WO2016178413A1 - Magnetic resonance imaging device - Google Patents

Magnetic resonance imaging device Download PDF

Info

Publication number
WO2016178413A1
WO2016178413A1 PCT/JP2016/063421 JP2016063421W WO2016178413A1 WO 2016178413 A1 WO2016178413 A1 WO 2016178413A1 JP 2016063421 W JP2016063421 W JP 2016063421W WO 2016178413 A1 WO2016178413 A1 WO 2016178413A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
gradient magnetic
shape
pulse
noise
Prior art date
Application number
PCT/JP2016/063421
Other languages
French (fr)
Japanese (ja)
Inventor
眞次 黒川
陽 谷口
由香里 山本
久晃 越智
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2016178413A1 publication Critical patent/WO2016178413A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/385Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils

Definitions

  • the present invention relates to a magnetic resonance imaging apparatus (hereinafter referred to as an MRI apparatus), and more particularly to a technique for reducing noise during imaging.
  • an MRI apparatus magnetic resonance imaging apparatus
  • One of the problems in the MRI apparatus is the reduction of noise generated by switching the gradient magnetic field pulse at high speed.
  • noise reduction and image quality improvement (high-speed sequence adopted for that purpose), and it is important to reduce noise while suppressing deterioration in image quality as much as possible.
  • Patent Document 1 discloses internal repetition of a gradient magnetic field.
  • a technique is described that determines the slew rate and gradient magnetic field strength to achieve low noise with a fixed time (intra-repetition-interval).
  • Another approach is to determine an imaging sequence that can be realized within an acceptable noise level, as opposed to the above approach.
  • Patent Document 2 an acceptable noise level is set and a selected pulse is selected. It is disclosed that the noise level when the sequence is executed is calculated and the pulse sequence is changed when the sequence exceeds an allowable value.
  • Patent Document 3 proposes a technique related to a UI that calculates a noise level of a selected imaging sequence, displays the result, and allows an operator to change the imaging sequence according to an expected value of the noise level. ing.
  • Patent Document 4 discloses a technique for changing the shape of a gradient magnetic field pulse by providing a filter before the gradient magnetic field pulse generator.
  • Non-Patent Documents 1 and 2 propose changing the shape of the gradient magnetic field pulse to a shape typified by a sine wave instead of a trapezoid.
  • the gradient magnetic field pulse shape is based on a known model waveform such as a trapezoid or a sine wave, and the optimization is within the range of the model waveform. .
  • the conventional noise reduction approach is to optimize the imaging sequence when the noise level is kept within an allowable range, or to suppress the noise level under the conditions of the given imaging sequence. In doing so, it is necessary to determine the priority of noise suppression and image quality improvement in a trade-off relationship in consideration of the tolerance for the sound to be inspected and the image quality that is the purpose of the inspection.
  • An object of the present invention is to obtain a shape of a gradient magnetic field pulse having a noise suppressing effect, to provide an MRI apparatus that executes a pulse sequence including such a gradient magnetic field pulse, and further, an inspector has a degree of freedom.
  • An MRI apparatus that can determine the priority of noise suppression and image quality improvement is provided.
  • the subject of the present invention is further to present the relationship between the parameters such as the bandwidth and the noise level to the inspector in the MRI apparatus adopting the gradient magnetic field pulse whose waveform is not trapezoidal, and to set the imaging condition of the inspector. Including providing useful information.
  • the present inventor searches for a waveform of a gradient magnetic field pulse that can suppress the noise most under the condition of the shape considering the output of the MRI apparatus, and the waveform having a predetermined characteristic suppresses the noise most. I found out that I can do it.
  • the MRI apparatus of the present invention comprises a pulse sequence including a novel gradient magnetic field pulse having this specific waveform.
  • the MRI apparatus further includes means for providing an operator with imaging parameters related to noise in relation to noise when performing imaging with noise reduction. Further, the MRI apparatus of the present invention comprises means for allowing the operator to select the priority for noise reduction and image quality improvement.
  • the present invention by using a gradient magnetic field pulse having a specific waveform as a gradient magnetic field pulse applied for imaging, noise caused by application of the gradient magnetic field pulse can be minimized. Further, according to the present invention, it is possible to provide information that makes it easy for an operator to determine imaging conditions, and it is possible to simplify trial and error and complicated procedures for noise reduction.
  • FIG. 1 is a block diagram showing an overall outline of an MRI apparatus to which the present invention is applied.
  • Functional block diagram of control unit The figure which shows an example of the pulse sequence integrated in the MRI apparatus of this invention Diagram showing an example of gradient magnetic field pulse shape that minimizes noise Flow showing the procedure for obtaining the gradient magnetic field pulse shape of the first embodiment The figure explaining the step of FIG.
  • FPF frequency response function
  • required by the method of 2nd embodiment The figure which shows the shape after filtering the shape of FIG.
  • Flow showing procedure for obtaining gradient magnetic field pulse waveform according to third embodiment The figure explaining the procedure by 3rd embodiment.
  • Flow showing procedure of modified example of third embodiment The graph which shows the relationship (an example) between the imaging parameter used with the MRI apparatus of 4th embodiment, and a noise level
  • Graph showing another example of relationship between imaging parameters and noise level The figure which shows the other example of the display screen in the MRI apparatus of 4th embodiment.
  • the MRI apparatus of the present embodiment includes a magnetic field application unit that applies a high frequency magnetic field pulse and a gradient magnetic field pulse according to a pulse sequence that describes the application intensity and timing of the high frequency magnetic field pulse and the gradient magnetic field pulse, and a magnetic field applied by the magnetic field application unit. And a receiving unit that receives a nuclear magnetic resonance signal generated from the inspection object.
  • at least one type of gradient magnetic field pulse included in the pulse sequence used for controlling the magnetic field application unit satisfies the slew rate of the gradient magnetic field in the magnetic field application unit and is symmetric. It has the required shape that minimizes noise.
  • One aspect of the shape of the gradient magnetic field pulse that minimizes noise is a shape depicted by a curve having three or more inflection points.
  • the shape of the gradient magnetic field pulse that minimizes the noise is, for example, a shape formed by sequentially stacking a plurality of minute rectangles until a predetermined area is reached, and until the final gradient magnetic field pulse shape is formed by stacking the minute rectangles. Is a shape obtained by updating the provisional shape so as to be a shape that minimizes noise.
  • the initial value is a model combining a plurality of waveforms specified by the shape parameter, and the gradient magnetic field pulse shape obtained when the shape parameter is changed becomes a shape that minimizes noise. It is the shape obtained by repeating the update.
  • FIGS. 1 and 2 the configuration of the MRI apparatus of the present embodiment will be described in detail with reference to FIGS. 1 and 2.
  • those having the same function are denoted by the same reference numerals, and repeated explanation thereof is omitted.
  • An MRI apparatus 100 shown in FIG. 1 obtains a tomographic image of a subject 101 by using an NMR phenomenon, and a static magnetic field generation unit 120 that generates a static magnetic field and a subject 101 disposed in the static magnetic field.
  • the gradient magnetic field generation unit 130 and the transmission unit 150 correspond to the magnetic field application unit of the present invention.
  • the static magnetic field generator 120 generates a uniform static magnetic field in the space around the subject 101.
  • a static magnet type, normal conduction type, or superconducting type static magnetic field generation source arranged around the subject 101 is used. Prepare. There are a vertical magnetic field method and a horizontal magnetic field method depending on the direction of the generated static magnetic field. In the vertical magnetic field method, a static magnetic field is generated in a direction perpendicular to the body axis. In the horizontal magnetic field method, a static magnetic field is generated in the body axis direction.
  • the gradient magnetic field generation unit 130 is a gradient magnetic field coil 131 wound in the three-axis directions of X, Y, and Z, which is a coordinate system (apparatus coordinate system) of the MRI apparatus 100, and a gradient magnetic field power source that drives each gradient magnetic field coil. 132.
  • the gradient magnetic field coil 131 drives the gradient magnetic field power supply 132 of each gradient magnetic field coil 131 in accordance with a command from the sequencer 140, thereby generating gradient magnetic field pulses Gx, Gy, Gz in the three axis directions of X, Y, and Z. Apply.
  • Each of the gradient magnetic field pulses Gx, Gy, and Gz is applied in a direction orthogonal to the slice plane (imaging cross section) at the time of imaging, and sets the slice plane for the subject 101 and is orthogonal to the set slice plane.
  • the MRI apparatus of this embodiment is characterized in that a pulse having a shape that minimizes noise is prepared as a pulse applied by the gradient coil 131.
  • the transmitter 150 irradiates the subject 101 with a high-frequency magnetic field pulse (hereinafter referred to as “RF pulse”) in order to cause nuclear magnetic resonance to occur in the nuclear spins of the atoms constituting the biological tissue of the subject 101.
  • RF pulse high-frequency magnetic field pulse
  • the high frequency oscillator 152 generates an RF pulse and outputs it at a timing according to a command from the sequencer 140.
  • the modulator 153 amplitude-modulates the output RF pulse.
  • the high-frequency amplifier 154 amplifies the amplitude-modulated RF pulse and supplies the amplified RF pulse to the transmission coil 151 disposed close to the subject 101.
  • the transmission coil 151 irradiates the subject 101 with the supplied RF pulse.
  • the receiving unit 160 detects a nuclear magnetic resonance signal (echo signal, NMR signal) emitted by nuclear magnetic resonance of the nuclear spin constituting the living tissue of the subject 101, and receives a high-frequency coil (receiving coil) on the receiving side. 161, a signal amplifier 162, a quadrature detector 163, and an A / D converter 164.
  • the reception coil 161 is disposed in the vicinity of the subject 101 and detects an NMR signal of the response of the subject 101 induced by the electromagnetic wave irradiated from the transmission coil 151.
  • the detected NMR signal is amplified by the signal amplifier 162 and then divided into two orthogonal signals by the quadrature phase detector 163 at the timing according to the command from the sequencer 140, and each is digitally converted by the A / D converter 164. The amount is converted and sent to the controller 170.
  • the receiving coil 161 may be composed of a single coil, a multiple array coil (phased array coil) in which a plurality of small coils are combined is often used.
  • the sequencer 140 functions as an imaging control unit together with the control unit 170, operates in accordance with instructions from the control unit 170, sends various commands necessary for collecting tomographic image data of the subject 101, the transmission unit 150, and the gradient magnetic field.
  • the data is transmitted to the generation unit 130 and the reception unit 160.
  • the sequencer 140 repeatedly applies the RF pulse and the gradient magnetic field pulse according to a predetermined pulse sequence.
  • the pulse sequence describes (determines) the high-frequency magnetic field, gradient magnetic field, signal reception timing and intensity, and there are various pulse sequences (basic pulse sequences) that differ depending on the imaging method. Stored in the storage device 172 in advance.
  • the control unit 170 controls the entire MRI apparatus 100, performs operations such as various data processing, displays and stores processing results, and includes a CPU 171, a storage device 172, a display device 173, and an input device 174.
  • the storage device 172 includes an internal storage device such as a hard disk and an external storage device such as an external hard disk, an optical disk, and a magnetic disk.
  • the storage device 172 stores data necessary for the calculation of the CPU 171 and data in the middle of calculation or as a calculation result.
  • a gradient pulse shape that minimizes noise or a pulse sequence using the gradient pulse shape is stored together with the basic pulse sequence. As will be described in detail later, when the gradient magnetic field pulse shape that minimizes the noise is obtained under the conditions of a predetermined imaging parameter, the pulse shape is the imaging parameter used as the condition. Stored together.
  • the display device 173 is a display device such as a CRT or a liquid crystal.
  • the input device 174 is an interface for inputting various control information of the MRI apparatus 100 and control information of processing performed by the control unit 170, and includes, for example, a trackball or a mouse and a keyboard.
  • the input device 174 is disposed in the vicinity of the display device 173. The operator interactively inputs instructions and data necessary for various processes of the MRI apparatus 100 through the input device 174 while looking at the display device 173. Further, it is possible to input imaging parameters necessary for executing the pulse sequence according to the target imaging method.
  • the CPU 171 implements each process of the control unit 170 such as control of the operation of each unit of the MRI apparatus 100 and various data processing by executing a program stored in advance in the storage device 172 according to an instruction input by the operator. .
  • the CPU 171 executes processing such as signal processing and image reconstruction, and displays the tomographic image of the subject 101 as a result on the display device 173.
  • processing such as signal processing and image reconstruction, and displays the tomographic image of the subject 101 as a result on the display device 173.
  • it is stored in the storage device 172.
  • the data from the receiving unit 160 is normally data arranged in a data space called k-space.
  • the coordinates (position) of the k space are determined by the application amount of the gradient magnetic field pulse given to the echo signal, and the points (k space matrix) to be acquired are determined according to the image size and the visual field.
  • the control unit 170 controls the pulse sequence so as to measure points to be acquired, obtains data, and performs predetermined image processing on the data set obtained by measurement to obtain an image.
  • the CPU 171 has a function for creating a pulse sequence that minimizes noise.
  • the CPU 171 can include a pulse sequence creation unit 180, a noise level calculation unit 181, and a noise level comparison unit 182.
  • a display control unit 183 is provided for causing the display device 173 to display information necessary when the operator creates or designs a pulse sequence. Some or all of these may be omitted depending on the embodiment of the present invention.
  • the pulse sequence creation unit 180 reads the basic pulse sequence and the imaging parameters stored in the storage device 172, and creates a pulse sequence (hereinafter also referred to as an imaging sequence to distinguish from the basic sequence) executed by the sequencer 140. At this time, if imaging that minimizes noise is selected by the operator, an imaging pulse sequence is created using the gradient magnetic field pulse shape stored in the storage device 172.
  • the noise level calculation unit 181 calculates the noise level of the created imaging pulse sequence using a frequency response function (FRF) unique to the apparatus.
  • FRF frequency response function
  • the noise level comparison unit 182 compares the noise levels calculated by the noise level calculation unit 181 for a plurality of imaging pulse sequences, and causes the display device 173 to display the comparison result.
  • each of these units corresponds to a program including a predetermined algorithm mounted on the CPU 171.
  • a part of this function may be replaced by hardware such as a well-known ASIC (Application Specific Integrated Circuit).
  • the pulse sequence creation unit 180 When imaging, the operator selects an arbitrary imaging method via the input device 174, so that the pulse sequence creation unit 180 reads a predetermined pulse sequence from the storage device 172 and stores the gradient magnetic field pulses stored in the storage device 172. A predetermined waveform is selected from the shape.
  • the pulse sequence creation unit 180 selects these pulse sequences, gradient magnetic field pulse shapes, and imaging parameters selected by the operator via the input device 174, for example, echo time (TE), repetition time (TR), inter-echo time (IET). ),
  • An imaging sequence executed by the sequencer 140 is created using an imaging field of view (FOV) or the like.
  • FOV imaging field of view
  • the gradient magnetic field pulses generally used for imaging include a slice selection gradient magnetic field pulse, a phase encode gradient magnetic field pulse and its rephase or dephase pulse, a frequency encode gradient magnetic field pulse and its rephase or dephase pulse, a spoiler pulse, etc.
  • the specific gradient magnetic field pulse can be used for any of these various gradient magnetic field pulses.
  • the frequency encoded gradient magnetic field pulse that is essential for the pulse sequence and has a large influence on noise. The case where it applies to is demonstrated.
  • the type of the basic pulse sequence is not particularly limited.
  • the FSE (Fast Spin Echo) sequence shown in FIG. 3 will be described.
  • the horizontal axis RF indicates the RF pulse application timing
  • Gs, Gp, and Gf indicate the slice gradient magnetic field, phase encode gradient magnetic field, and frequency encode gradient magnetic field, respectively.
  • the sampling time of the echo signal is set within the application time of the frequency encode pulse.
  • the frequency encode pulse 301 and its rephase pulse 302 are each trapezoidal as shown in FIG.
  • the gradient magnetic field pulse employed in this embodiment is a gradient magnetic field pulse that has a special waveform 400 as shown in FIG. 4 and minimizes noise under given conditions.
  • FSF frequency response characteristics
  • a method for obtaining a gradient magnetic field pulse shape that minimizes noise will be described.
  • a target waveform area is set, and a shape condition is determined in consideration of feasibility by the MRI apparatus.
  • the area of the waveform is determined by the encoding time and the gradient magnetic field strength (in other words, the reception bandwidth BW), but here, a provisional value may be set to determine the shape.
  • conditions relating to imaging parameters such as the number of echo trains and inter-echo time IET may be set. Since these imaging parameters affect the frequency spectrum of the gradient magnetic field, and the noise level generated changes as it changes, these imaging parameters may also be parameters for minimizing noise. Then, to make the explanation simple, it is fixed.
  • a slew rate of the gradient magnetic field (Slew Rate) is limited, and a shape condition that only one extreme value is included in a section in which the symmetric and positive / negative signs are the same is added.
  • the slew rate of the gradient magnetic field is a change amount per unit time of the gradient magnetic field strength T / m generated by the apparatus, and is determined by the performance of the gradient magnetic field amplifier that drives the gradient magnetic field coil.
  • the gradient is limited by the slew rate.
  • the condition of symmetry is intended to simplify the calculation, and the condition of having only one extreme value in the interval where the sign of the sign is the same is intended to prevent large fluctuations in the gradient magnetic field. This is because if the gradient magnetic field greatly fluctuates during reception, the substantial bandwidth (BWeff) at each sampling frequency fluctuates greatly, and it is considered that noise characteristics become unnatural and a desirable image quality is not obtained.
  • the substantial bandwidth is defined by the following equation (1).
  • BWeff ( ⁇ / 2 ⁇ ) ⁇ G ⁇ FOV (1)
  • the magnetic rotation ratio
  • G the gradient magnetic field strength
  • FOV the imaging field of view.
  • noise is proportional to the square root of the bandwidth ( ⁇ (BW))
  • BWeff includes the influence of sampling density in BW.
  • a state in which no gradient magnetic field is applied is set as an initial state (S101), and a step of adding a small gradient magnetic field pulse shape (S102, S103) is repeated until the target area is reached.
  • Adding a small gradient magnetic field pulse shape The rectangle added in step S103 indicates that the gradient magnetic field pulse that is formed when it is added to the gradient magnetic field pulse shape that is being updated depends on the set condition (only one extreme value in the same symmetrical and positive / negative sign interval). (S102).
  • the condition of symmetry can be satisfied by, for example, arranging one rectangle in the center.
  • the small gradient magnetic field pulse shape is composed of various rectangles having the same area which is sufficiently small, for example, a size of 1 / 10,000 of the final area.
  • the slew rate may be limited by the maximum slew rate (T / m / s) of the line connecting the vertices of the superimposed rectangles.
  • the selection of a rectangle that minimizes noise is performed by multiplying the frequency spectrum of the waveform when the candidate rectangle is added to the gradient magnetic field pulse shape being updated by the frequency response function (FRF) of the sound pressure. This is done by calculating the level and selecting the rectangle that minimizes the noise level.
  • FPF frequency response function
  • the frequency response function As the frequency response function, a value obtained in advance as a value unique to the apparatus is used.
  • a weighted A-weighted characteristic that takes into account the human hearing that is the inspection target of the MRI apparatus is used.
  • FIG. 1 Using the FRF weighted with the A characteristic and the frequency spectrum of the gradient magnetic field waveform, the time-average noise level LA eq is calculated by the following equation.
  • G (f) is the frequency spectrum of the gradient magnetic field waveform
  • FRF A (f) is the FRF including the weighting of the A characteristic
  • P0 is the reference sound.
  • G (f) is, for example, Fourier transform of the gradient magnetic field pulse shape of Gs, Gp, and Gf in FIG. IET, rephase pulse time, encoding time, etc. will affect G (f).
  • the step S103 selects a rectangle that minimizes the noise level in this way, and obtains a waveform having a target area while repeating the accumulation of rectangles that satisfy the same condition on the rectangle.
  • a gradient magnetic field pulse waveform 410 as shown in FIG. 8 is finally obtained.
  • the waveform finally obtained has a high frequency. It is not a smooth curve with corresponding irregularities.
  • post-processing for example, filtering processing such as moving average filtering
  • filtering processing such as moving average filtering
  • the waveforms 400 and / or 410 may be obtained for each condition by changing conditions such as the rephase pulse time / echo time, the number of echo trains, and the inter echo time IET.
  • FIG. 9 shows gradient magnetic field pulse shapes obtained by varying the rephase pulse time and the echo encoding time.
  • the method of obtaining is the same as that shown in the flow of FIG. 5, but the obtained waveform has a shape in which a convex waveform is superimposed on a substantially trapezoidal waveform.
  • Each of the waveforms shown in FIGS. 8 and 9 has the following characteristics. First of all, it is clear from the premise of how to find out, but it has only one extreme value in the same interval where the sign is symmetric and has the same sign. In addition, there are a number of inflection points in both cases, considering fine irregularities. In particular, in FIG. 9, even if only the section in which the gradient magnetic field strength is positive is considered, the shape is such that two trapezoids overlap each other, and there are four inflection points even if fine irregularities are ignored.
  • the gradient magnetic field pulse shape calculation by the greedy method described above may be performed by a computer different from the MRI apparatus shown in FIG. 1, or may be performed by the pulse sequence creation unit 180 of the MRI apparatus.
  • the above-described calculation of the gradient magnetic field pulse shape employs a method of determining the brute force by the greedy method, and therefore is not suitable for calculation with an MRI apparatus every time imaging is performed. Therefore, in practice, the optimum gradient magnetic field pulse shape is calculated in advance under some conditions (for example, rephase pulse time, encode pulse time, reception bandwidth), and the optimum gradient for each condition is calculated. It is preferable to store the magnetic field pulse shape and select the optimum gradient magnetic field pulse shape according to the conditions set or selected during imaging.
  • the waveform obtained by another computer is stored in the storage device 172.
  • the pulse sequence creation unit 180 reads the gradient magnetic field pulse shape stored in the storage device 172 and the imaging parameter conditions for obtaining the gradient magnetic field pulse shape, and is read for the basic pulse sequence.
  • a pulse sequence to be actually executed is created by applying shapes and conditions.
  • the operation of the MRI apparatus of this embodiment is the same as that of the conventional MRI apparatus, and detailed description thereof is omitted.
  • the operator selects a basic pulse sequence and sets imaging when setting imaging conditions. Set the parameters.
  • an imaging for minimizing noise is selected, or selection of a gradient magnetic field pulse for minimizing noise is instructed.
  • the pulse sequence creation unit changes the basic pulse sequence using the gradient magnetic field pulse waveform stored in the storage device 172 and passes it to the sequencer 140.
  • the application of the RF pulse and the gradient magnetic field pulse and the measurement of the echo signal are repeatedly performed, and the tomographic image and spectrum image of the subject are reconstructed based on the measured echo signal.
  • the display on the display device is the same as that of the conventional MRI apparatus.
  • FIG. 10 shows a gradient magnetic field pulse that minimizes noise at each rephase pulse time by changing the rephase pulse time while keeping the total application time of the rephase pulse and the frequency encode pulse constant. It is a graph showing calculated values.
  • FIG. 10 shows noise levels (calculated values) when trapezoidal gradient magnetic field pulses are used with the same rephase pulse time (conventional method).
  • the gradient magnetic field pulse of this embodiment can obtain a noise reduction effect of about 10 dB compared to the conventional gradient magnetic field pulse at any rephase pulse time. That is, the sound pressure of noise can be reduced to about one third. It can also be seen that the noise reduction effect is greatest when the rephase pulse time is about 4 ms.
  • the gradient magnetic field pulse that minimizes noise is a frequency encode pulse combined with a rephase pulse, and the frequency encode pulse is obtained under the condition that it has only one extreme value in the same positive / negative sign interval.
  • the conditions for the shape are not limited to those described in the first embodiment, and can be added or changed as appropriate.
  • the present invention can also be applied to a phase pulse itself, a slice selective gradient magnetic field pulse other than a frequency encode pulse, a phase encode gradient magnetic field pulse, or a spoiler pulse.
  • the pulse sequence and the gradient magnetic field waveform are stored in the storage area.
  • the pulse sequence generation unit 180 may generate the pulse sequence every time imaging conditions are input.
  • ⁇ Modification 1> the condition that the frequency encode pulse shape has only one extreme value in the section where the signs of the positive and negative signs are the same is used. However, this modified example is characterized in that this condition is excluded. Other conditions are the same as in the first embodiment, and are symmetry, maximum slew rate, area, rephase pulse time, and encode pulse time.
  • the method for obtaining the gradient magnetic field pulse shape is the same as the procedure shown in FIG. 5 except that the initial setting conditions are different.
  • the rectangle added in step S102 is an axis passing through the center along the time axis of the frequency encoding pulse as shown in FIG. It becomes a set of rectangles arranged symmetrically. Since a set of rectangles may touch at the center, in this case, it is substantially the same as arranging one rectangle.
  • a noise level is calculated when such a rectangular group is arranged, and a rectangular group that minimizes the noise level is determined.
  • FIG. 12 shows the final gradient magnetic field pulse shape obtained by setting the rephase pulse time to 2.276 ms.
  • each has an independent convex shape at the center, and in the frequency encoding section. It has the feature of having three or more inflection points.
  • the present modified example has fewer conditions than the first embodiment, and the gradient magnetic field pulse shape obtained in the present modified example can be said to be a shape that prioritizes the noise reduction effect.
  • ⁇ Modification 2> This modification is characterized in that a condition for the maximum gradient magnetic field strength is further added to the condition for the frequency encoding pulse shape in the first embodiment. Other conditions are the same as in the first embodiment, and only one extreme value exists in the section where the positive and negative signs are the same, the symmetry, the maximum slew rate, the area, the rephase pulse time, and the encode pulse time.
  • the method for obtaining the gradient magnetic field pulse shape is the same as the procedure shown in FIG. 5 except that the initial setting conditions are different.
  • the rectangle to be added in step S102 it is a condition that the gradient magnetic field pulse formed by the addition of the rectangle does not exceed the maximum gradient magnetic field strength.
  • FIG. 13 shows the gradient magnetic field pulse shape obtained with the rephase pulse time of 2.276 ms in this modification.
  • the shape of FIG. 13 is compared with the gradient magnetic field pulse shape (FIG. 9) obtained at the same rephase pulse time in the first embodiment, each of them has a width smaller than that at the center of the trapezoid having the same width as the pulse width. It has a shape in which narrow convex portions overlap each other and has three or more inflection points including two inflection points at both ends of the narrow convex portion.
  • the height of the waveform is lower than the waveform of FIG.
  • a gradient magnetic field pulse having a specific shape that minimizes noise is used as a gradient magnetic field pulse not accompanied by a rephase pulse or a reverse polarity pulse.
  • the imaging sequence to be employed is not particularly limited.
  • the imaging sequence can be applied to the rephase pulse 302 and the slice selection gradient magnetic field pulse 305.
  • gradient magnetic field pulse shape conditions are set as the initial setting (S101).
  • the conditions are a rephase pulse time, a maximum slew rate, a symmetric and positive / negative sign having only one extreme value, and an area.
  • the initial value of the shape is the smallest rectangle whose side length is the rephase pulse time. After that, when a rectangle was added, a rectangle that satisfies the two conditions of having only one extreme value in the same slew rate and symmetric, positive and negative signs in the same interval was determined and added.
  • the shape is updated (S102, S103).
  • the determination as to whether or not the noise is minimized is made for the maximum slew rate and all the rectangles that can be added that satisfy the two conditions of having only one extreme value in the same symmetric and positive and negative signs in the same interval (1 ) To calculate the noise level and compare the noise levels.
  • FIG. 14 shows the rephase pulse obtained by such a method.
  • This waveform also has fine discontinuities due to the upper limit of the frequency in the FRF.
  • post-processing filtering
  • Incorporation is preferred.
  • the present embodiment is characterized in that a gradient magnetic field pulse shape that minimizes noise is obtained from a combination of a plurality of waveform models.
  • the use of the obtained gradient magnetic field pulse shape for the pulse sequence selected during imaging is the same as in the first embodiment.
  • the apparatus configuration is also the same as that of the first embodiment shown in FIGS. 1 and 2, and thus the description thereof will be omitted and different points will be described.
  • FIGS. 15 and 16 respectively show a case where there is no condition having only one extreme value in the same positive / negative sign interval (modified example 1 of the first embodiment) and a single extreme value in the same positive / negative sign interval.
  • FIG. 16 shows the change of the frequency spectrum and the result of multiplying it by FRF and A characteristics as the shape progresses.
  • a gradient magnetic field pulse shape that minimizes noise is obtained using a model in which a pulse having a reverse polarity in the same shape as a rephase pulse is added to a frequency encoding gradient magnetic field pulse.
  • FIG. 17 shows an example of a plurality of waveform models used in this embodiment.
  • a model is formed by superimposing five trapezoids.
  • the five trapezoids two are rephase pulses G1 and G1 ', and the central pulse is a normal frequency encoding pulse G3 included in the basic pulse sequence.
  • the pulses G2 and G2 'adjacent to the rephase pulses G1 and G1' have the same application time, rise time, and reverse polarity as the rephase pulses G1 and G1 ', respectively.
  • the noise reduction effect is the greatest.
  • the parameter search may be performed by using a known optimization technique or by brute force.
  • This shape is the same as the gradient magnetic field pulse shape (FIG. 8) obtained by the same IET, rephase pulse time, and encoding time in the first embodiment, and it can be seen that this modeling is appropriate.
  • the waveform (FIG. 18) obtained by modeling may be smoothed by filtering as in the first embodiment.
  • FIG. 19 shows a waveform obtained by applying a moving average filter of 0.6 ms to the waveform of FIG.
  • the noise level (calculated value) of this frequency encoding gradient magnetic field is ⁇ 51.9 dB, which is equivalent to the noise level ( ⁇ 52.4 dB) of the frequency encoding gradient magnetic field of the first embodiment obtained under the same conditions. It can be seen that the effect of the optimized shape can be obtained even with the filter alone.
  • FIG. 17 shows a model in which two pulses having the same shape as the rephase pulse and opposite polarity are added to the two rephase pulses and the frequency encode pulse, but the model is not limited to this.
  • the model is not limited to this.
  • the rise time of the rephase pulse G1, the rise time of the frequency encode pulse G3, the rise time of the frequency encode pulse G3, and the area ratio of one frequency encode pulse G3 to the entire frequency encode pulse are used as parameters. A set of parameters that can obtain a noise reduction effect is searched.
  • the shape of the pulse constituting the model is a trapezoid.
  • the shape is not limited to a trapezoid as long as the parameter can be searched analytically.
  • a sine wave from 0 to ⁇
  • a sine square is used. It is also possible to use waves, quadratic functions, etc.
  • calculation of the gradient magnetic field pulse shape using the model may be performed by a computer different from the MRI apparatus, or may be performed by the pulse sequence creation unit 180 of the MRI apparatus. According to the present embodiment, by using a model, it is possible to calculate the optimum gradient magnetic field pulse shape in a shorter time than in the first embodiment.
  • the gradient magnetic field pulse shape that minimizes the noise by fixing the imaging parameter is obtained, but in this embodiment, the imaging parameter itself is used as a condition for obtaining the gradient magnetic field pulse shape that minimizes the noise. It is a feature to add. Imaging parameters to be added as conditions are not particularly limited, and examples include repetition time (TR), echo interval (IET), rephase pulse time, and the like. Add as a condition.
  • the predetermined width is a range of imaging parameter values allowed in a general pulse sequence.
  • This embodiment is different from the first and second embodiments only in the method for obtaining the gradient magnetic field pulse shape, and the other configuration and imaging method are the same, so the description thereof will be omitted.
  • the gradient magnetic field pulse shape according to the present embodiment The procedure for obtaining is described with reference to FIG.
  • the initial value may be an arbitrary value such as a minimum value, a maximum value, or a median value of a predetermined width of each imaging parameter.
  • the same conditions as those of the first embodiment or the modified example 1 or 2 are provided for the shape (S101). That is, for example, the maximum slew rate, a symmetric and positive / negative sign in the same section, has only one extreme value or simply a symmetric shape, and an area of a waveform (pulse).
  • the shape of the gradient magnetic field pulse that minimizes the noise is obtained (S102 ').
  • This step S102 ' may employ either the above-described first embodiment (including a modified example) or the method employed in the second embodiment (step S102 in FIG. 5). If it is the method of 1st embodiment, the procedure of determining the rectangle which minimizes a noise when the rectangle of a unit area is piled up sequentially is repeated. At that time, if the shape condition includes only one extreme value with the same sign, the maximum gradient magnetic field strength does not include only one extreme value with the same sign. There may be cases where additional conditions are added.
  • a modeled waveform is used as an initial value, and a parameter that gives a shape that minimizes noise is searched from among parameters that define the model, and finally a waveform that minimizes noise.
  • a model a model combining trapezoids as shown in FIGS. 17 and 20 or a model combining shapes other than trapezoids can be adopted.
  • step S102 ′ when calculating the noise level when a rectangle of unit area is added, the noise level is taken into account when the imaging parameter is changed, that is, by taking into account the repeating pattern of the gradient magnetic field pulse. Is calculated, and the shape and imaging parameters that minimize the noise level are obtained. In the case of modeling, a combination of parameters that minimizes the noise level is obtained for all combinations of the shape parameter and the imaging parameter.
  • a noise level is calculated when a provisional gradient magnetic field pulse obtained by a combination of one imaging parameter is used as another imaging parameter.
  • a combination of imaging parameters that minimizes may be obtained.
  • the combination of imaging parameters being updated is provisional, and in the next iteration, the updated gradient magnetic field pulse is updated to a combination of imaging parameters determined to minimize noise.
  • step S103 the gradient magnetic field pulse shape obtained in step S102 'is set as a new gradient magnetic field pulse shape. That is, the gradient magnetic field pulse shape to be processed in step S102 'is updated. Steps S102 'and S103 are repeated until the updated gradient magnetic field pulse shape reaches the set gradient magnetic field pulse area (S104).
  • the combination of the gradient magnetic field pulse shape and the imaging parameter that ultimately minimizes the noise is finally determined by the above processing.
  • the gradient magnetic field pulse shape and the imaging parameters thus obtained are stored in the storage device 172.
  • the pulse sequence creation unit 180 reads the gradient magnetic field pulse shape and imaging parameters stored in the storage device 172, changes the basic pulse sequence, and is actually used for imaging. An imaging sequence is created and passed to the sequencer 140.
  • an imaging parameter can be set when an operator selects a pulse sequence.
  • the imaging parameters determined when the gradient magnetic field pulse shape that minimizes noise is obtained on the imaging parameter setting screen are as follows. The value may be displayed by default. Further, another imaging parameter may be set by the operator.
  • the pulse sequence creation unit 180 uses the gradient magnetic field pulse shape read from the storage device 172, and a new one set by the operator. An imaging sequence is created based on the basic pulse sequence using the imaging parameters. Also in this case, since the shape of the gradient magnetic field pulse is a form that reduces noise, noise can be greatly reduced compared to the case where a pulse sequence using a basic trapezoidal gradient magnetic field pulse is executed.
  • ⁇ Modification example of the third embodiment> when obtaining the gradient magnetic field pulse shape that minimizes noise, adding the imaging parameter width as a condition, and obtaining the optimum gradient magnetic field pulse shape within this width are the same as in the third embodiment. It is. However, in this modified example, the imaging parameter condition is handled in the same way as the shape condition as in step S102 ′ of the third embodiment, and the gradient magnetic field pulse shape is not searched but applied step by step.
  • imaging parameters are initially set, and a gradient magnetic field pulse shape that minimizes noise is determined based on the imaging parameters.
  • the imaging parameter may be one or a plurality of combinations.
  • the noise level at this time is calculated and recorded (S201).
  • change the imaging parameters or a combination thereof determine the gradient magnetic field pulse shape that minimizes the noise in the same way, calculate the noise level at this time, and compare it with the noise level in the conditions of the imaging parameters recorded before that. Then, it is updated to one having a lower noise level (S202).
  • Step S202 is repeated while changing the imaging parameters (S203), and finally the gradient magnetic field pulse shape when noise can be reduced most among all the imaging parameters or combinations is determined.
  • the update convergence condition in step S203 methods such as the steepest descent method and the bisection method can be applied. Or you may perform step S202 about all the imaging parameters by the brute force method. In the case of the round robin method, since all changes are examined in one step S202, step S203 is omitted.
  • the gradient magnetic field pulse for minimizing noise and the imaging parameter as the condition at that time may be calculated by the MRI apparatus (pulse sequence creation unit 180). What is calculated in advance by the computer may be stored in the storage device 172 of the MRI apparatus. In addition, when calculating in advance, gradient magnetic field pulses that minimize noise obtained under a plurality of conditions with different imaging parameters or combinations thereof are stored, and those closest to the imaging parameters selected by the operator at the time of imaging are stored. May be read from the storage device 172 and executed. Alternatively, some candidates may be presented to the operator via the display device 173 and selected. The GUI for causing the operator to make a selection will be described in detail in the next embodiment.
  • a low noise gradient magnetic field pulse that takes imaging parameters into consideration is used, so that the burden on the subject due to noise can be reduced.
  • the present embodiment is characterized in that it generates information for an operator to select an image that minimizes noise and an image that prioritizes image quality, and includes a GUI that presents the information to the operator.
  • the MRI apparatus according to the present embodiment includes a display control unit (183) that displays on the display device (173) the reception bandwidth that minimizes noise and the relationship between the reception bandwidth that minimizes noise and generated noise. ).
  • the MRI apparatus of the present embodiment is based on the display control unit (183) that displays a UI for selecting the priority for noise reduction and image quality improvement on the display device (173), and the priority selected via the UI.
  • An imaging control unit (control unit 170) that controls imaging parameters is further provided.
  • the pulse sequence creation unit uses a combination of gradient magnetic field pulse shape and imaging parameters that can minimize noise. Create an imaging pulse sequence that minimizes noise.
  • the operator can select whether or not to select an image that minimizes noise, but the image quality is slightly higher than that of an intermediate image, that is, an image that minimizes noise.
  • the image resolution, SNR, imaging time, and the like change monotonically with respect to the imaging parameters. Therefore, the operator can easily determine how to change the imaging parameters when trying to change them.
  • the noise level does not necessarily change monotonously with changes in the imaging parameters, so how much is changed to achieve the desired noise level while considering the trade-off with image quality. It is difficult to know what to do.
  • the MRI apparatus of the present embodiment includes means for providing the operator with the relationship between the imaging parameter and noise or information derived therefrom, thereby facilitating the setting of the imaging parameter by the operator.
  • the relationship between the noise and the imaging parameter is the noise level when the imaging parameter is changed in the process of obtaining the gradient magnetic field pulse shape that minimizes the noise with the predetermined imaging parameter by the method of the first to third embodiments. It can be derived by calculating the change. Alternatively, in the method of the modified example of the third embodiment, it is possible to derive the relationship between the noise level calculated when obtaining the gradient magnetic field pulse shape that minimizes the noise while changing the imaging parameter and the imaging parameter.
  • FIG. 24 shows the relationship between the average reception bandwidth BWave and the noise level as an example of the relationship between the imaging parameter and the noise level.
  • BWave is defined by the following equation (3) using the average gradient magnetic field strength Average (G) when the gradient magnetic field strength being received is not constant.
  • BWave ⁇ / (2 ⁇ ) ⁇ Average (G) ⁇ FOV (3)
  • the graph shown in FIG. 24 is obtained by plotting the noise level when the BWave is changed with respect to the pulse shape after obtaining the gradient magnetic field pulse shape that minimizes the noise with a predetermined BWave. The parameters are fixed.
  • the change in noise level is not monotonous with respect to the change in BWave.
  • the larger the BWave the better the image quality.
  • the change in the noise level is not known unless the BWave is changed. Therefore, the operator changes the BWave to grasp the tendency of the noise level change, for example, when the BWave is automatically determined by the MRI apparatus of the first embodiment and the gradient magnetic field pulse shape and the pulse sequence based on it are created. The operator needs to remember the BWave, then manually determine the BWave and start again, which complicates the procedure.
  • such a relationship between noise and imaging parameters is obtained in advance and stored in the storage device 172, and is presented when the imaging parameters are set by the operator.
  • the operator can determine how to change BWave, for example.
  • the information presented by the MRI apparatus can take various forms. For example, a graph as shown in FIG. 24 may be displayed on the imaging parameter setting screen of the display device 173, or as shown in FIG. A display block of the minimum noise BWave may be provided on such an imaging parameter setting screen, and the value of BWave that minimizes the noise may be displayed.
  • the BWave for minimizing noise is the minimum value of the graph shown in FIG. 24 and can be obtained by a normal optimization process.
  • the value of the minimum noise BWave when the operator wants to reduce the noise, it is only necessary to change the BWave so as to approach the BWave that minimizes the noise. It can also be seen that the displayed value is the BWave limit that minimizes noise.
  • FIG. 26 shows the relationship between BWk0 and the noise level. This relationship is also obtained by the same method as the relationship shown in FIG. 24, and it can be seen that the change in noise level is not monotonous with respect to the change in BWk0, that is, has a minimum value.
  • the graph and / or the minimum value of this relationship is displayed on the display device 173.
  • noise level As information displayed on the display device 173 for noise, in addition to the information based on the relationship between the noise and the imaging parameter described above, for example, the noise level itself, the noise level when the imaging parameter is varied (maximum value) , Minimum values, imaging parameters that take those values), and combinations of recommended imaging parameters.
  • Such information can be created by the functions of the noise level calculation unit 181 and the noise level comparison unit 182 of the CPU 171.
  • the imaging parameter for example, reception bandwidth
  • the imaging parameter that minimizes the noise and / or the relationship between the noise and the imaging parameter are displayed on the display device 173, so that the imaging parameter can be changed. It is possible to obtain information such as whether the noise level can be reduced by changing the imaging parameters, and taking appropriate images in consideration of the required image quality and subject noise tolerance Can do.
  • the noise level calculated by the noise level calculation unit 181 may be displayed by adding a display block for displaying the noise level, as shown in FIG.
  • an “undo” function and a “redo” function may be added as shown in FIG. 28 in order to set the parameters and the noise level before and after the change, as shown in FIG.
  • two parameter setting screens may be prepared, set while comparing the two, and finally, an imaging parameter may be determined by pressing a decision button.
  • an MRI apparatus with reduced noise is provided.
  • an MRI apparatus is provided that makes it easy for an operator to capture desired noise in consideration of the image quality for noise that has a trade-off relationship with image quality.
  • 120 Static magnetic field generation unit
  • 130 Gradient magnetic field generation unit
  • 140 Sequencer
  • 150 Transmission unit
  • 160 Reception unit
  • 170 Control unit (imaging control unit), 171 ... CPU, 172 ... storage device, 173 ... display device, 180 ... pulse sequence creation unit, 181 ... noise level calculation unit, 182 ... noise level comparison unit, 183 ... -Display control unit.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

