WO2016177208A1 - 光伏电网控制方法和装置 - Google Patents

光伏电网控制方法和装置 Download PDF

Info

Publication number
WO2016177208A1
WO2016177208A1 PCT/CN2016/077744 CN2016077744W WO2016177208A1 WO 2016177208 A1 WO2016177208 A1 WO 2016177208A1 CN 2016077744 W CN2016077744 W CN 2016077744W WO 2016177208 A1 WO2016177208 A1 WO 2016177208A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
nodes
photovoltaic power
power grid
grid
Prior art date
Application number
PCT/CN2016/077744
Other languages
English (en)
French (fr)
Inventor
罗兵
滕凌巧
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016177208A1 publication Critical patent/WO2016177208A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers

Definitions

  • the present invention relates to the field of photovoltaic power generation control technologies, and in particular, to a photovoltaic power grid control method and apparatus.
  • the main purpose of embodiments of the present invention is to provide a photovoltaic power grid control method and apparatus, which aims to realize automatic control of a photovoltaic power grid.
  • a power control method includes the following steps: obtaining a control instruction of a photovoltaic power grid; obtaining current state information of the photovoltaic power grid; and according to the control instruction, current state information, and The preset adjustment strategy calculates the target instruction of each node in the photovoltaic power grid; and adjusts the output power of each node according to the target instruction of each node.
  • the step of calculating the target instruction of each node in the photovoltaic power grid according to the control instruction of the photovoltaic power grid, the current state information, and the preset adjustment policy comprises: calculating each node in the photovoltaic power grid according to the control command in the photovoltaic power grid a target value of the output power; obtaining a target instruction corresponding to each node according to a target value of output power of each node in the photovoltaic power grid and a preset adjustment strategy corresponding to each node, wherein the target instruction includes an active power target instruction and a reactive power target Instruction and / or power factor target instructions.
  • the step of calculating the target instruction of each node in the photovoltaic power grid according to the control instruction of the photovoltaic power grid, the current state information, and the preset adjustment policy further comprises: determining all the photovoltaic power grids according to the light intensity in the current state information.
  • the step of adjusting the output power of each node according to the target instruction of each node includes: The nodes with the longest grid-connected time in the node start, and the sleep corresponds to the number of nodes that can sleep.
  • the step of determining whether the number of nodes in the current state information that is in the open state is greater than the number of nodes that need to be opened includes: if the number of nodes in the current state information that are in the open state is smaller than the number of nodes that need to be opened, Then, the number of nodes to be opened in the node in the dormant state is obtained; the step of adjusting the output power of each node according to the target instruction of each node further includes: starting from the node in the dormant state, accumulating the node with the shortest grid connection time , open the node corresponding to the number to be opened.
  • the method further comprises: starting from the node with the longest integration time of the grid by the preset time interval Sleeping one by one corresponds to the number of nodes.
  • the method further comprises the step of re-executing the current state information of the photovoltaic grid separated by the preset time.
  • an embodiment of the present invention further provides a power control apparatus, where the apparatus includes: a first obtaining module configured to obtain a control instruction of a photovoltaic power grid; and a second obtaining module configured to obtain a current photovoltaic power grid a calculation module, configured to calculate a target instruction of each node in the photovoltaic power grid according to the control instruction, the current state information, and a preset adjustment policy; and the adjustment module is configured to adjust each node according to the target instruction of each node Output power.
  • the calculation module includes: a first calculation unit configured to calculate a target value of obtaining output power of each node in the photovoltaic power grid according to a control command in the photovoltaic power grid; and the first obtaining unit is configured to output according to each node in the photovoltaic power grid
  • the target value of the power and the preset adjustment strategy corresponding to each node obtain a target instruction corresponding to each node, wherein the target instruction includes an active power target instruction, a reactive power target instruction, and/or a power factor target instruction.
  • the calculating module further includes: a first determining unit, configured to determine, according to the light intensity in the current state information, whether a sum of current output powers of all nodes in the photovoltaic power grid is greater than a target value in the control instruction; a calculating unit, configured to calculate, if the sum of the output powers of all the nodes in the photovoltaic power grid is greater than the target value in the control command, according to the output power of each node in the photovoltaic power grid and the target value in the control command The number of nodes; the second determining unit is configured to determine whether the number of nodes in the current state information that are in an open state is greater than the number of nodes that need to be opened; and the second obtaining unit is set to a node that is in an open state in the current state information.
  • a first determining unit configured to determine, according to the light intensity in the current state information, whether a sum of current output powers of all nodes in the photovoltaic power grid is greater than a target value in the control instruction
  • the adjustment module includes, for example, also starting from the node with the longest grid connection time in the node that is in the on state, Hibernate corresponds to the number of nodes that can sleep.
  • the calculating module further includes: a third obtaining unit, configured to be in the current state information The number of nodes in the state is smaller than the number of nodes that need to be opened, and the number of nodes to be opened in the node in the dormant state is obtained; the adjustment module is further configured to start from the node with the shortest networking time among the nodes in the dormant state. , open the node corresponding to the number to be opened.
  • the adjustment module is further configured to sleep the nodes corresponding to the number of nodes one by one from the node with the longest grid-connected time from the node in the on state at a preset time.
  • the second obtaining module regains current state information of the photovoltaic grid separated by the preset time.
  • a computer storage medium is further provided, and the computer storage medium may store an execution instruction for executing the power control method.
  • the embodiment of the present invention obtains the current state information of the photovoltaic power grid by obtaining the control instruction of the photovoltaic power grid; calculates the target instruction of each node in the photovoltaic power grid according to the control instruction, the current state information, and the preset adjustment strategy; The target instruction corresponds to adjusting the output power of each node.
  • FIG. 1 is a schematic flow chart of a first embodiment of a photovoltaic power grid control method according to the present invention
  • FIG. 2 is a schematic flowchart of calculating, according to the control instruction, current state information, and a preset adjustment strategy, a target instruction of each node in a photovoltaic power grid according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of another process for calculating a target instruction of each node in a photovoltaic power grid according to the control instruction, current state information, and a preset adjustment policy according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of functional modules of a first embodiment of a photovoltaic power grid control method according to the present invention.
  • FIG. 5 is a schematic diagram of a refinement function module of a computing module of the present invention.
  • FIG. 6 is a schematic diagram of another refinement function module of the calculation module of the present invention.
  • the invention provides a photovoltaic power grid control method.
  • FIG. 1 is a schematic flow chart of a first embodiment of a photovoltaic power grid control method according to the present invention.
  • the photovoltaic power grid control method includes:
  • Step S10 obtaining a control instruction of the photovoltaic power grid
  • the control command may be input through an input menu of a data acquisition and monitoring control system (SCADA), and the control command may include active power.
  • SCADA data acquisition and monitoring control system
  • the management controller sent to the photovoltaic power grid via Ethernet can of course be sent by other means, such as using a SIM card.
  • the control command can also be input through a local computer or a network server. In more implementations, it can also be automatically obtained based on feedback information of the user's power consumption. After obtaining the control command, the process proceeds to step S20.
  • Step S20 obtaining current state information of the photovoltaic power grid
  • the status information may include, but is not limited to, a DC input voltage, an illumination intensity, a number of open nodes, and an output of each node of each node in the photovoltaic power grid.
  • the state can be collected by monitoring the sensing layer of the photovoltaic power grid in the management controller, and the real-time data of the photovoltaic power grid can be sent to the data collection and monitoring control system in real time through the management controller, so as to facilitate management personnel or other personnel. View. Of course, it can also be obtained through the perceptual layer perception of each node of the photovoltaic power grid.
  • Step S30 calculating, according to the control instruction, current state information, and a preset adjustment strategy, a target instruction of each node in the photovoltaic power grid;
  • the target instruction may include, but is not limited to, a target value of output power. For example, according to the power generation, time and weather conditions in the current state information of the multiple nodes, the time, the number of open, and the output power required for each node or part of the nodes to complete the target value are calculated.
  • the control modes of multiple nodes in the photovoltaic power grid may be different. For example, some nodes adjust the active power, and others pass the reactive power compensation. Of course, the control modes of multiple nodes in the photovoltaic power grid may also be the same.
  • step S40 the output power of each node is adjusted correspondingly according to the target instruction of each node.
  • Corresponding adjustment is performed according to the target instruction of each node in the photovoltaic power grid obtained in step S30, for example, according to the adjustment mode of each node itself, by adjusting the active power adjustment.
  • the sum of the output powers of the respective nodes in the adjusted photovoltaic power grid is greater than the target value of the active power in the control command.
  • the invention obtains the current state information of the photovoltaic power grid by obtaining the control instruction of the photovoltaic power grid; calculates the target instruction of each node in the photovoltaic power grid according to the control instruction, the current state information and the preset adjustment strategy; according to the target of each node The instruction corresponds to adjusting the output power of each node.
  • the invention can automatically control the photovoltaic power grid
  • the opening and closing of the inverter enables remote control, short response time and small adjustment error rate, which can reduce labor costs and improve the safety of power grid operation.
  • FIG. 2 is a schematic flowchart of calculating a target value of output power of each node in a photovoltaic power grid according to the control command, current state information, and a preset adjustment strategy according to an embodiment of the present invention.
  • step S30 includes:
  • Step S31 calculating a target value of obtaining output power of each node in the photovoltaic power grid according to a control command in the photovoltaic power grid;
  • the control unit obtains the control command of the photovoltaic power grid in step S10, obtains the target value in the control command, calculates the target value of the output power of each node in the photovoltaic power grid according to the obtained target value and the light intensity in the current state information, and then proceeds to step S32.
  • Step S32 Obtain a target instruction corresponding to each node according to a target value of output power of each node in the photovoltaic power grid and a preset adjustment strategy corresponding to each node.
  • each node preset adjustment strategy may be the same or different. For example, some nodes adjust the output power by adjusting the reactive power, and some adjust the output power by adjusting the power factor.
