coding modes, and the number of bits of the second transmission block is greater than the first threshold of 120 bits, the communication device adopts the first outer code coding mode (15, 11, 2) to the second transmission block. When the number of bits of the second transport block is less than or equal to the first threshold of 120 bits, the communication device performs outer code encoding on the second transport block by using the second outer code encoding mode (7, 5, 1).
  • RS code outer code
  • the error correction capability of the first outer code coding mode (15, 11, 2) is stronger than that of the second outer code coding mode (7, 5, 1), and the error code platform ratio of the first outer code coding mode is The error code platform of the second outer code coding mode is low.
  • the first threshold is not limited to 120 bits
  • the first outer code encoding mode is not limited to (15, 11, 2)
  • the second outer code encoding mode is not limited to (7, 5, 1), three Can be set according to the actual situation.
  • the first outer code encoding method is different from the second outer code encoding method.
  • the communications device determines to perform outer code encoding on the second transport block according to the scheduling information of the second transport block.
  • the communication device determines a second threshold according to a modulation manner of the second transport block, and when the number of bits of the second transport block is greater than the second threshold, the communications device determines to perform third outer code encoding on the second transport block; When the number of bits is not greater than the second threshold, the communication device determines to perform the fourth outer code encoding on the second transport block or not to perform outer code encoding.
  • the modulation mode of the second transport block is specifically a first modulation mode, a second modulation mode, or a combination of one or at least two of the third modulation modes, the modulation order of the first modulation mode is higher than the modulation order of the second modulation mode, and the second threshold corresponding to the first modulation mode is greater than the second modulation mode Two thresholds.
  • Modulation methods may include QPSK, 16QAM, and 64QAM.
  • the present embodiment is different from the previous embodiment in that the first threshold value in the previous embodiment is a fixed value, and the second threshold value in the present embodiment corresponds to the modulation method.
  • Table 2 is a correspondence table between Modulation and Coding Scheme (MCS), modulation mode, and TBS index value in PDSCH.
  • MCS Modulation and Coding Scheme
  • the correspondence table of the modulation and coding scheme, the modulation scheme, and the TBS index value in the PDSCH is stored in the communication device (base station and terminal).
  • the MCS is included in the scheduling information, and the MCS field indicates the modulation mode and the index value of the TBS.
  • the MCS field is represented by I mcs
  • the modulation mode is represented by Q m
  • the TBS index value is represented by I TBS .
  • I mcs , Q m and I TBS correspond one-to-one.
  • the value of I mcs ranges from 0 to 32, and the value of Q m is 2, 4, and 6.
  • the index value of I TBS ranges from 0 to 26.
  • the modulation mode adopted by the second transmission block is Quadrature Phase Shift Keying (QPSK).
  • QPSK Quadrature Phase Shift Keying
  • the modulation mode adopted by the second transport block is Quadrature Amplitude Modulation (QAM) including 16 symbols.
  • the communications device After determining the second transport block, the communications device obtains I mcs and I TBS from the scheduling information of the second transport block, and queries Table 2 according to I mcs and I TBS to obtain a modulation mode of the second transport block.
  • the communication device After acquiring the modulation mode of the second transport block, the communication device determines a second threshold corresponding to the modulation mode according to the modulation mode of the second transport block, and compares the number of bits of the second transport block with the second threshold to determine the second The way the transport block performs outer code encoding.
  • the communication device determines that the second threshold is 256 according to the modulation mode of the second transport block (but is not limited thereto, and may be other values).
  • the communication device When the outer code (RS code) coding mode is only one type, and the number of bits of the second transmission block is greater than the second threshold value of 256 bits, the communication device performs the outer code on the second transmission block by using the third outer code (15, 11, 2). Encoding; when the number of bits of the second transport block is less than or equal to the second threshold 256 bits, the second transport block is not outer code encoded.
  • the third outer code (15, 11, 2).
  • the communication device When there are two encoding modes of the outer code (RS code), when the number of bits of the second transmission block is greater than the second threshold of 256 bits, the communication device performs the second transmission block by using the third outer code encoding mode (15, 11, 2). Outer code encoding; when the number of bits of the second transport block is less than or equal to the second threshold of 256 bits, The signaling device performs outer code encoding on the second transport block by using a fourth outer code encoding method (7, 5, 1).
  • RS code outer code
  • the communication device determines that the second threshold is 1000 according to the modulation mode of the second transport block (but is not limited thereto, and may be other values).
  • the communication device When the outer code (RS code) coding mode is only one type, and the number of bits of the second transmission block is greater than the second threshold value by 1000 bits, the communication device performs the outer code on the second transmission block by using the third outer code (15, 11, 2). Encoding; when the number of bits of the second transport block is less than or equal to the second threshold of 1000 bits, the second transport block is not outer code encoded.
  • the third outer code (15, 11, 2).
  • the communication device uses the third outer code coding mode (15, 11, 2) to the second transmission block.
  • the communication device performs outer code encoding on the second transport block by using the fourth outer code encoding mode (7, 5, 1).
  • the communication device determines that the second threshold is 2000 according to the modulation mode of the second transport block (but is not limited thereto, and may be other values).
  • the communication device When the outer code (RS code) coding mode is only one type, and the number of bits of the second transmission block is greater than the second threshold value of 2000 bits, the communication device performs the outer code on the second transmission block by using the third outer code (15, 11, 2). Encoding; when the number of bits of the second transport block is less than or equal to the second threshold of 1000 bits, the second transport block is not outer code encoded.
  • the third outer code (15, 11, 2).
  • the communication device When there are at least two outer code (RS code) coding modes, and the number of bits of the second transmission block is greater than the second threshold of 2000 bits, the communication device adopts the third outer code coding mode (15, 11, 2) to the second transmission block. When the number of bits of the second transport block is less than or equal to the second threshold of 2000 bits, the communication device performs outer code encoding on the second transport block by using the fourth outer code encoding mode (7, 5, 1).
  • RS code outer code
  • the error correction capability of the third outer code coding mode (15, 11, 2) is stronger than that of the fourth outer code coding mode (7, 5, 1), and the error code platform of the third outer code coding mode is fourth.
  • the error code platform of the outer code coding mode is low.
  • the first outer code coding mode is not limited to (15, 11, 2), and the second outer code coding mode is not limited to (7, 5, 1), and can be set according to actual conditions.
  • the third outer code encoding method is different from the fourth outer code encoding method.
  • the third outer code coding mode or the fourth outer code coding mode in the embodiment may be the same as the first outer code coding mode and the second outer code coding mode in the previous embodiment, or may be different from each other. There are no restrictions here.
  • the communication device determines, according to the scheduling information of the second transport block, a step of performing outer code encoding on the second transport block. Specifically:
  • the communication device determines to perform the fifth outer code coding on the second transmission block; when the coding efficiency of the inner code coding is the second coding efficiency, the communication device determines to determine the second transmission
  • the block performs a sixth outer code encoding.
  • the first coding efficiency is higher than the second coding efficiency, and the coding efficiency of the fifth outer code coding is lower than the coding efficiency of the sixth outer code coding.
  • the coding efficiency is the ratio of the maximum number of bits of the coded operation input to the number of bits output after encoding.
  • the communications device After determining the second transport block, the communications device obtains I TBS and N PRB from the scheduling information of the second transport block, and obtains the number of bits of the second transport block according to the I TBS and the N PRB query table 1 from the second transport block. Obtaining I mcs and I TBS in the scheduling information, and querying the second table according to I mcs and I TBS to obtain the modulation mode of the second transport block.
  • the communication device After acquiring the number of bits of the second transport block and the modulation mode of the second transport block, the communication device calculates the coding efficiency of the inner code encoding of the second transport block according to the number of bits of the second transport block and the modulation mode of the second transport block. .
  • the communication device After obtaining the encoding efficiency of the inner code encoding, the communication device determines the manner of encoding the second transport block by the outer code according to the encoding efficiency of the inner code encoding.
  • the communication device When there are at least two outer code (RS code) coding modes, and the coding efficiency of the inner code coding is 3/4, the communication device adopts the fifth outer code coding mode (31, 21, 3) to the fifth transmission.
  • the block performs outer code encoding; when the encoding efficiency of the inner code encoding is 1/2 of the second encoding efficiency, the communication device performs outer code encoding on the second transport block by using the sixth outer code encoding mode (31, 25, 5).
  • the error correction capability of the fifth outer code coding mode (31, 21, 3) is weaker than that of the sixth outer code coding mode (31, 25, 5), and the error floor ratio of the fifth outer code coding mode is The error code platform of the sixth outer code coding mode is high.
  • the first coding efficiency is not limited to 3/4
  • the second coding efficiency is not limited to 1/2
  • the fifth outer code coding mode is not limited to (31, 21, 3) and the sixth outer code coding mode. It is not limited to (31, 25, 5) and can be set according to the actual situation.
  • the fifth outer code encoding method is different from the sixth outer code encoding method.
  • the fifth outer code coding mode and the sixth outer code coding mode may select coding modes with different error correction capabilities according to requirements on the premise that the coding efficiency satisfies the requirements.
  • the fifth outer code coding mode or the sixth outer code coding mode in this embodiment may be the first outer code coding mode, the second outer code coding mode, the third outer code coding mode, and the fourth outer mode in the foregoing embodiment.
  • One of the code encoding methods is the same, and may be different from each other, and is not limited herein.
  • the communications device determines, according to the scheduling information of the second transport block, the second transport block.
  • the steps of the method of performing outer code encoding are as follows:
  • the communication device acquires the number of bits of the second transport block and the coding efficiency of the inner code encoding from the scheduling information of the second transport block, and compares the number of bits of the second transport block with the first threshold corresponding to the second transport block. When the number of bits of the second transport block is greater than the first threshold, the manner of encoding the second transport block by the outer code is determined according to the coding efficiency of the inner code encoding. When the number of bits of the second transport block is less than or equal to the first threshold, the second transport block is not outer code encoded.
  • the method for obtaining the number of bits of the second transport block and the encoding efficiency of the inner code encoding is consistent with the obtaining method described in the foregoing embodiments. For details, refer to the related description in the foregoing embodiment.
  • the coding efficiency of the inner code coding is 3/4 of the first coding efficiency, and the communication device adopts the seventh outer code coding mode (7, 5, 1) performing outer code encoding on the second transport block; when the inner code encoding efficiency is 1/2 of the second encoding efficiency, the communication device performs the second transport block by using the eighth outer code encoding mode (15, 11, 2). Outer code encoding.
  • the seventh coding efficiency is higher than the eighth coding efficiency, and the coding efficiency of the seventh outer code coding is lower than the coding efficiency of the eighth outer code coding.
  • the second transport block is not outer code encoded.
  • the second transport block may also be outer code encoded by another outer code encoding manner.
  • the first coding efficiency is not limited to 3/4
  • the second coding efficiency is not limited to 1/2
  • the seventh outer code coding mode is not limited to (7, 5, 1) and the eighth outer code coding mode. It is not limited to (15, 11, 2) and can be set according to the actual situation.
  • the seventh outer code encoding method is different from the eighth outer code encoding method.
  • the seventh outer code coding mode and the eighth outer code coding mode can select error correction energy according to requirements on the premise that the coding efficiency satisfies the requirements. Different coding methods.
  • the seventh outer code coding mode or the eighth outer code coding mode in the embodiment may be the same as the above-mentioned embodiment, and the ninth outer code coding mode and the tenth outer code coding mode in the embodiment may be implemented with any of the above implementations. Any of the external codes in the mode is encoded in the same manner, and may be different from each other, and is not limited herein.
  • the communication device when the scheduling information of the second transport block includes the number of bits of the second transport block, the modulation mode of the second transport block, and the coding efficiency of the inner code encoding, the communication device performs scheduling according to the second transport block.
  • the information, the step of determining the manner of performing outer code encoding on the second transport block is specifically:
  • the communication device acquires the number of bits of the second transport block, the modulation mode of the second transport block, and the coding efficiency of the inner code encoding from the scheduling information of the second transport block, and determines a second threshold corresponding to the modulation mode according to the modulation mode.
  • the number of bits of the second transport block is compared with a second threshold. When the number of bits of the second transport block is greater than the second threshold, the manner of encoding the second transport block by the outer code is determined according to the coding efficiency of the inner code encoding. When the number of bits of the second transport block is less than or equal to the second threshold, the second transport block is not outer code encoded.
  • the method for acquiring the number of bits of the second transport block, the modulation mode of the second transport block, and the encoding efficiency of the inner code encoding is the same as the method for obtaining the encoding method in the foregoing embodiment.
  • the method for obtaining the encoding method in the foregoing embodiment refer to the related description in the foregoing embodiment.
  • the communication device when the communication device acquires the modulation mode of the second transport block as QPSK, it determines that its corresponding second threshold is 256. When the number of bits of the second transmission is greater than 256 bits and the coding efficiency of the inner code is 3/4, the communication device uses the ninth outer code coding mode (7, 5, 1) for the second transmission block. Performing outer code encoding; when the encoding efficiency of the inner code encoding is 1/2, the communication device performs outer code encoding on the second transport block by using the tenth outer code encoding mode (15, 11, 2). When the number of bits of the second transmission fast is less than or equal to 256 bits, the second transmission is not fast coded externally.
  • the communication device When the communication device acquires the modulation mode of the second transport block to be 16QAM, it determines that the corresponding second threshold is 1000. When the number of bits of the second transmission is greater than 1000 bits and the coding efficiency of the inner code is 3/4, the communication device uses the ninth outer code coding mode (15, 9, 3) for the second transmission block. Performing outer code coding; when the coding efficiency of the inner code coding is 1/2, the communication device performs the outer code on the second transport block by using the tenth outer code coding mode (31, 23, 4). coding. When the number of bits of the second transmission is less than or equal to 1000 bits, the second transmission is not fast coded.
  • the communication device When the communication device acquires the modulation mode of the second transport block to be 64QAM, it determines that the corresponding second threshold is 2000. When the number of bits of the second transmission is greater than 2000 bits and the coding efficiency of the inner code is 3/4, the communication device uses the ninth outer code coding mode (31, 21, 3) for the second transmission block. Performing outer code coding; when the coding efficiency of the inner code coding is 1/2, the communication device performs outer code coding on the second transport block by using the tenth outer code coding mode (31, 25, 5). When the number of bits of the second transmission is less than or equal to 1000 bits, the second transmission is not fast coded.
  • the first coding efficiency is higher than the second coding efficiency, and the coding efficiency of the fifth outer code coding is lower than the coding efficiency of the sixth outer code coding.
  • the ninth outer code encoding method is different from the tenth outer code encoding method.
  • the first coding efficiency is not limited to 3/4
  • the second coding efficiency is not limited to 1/2
  • the values of each item in the ninth outer code coding mode and the tenth outer code coding mode are not limited to the above coding.
  • the values mentioned in the mode can be set according to the actual situation.
  • the ninth outer code encoding mode and the tenth outer code encoding mode in the present embodiment may be the same as any of the outer code encoding modes in any of the above embodiments, or may be different from each other, and are not limited herein.
  • the modulation order of the modulation mode is higher, the coding efficiency of the inner code coding is higher; the coding efficiency of the inner code coding is the same, and the modulation order is higher, the error code platform of the inner code coding is higher.
  • the modulation mode is 64QAM modulation
  • the code rate of 1/2 is lower than the error code platform of 3/4 code rate.
  • the error floor of QPSK modulation with 3/4 code rate is lower than that of 64QAM with 3/4 code rate.
  • the error correction capability of the outer code coding method determines the error code platform of the inner code coding.
  • the error correction capability of the outer code coding method determines the error code platform of the inner code coding.
  • the communication device determines a third transport block, where the third transport block is a transport block after the outer code is encoded by the second transport block, when the scheduling information meets a preset condition, when the scheduling information is used.
  • the third transport block is specifically the second transport block.
  • the step S203 in this embodiment is the same as the step S103 in the previous embodiment. For details, refer to the related description of step S103 in the previous embodiment, and details are not described herein.
  • S204 The communication device performs inner code encoding on the third transport block according to a predefined rule.
  • step S204 in this embodiment is the same as the step S104 in the previous embodiment.
  • steps S104 in the previous embodiment For details, refer to the related description of step S104 in the previous embodiment, and details are not described herein.
  • the coding method of the PUSCH is similar to the coding method of the PDSCH.
  • Decoding is the inverse of encoding, and the decoding process will not be described here.
  • the foregoing embodiments are described with the PDSCH as an example.
  • the coding mode of the PUSCH is similar to that of the PDSCH.
  • the outer code in the foregoing embodiments is not limited to the RS code, and may be a BCH, RM, or other outer code encoding method.
  • the inner code is not limited to Turbo, and may be a convolutional code or other inner code encoding method.
  • the communication device determines the second code of the second transport block by determining the second transport block and determining the outer code encoding of the second transport block according to the scheduling information of the second transport block, where the communication device is After the third transport block is determined, the third transport block is coded according to a predefined rule, which can effectively utilize the transmission resource, improve the utilization of the transmission resource, reduce the error code platform of the inner code coding, and improve the reliability of the data transmission. Sex.