Provided are a gradient magnetic field pulse in a new shape and having an effect in suppressing noise, and an MRI device that executes a pulse sequence including the gradient magnetic field pulse. The MRI device of the present invention is provided with: a magnetic field application unit that applies high frequency magnetic field pulses and gradient magnetic field pulses in accordance with a pulse sequence describing the timing and the applied strength of the high frequency magnetic field pulses and the gradient magnetic field pulses; and a receiving unit for receiving nuclear magnetic resonance signals generated from a test object because of the magnetic field applied by the magnetic field application unit. The shape of at least one type of the gradient magnetic field pulses included in the pulse sequence is a shape that minimizes noise and is obtained under a condition that the shape satisfies the slew rate of the gradient magnetic field at the magnetic field application unit.

Description

磁気共鳴イメージング装置Magnetic resonance imaging system
 本発明は、磁気共鳴イメージング装置(以下、MRI装置という)に関し、特に撮像時の騒音を低減する技術に関する。 The present invention relates to a magnetic resonance imaging apparatus (hereinafter referred to as an MRI apparatus), and more particularly to a technique for reducing noise during imaging.
 MRI装置における課題の一つに、傾斜磁場パルスを高速で切り替えることに伴って発生する騒音の低減がある。一般に騒音の低減と画質の向上(そのために採用する高速シーケンス)とはトレードオフの関係にあり、画質の劣化を極力抑制しつつ騒音を低減することが重要である。 One of the problems in the MRI apparatus is the reduction of noise generated by switching the gradient magnetic field pulse at high speed. In general, there is a trade-off relationship between noise reduction and image quality improvement (high-speed sequence adopted for that purpose), and it is important to reduce noise while suppressing deterioration in image quality as much as possible.
 この課題に対するアプローチの一つは、与えられた撮像条件或いは撮像シーケンスにおいて騒音を最小にするように傾斜磁場パルスのパラメータを変更するものであり、例えば、特許文献1には、傾斜磁場の内部繰り返し時間(intra-repetition-interval)を固定した状態で、低騒音を実現するスルーレートや傾斜磁場強度を決定する技術が記載されている。別のアプローチは、上記アプローチとは逆に、許容できる騒音レベル内で実現できる撮像シーケンスを決定するというものであり、例えば、特許文献2には、許容できる騒音レベルを設定し、選択されたパルスシーケンスを実行したときの騒音レベルを算出し、それが許容値を超えるときにパルスシーケンスを変更することが開示されている。また特許文献3には、選択された撮像シーケンスの騒音レベルを算出し、その結果を表示し、騒音レベルの予想値に応じて操作者による撮像シーケンスに変更を可能にしたUIに関する技術が提案されている。 One approach to this problem is to change the parameters of the gradient magnetic field pulse so as to minimize noise in a given imaging condition or imaging sequence. For example, Patent Document 1 discloses internal repetition of a gradient magnetic field. A technique is described that determines the slew rate and gradient magnetic field strength to achieve low noise with a fixed time (intra-repetition-interval). Another approach is to determine an imaging sequence that can be realized within an acceptable noise level, as opposed to the above approach. For example, in Patent Document 2, an acceptable noise level is set and a selected pulse is selected. It is disclosed that the noise level when the sequence is executed is calculated and the pulse sequence is changed when the sequence exceeds an allowable value. Patent Document 3 proposes a technique related to a UI that calculates a noise level of a selected imaging sequence, displays the result, and allows an operator to change the imaging sequence according to an expected value of the noise level. ing.
 上述した技術とは別に傾斜磁場パルス自体の形状を工夫する試みもいくつか提案されている。例えば、特許文献4には、傾斜磁場パルス発生部の前段にフィルターを設けて、傾斜磁場パルスの形状を変化させる技術が開示されている。また非特許文献1、2には、傾斜磁場パルスの形状を台形ではなく、サイン波に代表される形状に変化させることが提案されている。 In addition to the techniques described above, several attempts have been proposed to devise the shape of the gradient magnetic field pulse itself. For example, Patent Document 4 discloses a technique for changing the shape of a gradient magnetic field pulse by providing a filter before the gradient magnetic field pulse generator. Non-Patent Documents 1 and 2 propose changing the shape of the gradient magnetic field pulse to a shape typified by a sine wave instead of a trapezoid.
米国特許出願公開第2013/0200893号明細書US Patent Application Publication No. 2013/0200893 米国特許第6407548号明細書US Pat. No. 6,407,548 米国特許出願公開第2013/0275086号明細書US Patent Application Publication No. 2013/0275086 国際公開第98/13703号International Publication No. 98/13703
 上述した従来技術では、いずれも、傾斜磁場パルスの形状は既に知られている台形或いはサイン波等のモデル波形を基本として静音化を図るものであり、モデル波形の範囲内での最適化に留まる。 In each of the above-described conventional techniques, the gradient magnetic field pulse shape is based on a known model waveform such as a trapezoid or a sine wave, and the optimization is within the range of the model waveform. .
 また従来の静音化のアプローチは、騒音レベルを許容範囲に抑えた場合の撮像シーケンスの最適化或いは与えられた撮像シーケンスの条件下での騒音レベルの抑制であるが、検査者がMRI装置で検査する際は、その検査対象の音に対する許容度や検査の目的である画質などを考慮して、トレードオフの関係にある騒音抑制と画質向上の優先性を決定する必要がある。 The conventional noise reduction approach is to optimize the imaging sequence when the noise level is kept within an allowable range, or to suppress the noise level under the conditions of the given imaging sequence. In doing so, it is necessary to determine the priority of noise suppression and image quality improvement in a trade-off relationship in consideration of the tolerance for the sound to be inspected and the image quality that is the purpose of the inspection.
 本発明の課題は、騒音抑制効果を持つ傾斜磁場パルスの形状を得ること、そのような傾斜磁場パルスを含むパルスシーケンスを実行するMRI装置を提供すること、さらには、検査者が自由度を持って騒音抑制と画質向上の優先性を決定できるMRI装置を提供することである。本発明の課題は、さらに、波形が台形ではない傾斜磁場パルスを採用したMRI装置において、そのバンド幅等のパラメータと騒音レベルとの関係を検査者に提示し、検査者の撮像条件の設定に資する情報を提供することを含む。 An object of the present invention is to obtain a shape of a gradient magnetic field pulse having a noise suppressing effect, to provide an MRI apparatus that executes a pulse sequence including such a gradient magnetic field pulse, and further, an inspector has a degree of freedom. An MRI apparatus that can determine the priority of noise suppression and image quality improvement is provided. The subject of the present invention is further to present the relationship between the parameters such as the bandwidth and the noise level to the inspector in the MRI apparatus adopting the gradient magnetic field pulse whose waveform is not trapezoidal, and to set the imaging condition of the inspector. Including providing useful information.
 上記課題を解決するため、本発明者はMRI装置の出力を考慮した形状の条件のもとで最も騒音を抑制できる傾斜磁場パルスの波形を探索し、所定の特徴を持つ波形が最も騒音を抑制できることを見出した。そして本発明のMRI装置は、この特定の波形を持つ新規な傾斜磁場パルスを含むパルスシーケンスを具備するものである。 In order to solve the above problems, the present inventor searches for a waveform of a gradient magnetic field pulse that can suppress the noise most under the condition of the shape considering the output of the MRI apparatus, and the waveform having a predetermined characteristic suppresses the noise most. I found out that I can do it. The MRI apparatus of the present invention comprises a pulse sequence including a novel gradient magnetic field pulse having this specific waveform.
 また本発明のMRI装置は、さらに、騒音低減を図った撮像を行う際に騒音と関連性のある撮像パラメータを騒音との関係で操作者に提供する手段を備えるものである。また本発明のMRI装置は、操作者に騒音低減及び画質向上の優先度を選択させる手段を備えるものである。 The MRI apparatus according to the present invention further includes means for providing an operator with imaging parameters related to noise in relation to noise when performing imaging with noise reduction. Further, the MRI apparatus of the present invention comprises means for allowing the operator to select the priority for noise reduction and image quality improvement.
 本発明によれば、撮像のために印加される傾斜磁場パルスとして特定の波形の傾斜磁場パルスを用いることにより、傾斜磁場パルス印加に起因する騒音を最小化することができる。また本発明によれば、操作者による撮像条件決定を容易にする情報を提供することができ、静音化のための試行錯誤や煩雑な手順を簡略化することができる。 According to the present invention, by using a gradient magnetic field pulse having a specific waveform as a gradient magnetic field pulse applied for imaging, noise caused by application of the gradient magnetic field pulse can be minimized. Further, according to the present invention, it is possible to provide information that makes it easy for an operator to determine imaging conditions, and it is possible to simplify trial and error and complicated procedures for noise reduction.
本発明が適用されるMRI装置の全体概要を示すブロック図1 is a block diagram showing an overall outline of an MRI apparatus to which the present invention is applied. 制御部の機能ブロック図Functional block diagram of control unit 本発明のMRI装置に組み込まれたパルスシーケンスの一例を示す図The figure which shows an example of the pulse sequence integrated in the MRI apparatus of this invention 騒音を最小にする傾斜磁場パルス形状の一例を示す図Diagram showing an example of gradient magnetic field pulse shape that minimizes noise 第一実施形態の傾斜磁場パルス形状を求める手順を示すフローFlow showing the procedure for obtaining the gradient magnetic field pulse shape of the first embodiment 図5のステップを説明する図The figure explaining the step of FIG. 装置の周波数応答関数(FRF)の一例を示す図The figure which shows an example of the frequency response function (FRF) of an apparatus 図5の手順により求まった傾斜磁場パルス形状の一例を示す図The figure which shows an example of the gradient magnetic field pulse shape calculated | required by the procedure of FIG. 図5の手順により求まった傾斜磁場パルス形状の他の例を示す図The figure which shows the other example of the gradient magnetic field pulse shape calculated | required by the procedure of FIG. 騒音を最小化する傾斜磁場パルス形状についてリフェーズ時間を異ならせた場合の騒音レベルを示すグラフGraph showing the noise level when the rephase time is varied for gradient magnetic field pulse shapes that minimize noise 変更例1の傾斜磁場パルス形状を求める手順を説明する図The figure explaining the procedure which calculates | requires the gradient magnetic field pulse shape of the example 1 of a change 変更例1の手順で求まった傾斜磁場パルス形状の一例を示す図The figure which shows an example of the gradient magnetic field pulse shape calculated | required by the procedure of the modification 1 変更例2の手順で求まった傾斜磁場パルス形状の一例を示す図The figure which shows an example of the gradient magnetic field pulse shape calculated | required by the procedure of the modification 2 変更例3の手順で求まった傾斜磁場パルス形状の一例を示す図The figure which shows an example of the gradient magnetic field pulse shape calculated | required by the procedure of the modification 3 第二実施形態による傾斜磁場パルス形状を求める手法の考え方を説明する図The figure explaining the idea of the method of calculating | requiring the gradient magnetic field pulse shape by 2nd embodiment 第二実施形態による傾斜磁場パルス形状を求める手法の考え方を説明する図The figure explaining the idea of the method of calculating | requiring the gradient magnetic field pulse shape by 2nd embodiment 第二実施形態による傾斜磁場パルス形状を求めるためのモデルの一例を示す図The figure which shows an example of the model for calculating | requiring the gradient magnetic field pulse shape by 2nd embodiment. 第二実施形態の手法で求まった傾斜磁場パルス形状の一例を示す図The figure which shows an example of the gradient magnetic field pulse shape calculated | required by the method of 2nd embodiment 図18の形状をフィルタリングした後の形状を示す図The figure which shows the shape after filtering the shape of FIG. 第二実施形態による傾斜磁場パルス形状を求めるためのモデルの他の例を示す図The figure which shows the other example of the model for calculating | requiring the gradient magnetic field pulse shape by 2nd embodiment. 第三実施形態による傾斜磁場パルス波形を求める手順を示すフローFlow showing procedure for obtaining gradient magnetic field pulse waveform according to third embodiment 第三実施形態による手順を説明する図The figure explaining the procedure by 3rd embodiment. 第三実施形態の変更例の手順を示すフローFlow showing procedure of modified example of third embodiment 第四実施形態のMRI装置で用いる撮像パラメータと騒音レベルとの関係(一例)を示すグラフThe graph which shows the relationship (an example) between the imaging parameter used with the MRI apparatus of 4th embodiment, and a noise level 第四実施形態のMRI装置における表示画面例を示す図The figure which shows the example of a display screen in the MRI apparatus of 4th embodiment. 撮像パラメータと騒音レベルとの関係の他の例を示すグラフGraph showing another example of relationship between imaging parameters and noise level 第四実施形態のMRI装置における表示画面の他の例を示す図The figure which shows the other example of the display screen in the MRI apparatus of 4th embodiment. 第四実施形態のMRI装置における表示画面の他の例を示す図The figure which shows the other example of the display screen in the MRI apparatus of 4th embodiment. 第四実施形態のMRI装置における表示画面の他の例を示す図The figure which shows the other example of the display screen in the MRI apparatus of 4th embodiment.
 以下、本発明が適用されるMRI装置の実施形態を説明する。 Hereinafter, embodiments of an MRI apparatus to which the present invention is applied will be described.
<第一実施形態>
 本実施形態のMRI装置は、高周波磁場パルス及び傾斜磁場パルスの印加強度及びタイミングを記述したパルスシーケンスに従って高周波磁場パルス及び傾斜磁場パルスを印加する磁場印加部と、前記磁場印加部が印加した磁場により検査対象から発生する核磁気共鳴信号を受信する受信部と、を備える。本実施形態のMRI装置は、磁場印加部の制御に用いられるパルスシーケンスに含まれる少なくとも1種の傾斜磁場パルスが、磁場印加部における傾斜磁場のスルーレートを満たし且つ対称形という条件のもとで求められた、騒音を最小化する形状を有している。騒音を最小化する傾斜磁場パルスの形状の一つの態様は、変曲点を3以上持つ曲線で描出される形状である。
<First embodiment>
The MRI apparatus of the present embodiment includes a magnetic field application unit that applies a high frequency magnetic field pulse and a gradient magnetic field pulse according to a pulse sequence that describes the application intensity and timing of the high frequency magnetic field pulse and the gradient magnetic field pulse, and a magnetic field applied by the magnetic field application unit. And a receiving unit that receives a nuclear magnetic resonance signal generated from the inspection object. In the MRI apparatus of this embodiment, at least one type of gradient magnetic field pulse included in the pulse sequence used for controlling the magnetic field application unit satisfies the slew rate of the gradient magnetic field in the magnetic field application unit and is symmetric. It has the required shape that minimizes noise. One aspect of the shape of the gradient magnetic field pulse that minimizes noise is a shape depicted by a curve having three or more inflection points.
 騒音を最小化する傾斜磁場パルスの形状は、例えば、複数の微小長方形を所定の面積になるまで順次積み上げて形成された形状であり、微小長方形を積み上げて最終的な傾斜磁場パルス形状とするまでに形成される暫定的な形状が、騒音を最小化する形状となるように前記暫定的な形状を更新することにより得られた形状である。或いは、形状パラメータで特定される複数の波形を組み合わせたモデルを初期値として、前記形状パラメータを変化させたときに得られる傾斜磁場パルス形状が騒音を最小化する形状となるように前記形状パラメータの更新を繰り返すことによって得られた形状である。 The shape of the gradient magnetic field pulse that minimizes the noise is, for example, a shape formed by sequentially stacking a plurality of minute rectangles until a predetermined area is reached, and until the final gradient magnetic field pulse shape is formed by stacking the minute rectangles. Is a shape obtained by updating the provisional shape so as to be a shape that minimizes noise. Alternatively, the initial value is a model combining a plurality of waveforms specified by the shape parameter, and the gradient magnetic field pulse shape obtained when the shape parameter is changed becomes a shape that minimizes noise. It is the shape obtained by repeating the update.
 以下、図1及び図2を参照して、本実施形態のMRI装置の構成を具体的に説明する。
 本発明の実施形態を説明するための全図において、同一機能を有するものは同一符号を付し、その繰り返しの説明は省略する。
Hereinafter, the configuration of the MRI apparatus of the present embodiment will be described in detail with reference to FIGS. 1 and 2.
In all the drawings for explaining the embodiments of the present invention, those having the same function are denoted by the same reference numerals, and repeated explanation thereof is omitted.
 図1に示すMRI装置100は、NMR現象を利用して被検体101の断層画像を得るもので、静磁場を発生する静磁場発生部120と、静磁場中に配置された被検体101に対して傾斜磁場を印加する傾斜磁場発生部130と、被検体101の磁化を所定のフリップ角で励起させる高周波磁場パルスを送信する送信部150と、被検体101が発生するエコー信号を受信する受信部160と、受信部160が受信したエコー信号から画像を再構成するとともに、撮像シーケンスに従って、傾斜磁場発生部130、送信部150、受信部160の動作を制御する制御部170と、シーケンサ140と、を備える。傾斜磁場発生部130及び送信部150は、本発明の磁場印加部に相当する。 An MRI apparatus 100 shown in FIG. 1 obtains a tomographic image of a subject 101 by using an NMR phenomenon, and a static magnetic field generation unit 120 that generates a static magnetic field and a subject 101 disposed in the static magnetic field. A gradient magnetic field generator 130 for applying a gradient magnetic field, a transmitter 150 for transmitting a high-frequency magnetic field pulse for exciting the magnetization of the subject 101 at a predetermined flip angle, and a receiver for receiving an echo signal generated by the subject 101 160, a controller 170 that reconstructs an image from the echo signal received by the receiver 160, and controls the operation of the gradient magnetic field generator 130, the transmitter 150, and the receiver 160 according to the imaging sequence, a sequencer 140, Is provided. The gradient magnetic field generation unit 130 and the transmission unit 150 correspond to the magnetic field application unit of the present invention.
 静磁場発生部120は、被検体101の周りの空間に均一な静磁場を発生させるもので、被検体101の周りに配置される永久磁石方式、常電導方式あるいは超電導方式の静磁場発生源を備える。静磁場発生源には、発生する静磁場の方向により垂直磁場方式と水平磁場方式がある。垂直磁場方式では、その体軸と直交する方向に、水平磁場方式では、体軸方向に静磁場を発生する。 The static magnetic field generator 120 generates a uniform static magnetic field in the space around the subject 101. A static magnet type, normal conduction type, or superconducting type static magnetic field generation source arranged around the subject 101 is used. Prepare. There are a vertical magnetic field method and a horizontal magnetic field method depending on the direction of the generated static magnetic field. In the vertical magnetic field method, a static magnetic field is generated in a direction perpendicular to the body axis. In the horizontal magnetic field method, a static magnetic field is generated in the body axis direction.
 傾斜磁場発生部130は、MRI装置100の座標系(装置座標系)であるX、Y、Zの3軸方向に巻かれた傾斜磁場コイル131と、それぞれの傾斜磁場コイルを駆動する傾斜磁場電源132とを備える。傾斜磁場コイル131は、シ-ケンサ140からの命令に従ってそれぞれの傾斜磁場コイル131の傾斜磁場電源132を駆動することにより、X、Y、Zの3軸方向に傾斜磁場パルスGx、Gy、Gzを印加する。傾斜磁場パルスGx、Gy、Gzには、それぞれ、撮影時にスライス面(撮影断面)に直交する方向に印加して、被検体101に対するスライス面を設定する役割と、設定したスライス面に直交し、かつ、互いに直交する残りの2つの方向にそれぞれ印加し、NMR信号(エコー信号)に2方向の位置情報をエンコードする役割とがある。本実施形態のMRI装置は、傾斜磁場コイル131が印加するパルスとして、騒音を最小化する形状を有するパルスが用意されていることが特徴である。 The gradient magnetic field generation unit 130 is a gradient magnetic field coil 131 wound in the three-axis directions of X, Y, and Z, which is a coordinate system (apparatus coordinate system) of the MRI apparatus 100, and a gradient magnetic field power source that drives each gradient magnetic field coil. 132. The gradient magnetic field coil 131 drives the gradient magnetic field power supply 132 of each gradient magnetic field coil 131 in accordance with a command from the sequencer 140, thereby generating gradient magnetic field pulses Gx, Gy, Gz in the three axis directions of X, Y, and Z. Apply. Each of the gradient magnetic field pulses Gx, Gy, and Gz is applied in a direction orthogonal to the slice plane (imaging cross section) at the time of imaging, and sets the slice plane for the subject 101 and is orthogonal to the set slice plane. In addition, there is a role of applying the information in the remaining two directions orthogonal to each other and encoding position information in two directions into the NMR signal (echo signal). The MRI apparatus of this embodiment is characterized in that a pulse having a shape that minimizes noise is prepared as a pulse applied by the gradient coil 131.
