WO2016177161A1 - 下行载波平坦度补偿方法及装置 - Google Patents

下行载波平坦度补偿方法及装置 Download PDF

Info

Publication number
WO2016177161A1
WO2016177161A1 PCT/CN2016/076994 CN2016076994W WO2016177161A1 WO 2016177161 A1 WO2016177161 A1 WO 2016177161A1 CN 2016076994 W CN2016076994 W CN 2016076994W WO 2016177161 A1 WO2016177161 A1 WO 2016177161A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
flatness
compensation
downlink
power
Prior art date
Application number
PCT/CN2016/076994
Other languages
English (en)
French (fr)
Inventor
刘兴旺
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016177161A1 publication Critical patent/WO2016177161A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks

Definitions

  • the present invention relates to the field of communications, and in particular, to a downlink carrier flatness compensation method and apparatus.
  • the base station is an indispensable component of the wireless communication network.
  • the base station is generally composed of a baseband unit (BBU) and a radio remote unit (RRU).
  • BBU baseband unit
  • RRU radio remote unit
  • the RRU's own form is also moving toward a wide frequency band or ultra-wideband to meet the customer's higher adaptability requirements for RRU.
  • the embodiment of the invention provides a downlink carrier flatness compensation method and device, so as to at least solve the problem that the RRU downlink carrier flatness difference in the related art.
  • a downlink carrier flatness compensation method including: determining a coarse adjustment factor of each carrier of a plurality of downlink carriers according to a flatness characteristic of a radio frequency device, wherein the flatness characteristic
  • the method includes: mapping a working frequency of the radio frequency device, and a mapping relationship between the temperature and the flatness; determining a fineness of each carrier according to a downlink baseband power of each carrier and a forward power before the each carrier enters the circulator Adjusting a compensation factor; performing weighting calculation on the coarse adjustment compensation factor of each carrier and the fine adjustment compensation factor of each carrier to obtain a flatness compensation value of each carrier; and according to the flatness compensation value And performing flatness compensation on each of the carriers.
  • determining, according to the flatness characteristic of the radio frequency device, determining a coarse adjustment compensation factor of each of the plurality of downlink carriers including: generating a flatness compensation table according to a flatness characteristic of the radio frequency device; and working according to the carriers Determining a flatness value of each carrier in the flatness compensation table; calculating the coarse adjustment compensation according to the flatness value of each carrier and downlink actual power of each carrier factor.
  • the coarse compensation factor a n of the nth carrier of the multiple downlink carriers is calculated according to the following formula:
  • cn represents the downlink actual power of the nth carrier of the plurality of downlink carriers
  • Fn represents the flatness value of the nth carrier of the plurality of downlink carriers
  • determining the fine adjustment compensation factor of each carrier according to the downlink baseband power of each carrier and the forward power before the each carrier enters the circulator includes: acquiring the downlink baseband power of each carrier And the forward detection power of each of the carriers, wherein the forward detection power is obtained by detecting the forward power through a feedback link; according to the downlink baseband power of each carrier, and each The forward detection power of the carrier, and the fine adjustment compensation factor of each carrier is calculated.
  • the fine compensation factor b n of the nth carrier of the multiple downlink carriers is calculated according to the following formula:
  • dn represents the downlink baseband power of the nth carrier of the plurality of downlink carriers
  • pn represents the forward detection power of the nth carrier of the plurality of downlink carriers
  • performing flatness compensation on each of the carriers according to the flatness compensation value includes: determining whether the flatness compensation value of each carrier is within a preset threshold; determining the carriers If the flatness compensation value is within the preset threshold, flatness compensation is performed on each carrier according to the flatness compensation value of each carrier.
  • the method further includes: reporting an abnormal alarm.
  • a downlink carrier flatness compensation apparatus including: a first determining module, configured to determine coarse adjustment compensation of each carrier of the plurality of downlink carriers according to a flatness characteristic of the radio frequency device; a factor, wherein the flatness characteristic includes: a working frequency of the radio frequency device, a mapping relationship between the temperature and the flatness; and a second determining module configured to determine, according to the downlink baseband power of each carrier, the carrier a forward compensation power before entering the circulator, determining a fine adjustment compensation factor of each carrier; and a calculation module, configured to perform the coarse adjustment compensation factor of each carrier and the fine adjustment compensation factor of each carrier The weighting calculation is performed to obtain a flatness compensation value of each carrier; and the compensation module is configured to perform flatness compensation on each of the carriers according to the flatness compensation value.
  • the first determining module includes: a generating unit configured to generate a flatness compensation table according to a flatness characteristic of the radio frequency device; and a determining unit configured to set the operating frequency and the current temperature according to the carrier Determining the flatness value of each carrier in the flatness compensation table; the first calculating unit is configured to calculate the coarse adjustment compensation according to the flatness value of each carrier and the downlink actual power of each carrier factor.
  • the second determining module includes: an acquiring unit, configured to acquire the downlink baseband power of each carrier and forward detection power of each carrier, where the forward detection power is through a feedback link Detecting the forward power; the second calculating unit is configured to: according to the downlink baseband power of each carrier and the location of each carrier The forward detection power is calculated, and the fine adjustment compensation factor of each carrier is calculated.
  • the coarse adjustment factor of each carrier of the plurality of downlink carriers is determined according to the flatness characteristic of the radio frequency device, wherein the flatness characteristic includes: a working frequency of the radio frequency device, a mapping relationship between temperature and flatness; Determining the fine adjustment compensation factor of each carrier according to the downlink baseband power of each carrier and the forward power before each carrier enters the circulator; weighting the coarse adjustment compensation factor of each carrier and the fine adjustment compensation factor of each carrier to obtain each The flatness compensation value of the carrier; the flatness compensation method for each carrier according to the flatness compensation value solves the problem of the carrier flatness difference of the RRU downlink, and improves the flatness of the RRU downlink carrier.
  • the flatness characteristic includes: a working frequency of the radio frequency device, a mapping relationship between temperature and flatness
  • FIG. 1 is a flowchart of a downlink carrier flatness compensation method according to an embodiment of the present invention
  • FIG. 2 is a block diagram showing the structure of a downlink carrier flatness compensation apparatus according to an embodiment of the present invention
  • FIG. 3 is a block diagram 1 of a preferred structure of a downlink carrier flatness compensating apparatus according to an embodiment of the present invention
  • FIG. 4 is a block diagram 2 of a preferred structure of a downlink carrier flatness compensating apparatus according to an embodiment of the present invention
  • FIG. 5 is a flow chart of a method for compensating flatness between wideband RRU downlink carriers according to a preferred embodiment of the present invention
  • FIG. 6 is a block diagram showing the structure of an RRU downlink according to a preferred embodiment of the present invention.
  • FIG. 7 is a flow chart of a wideband RRU inter-carrier flatness compensation method in accordance with a preferred embodiment of the present invention.
  • FIG. 1 is a flowchart of a downlink carrier flatness compensation method according to an embodiment of the present invention. As shown in FIG. 1, the process includes the following steps:
  • Step S102 Determine a coarse adjustment factor of each carrier of the plurality of downlink carriers according to a flatness characteristic of the radio frequency device, where the flatness characteristic includes: a working frequency of the radio frequency device, and a mapping relationship between temperature and flatness;
  • Step S104 determining a fine adjustment compensation factor of each carrier according to downlink baseband power of each carrier and forward power before each carrier enters the circulator;
  • Step S106 performing weighting calculation on the coarse adjustment compensation factor of each carrier and the fine adjustment compensation factor of each carrier, and obtaining each load Wave flatness compensation value;
  • step S108 flatness compensation is performed on each carrier according to the flatness compensation value.
  • the coarse adjustment compensation factor of each carrier is determined by scanning the outer RF device, and the fine adjustment compensation factor of each carrier is determined by detecting the downlink baseband power and the in-loop forward power, and then the two compensation factors are further determined.
  • the calculation is performed to obtain the flatness compensation value of each carrier to perform flatness compensation for each carrier. It can be seen that the above steps solve the problem that the RRU downlink carrier flatness is poor, and the flatness of the RRU downlink carrier is improved.
  • the above steps can be applied to the downlink of the broadband RRU.
  • the above method can also be applied to links with high system flatness or insufficient hardware design.
  • the coarse adjustment compensation factor of each carrier of the plurality of downlink carriers may be determined according to the flatness characteristic of the radio frequency device. For example, generating a flatness compensation table according to the flatness characteristic of the radio frequency device; determining a flatness value of each carrier in the flatness compensation table according to the operating frequency of each carrier and the current temperature; and determining the flatness value of each carrier and each carrier The downlink actual power is calculated and the coarse adjustment factor is calculated.