  • the communication device can select the outer code coding mode matched with the one according to the combination of the number of bits of the second transport block, the modulation mode, and the coding efficiency of the inner code coding, so as to adjust the outer code coding mode in real time, so that the communication device can adjust the outer code coding mode in real time.
  • the error code platform of the inner code coding satisfies the transmission requirements and improves the reliability of data transmission.
  • FIG. 3 is a schematic structural diagram of an embodiment of a communication device according to the present application.
  • the communication device can be a base station or a terminal.
  • the transmitting end is a base station
  • the receiving end is a terminal
  • the communication channel between the base station and the terminal is a Physical Downlink Shared Channel (PDSCH)
  • PDSCH Physical Downlink Shared Channel
  • the transmitting end is a terminal
  • the receiving end is a base station
  • the communication channel between the base station and the terminal is a Physical Uplink Shared Channel (PUSCH).
  • PUSCH Physical Uplink Shared Channel
  • the PDSCH is used as an example for description (the coding method of the PUSCH is similar to the coding method of the PDSCH), and each module included in the communication device of this embodiment is used to execute the embodiment corresponding to FIG.
  • the communication device of this embodiment includes a first determining module 310, an outer code encoding module 320, a second determining module 330, and an inner code encoding module 340.
  • the first determining module 310 is configured to determine a second transport block, where the second transport block includes the first transport block and the check information corresponding to the first transport block. For example, the first determining module 310 determines a second transport block, where the second transport block includes the first transport block and the check information corresponding to the first transport block. The first determining module 310 transmits the information of the second transport block to the outer code encoding module 320.
  • the outer code encoding module 320 is configured to receive the information of the second transport block sent by the first determining module 310, determine the manner of encoding the outer code of the second transport block according to the scheduling information included in the information of the second transport block, and adopt the determining The outer code encoding method performs outer code encoding on the second transport block.
  • the outer code encoding module 320 receives the information of the second transport block sent by the first determining module 310, and determines the manner of encoding the second transport block by the outer code according to the scheduling information included in the information of the second transport block. After determining the manner of performing outer code encoding on the second transport block, the second transport block is outer code encoded by using the determined outer code encoding. The outer code encoding module 320 transmits the information of the second transport block and the information of the transport block encoded by the outer code to the second determining module 330.
  • the second determining module 330 is configured to receive the information of the second transport block sent by the outer code encoding module 320 and the information of the transport block after the outer code encoding, and determine the third transport block according to the scheduling information of the second transport block, when the scheduling information When the preset condition is met, the third transport block is a transport block after the second transport block is encoded by the outer code. When the scheduling information does not meet the preset condition, the third transport block is specifically the second transport block.
  • the second determining module 330 receives the information of the second transport block sent by the outer code encoding module 320 and the information of the transport block after the outer code encoding, and determines the third transport block according to the scheduling information of the second transport block, when the scheduling information is used.
  • the third transport block is a transport block after the second transport block is encoded by the outer code.
  • the scheduling information does not meet the preset condition, the third transport block is specifically the second transport block.
  • the second determining module 330 transmits the information of the third transport block to the inner code encoding module 340.
  • the inner code encoding module 340 is configured to receive the information of the third transport block sent by the second determining module 330, and perform inner code encoding on the third transport block determined by the third determining module according to the predefined rule.
  • the inner code encoding module 340 receives the information of the third transport block sent by the second determining module 330, and performs inner code encoding on the third transport block determined by the third determining module according to the predefined rule.
  • the communication device determines the second code of the second transport block by determining the second transport block and determining the outer code encoding of the second transport block according to the scheduling information of the second transport block, and the communication device After the third transport block is determined, the third transport block is coded according to a predefined rule, which can effectively utilize the transmission resource, improve the utilization of the transmission resource, reduce the error code platform of the inner code encoding, and improve the data transmission. reliability.
  • each module included in the communication device shown in FIG. 3 is used to perform the steps in the embodiment corresponding to FIG. 2 .
  • the communication device of this embodiment includes a first determining module 310, an outer code encoding module 320, a second determining module 330, and an inner code encoding module 340.
  • the first determining module 310 is configured to determine a second transport block, where the second transport block includes the first transport block and the check information corresponding to the first transport block. For example, the first determining module 310 determines a second transport block, where the second transport block includes the first transport block and the check information corresponding to the first transport block. The first determining module 310 transmits the information of the second transport block to the outer code encoding module 320.
  • the outer code encoding module 320 is configured to receive the information of the second transport block sent by the first determining module 310, determine the manner of encoding the outer code of the second transport block according to the scheduling information included in the information of the second transport block, and adopt the determining
  • the outer code encoding method performs outer code encoding on the second transport block.
  • the outer code includes one or a combination of a Reed-Solomon Code (RS code) and a Reed-Muller Code (RM), and the outer code includes at least one outer code encoding method.
  • RS code Reed-Solomon Code
  • RM Reed-Muller Code
  • the outer code encoding module 320 receives the information of the second transport block sent by the first determining module 310, and determines the manner of encoding the second transport block by the outer code according to the scheduling information included in the information of the second transport block. After determining the manner of performing outer code encoding on the second transport block, the second transport block is outer code encoded by using the determined outer code encoding.
  • the outer code includes one or a combination of a Reed-Solomon Code (RS code) and a Reed-Muller Code (RM), and the outer code includes at least one outer code encoding method.
  • the scheduling information includes a number of bits of the second transport block
  • the outer code encoding module 320 is specifically configured to: when the number of bits of the second transport block is greater than the first threshold, perform the first The outer code is encoded; when the number of bits of the second transport block is not greater than the first threshold, the second outer block is subjected to the second outer code encoding, or the outer code is not encoded.
  • the outer code encoding module 320 receives the second transport block sent by the first determining module 310. Obtaining, according to the scheduling information included in the information of the second transport block, the number of bits of the second transport block; when the number of bits of the second transport block is greater than the first threshold, the outer code encoding module 320 performs the first outer Code coding; when the number of bits of the second transport block is not greater than the first threshold, the outer code encoding module 320 performs second outer code encoding on the second transport block, or does not perform outer code encoding.
  • the scheduling information includes the number of bits of the second transport block and the modulation mode of the second transport block.
  • the outer code encoding module 320 is specifically configured to determine the second threshold according to the modulation mode of the second transport block. When the number of bits of the second transport block is greater than the second threshold, determining to perform third outer code encoding on the second transport block; determining that the second transport block is fourth when the number of bits of the second transport block is not greater than the second threshold
  • the outer code is encoded, or the outer code is not encoded; wherein the modulation mode of the second transport block is specifically a combination of one or at least two of the first modulation mode, the second modulation mode, or the third modulation mode, and the first modulation mode
  • the modulation order is higher than the modulation order of the second modulation mode, and the second threshold corresponding to the first modulation mode is greater than the second threshold corresponding to the second modulation mode.
  • the outer code encoding module 320 receives the information of the second transport block sent by the first determining module 310, and obtains the number of bits of the second transport block and the modulation mode of the second transport block according to the scheduling information included in the information of the second transport block.
  • the second threshold is determined according to a modulation mode of the second transport block.
  • the outer code encoding module 320 determines to perform third outer code encoding on the second transport block; when the number of bits of the second transport block is not greater than the second threshold, the outer code is encoded Module 320 determines to perform a fourth outer code encoding on the second transport block or not to perform outer code encoding.
  • the modulation mode of the second transmission block is specifically a combination of one or at least two of the first modulation mode, the second modulation mode, or the third modulation mode, where the modulation order of the first modulation mode is higher than that of the second modulation mode.
  • the second step of the first modulation mode is greater than the second threshold corresponding to the second modulation mode.
  • the scheduling information includes an encoding efficiency of the inner code encoding
  • the outer code encoding module 320 is specifically configured to determine, when the encoding efficiency of the inner code encoding is the first encoding efficiency, a fifth outer code encoding; when the encoding efficiency of the inner code encoding is a second encoding efficiency, determining to perform a sixth outer code encoding on the second transport block; wherein, the first encoding efficiency is higher than the second encoding efficiency, and the fifth outer code encoding The coding efficiency is lower than the coding efficiency of the sixth outer code coding.
  • the outer code encoding module 320 receives the information of the second transport block sent by the first determining module 310, and obtains the encoding efficiency of the inner code encoding according to the scheduling information included in the information of the second transport block.
  • the outer code coding module 320 determines to perform the fifth outer code coding on the second transmission block; when the coding efficiency of the inner code coding is the second coding efficiency, the outer code coding module 320 determining to perform sixth outer code encoding on the second transport block; wherein the first encoding efficiency is higher than the second encoding efficiency, and the encoding efficiency of the fifth outer code encoding is lower than the encoding efficiency of the sixth outer code encoding.
  • the outer code encoding module 320 transmits the information of the second transport block and the information of the transport block encoded by the outer code to the second determining module 330.
  • the second determining module 330 is configured to receive the information of the second transport block sent by the outer code encoding module 320 and the information of the transport block after the outer code encoding, and determine the third transport block according to the scheduling information of the second transport block, when the scheduling information When the preset condition is met, the third transport block is a transport block after the second transport block is encoded by the outer code. When the scheduling information does not meet the preset condition, the third transport block is specifically the second transport block.
  • the second determining module 330 receives the information of the second transport block sent by the outer code encoding module 320 and the information of the transport block after the outer code encoding, and determines the third transport block according to the scheduling information of the second transport block, when the scheduling information is used.
  • the third transport block is a transport block after the second transport block is encoded by the outer code.
  • the scheduling information does not meet the preset condition, the third transport block is specifically the second transport block.
  • the second determining module 330 transmits the information of the third transport block to the inner code encoding module 340.
  • the inner code encoding module 340 is configured to receive the information of the third transport block sent by the second determining module 330, and perform inner code encoding on the third transport block determined by the third determining module according to the predefined rule.
  • the inner code encoding module 340 receives the information of the third transport block sent by the second determining module 330, and performs inner code encoding on the third transport block determined by the third determining module according to the predefined rule.
  • the communication device determines the second code of the second transport block by determining the second transport block and determining the outer code encoding of the second transport block according to the scheduling information of the second transport block, where the communication device is After the third transport block is determined, the third transport block is coded according to a predefined rule, which can effectively utilize the transmission resource, improve the utilization of the transmission resource, reduce the error code platform of the inner code coding, and improve the reliability of the data transmission. Sex.
  • the communication device can select the outer code coding mode matched with the one according to the combination of the number of bits of the second transport block, the modulation mode, and the coding efficiency of the inner code coding, so as to adjust the outer code coding mode in real time, so that the communication device can adjust the outer code coding mode in real time.
  • Internal coded error code platform meets transmission requirements and improves data transmission Reliability.
  • FIG. 4 is a schematic structural diagram of another embodiment of a communication device according to the present application.
  • the communication device can be a base station or a terminal.
  • the transmitting end is a base station
  • the receiving end is a terminal
  • the communication channel between the base station and the terminal is a Physical Downlink Shared Channel (PDSCH)
  • PDSCH Physical Downlink Shared Channel
  • the transmitting end is a terminal
  • the receiving end is a base station
  • the communication channel between the base station and the terminal is a Physical Uplink Shared Channel (PUSCH).
  • PUSCH Physical Uplink Shared Channel
  • the communication device of this embodiment includes a receiver 410, a processor 420, a transmitter 430, a read only memory 440, a random access memory 450, and a bus 460.
  • Receiver 410 is operative to receive signals.
  • the processor 420 controls the operation of the communication device, and the processor 420 may also be referred to as a CPU (Central Processing Unit).
  • Processor 420 may be an integrated circuit chip with signal processing capabilities.
  • Processor 420 can also be a general purpose processor, digital signal processor (DSP), application specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component .
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • Transmitter 430 is used to transmit signals.
  • the memory can include read only memory 440 and random access memory 450 and provide instructions and data to processor 420.
  • a portion of the memory may also include non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • bus 460 which may include, in addition to the data bus, a power bus, a control bus, a status signal bus, and the like. However, for clarity of description, various buses are labeled as bus 460 in the figure.
  • the memory stores the following elements, executable modules or data structures, or a subset of them, or their extended set:
  • Operation instructions include various operation instructions for implementing various operations.
  • Operating system Includes a variety of system programs for implementing various basic services and handling hardware-based tasks.
  • the processor 420 performs the following operations by calling an operation instruction stored in the memory, which can be stored in the operating system:
  • the processor 420 is configured to control the memory to store data
  • the processor 420 is configured to determine a second transport block, where the second transport block includes a first transport block and parity information corresponding to the first transport block;
  • the processor 420 is further configured to determine, according to the scheduling information of the second transport block, a manner of performing outer code encoding on the second transport block, and using the determined outer code encoding manner to the second transport block. Perform outer code encoding;
  • the processor 420 is further configured to determine, according to scheduling information of the second transport block, the third transport block, where the second transport block is encoded by an outer code, when the scheduling information meets a preset condition. a subsequent transport block, when the scheduling information does not satisfy the preset condition, the third transport block is specifically the second transport block;
  • the processor 420 is further configured to perform inner code encoding on the third transport block according to a predefined rule.
  • the scheduling information includes the number of bits of the second transport block.
  • the processor 420 is specifically configured to: when the number of bits of the second transport block is greater than the first threshold, perform the first outer Code coding; when the number of bits of the second transport block is not greater than the first threshold, performing second outer code encoding on the second transport block, or not performing outer code encoding.
  • the scheduling information includes a number of bits of the second transport block and a modulation mode of the second transport block.
  • the processor 420 is specifically configured to determine a second threshold according to a modulation manner of the second transport block. When the number of bits of the second transport block is greater than the second threshold, determining to perform third outer code encoding on the second transport block; when the number of bits of the second transport block is not greater than the second threshold, determining The second transport block performs the fourth outer code encoding, or does not perform the outer code encoding; wherein the modulation manner of the second transport block is specifically one or at least one of the first modulation mode, the second modulation mode, or the third modulation mode.
  • a modulation order of the first modulation mode is higher than a modulation order of the second modulation mode, and a second threshold corresponding to the first modulation mode is greater than a second corresponding to the second modulation mode Threshold.
  • the scheduling information includes coding efficiency of the inner code encoding; the processor 420 is specifically configured to: when the encoding efficiency of the inner code encoding is the first encoding efficiency, determine to perform the fifth outer code encoding on the second transport block. Determining, when the encoding efficiency of the inner code encoding is the second encoding efficiency, performing a sixth outer code encoding on the second transport block; wherein the first encoding efficiency is higher than the second encoding efficiency, the first The coding efficiency of the fifth outer code coding is lower than the coding efficiency of the sixth outer code coding.
  • the outer code includes Reed-Solomon Code (RS code), Ridmi One or a combination of a Reed-Muller Code (RM), the outer code including at least one outer code encoding manner.
  • RS code Reed-Solomon Code
  • RM Reed-Muller Code
  • the communication device determines the second code of the second transport block by determining the second transport block and determining the outer code encoding of the second transport block according to the scheduling information of the second transport block, where the communication device is After the third transport block is determined, the third transport block is coded according to a predefined rule, which can effectively utilize the transmission resource, improve the utilization of the transmission resource, reduce the error code platform of the inner code coding, and improve the reliability of the data transmission. Sex.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mathematical Physics (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本申请公开了一种编码方法及通信设备。其中,编码方法包括:通信设备确定第二传输块,其中,所述第二传输块包括第一传输块和所述第一传输块对应的校验信息;所述通信设备根据所述第二传输块的调度信息,确定对所述第二传输块进行外码编码的方式;所述通信设备确定第三传输块,当所述调度信息满足预设条件时,所述第三传输块为所述第二传输块经过外码编码后的传输块,当所述调度信息不满足所述预设条件时,所述第三传输块具体为所述第二传输块;所述通信设备根据预定义的规则,对所述第三传输块进行内码编码。上述方案,能够有效利用传输资源,提高传输资源的利用率,降低内码编码的误码平台,提高数据传输的可靠性。