  • the invention calculates the target value of the output power of each node in the photovoltaic power grid according to the control command in the photovoltaic power grid; obtains the target instruction corresponding to each node according to the target value of the output power of each node in the photovoltaic power grid and the preset adjustment strategy corresponding to each node .
  • the present invention can obtain the adjustment target value according to the adjustment manner of the node, thereby adjusting the output power.
  • FIG. 3 is another schematic flowchart of calculating a target value of output power of each node in a photovoltaic power grid according to the control command, current state information, and a preset adjustment strategy according to an embodiment of the present invention.
  • step S30 includes:
  • Step S33 determining, according to the light intensity in the current state information, whether a sum of current output powers of all nodes in the photovoltaic power grid is greater than a target value in the control instruction;
  • Determining the control command of the photovoltaic power grid obtained in step S10 obtaining the target value in the control command, determining whether the sum of the output powers of all the nodes in the photovoltaic power grid is greater than the target value in the control command according to the light intensity in the current state information, preferably
  • the target value is an active power target value.
  • step S34 If the sum of the output powers of all the nodes in the photovoltaic power grid is greater than the target value in the control command, proceed to step S34; if the number of nodes in the current state information that is in the open state is less than the number of nodes that need to be opened, then the display interface Prompt, such as power generation The rate target value is too large. Of course, you can also not prompt, for example, open all nodes, users can see the data collected in real time in the management system.
  • Step S34 calculating, according to the output power of each node in the photovoltaic power grid and the target value in the control instruction, the number of nodes that need to be opened;
  • step S33 if the sum of the output powers of all the nodes in the photovoltaic power grid is greater than the target value in the control command, the current output power of each node in the photovoltaic power grid and the target value in the control command are calculated and obtained.
  • the number of nodes that need to be opened for example, the ratio of the active power target value obtained by the analysis to the output power of each node in the photovoltaic power grid, the number of nodes that need to be opened. After the number of nodes that need to be opened is calculated, the process proceeds to step S35.
  • Step S35 determining whether the number of nodes in the current state information that are in an open state is greater than the number of nodes that need to be opened;
  • step S34 Calculating the number of nodes that need to be opened according to step S34, obtaining the number of nodes in the current state information of the current state of the photovoltaic power grid according to step S20, determining whether the number of nodes in the current state information that are in the open state is greater than that required in step S34. The number of nodes that are open. If the number of nodes in the current state information that are in the on state is greater than the number of nodes that need to be turned on, the process goes to step S36, otherwise to step S37.
  • Step S36 obtaining the number of nodes that can be dormant in the node in the on state
  • step S35 if the number of nodes in the current state information that is in the on state is greater than the number of nodes that need to be turned on, the number of nodes that can be dormant in the node in the on state is obtained, and the number of nodes that can be dormant can be equal to The number of nodes in the open state minus the number of nodes that need to be turned on. After obtaining the number of sleepable nodes in the node in the on state, the process proceeds to step S50.
  • Step S50 starting from the node with the longest integration time in the node in the on state, sleeping corresponding to the number of sleepable nodes;
  • step S36 the number of nodes that can be dormant in the node in the on state is obtained, corresponding to the corresponding number of nodes sleeping.
  • the sleep corresponds to the number of sleepable nodes.
  • the cumulative grid-connected time is the sum of the grid-connected times in which each node in the photovoltaic power grid is in an open state, that is, when the grid-connected time is obtained after each node in the photovoltaic grid is put into operation, the grid is connected in multiple times.
  • the cumulative grid-connected time is in seconds, and may of course also be in minutes or hours.
  • each node in the photovoltaic power grid is not in the state of being connected to the grid in the event of a fault or a closed state during operation, the cumulative grid-connected time does not increase, and the accumulation of each node's history is prohibited. Net time.
  • the accumulated networking time of each node is backed up after a certain time interval, for example, 4 seconds apart for backup, and if there is an abnormal situation such as accumulated grid connection time error or record file loss during use, the backup may be accumulated.
  • the grid connection time shall prevail to improve the accuracy of the accumulated grid connection time.
  • Step S37 obtaining the number of nodes to be opened in the node in the dormant state
  • step S35 if the number of nodes in the current state information that is in the open state is smaller than the need to open The number of nodes that are activated indicates that the current power is insufficient, and more nodes need to be turned on to increase the output power. According to the target value and the output power of the current state, the number of nodes to be opened in the node in the dormant state is calculated, and then the steps are entered. S60. Preferably, if the result of the determination in step S35 is that the number of nodes in the current state information that are in the on state is equal to the number of nodes that need to be turned on, the preset number of nodes are turned on.
  • Step S60 Starting from the node with the shortest grid-connected time among the nodes in the sleep state, the node corresponding to the number to be opened is started.
  • This step may be another specific implementation of step S40.
  • a corresponding number of nodes are opened in the node in the dormant state, and preferably, the current node is determined.
  • the node with the shortest grid-connected time among the nodes in the sleep state in the state starts to open the corresponding number of nodes from the node with the shortest grid-connected time among the nodes in the sleep state.
  • the node in the dormant state may be turned on in the node that is in the dormant state. For example, the node that has accumulated the long-time connection time in the open state is turned off according to the accumulated networking time, and the node in the dormant state is enabled accordingly.
  • the node may be turned on or off in another manner, for example, the accumulated grid-connected time of all the collected nodes is separated by a preset time, and is sorted according to the accumulated grid-connected time, and when it is determined that the node needs to be opened, According to the obtained target value, starting from the node with the shortest integration time, the output power in the current state of each node is added until the target value is satisfied, thereby obtaining the number of nodes satisfying the target value and the address or identifier of the opened node.
  • the node corresponding to the address or the identifier is turned on; or when it is determined that the node needs to be closed, the node with the longest grid-connected time is started from the node in the open state according to the obtained target value to close the node to meet the target value. If it is determined that the cumulative grid-connected time of two or more nodes that need to be turned on or off is the same, the node with the shortest grid connection time or the current output power may be selected according to the current state of the two or more nodes.
  • the address or the identification information of the node is sorted according to the power generation amount of the node in advance, and two or two of the nodes that need to be turned on or off are determined.
  • the address or the identification information may be used, and the node with the highest priority or the identification information is preferably selected.
  • the light intensity of the previous node is large, which may cause more nodes to sleep.
  • the step of obtaining the current state information of the photovoltaic power grid is re-executed at a preset time, and preferably, the current state information of the photovoltaic power grid is re-executed each time a node is hibernated.
  • the steps can be calculated and verified each time hibernation is performed. Obtaining state information after the preset time, and then determining whether the sum of the output active powers in the state after the preset time is greater than the target value.
  • the output power of each node in the photovoltaic power grid is calculated according to the control command, the current state information, and the preset adjustment strategy.
  • the corresponding number of nodes, so that the cumulative grid-connected time of each node remains approximately the same.
  • the determination may not be performed, for example, the above steps are directly re-executed until the number of nodes that need to be turned on is calculated to be 0 or negative.
  • the invention determines that the sum of the output powers of all the nodes in the photovoltaic power grid is based on the light intensity in the current state information. No greater than the target value in the control command; if the sum of the output powers of all the nodes in the photovoltaic power grid is greater than the target value in the control command, according to the output power of each node in the photovoltaic power grid and the target in the control command
  • the value is calculated to obtain the number of nodes that need to be opened; whether the number of nodes in the current state information that are in the open state is greater than the number of nodes that need to be opened; if the number of nodes in the current state information that are in the open state is greater than the node that needs to be enabled
  • the number of nodes that are in the open state the number of nodes that can be dormant; from the node in the open state, the node with the longest cumulative grid connection time, the sleep corresponds to the number of sleepable nodes; if the current state If the number of nodes in
  • the present invention first determines whether the photovoltaic power grid can enter the sleep mode. If the judgment result is that the sleep mode can be entered, the corresponding grid number is turned on or off according to the accumulated grid-connected time of each node and the number of nodes opened in the current state. Node, power allocation is reasonable.
  • the invention can control the photovoltaic power grid to enter the intelligent sleep, and under the premise of satisfying the power generation target, the accumulated grid connection time of each node is kept balanced, thereby controlling the loss situation of each node to maintain balance.
  • the invention further provides a photovoltaic power grid control device.
  • FIG. 4 is a schematic diagram of functional modules of a first embodiment of a photovoltaic power grid control method according to the present invention.
  • the photovoltaic power grid control device includes:
  • the first obtaining module 10 is arranged to obtain a control command of the photovoltaic grid.
  • the control command may be input through an input menu of a data acquisition and monitoring control system (SCADA), and the control command may include active power.
  • SCADA data acquisition and monitoring control system
  • the management controller sent to the photovoltaic power grid via Ethernet can of course be sent by other means, such as using a SIM card.
  • the control command can also be input through a local computer or a network server. In more implementations, it can also be automatically obtained based on feedback information of the user's power consumption.
  • the second obtaining module 20 is configured to obtain current state information of the photovoltaic power grid, where the state information includes: a DC input voltage, an illumination intensity, and an output power of each node.
  • the status information may include, but is not limited to, a DC input voltage, an illumination intensity, a number of open nodes, and each of each node in the photovoltaic power grid.
  • the state can be collected by monitoring the sensing layer of the photovoltaic power grid in the management controller, and the real-time data of the photovoltaic power grid can be sent to the data collection and monitoring control system in real time through the management controller, so as to facilitate management personnel or other personnel. View. Of course, it can also be obtained through the perceptual layer perception of each node of the photovoltaic power grid.
  • the calculating module 30 is configured to calculate a target value of obtaining output power of each node in the photovoltaic power grid according to the control instruction, current state information, and an adjustment policy of the current.
  • the target value of the output power in the control command is parsed, and then the target instruction of each node is obtained in combination with the adjustment strategy preset by each node in the photovoltaic power grid.
  • the target instruction may include, but is not limited to, a target value of output power. For example, according to the power generation, time and weather conditions in the current state information of the multiple nodes, the time, the number of open, and the output power required for each node or part of the nodes to complete the target value are calculated.
  • the control modes of multiple nodes in the photovoltaic power grid may be different. For example, some nodes adjust the active power, and others pass the reactive power compensation. Of course, the control modes of multiple nodes in the photovoltaic power grid may also be the same.
  • the adjustment module 40 is configured to adjust the output power of each node according to the target instruction of each node.
  • the corresponding adjustment is performed, for example, according to the adjustment mode of each node itself, by adjusting the active power adjustment.
  • the sum of the output powers of the respective nodes in the adjusted photovoltaic power grid is greater than the target value of the active power in the control command.
  • the invention obtains the current state information of the photovoltaic power grid by obtaining the control instruction of the photovoltaic power grid; calculates the target instruction of each node in the photovoltaic power grid according to the control instruction, the current state information and the preset adjustment strategy; according to the target of each node The instruction corresponds to adjusting the output power of each node.
  • FIG. 5 is a schematic diagram of a refinement function module of the computing module of the present invention.
  • the calculation module 30 includes:
  • the first calculating unit 31 is configured to calculate a target value of obtaining output power of each node in the photovoltaic power grid according to a control command in the photovoltaic power grid.
  • the first obtaining module 10 obtains a control instruction of the photovoltaic power grid, obtains a target value in the control command, and obtains a target value of the output power of each node in the photovoltaic power grid according to the obtained target value and the light intensity in the current state information.
  • the first obtaining unit 32 is configured to obtain a target instruction corresponding to each node according to a target value of output power of each node in the photovoltaic power grid and a preset adjustment policy corresponding to each node, where the target instruction includes an active power target instruction, reactive power Power target command and / or power factor target command.
  • each node preset adjustment strategy may be the same or different. For example, some nodes adjust the output power by adjusting the reactive power, and some adjust the output power by adjusting the power factor.
  • the invention calculates the target value of the output power of each node in the photovoltaic power grid according to the control command in the photovoltaic power grid; obtains the target instruction corresponding to each node according to the target value of the output power of each node in the photovoltaic power grid and the preset adjustment strategy corresponding to each node .
  • the present invention can obtain the adjustment target value according to the adjustment manner of the node, thereby adjusting the output power.
  • FIG. 6 is a schematic diagram of another refinement function module of the computing module of the present invention.
  • the calculation module 30 further includes:
  • the first determining unit 33 is configured to determine, according to the light intensity in the current state information, whether a sum of current output powers of all nodes in the photovoltaic power grid is greater than a target value in the control instruction.
  • a target value in the control command preferably, the target value It is the active power target value.
  • the display interface prompts, for example, the power generation target value is too large.
  • the second calculating unit 34 is configured to: if the sum of the current output powers of all the nodes in the photovoltaic power grid is greater than the target value in the control command, according to the current output power of each node in the photovoltaic power grid and the target value in the control instruction Calculate the number of nodes that need to be opened.
  • the value calculation obtains the number of nodes that need to be opened, for example, the ratio of the active power target value obtained by the analysis to the output power of each node in the photovoltaic power grid, and the number of nodes that need to be opened.
  • the second determining unit 35 is configured to determine whether the number of nodes in the current state information that is in an open state is greater than the number of nodes that need to be turned on.
  • the second obtaining unit 36 is configured to obtain the number of nodes that can be dormant in the node in the on state if the number of nodes in the current state information that is in the on state is greater than the number of nodes that need to be turned on.
  • the determination result of the second judging unit 35 is that the number of nodes in the current state information that is in the on state is greater than the number of nodes that need to be turned on, the number of nodes that can be dormant in the node in the on state is obtained, and the number of nodes that can be dormant The number of nodes that can be equal to the on state minus the number of nodes that need to be turned on.
  • the adjustment module 40 is further configured to start from the node with the longest accumulated grid time in the node in the on state, and sleep to correspond to the number of sleepable nodes.
  • the number of nodes that can be dormant in the node in the on state is obtained, corresponding to the corresponding number of nodes sleeping.
  • the dormancy corresponds to The number of nodes that can sleep.
  • the cumulative grid-connected time is the sum of the grid-connected times in which each node in the photovoltaic power grid is in an open state, that is, when the grid-connected time is obtained after each node in the photovoltaic grid is put into operation, the grid is connected in multiple times.
  • the cumulative grid-connected time is in seconds, and may of course also be in minutes or hours.
  • each node in the photovoltaic power grid is not in the state of being connected to the grid in the event of a fault or a closed state during operation, the cumulative grid-connected time does not increase, and the accumulation of each node's history is prohibited. Net time.
  • the accumulated networking time of each node is backed up after a certain time interval, for example, 4 seconds apart for backup, and if there is an abnormal situation such as accumulated grid connection time error or record file loss during use, the backup may be accumulated.
  • the grid connection time shall prevail to improve the accuracy of the accumulated grid connection time.
  • the third obtaining unit 37 is configured to obtain the number of nodes to be turned on in the node in the sleep state if the number of nodes in the current state information that is in the on state is smaller than the number of nodes that need to be turned on.
  • the second determining unit 35 if the number of nodes in the current state information that is in the open state is smaller than the number of nodes that need to be turned on, it indicates that the current power is insufficient, and more nodes need to be turned on to increase the output power, according to the target value. And the output power of the current state is calculated to obtain the number of nodes to be turned on in the node in the sleep state.
  • the determination result of the second determining unit 35 is that the number of nodes in the current state information that are in the open state is equal to the number of nodes that need to be opened, the preset number of nodes are started.
  • the adjustment module 40 is further configured to start from the node with the shortest grid-connected time in the node in the sleep state, and open the node corresponding to the number to be turned on.
  • the corresponding number of nodes are turned on in the node in the dormant state, and preferably, the accumulated in the node in the dormant state in the current state is determined.
  • the node with the shortest grid connection time starts the corresponding number of nodes from the node with the shortest grid connection time in the node in the sleep state.
  • the node in the dormant state may be turned on in the node that is in the dormant state.
  • the node that has accumulated the long-time connection time in the open state is turned off according to the accumulated networking time, and the node in the dormant state is enabled accordingly.
  • the node may be turned on or off in another manner, for example, the accumulated grid-connected time of all the collected nodes is separated by a preset time, and is sorted according to the accumulated grid-connected time, and when it is determined that the node needs to be opened, According to the obtained target value, starting from the node with the shortest integration time, the output power in the current state of each node is added until the target value is satisfied, thereby obtaining the number of nodes satisfying the target value and the address or identifier of the opened node.
  • the node corresponding to the address or the identifier is turned on; or when it is determined that the node needs to be closed, the node with the longest grid-connected time is started from the node in the open state according to the obtained target value to close the node to meet the target value. If it is determined that the cumulative grid-connected time of two or more nodes that need to be turned on or off is the same, the node with the shortest grid connection time or the current output power may be selected according to the current state of the two or more nodes.
  • the address or the identification information of the node is sorted according to the power generation amount of the node in advance, and two or two of the nodes that need to be turned on or off are determined.
  • the address or the identification information may be used, and the node with the highest priority or the identification information is preferably selected.
  • the light intensity of the previous node is large, which may cause more nodes to sleep.
  • the first obtaining module 10 is re-executed to obtain the current status information of the photovoltaic grid.
  • the step of re-executing the current state information of the photovoltaic grid each time a node is hibernated may be calculated and verified each time sleep is performed.
  • the step of outputting the target value of the power, and performing the corresponding adjustment according to the target value of the output power If the sum of the output active powers in the state information after the preset time is greater than or equal to the target value, no processing is performed or the node with the longest accumulated time is turned off according to the accumulated grid-connected time of each node, and then the corresponding opening is started.
  • the judgment may not be performed, for example, the above steps are directly re-executed until the number of nodes that need to be turned on is calculated to be 0 or negative.
  • the invention determines whether the sum of the output powers of all the nodes in the photovoltaic power grid is greater than the target value in the control command according to the light intensity in the current state information; if the sum of the output powers of all the nodes in the photovoltaic power grid is greater than the control command
  • the target value is calculated according to the output power of each node in the photovoltaic power grid and the target value in the control command to obtain the number of nodes that need to be opened; whether the number of nodes in the current state information that are in the open state is greater than the number of nodes that need to be opened.
  • the number of nodes if the number of nodes in the current state information that are in the open state is greater than the number of nodes that need to be opened, the number of nodes that can be dormant in the node that is in the open state is obtained; the accumulated from the nodes in the open state The node with the longest connection time starts, and the number of nodes that can be dormant is hibernated. If the number of nodes in the current state information that is in the on state is smaller than the number of nodes that need to be enabled, the node that is in the dormant state needs to be enabled.
  • the number of nodes; from the sleeping state The shortest cumulative grid node begins to open the corresponding need to open the number of nodes.
  • the present invention first determines whether the photovoltaic power grid can enter the sleep mode. If the judgment result is that the sleep mode can be entered, the corresponding grid number is turned on or off according to the accumulated grid-connected time of each node and the number of nodes opened in the current state. Node, power allocation is reasonable.
  • the invention can control the photovoltaic power grid to enter the intelligent sleep, and under the premise of satisfying the power generation target, the accumulated grid connection time of each node is kept balanced, thereby controlling the loss situation of each node to maintain balance.
  • the embodiment of the present invention obtains the current state information of the photovoltaic power grid by obtaining the control instruction of the photovoltaic power grid; calculates the target instruction of each node in the photovoltaic power grid according to the control instruction, the current state information, and the preset adjustment strategy; The target instruction corresponds to adjusting the output power of each node.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

一种光伏电网控制方法和控制装置,控制方法包括:获得光伏电网的控制指令(S10);获得光伏电网当前的状态信息(S20);根据控制指令、当前的状态信息和预设的调节策略计算获得光伏电网中各个节点的目标指令(S30);根据各个节点的目标指令调节各个节点的输出功率(S40)。该方法和装置能自动控制光伏电网中逆变器的开启和关闭,实现远程控制,响应时间短、调节出错率小,能减少人工成本,同时提高电网运行的安全性。

Description

光伏电网控制方法和装置 技术领域
本发明涉及光伏发电控制技术领域,尤其涉及一种光伏电网控制方法和装置。
背景技术
随着全球对能源的需求日益增长,人类已面临着两大难题:一是地球上储量有限的燃料资源而引发的能源危机;二是以煤等化石燃料的大量燃烧所排放的CO2和SO2气体,导致的环境污染和温室效应,使人类的生存环境不断恶化。加速发展清洁而可再生的太阳能,降低温室气体排放量,已成为全球的共识。许多国家都把光伏发电作为优先发展项目,并已建成多座兆瓦级阳光电站,启动了“屋顶光伏”计划,即以家庭为单位进行安装阳光发电。专家们早在二十多年前就预言:光伏是21世纪高新技术发展的前沿之一,预测在本世纪中叶,光伏发电将成为重要的发电技术之一。
在光伏发电领域,由于太阳能资源的随机性、间歇性和周期性等特性以及分布式光伏电站的地域分散性的特点,导致分布式光伏并网发电系统的有功控制要复杂困难很多。目前,国内很多分布式光伏电站的有功功率是通过人工调节的,通过启停逆变器的方式。这种控制手段的缺陷有很多,比如响应时间长、调节出错率大和人工成本高等。
发明内容
本发明实施例的主要目的在于提出一种光伏电网控制方法和装置,旨在实现自动控制光伏电网。
为实现上述目的,本发明实施例提供的一种功率控制方法,所述方法包括以下步骤:获得光伏电网的控制指令;获得光伏电网当前的状态信息;根据所述控制指令、当前的状态信息和预设的调节策略计算获得光伏电网中各个节点的目标指令;根据各个节点的目标指令对应调节各个节点的输出功率。
优选地,所述根据光伏电网的控制指令、当前的状态信息和预设的调节策略计算获得光伏电网中各个节点的目标指令的步骤包括:根据光伏电网中的控制命令计算获得光伏电网中各个节点输出功率的目标值;根据光伏电网中各个节点输出功率的目标值和对应各个节点的预设调节策略获得对应各个节点的目标指令,其中,所述目标指令包括有功功率目标指令、无功功率目标指令和/或功率因素目标指令。
优选地,所述根据光伏电网的控制指令、当前的状态信息和预设的调节策略计算获得光伏电网中各个节点的目标指令的步骤还包括:根据当前的状态信息中光照强度判断光伏电网中所有节点的输出功率之和是否大于所述控制指令中的目标值;如果光伏电网中所有节点当前的输出功率之和大于所述控制指令中的目标值,则根据光伏电网中各个节点当前的输出功 率和所述控制指令中的目标值计算获得需要开启的节点的数量;判断当前的状态信息中处于开启状态的节点的数量是否大于需要开启的节点的数量;如果当前的状态信息中处于开启状态的节点的数量大于需要开启的节点的数量,则获得处于开启状态的节点中可休眠的节点的数量;所述根据各个节点的目标指令对应调节各个节点的输出功率的步骤包括:从处于开启状态的节点中累计并网时间最长的节点开始,休眠对应可休眠的数量的节点。
优选地,判断当前的状态信息中处于开启状态的节点的数量是否大于需要开启的节点的数量的步骤之后包括:如果当前的状态信息中处于开启状态的节点的数量小于需要开启的节点的数量,则获得处于休眠状态的节点中需开启的节点的数量;所述根据各个节点的目标指令对应调节各个节点的输出功率的步骤还包括:从处于休眠状态的节点中累计并网时间最短的节点开始,开启对应需开启的数量的节点。
优选地,所述从处于开启状态的节点中累计并网时间最长的节点开始休眠对应所述数量的节点的步骤之后还包括:相隔预置时间从所述累计并网时间最长的节点开始逐个休眠对应所述数量的节点。
优选地,所述方法还包括:相隔所述预置时间重新执行获得光伏电网当前的状态信息的步骤。
此外,为实现上述目的,本发明实施例还提供一种功率控制装置,所述装置包括:第一获得模块,设置为获得光伏电网的控制指令;第二获得模块,设置为获得光伏电网当前的状态信息;计算模块,设置为根据所述控制指令、当前的状态信息和预设的调节策略计算获得光伏电网中各个节点的目标指令;调节模块,设置为根据各个节点的目标指令对应调节各个节点的输出功率。
优选地,所述计算模块包括:第一计算单元,设置为根据光伏电网中的控制命令计算获得光伏电网中各个节点输出功率的目标值;第一获得单元,设置为根据光伏电网中各个节点输出功率的目标值和对应各个节点的预设调节策略获得对应各个节点的目标指令,其中,所述目标指令包括有功功率目标指令、无功功率目标指令和/或功率因素目标指令。
优选地,所述计算模块还包括:第一判断单元,设置为根据当前的状态信息中光照强度判断光伏电网中所有节点当前的输出功率之和是否大于所述控制指令中的目标值;第二计算单元,设置为如果光伏电网中所有节点的输出功率之和大于所述控制指令中的目标值,则根据光伏电网中各个节点的输出功率和所述控制指令中的目标值计算获得需要开启的节点的数量;第二判断单元,设置为判断当前的状态信息中处于开启状态的节点的数量是否大于需要开启的节点的数量;第二获得单元,设置为如果当前状态信息中处于开启状态的节点的数量大于需要开启的节点的数量,则获得处于开启状态的节点中可休眠的节点的数量;所述调节模块包括还用于从处于开启状态的节点中累计并网时间最长的节点开始,休眠对应可休眠的数量的节点。
优选地,所述计算模块还包括:第三获得单元,设置为如果当前的状态信息中处于开启 状态的节点的数量小于需要开启的节点的数量,则获得处于休眠状态的节点中需开启的节点的数量;所述调节模块还设置为从处于休眠状态的节点中累计并网时间最短的节点开始,开启对应需开启的数量的节点。
优选地,所述调节模块还设置为相隔预置时间从处于开启状态的节点中累计并网时间最长的节点开始逐个休眠对应所述数量的节点。
优选地,相隔所述预置时间所述第二获得模块重新获得光伏电网当前的状态信息。
在本发明实施例中,还提供了一种计算机存储介质,该计算机存储介质可以存储有执行指令,该执行指令用于执行上述功率控制方法。
本发明实施例通过获得光伏电网的控制指令;获得光伏电网当前的状态信息;根据所述控制指令、当前的状态信息和预设的调节策略计算获得光伏电网中各个节点的目标指令;根据各个节点的目标指令对应调节各个节点的输出功率。通过上述方式,本发明能自动控制光伏电网中逆变器的开启和关闭,实现远程控制,响应时间短、调节出错率小,能减少人工成本,同时提高了电网运行的安全性。
附图说明
图1为本发明光伏电网控制方法第一实施例的流程示意图;
图2为本发明实施例中根据所述控制指令、当前的状态信息和预设的调节策略计算获得光伏电网中各个节点的目标指令的一种流程示意图;
图3为本发明实施例中根据所述控制指令、当前的状态信息和预设的调节策略计算获得光伏电网中各个节点的目标指令的另一种流程示意图;
图4为本发明光伏电网控制方法第一实施例的功能模块示意图;
图5为本发明计算模块的一种细化功能模块示意图;
图6为本发明计算模块的另一种细化功能模块示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供一种光伏电网控制方法。
请参照图1,图1为本发明光伏电网控制方法第一实施例的流程示意图。
在本实施例中,该光伏电网控制方法包括:
步骤S10,获得光伏电网的控制指令;
管理人员在需要控制光伏电网时,比如需要调整光伏电网的输出功率时,可以通过数据采集与监视控制系统(Supervisory Control And Data Acquisition,SCADA)的输入菜单输入控制指令,所述控制指令可以包括有功功率控制指令、无功功率控制指令和功率因素控制指令中的一种或者两种以上组合。在输入控制指令后,通过以太网发送给光伏电网的管理控制器,当然还可以通过其他方式发送,比如使用SIM卡发送。具体实施中也可以通过本地电脑或者网络服务器输入控制指令。在更多的实施中还可以根据用户用电量的反馈信息自动获得。获得控制指令后进入步骤S20。
步骤S20,获得光伏电网当前的状态信息;
根据步骤S10获得的控制指令,获得所述光伏电网当前的状态信息,所述状态信息可以包括但不限于所述光伏电网中各个节点的直流输入电压、光照强度、开启节点数量及各节点的输出功率。所述状态的可以通过所述管理控制器中监控光伏电网的感知层收集,同时所述光伏电网的实时数据可以通过管理控制器实时发送给数据采集与监视控制系统,方便管理人员或者其他人员进行查看。当然还可以通过光伏电网各个节点的感知层感知获得。获得光伏电网当前的状态信息后进入步骤S30。
步骤S30,根据所述控制指令、当前的状态信息和预设的调节策略计算获得光伏电网中各个节点的目标指令;
根据步骤S10获得控制指令和步骤S20获得光伏电网当前的状态信息,解析控制命令中输出功率的目标值,然后结合所述光伏电网中各个节点自身预设的调节策略计算获得各个节点的目标指令。所述目标指令可以包括但不限于输出功率的目标值。比如根据多个节点当前状态信息中发电功率、时间和天气情况计算每个节点或者部分节点完成目标值需要的时间、开启的数量以及输出功率。所述光伏电网中多个节点的控制方式可以不同,比如有些节点通过调节有功功率,另一些通过无功功率补偿,当然所述光伏电网中多个节点的控制方式也可以相同。获得所述目标指令后进入步骤S40。
步骤S40,根据各个节点的目标指令对应调节各个节点的输出功率。
根据步骤S30获得的光伏电网中各个节点的目标指令进行对应的调节,比如根据各个节点自身调节方式,通过调节有功功率调节。优选地,调节后光伏电网中各个节点输出功率之和大于所述控制指令中有功功率的目标值。
本发明通过获得光伏电网的控制指令;获得光伏电网当前的状态信息;根据所述控制指令、当前的状态信息和预设的调节策略计算获得光伏电网中各个节点的目标指令;根据各个节点的目标指令对应调节各个节点的输出功率。通过上述方式,本发明能自动控制光伏电网 中逆变器的开启和关闭,实现远程控制,响应时间短、调节出错率小,能减少人工成本,同时提高了电网运行的安全性。
请参照图2,图2为本发明实施例中根据所述控制指令、当前的状态信息和预设的调节策略计算获得光伏电网中各个节点输出功率的目标值的一种流程示意图。
基于本发明光伏电网控制方法第一实施例,步骤S30包括:
步骤S31,根据光伏电网中的控制命令计算获得光伏电网中各个节点输出功率的目标值;
解析在步骤S10获得光伏电网的控制指令,获得控制指令中目标值,根据获得的目标值和当前的状态信息中光照强度计算获得光伏电网中各个节点输出功率的目标值,然后进入步骤S32。
步骤S32,根据光伏电网中各个节点输出功率的目标值和对应各个节点的预设调节策略获得对应各个节点的目标指令。
根据步骤S31计算获得的光伏电网中各个节点输出功率的目标值和对应各个节点的预设调节策略获得对应各个节点的目标指令,所述目标指令包括有功功率目标指令、无功功率目标指令和/或功率因素目标指令。即每个节点预设调节策略可以相同也可以不同,比如一部分节点通过调节无功功率调节输出功率,有一些通过调节功率因素调节输出功率。
本发明通过根据光伏电网中的控制命令计算获得光伏电网中各个节点输出功率的目标值;根据光伏电网中各个节点输出功率的目标值和对应各个节点的预设调节策略获得对应各个节点的目标指令。通过上述方式,本发明能根据节点的调节方式不同对应获得调节目标值,从而调节输出功率。
请参照图3,图3为本发明实施例中根据所述控制指令、当前的状态信息和预设的调节策略计算获得光伏电网中各个节点输出功率的目标值的另一种流程示意图。
基于本发明光伏电网控制方法第一实施例,步骤S30包括:
步骤S33,根据当前的状态信息中光照强度判断光伏电网中所有节点当前的输出功率之和是否大于所述控制指令中的目标值;
解析在步骤S10获得光伏电网的控制指令,获得控制指令中目标值,根据当前的状态信息中光照强度判断光伏电网中所有节点的输出功率之和是否大于所述控制指令中的目标值,优选地,所述目标值为有功功率目标值。当然还可以根据当前的状态信息中光照强度判断光伏电网中所有节点最大的输出功率之和是否大于所述控制指令中的目标值。如果光伏电网中所有节点的输出功率之和大于所述控制指令中的目标值,则进入步骤S34;如果当前状态信息中处于开启状态的节点的数量小于需要开启的节点的数量,则在显示界面提示,比如发电功 率目标值太大。当然还可以不提示,比如开启全部节点,用户可以在管理系统看到实时收集的数据。
步骤S34,根据光伏电网中各个节点的输出功率和所述控制指令中的目标值计算获得需要开启的节点的数量;
根据步骤S33的判断结果,如果光伏电网中所有节点的输出功率之和大于所述控制指令中的目标值,则根据光伏电网中各个节点当前的输出功率和所述控制指令中的目标值计算获得需要开启的节点的数量,比如根据解析获得的有功功率目标值与光伏电网中各个节点的输出功率的比值,得到需要开启的节点的数量。计算获得需要开启的节点的数量后进入步骤S35。
步骤S35,判断当前状态信息中处于开启状态的节点的数量是否大于需要开启的节点的数量;
根据步骤S34计算获得需要开启的节点的数量,根据步骤S20获得光伏电网当前的状态信息中处于开启状态的节点的数量,判断当前状态信息中处于开启状态的节点的数量是否大于在步骤S34获得需要开启的节点的数量。如果当前状态信息中处于开启状态的节点的数量大于需要开启的节点的数量,则进入步骤S36,否则进入步骤S37。
步骤S36,获得处于开启状态的节点中可休眠的节点的数量;
根据步骤S35的判断结果,如果当前状态信息中处于开启状态的节点的数量大于需要开启的节点的数量,则获得处于开启状态的节点中可休眠的节点的数量,可休眠的节点的数量可以等于开启状态的节点的数量减去需要开启的节点的数量。获得处于开启状态的节点中可休眠的节点的数量后进入步骤S50。
步骤S50,从处于开启状态的节点中所述累计并网时间最长的节点开始,休眠对应可休眠的数量的节点;
本步骤可以为步骤S40的一种具体实施方式,根据步骤S36获得处于开启状态的节点中可休眠的节点的数量,对应休眠相应数量的节点。优选地,从处于开启状态的节点中所述累计并网时间最长的节点开始,休眠对应可休眠的数量的节点。所述累计并网时间为光伏电网中每个节点处于开启状态的并网时间之和,即计算光伏电网中每个节点投入运营后到获得累计并网时间时,多次处于开启状态的并网时间之和,优选地,所述累计并网时间以秒为单位,当然还可以以分或小时为单位。需特别说明的是光伏电网中的每个节点在运营过程中如果出现故障或者关闭状态等没有处于开启并网的状态时,其累计并网时间不增加,也禁止清楚每个节点历史的累计并网时间。优选地,各个节点的累计并网时间在相隔一定的时间后进行备份,比如相隔4秒进行备份,方便使用过程中如果出现累计并网时间出错或记录文件丢失等异常情况,可以以备份的累计并网时间为准,提高累计并网时间的准确性。
步骤S37,获得处于休眠状态的节点中需开启的节点的数量;
根据步骤S35的判断结果,如果当前状态信息中处于开启状态的节点的数量小于需要开 启的节点的数量,则说明当前功率不足需要开启更多的节点提高输出功率,根据所述目标值和当前状态的输出功率计算获得处于休眠状态的节点中需开启的节点的数量,然后进入步骤S60。优选地,如果步骤S35的判断结果为当前状态信息中处于开启状态的节点的数量等于需要开启的节点的数量,开启预设数量的节点。
步骤S60,从处于休眠状态的节点中所述累计并网时间最短的节点开始,开启对应需开启的数量的节点。
本步骤可以为步骤S40的另一种具体实施方式,根据步骤S37获得的处于休眠状态的节点中需开启的节点的数量,在处于休眠状态的节点中开启对应数量的节点,优选地,判断当前状态中处于休眠状态的节点中所述累计并网时间最短的节点,从处于休眠状态的节点中所述累计并网时间最短的节点开始开启相应数量的节点。当然也可以不在处于休眠状态的节点中开启相应数量的节点,比如根据累计并网时间关闭开启状态中累计并网时间长的节点,相应开启处于休眠状态的节点。
具体实施中还可以通过其他的方式调节节点的开启或者关闭,比如相隔预置时间对收集到的所有节点的所述累计并网时间,根据累计并网时间进行排序,在判断到需要开启节点时,根据获得的目标值从所述累计并网时间最短的节点开始,相加各个节点当前状态中的输出功率直到满足目标值,从而获得满足目标值的节点的数量以及开启的节点的地址或者标识,然后开启对应地址或者标识的节点;或者在判断到需要关闭节点时,根据获得的目标值从处于开启状态的节点中所述累计并网时间最长的节点开始关闭节点至满足目标值。如果判断到需要开启或者关闭的两个或者两个以上节点的累计并网时间相同时,可以根据两个或者两个以上节点当前的状态选择最后一次并网时间短或者当前输出功率大的节点。具体实施中如果用户预先对各个节点的地址或者标识信息进行地域处理,比如预先根据节点的发电量从大到小对节点的地址或标识信息排序,在判断到需要开启或者关闭的两个或者两个以上节点的累计并网时间相同时,还可以通过地址或者标识信息,优选选择地址或者标识信息顺序靠前的节点,排序靠前节点光照强度大,可能会使得更多的节点休眠。
在一优选实施例中,在上述步骤执行完后,相隔预置时间重新执行获得光伏电网当前的状态信息的步骤,优选地,在每次休眠一个节点时,重新执行获得光伏电网当前的状态信息的步骤,可以在每次执行休眠时进行计算并验证。获得预置时间后的状态信息,然后判断预置时间后的状态中输出有功功率之和是否大于所述目标值。如果预置时间后所有节点的状态信息中输出有功功率之和小于所述目标值,则重新执行根据所述控制指令、当前的状态信息和预设的调节策略计算获得光伏电网中各个节点输出功率的目标值的步骤,并执行根据输出功率的目标值进行对应的调节的步骤。如果预置时间后的状态信息中输出有功功率之和大于或者等于所述目标值,则不进行任何处理或者根据各个节点的累计并网时间,先关闭累计数时间最长的节点,然后对应开启相应数量的节点,使得各个节点的累计并网时间大致保持相同。具体实施中在重新执行获得光伏电网当前的状态信息的步骤后也可以不进行判断,比如直接重新执行上述步骤,直至计算出需要开启的节点数为0或者为负。
本发明通过根据当前的状态信息中光照强度判断光伏电网中所有节点的输出功率之和是 否大于所述控制指令中的目标值;如果光伏电网中所有节点的输出功率之和大于所述控制指令中的目标值,则根据光伏电网中各个节点的输出功率和所述控制指令中的目标值计算获得需要开启的节点的数量;判断当前的状态信息中处于开启状态的节点的数量是否大于需要开启的节点的数量;如果当前的状态信息中处于开启状态的节点的数量大于需要开启的节点的数量,则获得处于开启状态的节点中可休眠的节点的数量;从处于开启状态的节点中所述累计并网时间最长的节点开始,休眠对应可休眠的数量的节点;如果当前的状态信息中处于开启状态的节点的数量小于需要开启的节点的数量,则获得处于休眠状态的节点中需开启的节点的数量;从处于休眠状态的节点中所述累计并网时间最短的节点开始,开启对应需开启的数量的节点。通过上述方式,本发明先判断光伏电网是否可以进入休眠模式,如果判断结果为能进入休眠模式,则根据统计的各个节点的累计并网时间和当前状态中开启的节点数相应开启或者关闭对应数量的节点,功率分配合理。本发明能够控制光伏电网进入智能休眠,在满足发电目标的前提下,使得各个节点累计并网时间保持均衡,从而控制各个节点的损耗情况保持均衡。
本发明进一步提供一种光伏电网控制装置。
请参照图4,图4为本发明光伏电网控制方法第一实施例的功能模块示意图。
在本实施例中,该光伏电网控制装置包括:
第一获得模块10,设置为获得光伏电网的控制指令。
管理人员在需要控制光伏电网时,比如需要调整光伏电网的输出功率时,可以通过数据采集与监视控制系统(Supervisory Control And Data Acquisition,SCADA)的输入菜单输入控制指令,所述控制指令可以包括有功功率控制指令、无功功率控制指令和功率因素控制指令中的一种或者两种以上组合。在输入控制指令后,通过以太网发送给光伏电网的管理控制器,当然还可以通过其他方式发送,比如使用SIM卡发送。具体实施中也可以通过本地电脑或者网络服务器输入控制指令。在更多的实施中还可以根据用户用电量的反馈信息自动获得。
第二获得模块20,设置为获得光伏电网当前的状态信息,所述状态信息包括:直流输入电压、光照强度及各节点的输出功率。
根据第一获得模块10获得的控制指令,获得所述光伏电网当前的状态信息,所述状态信息可以包括但不限于所述光伏电网中各个节点的直流输入电压、光照强度、开启节点数量及各节点的输出功率。所述状态的可以通过所述管理控制器中监控光伏电网的感知层收集,同时所述光伏电网的实时数据可以通过管理控制器实时发送给数据采集与监视控制系统,方便管理人员或者其他人员进行查看。当然还可以通过光伏电网各个节点的感知层感知获得。
计算模块30,设置为根据所述控制指令、当前的状态信息和自身的调节策略计算获得光伏电网中各个节点输出功率的目标值。
根据第一获得模块10获得控制指令和第二获得模块20获得光伏电网当前的状态信息, 解析控制命令中输出功率的目标值,然后结合所述光伏电网中各个节点自身预设的调节策略计算获得各个节点的目标指令。所述目标指令可以包括但不限于输出功率的目标值。比如根据多个节点当前状态信息中发电功率、时间和天气情况计算每个节点或者部分节点完成目标值需要的时间、开启的数量以及输出功率。所述光伏电网中多个节点的控制方式可以不同,比如有些节点通过调节有功功率,另一些通过无功功率补偿,当然所述光伏电网中多个节点的控制方式也可以相同。
调节模块40,设置为根据各个节点的目标指令对应调节各个节点的输出功率。
根据计算模块30获得的光伏电网中各个节点的目标指令进行对应的调节,比如根据各个节点自身调节方式,通过调节有功功率调节。优选地,调节后光伏电网中各个节点输出功率之和大于所述控制指令中有功功率的目标值。
本发明通过获得光伏电网的控制指令;获得光伏电网当前的状态信息;根据所述控制指令、当前的状态信息和预设的调节策略计算获得光伏电网中各个节点的目标指令;根据各个节点的目标指令对应调节各个节点的输出功率。通过上述方式,本发明能自动控制光伏电网中逆变器的开启和关闭,实现远程控制,响应时间短、调节出错率小,能减少人工成本,同时提高了电网运行的安全性。
请参阅图5,图5为本发明计算模块的细化功能模块示意图。
基于本发明光伏电网控制装置第一实施例,计算模块30包括:
第一计算单元31,设置为根据光伏电网中的控制命令计算获得光伏电网中各个节点输出功率的目标值。
解析第一获得模块10获得光伏电网的控制指令,获得控制指令中目标值,根据获得的目标值和当前的状态信息中光照强度计算获得光伏电网中各个节点输出功率的目标值。
第一获得单元32,设置为根据光伏电网中各个节点输出功率的目标值和对应各个节点的预设调节策略获得对应各个节点的目标指令,其中,所述目标指令包括有功功率目标指令、无功功率目标指令和/或功率因素目标指令。
根据第一计算单元31计算获得的光伏电网中各个节点输出功率的目标值和对应各个节点的预设调节策略获得对应各个节点的目标指令,所述目标指令包括有功功率目标指令、无功功率目标指令和/或功率因素目标指令。即每个节点预设调节策略可以相同也可以不同,比如一部分节点通过调节无功功率调节输出功率,有一些通过调节功率因素调节输出功率。
本发明通过根据光伏电网中的控制命令计算获得光伏电网中各个节点输出功率的目标值;根据光伏电网中各个节点输出功率的目标值和对应各个节点的预设调节策略获得对应各个节点的目标指令。通过上述方式,本发明能根据节点的调节方式不同对应获得调节目标值,从而调节输出功率。
请参阅图6,图6为本发明计算模块的另一种细化功能模块示意图。
基于本发明光伏电网控制装置第一实施例,计算模块30还包括:
第一判断单元33,设置为根据当前的状态信息中光照强度判断光伏电网中所有节点当前的输出功率之和是否大于所述控制指令中的目标值。
解析获得的控制指令,获得控制指令中目标值,根据当前的状态信息中光照强度判断光伏电网中所有节点的输出功率之和是否大于所述控制指令中的目标值,优选地,所述目标值为有功功率目标值。当然还可以根据当前的状态信息中光照强度判断光伏电网中所有节点最大的输出功率之和是否大于所述控制指令中的目标值。如果光伏电网中所有节点的输出功率之和大于所述控制指令中的目标值,则传输给第二计算单元34;如果当前状态信息中处于开启状态的节点的数量小于需要开启的节点的数量,则在显示界面提示,比如发电功率目标值太大。当然还可以不提示,比如开启全部节点,用户可以在管理系统看到实时收集的数据。
第二计算单元34,设置为如果光伏电网中所有节点当前的输出功率之和大于所述控制指令中的目标值,则根据光伏电网中各个节点当前的输出功率和所述控制指令中的目标值计算获得需要开启的节点的数量。
根据第一判断单元33的判断结果,如果光伏电网中所有节点的输出功率之和大于所述控制指令中的目标值,则根据光伏电网中各个节点当前的输出功率和所述控制指令中的目标值计算获得需要开启的节点的数量,比如根据解析获得的有功功率目标值与光伏电网中各个节点的输出功率的比值,得到需要开启的节点的数量。
第二判断单元35,设置为判断当前状态信息中处于开启状态的节点的数量是否大于需要开启的节点的数量。
根据第二计算单元34计算获得需要开启的节点的数量,根据第二获得模块20获得光伏电网当前的状态信息中处于开启状态的节点的数量,判断当前状态信息中处于开启状态的节点的数量是否大于第二计算单元34获得需要开启的节点的数量。
第二获得单元36,设置为如果当前状态信息中处于开启状态的节点的数量大于需要开启的节点的数量,则获得处于开启状态的节点中可休眠的节点的数量。
如果第二判断单元35的判断结果为当前状态信息中处于开启状态的节点的数量大于需要开启的节点的数量,则获得处于开启状态的节点中可休眠的节点的数量,可休眠的节点的数量可以等于开启状态的节点的数量减去需要开启的节点的数量。
调节模块40还设置为从处于开启状态的节点中所述累计并网时间最长的节点开始,休眠对应可休眠的数量的节点。
根据第二获得单元36获得处于开启状态的节点中可休眠的节点的数量,对应休眠相应数量的节点。优选地,从处于开启状态的节点中所述累计并网时间最长的节点开始,休眠对应 可休眠的数量的节点。所述累计并网时间为光伏电网中每个节点处于开启状态的并网时间之和,即计算光伏电网中每个节点投入运营后到获得累计并网时间时,多次处于开启状态的并网时间之和,优选地,所述累计并网时间以秒为单位,当然还可以以分或小时为单位。需特别说明的是光伏电网中的每个节点在运营过程中如果出现故障或者关闭状态等没有处于开启并网的状态时,其累计并网时间不增加,也禁止清楚每个节点历史的累计并网时间。优选地,各个节点的累计并网时间在相隔一定的时间后进行备份,比如相隔4秒进行备份,方便使用过程中如果出现累计并网时间出错或记录文件丢失等异常情况,可以以备份的累计并网时间为准,提高累计并网时间的准确性。
第三获得单元37,设置为如果当前状态信息中处于开启状态的节点的数量小于需要开启的节点的数量,则获得处于休眠状态的节点中需开启的节点的数量。
根据第二判断单元35的判断结果,如果当前状态信息中处于开启状态的节点的数量小于需要开启的节点的数量,则说明当前功率不足需要开启更多的节点提高输出功率,根据所述目标值和当前状态的输出功率计算获得处于休眠状态的节点中需开启的节点的数量。优选地,如果第二判断单元35的判断结果为当前状态信息中处于开启状态的节点的数量等于需要开启的节点的数量,开启预设数量的节点。
调节模块40还设置为从处于休眠状态的节点中所述累计并网时间最短的节点开始,开启对应需开启的数量的节点。
根据第三获得单元37获得的处于休眠状态的节点中需开启的节点的数量,在处于休眠状态的节点中开启对应数量的节点,优选地,判断当前状态中处于休眠状态的节点中所述累计并网时间最短的节点,从处于休眠状态的节点中所述累计并网时间最短的节点开始开启相应数量的节点。当然也可以不在处于休眠状态的节点中开启相应数量的节点,比如根据累计并网时间关闭开启状态中累计并网时间长的节点,相应开启处于休眠状态的节点。
具体实施中还可以通过其他的方式调节节点的开启或者关闭,比如相隔预置时间对收集到的所有节点的所述累计并网时间,根据累计并网时间进行排序,在判断到需要开启节点时,根据获得的目标值从所述累计并网时间最短的节点开始,相加各个节点当前状态中的输出功率直到满足目标值,从而获得满足目标值的节点的数量以及开启的节点的地址或者标识,然后开启对应地址或者标识的节点;或者在判断到需要关闭节点时,根据获得的目标值从处于开启状态的节点中所述累计并网时间最长的节点开始关闭节点至满足目标值。如果判断到需要开启或者关闭的两个或者两个以上节点的累计并网时间相同时,可以根据两个或者两个以上节点当前的状态选择最后一次并网时间短或者当前输出功率大的节点。具体实施中如果用户预先对各个节点的地址或者标识信息进行地域处理,比如预先根据节点的发电量从大到小对节点的地址或标识信息排序,在判断到需要开启或者关闭的两个或者两个以上节点的累计并网时间相同时,还可以通过地址或者标识信息,优选选择地址或者标识信息顺序靠前的节点,排序靠前节点光照强度大,可能会使得更多的节点休眠。
在一优选实施例中,相隔预置时间第一获得模块10重新执行获得光伏电网当前的状态信 息,优选地,在每次休眠一个节点时,重新执行获得光伏电网当前的状态信息的步骤,可以在每次执行休眠时进行计算并验证。获得预置时间后的状态信息,然后判断预置时间后的状态中输出有功功率之和是否大于所述目标值。如果预置时间后所有节点的状态信息中输出有功功率之和小于所述目标值,则计算模块30重新执行根据所述控制指令、当前的状态信息和自身的调节策略计算获得光伏电网中各个节点输出功率的目标值的步骤,并执行根据输出功率的目标值进行对应的调节。如果预置时间后的状态信息中输出有功功率之和大于或者等于所述目标值,则不进行任何处理或者根据各个节点的累计并网时间,先关闭累计数时间最长的节点,然后对应开启相应数量的节点,使得各个节点的累计并网时间大致保持相同。具体实施中在重新执行获得光伏电网当前的状态信息后也可以不进行判断,比如直接重新执行上述步骤,直至计算出需要开启的节点数为0或者为负。
本发明通过根据当前的状态信息中光照强度判断光伏电网中所有节点的输出功率之和是否大于所述控制指令中的目标值;如果光伏电网中所有节点的输出功率之和大于所述控制指令中的目标值,则根据光伏电网中各个节点的输出功率和所述控制指令中的目标值计算获得需要开启的节点的数量;判断当前的状态信息中处于开启状态的节点的数量是否大于需要开启的节点的数量;如果当前的状态信息中处于开启状态的节点的数量大于需要开启的节点的数量,则获得处于开启状态的节点中可休眠的节点的数量;从处于开启状态的节点中所述累计并网时间最长的节点开始,休眠对应可休眠的数量的节点;如果当前的状态信息中处于开启状态的节点的数量小于需要开启的节点的数量,则获得处于休眠状态的节点中需开启的节点的数量;从处于休眠状态的节点中所述累计并网时间最短的节点开始,开启对应需开启的数量的节点。通过上述方式,本发明先判断光伏电网是否可以进入休眠模式,如果判断结果为能进入休眠模式,则根据统计的各个节点的累计并网时间和当前状态中开启的节点数相应开启或者关闭对应数量的节点,功率分配合理。本发明能够控制光伏电网进入智能休眠,在满足发电目标的前提下,使得各个节点累计并网时间保持均衡,从而控制各个节点的损耗情况保持均衡。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
工业实用性
本发明实施例通过获得光伏电网的控制指令;获得光伏电网当前的状态信息;根据所述控制指令、当前的状态信息和预设的调节策略计算获得光伏电网中各个节点的目标指令;根据各个节点的目标指令对应调节各个节点的输出功率。通过上述方式,本发明能自动控制光伏电网中逆变器的开启和关闭,实现远程控制,响应时间短、调节出错率小,能减少人工成本,同时提高了电网运行的安全性。

Claims (12)

  1. 一种光伏电网控制方法,所述方法包括以下步骤:
    获得光伏电网的控制指令;
    获得光伏电网当前的状态信息;
    根据所述控制指令、当前的状态信息和预设的调节策略计算获得光伏电网中各个节点的目标指令;
    根据各个节点的目标指令对应调节各个节点的输出功率。
  2. 如权利要求1所述的方法,其中,所述根据光伏电网的控制指令、当前的状态信息和预设的调节策略计算获得光伏电网中各个节点的目标指令的步骤包括:
    根据光伏电网中的控制命令计算获得光伏电网中各个节点输出功率的目标值;
    根据光伏电网中各个节点输出功率的目标值和对应各个节点的预设调节策略获得对应各个节点的目标指令,其中,所述目标指令包括有功功率目标指令、无功功率目标指令和/或功率因素目标指令。
  3. 如权利要求1所述的方法,其中,所述根据光伏电网的控制指令、当前的状态信息和预设的调节策略计算获得光伏电网中各个节点的目标指令的步骤还包括:
    根据当前的状态信息中光照强度判断光伏电网中所有节点的输出功率之和是否大于所述控制指令中的目标值;
    如果光伏电网中所有节点的输出功率之和大于所述控制指令中的目标值,则根据光伏电网中各个节点的输出功率和所述控制指令中的目标值计算获得需要开启的节点的数量;
    判断当前的状态信息中处于开启状态的节点的数量是否大于需要开启的节点的数量;
    如果当前的状态信息中处于开启状态的节点的数量大于需要开启的节点的数量,则获得处于开启状态的节点中可休眠的节点的数量;
    所述根据各个节点的目标指令对应调节各个节点的输出功率的步骤包括:
    从处于开启状态的节点中累计并网时间最长的节点开始,休眠对应可休眠的数量的节点。
  4. 如权利要求3所述的方法,其中,判断当前的状态信息中处于开启状态的节点的数量是否大于需要开启的节点的数量的步骤之后还包括:
    如果当前的状态信息中处于开启状态的节点的数量小于需要开启的节点的数量,则获得处于休眠状态的节点中需开启的节点的数量;
    所述根据各个节点的目标指令对应调节各个节点的输出功率的步骤还包括:
    从处于休眠状态的节点中累计并网时间最短的节点开始,开启对应需开启的数量的节点。
  5. 如权利要求3所述的方法,其中,所述从处于休眠状态的节点中累计并网时间最长的节点开始,休眠对应所述数量的节点的步骤包括:
    相隔预置时间从处于开启状态的节点中累计并网时间最长的节点开始逐个休眠对应所述数量的节点。
  6. 如权利要求4所述的方法,其中,所述方法还包括:
    相隔所述预置时间重新执行获得光伏电网当前的状态信息的步骤。
  7. 一种光伏电网控制装置,所述装置包括:
    第一获得模块,设置为获得光伏电网的控制指令;
    第二获得模块,设置为获得光伏电网当前的状态信息;
    计算模块,设置为根据所述控制指令、当前的状态信息和预设的调节策略计算获得光伏电网中各个节点的目标指令;
    调节模块,设置为根据各个节点的目标指令对应调节各个节点的输出功率。
  8. 如权利要求7所述的装置,其中,所述计算模块包括:
    第一计算单元,设置为根据光伏电网中的控制命令计算获得光伏电网中各个节点输出功率的目标值;
    第一获得单元,设置为根据光伏电网中各个节点输出功率的目标值和对应各个节点的预设调节策略获得对应各个节点的目标指令,其中,所述目标指令包括有功功率目标指令、无功功率目标指令和/或功率因素目标指令。
  9. 如权利要求7所述的装置,其中,所述计算模块还包括:
    第一判断单元,设置为根据当前的状态信息中光照强度判断光伏电网中所有节点的输出功率之和是否大于所述控制指令中的目标值;
    第二计算单元,设置为如果光伏电网中所有节点的输出功率之和大于所述控制指令中的目标值,则根据光伏电网中各个节点的输出功率和所述控制指令中的目标值计算获得需要开启的节点的数量;
    第二判断单元,设置为判断当前的状态信息中处于开启状态的节点的数量是否大于需要开启的节点的数量;
    第二获得单元,设置为如果当前的状态信息中处于开启状态的节点的数量大于需要开启的节点的数量,则获得处于开启状态的节点中可休眠的节点的数量;
    所述调节模块还设置为从处于开启状态的节点中累计并网时间最长的节点开始,休眠对应可休眠的数量的节点。
  10. 如权利要求9所述的装置,其中,所述计算模块还包括:
    第三获得单元,设置为如果当前的状态信息中处于开启状态的节点的数量小于需要开启的节点的数量,则获得处于休眠状态的节点中需开启的节点的数量;
    所述调节模块还设置为从处于休眠状态的节点中累计并网时间最短的节点开始,开启对应需开启的数量的节点。
  11. 如权利要求9所述的装置,其中,所述调节模块还设置为相隔预置时间从处于开启状态的节点中累计并网时间最长的节点开始逐个休眠对应所述数量的节点。
  12. 如权利要求11所述的装置,其中,相隔所述预置时间所述第二获得模块重新获得光伏电网当前的状态信息。
PCT/CN2016/077744 2015-08-26 2016-03-29 光伏电网控制方法和装置 WO2016177208A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510530981.5A CN106487040A (zh) 2015-08-26 2015-08-26 光伏电网控制方法和装置
CN201510530981.5 2015-08-26

Publications (1)

Publication Number Publication Date
WO2016177208A1 true WO2016177208A1 (zh) 2016-11-10

Family

ID=57217543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/077744 WO2016177208A1 (zh) 2015-08-26 2016-03-29 光伏电网控制方法和装置

Country Status (2)

Country Link
CN (1) CN106487040A (zh)
WO (1) WO2016177208A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112260313A (zh) * 2020-10-13 2021-01-22 国网冀北电力有限公司承德供电公司 分布式光伏系统及其控制终端
CN113708403A (zh) * 2021-08-17 2021-11-26 苏州罗约科技有限公司 一种变流器并网控制方法、系统、服务器及存储介质
CN114079294A (zh) * 2021-11-18 2022-02-22 许继集团有限公司 一种光伏电站集控方法、系统及电子设备
CN114968570A (zh) * 2022-05-20 2022-08-30 广东电网有限责任公司 一种应用于数字电网的实时计算系统及其工作方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107154647B (zh) * 2017-06-08 2020-05-22 阳光电源股份有限公司 一种光伏发电系统的功率降额方法及控制器
CN108829071A (zh) * 2018-08-09 2018-11-16 国家能源投资集团有限责任公司 光伏系统的控制方法和控制系统
CN111835037B (zh) * 2020-08-11 2021-11-30 中国人民解放军国防科技大学 一种基于分布式发电的供电调度方法、设备及存储介质
CN112421677A (zh) * 2020-11-16 2021-02-26 国网冀北电力有限公司承德供电公司 一种分布式光伏有序恢复并网控制系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102668299A (zh) * 2009-08-19 2012-09-12 斯盖特朗能源有限公司 太阳能发电站的功率调节系统
CN103855726A (zh) * 2014-03-05 2014-06-11 深圳市长昊机电有限公司 光伏发电控制系统及光伏发电系统的控制方法
CN103928944A (zh) * 2014-05-07 2014-07-16 国家电网公司 光伏逆变器功率输出联调装置
CN104022532A (zh) * 2014-06-23 2014-09-03 珠海格力电器股份有限公司 一种光伏发电系统的并网逆变器控制方法及系统
CN104270004A (zh) * 2014-10-27 2015-01-07 阳光电源股份有限公司 一种光伏逆变器控制方法和系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841235B (zh) * 2010-04-02 2012-10-10 艾默生网络能源有限公司 一种光伏逆变器智能轮换休眠控制方法及系统
CN103268136B (zh) * 2013-05-10 2015-01-14 国电南瑞南京控制系统有限公司 光伏电站有功功率控制方法
CN103928940A (zh) * 2014-03-31 2014-07-16 国家电网公司 一种分布式光伏电站有功功率控制装置及控制方法
CN104124714B (zh) * 2014-08-01 2016-08-24 南京南瑞继保电气有限公司 一种分布式电源并网功率控制方法、装置及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102668299A (zh) * 2009-08-19 2012-09-12 斯盖特朗能源有限公司 太阳能发电站的功率调节系统
CN103855726A (zh) * 2014-03-05 2014-06-11 深圳市长昊机电有限公司 光伏发电控制系统及光伏发电系统的控制方法
CN103928944A (zh) * 2014-05-07 2014-07-16 国家电网公司 光伏逆变器功率输出联调装置
CN104022532A (zh) * 2014-06-23 2014-09-03 珠海格力电器股份有限公司 一种光伏发电系统的并网逆变器控制方法及系统
CN104270004A (zh) * 2014-10-27 2015-01-07 阳光电源股份有限公司 一种光伏逆变器控制方法和系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112260313A (zh) * 2020-10-13 2021-01-22 国网冀北电力有限公司承德供电公司 分布式光伏系统及其控制终端
CN112260313B (zh) * 2020-10-13 2023-09-01 国网冀北电力有限公司承德供电公司 分布式光伏系统及其控制终端
CN113708403A (zh) * 2021-08-17 2021-11-26 苏州罗约科技有限公司 一种变流器并网控制方法、系统、服务器及存储介质
CN114079294A (zh) * 2021-11-18 2022-02-22 许继集团有限公司 一种光伏电站集控方法、系统及电子设备
CN114968570A (zh) * 2022-05-20 2022-08-30 广东电网有限责任公司 一种应用于数字电网的实时计算系统及其工作方法
CN114968570B (zh) * 2022-05-20 2024-03-26 广东电网有限责任公司 一种应用于数字电网的实时计算系统及其工作方法

Also Published As

Publication number Publication date
CN106487040A (zh) 2017-03-08

Similar Documents

Publication Publication Date Title
WO2016177208A1 (zh) 光伏电网控制方法和装置
AU2020100983A4 (en) Multi-energy complementary system two-stage optimization scheduling method and system considering source-storage-load cooperation
Bruni et al. A study on the energy management in domestic micro-grids based on model predictive control strategies
CN109860670B (zh) 电动汽车燃料电池氢气压力控制方法及电子设备
CN102013699B (zh) 一种风力发电场有功功率分配方法
CN105406509A (zh) 一种基于分布式电源置信容量的配电网供电能力评估方法
CN102778899B (zh) 一种用于塔式太阳能热发电系统的镜场调度系统及方法
CN103178544A (zh) 并联型多单元光伏并网逆变器系统的启停控制方法
CN102915396B (zh) 一套计算电网风电消纳能力的方法
CN106712087B (zh) 一种微能源网切换模式
CN115036963B (zh) 一种提升配电网韧性的两阶段需求响应策略
CN106352490A (zh) 一种空调控制方法、空调控制装置及空调器
CN105449664A (zh) 一种风电消纳能力计算方法及系统
CN109861292B (zh) 一种基于多能源储能系统提高清洁能源消纳方法
CN105242649A (zh) 一种用于通讯基站的能效监控及节能系统和其实现方法
Sakaci et al. Smart office for managing energy of lighting control system
CN113962100A (zh) 基于大数据分析的自动寻优智慧能源控制系统及方法
CN117277436A (zh) 一种基于碳排放的电网电量供给消耗测算方法
Zhang et al. Optimal configuration of double carbon energy system considering climate change
CN105790304B (zh) 光伏逆变器智能休眠系统及方法
Jadin et al. A sizing tool for PV standalone system
TWI751507B (zh) 太陽能電池的模型建立方法及其運行狀態判斷與預測最大發電功率的方法
Zhao et al. The techno-economic evaluation of school integrated energy system based on G1-anti-entropy weight-TOPSIS method
CN114006392A (zh) 分布式电源系统储能节点容量需求估算系统
Lu et al. NV energy large-scale photovoltaic integration study: Intra-hour dispatch and AGC simulation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16789202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16789202

Country of ref document: EP

Kind code of ref document: A1