  • the flatness characteristic of the radio frequency device is scanned by the spectrum analyzer in a step of 10 k, and a mapping relationship between the full bandwidth scanning frequency point of the radio frequency device and the flatness of each carrier is obtained, and the mapping relationship table and the radio frequency device are
  • the nominal carrier is used as a characteristic parameter of the radio frequency device to generate a flatness compensation table.
  • the flatness compensation table is searched according to the operating frequency of each carrier and the current temperature, and the flatness value of each carrier is obtained, by determining the flatness value of each carrier and each carrier.
  • the relationship between the actual power of the downlink and the coarse adjustment factor is obtained.
  • the coarse adjustment factor a n of the nth carrier of the plurality of downlink carriers can be calculated according to the following formula:
  • cn represents the downlink actual power of the nth carrier of the plurality of downlink carriers
  • Fn represents the flatness value of the nth carrier of the plurality of downlink carriers
  • the calculation formula of the coarse adjustment compensation factor a n of the nth carrier of the plurality of downlink carriers may be obtained by the following derivation process:
  • the ratio of the ratio of each carrier power after the downlink actual power is compensated by the coarse adjustment flatness is inversely proportional to the ratio of the carrier flatness values, that is, Know
  • the forward power before each carrier enters the circulator can be obtained through the feedback channel, and the downlink baseband power and each carrier enter the ring according to each carrier.
  • the forward power before the device determines the fine adjustment compensation factor of each carrier, for example, obtaining the downlink baseband power of each carrier and the forward detection power of each carrier, wherein the forward detection power is the forward power through the feedback link
  • the detected fine adjustment compensation factor of each carrier is calculated according to the downlink baseband power of each carrier and the forward detection power of each carrier.
  • the fine adjustment compensation factor b n of the nth carrier of the plurality of downlink carriers can be calculated according to the following formula:
  • dn represents the downlink baseband power of the nth carrier of the plurality of downlink carriers
  • pn represents the forward detection power of the nth carrier of the plurality of downlink carriers
  • the calculation formula of the fine adjustment compensation factor b n of the nth carrier of the plurality of downlink carriers may be obtained by the following derivation process:
  • the total downlink baseband power remains unchanged after fine-tuned flatness compensation, ie
  • step S108 it may be determined whether the flatness compensation value of each carrier is within a preset threshold; and when it is determined that the flatness compensation value of each carrier is within a preset threshold, according to the flatness of each carrier The degree of compensation is compensated for the flatness by the degree of compensation for each carrier.
  • an abnormal alarm may be reported.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium (such as ROM/RAM, disk).
  • the optical disc includes a plurality of instructions for causing a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) to perform the method described in various embodiments of the present invention.
  • a downlink carrier flatness compensating apparatus is also provided in the embodiment, and the apparatus is configured to implement the foregoing embodiments and preferred embodiments, and the description thereof has been omitted.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • the apparatus includes: a first determining module 22, a second determining module 24, a calculating module 26, and a compensation module 28, wherein
  • the first determining module 22 is configured to determine a coarse adjustment factor of each of the plurality of downlink carriers according to the flatness characteristic of the radio frequency device, where the flatness characteristic includes: a working frequency of the radio frequency device, and a mapping between temperature and flatness
  • the second determining module 24 is coupled to the first determining module 22, and is configured to determine a fine adjustment compensation factor of each carrier according to the downlink baseband power of each carrier and the forward power before each carrier enters the circulator; and the calculating module 26
  • the second determining module 24 is configured to perform weighting calculation on the coarse adjustment compensation factor of each carrier and the fine adjustment compensation factor of each carrier to obtain a flatness compensation value of each carrier;
  • the compensation module 28 is coupled to the calculation module 26 to set Flatness compensation is performed for each carrier according to the flatness
  • the first determining module 22 includes: a generating unit 32, a determining unit 34, and a first calculating unit. 36, of which
  • the generating unit 32 is configured to generate a flatness compensation table according to the flatness characteristic of the radio frequency device; the determining unit 34 is coupled to the generating unit 32, and is configured to determine each in the flatness compensation table according to the operating frequency of each carrier and the current temperature.
  • the flatness value of the carrier; the first calculating unit 36, coupled to the determining unit 34, is configured to calculate a coarse adjustment factor according to the flatness value of each carrier and the downlink actual power of each carrier.
  • the coarse adjustment factor a n of the nth carrier of the plurality of downlink carriers in the first calculating unit 36 is calculated according to the following formula:
  • cn represents the downlink actual power of the nth carrier of the plurality of downlink carriers
  • Fn represents the flatness value of the nth carrier of the plurality of downlink carriers
  • the second determining module 24 includes: an obtaining unit 42 and a second calculating unit 44, where The obtaining unit 42 is configured to obtain downlink baseband power of each carrier and forward detection power of each carrier, where the forward detection power is obtained by detecting the forward power through the feedback link; and the second calculating unit 44 is coupled to The obtaining unit 42 is configured to calculate a fine adjustment compensation factor of each carrier according to the downlink baseband power of each carrier and the forward detection power of each carrier.
  • the fine adjustment compensation factor b n of the nth carrier of the plurality of downlink carriers in the second calculating unit 44 is calculated according to the following formula:
  • dn represents the downlink baseband power of the nth carrier of the plurality of downlink carriers
  • pn represents the forward detection power of the nth carrier of the plurality of downlink carriers
  • the compensation module 28 is configured to determine whether the flatness compensation value of each carrier is within a preset threshold; and if it is determined that the flatness compensation value of each carrier is within a preset threshold, according to the flatness compensation of each carrier The value is flattened for each carrier.
  • the device further includes: a reporting module, configured to report an abnormal alarm when it is determined that the flatness compensation value of each carrier exceeds a preset threshold.
  • a reporting module configured to report an abnormal alarm when it is determined that the flatness compensation value of each carrier exceeds a preset threshold.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the modules are located in multiple In the processor.
  • Embodiments of the present invention also provide a software that is configured to perform the technical solutions described in the above embodiments and preferred embodiments.
  • Embodiments of the present invention also provide a storage medium.
  • the above storage medium may be configured to store program code for performing the following steps:
  • S200 Determine, according to a flatness characteristic of the radio frequency device, a coarse adjustment compensation factor of each of the plurality of downlink carriers, where the flatness characteristic includes: a working frequency of the radio frequency device, a mapping relationship between temperature and flatness;
  • the storage medium is further arranged to store program code for performing the following steps:
  • S240 Determine a flatness value of each carrier in a flatness compensation table according to an operating frequency of each carrier and a current temperature.
  • the storage medium is further arranged to store program code for performing the following steps:
  • the coarse adjustment factor a n of the nth carrier of the plurality of downlink carriers is calculated according to the following formula:
  • cn represents the downlink actual power of the nth carrier of the plurality of downlink carriers
  • Fn represents the flatness value of the nth carrier of the plurality of downlink carriers
  • the storage medium is further arranged to store program code for performing the following steps:
  • S420 Obtain downlink baseband power of each carrier and forward detection power of each carrier, where forward detection power is obtained by detecting forward power through a feedback link;
  • the storage medium is further arranged to store program code for performing the following steps:
  • the fine adjustment compensation factor b n of the nth carrier of the plurality of downlink carriers is calculated according to the following formula:
  • dn represents the downlink baseband power of the nth carrier of the plurality of downlink carriers
  • pn represents the forward detection power of the nth carrier of the plurality of downlink carriers
  • the storage medium is further arranged to store program code for performing the following steps:
  • the storage medium is further arranged to store program code for performing the following steps:
  • S900 reports an abnormal alarm.
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • the preferred embodiment of the present invention provides a broadband RRU downlink inter-carrier flatness compensation method and device, which can be applied to a radio frequency base station radio frequency performance control technology, and provides an RRU carrier power control method to improve the performance of the RRU system.
  • a broadband RRU downlink inter-carrier flatness compensation method proposed by the preferred embodiment of the present invention optimizes the flatness characteristics of the wideband RRU carrier and improves the performance of the overall RRU system through the implementation of the subcarrier compensation technology.