 送信部150は、被検体101の生体組織を構成する原子の原子核スピンに核磁気共鳴を起こさせるために、被検体101に高周波磁場パルス(以下、「RFパルス」と呼ぶ。)を照射するもので、高周波発振器(シンセサイザ)152と変調器153と高周波増幅器154と送信側の高周波コイル(送信コイル)151とを備える。高周波発振器152はRFパルスを生成し、シーケンサ140からの指令によるタイミングで出力する。変調器153は、出力されたRFパルスを振幅変調する。高周波増幅器154は、この振幅変調されたRFパルスを増幅し、被検体101に近接して配置された送信コイル151に供給する。送信コイル151は供給されたRFパルスを被検体101に照射する。 The transmitter 150 irradiates the subject 101 with a high-frequency magnetic field pulse (hereinafter referred to as “RF pulse”) in order to cause nuclear magnetic resonance to occur in the nuclear spins of the atoms constituting the biological tissue of the subject 101. And a high-frequency oscillator (synthesizer) 152, a modulator 153, a high-frequency amplifier 154, and a high-frequency coil (transmission coil) 151 on the transmission side. The high frequency oscillator 152 generates an RF pulse and outputs it at a timing according to a command from the sequencer 140. The modulator 153 amplitude-modulates the output RF pulse. The high-frequency amplifier 154 amplifies the amplitude-modulated RF pulse and supplies the amplified RF pulse to the transmission coil 151 disposed close to the subject 101. The transmission coil 151 irradiates the subject 101 with the supplied RF pulse.
 受信部160は、被検体101の生体組織を構成する原子核スピンの核磁気共鳴により放出される核磁気共鳴信号(エコー信号、NMR信号)を検出するもので、受信側の高周波コイル(受信コイル)161と信号増幅器162と直交位相検波器163と、A/D変換器164とを備える。受信コイル161は、被検体101に近接して配置され、送信コイル151から照射された電磁波によって誘起された被検体101の応答のNMR信号を検出する。検出されたNMR信号は、信号増幅器162で増幅された後、シーケンサ140からの指令によるタイミングで直交位相検波器163により直交する二系統の信号に分割され、それぞれがA/D変換器164でディジタル量に変換されて、制御部170に送られる。なお受信コイル161は、単一のコイルで構成される場合もあるが、複数の小型コイルを組み合わせたマルチプルアレイコイル(フェイズドアレイコイル)なども多用される。 The receiving unit 160 detects a nuclear magnetic resonance signal (echo signal, NMR signal) emitted by nuclear magnetic resonance of the nuclear spin constituting the living tissue of the subject 101, and receives a high-frequency coil (receiving coil) on the receiving side. 161, a signal amplifier 162, a quadrature detector 163, and an A / D converter 164. The reception coil 161 is disposed in the vicinity of the subject 101 and detects an NMR signal of the response of the subject 101 induced by the electromagnetic wave irradiated from the transmission coil 151. The detected NMR signal is amplified by the signal amplifier 162 and then divided into two orthogonal signals by the quadrature phase detector 163 at the timing according to the command from the sequencer 140, and each is digitally converted by the A / D converter 164. The amount is converted and sent to the controller 170. Although the receiving coil 161 may be composed of a single coil, a multiple array coil (phased array coil) in which a plurality of small coils are combined is often used.
 シーケンサ140は、制御部170とともに撮像制御部として機能するものであり、制御部170からの指示に従って動作し、被検体101の断層画像のデータ収集に必要な種々の命令を送信部150、傾斜磁場発生部130、および受信部160に送信する。これによって、シーケンサ140は、RFパルスと傾斜磁場パルスとを所定のパルスシーケンスに従って繰り返し印加する。なお、パルスシーケンスは、高周波磁場、傾斜磁場、信号受信のタイミングや強度を記述したもの(定めたもの)で、撮像方法によって異なる種々のパルスシーケンス(基本パルスシーケンス)があり、これら基本パルスシーケンスが予め記憶装置172に格納されている。 The sequencer 140 functions as an imaging control unit together with the control unit 170, operates in accordance with instructions from the control unit 170, sends various commands necessary for collecting tomographic image data of the subject 101, the transmission unit 150, and the gradient magnetic field. The data is transmitted to the generation unit 130 and the reception unit 160. Thereby, the sequencer 140 repeatedly applies the RF pulse and the gradient magnetic field pulse according to a predetermined pulse sequence. The pulse sequence describes (determines) the high-frequency magnetic field, gradient magnetic field, signal reception timing and intensity, and there are various pulse sequences (basic pulse sequences) that differ depending on the imaging method. Stored in the storage device 172 in advance.
 制御部170は、MRI装置100全体の制御、各種データ処理等の演算、処理結果の表示及び保存等を行うもので、CPU171と記憶装置172と表示装置173と入力装置174とを備える。記憶装置172は、ハードディスクなどの内部記憶装置と、外付けハードディスク、光ディスク、磁気ディスクなどの外部記憶装置とにより構成される。記憶装置172には、CPU171の演算に必要なデータや演算途中或いは演算結果であるデータが格納される。また本実施形態では、基本パルスシーケンスとともに、騒音を最小化する傾斜磁場パルスの形状或いはその傾斜磁場パルス形状を用いたパルスシーケンスが格納されている。後に詳述するが、騒音を最小化する傾斜磁場パルスの形状は、それが所定の撮像パラメータの条件のもとで求められたものである場合には、パルス形状は条件として使用された撮像パラメータとともに格納される。 The control unit 170 controls the entire MRI apparatus 100, performs operations such as various data processing, displays and stores processing results, and includes a CPU 171, a storage device 172, a display device 173, and an input device 174. The storage device 172 includes an internal storage device such as a hard disk and an external storage device such as an external hard disk, an optical disk, and a magnetic disk. The storage device 172 stores data necessary for the calculation of the CPU 171 and data in the middle of calculation or as a calculation result. In this embodiment, a gradient pulse shape that minimizes noise or a pulse sequence using the gradient pulse shape is stored together with the basic pulse sequence. As will be described in detail later, when the gradient magnetic field pulse shape that minimizes the noise is obtained under the conditions of a predetermined imaging parameter, the pulse shape is the imaging parameter used as the condition. Stored together.
 表示装置173は、CRT、液晶などのディスプレイ装置である。入力装置174は、MRI装置100の各種制御情報や制御部170で行う処理の制御情報の入力のインタフェースであり、例えば、トラックボールまたはマウスとキーボードとを備える。入力装置174は、表示装置173に近接して配置される。操作者は、表示装置173を見ながら入力装置174を通してインタラクティブにMRI装置100の各種処理に必要な指示、データを入力する。また目的とする撮像方法に応じて、パルスシーケンスの実行に必要な撮像パラメータを入力することもできる。 The display device 173 is a display device such as a CRT or a liquid crystal. The input device 174 is an interface for inputting various control information of the MRI apparatus 100 and control information of processing performed by the control unit 170, and includes, for example, a trackball or a mouse and a keyboard. The input device 174 is disposed in the vicinity of the display device 173. The operator interactively inputs instructions and data necessary for various processes of the MRI apparatus 100 through the input device 174 while looking at the display device 173. Further, it is possible to input imaging parameters necessary for executing the pulse sequence according to the target imaging method.
 CPU171は、操作者が入力した指示に従って、記憶装置172に予め保持されるプログラムを実行することにより、MRI装置100の各部の動作の制御、各種データ処理等の制御部170の各処理を実現する。例えば、受信部160からのデータが制御部170に入力されると、CPU171は、信号処理、画像再構成等の処理を実行し、その結果である被検体101の断層像を表示装置173に表示するとともに、記憶装置172に記憶する。 The CPU 171 implements each process of the control unit 170 such as control of the operation of each unit of the MRI apparatus 100 and various data processing by executing a program stored in advance in the storage device 172 according to an instruction input by the operator. . For example, when data from the receiving unit 160 is input to the control unit 170, the CPU 171 executes processing such as signal processing and image reconstruction, and displays the tomographic image of the subject 101 as a result on the display device 173. At the same time, it is stored in the storage device 172.
 受信部160からのデータは、通常、k空間と呼ばれるデータ空間に配置されたデータとなる。k空間の座標(位置)は、エコー信号に与えられた傾斜磁場パルスの印加量によって決まり、画像サイズと視野に応じて、取得すべき点(k空間のマトリクス)が決まる。制御部170は、取得すべき点を計測するようにパルスシーケンスを制御し、データを得るとともに、計測によって得られたデータセットに対し、所定の画像処理を行い画像を得る。 The data from the receiving unit 160 is normally data arranged in a data space called k-space. The coordinates (position) of the k space are determined by the application amount of the gradient magnetic field pulse given to the echo signal, and the points (k space matrix) to be acquired are determined according to the image size and the visual field. The control unit 170 controls the pulse sequence so as to measure points to be acquired, obtains data, and performs predetermined image processing on the data set obtained by measurement to obtain an image.
 またCPU171には、騒音を最小化するパルスシーケンスを作成するための機能が備えられている。例えば図2に示すように、CPU171は、パルスシーケンス作成部180、騒音レベル算出部181、騒音レベル比較部182を備えることができる。また操作者がパルスシーケンスを作成したり設計したりする際に必要な情報を表示装置173に表示させるための表示制御部183を備えている。なおこれらの一部或いは全部は、本発明の実施形態によっては省略することが可能である。 The CPU 171 has a function for creating a pulse sequence that minimizes noise. For example, as illustrated in FIG. 2, the CPU 171 can include a pulse sequence creation unit 180, a noise level calculation unit 181, and a noise level comparison unit 182. Further, a display control unit 183 is provided for causing the display device 173 to display information necessary when the operator creates or designs a pulse sequence. Some or all of these may be omitted depending on the embodiment of the present invention.
 パルスシーケンス作成部180は、記憶装置172に格納された基本パルスシーケンスと撮像パラメータとを読出し、シーケンサ140が実行するパルスシーケンス(以下、基本シーケンスと区別して撮像シーケンスともいう)を作成する。この際、操作者によって騒音を最小化する撮像が選択されている場合には、記憶装置172に記憶された傾斜磁場パルス形状を用いて撮像パルスシーケンスを作成する。 The pulse sequence creation unit 180 reads the basic pulse sequence and the imaging parameters stored in the storage device 172, and creates a pulse sequence (hereinafter also referred to as an imaging sequence to distinguish from the basic sequence) executed by the sequencer 140. At this time, if imaging that minimizes noise is selected by the operator, an imaging pulse sequence is created using the gradient magnetic field pulse shape stored in the storage device 172.
 騒音レベル算出部181は、作成された撮像パルスシーケンスの騒音レベルを、装置固有の周波数応答関数(FRF)を用いて算出する。なおMRI装置が騒音レベル算出部181を備える場合、FRFは予め測定しておいたものを記憶装置172に格納しておく。騒音レベル比較部182は、騒音レベル算出部181が、複数の撮像パルスシーケンスについて算出した騒音レベルを比較し、比較結果を例えば表示装置173に表示させる。 The noise level calculation unit 181 calculates the noise level of the created imaging pulse sequence using a frequency response function (FRF) unique to the apparatus. When the MRI apparatus includes the noise level calculation unit 181, the FRF measured in advance is stored in the storage device 172. The noise level comparison unit 182 compares the noise levels calculated by the noise level calculation unit 181 for a plurality of imaging pulse sequences, and causes the display device 173 to display the comparison result.
 これら機能はCPU171に組み込まれたプログラムによって実行される。即ちこれら各部はCPU171に搭載された所定のアルゴリズムを含むプログラムに相当するものである。ただし、この機能の一部は公知のASIC(Application Specific Integrated Circuit)等のハードウェアで置換される場合もあり得る。 These functions are executed by a program incorporated in the CPU 171. That is, each of these units corresponds to a program including a predetermined algorithm mounted on the CPU 171. However, a part of this function may be replaced by hardware such as a well-known ASIC (Application Specific Integrated Circuit).
 撮像に際しては、操作者が入力装置174を介して任意の撮像方法を選択することでパルスシーケンス作成部180は、記憶装置172から所定のパルスシーケンスが読み出すとともに記憶装置172に記憶された傾斜磁場パルス形状から所定の波形を選択する。パルスシーケンス作成部180は、これらパルスシーケンス及び傾斜磁場パルス形状と、入力装置174を介して操作者が選択した撮像パラメータ、例えば、エコー時間(TE)、繰り返し時間(TR)、インターエコータイム(IET)、撮像視野(FOV)等を用いて、シーケンサ140で実行される撮像シーケンスを作成する。撮像の際に騒音を最小化する撮像が設定されている場合には、騒音を最小化する特定の傾斜磁場パルス形状が選択され、最低騒音パルスシーケンスが実行され、撮像が行われる。 When imaging, the operator selects an arbitrary imaging method via the input device 174, so that the pulse sequence creation unit 180 reads a predetermined pulse sequence from the storage device 172 and stores the gradient magnetic field pulses stored in the storage device 172. A predetermined waveform is selected from the shape. The pulse sequence creation unit 180 selects these pulse sequences, gradient magnetic field pulse shapes, and imaging parameters selected by the operator via the input device 174, for example, echo time (TE), repetition time (TR), inter-echo time (IET). ), An imaging sequence executed by the sequencer 140 is created using an imaging field of view (FOV) or the like. When imaging that minimizes noise is set during imaging, a specific gradient magnetic field pulse shape that minimizes noise is selected, the lowest noise pulse sequence is executed, and imaging is performed.
 次に騒音を最小化する傾斜磁場パルス形状について説明する。
 一般に撮像に用いられる傾斜磁場パルスには、スライス選択傾斜磁場パルス、位相エンコード傾斜磁場パルス及びそのリフェーズ或いはディフェーズパルス、周波数エンコード傾斜磁場パルス及びそのリフェーズ或いはディフェーズパルス、スポイラーパルスなどがあり、上述した特定の傾斜磁場パルスは、これら各種傾斜磁場パルスのいずれに用いることも可能であるが、以下の説明では、パルスシーケンスに必須のパルスであって且つ騒音に対し影響の大きい周波数エンコード傾斜磁場パルスに適用する場合を説明する。
Next, the gradient magnetic field pulse shape that minimizes noise will be described.
The gradient magnetic field pulses generally used for imaging include a slice selection gradient magnetic field pulse, a phase encode gradient magnetic field pulse and its rephase or dephase pulse, a frequency encode gradient magnetic field pulse and its rephase or dephase pulse, a spoiler pulse, etc. The specific gradient magnetic field pulse can be used for any of these various gradient magnetic field pulses. However, in the following description, the frequency encoded gradient magnetic field pulse that is essential for the pulse sequence and has a large influence on noise. The case where it applies to is demonstrated.
 基本となるパルスシーケンスの種類は特に限定されないが、一例として、図3に示すFSE(Fast Spin Echo)シーケンスについて説明する。図3において、横軸RFはRFパルスの印加タイミング、Gs、Gp及びGfは、それぞれスライス傾斜磁場、位相エンコード傾斜磁場、周波数エンコード傾斜磁場を示している。図3では省略しているが、エコー信号のサンプリング時間は周波数エンコードパルスの印加時間内に設定される。 The type of the basic pulse sequence is not particularly limited. As an example, the FSE (Fast Spin Echo) sequence shown in FIG. 3 will be described. In FIG. 3, the horizontal axis RF indicates the RF pulse application timing, and Gs, Gp, and Gf indicate the slice gradient magnetic field, phase encode gradient magnetic field, and frequency encode gradient magnetic field, respectively. Although omitted in FIG. 3, the sampling time of the echo signal is set within the application time of the frequency encode pulse.
 FSEシーケンスの基本形では、周波数エンコードパルス301とそのリフェーズパルス302は、図3に示すように、それぞれ台形である。これに対し、本実施形態で採用する傾斜磁場パルスは、例えば図4に示すような特殊な波形400を持ち、与えられた条件で騒音を最小化する傾斜磁場パルスである。これら傾斜磁場パルスは、装置に固有の騒音の周波数応答特性(FRF)を用いて貪欲法で予め求めたものであり、記憶装置172に格納されている。 In the basic form of the FSE sequence, the frequency encode pulse 301 and its rephase pulse 302 are each trapezoidal as shown in FIG. On the other hand, the gradient magnetic field pulse employed in this embodiment is a gradient magnetic field pulse that has a special waveform 400 as shown in FIG. 4 and minimizes noise under given conditions. These gradient magnetic field pulses are obtained in advance by a greedy method using frequency response characteristics (FRF) of noise inherent to the device, and are stored in the storage device 172.
 騒音を最小化する傾斜磁場パルス形状の求め方を説明する。
 まず形状について、目標となる波形の面積を設定するとともに、MRI装置による実現可能性等を考慮した形状の条件を決めておく。波形の面積は、エンコード時間及び傾斜磁場強度(言い換えると受信バンド幅BW)で決まるものであるが、ここでは形状を決めるために暫定的な値を設定しておいてもよい。さらにエコートレイン数、インターエコータイムIETなどの撮像パラメータに係る条件を設定しておいてもよい。これら撮像パラメータは傾斜磁場の周波数スペクトルに影響を与えるものであり、それが変化すると発生する騒音レベルも変化するので、これら撮像パラメータも騒音を最小化するためのパラメータとしても良いが、本実施形態では、説明を簡単にするために固定して考える。
A method for obtaining a gradient magnetic field pulse shape that minimizes noise will be described.
First, regarding the shape, a target waveform area is set, and a shape condition is determined in consideration of feasibility by the MRI apparatus. The area of the waveform is determined by the encoding time and the gradient magnetic field strength (in other words, the reception bandwidth BW), but here, a provisional value may be set to determine the shape. Furthermore, conditions relating to imaging parameters such as the number of echo trains and inter-echo time IET may be set. Since these imaging parameters affect the frequency spectrum of the gradient magnetic field, and the noise level generated changes as it changes, these imaging parameters may also be parameters for minimizing noise. Then, to make the explanation simple, it is fixed.
 まず形状の条件として、この実施形態では、傾斜磁場のスルーレート(Slew Rate)の制限と、対称で正負の符号が同じ区間では極値をひとつだけもつという形状条件を加える。傾斜磁場のスルーレートは、装置が発生する傾斜磁場強度T/mの単位時間当たりの変化量であり、傾斜磁場コイルを駆動する傾斜磁場アンプの性能で決まる。横軸を時間、縦軸を傾斜磁場強度とする傾斜磁場波形においては、その傾斜がスルーレートの制限を受けることになる。対称という条件は計算の簡略化を意図し、正負の符号が同じ区間では極値をひとつだけもつという条件は傾斜磁場の大きな変動を防ぐことを意図している。受信中に大きく傾斜磁場が変動することは各サンプリング周波数における実質的なバンド幅(BWeff)が大きく変動することになり、ノイズ特性が不自然になり望ましい画質にはならないと考えられるからである。 First, as a shape condition, in this embodiment, a slew rate of the gradient magnetic field (Slew Rate) is limited, and a shape condition that only one extreme value is included in a section in which the symmetric and positive / negative signs are the same is added. The slew rate of the gradient magnetic field is a change amount per unit time of the gradient magnetic field strength T / m generated by the apparatus, and is determined by the performance of the gradient magnetic field amplifier that drives the gradient magnetic field coil. In a gradient magnetic field waveform with the horizontal axis representing time and the vertical axis representing gradient magnetic field strength, the gradient is limited by the slew rate. The condition of symmetry is intended to simplify the calculation, and the condition of having only one extreme value in the interval where the sign of the sign is the same is intended to prevent large fluctuations in the gradient magnetic field. This is because if the gradient magnetic field greatly fluctuates during reception, the substantial bandwidth (BWeff) at each sampling frequency fluctuates greatly, and it is considered that noise characteristics become unnatural and a desirable image quality is not obtained.
 因みに実質的バンド幅は次式(1)で定義される。
 BWeff=(γ/2π)×G×FOV   (1)
 上式中、γは磁気回転比、Gは傾斜磁場強度、FOVは撮像視野である。なおノイズはバンド幅の平方根(√(BW))に比例するが、傾斜磁場強度が印加中に一定ではなく変動するノンユニフォームサンプリングの場合にはサンプリング密度も考慮する必要がある。上記BWeffは、サンプリング密度の影響をBWに含めたものと言うことができる。
Incidentally, the substantial bandwidth is defined by the following equation (1).
BWeff = (γ / 2π) × G × FOV (1)
In the above equation, γ is the magnetic rotation ratio, G is the gradient magnetic field strength, and FOV is the imaging field of view. Although noise is proportional to the square root of the bandwidth (√ (BW)), in the case of non-uniform sampling where the gradient magnetic field strength is not constant during application, the sampling density must also be considered. It can be said that BWeff includes the influence of sampling density in BW.