Description

一种编码装置及方法 【技术领域】
本申请涉及通信网络领域,特别是涉及一种编码装置及方法。
【背景技术】
通常的数据编码采用外码和内码级联的方式实现,即,先将数据输入外码编码器进行外码编码,在完成外码编码之后,再输入到内码编码器对其进行内码编码。完成内码编码后的数据将通过传输资源进行传输。
其中,外码通常采用里德-所罗门码(Reed-Solomon Code,RS码),内码通常采用Turbo码。
这种级联编码方法中,通常使用同一种RS外码编码方式对输入的数据进行外码编码。其中,RS外码编码方式表示为(n,n-2t,t),n为编码后的符号的数目,n-2t为编码前的符号的数目,t为纠错能力。
由于一个符号对应8个比特,由上述外码编码方式可知:每次输入RS外码编码器的数据的比特数是固定的,经外码编码后输出的数据的比特数也是固定的。
然而,在长期演进(Long Term Evolution,LTE)系统中,采用上述编码方式对传输块进行级联编码时,由于每个传输块的比特数并非是固定的,当传输块的比特数小于(n-2t)*8时,需要在传输块中增加无效数据补齐至(n-2t)*8比特,以能够对其进行外码编码,而增加的无效数据将会增加内码编码的误码平台,降低数据可靠性,且传输级联编码后的数据时增加的无效数据将会导致占用过多的传输资源;当传输块的比特数大于(n-2t)*8时,有部分数据则无法完成外码编码,可能导致数据丢失。
【发明内容】
本申请主要提供一种编码装置及方法,能够提高传输资源的利用率,降低内码编码的误码平台,提高数据传输的可靠性。
为了解决上述问题,本申请第一方面提供了一种编码方法,所述方法包括:通信设备确定第二传输块,其中,所述第二传输块包括第一传输块和所述第一传输块对应的校验信息;所述通信设备根据所述第二传输块的调度信息,确定对所述第二传输块进行外码编码的方式;所述通信设备确定第三传输块,当所述调度信息满足预设条件时,所述第三传输块为所述第二传输块经过外码编码后的传输块,当所述调度信息不满足所述预设条件时,所述第三传输块具体为所述第二传输块;所述通信设备根据预定义的规则,对所述第三传输块进行内码编码。
结合第一方面,本申请第一方面的第一种可能的实施方式中,所述调度信息包括所述第二传输块的比特数;所述通信设备根据所述第二传输块的调度信息,确定对所述第二传输块进行外码编码的方式,包括:当所述第二传输块的比特数大于第一阈值时,所述通信设备对所述第二传输块进行第一外码编码;当所述第二传输块的比特数不大于第一阈值时,所述通信设备对所述第二传输块进行第二外码编码,或者不进行外码编码。
结合第一方面,本申请第一方面的第二种可能的实施方式中,所述调度信息包括所述第二传输块的比特数和所述第二传输块的调制方式;所述通信设备根据所述第二传输块的调度信息,确定对所述第二传输块进行外码编码的方式,包括:所述通信设备根据第二传输块的调制方式确定第二阈值,当所述第二传输块的比特数大于第二阈值时,所述通信设备确定对所述第二传输块进行第三外码编码;当所述第二传输块的比特数不大于所述第二阈值时,所述通信设备确定对所述第二传输块进行第四外码编码,或者不进行外码编码;其中,所述第二传输块的调制方式具体为第一调制方式、第二调制方式或第三调制方式中的一个或至少两个的组合,所述第一调制方式的调制阶数高于所述第二调制方式的调制阶数,所述第一调制方式对应的第二阈值大于所述第二调制方式对应的第二阈值。
结合第一方面或第一方面的第一或第二种可能的实施方式,本申请第一方面的第三种可能的实施方式中,所述调度信息包括内码编码的编码效率;所述通信设备根据所述第二传输块的调度信息,确定对所述第二传输块进行外码编码的方式包括:当所述内码编码的编码效率为第一编码效率时,所述通信设备确定对所述第二传输块进行第五外码编码;当所述内码 编码的编码效率为第二编码效率时,所述通信设备确定对所述第二传输块进行第六外码编码;其中,第一编码效率高于所述第二编码效率,所述第五外码编码的编码效率低于所述第六外码编码的编码效率。
结合第一方面,本申请第一方面的第四种可能的实施方式中,外码包括里德-所罗门码(Reed-Solomon Code,RS码)、里德米勒码(Reed-Muller Code,RM)之一或组合,所述外码包括至少一种外码编码方式。
为了解决上述问题,本申请第二方面提供了一种一种通信设备,所述通信设备包括:第一确定模块、外码编码模块、第二确定模块以及内码编码模块;所述第一确定模块用于确定第二传输块,其中,所述第二传输块包括第一传输块和所述第一传输块对应的校验信息;所述外码编码模块用于根据所述第一确定模块确定的所述第二传输块的调度信息,确定对所述第二传输块进行外码编码的方式,以及采用所述确定的外码编码的方式对所述第二传输块进行外码编码;所述第二确定模块用于根据所述第二传输块的调度信息确定第三传输块,当所述调度信息满足预设条件时,所述第三传输块为所述第二传输块经过外码编码后的传输块,当所述调度信息不满足所述预设条件时,所述第三传输块具体为所述第二传输块;所述内码编码模块用于根据预定义规则,对所述第二确定模块确定的所述第三传输块进行内码编码。
结合第二方面,本申请第二方面的第一种可能的实施方式中,所述调度信息包括所述第二传输块的比特数;所述外码编码模块具体用于当所述第二传输块的比特数大于第一阈值时,对所述第二传输块进行第一外码编码;当所述第二传输块的比特数不大于第一阈值时,对所述第二传输块进行第二外码编码,或者不进行外码编码。
结合第二方面,本申请第二方面的第二种可能的实施方式中,所述调度信息包括所述第二传输块的比特数和所述第二传输块的调制方式;所述外码编码模块具体用于根据第二传输块的调制方式确定第二阈值,当所述第二传输块的比特数大于第二阈值时,确定对所述第二传输块进行第三外码编码;当所述第二传输块的比特数不大于所述第二阈值时,确定对所述第二传输块进行第四外码编码,或者不进行外码编码;其中,所述第二传输块的调制方式具体为第一调制方式、第二调制方式或第三调制方式中的 一个或至少两个的组合,所述第一调制方式的调制阶数高于所述第二调制方式的调制阶数,所述第一调制方式对应的第二阈值大于所述第二调制方式对应的第二阈值。
结合第二方面或第二方面的第一或第二种可能的实施方式,本申请第二方面的第三种可能的实施方式中,所述调度信息包括内码编码的编码效率;所述外码编码模块具体用于当所述内码编码的编码效率为第一编码效率时,确定对所述第二传输块进行第五外码编码;当所述内码编码的编码效率为第二编码效率时,确定对所述第二传输块进行第六外码编码;其中,第一编码效率高于所述第二编码效率,所述第五外码编码的编码效率低于所述第六外码编码的编码效率。
结合第二方面,本申请第二方面的第四种可能的实施方式中,外码包括里德-所罗门码(Reed-Solomon Code,RS码)、里德米勒码(Reed-Muller Code,RM)之一或组合,所述外码包括至少一种外码编码方式。
为了解决上述问题,本申请第三方面提供了一种一种通信设备,所述通信设备包括:存储器以及处理器;所述存储器用于存储数据;所述处理器用于确定第二传输块,其中,所述第二传输块包括第一传输块和所述第一传输块对应的校验信息;所述处理器还用于根据所述第二传输块的调度信息,确定对所述第二传输块进行外码编码的方式,以及采用所述确定的外码编码的方式对所述第二传输块进行外码编码;所述处理器还用于根据所述第二传输块的调度信息确定第三传输块,当所述调度信息满足预设条件时,所述第三传输块为所述第二传输块经过外码编码后的传输块,当所述调度信息不满足所述预设条件时,所述第三传输块具体为所述第二传输块;所述处理器还用于根据预定义规则,对所述第三传输块进行内码编码。
结合第三方面,本申请第三方面的第一种可能的实施方式中,所述调度信息包括所述第二传输块的比特数;所述处理器具体用于当所述第二传输块的比特数大于第一阈值时,对所述第二传输块进行第一外码编码;当所述第二传输块的比特数不大于第一阈值时,对所述第二传输块进行第二外码编码,或者不进行外码编码。
结合第三方面,本申请第三方面的第二种可能的实施方式中,所述调度信息包括所述第二传输块的比特数和所述第二传输块的调制方式;所述 处理器具体用于根据第二传输块的调制方式确定第二阈值,当所述第二传输块的比特数大于第二阈值时,确定对所述第二传输块进行第三外码编码;当所述第二传输块的比特数不大于所述第二阈值时,确定对所述第二传输块进行第四外码编码,或者不进行外码编码;其中,所述第二传输块的调制方式具体为第一调制方式、第二调制方式或第三调制方式中的一个或至少两个的组合,所述第一调制方式的调制阶数高于所述第二调制方式的调制阶数,所述第一调制方式对应的第二阈值大于所述第二调制方式对应的第二阈值。
结合第三方面或第三方面的第一或第二种可能的实施方式,本申请第三方面的第三种可能的实施方式中,所述调度信息包括内码编码的编码效率;所述处理器具体用于当所述内码编码的编码效率为第一编码效率时,确定对所述第二传输块进行第五外码编码;当所述内码编码的编码效率为第二编码效率时,确定对所述第二传输块进行第六外码编码;其中,第一编码效率高于所述第二编码效率,所述第五外码编码的编码效率低于所述第六外码编码的编码效率。
结合第三方面,本申请第三方面的第四种可能的实施方式中,外码包括里德-所罗门码(Reed-Solomon Code,RS码)、里德米勒码(Reed-Muller Code,RM)之一或组合,所述外码包括至少一种外码编码方式。
上述方案中,通信设备通过确定第二传输块,并根据第二传输块的调度信息确定对第二传输块进行外码编码的方式,以确定是否对第二传输块进行外码编码,通信设备在确定第三传输块后,根据预定义的规则,对第三传输块进行内码编码,能够有效利用传输资源,提高传输资源的利用率,降低内码编码的误码平台,提高数据传输的可靠性。
【附图说明】
图1是本申请编码方法一实施例的流程图;
图2是本申请编码方法另一实施例的流程图;
图3是本申请通信设备一实施例的结构示意图;
图4是本申请通信设备另一实施例的结构示意图。
【具体实施方式】
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、接口、技术之类的具体细节,以便透彻理解本申请。
参阅图1,图1是本申请编码方法一实施例的流程图。本实施例的执行主体为通信设备,通信设备可以为基站,也可以为终端。当通信设备为基站时,发送端为基站,接收端为终端,基站与终端间的通信信道为物理下行共享信道(Physical Downlink Shared Channel,PDSCH);当通信设备为终端时,发送端为终端,接收端为基站,基站与终端间的通信信道为物理上行共享信道(Physical Uplink Shared Channel,PUSCH)。本实施例以PDSCH为例进行说明(PUSCH的编码方法与PDSCH的编码方法类似),本实施例包括如下步骤:
S101:通信设备确定第二传输块,其中,所述第二传输块包括第一传输块和所述第一传输块对应的校验信息。
在长期演进(Long Term Evolution,LTE)系统中,通信设备对第一传输块(Transport Block,TB)进行校验,从而得到第二传输块。
其中,第一传输块为待传输的原始数据,第二传输块包括第一传输块和第一传输块对应的校验信息。第一传输块和第二传输块的单位为比特(bit)。校验信息可以为循环冗余校验(Cyclic Redundancy Check,CRC)信息,也可以为奇偶校验信息,还可以为海明校验信息等,此处不作限制。
在本实施例中,校验信息为CRC校验信息,通信设备对第一传输块循环冗余校验,即在第一传输块后增加24比特的CRC校验位。
在其他实施例中,还可以对第一传输块进行奇偶校验,或海明校验等。奇偶校验、海明校验具体的校验方式请参阅相关实现方法,此处不赘述。
S102:所述通信设备根据所述第二传输块的调度信息,确定对所述第二传输块进行外码编码的方式。
通信设备获取第二传输块包含的调度信息,根据第二传输块的调度信息,确定对第二传输块进行外码编码的方式;或根据第二传输块的调度信息,确定不对第二传输块进行外码编码。
其中,调度信息用于标识基站从可用的传输资源中调度资源块(Resource Block,RB)的信息,RB用于传输第二传输块所包含的数据。在频域,基站 以RB为粒度进行调度。在LTE系统中,基站调度的最小单位为资源块对(Physical Resource Block pair,PRB)。
第二传输块包含的调度信息可以至少为以下其中一个或至少两个的组合:第二传输块的比特数、第二传输块的调制方式、第二传输块的内码编码的编码效率。内码编码可以为Turbo码,但不限于此,还可以为其他的内码。
第二传输块的比特数用于标识第二传输块所包含的数据所占用的比特数。其中,通信设备可以根据第二传输块的比特数以及外码编码方式允许输入的最大比特数,确定对第二传输块进行外码编码的方式;或根据第二传输块的调度信息,确定不对第二传输块进行外码编码。
第二传输块的调制方式用于标识第二传输快所包含的数据所采用的调制方式。通信设备可以根据第二传输块的调制方式,确定对第二传输块进行外码编码的方式;或根据第二传输块的调度信息,确定不对第二传输块进行外码编码。
其中,调制方式可以包括四相相移键控(Quadrature Phase Shift Keying,QPSK)、正交振幅调制(QuadratureAmplitude Modulation,16QAM)、相正交振幅调制(Quadrature Amplitude Modulation,64QAM)。调制方式的阶数越高,误码平台越高,纠错能力越弱,数据传输的可靠性较低。当第二传输块的调制方式较高时,可以选取编码效率较低的外码编码的方式对第二传输块进行外码编码。当第二传输块的调制方式较低,误码平台满足可以要求时,可以不对第二传输块进行外码编码。
第二传输块的内码编码的编码效率用于标识第二传输块内码编码输入的比特数与输出的比特数的比值。其中,第二传输块的内码编码的编码效率越高,第二传输块的内码编码的误码平台越高,纠错能力越弱,数据传输的可靠性较低。当第二传输块的内码编码的编码效率较高时,可以选取编码效率较低的外码编码的方式对第二传输块进行外码编码。当第二传输块的内码编码的编码效率较低,误码平台满足可以要求时,可以不对第二传输块进行外码编码。
外码包括里德-所罗门码(Reed-Solomon Code,RS码)、里德米勒码(Reed-Muller Code,RM)之一或组合,外码包括至少一种外码编码方式。
其中,外码编码方式为预先设置的。当外码编码方式只有一种时,确定对第二传输块进行外码编码的方式为唯一的外码编码方式。
当外码编码方式有至少两种时,根据第二传输块的调度信息从至少两种外码编码方式中选择其中一种与调度信息匹配的外码编码方式。
在本实施例中,外码为RS码。RS码表示为(n,n-2t,t),其中,n为编码后的符号的数目,n-2t为编码前的符号的数目为,t为纠错能力,一个符号对应8个比特。两种RS编码方式中,n、n-2t以及t中的任一个不同时,则为两种不同的RS编码方式。在其他实施例中,外码也R M码、BCH码或至少两种外码的组合,此处不作限制。
