WO2016178664A1 - Conduite de transition de turbine à agencement amélioré de conduits de fluide de refroidissement pour un moteur à turbine à combustion - Google Patents

Conduite de transition de turbine à agencement amélioré de conduits de fluide de refroidissement pour un moteur à turbine à combustion Download PDF

Info

Publication number
WO2016178664A1
WO2016178664A1 PCT/US2015/029135 US2015029135W WO2016178664A1 WO 2016178664 A1 WO2016178664 A1 WO 2016178664A1 US 2015029135 W US2015029135 W US 2015029135W WO 2016178664 A1 WO2016178664 A1 WO 2016178664A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling fluid
transition duct
extending
circumferentially
longitudinally
Prior art date
Application number
PCT/US2015/029135
Other languages
English (en)
Inventor
Reinhard Schilp
Original Assignee
Siemens Aktiengesellschaft
Siemens Energy, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft, Siemens Energy, Inc. filed Critical Siemens Aktiengesellschaft
Priority to PCT/US2015/029135 priority Critical patent/WO2016178664A1/fr
Publication of WO2016178664A1 publication Critical patent/WO2016178664A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/023Transition ducts between combustor cans and first stage of the turbine in gas-turbine engines; their cooling or sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/005Combined with pressure or heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03043Convection cooled combustion chamber walls with means for guiding the cooling air flow

Definitions

  • Disclosed embodiments are generally related to combustion turbine engines, such as gas turbine engines and, more particularly, to transition ducts useful for routing a hot combustion gas flow from a combustor to a turbine section of the gas turbine engine, and, even more particularly, to an improved layout of cooling fluid conduits in a transition duct.
  • gas turbine engines typically include a compressor for compressing air, a combustor for mixing the compressed air with fuel and igniting the mixture, and the turbine section for producing power.
  • Combustors often operate at substantially high temperatures. Accordingly, the transition ducts and other components should be appropriately cooled. See US patent 8,727,714 for an example of a cooling system for a transition duct having multi-panel walls.
  • FIG. 1 is a fragmentary schematic representation of a transition duct, such as may have a body comprising a multi-panel arrangement, with cooling fluid conduits embodying aspects of the invention as may be used in a combustor system of a combustion turbine engine.
  • FIG. 2 is a fragmentary schematic representation of one non-limiting embodiment of a layout of cooling fluid conduits in a disclosed transition duct.
  • FIG. 3 is a fragmentary schematic representation of another non- limiting embodiment of a layout of cooling fluid conduits in a disclosed transition duct.
  • FIG. 4 is an isometric view of a transition duct embodying aspects of the present invention.
  • FIG. 5 is a simplified schematic of one non- limiting embodiment of a combustion turbine engine, such as a gas turbine engine, that can benefit from disclosed embodiments of the present invention. DETAILED DESCRIPTION
  • transition ducts may involve internal conduits arranged just along a longitudinal axis (e.g., flow direction) of a given transition duct for passing cooling fluids (e.g., air) to cool the transition duct.
  • the conduits may be constructed between two or more panels (e.g., a multi-panel arrangement) that may be bonded or otherwise affixed to one another to form the body of the transition duct.
  • the transition duct typically changes the flow direction of the hot combustion gases.
  • the combustion flow generally enters the transition at a given angle and may exit at a different angle, such as in a generally horizontal flow direction.
  • This angular change typically leads to an impingement of the hot flow, such as on impingement region over a portion of the body of the transition duct, which can lead to the formation of hotspots on such a region, which in some non-limiting embodiments may be disposed relatively close to the outlet side of the transition duct.
  • the present inventor has cleverly recognized that cooling the transition with cooling conduits just extending along the flow direction can lead to an over-cooled situation upstream of the impingement region; or, if further relatively short conduits are used over the impingement region, then the maximum cooling potential of the cooling fluid may not be fully realized. For example, the cooling fluid would not extract a sufficiently large amount of heat over the relatively short length of such further conduits.
  • the present inventor proposes an innovative layout arrangement for the cooling conduits effective for avoiding or at least reducing uneven cooling in the transition duct.
  • the proposed layout includes circumferentially-extending conduits, such as may be arranged generally perpendicular to the hot gas flow direction.
  • certain disclosed embodiments allow sufficiently long cooling conduits, such as proximate the outlet of the transition duct conducive to efficient cooling and appropriately located where incremental cooling may be needed, e.g., over the impingement region.
  • the layout of such cooling conduits may be advantageously arranged based on an expected heat load profile for the transition duct.
  • FIG. 1 is a fragmentary schematic representation of a transition duct 10, such as may have a transition body comprising a multi-panel arrangement, such as an inner panel 12 disposed on the hot side relative to a hot combustion gas flow
  • One or more cooling fluid conduits 18, 20 may be machined or otherwise constructed in at least one of panels 12, 14 prior to such panels being affixed to one another.
  • cooling fluid conduits 18 represents longitudinally- extending cooling fluid conduits disposed in the multi-panel arrangement extending along the flow direction in the transition duct
  • cooling fluid conduit 20 represents a circumferentially-extending cooling fluid conduit disposed in the multi-panel arrangement extending perpendicular to the flow direction in the transition duct.
  • circumferentially-extending cooling fluid conduits 20 may be in fluid communication with one another.
  • a longitudinally-extending cooling fluid conduit 18 and a circumferentially-extending cooling conduit 20 may be arranged to form a T- shaped cooling fluid conduit, as indicated by arrows 22.
  • a longitudinally-extending cooling fluid conduit 18 and circumferentially-extending cooling conduit 20 may be arranged to form a T-shaped cooling fluid conduit, as indicated by arrow 24.
  • a U-shaped conduit arrangement 23 may be configured with a pair of longitudinally-extending cooling fluid conduits in fluid communication with a circumferentially-extending cooling fluid conduit. It is noted that in FIGs. 2-4 respective conduit inlets are schematically indicated with the symbol ® while respective conduit outlets are indicated by unmarked circles.
  • circumferentially-extending cooling fluid conduits 20 may comprise independent cooling fluid conduits.
  • the inlet side of the transition duct may be indicated by arrow 25 and the outlet side may be indicated by arrow 26.
  • the longitudinally-extending cooling fluid conduits 18 may extend between the inlet 25 and the outlet 26 of the transition duct, and the
  • circumferentially-extending cooling fluid conduits 20 may be disposed proximate outlet 26 of the transition duct.
  • the layout of the combination (e.g., an array) of longitudinally-extending cooling fluid conduits 18 and an array circumferentially- extending cooling fluid conduits 20 may be configured in the multi-panel arrangement based on an expected heat load profile for the transition duct.
  • the respective distribution of longitudinally-extending cooling fluid conduits 18 and circumferentially-extending cooling fluid conduits 20 and/or the respective longitudinal and/ or circumferential conduit lengths may be effectively tailored to meet the expected heat load profile for a given transition duct.
  • the inlet 25 of the transition duct 10 may comprise a circular cross-sectional profile 30 and the outlet 26 of the transition duct 10 may comprise a generally rectangular cross- sectional profile 32.
  • a first group of longitudinally- extending cooling fluid conduits 34 may be combined with a second group of conduits arrangements comprising longitudinally- extending cooling conduits and circumferentially-extending cooling fluid conduits, such as any of the conduit configurations discussed in the context of FIGs. 2 and 3. For example, T-shaped arrangement 22, L-shaped arrangements 24, etc.
  • this conduit layout may comprise a fixed pitch (e.g., approximately equal inter-conduit spacing as the conduits extend between inlet 25 and outlet 26) relative to each other, which is effective to more closely match the heat load over the varying cross-sectional profile of the transition and thus achieve improved cooling (e.g., substantially even cooling). That is, reduction of hotspots and over-cooled spots over the varying cross-sectional profile of the transition duct compared to conduit layouts involving just longitudinally- extending cooling fluid conduits with a variable pitch.
  • a circumferentially-extending joint line 40 (e.g., weld line) may be disposed proximate the outlet 26 of the transition duct, and the circumferentially-extending cooling fluid conduits 38 may be disposed proximate circumferentially-extending joint line 40, and this may be effective to reduce thermal stresses along the circumferentially-extending joint line.
  • FIG. 5 is a simplified schematic of one non- limiting embodiment of a combustion turbine engine 50, such as gas turbine engine, that can benefit from disclosed embodiments of the present invention.
  • Combustion turbine engine 50 may comprise a compressor 52, a combustor 54, a combustion chamber 56, and a turbine 58 having an exhaust 68.
  • compressor 52 takes in ambient air and provides compressed air to a diffuser 60, which passes the compressed air to a plenum 62 through which the compressed air passes to combustor 54, which mixes the compressed air with fuel, and provides combusted, hot working gas via a transition duct 64 to turbine 58, which can drive power-generating equipment (not shown) to generate electricity.
  • a shaft 66 is shown connecting turbine 58 to drive compressor 52.
  • Disclosed embodiments of layouts of cooling fluid conduits embodying aspects of the present invention may be incorporated in transition duct 64 of the combustion turbine engine to achieve improved cooling (e.g., substantially even cooling) of the transition duct while making efficient use of the cooling air.
  • disclosed layouts of cooling fluid conduits embodying aspects of the present invention are expected to effectively provide appropriate cooling in the transition duct while optimizing the amount of cooling air that is used. Additionally, it is expected that the substantially even cooling obtained throughout the transition (e.g., reduction of hotspots and over-cooled spots) is conducive to provide a relatively low level of emissions. For example, over-cooled regions have a tendency to quench the flame and increase emissions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

La présente invention concerne un agencement amélioré de conduits de fluide de refroidissement dans une conduite de transition de turbine. La conduite de transition (10) peut comprendre un corps de transition constitué d'un agencement multi-panneau (12, 14) qui définit un passage pour acheminer un gaz de combustion chaud depuis une entrée jusqu'à une sortie de la conduite de transition. Un ou plusieurs conduits de fluide de refroidissement s'étendant longitudinalement (18) peuvent être disposés dans l'agencement multi-panneau. Les conduits de fluide de refroidissement s'étendant longitudinalement peuvent s'étendre le long d'une direction d'écoulement dans la conduite de transition. Un ou plusieurs conduits de fluide de refroidissement s'étendant de manière circonférentielle (20) peuvent être en outre disposés dans l'agencement multi-panneau. Les conduits de fluide de refroidissement s'étendant de manière circonférentielle peuvent s'étendre perpendiculairement à la direction d'écoulement dans la conduite de transition. Un agencement des conduits de fluide de refroidissement s'étendant longitudinalement et des conduits de fluide de refroidissement s'étendant de manière circonférentielle peut être conçu dans l'agencement multi-panneau sur la base d'un profil de charge thermique attendu dans la conduite de transition.
PCT/US2015/029135 2015-05-05 2015-05-05 Conduite de transition de turbine à agencement amélioré de conduits de fluide de refroidissement pour un moteur à turbine à combustion WO2016178664A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/US2015/029135 WO2016178664A1 (fr) 2015-05-05 2015-05-05 Conduite de transition de turbine à agencement amélioré de conduits de fluide de refroidissement pour un moteur à turbine à combustion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2015/029135 WO2016178664A1 (fr) 2015-05-05 2015-05-05 Conduite de transition de turbine à agencement amélioré de conduits de fluide de refroidissement pour un moteur à turbine à combustion

Publications (1)

Publication Number Publication Date
WO2016178664A1 true WO2016178664A1 (fr) 2016-11-10