 以上の条件のもとで騒音を最小化する傾斜磁場パルスの波形を求める手順を、図5のフローチャートを参照して説明する。まず傾斜磁場が印加されていない状態を初期状態とし(S101)、小さな傾斜磁場パルス形状を加えるステップ(S102、S103)を目的の面積となるまで繰り返す。小さな傾斜磁場パルス形状を加えるステップS103で加える長方形は、更新中の傾斜磁場パルス形状に加えたときにできる傾斜磁場パルスが、設定した条件(対称且つ正負の符号が同じ区間では極値をひとつだけもつ)を満たし且つ騒音を最小化するものを総当たりで探して決める(S102)。 The procedure for obtaining the gradient magnetic field pulse waveform that minimizes noise under the above conditions will be described with reference to the flowchart of FIG. First, a state in which no gradient magnetic field is applied is set as an initial state (S101), and a step of adding a small gradient magnetic field pulse shape (S102, S103) is repeated until the target area is reached. Adding a small gradient magnetic field pulse shape The rectangle added in step S103 indicates that the gradient magnetic field pulse that is formed when it is added to the gradient magnetic field pulse shape that is being updated depends on the set condition (only one extreme value in the same symmetrical and positive / negative sign interval). (S102).
 対称という条件は、例えば1つの長方形であれば中央に配置することで満たすことができる。小さな傾斜磁場パルス形状は、図6に示すように、例えば最終的な面積の10000分の1の大きさというように十分小さな同じ面積の様々な長方形で構成する。スルーレートの条件は、重ね合わせた長方形の頂点を結ぶ線の傾きを最大スルーレート(T/m/s)で制限すればよい。 The condition of symmetry can be satisfied by, for example, arranging one rectangle in the center. As shown in FIG. 6, the small gradient magnetic field pulse shape is composed of various rectangles having the same area which is sufficiently small, for example, a size of 1 / 10,000 of the final area. The slew rate may be limited by the maximum slew rate (T / m / s) of the line connecting the vertices of the superimposed rectangles.
 騒音を最小化する長方形の選択は、候補となる長方形を更新中の傾斜磁場パルス形状に加えた場合の波形の周波数スペクトルと、音圧の周波数応答関数(FRF)とを乗算することにより、騒音レベルを算出し、最も騒音レベルを最小にする長方形を選択することにより行う。 The selection of a rectangle that minimizes noise is performed by multiplying the frequency spectrum of the waveform when the candidate rectangle is added to the gradient magnetic field pulse shape being updated by the frequency response function (FRF) of the sound pressure. This is done by calculating the level and selecting the rectangle that minimizes the noise level.
 周波数応答関数は、装置固有の値として予め求めたものを用いる。ここでは、MRI装置の検査対象である人間の聴覚を考慮したA特性で重み付けしたものを用いる。その具体例を図7に示す。このようなA特性で重み付けしたFRFと傾斜磁場波形の周波数スペクトルを用いて、時間平均の騒音レベルLAeqを次式により計算する。
Figure JPOXMLDOC01-appb-M000001
As the frequency response function, a value obtained in advance as a value unique to the apparatus is used. Here, a weighted A-weighted characteristic that takes into account the human hearing that is the inspection target of the MRI apparatus is used. A specific example is shown in FIG. Using the FRF weighted with the A characteristic and the frequency spectrum of the gradient magnetic field waveform, the time-average noise level LA eq is calculated by the following equation.
Figure JPOXMLDOC01-appb-M000001
 式(2)中、fはサンプリング周波数で、fH-fLは積分区間、G(f)は傾斜磁場波形の周波数スペクトル、FRF(f)はA特性の重み付けを含めたFRF、P0は基準音圧である。G(f)は具体的には例えば図3のGs、Gp、Gfの傾斜磁場パルス形状のフーリエ変換である。IET、リフェーズパルス時間、エンコード時間などがG(f)に影響することになる。 In equation (2), f is the sampling frequency, fH−fL is the integration interval, G (f) is the frequency spectrum of the gradient magnetic field waveform, FRF A (f) is the FRF including the weighting of the A characteristic, and P0 is the reference sound. Pressure. Specifically, G (f) is, for example, Fourier transform of the gradient magnetic field pulse shape of Gs, Gp, and Gf in FIG. IET, rephase pulse time, encoding time, etc. will affect G (f).
 ステップS103は、こうして騒音レベルを最小にする長方形を選択し、その上に、同じ条件を満たす長方形を積み上げることを繰り返しながら、目的の面積を持つ波形を得る。これにより最終的に図8に示したような傾斜磁場パルス波形410が得られる。図8の波形は、最大スルーレート=135[(T/m)/S]、周波数エンコードの面積=3.268×10-5[(T/m)×S]、リフェーズパルス時間=3.276[ms]、エンコード時間=7.224[ms]、IET=14.8[ms]として求めた波形である。 The step S103 selects a rectangle that minimizes the noise level in this way, and obtains a waveform having a target area while repeating the accumulation of rectangles that satisfy the same condition on the rectangle. As a result, a gradient magnetic field pulse waveform 410 as shown in FIG. 8 is finally obtained. The waveform of FIG. 8 shows the maximum slew rate = 135 [(T / m) / S], the area of frequency encoding = 3.268 × 10 −5 [(T / m) × S], and the rephase pulse time = 3. It is a waveform obtained with 276 [ms], encoding time = 7.224 [ms], and IET = 14.8 [ms].
 なお、式(2)からわかるように騒音レベルの計算においてFRFの周波数が上限値fHで打ち切られているため、それ以上の周波数を抑える効果はないため、最終的に得られる波形は高周波数に対応する凹凸を有し滑らかな曲線ではない。この波形の傾斜磁場パルスを傾斜磁場アンプで実現するためには、波形410に対し後処理(例えば、移動平均フィルタリング等のフィルタリング処理)を行い、図4に示すような滑らかな波形400とすることが好ましい。 As can be seen from the equation (2), since the frequency of the FRF is censored at the upper limit value fH in the calculation of the noise level, there is no effect of suppressing the frequency beyond that, so the waveform finally obtained has a high frequency. It is not a smooth curve with corresponding irregularities. In order to realize the gradient magnetic field pulse with the gradient magnetic field amplifier, post-processing (for example, filtering processing such as moving average filtering) is performed on the waveform 410 to obtain a smooth waveform 400 as shown in FIG. Is preferred.
 波形400及び/又は410は、リフェーズパルス時間/エコー時間、エコートレイン数、インターエコータイムIETなどの条件を変えて、条件毎に求めておいてもよい。リフェーズパルス時間およびエコーエンコード時間を異ならせ求めた傾斜磁場パルス形状を図9に示す。図9の傾斜磁場パルス形状は、リフェーズパルス時間=2.276[ms]、エンコード時間=9.224[ms]とし、その他の条件は図8の波形と同じ条件で求めたものである。 The waveforms 400 and / or 410 may be obtained for each condition by changing conditions such as the rephase pulse time / echo time, the number of echo trains, and the inter echo time IET. FIG. 9 shows gradient magnetic field pulse shapes obtained by varying the rephase pulse time and the echo encoding time. The gradient magnetic field pulse shape of FIG. 9 is rephase pulse time = 2.276 [ms], encoding time = 9.224 [ms], and other conditions are obtained under the same conditions as the waveform of FIG.
 この場合も、求め方は図5のフローに示すものと同じであるが、求められた波形は、概ね台形の波形の上に凸状の波形が重畳された形状を有している。図8及び図9に示す波形はいずれも次の特徴を有している。まず求め方の前提から明らかであるが、対称で正負の符号が同じ区間では極値をひとつだけもつ。また、細かな凹凸を考慮すればどちらも多数の変曲点がある。特に、図9では、傾斜磁場強度が正となる区間だけを考えても、二つの台形が重なったような形状となっており、細かな凹凸を無視しても変曲点が4つある。 In this case as well, the method of obtaining is the same as that shown in the flow of FIG. 5, but the obtained waveform has a shape in which a convex waveform is superimposed on a substantially trapezoidal waveform. Each of the waveforms shown in FIGS. 8 and 9 has the following characteristics. First of all, it is clear from the premise of how to find out, but it has only one extreme value in the same interval where the sign is symmetric and has the same sign. In addition, there are a number of inflection points in both cases, considering fine irregularities. In particular, in FIG. 9, even if only the section in which the gradient magnetic field strength is positive is considered, the shape is such that two trapezoids overlap each other, and there are four inflection points even if fine irregularities are ignored.
 以上説明した貪欲法による傾斜磁場パルス形状の計算は、図1に示すMRI装置とは別の計算機で行ってもよいし、MRI装置のパルスシーケンス作成部180で行うようにしてもよい。 The gradient magnetic field pulse shape calculation by the greedy method described above may be performed by a computer different from the MRI apparatus shown in FIG. 1, or may be performed by the pulse sequence creation unit 180 of the MRI apparatus.
 但し、上述した傾斜磁場パルス形状の計算は、貪欲法によって総当たりで決定する手法を採用しているため、撮像の都度、MRI装置で計算するのは適していない。従って、現実的には、予め、いくつかの条件(例えばリフェーズパルス時間、エンコードパルス時間、受信バンド幅)のもとで最適な傾斜磁場パルス形状を算出しておき、条件毎に最適な傾斜磁場パルス形状を格納し、撮像に際して設定或いは選択された条件に応じて最適な傾斜磁場パルス形状を選択することが好ましい。 However, the above-described calculation of the gradient magnetic field pulse shape employs a method of determining the brute force by the greedy method, and therefore is not suitable for calculation with an MRI apparatus every time imaging is performed. Therefore, in practice, the optimum gradient magnetic field pulse shape is calculated in advance under some conditions (for example, rephase pulse time, encode pulse time, reception bandwidth), and the optimum gradient for each condition is calculated. It is preferable to store the magnetic field pulse shape and select the optimum gradient magnetic field pulse shape according to the conditions set or selected during imaging.
 本実施形態のMRI装置では、別の計算機で求めた波形が記憶装置172に格納されている。撮像に際して基本パルスシーケンスが選択されると、パルスシーケンス作成部180が記憶装置172に格納された傾斜磁場パルス形状とそれを求める際の撮像パラメータの条件を読出し、基本パルスシーケンスに対し読み出された形状及び条件を適用して、実際に実行するパルスシーケンスを作成する。 In the MRI apparatus of the present embodiment, the waveform obtained by another computer is stored in the storage device 172. When the basic pulse sequence is selected for imaging, the pulse sequence creation unit 180 reads the gradient magnetic field pulse shape stored in the storage device 172 and the imaging parameter conditions for obtaining the gradient magnetic field pulse shape, and is read for the basic pulse sequence. A pulse sequence to be actually executed is created by applying shapes and conditions.
 本実施形態のMRI装置の動作は、従来のMRI装置と同様であり詳しい説明は省略するが、撮像を開始するに際し、操作者は撮像条件の設定の際に、基本パルスシーケンスを選択するとともに撮像パラメータを設定する。このとき、騒音を最小化する撮像を選択する、或いは、騒音を最小化する傾斜磁場パルスの選択を指示する。これによりパルスシーケンス作成部は、記憶装置172に格納された傾斜磁場パルス波形を用いて基本パルスシーケンスを変更し、シーケンサ140に渡す。その後、シーケンサ140の制御のもとで、RFパルス及び傾斜磁場パルスの印加、エコー信号の計測が繰り返し行われること、計測したエコー信号をもとに被検体の断層像やスペクトル画像などを再構成し表示装置に表示させることは従来のMRI装置と同様である。 The operation of the MRI apparatus of this embodiment is the same as that of the conventional MRI apparatus, and detailed description thereof is omitted. However, when starting imaging, the operator selects a basic pulse sequence and sets imaging when setting imaging conditions. Set the parameters. At this time, an imaging for minimizing noise is selected, or selection of a gradient magnetic field pulse for minimizing noise is instructed. As a result, the pulse sequence creation unit changes the basic pulse sequence using the gradient magnetic field pulse waveform stored in the storage device 172 and passes it to the sequencer 140. After that, under the control of the sequencer 140, the application of the RF pulse and the gradient magnetic field pulse and the measurement of the echo signal are repeatedly performed, and the tomographic image and spectrum image of the subject are reconstructed based on the measured echo signal. The display on the display device is the same as that of the conventional MRI apparatus.
 本実施形態によれば、騒音を最小化する傾斜磁場パルスを含むパルスシーケンスを用いることにより、従来のMRI装置に比べ騒音の少ない撮像が可能となる。 According to the present embodiment, by using a pulse sequence including a gradient magnetic field pulse that minimizes noise, it is possible to perform imaging with less noise than conventional MRI apparatuses.
 本実施形態による騒音抑制の効果を、図10を参照して説明する。図10は、リフェーズパルスと周波数エンコードパルスの総印加時間を一定とし、リフェーズパルス時間を変化させて、各リフェーズパルス時間で騒音を最小化する傾斜磁場パルスを求め、それらの騒音レベル(計算値)を示したグラフである。図10には、参考として、同じリフェーズパルス時間で台形の傾斜磁場パルスを用いた場合(従来法)の騒音レベル(計算値)を示している。 The effect of noise suppression according to the present embodiment will be described with reference to FIG. FIG. 10 shows a gradient magnetic field pulse that minimizes noise at each rephase pulse time by changing the rephase pulse time while keeping the total application time of the rephase pulse and the frequency encode pulse constant. It is a graph showing calculated values. For reference, FIG. 10 shows noise levels (calculated values) when trapezoidal gradient magnetic field pulses are used with the same rephase pulse time (conventional method).
 図10から明らかなように、本実施形態の傾斜磁場パルスでは、どのリフェーズパルス時間でも従来の傾斜磁場パルスに比べ10dB前後の騒音低減効果が得られる。即ち騒音の音圧を3分の1程度にできる。またリフェーズパルス時間が約4msのときに最も騒音低減効果が大きいことがわかる。 As is clear from FIG. 10, the gradient magnetic field pulse of this embodiment can obtain a noise reduction effect of about 10 dB compared to the conventional gradient magnetic field pulse at any rephase pulse time. That is, the sound pressure of noise can be reduced to about one third. It can also be seen that the noise reduction effect is greatest when the rephase pulse time is about 4 ms.
 本実施形態では、騒音を最小化する傾斜磁場パルスが、リフェーズパルスと組み合わせられる周波数エンコードパルスであり、且つその周波数エンコードパルスが正負の符号が同じ区間では極値をひとつだけもつという条件で求められたものである場合を説明したが、形状に対する条件は第一実施形態で挙げた条件に限らず、適宜、追加したり変更することが可能であり、また、周波数エンコードパルスの他に、リフェーズパルス自体や、周波数エンコードパルス以外のスライス選択傾斜磁場パルス或いは位相エンコード傾斜磁場パルス、さらにはスポイラーパルスにも適用することができる。
 また、本実施形態ではパルスシーケンスや傾斜磁場波形が記憶領域に保存されるとしたが、撮像条件が入力されるたびにパルスシーケンス作成部180で作成しても良い。
In the present embodiment, the gradient magnetic field pulse that minimizes noise is a frequency encode pulse combined with a rephase pulse, and the frequency encode pulse is obtained under the condition that it has only one extreme value in the same positive / negative sign interval. However, the conditions for the shape are not limited to those described in the first embodiment, and can be added or changed as appropriate. The present invention can also be applied to a phase pulse itself, a slice selective gradient magnetic field pulse other than a frequency encode pulse, a phase encode gradient magnetic field pulse, or a spoiler pulse.
In this embodiment, the pulse sequence and the gradient magnetic field waveform are stored in the storage area. However, the pulse sequence generation unit 180 may generate the pulse sequence every time imaging conditions are input.
 以下、このような第一実施形態の変更例を説明する。 Hereinafter, a modification example of the first embodiment will be described.
<変更例1>
 第一実施形態では、周波数エンコードパルス形状が正負の符号が同じ区間では極値をひとつだけもつこと条件としたが、本変更例は、この条件を除いたことが特徴である。その他の条件は、第一実施形態と同じで、対称性、最大スルーレート、面積、リフェーズパルス時間、エンコードパルス時間である。
<Modification 1>
In the first embodiment, the condition that the frequency encode pulse shape has only one extreme value in the section where the signs of the positive and negative signs are the same is used. However, this modified example is characterized in that this condition is excluded. Other conditions are the same as in the first embodiment, and are symmetry, maximum slew rate, area, rephase pulse time, and encode pulse time.
 本変更例においても、傾斜磁場パルス形状を求める手法は、初期設定の条件が異なる以外、図5に示す手順と同様である。正負の符号が同じ区間では極値をひとつだけもつという条件を除くことによって、ステップS102で追加される長方形は、図11に示すように、周波数エンコードパルスの時間軸に沿った中心を通る軸に対し対称に配置される1組の長方形となる。なお1組の長方形が中心で接する場合もあるので、その場合には実質的に一つの長方形を配置することと同じである。ステップS102では、このような長方形の組を配置したときの、騒音レベルを算出し、騒音レベルが最小となる長方形の組を決定する。リフェーズパルス時間を2.276msとして求めた最終的な傾斜磁場パルス形状を図12に示す。 Also in this modified example, the method for obtaining the gradient magnetic field pulse shape is the same as the procedure shown in FIG. 5 except that the initial setting conditions are different. By removing the condition that the positive and negative signs have the same extreme value in the same section, the rectangle added in step S102 is an axis passing through the center along the time axis of the frequency encoding pulse as shown in FIG. It becomes a set of rectangles arranged symmetrically. Since a set of rectangles may touch at the center, in this case, it is substantially the same as arranging one rectangle. In step S102, a noise level is calculated when such a rectangular group is arranged, and a rectangular group that minimizes the noise level is determined. FIG. 12 shows the final gradient magnetic field pulse shape obtained by setting the rephase pulse time to 2.276 ms.
 図12の形状を、第一実施形態において同じリフェーズパルス時間で求めた傾斜磁場パルス形状(図9)と対比すると、いずれも、中央に独立した凸部形状を有し、周波数エンコード区間中に3以上の変曲点を有するという特徴を有している。また本変更例は、第一実施形態よりも条件が少なく、本変更例で得られる傾斜磁場パルス形状は、騒音低減効果をより優先した形状ということができる。 When the shape of FIG. 12 is compared with the gradient magnetic field pulse shape (FIG. 9) obtained with the same rephase pulse time in the first embodiment, each has an independent convex shape at the center, and in the frequency encoding section. It has the feature of having three or more inflection points. In addition, the present modified example has fewer conditions than the first embodiment, and the gradient magnetic field pulse shape obtained in the present modified example can be said to be a shape that prioritizes the noise reduction effect.
<変更例2>
 本変更例では、第一実施形態における周波数エンコードパルス形状の条件に対し、さらに最大傾斜磁場強度の条件を追加したことが特徴である。その他の条件は、第一実施形態と同じで、正負の符号が同じ区間では極値をひとつだけもつこと、対称性、最大スルーレート、面積、リフェーズパルス時間、エンコードパルス時間である。
<Modification 2>
This modification is characterized in that a condition for the maximum gradient magnetic field strength is further added to the condition for the frequency encoding pulse shape in the first embodiment. Other conditions are the same as in the first embodiment, and only one extreme value exists in the section where the positive and negative signs are the same, the symmetry, the maximum slew rate, the area, the rephase pulse time, and the encode pulse time.
 本変更例においても、傾斜磁場パルス形状を求める手法は、初期設定の条件が異なる以外、図5に示す手順と同様である。ステップS102で追加される長方形を決定する際に、長方形の追加によって形成される傾斜磁場パルスが最大傾斜磁場強度を超えないことを条件とする。 Also in this modified example, the method for obtaining the gradient magnetic field pulse shape is the same as the procedure shown in FIG. 5 except that the initial setting conditions are different. When determining the rectangle to be added in step S102, it is a condition that the gradient magnetic field pulse formed by the addition of the rectangle does not exceed the maximum gradient magnetic field strength.
 本変更例において、リフェーズパルス時間を2.276msとして求めた傾斜磁場パルス形状を図13に示す。図13の形状を、第一実施形態において同じリフェーズパルス時間で求めた傾斜磁場パルス形状(図9)と対比すると、いずれも、パルス幅と同じ幅の低い台形の中央に、それより幅の狭い凸部が重なっている形状であり、狭い凸部両端の2点の変曲点を含んで3つ以上の変曲点を有するという特徴を有している。図13の形状は、最大傾斜磁場強度の条件により、波形の高さが図9の波形より低く、中央の凸部の形状が変化している。
 本変更例では、最大傾斜磁場強度の条件を追加したことにより、そのまま装置で出力できる波形が得られ、さらに最大傾斜磁場強度の条件を考慮してパルス形状を調整する必要がない。また、最大傾斜磁場強度も考慮した騒音を最小にするパルス形状が得られる。
FIG. 13 shows the gradient magnetic field pulse shape obtained with the rephase pulse time of 2.276 ms in this modification. When the shape of FIG. 13 is compared with the gradient magnetic field pulse shape (FIG. 9) obtained at the same rephase pulse time in the first embodiment, each of them has a width smaller than that at the center of the trapezoid having the same width as the pulse width. It has a shape in which narrow convex portions overlap each other and has three or more inflection points including two inflection points at both ends of the narrow convex portion. In the shape of FIG. 13, the height of the waveform is lower than the waveform of FIG.