其中,不同的外码编码方式,其纠错能力也不尽相同。第二传输块的外码编码方式的纠错能力越强,第二传输块的内码编码的误码平台越低,数据传输可靠性越强。
S103:所述通信设备确定第三传输块,当所述调度信息满足预设条件时,所述第三传输块为所述第二传输块经过外码编码后的传输块,当所述调度信息不满足所述预设条件时,所述第三传输块具体为所述第二传输块。
通信设备根据第二传输块的调度信息确定第三传输块。当第二传输块的调度信息满足预设条件时,通信设备采用确定的外码编码的方式对第二传输块进行外码编码,第三传输块为第二传输块经过外码编码后的传输块。
可以理解的是,当第二传输块完成外码编码时,第二传输块可以包括一个或至少两个码块。当第二传输块包括至少两个码块时,通信设备采用确定的外码编码方式对每个码块分别进行外码编码,并将外码编码后的外码编码块依次进行顺序连接,从而将各外码编码块块串联起来,得到第三传输块。
其中,当第二传输快的比特数小于或等于确定的外码编码方式所允许输入的最大比特数时,通信设备不对第二传输块进行码块分割,第二传输块包括一个码块,直接采用确定的外码编码方式对第二传输块进行外码编码,进行外码编码后的第二传输块即为第三传输块。
当第二传输快的比特数大于确定的外码编码方式所允许输入的最大比特数时,通信设备对第二传输块进行码块分割,将第二传输块分割成至少两个码块,再采用确定的外码编码方式分别对每个码块进行外码编码,并 将外码编码后的外码编码块依次进行顺序连接,从而将各外码编码块块串联起来,得到第三传输块。
例如,假设第一传输块的比特数为3752,第一传输块经过校验(CRC检验)后的比特数为3752+24=3776,那么,第二传输块的比特数为3776。
当确定的外码(RS码)编码方式为(255,239,4)时,由于一个符号对应8个比特,那么,一个RS编码块输入的比特为239*8=1912。又因为第二传输块的比特数为3776,因此,通信设备需要将第二传输块分割为2个码块以对第二传输块进行外码编码。
由于1912*2=3824>3776,因此,通信设备在对第二传输块需要进行外码编码前,在每个码块的头部或尾部增加24个填充比特,以使每个码块输入的比特为1912,再对每个码块进行外码编码,输出255*8*2=4080比特的数据。在通信设备对第二传输快包括的所有码块都完成外码编码后,将外码编码后的外码编码块依次进行顺序连接,从而将各外码编码块块串联起来,得到第三传输块。当第二传输块的调度信息不满足预设条件时,通信设备不对第二传输块进行外码编码,第三传输块具体为第二传输块。
其中,预设条件是预先设定并存储在通信设备中的规则。预设条件可以依照第二传输块对应的内码的误码平台进行设置,以使得第二传输块经过内码编码后的误码平台能够满足当前的数据传输要求,保证数据传输的可靠性。
当第二传输块对应的内码的误码平台能够满足当前的数据传输要求时,判定第二传输块的调度信息不满足预设条件,不需要对第二传输块进行外码编码。当第二传输块对应的内码的误码平台不能满足当前的数据传输要求时,判定第二传输块的调度信息满足预设条件,需要对第二传输块进行外码编码。
预设要求可以为调度信息包含的传输块的比特数满足预设要求,也可以为调度信息包含的传输块的调制方式为预设的调制方式,还可以为传输块的比特数满足预设要求,且传输块的调制方式为预设的调制方式,但并不限于此,还可以为其他的预设条件。
S104:所述通信设备根据预定义的规则,对所述第三传输块进行内码编码。
在通信设备确定第三传输块后,通信设备根据预定义的规则,对第三传输块进行内码编码,以使经过内码编码后的第三传输块的误码平台能够满足当前的数据传输要求,保证数据传输的可靠性。
其中,预定义的规则可以为现有技术中内码编码的方法。本实施例中以内码为Turbo码的编码方式为例进行说明,但并不限于此,内码还可以为卷积码或其他的内码。Turbo码的编码方式具体如下:
(1)通信设备确定第三传输块的比特数是否超过6144,当第三传输块的比特数超过6144时,对第三传输块进行码块分割以及对分割后的每个码块进行校验。
通信设备获取第三传输块的比特数,确定第三传输块的比特数是否超过6144。当第三传输块的比特数大于6144时,对第三传输块进行码块分割以及对分割后的每个码块进行校验,以适应下一步信道编码(内码编码)方式的要求。
其中,经过码块分割后第三传输块被分为大小相等的码块。假设第三传输块被分割成了C个码块,记得到的码块为
Figure PCTCN2015078544-appb-000001
其中r是码块的序号,0<r≤C,Kr是第r个码块中的比特个数。
在本实施例中,通信设备对第三传输块包含的每个码块循环冗余校验,即在第三传输块包含的每个码块后增加24比特的CRC校验位。
在其他实施例中,还可以对第三传输块包含的每个码块进行奇偶校验,或海明校验等。奇偶校验、海明校验具体的校验方式请参阅相关实现方法,此处不赘述。
当第三传输块的比特数小于或等于6144时,通信设备执行步骤(2)。
(2)通信设备对第三传输块进行Turbo编码。
通信设备分别对第三传输块包含的每个码块进行信道编码。
其中,当第三传输块的比特数小于或等于6144时,第三传输块包含一个码块,通信设备对第三传输块进行内码编码。
当第三传输块的比特数大于6144时,第三传输块包括至少两个码块,通信设备分别对校验后的每个码块进行内码编码。
对于第r个码块,Turbo编码后的码块包含三个编码流,记为
Figure PCTCN2015078544-appb-000002
其中,i=0,1,2;Dr是第r个码块第i个编码流上 的比特个数,Dr=Kr+4。其中i=0的流包含了信息比特,i=1,2的流是Turbo编码添加的冗余比特。
Turbo编码方法与现有技术中的Turbo编码方法一致,具体请参阅现有技术的Turbo编码方法,此处不赘述。
(3)通信设备对每个Turbo编码块进行速率匹配。
通信设备对第三传输块的每个码块完成Turbo编码后,分别对每个码块的三个编码流进行子块交织,以对每个码块进行速率匹配。
在子块交织时,设计一个
Figure PCTCN2015078544-appb-000003
列,
Figure PCTCN2015078544-appb-000004
行的矩阵,
Figure PCTCN2015078544-appb-000005
是满足
Figure PCTCN2015078544-appb-000006
的最小值,将每个流的比特按行写入矩阵,对矩阵进行列置换,再按列读出比特流,得到的比特流为
Figure PCTCN2015078544-appb-000007
i=0,1,2,KΠ是进行子块交织后的一个码块的三个比特流中每个比特流的比特数。i=0的流包含了信息比特。将这三个比特流放入缓存中,对于物理上行共享信道(Physical Uplink Shared Channel,PUSCH)数据,缓存的大小Ncb=Kw=3KΠ,记缓存中的比特为wk,k=0,...,Ncb-1。
Figure PCTCN2015078544-appb-000008
Figure PCTCN2015078544-appb-000009
k=0,...,KΠ-1,因此在缓存中的数据排放如下所示:
Figure PCTCN2015078544-appb-000010
将第r个码块速率匹配之后得到的序列长度表示为Er,冗余版本号表示为rvidx,rvidx=0,1,2或3。
将一个传输块的传输总共可用的比特的个数表示为G,即G是在比特级别上表示了一个传输块可以占用的资源。
设置G′=G/(NL·Qm),当采用的调制方式是QPSK时,Qm=2,16QAM时,Qm=4,64QAM时,Qm=6,NL在采用传输分集时等于2,其它情况下,NL等于一个传输块映射到层的个数。
令γ=G′modC,C是总的码块的个数。如果r≤C-γ-1,
Figure PCTCN2015078544-appb-000011
其中,G′为在调度的资源块上传输的符号的数目,r表示第r个码块(code block);否则
Figure PCTCN2015078544-appb-000012
Er表示的是第r个码块要传的比特数。
按照上面的分配方式,
Figure PCTCN2015078544-appb-000013
Figure PCTCN2015078544-appb-000014
表示的是某一个码块发送的符号的数目,不同的码块之间最多差一个符号,其中,前面的第r≤C-γ-1(r的编号从0开始)的码块,符号要少一个。
比特选择和打孔的过程如下:
Figure PCTCN2015078544-appb-000015
表示比特选择的起始位置,然后从k0开始,在wk中顺次循环选取Er个比特,且选取的比特不为空比特。
其中,比特选择和打孔的过程的示意图如下:
Figure PCTCN2015078544-appb-000016
对于码块r,速率匹配后得到的比特为
Figure PCTCN2015078544-appb-000017
通信设备对每个码块完成速率匹配后,将每个码块依次进行顺序连接,得到最终的编码比特。其中,最终的编码比特个数为G。
通信设备对第三传输块完成内码编码后,将一个传输块这G个编码比特进行调制,将编码后的数据映射为调制符号,再将调制符号放到一个子帧的相应资源(RB)上进行传输。
在本实施例中,Turbo编码(信道编码)方法、速率匹配方法以及速率与现有技术中的方法相同,具体请参阅现有技术中相关描述,此处不赘述。
可以理解的是,PUSCH的编码方法与PDSCH的编码方法类似,具体请参照上述PDSCH的编码方法,此处不赘述。解码是编码的反过程,此处对解码过程不赘述。
上述方案,通信设备通过确定第二传输块,并根据第二传输块的调度信息确定对第二传输块进行外码编码的方式,以确定是否对第二传输块进行外码编码,通信设备在确定第三传输块后,根据预定义的规则,对第三传输块进行内码编码,能够有效利用传输资源,提高传输资源的利用率,降低内码编码的误码平台,提高数据传输的可靠性。
参阅图2,图2是本申请编码方法另一实施例的流程图。本实施例的执行主体为通信设备,通信设备可以为基站,也可以为终端。当通信设备为 基站时,发送端为基站,接收端为终端,基站与终端间的通信信道为物理下行共享信道(Physical Downlink Shared Channel,PDSCH);当通信设备为终端时,发送端为终端,接收端为基站,基站与终端间的通信信道为物理上行共享信道(Physical Uplink Shared Channel,PUSCH)。本实施例以PDSCH为例进行说明,本实施例包括如下步骤:
S201:通信设备确定第二传输块,其中,所述第二传输块包括第一传输块和所述第一传输块对应的校验信息。
在长期演进(Long Term Evolution,LTE)系统中,通信设备对第一传输块(Transport Block,TB)进行校验,从而得到第二传输块。
其中,第一传输块为待传输的原始数据,第二传输块包括第一传输块和第一传输块对应的校验信息。第一传输块和第二传输块的单位为比特(bit)。校验信息可以为循环冗余校验(CyclicRedundancyCheck,CRC)信息,也可以为奇偶校验信息,还可以为海明校验信息等,此处不作限制。
在本实施例中,校验信息为CRC校验信息,通信设备对第一传输块循环冗余校验,即在第一传输块后增加24比特的CRC校验位。
在其他实施例中,还可以对第一传输块进行奇偶校验,或海明校验等。奇偶校验、海明校验具体的校验方式请参阅相关实现方法,此处不赘述。
S202:所述通信设备根据所述第二传输块的调度信息,确定对所述第二传输块进行外码编码的方式,其中,所述调度信息包括所述第二传输块的比特数、所述第二传输快的调制方式、内码编码的编码效率。
通信设备获取第二传输块包含的调度信息,根据第二传输块的调度信息,确定对第二传输块进行外码编码的方式;或根据第二传输块的调度信息,确定不对第二传输块进行外码编码。
调度信息包括第二传输块的比特数、第二传输快的调制方式、内码编码的编码效率,但并不限于此,调度信息还可以包括其他信息。
其中,调度信息用于标识基站从可用的传输资源中调度资源块(Resource Block,RB)的信息,RB用于传输第二传输块所包含的数据。在频域,基站以RB为粒度进行调度。在LTE系统中,基站调度的最小单位为资源块对(Physical Resource Block pair,PRB)。
外码包括里德-所罗门码(Reed-Solomon Code,RS码)、里德米勒码 (Reed-Muller Code,RM)之一或组合,外码包括至少一种外码编码方式。
其中,外码编码方式为预先设置的。当外码编码方式只有一种时,确定对第二传输块进行外码编码的方式为唯一的外码编码方式。当外码编码方式有至少两种时,根据第二传输块的调度信息从至少两种外码编码方式中选择其中一种与调度信息匹配的外码编码方式。
在本实施例中,外码为RS码。RS码表示为(n,n-2t,t),其中,n为编码后的符号的数目,n-2t为编码前的符号的数目为,t为纠错能力,一个符号对应8个比特。两种RS编码方式中,n、n-2t以及t中的任一个不同时,则为两种不同的RS编码方式。在其他实施例中,外码也R M码、BCH码或至少两种外码的组合,此处不作限制。
其中,不同的外码编码方式,其纠错能力也不尽相同。第二传输块的外码编码方式的纠错能力越强,第二传输块的内码编码的误码平台越低,数据传输可靠性越强。
在一种实施方式中,当第二传输块的调度信息包括第二传输块的比特数时,通信设备根据第二传输块的调度信息,确定对第二传输块进行外码编码的方式的步骤具体为:
通信设备根据第二传输块的比特数,确定对第二传输块进行外码编码的方式。其中,当第二传输块的比特数大于第一阈值时,通信设备对第二传输块进行第一外码编码;当第二传输块的比特数不大于第一阈值时,通信设备对第二传输块进行第二外码编码,或者不进行外码编码。
例如,请参阅表一,表一是一个码字映射到一层的TBS表。其中,在传输层一个TB视为一个码字。一个码字映射到一层的TBS表保存在通信设备(基站、与终端)中。
表一中,ITBS为调度信息中TBS的索引值,NPRB为调度信息中RB的数量,NPRB用于标识传输传输块包含的数据的RB的个数。其中,TBS的索引值的取值范围为0~26,即ITBS=0,1,2,......,25,26。NPRB的取值范围为1~110,即NPRB=0,1,2,3,......,109,110。一个ITBS以及NPRB对应一个TBS值,TBS的单位为比特,TBS的范围为16~75376。比如,当调度信息中ITBS=10,NPRB=1时,对应的TBS值为144,标识一个TBS包含144比特的数据。
通信设备确定第二传输块后,从第二传输块的调度信息中获取ITBS、NPRB,根据ITBS以及NPRB查询表一,从而获取第二传输块的比特数。