Family

ID=53180865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2015/029135 WO2016178664A1 (fr) 2015-05-05 2015-05-05 Conduite de transition de turbine à agencement amélioré de conduits de fluide de refroidissement pour un moteur à turbine à combustion

Country Status (1)

Country Link
WO (1) WO2016178664A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120034075A1 (en) * 2010-08-09 2012-02-09 Johan Hsu Cooling arrangement for a turbine component
US20120198854A1 (en) * 2011-02-09 2012-08-09 Reinhard Schilp Resonator system with enhanced combustor liner cooling
US8727714B2 (en) 2011-04-27 2014-05-20 Siemens Energy, Inc. Method of forming a multi-panel outer wall of a component for use in a gas turbine engine
US20150033697A1 (en) * 2013-08-01 2015-02-05 Jay A. Morrison Regeneratively cooled transition duct with transversely buffered impingement nozzles
EP2863018A1 (fr) * 2013-10-17 2015-04-22 Alstom Technology Ltd Structure de refroidissement pour un conduit de transition d'une turbine à gaz

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120034075A1 (en) * 2010-08-09 2012-02-09 Johan Hsu Cooling arrangement for a turbine component
US20120198854A1 (en) * 2011-02-09 2012-08-09 Reinhard Schilp Resonator system with enhanced combustor liner cooling
US8727714B2 (en) 2011-04-27 2014-05-20 Siemens Energy, Inc. Method of forming a multi-panel outer wall of a component for use in a gas turbine engine
US20150033697A1 (en) * 2013-08-01 2015-02-05 Jay A. Morrison Regeneratively cooled transition duct with transversely buffered impingement nozzles
EP2863018A1 (fr) * 2013-10-17 2015-04-22 Alstom Technology Ltd Structure de refroidissement pour un conduit de transition d'une turbine à gaz

Similar Documents

Publication Publication Date Title
JP6506503B2 (ja) 燃焼器に燃料を供給するためのシステム
EP2623744B1 (fr) Turbine à gaz refroidie à l'air avec récupération d'air
US7493767B2 (en) Method and apparatus for cooling combustor liner and transition piece of a gas turbine
US20170114721A1 (en) Method and system for managing heat flow in an engine
EP3171086A1 (fr) Système de refroidissement de canal de paroi de chambre de combustion
US9951693B2 (en) Fuel supply system for a gas turbine combustor
US8006477B2 (en) Re-heat combustor for a gas turbine engine
US9970355B2 (en) Impingement cooling arrangement
KR20150074155A (ko) 희석 가스 혼합기를 가진 연속 연소
US9840924B2 (en) Gas turbine system with a transition duct having axially extending cooling channels
US20170254539A1 (en) Bundled Tube Fuel Nozzle with Internal Cooling
US10989411B2 (en) Heat exchanger for turbo machine
CN104930544A (zh) 具有冷却套管的燃烧室
EP3241999A1 (fr) Système de ventilation pour turbomachine au moyen d'un amplificateur d'écoulement d'air sans aubes
US20170306846A1 (en) Ventilation system for turbomachine using bladeless airflow amplifier
US20210239004A1 (en) Airfoil with cooling hole
EP2955443A1 (fr) Agencement de paroi refroidi par impact
CN101749120B (zh) 用于涡轮机的冷却系统
AU2009216788A1 (en) Gas turbine having an improved cooling architecture
EP3067622A1 (fr) Chambre de combustion à double paroi
US9127558B2 (en) Turbomachine including horizontal joint heating and method of controlling tip clearance in a gas turbomachine
KR101772837B1 (ko) 가스터빈 연소기 및 해당 연소기를 구비한 가스터빈
US10920673B2 (en) Gas turbine with extraction-air conditioner
WO2016178664A1 (fr) Conduite de transition de turbine à agencement amélioré de conduits de fluide de refroidissement pour un moteur à turbine à combustion
US8640974B2 (en) System and method for cooling a nozzle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15722876

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15722876

Country of ref document: EP

Kind code of ref document: A1