In this modification, by adding the condition for the maximum gradient magnetic field strength, a waveform that can be output as it is by the apparatus can be obtained, and further, it is not necessary to adjust the pulse shape in consideration of the condition for the maximum gradient magnetic field strength. In addition, a pulse shape that minimizes noise in consideration of the maximum gradient magnetic field strength can be obtained.
<変更例3>
 本変更例は、リフェーズパルスや逆極性のパルスを伴わない傾斜磁場パルスとして、騒音を最小化する特定形状の傾斜磁場パルスを用いるものである。本実施形態においても、採用する撮像シーケンスは特に限定されないが、例えば図3に示すFSEシーケンスの場合、リフェーズパルス302やスライス選択傾斜磁場パルス305に適用することができる。
<Modification 3>
In this modified example, a gradient magnetic field pulse having a specific shape that minimizes noise is used as a gradient magnetic field pulse not accompanied by a rephase pulse or a reverse polarity pulse. Also in the present embodiment, the imaging sequence to be employed is not particularly limited. For example, in the case of the FSE sequence illustrated in FIG. 3, the imaging sequence can be applied to the rephase pulse 302 and the slice selection gradient magnetic field pulse 305.
 本変更例における傾斜磁場パルス形状を求める手法について説明する。手順は図5に示す手順と同様であり、まず初期設定(S101)として、傾斜磁場パルス形状の条件が設定される。本変更例では、条件は、リフェーズパルス時間、最大スルーレート、対称で正負の符号が同じ区間では極値をひとつだけもつこと、及び面積である。また形状の初期値は、一辺の長さがリフェーズパルス時間である最小の長方形である。その後、長方形を追加したときに、最大スルーレート及び対称で正負の符号が同じ区間では極値をひとつだけもつことの2条件を満たし、騒音が最小になる長方形を決定し、それを追加して形状を更新する(S102、S103)。騒音が最小になるか否かの判定は、最大スルーレート及び対称で正負の符号が同じ区間では極値をひとつだけもつことの2条件を満たす追加可能な全ての長方形について、前掲の式(1)により騒音レベルを算出し、騒音レベルを比較することにより行う。 The method for obtaining the gradient magnetic field pulse shape in this modified example will be described. The procedure is the same as the procedure shown in FIG. 5. First, gradient magnetic field pulse shape conditions are set as the initial setting (S101). In this modified example, the conditions are a rephase pulse time, a maximum slew rate, a symmetric and positive / negative sign having only one extreme value, and an area. The initial value of the shape is the smallest rectangle whose side length is the rephase pulse time. After that, when a rectangle was added, a rectangle that satisfies the two conditions of having only one extreme value in the same slew rate and symmetric, positive and negative signs in the same interval was determined and added. The shape is updated (S102, S103). The determination as to whether or not the noise is minimized is made for the maximum slew rate and all the rectangles that can be added that satisfy the two conditions of having only one extreme value in the same symmetric and positive and negative signs in the same interval (1 ) To calculate the noise level and compare the noise levels.
 これらステップS102、S103をパルス形状の面積が、初期条件で与えられた面積になるまで繰り返し(S104)、最終的な傾斜磁場パルス形状を得る。 These steps S102 and S103 are repeated until the area of the pulse shape reaches the area given by the initial conditions (S104), and the final gradient magnetic field pulse shape is obtained.
 このような手法で得られたリフェーズパルスを図14に示す。この波形も、FRFに周波数の上限があることに伴い細かい不連続部分を有しているが、第一実施形態と同様に、後処理(フィルタリング)を行って滑らかな波形にして、パルスシーケンスに組み込むことが好ましい。 FIG. 14 shows the rephase pulse obtained by such a method. This waveform also has fine discontinuities due to the upper limit of the frequency in the FRF. However, as in the first embodiment, post-processing (filtering) is performed to obtain a smooth waveform, which is converted into a pulse sequence. Incorporation is preferred.
<第二実施形態>
 本実施形態では、複数の波形モデルの組み合わせから、騒音を最小化する傾斜磁場パルス形状を求めることが特徴である。求めた傾斜磁場パルス形状を、撮像に際し選択されたパルスシーケンスに用いることは第一実施形態と同様である。また装置構成も図1及び図2に示す第一実施形態の構成と同様であるので、説明を省略し、異なる点を説明する。
<Second embodiment>
The present embodiment is characterized in that a gradient magnetic field pulse shape that minimizes noise is obtained from a combination of a plurality of waveform models. The use of the obtained gradient magnetic field pulse shape for the pulse sequence selected during imaging is the same as in the first embodiment. The apparatus configuration is also the same as that of the first embodiment shown in FIGS. 1 and 2, and thus the description thereof will be omitted and different points will be described.
 まず本実施形態のモデル化の基本的な考え方を説明する。
 第一実施形態の変更例1で求めた傾斜磁場パルス形状(図12)から、リフェーズパルスに隣接して、リフェーズパルスと同じような形状で逆向きのパルスを印加したときに高い騒音低減効果が得られることがわかる。リフェーズパルスと同じような形状で逆向きのパルスの効果は、リフェーズパルスを最終的な形状に固定し、周波数エンコードを探索することで確認できる。図15及び図16は、それぞれ、正負の符号が同じ区間では極値をひとつだけもつ条件がない場合(第一実施形態の変更例1)及び正負の符号が同じ区間では極値をひとつだけもつ条件がある場合(第一実施形態)について、リフェーズパルスを固定して周波数エンコード傾斜磁場パルスの形状を探索したときの途中経過を示している。それ以外の条件は、両者とも同じである。図16には、形状の途中経過とともに、その周波数スペクトル及びそれにFRFとA特性を乗じたものの変化を併せて示す。
First, the basic concept of modeling in this embodiment will be described.
From the gradient magnetic field pulse shape obtained in the first modification of the first embodiment (FIG. 12), noise reduction is high when a reverse pulse is applied in the same shape as the rephase pulse adjacent to the rephase pulse. It turns out that an effect is acquired. The effect of a reverse pulse with the same shape as the rephase pulse can be confirmed by fixing the rephase pulse to the final shape and searching for the frequency encoding. FIGS. 15 and 16 respectively show a case where there is no condition having only one extreme value in the same positive / negative sign interval (modified example 1 of the first embodiment) and a single extreme value in the same positive / negative sign interval. In the case where there is a condition (first embodiment), a halfway progress is shown when the shape of the frequency encoding gradient magnetic field pulse is searched with the rephase pulse fixed. Other conditions are the same for both. FIG. 16 shows the change of the frequency spectrum and the result of multiplying it by FRF and A characteristics as the shape progresses.
 図15に示す途中経過では、最初にリフェーズパルスの隣に同じような形状の逆向きの形状が現れており、これらの形状のパルスが騒音低減に寄与することがわかる。また図16に示す途中経過では、正負の符号が同じ区間では極値をひとつだけもつという条件があるため、リフェーズパルスの両側ではないが中央にリフェーズパルスと同じような形状で逆向きの凸状の波形が最初に現れており、この場合にも、この凸状のパルスが騒音低減に寄与することがわかる。また図16に示す周波数スペクトルは、凸状のパルスによって周波数特性がよりピーキーに推移し、その結果、FRFとA特性をかけたグラフでは、矢印で示すように騒音に影響の大きい高周波側の成分が抑えられ、騒音が低減されていることがわかる。 In the middle of the process shown in FIG. 15, first, reverse shapes having the same shape appear next to the rephase pulse, and it can be seen that the pulses having these shapes contribute to noise reduction. In the middle of the process shown in FIG. 16, there is a condition that only one extreme value exists in the same section of the positive and negative signs. A convex waveform appears first, and it can be seen that this convex pulse also contributes to noise reduction. In the frequency spectrum shown in FIG. 16, the frequency characteristic shifts more peakly due to the convex pulse. As a result, in the graph obtained by multiplying the FRF and the A characteristic, a component on the high frequency side having a large influence on noise is shown as indicated by an arrow. It can be seen that noise is reduced and noise is reduced.
 本実施形態では、上述した考え方に基づき、周波数エンコード傾斜磁場パルスに対し、リフェーズパルスと同様の形状で逆極性のパルスを加えたモデルを用いて、騒音を最小化する傾斜磁場パルス形状を求める。 In the present embodiment, based on the above-described concept, a gradient magnetic field pulse shape that minimizes noise is obtained using a model in which a pulse having a reverse polarity in the same shape as a rephase pulse is added to a frequency encoding gradient magnetic field pulse. .
 本実施形態で用いる複数の波形モデルの一例を図17に示す。ここでは5つの台形を重ね合わせたものをモデルとする。5つの台形のうち、2つはリフェーズパルスG1、G1’、中央のパルスは基本パルスシーケンスに含まれる通常の周波数エンコードパルスG3である。リフェーズパルスG1、G1’に隣接するパルスG2、G2’は、それぞれリフェーズパルスG1、G1’と同じ印加時間、立ち上がり時間、逆極性とする。 FIG. 17 shows an example of a plurality of waveform models used in this embodiment. Here, a model is formed by superimposing five trapezoids. Of the five trapezoids, two are rephase pulses G1 and G1 ', and the central pulse is a normal frequency encoding pulse G3 included in the basic pulse sequence. The pulses G2 and G2 'adjacent to the rephase pulses G1 and G1' have the same application time, rise time, and reverse polarity as the rephase pulses G1 and G1 ', respectively.
 この波形モデルにおいて、リフェーズパルスG1の立ち上がり時間、周波数エンコードパルスG3の立ち上がり時間及び一つの周波数エンコードパルスG3の周波数エンコードパルス全体に対する面積割合をパラメータとして、パラメータを変化させたときに最も騒音低減効果が高いパラメータで決まる形状を決定する。パラメータの探索は、公知の最適化技術を用いてもよいし、総当たりで求めてもよい。 In this waveform model, when the parameters are changed with the rise time of the rephase pulse G1, the rise time of the frequency encode pulse G3, and the area ratio of one frequency encode pulse G3 with respect to the entire frequency encode pulse as a parameter, the noise reduction effect is the greatest. Determine the shape determined by high parameters. The parameter search may be performed by using a known optimization technique or by brute force.
 図18に、IET=14.8ms、リフェーズパルス時間=3.276ms、エンコード時間=7.224msとして求めた傾斜磁場パルス形状を示す。この形状は、第一実施形態において、同じIET、リフェーズパルス時間、エンコード時間で求めた傾斜磁場パルス形状(図8)と同様の形状であり、このモデル化が適切であることが判る。 FIG. 18 shows a gradient magnetic field pulse shape obtained with IET = 14.8 ms, rephase pulse time = 3.276 ms, and encode time = 7.224 ms. This shape is the same as the gradient magnetic field pulse shape (FIG. 8) obtained by the same IET, rephase pulse time, and encoding time in the first embodiment, and it can be seen that this modeling is appropriate.
 モデル化によって得た波形(図18)についても、第一実施形態と同様にフィルターをかけて滑らかな形状にしてもよい。一例として、図18の波形に0.6msの移動平均フィルターをかけた波形を図19に示す。この周波数エンコード傾斜磁場の騒音レベル(計算値)は-51.9dBであり、同じ条件で求めた第一実施形態の周波数エンコード傾斜磁場の騒音レベル(-52.4dB)と同等であり、モデル化とフィルターだけでも最適化した形状の効果が得られることがわかる。 The waveform (FIG. 18) obtained by modeling may be smoothed by filtering as in the first embodiment. As an example, FIG. 19 shows a waveform obtained by applying a moving average filter of 0.6 ms to the waveform of FIG. The noise level (calculated value) of this frequency encoding gradient magnetic field is −51.9 dB, which is equivalent to the noise level (−52.4 dB) of the frequency encoding gradient magnetic field of the first embodiment obtained under the same conditions. It can be seen that the effect of the optimized shape can be obtained even with the filter alone.
 なお図17には、2つのリフェーズパルスと周波数エンコードパルスに対し、リフェーズパルスと同じ形状で逆極性の2つのパルスを加えたモデルを示したが、モデルはこれに限らない。例えば、図20に示すように、リフェーズパルスG1、G1’と同じ形状で逆極性のパルスG2を周波数エンコードパルスG3の中央に重ねたモデルも採用することも可能である。この場合にも、リフェーズパルスG1の立ち上がり時間と、周波数エンコードパルスG3の立ち上がり時間、周波数エンコードパルスG3の立ち上がり時間及び一つの周波数エンコードパルスG3の周波数エンコードパルス全体に対する面積割合をパラメータとし、最大の騒音低減効果が得られるパラメータの組を探索する。 FIG. 17 shows a model in which two pulses having the same shape as the rephase pulse and opposite polarity are added to the two rephase pulses and the frequency encode pulse, but the model is not limited to this. For example, as shown in FIG. 20, it is also possible to adopt a model in which a pulse G2 having the same shape as the rephase pulses G1 and G1 'and having a reverse polarity is superimposed on the center of the frequency encode pulse G3. Also in this case, the rise time of the rephase pulse G1, the rise time of the frequency encode pulse G3, the rise time of the frequency encode pulse G3, and the area ratio of one frequency encode pulse G3 to the entire frequency encode pulse are used as parameters. A set of parameters that can obtain a noise reduction effect is searched.
 また図17及び図20では、モデルを構成するパルスの形状を台形としたが、解析的にパラメータを探索できる形状であれば台形に限定されず、例えばサイン波(0~πまで)やサイン二乗波、二次関数などを用いることも可能である。 In FIGS. 17 and 20, the shape of the pulse constituting the model is a trapezoid. However, the shape is not limited to a trapezoid as long as the parameter can be searched analytically. For example, a sine wave (from 0 to π) or a sine square is used. It is also possible to use waves, quadratic functions, etc.
 本実施形態においても、モデルを用いた傾斜磁場パルス形状の算出は、MRI装置とは別の計算機で行ってもよいし、MRI装置のパルスシーケンス作成部180で行うようにしてもよい。本実施形態によれば、モデルを用いることにより、第一実施形態よりも短時間で最適な傾斜磁場パルス形状の算出が可能である。 Also in this embodiment, calculation of the gradient magnetic field pulse shape using the model may be performed by a computer different from the MRI apparatus, or may be performed by the pulse sequence creation unit 180 of the MRI apparatus. According to the present embodiment, by using a model, it is possible to calculate the optimum gradient magnetic field pulse shape in a shorter time than in the first embodiment.
<第三実施形態>
 第一実施形態では撮像パラメータを固定して騒音を最小化する傾斜磁場パルス形状を求めたが、本実施形態は、撮像パラメータ自体を、騒音を最小化する傾斜磁場パルス形状を求める際の条件として追加することが特徴である。条件として追加する撮像パラメータは、特に限定されないが、例えば、繰り返し時間(TR)、エコー間隔(IET)、リフェーズパルス時間などが挙げられ、これら1つ又は複数を、それぞれ所定の幅を持たせて条件として追加する。所定の幅とは、一般的なパルスシーケンスで許容される撮像パラメータの値の範囲である。
<Third embodiment>
In the first embodiment, the gradient magnetic field pulse shape that minimizes the noise by fixing the imaging parameter is obtained, but in this embodiment, the imaging parameter itself is used as a condition for obtaining the gradient magnetic field pulse shape that minimizes the noise. It is a feature to add. Imaging parameters to be added as conditions are not particularly limited, and examples include repetition time (TR), echo interval (IET), rephase pulse time, and the like. Add as a condition. The predetermined width is a range of imaging parameter values allowed in a general pulse sequence.
 本実施形態は、傾斜磁場パルス形状を求める手法のみが第一及び第二実施形態と異なり、その他の構成及び撮像方法は同様であるので説明を省略し、以下、本実施形態による傾斜磁場パルス形状を求める手順を、図21を参照して説明する。 This embodiment is different from the first and second embodiments only in the method for obtaining the gradient magnetic field pulse shape, and the other configuration and imaging method are the same, so the description thereof will be omitted. Hereinafter, the gradient magnetic field pulse shape according to the present embodiment The procedure for obtaining is described with reference to FIG.
 まず初期設定として、撮像パラメータの初期値を設定する。初期値は、各撮像パラメータの所定の幅の最小値、最大値、中央値など任意の値でよい。また形状について第一実施形態或いはその変更例1又は2と同様の条件を設ける(S101)。即ち、例えば、最大スルーレート、対称で正負の符号が同じ区間では極値をひとつだけもつ或いは単に対称な形状、波形(パルス)の面積である。 First, set the initial value of the imaging parameter as the initial setting. The initial value may be an arbitrary value such as a minimum value, a maximum value, or a median value of a predetermined width of each imaging parameter. Further, the same conditions as those of the first embodiment or the modified example 1 or 2 are provided for the shape (S101). That is, for example, the maximum slew rate, a symmetric and positive / negative sign in the same section, has only one extreme value or simply a symmetric shape, and an area of a waveform (pulse).
 初期設定の後、例えば、騒音を最小化する傾斜磁場パルスの形状を求める(S102’)。このステップS102’は、上述した第一実施形態(変更例を含む)或いは第二実施形態で採用する手法(図5のステップS102)のいずれを採用してもよい。第一実施形態の手法であれば、順次、単位面積の長方形を積み上げたときに騒音を最小化する長方形を決定するという手順を繰り返す。その際、形状の条件には、正負の符号が同じ区間では極値をひとつだけもつことを入れる場合、正負の符号が同じ区間では極値をひとつだけもつことを入れない場合、最大傾斜磁場強度の条件を加える場合などが在りえる。また第二実施形態の手法であれば、モデル化した波形を初期値として、そのモデルを規定するパラメータのうち騒音を最小化する形状を与えるパラメータを探索し、最終的に騒音を最小化する波形を決定する。モデルとしては、図17や図20に示すような台形を組み合わせたモデルや、台形以外の形状を組み合わせたモデルを採りえる。 After the initial setting, for example, the shape of the gradient magnetic field pulse that minimizes the noise is obtained (S102 '). This step S102 'may employ either the above-described first embodiment (including a modified example) or the method employed in the second embodiment (step S102 in FIG. 5). If it is the method of 1st embodiment, the procedure of determining the rectangle which minimizes a noise when the rectangle of a unit area is piled up sequentially is repeated. At that time, if the shape condition includes only one extreme value with the same sign, the maximum gradient magnetic field strength does not include only one extreme value with the same sign. There may be cases where additional conditions are added. In the case of the method of the second embodiment, a modeled waveform is used as an initial value, and a parameter that gives a shape that minimizes noise is searched from among parameters that define the model, and finally a waveform that minimizes noise. To decide. As a model, a model combining trapezoids as shown in FIGS. 17 and 20 or a model combining shapes other than trapezoids can be adopted.
 ステップS102’では、例えば図22に示すように、単位面積の長方形を追加したときの騒音レベルを算出する際に、撮像パラメータを変化させた場合即ち傾斜磁場パルスの繰り返しパターンも加味して騒音レベルも算出し、騒音レベルを最小化する形状と撮像パラメータを求める。モデル化の場合は、形状のパラメータ及び撮像パラメータのすべての組み合わせにおいて騒音レベルを最小化するパラメータの組み合わせを求める。 In step S102 ′, for example, as shown in FIG. 22, when calculating the noise level when a rectangle of unit area is added, the noise level is taken into account when the imaging parameter is changed, that is, by taking into account the repeating pattern of the gradient magnetic field pulse. Is calculated, and the shape and imaging parameters that minimize the noise level are obtained. In the case of modeling, a combination of parameters that minimizes the noise level is obtained for all combinations of the shape parameter and the imaging parameter.
 或いは、図6に示すように、一つの撮像パラメータの組み合わせで求めた暫定的な傾斜磁場パルスを、別の撮像パラメータとした場合の騒音レベルを算出し、この暫定的な傾斜磁場パルスにおいて最も騒音を最小化する撮像パラメータの組み合わせを求めてもよい。更新途中の撮像パラメータの組み合わせは暫定的なものであり、次の繰り返しでは、更新された傾斜磁場パルスについて最も騒音を最小化するものとして求められた撮像パラメータの組み合わせに更新される。 Alternatively, as shown in FIG. 6, a noise level is calculated when a provisional gradient magnetic field pulse obtained by a combination of one imaging parameter is used as another imaging parameter. A combination of imaging parameters that minimizes may be obtained. The combination of imaging parameters being updated is provisional, and in the next iteration, the updated gradient magnetic field pulse is updated to a combination of imaging parameters determined to minimize noise.
 ステップS103では、ステップS102’で求まった傾斜磁場パルス形状を新たな傾斜磁場パルス形状とする。即ちステップS102’の処理対象となる傾斜磁場パルス形状が更新される。更新された傾斜磁場パルス形状が、設定された傾斜磁場パルスの面積になるまでステップS102’ 、S103を繰り返す(S104)。 In step S103, the gradient magnetic field pulse shape obtained in step S102 'is set as a new gradient magnetic field pulse shape. That is, the gradient magnetic field pulse shape to be processed in step S102 'is updated. Steps S102 'and S103 are repeated until the updated gradient magnetic field pulse shape reaches the set gradient magnetic field pulse area (S104).