通信设备在获取到第二传输块的比特数后,将第二传输块的比特数与第一阈值进行比较,确定对第二传输块进行外码编码的方式。其中,通信设备中预先存储有第二传输块的比特数对应的第一阈值、第一外码编码以及第二外码编码。第一阈值是用户综合考虑外码编码方式允许输入的比特数、外码编码方式的纠错能力以及内码编码的误码平台预先设定的,以使得第二传输块的内码编码的误码平台能够满足第二传输块的输出要求。
当外码(RS码)编码方式只有一种,第二传输块的比特数大于第一阈值120比特时,通信设备采用第一外码(15,11,2)对第二传输块进行外码编码;第二传输块的比特数小于或等于第一阈值120比特时,不对第二传输块进行外码编码。
当外码(RS码)编码方式至少有两种,第二传输块的比特数大于第一阈值120比特时,通信设备采用第一外码编码方式(15,11,2)对第二传输块进行外码编码;第二传输块的比特数小于或等于第一阈值120比特时,通信设备采用第二外码编码方式(7,5,1)对第二传输块进行外码编码。
其中,第一外码编码方式(15,11,2)的纠错能力比第二外码编码方式(7,5,1)的纠错能力强,第一外码编码方式的误码平台比第二外码编码方式的误码平台低。
可以理解的是,第一阈值并不限于120比特、第一外码编码方式并不限于(15,11,2)、第二外码编码方式并不限于(7,5,1),三者均可根据实际情况进行设置。第一外码编码方式与第二外码编码方式不同。
在另一种实施方式中,当调度信息包括第二传输块的比特数和第二传输块的调制方式时,通信设备根据第二传输块的调度信息,确定对第二传输块进行外码编码的方式的步骤具体为:
通信设备根据第二传输块的调制方式确定第二阈值,当第二传输块的比特数大于第二阈值时,通信设备确定对第二传输块进行第三外码编码;当第二传输块的比特数不大于第二阈值时,通信设备确定对第二传输块进行第四外码编码,或者不进行外码编码。
其中,第二传输块的调制方式具体为第一调制方式、第二调制方式或 第三调制方式中的一个或至少两个的组合,第一调制方式的调制阶数高于第二调制方式的调制阶数,第一调制方式对应的第二阈值大于第二调制方式对应的第二阈值。调制方式可以包括QPSK、16QAM、64QAM。
本实施方式与上一实施方式的不同之处在于,上一实施方式方式中的第一阈值是固定值,而本实施方式中的第二阈值与调制方式对应。
例如,请参阅表二,表二是PDSCH中调制编码方式(Modulation and Coding Scheme,MCS)、调制方式以及TBS索引值的对应表。
其中,PDSCH中调制编码方式、调制方式以及TBS索引值的对应表保存在通信设备(基站与终端)中。MCS包含在调度信息中,MCS字段指示调制方式以及TBS的索引值。MCS字段用Imcs表示,调制方式用Qm表示,TBS索引值用ITBS表示。Imcs、Qm以及ITBS一一对应。Imcs的取值范围为0~32,Qm的取值为2、4、6,ITBS的索引值的取值范围为0~26。当Qm=2时,第二传输块采用的调制方式为四相相移键控(Quadrature Phase Shift Keying,QPSK)。当Qm=4时,第二传输块采用的调制方式为包含16种符号的正交振幅调制(Quadrature Amplitude Modulation,QAM)。当Qm=6时,第二传输块采用的调制方式为64QAM。
通信设备确定第二传输块后,从第二传输块的调度信息中获取Imcs、ITBS,根据Imcs以及ITBS查询表二,从而获取第二传输块的调制方式。
通信设备在获取到第二传输块的调制方式后,根据第二传输块的调制方式确定调制方式对应的第二阈值,将第二传输块的比特数与第二阈值进行比较,确定对第二传输块进行外码编码的方式。
当第二传输块的调制方式为QPSK时,通信设备根据第二传输块的调制方式确定第二阈值为256(但并不限于此,还可以为其他值)。
当外码(RS码)编码方式只有一种,第二传输块的比特数大于第二阈值256比特时,通信设备采用第三外码(15,11,2)对第二传输块进行外码编码;第二传输块的比特数小于或等于第二阈值256比特时,不对第二传输块进行外码编码。
当外码(RS码)编码方式有两种,第二传输块的比特数大于第二阈值256比特时,通信设备采用第三外码编码方式(15,11,2)对第二传输块进行外码编码;第二传输块的比特数小于或等于第二阈值256比特时,通 信设备采用第四外码编码方式(7,5,1)对第二传输块进行外码编码。
当调制方式为16QAM时,通信设备根据第二传输块的调制方式确定第二阈值为1000(但并不限于此,还可以为其他值)。
当外码(RS码)编码方式只有一种,第二传输块的比特数大于第二阈值1000比特时,通信设备采用第三外码(15,11,2)对第二传输块进行外码编码;第二传输块的比特数小于或等于第二阈值1000比特时,不对第二传输块进行外码编码。
当外码(RS码)编码方式至少有两种,第二传输块的比特数大于第二阈值1000比特时,通信设备采用第三外码编码方式(15,11,2)对第二传输块进行外码编码;第二传输块的比特数小于或等于第二阈值1000比特时,通信设备采用第四外码编码方式(7,5,1)对第二传输块进行外码编码。
当调制方式为64QAM时,通信设备根据第二传输块的调制方式确定第二阈值为2000(但并不限于此,还可以为其他值)。
当外码(RS码)编码方式只有一种,第二传输块的比特数大于第二阈值2000比特时,通信设备采用第三外码(15,11,2)对第二传输块进行外码编码;第二传输块的比特数小于或等于第二阈值1000比特时,不对第二传输块进行外码编码。
当外码(RS码)编码方式至少有两种,第二传输块的比特数大于第二阈值2000比特时,通信设备采用第三外码编码方式(15,11,2)对第二传输块进行外码编码;第二传输块的比特数小于或等于第二阈值2000比特时,通信设备采用第四外码编码方式(7,5,1)对第二传输块进行外码编码。
其中,调制方式的阶数越高,调制方式对应的第二阈值的比特数越高。第三外码编码方式(15,11,2)的纠错能力比第四外码编码方式(7,5,1)的纠错能力强,第三外码编码方式的误码平台比第四外码编码方式的误码平台低。
可以理解的是,第一外码编码方式并不限于(15,11,2)、第二外码编码方式并不限于(7,5,1),均可根据实际情况进行设置。第三外码编码方式与第四外码编码方式不同。
本实施方式中的第三外码编码方式或第四外码编码方式可以与上一实施方式的第一外码编码方式、第二外码编码方式中的其中一个相同,也可以互不相同,此处不作限制。
在又一种实施方式中,当第二传输块的调度信息包括内码编码的编码效率时,通信设备根据第二传输块的调度信息,确定对第二传输块进行外码编码的方式的步骤具体为:
当内码编码的编码效率为第一编码效率时,通信设备确定对第二传输块进行第五外码编码;当内码编码的编码效率为第二编码效率时,通信设备确定对第二传输块进行第六外码编码。其中,第一编码效率高于第二编码效率,第五外码编码的编码效率低于第六外码编码的编码效率。编码效率为编码方式运行输入的最大比特数与编码后输出的比特数的比值。
例如,请继续参阅表一以及表二。通信设备确定第二传输块后,从第二传输块的调度信息中获取ITBS、NPRB,根据ITBS以及NPRB查询表一,从而获取第二传输块的比特数,从第二传输块的调度信息中获取Imcs、ITBS,根据Imcs以及ITBS查询表二,从而获取第二传输块的调制方式。
通信设备在获取到第二传输块的比特数、第二传输块的调制方式之后,根据第二传输块的比特数、第二传输块的调制方式计算第二传输块的内码编码的编码效率。
通信设备在获取到内码编码的编码效率后,根据内码编码的编码效率,确定对第二传输块进行外码编码的方式。
当外码(RS码)编码方式至少有两种,内码编码的编码效率为第一编码效率3/4时,通信设备采用第五外码编码方式(31,21,3)对第五传输块进行外码编码;内码编码的编码效率为第二编码效率1/2时,通信设备采用第六外码编码方式(31,25,5)对第二传输块进行外码编码。
其中,第五外码编码方式(31,21,3)的纠错能力比第六外码编码方式(31,25,5)的纠错能力弱,第五外码编码方式的误码平台比第六外码编码方式的误码平台高。
可以理解的是,第一编码效率并不限于3/4,第二编码效率并不限于1/2,第五外码编码方式并不限于(31,21,3)、第六外码编码方式并不限于(31,25,5),均可根据实际情况进行设置。
第五外码编码方式与第六外码编码方式不同。第五外码编码方式和第六外码编码方式可以在编码效率满足要求的前提下,根据需要选择纠错能力不同的编码方式。
本实施方式中的第五外码编码方式或第六外码编码方式可以与上述实施方式中的,第一外码编码方式、第二外码编码方式、第三外码编码方式、第四外码编码方式中的其中一个相同,也可以互不相同,此处不作限制。
在另一种实施方式中,当第二传输块的调度信息包括第二传输块的比特数和内码编码的编码效率时,通信设备根据第二传输块的调度信息,确定对第二传输块进行外码编码的方式的步骤具体为:
通信设备从第二传输块的调度信息中获取第二传输块的比特数、内码编码的编码效率,将第二传输块的比特数与第二传输块对应的第一阈值进行比较,当第二传输块的比特数大于第一阈值时,根据内码编码的编码效率确定对第二传输块进行外码编码的方式。当第二传输块的比特数小于或等于第一阈值时,不对第二传输块进行外码编码。
其中,第二传输块的比特数、内码编码的编码效率的获取方法与上述实施方式中所述的获取方法一致,具体请参阅上述实施方式中的相关描述。
例如,当通信设备获取到的第二传输块的比特数大于第一阈值120比特时,内码编码的编码效率为第一编码效率3/4,通信设备采用第七外码编码方式(7,5,1)对第二传输块进行外码编码;内码编码效率为第二编码效率1/2时,通信设备采用第八外码编码方式(15,11,2)对第二传输块进行外码编码。其中,第七编码效率高于第八编码效率,第七外码编码的编码效率低于第八外码编码的编码效率。
当通信设备获取到的第二传输块的比特数小于或等于第一阈值120比特时,不对第二传输块进行外码编码。当然,在其他实施方式中,还可以采用另一种外码编码方式对第二传输块进行外码编码。
可以理解的是,第一编码效率并不限于3/4,第二编码效率并不限于1/2,第七外码编码方式并不限于(7,5,1)、第八外码编码方式并不限于(15,11,2),均可根据实际情况进行设置。
第七外码编码方式与第八外码编码方式不同。第七外码编码方式和第八外码编码方式可以在编码效率满足要求的前提下,根据需要选择纠错能 力不同的编码方式。
本实施方式中的第七外码编码方式或第八外码编码方式可以与上述实施方式中的,本实施方式中的第九外码编码方式和第十外码编码方式可与上述任一实施方式中的其中任一外码编码方式相同,也可以互不相同,此处不作限制。
在另一种实施方式中,当第二传输块的调度信息包括第二传输块的比特数、第二传输块的调制方式、内码编码的编码效率时,通信设备根据第二传输块的调度信息,确定对第二传输块进行外码编码的方式的步骤具体为:
通信设备从第二传输块的调度信息中获取第二传输块的比特数、第二传输块的调制方式、内码编码的编码效率,根据调制方式确定该调制方式对应的第二阈值,将第二传输块的比特数与第二阈值进行比较,当第二传输块的比特数大于第二阈值时,根据内码编码的编码效率确定对第二传输块进行外码编码的方式。当第二传输块的比特数小于或等于第二阈值时,不对第二传输块进行外码编码。
其中,第二传输块的比特数、第二传输块的调制方式、内码编码的编码效率的获取方法与上述实施方式中所述的获取方法一致,具体请参阅上述实施方式中的相关描述。
例如,当通信设备获取到第二传输块的调制方式为QPSK时,确定其对应的第二阈值为256。当第二传输快的比特数大于256比特,内码编码的编码效率为第一编码效率为3/4时,通信设备采用第九外码编码方式(7,5,1)对第二传输块进行外码编码;内码编码的编码效率为第一编码效率为1/2时,通信设备采用第十外码编码方式(15,11,2)对第二传输块进行外码编码。当第二传输快的比特数小于或等于256比特时,不对第二传输快进行外码编码。
当通信设备获取到第二传输块的调制方式为16QAM时,确定其对应的第二阈值为1000。当第二传输快的比特数大于1000比特,内码编码的编码效率为第一编码效率为3/4时,通信设备采用第九外码编码方式(15,9,3)对第二传输块进行外码编码;内码编码的编码效率为第一编码效率为1/2时,通信设备采用第十外码编码方式(31,23,4)对第二传输块进行外码 编码。当第二传输快的比特数小于或等于1000比特时,不对第二传输快进行外码编码。
当通信设备获取到第二传输块的调制方式为64QAM时,确定其对应的第二阈值为2000。当第二传输快的比特数大于2000比特,内码编码的编码效率为第一编码效率为3/4时,通信设备采用第九外码编码方式(31,21,3)对第二传输块进行外码编码;内码编码的编码效率为第一编码效率为1/2时,通信设备采用第十外码编码方式(31,25,5)对第二传输块进行外码编码。当第二传输快的比特数小于或等于1000比特时,不对第二传输快进行外码编码。
其中,第一编码效率高于第二编码效率,第五外码编码的编码效率低于所述第六外码编码的编码效率。第九外码编码方式与第十外码编码方式不同。
可以理解的是,第一编码效率并不限于3/4,第二编码效率并不限于1/2,第九外码编码方式和第十外码编码方式中各项的值并不限于上述编码方式中提及的值,均可根据实际情况进行设置。
本实施方式中的第九外码编码方式和第十外码编码方式可与上述任一实施方式中的其中任一外码编码方式相同,也可以互不相同,此处不作限制。
调制方式的调制阶数越高,内码编码的编码效率越高,内码编码的误码平台越高。其中,调制阶数相同,内码编码的编码效率越高,内码编码的误码平台越高;内码编码的编码效率相同,调制阶数越高,内码编码的误码平台越高。比如,当调制方式为64QAM调制时,1/2的码率比3/4码率的误码平台低。3/4码率的QPSK调制的误码平台比3/4码率的64QAM的误码平台低。
可以理解的是,不同的外码编码方式,其纠错能力也不尽相同。外码编码方式的纠错能力决定了内码编码的误码平台。外码编码方式的纠错能力决定了内码编码的误码平台。
S203:所述通信设备确定第三传输块,当所述调度信息满足预设条件时,所述第三传输块为所述第二传输块经过外码编码后的传输块,当所述调度信息不满足所述预设条件时,所述第三传输块具体为所述第二传输块。
本实施例中的步骤S203与上一实施例中的步骤S103相同,具体请参阅上一实施例中的步骤S103的相关描述,此处不赘述。S204:所述通信设备根据预定义的规则,对所述第三传输块进行内码编码。
本实施例中的步骤S204与上一实施例中的步骤S104相同,具体请参阅上一实施例中的步骤S104的相关描述,此处不赘述。
可以理解的是,PUSCH的编码方法与PDSCH的编码方法类似,具体请参照上述PDSCH的编码方法,此处不赘述。解码是编码的反过程,此处对解码过程不赘述。