  • FIG. 5 is a flowchart of a method for compensating for inter-carrier flatness of a broadband RRU downlink according to a preferred embodiment of the present invention. As shown in FIG. 5, a flatband RRU downlink inter-carrier flatness compensation is provided in a preferred embodiment of the present invention. The method includes the following steps:
  • Step S502 downlink coarse adjustment flatness offline static compensation calculation.
  • Step S504 downlink fine adjustment flatness online dynamic compensation calculation.
  • Step S506 pre-adjusting the flatness value judgment and the abnormal warning.
  • the flatness between the downlink channel carriers is improved, and the warning function of the abnormal situation is completed, thereby improving the radio frequency performance of the system and the self-checking capability of the device abnormality.
  • FIG. 6 is a block diagram of a RRU downlink structure according to a preferred embodiment of the present invention.
  • the data link after the RRU circulator does not have a feedback channel, and the flatness between carriers is different.
  • an offline compensation table (corresponding to the above flatness) is generated by previously acquiring the flatness characteristic parameter (corresponding to the above flatness characteristic) of the device with the spectrum analyzer. Compensation table), after the cell is established on the RRU, the coarse compensation compensation factor of each carrier can be obtained by reading the pre-generated offline compensation table and using the flatness compensation algorithm according to the actual downlink power of each carrier and the current temperature.
  • the acquisition of the out-of-loop link flatness characteristic parameter can be performed for a primary device (eg, a cavity filter) on the segment of the link.
  • a primary device eg, a cavity filter
  • the offline compensation table may be stored in a RRU non-power loss memory using a plain text file or other form of storage format.
  • the offline compensation table can be stored in the flash memory (Flash) of the RRU in a normal text manner.
  • the characteristic parameter sampling step can be selected according to the characteristics of the actual device.
  • the frequency point region between the sampling points can be fitted by a fitting algorithm to ensure that the sampling data is available in the full bandwidth.
  • the frequency point fitting can be performed by a linear fitting algorithm.
  • the flatness compensation algorithm may perform compensation calculation using the formula described in the specific embodiment of the present invention, or adopt other compensation algorithms.
  • Step S504 downlink fine adjustment flatness online dynamic compensation calculation. This step is specified as follows:
  • the data link before the circulator in the RRU downlink has a feedback channel, and the ratio of the forward power detected by each subcarrier can be obtained through the size of the subcarrier power detected by the feedback channel, and according to the downlink carrier.
  • the downlink actual power is obtained according to the flatness algorithm, and the fine adjustment compensation factor of each carrier is obtained.
  • the downlink baseband power of each carrier and the forward detection power of the corresponding time can be obtained by sweeping the full bandwidth of the spontaneous data, or by actually detecting the online data.
  • the carrier downlink baseband power can be obtained indirectly through cell power estimation, or can be directly obtained by detecting the power of the underlying fixed time slot in real time.
  • the carrier fine adjustment compensation step may be performed multiple times according to specific system characteristics to provide real-time compensation of the system, or to perform a single execution.
  • the flatness compensation algorithm may calculate or apply other compensation algorithms using the formulas described in the specific embodiments of the present invention.
  • Step S506 pre-adjusting the flatness value judgment and the abnormal warning. This step is specified as follows:
  • the two phase compensation factors are weighted by the strategy, for example, the product of the coarse adjustment compensation factor and the fine adjustment compensation factor (ie, a n *b n ) is determined according to the weighted result.
  • the flatness of the carrier is adjusted to the expected value (corresponding to the above flatness compensation value), and it is judged whether the adjusted expected value is within a reasonable threshold (corresponding to the above-mentioned preset threshold), and if it is within a reasonable threshold range, the intermediate value is adjusted according to the expected value.
  • the logical part is adjusted. If the reasonable threshold is exceeded, an abnormal alarm is reported.
  • the expected threshold may be obtained by reading the overall property table, or may be artificially agreed according to the design parameters.
  • the flatness adjustment expected value is adjusted in the intermediate frequency logic part, and may be performed by being integrated in the DPD module or by adding an adjustment unit before the DPD module.
  • the preferred embodiment of the present invention is for the compensation of the downlink carrier flatness of the wideband RRU, and can also be applied to the link if the system flatness performance is high or there is insufficient hardware design.
  • FIG. 7 is a flowchart of a method for compensating flatness between wide-band RRU carriers according to a preferred embodiment of the present invention. As shown in FIG. 7, the process includes the following steps:
  • Step S702 in the full frequency band supported by the wide-band RRU ring external cavity filter (corresponding to the above-mentioned radio frequency device), the signal filter and the spectrum analyzer are used to actually scan the cavity filter flatness characteristic in a 10k step to form a cavity.
  • the characteristic parameter (corresponding to the above flatness compensation table) is written in the form of text into the flash on the whole machine where the cavity filter is located;
  • Step S704 after the power is turned on, the RRU completes the cavity characteristic parameter table file pre-existing in the Flash, and performs parsing.
  • the RRU cell After the RRU cell is established, the RRU is obtained according to the frequency information of the carrier on the downlink.
  • the flatness value corresponding to the carrier frequency established on the road. (It should be noted that the sampling point due to the flatness of the cavity is discontinuous. When the frequency falls between two sampling points, the linearity is performed according to the actual situation. Fitting) obtaining the actual transmit power of each carrier on the downlink (corresponding to the above-mentioned downlink actual power) through the underlying detection;
  • Step S706 performing actual coarse adjustment compensation factor calculation according to the flatness value obtained in step S704 and the actual transmit power of each carrier, and the calculation process is as follows:
  • c 1 , c 2 ... c n represent the downlink power of n carriers on the downlink channel
  • F 1 , F 2 ... F n represent the flatness corresponding to the n carrier frequency points respectively obtained from the feature parameter table on the downlink. value, a 1, a 2 ... a n representative of the flatness of coarse compensation factor according to the equation Calculating the compensation factor of each carrier out-of-loop link;
  • Step S708 by periodically detecting the underlying power, acquiring the downlink baseband power of each downlink carrier, and the forward detection power;
  • Step S710 performing a calculation of the fine adjustment compensation factor according to the downlink baseband power of each carrier and the power of the forward detection acquired in step S708, and the calculation process is as follows:
  • d 1 , d 2 ... d n represent the downlink baseband power of n carriers on the downlink channel
  • p 1 , p 2 ... p n respectively represent the forward detection power of each carrier
  • b 1 , b 2 ... b n represent fine adjustment Flatness compensation factor, according to the formula Calculate the fine adjustment compensation factor of each carrier
  • Step S712 calculating the obtained coarse adjustment compensation factor a n and the fine adjustment compensation factor b n calculated in step S710 according to step S706, and calculating each carrier expected flatness compensation value (corresponding to the above flatness compensation value) Detn, and according to the whole
  • the machine characteristic obtains the maximum compensation threshold of the downlink carrier of the whole machine (corresponding to the preset threshold) Thmax, and determines whether the expected flatness compensation value of each carrier exceeds Thmax. If not, the RRU digital intermediate frequency circuit compensates according to the expected flatness of each carrier. Detn adjusts the carrier flatness. If the expected flatness compensation value of one of the carriers exceeds Thmax, no compensation is performed, and the device alarm is reported to indicate that the downlink is abnormal.
  • a downlink carrier flatness compensation mode is newly added, and the flatness compensation value is obtained by calculating the coarse adjustment compensation factor and the fine adjustment compensation factor.
  • the flatness compensation value is performed for each carrier, which solves the problem of the carrier flatness difference of the RRU downlink, improves the flatness of the RRU downlink carrier, and optimizes the flatness characteristic of the broadband RRU carrier by implementing the subcarrier compensation technology. Improve overall RRU system performance.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the downlink carrier flatness compensation method and apparatus have the following beneficial effects: determining a coarse adjustment compensation factor of each carrier in multiple downlink carriers according to the flatness characteristic of the radio frequency device, wherein
  • the flatness characteristic includes: a working frequency of the radio frequency device, a mapping relationship between the temperature and the flatness; determining a fine adjustment compensation factor of each carrier according to the downlink baseband power of each carrier and the forward power before each carrier enters the circulator;
  • the coarse adjustment compensation factor of the carrier and the fine adjustment compensation factor of each carrier are weighted to obtain the flatness compensation value of each carrier; according to the flatness compensation value, the flatness compensation method is respectively applied to each carrier, and the RRU downlink carrier is flattened.
  • the problem of the degree difference improves the flatness of the RRU downlink carrier.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmitters (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

本发明提供了一种下行载波平坦度补偿方法及装置。其中,该方法包括:根据射频器件的平坦度特性,确定多个下行载波中各载波的粗调补偿因子,其中,平坦度特性包括:射频器件的工作频率,温度与平坦度的映射关系;根据各载波的下行基带功率与各载波进入环形器之前的前向功率,确定各载波的细调补偿因子;对各载波的粗调补偿因子和各载波的细调补偿因子进行加权计算,得到各载波的平坦度补偿值;根据平坦度补偿值,分别对各载波进行平坦度补偿。通过本发明,解决了射频拉远单元(RRU)下行载波平坦度差的问题,提高了RRU下行载波的平坦度。

Description

下行载波平坦度补偿方法及装置 技术领域
本发明涉及通信领域,具体而言,涉及一种下行载波平坦度补偿方法及装置。
背景技术
基站是无线通信网络不可或缺的组成部分,目前基站普遍是由基带资源池(Base band Unit,简称为BBU)和射频拉远单元(Radio Remote Unit,简称为RRU)构成的,与此同时,RRU自身的形态也在朝着宽频段或者超宽频方向发展,以满足客户对RRU提出更高的适应性的要求。
发明人在研究过程中发现,宽频化后的RRU,由于支持频段宽,频段上载波间频点间隔也随之越来越大,下行链路载波间平坦度问题就会越来越突出表现出来。
针对相关技术RRU下行载波平坦度差的问题,目前尚未提出有效的解决方案。
发明内容
本发明实施例提供了一种下行载波平坦度补偿方法及装置,以至少解决相关技术中RRU下行载波平坦度差的问题。
根据本发明的一个实施例,提供了一种下行载波平坦度补偿方法,包括:根据射频器件的平坦度特性,确定多个下行载波中各载波的粗调补偿因子,其中,所述平坦度特性包括:所述射频器件的工作频率,温度与所述平坦度的映射关系;根据所述各载波的下行基带功率与所述各载波进入环形器之前的前向功率,确定所述各载波的细调补偿因子;对所述各载波的所述粗调补偿因子和所述各载波的所述细调补偿因子进行加权计算,得到所述各载波的平坦度补偿值;根据所述平坦度补偿值,分别对所述各载波进行平坦度补偿。
可选地,根据射频器件的平坦度特性,确定多个下行载波中各载波的粗调补偿因子包括:根据所述射频器件的平坦度特性,生成平坦度补偿表;根据所述各载波的工作频率以及当前温度,在所述平坦度补偿表中确定所述各载波的平坦度值;根据所述各载波的所述平坦度值和所述各载波的下行实际功率,计算所述粗调补偿因子。
可选地,所述多个下行载波中第n个载波的所述粗调补偿因子an根据下列公式计算得出:
Figure PCTCN2016076994-appb-000001
其中,cn表示所述多个下行载波中第n个载波的下行实际功率,Fn表示所述多个下行载波中第n个载波的平坦度值。
可选地,根据所述各载波的下行基带功率与所述各载波进入环形器之前的前向功率,确定所述各载波的细调补偿因子包括:获取所述各载波的所述下行基带功率和所述各载波的前向检测功率,其中,所述前向检测功率是通过反馈链路对所述前向功率进行检测得到的;根据所述各载波的所述下行基带功率和所述各载波的所述前向检测功率,计算所述各载波的所述细调补偿因子。
可选地,所述多个下行载波中第n个载波的所述细调补偿因子bn根据下列公式计算得出:
Figure PCTCN2016076994-appb-000002
其中,dn表示所述多个下行载波中第n个载波的下行基带功率,pn表示所述多个下行载波中第n个载波的前向检测功率。
可选地,根据所述平坦度补偿值,分别对所述各载波进行平坦度补偿包括:判断所述各载波的所述平坦度补偿值是否处于预设门限内;在判断到所述各载波的所述平坦度补偿值处于所述预设门限内的情况下,根据所述各载波的所述平坦度补偿值对所述各载波进行平坦度补偿。
可选地,在判断到所述各载波的所述平坦度补偿值超出所述预设门限的情况下,所述方法还包括:上报异常告警。
根据本发明的另一个实施例,还提供了一种下行载波平坦度补偿装置,包括:第一确定模块,设置为根据射频器件的平坦度特性,确定多个下行载波中各载波的粗调补偿因子,其中,所述平坦度特性包括:所述射频器件的工作频率,温度与所述平坦度的映射关系;第二确定模块,设置为根据所述各载波的下行基带功率与所述各载波进入环形器之前的前向功率,确定所述各载波的细调补偿因子;计算模块,设置为对所述各载波的所述粗调补偿因子和所述各载波的所述细调补偿因子进行加权计算,得到所述各载波的平坦度补偿值;补偿模块,设置为根据所述平坦度补偿值,分别对所述各载波进行平坦度补偿。
可选地,第一确定模块包括:生成单元,设置为根据所述射频器件的平坦度特性,生成平坦度补偿表;确定单元,设置为根据所述各载波的工作频率以及当前温度,在所述平坦度补偿表中确定所述各载波的平坦度值;第一计算单元,设置为根据所述各载波的所述平坦度值和所述各载波的下行实际功率,计算所述粗调补偿因子。
可选地,第二确定模块包括:获取单元,设置为获取所述各载波的所述下行基带功率和所述各载波的前向检测功率,其中,所述前向检测功率是通过反馈链路对所述前向功率进行检测得到的;第二计算单元,设置为根据所述各载波的所述下行基带功率和所述各载波的所 述前向检测功率,计算所述各载波的所述细调补偿因子。
通过本发明实施例,采用根据射频器件的平坦度特性,确定多个下行载波中各载波的粗调补偿因子,其中,平坦度特性包括:射频器件的工作频率,温度与平坦度的映射关系;根据各载波的下行基带功率与各载波进入环形器之前的前向功率,确定各载波的细调补偿因子;对各载波的粗调补偿因子和各载波的细调补偿因子进行加权计算,得到各载波的平坦度补偿值;根据平坦度补偿值,分别对各载波进行平坦度补偿的方式,解决了RRU下行载波平坦度差的问题,提高了RRU下行载波的平坦度。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的下行载波平坦度补偿方法的流程图;
图2是根据本发明实施例的下行载波平坦度补偿装置的结构框图;
图3是根据本发明实施例的下行载波平坦度补偿装置的优选结构框图一;
图4是根据本发明实施例的下行载波平坦度补偿装置的优选结构框图二;
图5是根据本发明优选实施例的宽频RRU下行链路载波间平坦度补偿方法的流程图;
图6是根据本发明优选实施例的RRU下行链路结构框图;
图7是根据本发明优选实施例的宽频RRU载波间平坦度补偿方法的流程图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在本实施例中提供了一种下行载波平坦度补偿方法,图1是根据本发明实施例的下行载波平坦度补偿方法的流程图,如图1所示,该流程包括如下步骤:
步骤S102,根据射频器件的平坦度特性,确定多个下行载波中各载波的粗调补偿因子,其中,平坦度特性包括:射频器件的工作频率,温度与平坦度的映射关系;
步骤S104,根据各载波的下行基带功率与各载波进入环形器之前的前向功率,确定各载波的细调补偿因子;
步骤S106,对各载波的粗调补偿因子和各载波的细调补偿因子进行加权计算,得到各载 波的平坦度补偿值;
步骤S108,根据平坦度补偿值,分别对各载波进行平坦度补偿。
通过上述步骤,通过对环外射频器件进行扫描确定各载波的粗调补偿因子,通过对下行基带功率和环内前向功率进行检测确定各载波的细调补偿因子,再对这两种补偿因子进行计算,获得各载波的平坦度补偿值对各载波进行平坦度补偿。可见,采用上述步骤,解决了RRU下行载波平坦度差的问题,提高了RRU下行载波的平坦度。
优选地,上述步骤可以应用于宽频RRU的下行链路,此外,上述方法还可以应用于对系统平坦度要求较高或者硬件设计不足的链路。
优选地,由于环外链路不具备反馈通道,在上述步骤S102中,可以根据射频器件的平坦度特性,确定多个下行载波中各载波的粗调补偿因子。例如,根据射频器件的平坦度特性,生成平坦度补偿表;根据各载波的工作频率以及当前温度,在平坦度补偿表中确定各载波的平坦度值;根据各载波的平坦度值和各载波的下行实际功率,计算粗调补偿因子。可选地,以10k为步进,通过频谱仪对射频器件的平坦度特性进行扫描,获得射频器件全带宽扫描频点与各载波平坦度的映射关系表,并将映射关系表与射频器件的标称载波作为射频器件的特征参数生成平坦度补偿表,根据各载波的工作频率以及当前温度查找平坦度补偿表,得到各载波的平坦度值,通过确定各载波的平坦度值与各载波的下行实际功率的关系,得到粗调补偿因子。
优选地,多个下行载波中第n个载波的粗调补偿因子an可以根据下列公式计算得出:
Figure PCTCN2016076994-appb-000003