 以上の処理により最終的に最も騒音を最小化する傾斜磁場パルス形状と撮像パラメータの組み合わせが決まる。こうして求まった傾斜磁場パルス形状と撮像パラメータは、記憶装置172に格納される。撮像に際し、基本パルスシーケンサが選択されると、パルスシーケンス作成部180は、記憶装置172に格納された傾斜磁場パルス形状と撮像パラメータを読出し、基本パルスシーケンスを変更し、実際に撮像に使用される撮像シーケンスを作成し、シーケンサ140に渡す。 The combination of the gradient magnetic field pulse shape and the imaging parameter that ultimately minimizes the noise is finally determined by the above processing. The gradient magnetic field pulse shape and the imaging parameters thus obtained are stored in the storage device 172. When the basic pulse sequencer is selected for imaging, the pulse sequence creation unit 180 reads the gradient magnetic field pulse shape and imaging parameters stored in the storage device 172, changes the basic pulse sequence, and is actually used for imaging. An imaging sequence is created and passed to the sequencer 140.
 なお一般にMRI装置では、操作者がパルスシーケンスを選択する際に、撮像パラメータを設定することができる。本実施形態のMRI装置では、騒音を最小化する撮像が選択されている場合、撮像パラメータの設定画面において、騒音を最小化する傾斜磁場パルス形状を求めたときに決定された撮像パラメータについては、デフォルトでその値を表示してもよい。さらに操作者が別の撮像パラメータを設定できるようにしてもよく、その場合にはパルスシーケンス作成部180は、傾斜磁場パルス形状は記憶装置172から読み出したものを用い、操作者が設定した新たな撮像パラメータを用いて、基本パルスシーケンスをもとに撮像シーケンスを作成する。この場合にも、傾斜磁場パルスの形状が騒音を低減する形であるため、基本の台形の傾斜磁場パルスによるパルスシーケンスを実行した場合よりも大幅な騒音低減が可能となる。 In general, in an MRI apparatus, an imaging parameter can be set when an operator selects a pulse sequence. In the MRI apparatus of this embodiment, when imaging that minimizes noise is selected, the imaging parameters determined when the gradient magnetic field pulse shape that minimizes noise is obtained on the imaging parameter setting screen are as follows. The value may be displayed by default. Further, another imaging parameter may be set by the operator. In that case, the pulse sequence creation unit 180 uses the gradient magnetic field pulse shape read from the storage device 172, and a new one set by the operator. An imaging sequence is created based on the basic pulse sequence using the imaging parameters. Also in this case, since the shape of the gradient magnetic field pulse is a form that reduces noise, noise can be greatly reduced compared to the case where a pulse sequence using a basic trapezoidal gradient magnetic field pulse is executed.
<第三実施形態の変更例>
 本変更例においても、騒音を最小化する傾斜磁場パルス形状を求めるに際し、撮像パラメータの幅を条件として追加すること、この幅内で最適な傾斜磁場パルス形状を求めることは第三実施形態と同じである。但し本変更例では、第三実施形態のステップS102’のように撮像パラメータの条件を形状の条件と対等に扱って、傾斜磁場パルス形状を探索するのではなく、段階的に適用する。
<Modification example of the third embodiment>
Also in this modified example, when obtaining the gradient magnetic field pulse shape that minimizes noise, adding the imaging parameter width as a condition, and obtaining the optimum gradient magnetic field pulse shape within this width are the same as in the third embodiment. It is. However, in this modified example, the imaging parameter condition is handled in the same way as the shape condition as in step S102 ′ of the third embodiment, and the gradient magnetic field pulse shape is not searched but applied step by step.
 本変更例の手順を図23に示す。まず撮像パラメータを初期設定し、この撮像パラメータのもとで騒音を最小化する傾斜磁場パルス形状を決定する。撮像パラメータは1つでもよいし複数の組み合わせでもよい。このときの騒音レベルを算出し、記録する(S201)。次いで撮像パラメータ或いはその組み合わせを変更し、同様に騒音を最小化する傾斜磁場パルス形状を決定し、このときの騒音レベルを算出し、それ以前に記録された撮像パラメータの条件における騒音レベルと比較し、より騒音レベルの低いものに更新する(S202)。 The procedure for this modification is shown in FIG. First, imaging parameters are initially set, and a gradient magnetic field pulse shape that minimizes noise is determined based on the imaging parameters. The imaging parameter may be one or a plurality of combinations. The noise level at this time is calculated and recorded (S201). Next, change the imaging parameters or a combination thereof, determine the gradient magnetic field pulse shape that minimizes the noise in the same way, calculate the noise level at this time, and compare it with the noise level in the conditions of the imaging parameters recorded before that. Then, it is updated to one having a lower noise level (S202).
 ステップS202を、撮像パラメータを変化させて繰り返し(S203)、最終的にすべての撮像パラメータ或いは組み合わせの中で最も騒音を低減できたときの傾斜磁場パルス形状を決定する。ステップS203における更新の収束条件としては、最急降下法、二分法などの方法を適用することができる。或いは総当たり法ですべての撮像パラメータについてステップS202を実行してもよい。なお総当たり法の場合には、1回のステップS202の中ですべての変化を調べることになるので、ステップS203は省略される。 Step S202 is repeated while changing the imaging parameters (S203), and finally the gradient magnetic field pulse shape when noise can be reduced most among all the imaging parameters or combinations is determined. As the update convergence condition in step S203, methods such as the steepest descent method and the bisection method can be applied. Or you may perform step S202 about all the imaging parameters by the brute force method. In the case of the round robin method, since all changes are examined in one step S202, step S203 is omitted.
 なお第三実施形態及びその変更例においても、騒音を最小化する傾斜磁場パルス及びその際の条件である撮像パラメータは、MRI装置(パルスシーケンス作成部180)で算出してもよいし、ほかの計算機で予め算出したものをMRI装置の記憶装置172に格納しておいてもよい。また予め算出する場合、撮像パラメータ或いはその組み合わせを異ならせた複数の条件でそれぞれ求めた騒音を最小化する傾斜磁場パルスを格納しておき、撮像に際し、操作者が選択した撮像パラメータに最も近いものを記憶装置172から読み出して実行するようにしてもよい。或いは、いくつかの候補を、表示装置173を介して操作者に提示し、選択させるようにしてもよい。このような操作者に選択させるためのGUIについては次の実施形態で詳述する。 In the third embodiment and its modified example, the gradient magnetic field pulse for minimizing noise and the imaging parameter as the condition at that time may be calculated by the MRI apparatus (pulse sequence creation unit 180). What is calculated in advance by the computer may be stored in the storage device 172 of the MRI apparatus. In addition, when calculating in advance, gradient magnetic field pulses that minimize noise obtained under a plurality of conditions with different imaging parameters or combinations thereof are stored, and those closest to the imaging parameters selected by the operator at the time of imaging are stored. May be read from the storage device 172 and executed. Alternatively, some candidates may be presented to the operator via the display device 173 and selected. The GUI for causing the operator to make a selection will be described in detail in the next embodiment.
 第三実施形態及びその変更例によれば、撮像パラメータも考慮した低騒音の傾斜磁場パルスが用いられるので、騒音による被検体への負担を低減できる。 According to the third embodiment and the modified example thereof, a low noise gradient magnetic field pulse that takes imaging parameters into consideration is used, so that the burden on the subject due to noise can be reduced.
<第四実施形態>
 本実施形態は、騒音を最小化する撮像と、画質を優先する撮像とを操作者が選択するための情報を生成すること、またその情報を操作者に提示するGUIを備えることが特徴である。即ち、本実施形態のMRI装置は、例えば、騒音を最小化する受信バンド幅や騒音を最小化する受信バンド幅と発生する騒音との関係を表示装置(173)に表示させる表示制御部(183)をさらに備える。また本実施形態のMRI装置は、騒音低減及び画質向上の優先度を選択させるUIを表示装置(173)に表示させる表示制御部(183)と、UIを介して選択された優先度に基き、撮像パラメータを制御する撮像制御部(制御部170)とをさらに備える。
<Fourth embodiment>
The present embodiment is characterized in that it generates information for an operator to select an image that minimizes noise and an image that prioritizes image quality, and includes a GUI that presents the information to the operator. . That is, the MRI apparatus according to the present embodiment, for example, includes a display control unit (183) that displays on the display device (173) the reception bandwidth that minimizes noise and the relationship between the reception bandwidth that minimizes noise and generated noise. ). Further, the MRI apparatus of the present embodiment is based on the display control unit (183) that displays a UI for selecting the priority for noise reduction and image quality improvement on the display device (173), and the priority selected via the UI, An imaging control unit (control unit 170) that controls imaging parameters is further provided.
 上述した第一~第三実施形態及びそれらの変更例では、騒音を最小化する撮像が選択されたときに、パルスシーケンス作成部は、騒音を最小化できる傾斜磁場パルス形状と撮像パラメータの組み合わせで、騒音を最小化する撮像パルスシーケンスを作成する。即ちこの操作者には、騒音を最小化する撮像を選択するか否かを選択することが可能であるが、その中間的な撮像すなわち騒音を最小化する撮像に比べ騒音はやや大きくなるが画質が良好になる撮像をしようとするとき、どの撮像パラメータをどの程度変化させればよいか把握することが困難な場合がある。一般に画像の分解能、SNR、撮像時間などは撮像パラメータに対して単調に変化するため、これらを変化させようとするときに、撮像パラメータをどのように変化させればよいかを操作者は簡単に予測することができるが、騒音レベルについては、必ずしも撮像パラメータの変化に対し単調に変化するとは限らないため、画質とのトレードオフを考慮しながら希望の騒音レベルにするために、どの程度変更すればよいかを把握することが困難である。 In the above-described first to third embodiments and their modifications, when imaging that minimizes noise is selected, the pulse sequence creation unit uses a combination of gradient magnetic field pulse shape and imaging parameters that can minimize noise. Create an imaging pulse sequence that minimizes noise. In other words, the operator can select whether or not to select an image that minimizes noise, but the image quality is slightly higher than that of an intermediate image, that is, an image that minimizes noise. When trying to capture an image with a good image quality, it may be difficult to know how much and what imaging parameter should be changed. In general, the image resolution, SNR, imaging time, and the like change monotonically with respect to the imaging parameters. Therefore, the operator can easily determine how to change the imaging parameters when trying to change them. Although it can be predicted, the noise level does not necessarily change monotonously with changes in the imaging parameters, so how much is changed to achieve the desired noise level while considering the trade-off with image quality. It is difficult to know what to do.
 本実施形態のMRI装置は、撮像パラメータと騒音との関係或いはそれから導き出される情報を操作者に提供する手段を備えることで、操作者による撮像パラメータの設定を容易にする。騒音と撮像パラメータとの関係は、第一~第三実施形態の手法により、所定の撮像パラメータで騒音を最小化する傾斜磁場パルス形状を求める過程で、撮像パラメータを変化させた場合の騒音レベルの変化を算出することにより導き出すことができる。或いは、第三実施形態の変更例の手法において、撮像パラメータを変化させながら騒音を最小化する傾斜磁場パルス形状を求める際に算出する騒音レベルと撮像パラメータとの関係を導き出すことも可能である。 The MRI apparatus of the present embodiment includes means for providing the operator with the relationship between the imaging parameter and noise or information derived therefrom, thereby facilitating the setting of the imaging parameter by the operator. The relationship between the noise and the imaging parameter is the noise level when the imaging parameter is changed in the process of obtaining the gradient magnetic field pulse shape that minimizes the noise with the predetermined imaging parameter by the method of the first to third embodiments. It can be derived by calculating the change. Alternatively, in the method of the modified example of the third embodiment, it is possible to derive the relationship between the noise level calculated when obtaining the gradient magnetic field pulse shape that minimizes the noise while changing the imaging parameter and the imaging parameter.
 撮像パラメータと騒音レベルとの関係の一例として、平均の受信バンド幅BWaveと騒音レベルとの関係を図24に示す。なおBWaveは、受信中の傾斜磁場強度が一定でない場合にその平均傾斜磁場強度Average(G)を用いて、次式(3)で定義される。 FIG. 24 shows the relationship between the average reception bandwidth BWave and the noise level as an example of the relationship between the imaging parameter and the noise level. BWave is defined by the following equation (3) using the average gradient magnetic field strength Average (G) when the gradient magnetic field strength being received is not constant.
 BWave=γ/(2π)×Average(G)×FOV         (3)
 図24に示すグラフは、所定のBWaveで騒音を最小化する傾斜磁場波パルス形状を求めたのち、そのパルス形状についてBWaveを変化させたときの騒音レベルをプロットしたものであり、BWave以外の撮像パラメータは固定している。
BWave = γ / (2π) × Average (G) × FOV (3)
The graph shown in FIG. 24 is obtained by plotting the noise level when the BWave is changed with respect to the pulse shape after obtaining the gradient magnetic field pulse shape that minimizes the noise with a predetermined BWave. The parameters are fixed.
 このグラフからわかるように、BWaveの変化に対し、騒音レベルの変化は単調ではない。一般にBWaveが大きいほど画質は向上するが、ある程度BWaveを犠牲にして騒音レベルを下げようとするとき、BWaveを変化させてみなければ騒音レベルの変化はわからない。従って操作者はBWaveをいくつか変化させて騒音レベルの変化の傾向をつかむか、例えば第一実施形態のMRI装置でBWaveを自動決定にして傾斜磁場パルス形状とそれに基づくパルスシーケンスを作成したときのBWaveを操作者が覚えておいてからBWaveを手動決定にしてやり直す等の操作が必要となり、手順が煩雑になる。 As can be seen from this graph, the change in noise level is not monotonous with respect to the change in BWave. In general, the larger the BWave, the better the image quality. However, when attempting to lower the noise level at the expense of the BWave to some extent, the change in the noise level is not known unless the BWave is changed. Therefore, the operator changes the BWave to grasp the tendency of the noise level change, for example, when the BWave is automatically determined by the MRI apparatus of the first embodiment and the gradient magnetic field pulse shape and the pulse sequence based on it are created. The operator needs to remember the BWave, then manually determine the BWave and start again, which complicates the procedure.
 本実施形態のMRI装置では、このような騒音と撮像パラメータとの関係を予め求めて記憶装置172に保持しておき、操作者による撮像パラメータ設定の際に提示する。これにより操作者は例えばBWaveをどのように変化させればよいかを判断することができる。 In the MRI apparatus of the present embodiment, such a relationship between noise and imaging parameters is obtained in advance and stored in the storage device 172, and is presented when the imaging parameters are set by the operator. Thus, the operator can determine how to change BWave, for example.
 MRI装置が提示する情報の形態としては、種々の形態を取ることができ、例えば、図24に示すようなグラフを表示装置173の撮像パラメータ設定画面に表示してもよいし、図25に示すような撮像パラメータ設定画面に騒音最小BWaveの表示ブロックを設け、騒音を最小化するBWaveの値を表示してもよい。なお騒音を最小化するBWaveは、図24に示すグラフの最小値であり、通常の最適化処理で求めることができる。騒音最小BWaveの値が表示されることにより、操作者は騒音を低減したいとき、騒音を最小にするBWaveに近づくようにBWaveを変化させていくだけでよい。また表示された値が騒音を最小にするBWaveの限界であることがわかる。 The information presented by the MRI apparatus can take various forms. For example, a graph as shown in FIG. 24 may be displayed on the imaging parameter setting screen of the display device 173, or as shown in FIG. A display block of the minimum noise BWave may be provided on such an imaging parameter setting screen, and the value of BWave that minimizes the noise may be displayed. The BWave for minimizing noise is the minimum value of the graph shown in FIG. 24 and can be obtained by a normal optimization process. By displaying the value of the minimum noise BWave, when the operator wants to reduce the noise, it is only necessary to change the BWave so as to approach the BWave that minimizes the noise. It can also be seen that the displayed value is the BWave limit that minimizes noise.
 なお図24及び図25では、騒音レベルと関連する撮像パラメータとしてBWaveを例示したが、それ以外の撮像パラメータについても、騒音レベルの変化が撮像パラメータの変化に対し単調ではない撮像パラメータについては、同様に適用することができる。例えば図10に示すリフェーズ時間と騒音レベルとの関係も利用することができる。 24 and 25 exemplify BWave as an imaging parameter related to the noise level, the same applies to imaging parameters whose noise level change is not monotonous with respect to the imaging parameter change. Can be applied to. For example, the relationship between the rephase time and the noise level shown in FIG. 10 can also be used.
 また平均の受信バンド幅BWaveではなく、k空間中心における受信バンド幅BWk0でもよい。図26にBWk0と騒音レベルとの関係を示す。この関係も図24に示す関係と同様な手法で求めたものであり、BWk0の変化に対し騒音レベルの変化が単調ではない、即ち最小値を持つことがわかる。この関係のグラフ及び/又は最小値が表示装置173に表示される。 Also, instead of the average reception bandwidth BWave, the reception bandwidth BWk0 at the center of the k space may be used. FIG. 26 shows the relationship between BWk0 and the noise level. This relationship is also obtained by the same method as the relationship shown in FIG. 24, and it can be seen that the change in noise level is not monotonous with respect to the change in BWk0, that is, has a minimum value. The graph and / or the minimum value of this relationship is displayed on the display device 173.
 なお騒音について表示装置173に表示される情報としては、上述した騒音と撮像パラメータとの関係に基く情報の他に、例えば騒音レベル自体の数値、撮像パラメータを異ならせた場合の騒音レベル(最大値、最小値、それらの値を取る撮像パラメータ)や推奨撮像パラメータの組み合わせなど、種々の情報があり得る。これらの情報は、CPU171の騒音レベル算出部181や騒音レベル比較部182の機能により作成することが可能である。 As information displayed on the display device 173 for noise, in addition to the information based on the relationship between the noise and the imaging parameter described above, for example, the noise level itself, the noise level when the imaging parameter is varied (maximum value) , Minimum values, imaging parameters that take those values), and combinations of recommended imaging parameters. Such information can be created by the functions of the noise level calculation unit 181 and the noise level comparison unit 182 of the CPU 171.
 本実施形態によれば、騒音を最小化する撮像パラメータ(例えば受信バンド幅)の値及び/又は騒音と撮像パラメータとの関係を表示装置173に示すことにより、撮像パラメータをどのように変化させればよいか、撮像パラメータの変化により騒音レベルがどの程度を減らせるか、などの情報を得ることができ、求められる画像の質や被写体の騒音に対する許容性を考慮して適切な撮像を行うことができる。 According to the present embodiment, the imaging parameter (for example, reception bandwidth) that minimizes the noise and / or the relationship between the noise and the imaging parameter are displayed on the display device 173, so that the imaging parameter can be changed. It is possible to obtain information such as whether the noise level can be reduced by changing the imaging parameters, and taking appropriate images in consideration of the required image quality and subject noise tolerance Can do.
 また、騒音レベル算出部181が算出した騒音レベルは、図27に示すように、騒音レベルを表示する表示ブロックを追加して表示しても良い。また、撮像パラメータの設定にあたり、変更前後のパラメータ、騒音レベルを比較しながら設定するために、図28に示すように、「アンドゥ」機能、「リドゥ」機能をつけてもよいし、図29に示すように、パラメータ設定画面を2画面用意し、両者を比較しながら設定し、最後に決定ボタンを押すことでどちらの撮像パラメータを採用するか決められるようにしてもよい。
 このようなGUIを設けることにより、操作者は騒音レベルを考慮しながら、最適な撮像方法を選択し実行することができる。
Further, the noise level calculated by the noise level calculation unit 181 may be displayed by adding a display block for displaying the noise level, as shown in FIG. Further, in setting the imaging parameters, an “undo” function and a “redo” function may be added as shown in FIG. 28 in order to set the parameters and the noise level before and after the change, as shown in FIG. As shown in the figure, two parameter setting screens may be prepared, set while comparing the two, and finally, an imaging parameter may be determined by pressing a decision button.
By providing such a GUI, the operator can select and execute an optimal imaging method while considering the noise level.
 本発明によれば、騒音を低減したMRI装置が提供される。また画質とトレードオフの関係にある騒音について操作者が画質を考慮した所望の騒音の撮像を実現しやすいMRI装置が提供される。 According to the present invention, an MRI apparatus with reduced noise is provided. In addition, an MRI apparatus is provided that makes it easy for an operator to capture desired noise in consideration of the image quality for noise that has a trade-off relationship with image quality.
120・・・静磁場発生部、130・・・傾斜磁場発生部、140・・・シーケンサ、150・・・送信部、160・・・受信部、170・・・制御部(撮像制御部)、171・・・CPU、172・・・記憶装置、173・・・表示装置、180・・・パルスシーケンス作成部、181・・・騒音レベル算出部、182・・・騒音レベル比較部、183・・・表示制御部。 120: Static magnetic field generation unit, 130: Gradient magnetic field generation unit, 140: Sequencer, 150: Transmission unit, 160: Reception unit, 170: Control unit (imaging control unit), 171 ... CPU, 172 ... storage device, 173 ... display device, 180 ... pulse sequence creation unit, 181 ... noise level calculation unit, 182 ... noise level comparison unit, 183 ... -Display control unit.