上述各实施方式以PDSCH为例进行说明,PUSCH的编码方式与PDSCH类似,具体请参阅相关内容,此处不赘述。
可以理解的是,上述各实施方式中外码并不限于RS码,还可以是BCH、RM,或其他的外码编码方法。内码并不限于Turbo,还可以为卷积码或其他的内码编码方法。
上述方案,通信设备通过确定第二传输块,并根据第二传输块的调度信息确定对第二传输块进行外码编码的方式,以确定是否对第二传输块进行外码编码,通信设备在确定第三传输块后,根据预定义的规则,对第三传输块进行内码编码,能够有效利用传输资源,提高传输资源的利用率,降低内码编码的误码平台,提高数据传输的可靠性。
通信设备能够根据第二传输块的比特数、调制方式、内码编码的编码效率中的之一或至少两个的组合,选择与其匹配的外码编码方式,以实时调整外码编码方式,使内码编码的误码平台满足传输要求,提高数据传输的可靠性。
请参阅图3,图3是本申请通信设备一实施例的结构示意图。通信设备可以为基站,也可以为终端。当通信设备为基站时,发送端为基站,接收端为终端,基站与终端间的通信信道为物理下行共享信道(Physical Downlink Shared Channel,PDSCH);当通信设备为终端时,发送端为终端,接收端为基站,基站与终端间的通信信道为物理上行共享信道(Physical Uplink Shared Channel,PUSCH)。
本实施例以PDSCH为例进行说明(PUSCH的编码方法与PDSCH的编码方法类似),本实施例的通信设备包括的各模块用于执行图1对应的实施例 中的各步骤,具体请参阅图1以及图对应的实施例中的相关描述,此处不赘述。本实施方式的通信设备包括第一确定模块310、外码编码模块320、第二确定模块330以及内码编码模块340。
第一确定模块310用于确定第二传输块,其中,第二传输块包括第一传输块和第一传输块对应的校验信息。比如,第一确定模块310确定第二传输块,其中,第二传输块包括第一传输块和第一传输块对应的校验信息。第一确定模块310将第二传输块的信息发送给外码编码模块320。
外码编码模块320用于接收第一确定模块310发送的第二传输块的信息,根据第二传输块的信息包含的调度信息,确定对第二传输块进行外码编码的方式,以及采用确定的外码编码的方式对第二传输块进行外码编码。
比如,外码编码模块320接收第一确定模块310发送的第二传输块的信息,根据第二传输块的信息包含的调度信息,确定对第二传输块进行外码编码的方式。在确定对第二传输块进行外码编码的方式后,采用确定的外码编码的方式对第二传输块进行外码编码。外码编码模块320将第二传输块的信息以及经过外码编码后的传输块的信息发送给第二确定模块330。
第二确定模块330用于接收外码编码模块320发送的第二传输块的信息以及经过外码编码后的传输块的信息,根据第二传输块的调度信息确定第三传输块,当调度信息满足预设条件时,第三传输块为第二传输块经过外码编码后的传输块,当调度信息不满足预设条件时,第三传输块具体为第二传输块。
比如,第二确定模块330接收外码编码模块320发送的第二传输块的信息以及经过外码编码后的传输块的信息,根据第二传输块的调度信息确定第三传输块,当调度信息满足预设条件时,第三传输块为第二传输块经过外码编码后的传输块,当调度信息不满足预设条件时,第三传输块具体为第二传输块。第二确定模块330将第三传输块的信息向内码编码模块340发送。
内码编码模块340用于接收第二确定模块330发送的第三传输块的信息,根据预定义规则对第三确定模块确定的第三传输块进行内码编码。
比如,内码编码模块340接收第二确定模块330发送的第三传输块的信息,根据预定义规则对第三确定模块确定的第三传输块进行内码编码。
上述方案中,通信设备通过确定第二传输块,并根据第二传输块的调度信息确定对第二传输块进行外码编码的方式,以确定是否对第二传输块进行外码编码,通信设备在确定第三传输块后,根据预定义的规则,对第三传输块进行内码编码,能够有效利用传输资源,提高传输资源的利用率,降低内码编码的误码平台,提高数据传输的可靠性。
请继续参阅图3,在另一种实施例中,图3所示的通信设备包括的各模块用于执行图2对应的实施例中的各步骤,具体请参阅图2以及图对应的实施例中的相关描述,此处不赘述。本实施方式的通信设备包括第一确定模块310、外码编码模块320、第二确定模块330以及内码编码模块340。
第一确定模块310用于确定第二传输块,其中,第二传输块包括第一传输块和第一传输块对应的校验信息。比如,第一确定模块310确定第二传输块,其中,第二传输块包括第一传输块和第一传输块对应的校验信息。第一确定模块310将第二传输块的信息发送给外码编码模块320。
外码编码模块320用于接收第一确定模块310发送的第二传输块的信息,根据第二传输块的信息包含的调度信息,确定对第二传输块进行外码编码的方式,以及采用确定的外码编码的方式对第二传输块进行外码编码。外码包括里德-所罗门码(Reed-Solomon Code,RS码)、里德米勒码(Reed-Muller Code,RM)之一或组合,所述外码包括至少一种外码编码方式。
比如,外码编码模块320接收第一确定模块310发送的第二传输块的信息,根据第二传输块的信息包含的调度信息,确定对第二传输块进行外码编码的方式。在确定对第二传输块进行外码编码的方式后,采用确定的外码编码的方式对第二传输块进行外码编码。外码包括里德-所罗门码(Reed-Solomon Code,RS码)、里德米勒码(Reed-Muller Code,RM)之一或组合,所述外码包括至少一种外码编码方式。
其中,在一种实施方式中,调度信息包括第二传输块的比特数;外码编码模块320具体用于当第二传输块的比特数大于第一阈值时,对第二传输块进行第一外码编码;当第二传输块的比特数不大于第一阈值时,对第二传输块进行第二外码编码,或者不进行外码编码。
比如,外码编码模块320接收第一确定模块310发送的第二传输块的 信息,根据第二传输块的信息包含的调度信息获取第二传输块的比特数;当第二传输块的比特数大于第一阈值时,外码编码模块320对第二传输块进行第一外码编码;当第二传输块的比特数不大于第一阈值时,外码编码模块320对第二传输块进行第二外码编码,或者不进行外码编码。
其中,在一种实施方式中,调度信息包括第二传输块的比特数和第二传输块的调制方式;外码编码模块320具体用于根据第二传输块的调制方式确定第二阈值,当第二传输块的比特数大于第二阈值时,确定对第二传输块进行第三外码编码;当第二传输块的比特数不大于第二阈值时,确定对第二传输块进行第四外码编码,或者不进行外码编码;其中,第二传输块的调制方式具体为第一调制方式、第二调制方式或第三调制方式中的一个或至少两个的组合,第一调制方式的调制阶数高于第二调制方式的调制阶数,第一调制方式对应的第二阈值大于第二调制方式对应的第二阈值。
比如,外码编码模块320接收第一确定模块310发送的第二传输块的信息,根据第二传输块的信息包含的调度信息获取第二传输块的比特数和第二传输块的调制方式,根据第二传输块的调制方式确定第二阈值。
当第二传输块的比特数大于第二阈值时,外码编码模块320确定对第二传输块进行第三外码编码;当第二传输块的比特数不大于第二阈值时,外码编码模块320确定对第二传输块进行第四外码编码,或者不进行外码编码。
其中,第二传输块的调制方式具体为第一调制方式、第二调制方式或第三调制方式中的一个或至少两个的组合,第一调制方式的调制阶数高于第二调制方式的调制阶数,第一调制方式对应的第二阈值大于第二调制方式对应的第二阈值。
其中,在另一种实施方式中,调度信息包括内码编码的编码效率;外码编码模块320具体用于当内码编码的编码效率为第一编码效率时,确定对第二传输块进行第五外码编码;当内码编码的编码效率为第二编码效率时,确定对第二传输块进行第六外码编码;其中,第一编码效率高于第二编码效率,第五外码编码的编码效率低于第六外码编码的编码效率。
比如,外码编码模块320接收第一确定模块310发送的第二传输块的信息,根据第二传输块的信息包含的调度信息获取内码编码的编码效率。 当内码编码的编码效率为第一编码效率时,外码编码模块320确定对第二传输块进行第五外码编码;当内码编码的编码效率为第二编码效率时,外码编码模块320确定对第二传输块进行第六外码编码;其中,第一编码效率高于第二编码效率,第五外码编码的编码效率低于第六外码编码的编码效率。
外码编码模块320将第二传输块的信息以及经过外码编码后的传输块的信息发送给第二确定模块330。
第二确定模块330用于接收外码编码模块320发送的第二传输块的信息以及经过外码编码后的传输块的信息,根据第二传输块的调度信息确定第三传输块,当调度信息满足预设条件时,第三传输块为第二传输块经过外码编码后的传输块,当调度信息不满足预设条件时,第三传输块具体为第二传输块。
比如,第二确定模块330接收外码编码模块320发送的第二传输块的信息以及经过外码编码后的传输块的信息,根据第二传输块的调度信息确定第三传输块,当调度信息满足预设条件时,第三传输块为第二传输块经过外码编码后的传输块,当调度信息不满足预设条件时,第三传输块具体为第二传输块。第二确定模块330将第三传输块的信息向内码编码模块340发送。
内码编码模块340用于接收第二确定模块330发送的第三传输块的信息,根据预定义规则对第三确定模块确定的第三传输块进行内码编码。
比如,内码编码模块340接收第二确定模块330发送的第三传输块的信息,根据预定义规则对第三确定模块确定的第三传输块进行内码编码。
上述方案,通信设备通过确定第二传输块,并根据第二传输块的调度信息确定对第二传输块进行外码编码的方式,以确定是否对第二传输块进行外码编码,通信设备在确定第三传输块后,根据预定义的规则,对第三传输块进行内码编码,能够有效利用传输资源,提高传输资源的利用率,降低内码编码的误码平台,提高数据传输的可靠性。
通信设备能够根据第二传输块的比特数、调制方式、内码编码的编码效率中的之一或至少两个的组合,选择与其匹配的外码编码方式,以实时调整外码编码方式,使内码编码的误码平台满足传输要求,提高数据传输 的可靠性。
参阅图4,图4是本申请通信设备另一实施例的结构示意图。通信设备可以为基站,也可以为终端。当通信设备为基站时,发送端为基站,接收端为终端,基站与终端间的通信信道为物理下行共享信道(Physical Downlink Shared Channel,PDSCH);当通信设备为终端时,发送端为终端,接收端为基站,基站与终端间的通信信道为物理上行共享信道(Physical Uplink Shared Channel,PUSCH)。
本实施例的通信设备包括:接收器410、处理器420、发送器430、只读存储器440、随机存取存储器450以及总线460。
接收器410用于接收信号。
处理器420控制通信设备的操作,处理器420还可以称为CPU(Central Processing Unit,中央处理单元)。处理器420可能是一种集成电路芯片,具有信号的处理能力。处理器420还可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
发送器430用于发送信号。
存储器可以包括只读存储器440和随机存取存储器450,并向处理器420提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器(NVRAM)。
通信设备的各个组件通过总线460耦合在一起,其中总线460除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线460。
存储器存储了如下的元素,可执行模块或者数据结构,或者它们的子集,或者它们的扩展集:
操作指令:包括各种操作指令,用于实现各种操作。
操作系统:包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
在本发明实施例中,处理器420通过调用存储器存储的操作指令(该操作指令可存储在操作系统中),执行如下操作:
处理器420用于控制存储器存储数据;
处理器420用于确定第二传输块,其中,所述第二传输块包括第一传输块和所述第一传输块对应的校验信息;
处理器420还用于根据所述第二传输块的调度信息,确定对所述第二传输块进行外码编码的方式,以及采用所述确定的外码编码的方式对所述第二传输块进行外码编码;
处理器420还用于根据所述第二传输块的调度信息确定第三传输块,当所述调度信息满足预设条件时,所述第三传输块为所述第二传输块经过外码编码后的传输块,当所述调度信息不满足所述预设条件时,所述第三传输块具体为所述第二传输块;
处理器420还用于根据预定义规则,对所述第三传输块进行内码编码。
其中,所述调度信息包括所述第二传输块的比特数;处理器420具体用于当所述第二传输块的比特数大于第一阈值时,对所述第二传输块进行第一外码编码;当所述第二传输块的比特数不大于第一阈值时,对所述第二传输块进行第二外码编码,或者不进行外码编码。
其中,所述调度信息包括所述第二传输块的比特数和所述第二传输块的调制方式;处理器420具体用于根据第二传输块的调制方式确定第二阈值,当所述第二传输块的比特数大于第二阈值时,确定对所述第二传输块进行第三外码编码;当所述第二传输块的比特数不大于所述第二阈值时,确定对所述第二传输块进行第四外码编码,或者不进行外码编码;其中,所述第二传输块的调制方式具体为第一调制方式、第二调制方式或第三调制方式中的一个或至少两个的组合,所述第一调制方式的调制阶数高于所述第二调制方式的调制阶数,所述第一调制方式对应的第二阈值大于所述第二调制方式对应的第二阈值。
其中,所述调度信息包括内码编码的编码效率;处理器420具体用于当所述内码编码的编码效率为第一编码效率时,确定对所述第二传输块进行第五外码编码;当所述内码编码的编码效率为第二编码效率时,确定对所述第二传输块进行第六外码编码;其中,第一编码效率高于所述第二编码效率,所述第五外码编码的编码效率低于所述第六外码编码的编码效率。
其中,外码包括里德-所罗门码(Reed-Solomon Code,RS码)、里德米 勒码(Reed-Muller Code,RM)之一或组合,所述外码包括至少一种外码编码方式。
上述方案,通信设备通过确定第二传输块,并根据第二传输块的调度信息确定对第二传输块进行外码编码的方式,以确定是否对第二传输块进行外码编码,通信设备在确定第三传输块后,根据预定义的规则,对第三传输块进行内码编码,能够有效利用传输资源,提高传输资源的利用率,降低内码编码的误码平台,提高数据传输的可靠性。
以上描述中,为了说明而不是为了限定,提出了诸如特定系统结构、接口、技术之类的具体细节,以便透彻理解本申请。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施方式中也可以实现本申请。在其它情况中,省略对众所周知的装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。