其中,cn表示多个下行载波中第n个载波的下行实际功率,Fn表示多个下行载波中第n个载波的平坦度值。
可选地,上述多个下行载波中第n个载波的粗调补偿因子an的计算公式,可以由下列推导过程得出:
由下行实际总功率在经过粗调平坦度补偿后保持不变,即
c1+c2+....+cn=a1c1+a2c2+...+ancn
以及,各载波下行实际功率在经过粗调平坦度补偿后的各载波功率的比值与各载波平坦度值的比值成反比,即
Figure PCTCN2016076994-appb-000004
可知
Figure PCTCN2016076994-appb-000005
则有
Figure PCTCN2016076994-appb-000006
再根据
Figure PCTCN2016076994-appb-000007
Figure PCTCN2016076994-appb-000008
可知
Figure PCTCN2016076994-appb-000009
优选地,由于环形器之前的链路具有反馈通道,在上述步骤S104中,各载波进入环形器之前的前向功率可以通过反馈通道进行检测获得,根据各载波的下行基带功率与各载波进入环形器之前的前向功率,确定各载波的细调补偿因子,例如,获取各载波的下行基带功率和各载波的前向检测功率,其中,前向检测功率是通过反馈链路对前向功率进行检测得到的;根据各载波的下行基带功率和各载波的前向检测功率,计算各载波的细调补偿因子。
优选地,多个下行载波中第n个载波的细调补偿因子bn可以根据下列公式计算得出:
Figure PCTCN2016076994-appb-000010
其中,dn表示多个下行载波中第n个载波的下行基带功率,pn表示多个下行载波中第n个载波的前向检测功率。
可选地,上述多个下行载波中第n个载波的细调补偿因子bn的计算公式,可以由下列推导过程得出:
由总的下行基带功率在经过细调平坦度补偿后保持不变,即
d1+d2+....+dn=b1d1+b2d2+...+bndn
以及,各载波的下行基带功率在经过细调平坦度补偿后的各载波功率的比值与各载波的前向检测功率的比值成正比比,即(b1d1)/(bndn)=(p1/pn),可知
Figure PCTCN2016076994-appb-000011
则有
Figure PCTCN2016076994-appb-000012
再根据(b1d1)/(bndn)=(p1/pn),可得
Figure PCTCN2016076994-appb-000013
优选地,在上述步骤S108中,可以通过判断各载波的平坦度补偿值是否处于预设门限内;在判断到各载波的平坦度补偿值处于预设门限内的情况下,根据各载波的平坦度补偿值对各载波进行平坦度补偿的方式对平坦度进行补偿。
优选地,在判断到各载波的平坦度补偿值超出预设门限的情况下,可以上报异常告警。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明实施例的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
在本实施例中还提供了一种下行载波平坦度补偿装置,该装置设置为实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图2是根据本发明实施例的下行载波平坦度补偿装置的结构框图,如图2所示,该装置包括;第一确定模块22、第二确定模块24、计算模块26和补偿模块28,其中,第一确定模块22,设置为根据射频器件的平坦度特性,确定多个下行载波中各载波的粗调补偿因子,其中,平坦度特性包括:射频器件的工作频率,温度与平坦度的映射关系;第二确定模块24,耦合至第一确定模块22,设置为根据各载波的下行基带功率与各载波进入环形器之前的前向功率,确定各载波的细调补偿因子;计算模块26,耦合至第二确定模块24,设置为对各载波的粗调补偿因子和各载波的细调补偿因子进行加权计算,得到各载波的平坦度补偿值;补偿模块28,耦合至计算模块26,设置为根据平坦度补偿值,分别对各载波进行平坦度补偿。
图3是根据本发明实施例的下行载波平坦度补偿装置的优选结构框图一,如图3所示,优选地,上述第一确定模块22包括:生成单元32、确定单元34和第一计算单元36,其中, 生成单元32,设置为根据射频器件的平坦度特性,生成平坦度补偿表;确定单元34,耦合至生成单元32,设置为根据各载波的工作频率以及当前温度,在平坦度补偿表中确定各载波的平坦度值;第一计算单元36,耦合至确定单元34,设置为根据各载波的平坦度值和各载波的下行实际功率,计算粗调补偿因子。
优选地,上述第一计算单元36中多个下行载波中第n个载波的粗调补偿因子an根据下列公式计算得出:
Figure PCTCN2016076994-appb-000014
其中,cn表示多个下行载波中第n个载波的下行实际功率,Fn表示多个下行载波中第n个载波的平坦度值。
图4是根据本发明实施例的下行载波平坦度补偿装置的优选结构框图二,如图4所示,优选地,上述第二确定模块24包括:获取单元42和第二计算单元44,其中,获取单元42,设置为获取各载波的下行基带功率和各载波的前向检测功率,其中,前向检测功率是通过反馈链路对前向功率进行检测得到的;第二计算单元44,耦合至获取单元42,设置为根据各载波的下行基带功率和各载波的前向检测功率,计算各载波的细调补偿因子。
优选地,上述第二计算单元44中多个下行载波中第n个载波的细调补偿因子bn根据下列公式计算得出:
Figure PCTCN2016076994-appb-000015
其中,dn表示多个下行载波中第n个载波的下行基带功率,pn表示多个下行载波中第n个载波的前向检测功率。
优选地,上述补偿模块28设置为判断各载波的平坦度补偿值是否处于预设门限内;在判断到各载波的平坦度补偿值处于预设门限内的情况下,根据各载波的平坦度补偿值对各载波进行平坦度补偿。
优选地,上述装置还包括:上报模块,设置为在判断到各载波的平坦度补偿值超出预设门限的情况下,上报异常告警。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述模块分别位于多个处理器中。
本发明的实施例还提供了一种软件,该软件设置为执行上述实施例及优选实施方式中描述的技术方案。
本发明的实施例还提供了一种存储介质。在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S200,根据射频器件的平坦度特性,确定多个下行载波中各载波的粗调补偿因子,其中,平坦度特性包括:射频器件的工作频率,温度与平坦度的映射关系;
S400,根据各载波的下行基带功率与各载波进入环形器之前的前向功率,确定各载波的细调补偿因子;
S600,对各载波的粗调补偿因子和各载波的细调补偿因子进行加权计算,得到各载波的平坦度补偿值;
S800,根据平坦度补偿值,分别对各载波进行平坦度补偿。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
S220,根据射频器件的平坦度特性,生成平坦度补偿表;
S240,根据各载波的工作频率以及当前温度,在平坦度补偿表中确定各载波的平坦度值;
S260,根据各载波的平坦度值和各载波的下行实际功率,计算粗调补偿因子。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
S262,多个下行载波中第n个载波的粗调补偿因子an根据下列公式计算得出:
Figure PCTCN2016076994-appb-000016
其中,cn表示多个下行载波中第n个载波的下行实际功率,Fn表示多个下行载波中第n个载波的平坦度值。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
S420,获取各载波的下行基带功率和各载波的前向检测功率,其中,前向检测功率是通过反馈链路对前向功率进行检测得到的;
S440,根据各载波的下行基带功率和各载波的前向检测功率,计算各载波的细调补偿因子。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
S442,多个下行载波中第n个载波的细调补偿因子bn根据下列公式计算得出:
Figure PCTCN2016076994-appb-000017
其中,dn表示多个下行载波中第n个载波的下行基带功率,pn表示多个下行载波中第n个载波的前向检测功率。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
S820,判断各载波的平坦度补偿值是否处于预设门限内;
S840,判断到各载波的平坦度补偿值处于预设门限内的情况下,根据各载波的平坦度补偿值对各载波进行平坦度补偿。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:
S900,上报异常告警。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
为了使本发明实施例的描述更加清楚,下面结合优选实施例进行描述和说明。
本发明优选实施例提供了一种宽频RRU下行链路载波间平坦度补偿方法及装置,可以应用于无线蜂窝基站射频性能控制技术,提供了RRU载波功率控制方法实现了RRU系统性能的提升。
本发明优选实施例提出的一种宽频RRU下行链路载波间平坦度补偿方法,通过分载波补偿技术的实施,优化宽频RRU载波间平坦度特性,提升整体RRU系统性能。
下面结合附图对本发明优选实施例进行说明。
图5是根据本发明优选实施例的宽频RRU下行链路载波间平坦度补偿方法的流程图,如图5所示,本发明优选实施例提供的一种宽频RRU下行链路载波间平坦度补偿方法,包括如下步骤:
步骤S502,下行链路粗调平坦度离线静态补偿计算。
步骤S504,下行链路细调平坦度在线动态补偿计算。
步骤S506,预调整平坦度值判决与异常警示。
通过上述步骤改善了下行通道载波间的平坦度,并完成异常情况的警示功能,提升系统的射频性能以及设备异常的自检能力。
下面对上述宽频RRU下行链路载波间平坦度补偿方法进行详细说明:
步骤S502,下行链路粗调平坦度离线静态补偿计算。该步骤具体说明如下:图6是根据本发明优选实施例的RRU下行链路结构框图,如图6所示,RRU环形器之后的数据链路上不具备反馈通道,载波间的平坦度的差异取决于此段链路在较宽的频谱范围内的射频器件特性,因此通过预先用频谱仪采集器件的平坦度特性参数(相当于上述平坦度特性),生成离线补偿表(相当于上述平坦度补偿表),待RRU上建立小区之后,通过读取预先生成的离线补偿表,依据各个载波的下行实际功率大小以及当前温度,运用平坦度补偿算法,可获取各载波的粗调补偿因子。
优选地,环外链路平坦度特性参数的采集,可以针对该段链路上的主要器件(例如腔体滤波器)进行采集。
优选地,离线补偿表可以采用普通文本文件,或者其他形式的存储格式存储于RRU非掉电丢失的存储器中。
优选地,可以将离线补偿表采用普通文本方式存于RRU的闪存(Flash)中。
优选地,特性参数采样步进可以根据实际器件的特性进行选择。采样点之间频点区可以采用拟合算法进行拟合,以保证在全带宽中均有采样数据,优选地,频点特性拟合可以采用线性拟合算法。
优选地,平坦度补偿算法可以采用本发明具体实施例中描述的公式进行补偿计算,或者采用其他补偿算法。
步骤S504,下行链路细调平坦度在线动态补偿计算。该步骤具体说明如下:
如图6所示,RRU下行链路中环形器之前的数据链路具有反馈通道,可以通过反馈通道检测的分载波功率的大小,获知各个分载波的前向检测功率的比率,同时依据下行载波的下行实际功率,根据平坦度算法,获取各载波的细调补偿因子。
优选地,各载波下行基带功率和对应时刻的前向检测功率,可以通过自发数据全带宽扫频获取,也可以通过在线数据实际检测获取。
优选地,载波下行基带功率可以通过小区功率推算间接获取,也可以通过实时检测底层固定时隙的功率直接获取。
优选地,载波细调补偿步骤可根据具体系统特性多次执行,以提供系统补偿的实时性,或者进行单次执行。
优选地,平坦度补偿算法可以采用本发明具体实施例中描述的公式计算或者运用其他补偿算法。
步骤S506,预调整平坦度值判决与异常警示。该步骤具体说明如下:
根据粗调补偿因子和细调补偿因子,对两个阶段补偿因子进行策略加权,例如计算粗调 补偿因子与细调补偿因子的乘积(即an*bn)根据加权结果确定下行链路各载波的平坦度调整预期值(相当于上述平坦度补偿值),判断调整预期值是否处于合理的门限(相当于上述预设门限)内,如果处于合理门限范围内,则根据预期调整值在中频逻辑部分进行调整,如果超出合理的门限,则上报异常告警。
优选地,预期门限可以通过读取整体特性表的方式获取,也可以根据设计参数人为约定。
优选地,平坦度调整预期值在中频逻辑部分进行调整,可以通过集成在DPD模块内部进行,也可以采用在DPD模块之前增加调整单元的方式进行。
优选地,本发明优选实施例是针对宽频RRU的下行载波平坦度的补偿,也可以应用于若对系统平坦度性能要求较高,或者存在硬件设计不足的链路中。
图7是根据本发明优选实施例的宽频RRU载波间平坦度补偿方法的流程图,如图7所示,该流程包括如下步骤:
步骤S702,在宽频RRU环外腔体滤波器(相当于上述射频器件)支持的全频段内,以10k步进,用信号源与频谱仪对腔体滤波器平坦度特性进行实际扫描,形成腔体滤波器全带宽扫描频点和腔体滤波器平坦度的映射关系表,并确定腔体滤波器标称载波(即实际平坦度和腔体设计属性最接近的载波)作为腔体滤波器的特征参数(相当于上述平坦度补偿表),以文本的形式写入腔体滤波器所在整机上Flash中;
步骤S704,RRU整机在上电后,通过读取预存在Flash中的腔体特性参数表文件,并进行解析,在RRU小区建立之后,根据下行链路上载波的频点信息,获取下行链路上建立的载波频点对应的平坦度值,(需要说明的是,由于腔体平坦度的采样点非连续,在频点落在两个采样点之间的情况下,根据实际情况进行线性拟合)同时通过底层检测获取下行链路上每个载波实际发射功率(相当于上述下行实际功率);
步骤S706,根据步骤S704中获取的平坦度值以及每个载波实际的发射功率,进行实际粗调补偿因子计算,其计算过程如下:
设c1,c2…cn代表下行通道上n个载波的下行功率,F1,F2…Fn代表下行链路上从特征参数表中获取到的n个载波频点分别对应的平坦度值,a1,a2…an代表粗调平坦度补偿因子,则根据公式
Figure PCTCN2016076994-appb-000018
计算出每个载波环外链路的补偿因子;
步骤S708,通过周期性检测底层功率,同时获取下行链路各个载波下行基带功率,以及前向检测功率;
步骤S710,根据步骤S708中获取的各载波的下行基带功率以及前向检测的功率,进行细调补偿因子的计算,其计算过程如下:
设d1,d2…dn代表下行通道上n个载波的下行基带功率,p1,p2…pn分别代表各个载波的前向检测功率,b1,b2…bn代表细调平坦度的补偿因子,则根据公式
Figure PCTCN2016076994-appb-000019
计算出每个载波的细调补偿因子;
步骤S712,根据步骤S706计算获得的粗调补偿因子an和步骤S710计算获得的细调补偿因子bn,计算各载波预期平坦度补偿值(相当于上述平坦度补偿值)Detn,同时根据整机特性获取整机下行载波最大补偿门限(相当于上述预设门限)Thmax,判断各载波的预期平坦度补偿值是否超过Thmax,如果没有超过,则RRU数字中频电路根据各载波预期平坦度补偿值Detn对载波平坦度进行调整,如果有其中一个载波的预期平坦度补偿值超过Thmax,则不进行补偿,并上报设备告警以提示下行链路异常。
综上所述,通过本发明的上述实施例和优选实施例,新增了一种下行载波平坦度补偿模式,利用对粗调补偿因子和细调补偿因子的计算,获得了平坦度补偿值,根据平坦度补偿值,对各载波进行平坦度补偿,解决了RRU下行载波平坦度差的问题,提高了RRU下行载波的平坦度,通过分载波补偿技术的实施,优化宽频RRU载波间平坦度特性,提升整体RRU系统性能。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
如上所述,本发明实施例提供的一种下行载波平坦度补偿方法及装置,具有以下有益效果:采用根据射频器件的平坦度特性,确定多个下行载波中各载波的粗调补偿因子,其中,平坦度特性包括:射频器件的工作频率,温度与平坦度的映射关系;根据各载波的下行基带功率与各载波进入环形器之前的前向功率,确定各载波的细调补偿因子;对各载波的粗调补偿因子和各载波的细调补偿因子进行加权计算,得到各载波的平坦度补偿值;根据平坦度补偿值,分别对各载波进行平坦度补偿的方式,解决了RRU下行载波平坦度差的问题,提高了RRU下行载波的平坦度。

Claims (10)

  1. 一种下行载波平坦度补偿方法,包括:
    根据射频器件的平坦度特性,确定多个下行载波中各载波的粗调补偿因子,其中,所述平坦度特性包括:所述射频器件的工作频率,温度与所述平坦度的映射关系;
    根据所述各载波的下行基带功率与所述各载波进入环形器之前的前向功率,确定所述各载波的细调补偿因子;
    对所述各载波的所述粗调补偿因子和所述各载波的所述细调补偿因子进行加权计算,得到所述各载波的平坦度补偿值;
    根据所述平坦度补偿值,分别对所述各载波进行平坦度补偿。
  2. 根据权利要求1所述的方法,其中,根据射频器件的平坦度特性,确定多个下行载波中各载波的粗调补偿因子包括:
    根据所述射频器件的平坦度特性,生成平坦度补偿表;
    根据所述各载波的工作频率以及当前温度,在所述平坦度补偿表中确定所述各载波的平坦度值;
    根据所述各载波的所述平坦度值和所述各载波的下行实际功率,计算所述粗调补偿因子。
  3. 根据权利要求2所述的方法,其中,所述多个下行载波中第n个载波的所述粗调补偿因子an根据下列公式计算得出:
    Figure PCTCN2016076994-appb-100001
    其中,cn表示所述多个下行载波中第n个载波的下行实际功率,Fn表示所述多个下行载波中第n个载波的平坦度值。
  4. 根据权利要求1所述的方法,其中,根据所述各载波的下行基带功率与所述各载波进入环形器之前的前向功率,确定所述各载波的细调补偿因子包括:
    获取所述各载波的所述下行基带功率和所述各载波的前向检测功率,其中,所述前向检测功率是通过反馈链路对所述前向功率进行检测得到的;
    根据所述各载波的所述下行基带功率和所述各载波的所述前向检测功率,计算所述各载波的所述细调补偿因子。
  5. 根据权利要求4所述的方法,其中,所述多个下行载波中第n个载波的所述细调补偿因子bn根据下列公式计算得出:
    Figure PCTCN2016076994-appb-100002
    其中,dn表示所述多个下行载波中第n个载波的下行基带功率,pn表示所述多个下行载波中第n个载波的前向检测功率。
  6. 根据权利要求1至5中任一项所述的方法,其中,根据所述平坦度补偿值,分别对所述各载波进行平坦度补偿包括:
    判断所述各载波的所述平坦度补偿值是否处于预设门限内;
    在判断到所述各载波的所述平坦度补偿值处于所述预设门限内的情况下,根据所述各载波的所述平坦度补偿值对所述各载波进行平坦度补偿。
  7. 根据权利要求6所述的方法,其中,在判断到所述各载波的所述平坦度补偿值超出所述预设门限的情况下,所述方法还包括:
    上报异常告警。
  8. 一种下行载波平坦度补偿装置,包括:
    第一确定模块,设置为根据射频器件的平坦度特性,确定多个下行载波中各载波的粗调补偿因子,其中,所述平坦度特性包括:所述射频器件的工作频率,温度与所述平坦度的映射关系;
    第二确定模块,设置为根据所述各载波的下行基带功率与所述各载波进入环形器之前的前向功率,确定所述各载波的细调补偿因子;
    计算模块,设置为对所述各载波的所述粗调补偿因子和所述各载波的所述细调补偿因子进行加权计算,得到所述各载波的平坦度补偿值;
    补偿模块,设置为根据所述平坦度补偿值,分别对所述各载波进行平坦度补偿。
  9. 根据权利要求8所述的装置,其中,第一确定模块包括:
    生成单元,设置为根据所述射频器件的平坦度特性,生成平坦度补偿表;
    确定单元,设置为根据所述各载波的工作频率以及当前温度,在所述平坦度补偿表中确定所述各载波的平坦度值;
    第一计算单元,设置为根据所述各载波的所述平坦度值和所述各载波的下行实际功率,计算所述粗调补偿因子。
  10. 根据权利要求8所述的装置,其中,第二确定模块包括:
    获取单元,设置为获取所述各载波的所述下行基带功率和所述各载波的前向检测功率,其中,所述前向检测功率是通过反馈链路对所述前向功率进行检测得到的;
    第二计算单元,设置为根据所述各载波的所述下行基带功率和所述各载波的所述前向检测功率,计算所述各载波的所述细调补偿因子。
PCT/CN2016/076994 2015-07-10 2016-03-22 下行载波平坦度补偿方法及装置 WO2016177161A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510407623.5 2015-07-10
CN201510407623.5A CN106341356B (zh) 2015-07-10 2015-07-10 下行载波平坦度补偿方法及装置

Publications (1)

Publication Number Publication Date
WO2016177161A1 true WO2016177161A1 (zh) 2016-11-10

Family

ID=57217385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/076994 WO2016177161A1 (zh) 2015-07-10 2016-03-22 下行载波平坦度补偿方法及装置

Country Status (2)

Country Link
CN (1) CN106341356B (zh)
WO (1) WO2016177161A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114143866A (zh) * 2020-09-04 2022-03-04 成都鼎桥通信技术有限公司 接收机上行链路的防饱和方法、设备及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113328845B (zh) * 2020-02-28 2022-08-30 大唐移动通信设备有限公司 一种下行载波平坦度补偿方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000270031A (ja) * 1999-03-15 2000-09-29 Toyo Commun Equip Co Ltd 高周波電力増幅装置
CN1719736A (zh) * 2005-07-19 2006-01-11 中兴通讯股份有限公司 一种功率校准的方法
CN101364789A (zh) * 2008-09-27 2009-02-11 电子科技大学 一种基于cs/cg有源巴伦的mmic平衡式超宽带倍频器
CN101621323A (zh) * 2009-07-31 2010-01-06 武汉虹信通信技术有限责任公司 一种优化直放站平坦度指标的方法
CN101711053A (zh) * 2009-12-21 2010-05-19 中兴通讯股份有限公司 多载波闭环功率控制装置及方法
CN101815054A (zh) * 2010-04-06 2010-08-25 京信通信系统(中国)有限公司 数字通信系统及其改善信号带内平坦度的方法
CN103378870A (zh) * 2012-04-26 2013-10-30 启碁科技股份有限公司 通讯装置与射频均衡器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003107721A1 (en) * 2002-06-01 2003-12-24 Http-Hypothermia Therapy Ltd. Electrical heating device, particularly for heating a patient body
US20070087749A1 (en) * 2005-08-12 2007-04-19 Nokia Corporation Method, system, apparatus and computer program product for placing pilots in a multicarrier mimo system
US8085869B2 (en) * 2008-02-14 2011-12-27 Broadcom Corporation Configurable load impedance for power amplifier predistortion calibration
CN101588208B (zh) * 2008-05-23 2012-04-04 中兴通讯股份有限公司 功率管理方法和装置
CN103782531B (zh) * 2013-06-17 2016-07-06 华为技术有限公司 光信号传输方法、装置及光发射机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000270031A (ja) * 1999-03-15 2000-09-29 Toyo Commun Equip Co Ltd 高周波電力増幅装置
CN1719736A (zh) * 2005-07-19 2006-01-11 中兴通讯股份有限公司 一种功率校准的方法
CN101364789A (zh) * 2008-09-27 2009-02-11 电子科技大学 一种基于cs/cg有源巴伦的mmic平衡式超宽带倍频器
CN101621323A (zh) * 2009-07-31 2010-01-06 武汉虹信通信技术有限责任公司 一种优化直放站平坦度指标的方法
CN101711053A (zh) * 2009-12-21 2010-05-19 中兴通讯股份有限公司 多载波闭环功率控制装置及方法
CN101815054A (zh) * 2010-04-06 2010-08-25 京信通信系统(中国)有限公司 数字通信系统及其改善信号带内平坦度的方法
CN103378870A (zh) * 2012-04-26 2013-10-30 启碁科技股份有限公司 通讯装置与射频均衡器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114143866A (zh) * 2020-09-04 2022-03-04 成都鼎桥通信技术有限公司 接收机上行链路的防饱和方法、设备及存储介质
CN114143866B (zh) * 2020-09-04 2023-08-15 成都鼎桥通信技术有限公司 接收机上行链路的防饱和方法、设备及存储介质

Also Published As

Publication number Publication date
CN106341356B (zh) 2020-01-21
CN106341356A (zh) 2017-01-18

Similar Documents

Publication Publication Date Title
US10341961B2 (en) Power control framework for multi-beam configuration
US9173217B2 (en) Base station calibration
CA3067081A1 (en) Transmit power determining method, processing chip, and communications device
FI102023B (fi) Menetelmä kuormitustavoitteen muodostamiseksi ja radiojärjestelmä
US9516516B2 (en) Path loss calculation method, path loss calculation device, path loss calculation program, wireless communication system, and spectrum manager
US9002289B2 (en) Wireless communication apparatus, wireless communication system, interference causing control method, storage medium and control apparatus
US9049603B2 (en) Wireless station, determination apparatus, wireless communication system, determination method, and storage medium
US9736696B2 (en) Antenna splitting method in active antenna system and controller
CN108650034A (zh) 一种射频设备的增益校准方法及装置
US11412476B2 (en) Offloading location computation from cloud to access point (AP) with projection on base phase vectors
US20230180143A1 (en) Adaptive path loss correction
JP2020502862A (ja) ビーム測定方法及び装置
WO2010069203A1 (zh) 多载波系统中功率定标的方法与系统
WO2016177161A1 (zh) 下行载波平坦度补偿方法及装置
KR102097713B1 (ko) 주파수 직각 진폭 변조를 사용하는 무선 통신 시스템에서 채널 품질 정보 피드백을 위한 방법 및 장치
RU2539355C2 (ru) Способ оценки качества сигнала в системах мобильной радиосвязи
CN109327852B (zh) 一种小区质量计算方法、参数配置方法及相关设备
US20190386731A1 (en) Scheduling method, base station, and terminal
US10135552B2 (en) Access point signal estimation
JP6812989B2 (ja) 通信負荷推定システム、情報処理装置、方法およびプログラム
CN114205201A (zh) 信号补偿方法、装置、中继设备、存储介质和程序产品
US7885343B2 (en) Device and method for clipping multicarrier signal
US20200128489A1 (en) Determine transmit power
CN112312533A (zh) 功率调整方法、装置、接入网设备和存储介质
CN114258095A (zh) 行动装置漫游方法、电子装置及计算机可读存储媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16789155

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16789155

Country of ref document: EP

Kind code of ref document: A1