Claims (12)

  1.  高周波磁場パルス及び傾斜磁場パルスの印加強度及びタイミングを定めたパルスシーケンスに従って高周波磁場パルス及び傾斜磁場パルスを印加する磁場印加部を備え、前記パルスシーケンスに含まれる少なくとも1種の傾斜磁場パルスの形状が、前記磁場印加部における傾斜磁場のスルーレートを満たすという条件のもとで求められた、騒音を最小化する形状であることを特徴とする磁気共鳴イメージング装置。 A magnetic field application unit that applies a high-frequency magnetic field pulse and a gradient magnetic field pulse according to a pulse sequence that determines the application intensity and timing of the high-frequency magnetic field pulse and the gradient magnetic field pulse, and the shape of at least one kind of gradient magnetic field pulse included in the pulse sequence is A magnetic resonance imaging apparatus having a shape that minimizes noise, obtained under the condition of satisfying a slew rate of a gradient magnetic field in the magnetic field application unit.
  2.  請求項1に記載の磁気共鳴イメージング装置であって、前記傾斜磁場パルスの形状が、傾斜磁場強度が常に正または負となる区間で変曲点を3以上持つ曲線で描出される形状であることを特徴とする磁気共鳴イメージング装置。 2. The magnetic resonance imaging apparatus according to claim 1, wherein the shape of the gradient magnetic field pulse is a shape depicted by a curve having three or more inflection points in a section where the gradient magnetic field strength is always positive or negative. A magnetic resonance imaging apparatus.
  3.  請求項1に記載の磁気共鳴イメージング装置であって、前記傾斜磁場パルスの形状は、複数の微小長方形を所定の面積になるまで順次積み上げて形成された形状であり、微小長方形を積み上げて最終的な傾斜磁場パルス形状とするまでに形成される暫定的な形状が、騒音を最小化する形状となるように前記暫定的な形状を更新することにより得られた形状であることを特徴とする磁気共鳴イメージング装置。 2. The magnetic resonance imaging apparatus according to claim 1, wherein the gradient magnetic field pulse has a shape formed by sequentially stacking a plurality of minute rectangles until a predetermined area is reached. A magnetic shape obtained by renewing the provisional shape so that the provisional shape formed until a gradient magnetic field pulse shape is obtained is a shape that minimizes noise. Resonance imaging device.
  4.  請求項1に記載の磁気共鳴イメージング装置であって、前記傾斜磁場パルスの波形は、形状パラメータで特定される複数の波形を組み合わせた形状であることを特徴とする磁気共鳴イメージング装置。 2. The magnetic resonance imaging apparatus according to claim 1, wherein the waveform of the gradient magnetic field pulse is a shape obtained by combining a plurality of waveforms specified by a shape parameter.
  5.  請求項4に記載の磁気共鳴イメージング装置であって、前記傾斜磁場パルスの波形は、形状パラメータで特定される複数の波形を組み合わせたモデルを初期値として、前記形状パラメータを変化させたときに得られる傾斜磁場パルス形状が騒音を最小化する形状となるように前記形状パラメータの更新を繰り返すことによって得られた形状であることを特徴とする磁気共鳴イメージング装置。 5. The magnetic resonance imaging apparatus according to claim 4, wherein the waveform of the gradient magnetic field pulse is obtained when the shape parameter is changed with a model obtained by combining a plurality of waveforms specified by the shape parameter as an initial value. A magnetic resonance imaging apparatus having a shape obtained by repeatedly updating the shape parameter so that a gradient magnetic field pulse shape to be a shape that minimizes noise is obtained.
  6.  請求項1に記載の磁気共鳴イメージング装置であって、前記騒音を最小化する形状を持つ傾斜磁場パルスは、周波数エンコード傾斜磁場パルスであることを特徴とする磁気共鳴イメージング装置。 2. The magnetic resonance imaging apparatus according to claim 1, wherein the gradient magnetic field pulse having a shape that minimizes noise is a frequency-encoded gradient magnetic field pulse.
  7.  請求項1に記載の磁気共鳴イメージング装置であって、前記パルスシーケンスを作成するパルスシーケンス作成部をさらに備え、
     前記パルスシーケンス作成部は、入力装置を介して入力された撮像条件で決まる制限を追加して、前記騒音を最小化する形状を持つ傾斜磁場パルスを含むパルスシーケンスを作成することを特徴とする磁気共鳴イメージング装置。
    The magnetic resonance imaging apparatus according to claim 1, further comprising a pulse sequence creation unit that creates the pulse sequence,
    The pulse sequence creating unit creates a pulse sequence including a gradient magnetic field pulse having a shape that minimizes the noise by adding a restriction determined by an imaging condition input via an input device. Resonance imaging device.
  8.  請求項1に記載の磁気共鳴イメージング装置であって、前記騒音を最小化する受信バンド幅を表示装置に表示させる表示制御部をさらに備えることを特徴とする磁気共鳴イメージング装置。 The magnetic resonance imaging apparatus according to claim 1, further comprising a display control unit that causes a display device to display a reception bandwidth that minimizes the noise.
  9.  請求項8に記載の磁気共鳴イメージング装置であって、前記騒音を最小化する受信バンド幅と発生する騒音との関係を表示装置に表示させる表示制御部をさらに備えることを特徴とする磁気共鳴イメージング装置。 The magnetic resonance imaging apparatus according to claim 8, further comprising a display control unit that displays a relationship between a reception bandwidth that minimizes the noise and generated noise on a display device. apparatus.
  10.  請求項1に記載の磁気共鳴イメージング装置であって、騒音低減及び画質向上の優先度を選択させるUIを表示装置に表示させる表示制御部と、UIを介して選択された優先度に基き、撮像パラメータを制御する撮像制御部とをさらに備えることを特徴とする磁気共鳴イメージング装置。 The magnetic resonance imaging apparatus according to claim 1, wherein the display control unit displays a UI for selecting a priority for noise reduction and image quality improvement on the display device, and imaging is performed based on the priority selected via the UI. A magnetic resonance imaging apparatus, further comprising: an imaging control unit that controls a parameter.
  11.  請求項10に記載の磁気共鳴イメージング装置であって、予め或いは入力装置を介して設定された撮像パラメータにおける騒音レベルを算出する騒音算出部をさらに備え、前記表示制御部は、前記騒音算出部が算出した結果を表示部に表示させることを特徴とする磁気共鳴イメージング装置。 The magnetic resonance imaging apparatus according to claim 10, further comprising a noise calculation unit that calculates a noise level in an imaging parameter set in advance or via an input device, wherein the display control unit includes the noise calculation unit. A magnetic resonance imaging apparatus, wherein a calculated result is displayed on a display unit.
  12.  請求項11に記載の磁気共鳴イメージング装置であって、前記表示制御部は第1の撮像パラメータについて算出した騒音レベルを、入力装置を介して変更された第2の撮像パラメータについて算出した騒音レベルとともに、表示装置に表示させることを特徴とする磁気共鳴イメージング装置。 12. The magnetic resonance imaging apparatus according to claim 11, wherein the display control unit calculates the noise level calculated for the first imaging parameter together with the noise level calculated for the second imaging parameter changed via the input device. A magnetic resonance imaging apparatus characterized by displaying on a display device.
PCT/JP2016/063421 2015-05-07 2016-04-28 Magnetic resonance imaging device WO2016178413A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-095125 2015-05-07
JP2015095125A JP6590514B2 (en) 2015-05-07 2015-05-07 Magnetic resonance imaging apparatus and method

Publications (1)

Publication Number Publication Date
WO2016178413A1 true WO2016178413A1 (en) 2016-11-10

Family

ID=57217661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/063421 WO2016178413A1 (en) 2015-05-07 2016-04-28 Magnetic resonance imaging device

Country Status (2)

Country Link
JP (1) JP6590514B2 (en)
WO (1) WO2016178413A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018201963A (en) * 2017-06-07 2018-12-27 株式会社日立製作所 Magnetic resonance imaging device
CN111031910A (en) * 2017-10-12 2020-04-17 株式会社日立制作所 Noise generation source search device and noise generation source search method
CN112826494A (en) * 2020-12-30 2021-05-25 上海联影医疗科技股份有限公司 Method, system, apparatus and storage medium for reducing vibration and acoustic noise of MR device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008302102A (en) * 2007-06-11 2008-12-18 Hitachi Medical Corp Magnetic resonance imaging apparatus
JP2015198818A (en) * 2014-04-09 2015-11-12 株式会社日立メディコ Magnetic resonance imaging apparatus, and calculation method of pulse sequence mounted on magnetic resonance imaging apparatus
JP2015231417A (en) * 2014-06-09 2015-12-24 株式会社日立メディコ Magnetic resonance imaging apparatus and method for adjusting gradient magnetic field waveform

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008302102A (en) * 2007-06-11 2008-12-18 Hitachi Medical Corp Magnetic resonance imaging apparatus
JP2015198818A (en) * 2014-04-09 2015-11-12 株式会社日立メディコ Magnetic resonance imaging apparatus, and calculation method of pulse sequence mounted on magnetic resonance imaging apparatus
JP2015231417A (en) * 2014-06-09 2015-12-24 株式会社日立メディコ Magnetic resonance imaging apparatus and method for adjusting gradient magnetic field waveform

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HEISMANN, BJÖRN: "Sequence-Based Acoustic Noise Reduction of Clinical MRI Scans", MAGNETIC RESONANCE IN MEDICINE, vol. 73, March 2015 (2015-03-01), pages 1104 - 1109, XP002742892 *
SEGBERS,MARCEL: "Shaping and Timing Gradient Pulses to Reduce MRI Acoustic Noise", MAGNETIC RESONANCE IN MEDICINE, vol. 64, 2010, pages 546 - 553, XP055326185 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018201963A (en) * 2017-06-07 2018-12-27 株式会社日立製作所 Magnetic resonance imaging device
CN111031910A (en) * 2017-10-12 2020-04-17 株式会社日立制作所 Noise generation source search device and noise generation source search method
CN111031910B (en) * 2017-10-12 2023-07-28 富士胶片医疗健康株式会社 Noise generation source search device and noise generation source search method
CN112826494A (en) * 2020-12-30 2021-05-25 上海联影医疗科技股份有限公司 Method, system, apparatus and storage medium for reducing vibration and acoustic noise of MR device
CN112826494B (en) * 2020-12-30 2023-05-23 上海联影医疗科技股份有限公司 MR device vibration and acoustic noise reduction method, system, device and storage medium

Also Published As

Publication number Publication date
JP6590514B2 (en) 2019-10-16
JP2016209252A (en) 2016-12-15

Similar Documents

Publication Publication Date Title
JP5420206B2 (en) Imaging parameter determination method, imaging parameter adjustment apparatus, computer-readable medium, and electronically readable data medium
JP6071905B2 (en) Magnetic resonance imaging apparatus and area imaging method
JP5740307B2 (en) Magnetic resonance imaging apparatus and gradient magnetic field application method
JP6560023B2 (en) Magnetic resonance imaging system
CN109310361A (en) System and method for FastMRI
JP2016504144A (en) Metal resistant MR imaging
US10429463B2 (en) Quiet MRI with spin echo (SE) or fast spin echo (FSE)
WO2014126134A1 (en) Magnetic resonance imaging device and method for reducing unnecessary contrast
JP5227338B2 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
US10175317B2 (en) Quiet MRI using alternating gradient sequence
WO2016178413A1 (en) Magnetic resonance imaging device
JP6013161B2 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
WO2016021603A1 (en) Magnetic resonance imaging device, and magnetic resonance imaging method
JP6270609B2 (en) Determination of magnetic resonance control sequence
JP6615184B2 (en) Magnetic resonance imaging system
JP7020930B2 (en) Magnetic resonance imaging device, magnetic resonance imaging system and parameter estimation method
JP5211403B2 (en) Magnetic resonance imaging system
JP6681708B2 (en) Magnetic resonance imaging equipment
JP5564213B2 (en) Magnetic resonance imaging system
JPWO2014199794A1 (en) Magnetic resonance imaging apparatus, magnetic resonance imaging method, and VERSE pulse compression ratio determination method
JP4745650B2 (en) Magnetic resonance imaging system
JP4297541B2 (en) Magnetic resonance imaging system
JP6118127B2 (en) Magnetic resonance imaging system
JP5942265B2 (en) Magnetic resonance imaging apparatus and RF pulse control method
JP2011155995A (en) Magnetic resonance imaging apparatus and nonorthogonal coordinate system scanning method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16789549

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16789549

Country of ref document: EP

Kind code of ref document: A1