Claims (15)

  1. 一种编码方法,其特征在于,所述方法包括:
    通信设备确定第二传输块,其中,所述第二传输块包括第一传输块和所述第一传输块对应的校验信息;
    所述通信设备根据所述第二传输块的调度信息,确定对所述第二传输块进行外码编码的方式;
    所述通信设备确定第三传输块,当所述调度信息满足预设条件时,所述第三传输块为所述第二传输块经过外码编码后的传输块,当所述调度信息不满足所述预设条件时,所述第三传输块具体为所述第二传输块;
    所述通信设备根据预定义的规则,对所述第三传输块进行内码编码。
  2. 根据权利要求1所述的方法,其特征在于,所述调度信息包括所述第二传输块的比特数;
    所述通信设备根据所述第二传输块的调度信息,确定对所述第二传输块进行外码编码的方式,包括:
    当所述第二传输块的比特数大于第一阈值时,所述通信设备对所述第二传输块进行第一外码编码;
    当所述第二传输块的比特数不大于第一阈值时,所述通信设备对所述第二传输块进行第二外码编码,或者不进行外码编码。
  3. 根据权利要求1所述的方法,其特征在于,所述调度信息包括所述第二传输块的比特数和所述第二传输块的调制方式;
    所述通信设备根据所述第二传输块的调度信息,确定对所述第二传输块进行外码编码的方式,包括:
    所述通信设备根据第二传输块的调制方式确定第二阈值,当所述第二传输块的比特数大于第二阈值时,所述通信设备确定对所述第二传输块进行第三外码编码;当所述第二传输块的比特数不大于所述第二阈值时,所述通信设备确定对所述第二传输块进行第四外码编码,或者不进行外码编码;
    其中,所述第二传输块的调制方式具体为第一调制方式、第二调制方式或第三调制方式中的一个或至少两个的组合,所述第一调制方式的调制阶数高于所述第二调制方式的调制阶数,所述第一调制方式对应的第二阈 值大于所述第二调制方式对应的第二阈值。
  4. 根据权利要求1至3任一所述的方法,其特征在于,所述调度信息包括内码编码的编码效率;
    所述通信设备根据所述第二传输块的调度信息,确定对所述第二传输块进行外码编码的方式包括:
    当所述内码编码的编码效率为第一编码效率时,所述通信设备确定对所述第二传输块进行第五外码编码;当所述内码编码的编码效率为第二编码效率时,所述通信设备确定对所述第二传输块进行第六外码编码;
    其中,第一编码效率高于所述第二编码效率,所述第五外码编码的编码效率低于所述第六外码编码的编码效率。
  5. 根据权利要求1所述的方法,其特征在于,外码包括里德-所罗门码(Reed-Solomon Code,RS码)、里德米勒码(Reed-Muller Code,RM)之一或组合,所述外码包括至少一种外码编码方式。
  6. 一种通信设备,其特征在于,所述通信设备包括:第一确定模块、外码编码模块、第二确定模块以及内码编码模块;
    所述第一确定模块用于确定第二传输块,其中,所述第二传输块包括第一传输块和所述第一传输块对应的校验信息;
    所述外码编码模块用于根据所述第一确定模块确定的所述第二传输块的调度信息,确定对所述第二传输块进行外码编码的方式,以及采用所述确定的外码编码的方式对所述第二传输块进行外码编码;
    所述第二确定模块用于根据所述第二传输块的调度信息确定第三传输块,当所述调度信息满足预设条件时,所述第三传输块为所述第二传输块经过外码编码后的传输块,当所述调度信息不满足所述预设条件时,所述第三传输块具体为所述第二传输块;
    所述内码编码模块用于根据预定义规则,对所述第二确定模块确定的所述第三传输块进行内码编码。
  7. 根据权利要求6所述的通信设备,其特征在于,所述调度信息包括所述第二传输块的比特数;
    所述外码编码模块具体用于当所述第二传输块的比特数大于第一阈值时,对所述第二传输块进行第一外码编码;当所述第二传输块的比特数不 大于第一阈值时,对所述第二传输块进行第二外码编码,或者不进行外码编码。
  8. 根据权利要求6所述的通信设备,其特征在于,所述调度信息包括所述第二传输块的比特数和所述第二传输块的调制方式;
    所述外码编码模块具体用于根据第二传输块的调制方式确定第二阈值,当所述第二传输块的比特数大于第二阈值时,确定对所述第二传输块进行第三外码编码;当所述第二传输块的比特数不大于所述第二阈值时,确定对所述第二传输块进行第四外码编码,或者不进行外码编码;
    其中,所述第二传输块的调制方式具体为第一调制方式、第二调制方式或第三调制方式中的一个或至少两个的组合,所述第一调制方式的调制阶数高于所述第二调制方式的调制阶数,所述第一调制方式对应的第二阈值大于所述第二调制方式对应的第二阈值。
  9. 根据权利要求6-8任一项所述的通信设备,其特征在于,所述调度信息包括内码编码的编码效率;
    所述外码编码模块具体用于当所述内码编码的编码效率为第一编码效率时,确定对所述第二传输块进行第五外码编码;当所述内码编码的编码效率为第二编码效率时,确定对所述第二传输块进行第六外码编码;
    其中,第一编码效率高于所述第二编码效率,所述第五外码编码的编码效率低于所述第六外码编码的编码效率。
  10. 根据权利要求6所述的通信设备,其特征在于,外码包括里德-所罗门码(Reed-Solomon Code,RS码)、里德米勒码(Reed-Muller Code,RM)之一或组合,所述外码包括至少一种外码编码方式。
  11. 一种通信设备,其特征在于,所述通信设备包括:存储器以及处理器;
    所述存储器用于存储数据;
    所述处理器用于确定第二传输块,其中,所述第二传输块包括第一传输块和所述第一传输块对应的校验信息;
    所述处理器还用于根据所述第二传输块的调度信息,确定对所述第二传输块进行外码编码的方式,以及采用所述确定的外码编码的方式对所述第二传输块进行外码编码;
    所述处理器还用于根据所述第二传输块的调度信息确定第三传输块,当所述调度信息满足预设条件时,所述第三传输块为所述第二传输块经过外码编码后的传输块,当所述调度信息不满足所述预设条件时,所述第三传输块具体为所述第二传输块;
    所述处理器还用于根据预定义规则,对所述第三传输块进行内码编码。
  12. 根据权利要求11所述的通信设备,其特征在于,所述调度信息包括所述第二传输块的比特数;
    所述处理器具体用于当所述第二传输块的比特数大于第一阈值时,对所述第二传输块进行第一外码编码;当所述第二传输块的比特数不大于第一阈值时,对所述第二传输块进行第二外码编码,或者不进行外码编码。
  13. 根据权利要求11所述的通信设备,其特征在于,所述调度信息包括所述第二传输块的比特数和所述第二传输块的调制方式;
    所述处理器具体用于根据第二传输块的调制方式确定第二阈值,当所述第二传输块的比特数大于第二阈值时,确定对所述第二传输块进行第三外码编码;当所述第二传输块的比特数不大于所述第二阈值时,确定对所述第二传输块进行第四外码编码,或者不进行外码编码;
    其中,所述第二传输块的调制方式具体为第一调制方式、第二调制方式或第三调制方式中的一个或至少两个的组合,所述第一调制方式的调制阶数高于所述第二调制方式的调制阶数,所述第一调制方式对应的第二阈值大于所述第二调制方式对应的第二阈值。
  14. 根据权利要求11-13任一项所述的通信设备,其特征在于,所述调度信息包括内码编码的编码效率;
    所述处理器具体用于当所述内码编码的编码效率为第一编码效率时,确定对所述第二传输块进行第五外码编码;当所述内码编码的编码效率为第二编码效率时,确定对所述第二传输块进行第六外码编码;
    其中,第一编码效率高于所述第二编码效率,所述第五外码编码的编码效率低于所述第六外码编码的编码效率。
  15. 根据权利要求11所述的通信设备,其特征在于,外码包括里德-所罗门码(Reed-Solomon Code,RS码)、里德米勒码(Reed-Muller Code,RM)之一或组合,所述外码包括至少一种外码编码方式。
PCT/CN2015/078544 2015-05-08 2015-05-08 一种编码装置及方法 WO2016179743A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15891450.7A EP3276837A4 (en) 2015-05-08 2015-05-08 Encoding apparatus and method
PCT/CN2015/078544 WO2016179743A1 (zh) 2015-05-08 2015-05-08 一种编码装置及方法
CN201580072343.1A CN107251440A (zh) 2015-05-08 2015-05-08 一种编码装置及方法
US15/805,996 US20180062669A1 (en) 2015-05-08 2017-11-07 Coding apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/078544 WO2016179743A1 (zh) 2015-05-08 2015-05-08 一种编码装置及方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/805,996 Continuation US20180062669A1 (en) 2015-05-08 2017-11-07 Coding apparatus and method

Publications (1)

Publication Number Publication Date
WO2016179743A1 true WO2016179743A1 (zh) 2016-11-17

Family

ID=57248659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/078544 WO2016179743A1 (zh) 2015-05-08 2015-05-08 一种编码装置及方法

Country Status (4)

Country Link
US (1) US20180062669A1 (zh)
EP (1) EP3276837A4 (zh)
CN (1) CN107251440A (zh)
WO (1) WO2016179743A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11974165B2 (en) 2016-11-23 2024-04-30 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Methods, terminal device and network device for code block segmentation

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6424791B2 (ja) * 2015-10-08 2018-11-21 株式会社デンソー 無線通信装置、無線通信システム
US11792824B2 (en) * 2020-03-30 2023-10-17 Qualcomm Incorporated Multicast feedback and retransmission for transport block grouping
CN113784356B (zh) * 2021-10-27 2023-08-08 哲库科技(北京)有限公司 一种通信参数的确定方法、装置、设备以及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1768482A (zh) * 2003-03-28 2006-05-03 松下电器产业株式会社 无线电发送设备、无线电接收设备和无线电发送方法
CN1929614A (zh) * 2005-09-08 2007-03-14 电子科技大学 一种用于移动和手持无线电视广播的传输帧方法
CN101013931A (zh) * 2006-11-27 2007-08-08 北京创毅视讯科技有限公司 移动多媒体广播中的信道编码和交织方法及其装置
CN104518844A (zh) * 2013-09-27 2015-04-15 华为技术有限公司 应用于窄带电力线通信中的级联信道编码方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8089855B2 (en) * 2004-06-04 2012-01-03 Qualcomm Incorporated Transmission of overhead information for broadcast and multicast services in a wireless communication system
US8265020B2 (en) * 2008-11-12 2012-09-11 Microsoft Corporation Cognitive error control coding for channels with memory
US8254304B2 (en) * 2008-12-14 2012-08-28 Qualcomm Incorporated Channel capacity adaptive repeater
US8225166B2 (en) * 2009-02-09 2012-07-17 Mediatek Inc. Signal processing apparatus for setting error indication information according error detection result of outer-code decoder output and related method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1768482A (zh) * 2003-03-28 2006-05-03 松下电器产业株式会社 无线电发送设备、无线电接收设备和无线电发送方法
CN1929614A (zh) * 2005-09-08 2007-03-14 电子科技大学 一种用于移动和手持无线电视广播的传输帧方法
CN101013931A (zh) * 2006-11-27 2007-08-08 北京创毅视讯科技有限公司 移动多媒体广播中的信道编码和交织方法及其装置
CN104518844A (zh) * 2013-09-27 2015-04-15 华为技术有限公司 应用于窄带电力线通信中的级联信道编码方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3276837A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11974165B2 (en) 2016-11-23 2024-04-30 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Methods, terminal device and network device for code block segmentation

Also Published As

Publication number Publication date
CN107251440A (zh) 2017-10-13
US20180062669A1 (en) 2018-03-01
EP3276837A1 (en) 2018-01-31
EP3276837A4 (en) 2018-04-25

Similar Documents

Publication Publication Date Title
CN108347302B (zh) 一种编译码方法和终端
WO2018196765A1 (zh) Polar码传输方法及装置
WO2018127152A1 (zh) 信息处理的方法、设备和通信系统
WO2018202057A1 (zh) 传输数据的方法、基站和终端设备
WO2019062145A1 (zh) Ploar编码方法和编码装置、译码方法和译码装置
US11601176B2 (en) Channel state information encoding method and apparatus, storage medium and processor
CN109075799A (zh) 极化Polar码的编译码方法及装置
WO2018141212A1 (zh) 一种信息的传输方法、译码方法和装置
WO2017092617A1 (zh) 一种错误估计的方法、基站及终端
WO2017121334A1 (zh) 一种数据处理的方法和装置
WO2016179743A1 (zh) 一种编码装置及方法
US20180198554A1 (en) Data transmission method and apparatus based on unequal error protection and device
CN103312458A (zh) 混合编码方法
WO2020147527A1 (zh) 一种极化编译码方法及装置
US10581464B2 (en) Encoder device, decoder device, and methods thereof
US20200382142A1 (en) Encoding method, decoding method, encoding apparatus, and decoding apparatus
WO2018133415A1 (zh) 一种物理编码子层的数据编解码方法和装置、存储介质
CN114079530A (zh) 编码方法及装置
US11283465B2 (en) Network data prediction method, network data processing device and network data processing method
US20180351700A1 (en) Convolutional code data sending method and apparatus
US8977913B2 (en) Method, device and baseband chip for receiving service data in a communication system
CN116941200A (zh) 数据处理方法、设备及数据传输系统
JPWO2019096271A5 (zh)
WO2019047788A1 (zh) 编码方法及装置
WO2024164762A1 (zh) 数据传输方法、通信装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15891450

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015891450

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE