WO2016177160A1 - 一种电磁带隙结构及印刷电路板 - Google Patents

一种电磁带隙结构及印刷电路板 Download PDF

Info

Publication number
WO2016177160A1
WO2016177160A1 PCT/CN2016/076932 CN2016076932W WO2016177160A1 WO 2016177160 A1 WO2016177160 A1 WO 2016177160A1 CN 2016076932 W CN2016076932 W CN 2016076932W WO 2016177160 A1 WO2016177160 A1 WO 2016177160A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic
band gap
layer
electromagnetic band
ebg
Prior art date
Application number
PCT/CN2016/076932
Other languages
English (en)
French (fr)
Inventor
李欢欢
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016177160A1 publication Critical patent/WO2016177160A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits

Definitions

  • the utility model relates to the technical field of circuit design, in particular to an electromagnetic band gap structure and a printed circuit board.
  • PCB printed circuit boards
  • a power supply system is usually formed by a pair of parallel metal plates as a power supply layer and a ground layer, and a DC power supply is provided for the active devices.
  • the power supply layer and the ground layer act as a large-capacity decoupling capacitor, but at higher frequencies, the power supply layer and the ground layer are equivalent to a parallel plate resonator, which in a sense is equivalent to a microwave. Patch antenna.
  • the high impedance generated during resonance causes large electromagnetic interference radiation, and also generates Synchronous Switching Noise (SSN), which affects signal integrity in high-speed digital circuits.
  • SSN Synchronous Switching Noise
  • the SSN refers to the fact that when a plurality of active devices on the PCB are simultaneously in a switching state, a transiently varying current generates an AC voltage drop when passing through an inductance existing in the return path, thereby causing noise, and the SSN generates signal integrity.
  • problems with electromagnetic compatibility In the future, the transmission rate is higher, the signal switching speed is faster, the power supply stability is higher, the integration is higher, and the PCB is increasingly miniaturized. In the design of the SSN problem will become more serious, so how to eliminate the synchronous switching noise in high-speed circuits has become an important problem that PCB designers must face and overcome.
  • 5G network is expected to be commercialized by 2020, and its peak rate will reach 10GHz, which is 100 times of the peak rate of 4G. Therefore, the PCB design of 5G terminal products, such as smart phones and data cards, is bound to solve the problem of complete signal such as synchronous switching noise. Sexual and electromagnetic compatibility issues.
  • the most influential factor on the high-frequency characteristics of the capacitor is the parasitic inductance L s and the parasitic resistance R s .
  • the impedance Z c of the capacitor and the resonant frequency f R are:
  • a small-sized capacitor has a small inductance value and a small capacitance value, so its resonant frequency is high, which is often used for high-frequency decoupling; a larger-sized capacitor can provide a larger current, and its capacitance is larger.
  • the resonant frequency is low and can only be used as low frequency decoupling.
  • multiple small capacitors are usually used in parallel to increase the capacitance and reduce the equivalent series resistance. (ESR, Equivalent Series Resistance) and equivalent series inductance (ESL, Equivalent Series Inductance).
  • the equivalent capacitor C becomes nC
  • ESL becomes L/n
  • ESR becomes R/n
  • the power plane and the ground plane pair are themselves equivalent capacitors, so they also resonate in parallel with the inductive capacitors at a certain frequency.
  • the decoupling capacitor exhibits a low impedance near the resonant frequency, which provides a shorter path for the return current, thereby suppressing the propagation of the SSN to some extent.
  • the range of the capacitor is very limited.
  • the parasitic inductance will self-resonate with the capacitor, limiting the frequency bandwidth, so the bypass of the decoupling capacitor is adopted.
  • Technology cannot effectively solve the problem of high frequency synchronous switching noise.
  • embodiments of the present invention are expected to provide an electromagnetic bandgap structure and a printed circuit board capable of effectively suppressing synchronous switching noise in a continuous ultra-wide frequency range.
  • the embodiment of the present invention provides an electromagnetic band gap structure, the electromagnetic band gap structure includes: a non-conductive substrate, a metal plate covering the upper and lower surfaces of the non-conductive substrate, embedded in the non-conductive substrate between the two metal plates a first electromagnetic band gap EBG layer and a second electromagnetic band gap EBG layer;
  • first electromagnetic bandgap EBG layer is formed by periodically laterally cascading two different sizes of electromagnetic bandgap elements
  • the second electromagnetic bandgap EBG layer is periodically laterally formed by two different sizes of electromagnetic bandgap elements. Cascade composition.
  • the non-conductive substrate material is an FR4 material.
  • the metal plates covering the upper and lower surfaces of the non-conductive substrate are respectively a power supply layer and a ground layer; the first electromagnetic band gap EBG layer is adjacent to the power supply layer, and the second electromagnetic band gap EBG layer and the ground layer are adjacent.
  • the size of the two different sized electromagnetic bandgap elements of the first electromagnetic bandgap EBG layer and the two different sized electromagnetic bandgap elements of the second electromagnetic bandgap EBG layer are not with.
  • the two electromagnetic bandgap elements of the first electromagnetic bandgap EBG layer are two different sizes of square metal patches, and the metal patches are connected to the ground layer through the metal vias at the center.
  • the two electromagnetic band gap elements of the second electromagnetic band gap EBG layer are respectively square and rectangular metal patches of different sizes, and the metal patches are connected at the center through the metal vias and the power layer.
  • An embodiment of the present invention also provides a printed circuit board comprising the electromagnetic bandgap structure of any of the above.
  • the electromagnetic band gap structure provided by the embodiment of the present invention includes: a non-conductive substrate, a metal plate covering the upper and lower surfaces of the non-conductive substrate, and a first electromagnetic band gap (EBG) layer embedded in the middle of the two metal plates and a second electromagnetic band gap EBG layer; wherein the first electromagnetic band gap EBG layer is formed by periodically laterally cascading two different sizes of electromagnetic band gap elements, the second electromagnetic band gap EBG layer being composed of two different sizes
  • the electromagnetic bandgap elements are periodically and laterally cascaded; the first electromagnetic bandgap EBG layer and the second EBG are longitudinally graded.
  • Figure 1 is a simplified schematic diagram of a capacitor
  • FIG. 2 is a side view showing an electromagnetic band gap structure according to an embodiment of the present invention.
  • FIG. 3 is a top plan view showing a structure of a first electromagnetic band gap EBG layer according to an embodiment of the present invention
  • FIG. 4 is a top plan view showing a structure of a second electromagnetic band gap EBG layer according to an embodiment of the present invention.
  • FIG. 5 is a first electromagnetic band gap EBG layer and a second electromagnetic band gap EBG according to an embodiment of the present invention; a schematic view of the vertical cascading structure of the layer;
  • FIG. 6 is a schematic diagram of a simulation curve of an S21 of a test port according to an embodiment of the present invention.
  • Figure 7 is a schematic view showing the structure of a printed circuit board according to an embodiment of the present invention.
  • the electromagnetic band gap structure includes: a non-conductive substrate, a metal plate covering the upper and lower surfaces of the non-conductive substrate, and a first electromagnetic band gap embedded in the non-conductive substrate between the two metal plates ( An EBG) layer and a second electromagnetic bandgap EBG layer; wherein the first electromagnetic bandgap EBG layer is formed by periodically laterally cascading two different sizes of electromagnetic bandgap elements, the second electromagnetic bandgap EBG layer consisting of Two different sizes of electromagnetic band gap elements are periodically and laterally cascaded; the first electromagnetic band gap EBG layer and the second EBG are longitudinally cascaded.
  • the EBG structure is a periodic structure having a band-resistance characteristic, and may be implanted into a matrix material by using materials such as metal, ferromagnetic or ferroelectric, or periodically arranged by a plurality of materials satisfying the requirements;
  • the EBG structure is periodically arranged by a metal patch.
  • an electromagnetic wave is incident on the EBG structure, an induced current is generated on the surface of the metal patch, and the current flows from a metal patch.
  • the inductor is formed by metal vias and ground to another metal patch; the charge is accumulated at the edge of the slit of the metal patch and between the patch and the ground to form a capacitance; therefore, the EBG structure described in the embodiment of the present invention can be equivalent Parallel network for capacitive inductors.
  • the impedance Z between the EBG structure and the ground plane tends to be infinite, forming a high-impedance plane, that is, when the frequency of the incident electromagnetic wave is at resonance When the frequency is near, the incident electromagnetic wave will be blocked by the high-resistance surface and cannot be propagated, thereby achieving the purpose of reducing the SSN.
  • the electromagnetic bandgap structure includes: a non-conductive substrate 21, and a gold covering the upper and lower sides of the non-conductive substrate. a slab 22, a first electromagnetic band gap EBG layer 23 and a second electromagnetic band gap EBG layer 24 embedded in the non-conductive substrate 21 between the two metal sheets 22, wherein
  • the first electromagnetic bandgap EBG layer 23 is periodically and laterally cascaded by two different sized electromagnetic bandgap elements 231 that are periodically laterally cascaded by two differently sized electromagnetic bandgap elements 241
  • the first electromagnetic band gap EBG layer 23 and the second EBG 24 are longitudinally cascaded.
  • the non-conductive substrate 21 material is FR4 material
  • the metal plates 22 covering the upper and lower surfaces of the non-conductive substrate 21 are respectively a power supply layer and a ground layer; the first electromagnetic band gap EBG layer 23 is adjacent to the power supply layer, and the second electromagnetic band gap is The EBG layer 24 is adjacent to the formation.
  • FIG. 3 is a top plan view of a first electromagnetic band gap EBG layer structure according to an embodiment of the present invention
  • FIG. 4 is a top view of a second electromagnetic band gap EBG layer structure according to an embodiment of the present invention, as shown in FIG. 2, FIG. 3 and FIG.
  • the two different sized electromagnetic bandgap elements 231 of the first electromagnetic bandgap EBG layer 23 are different in size from the two different sized electromagnetic bandgap elements 241 of the second electromagnetic bandgap EBG layer 24:
  • the two types of electromagnetic bandgap elements 231 of an electromagnetic bandgap EBG layer 23 are two different sizes of square metal patches 2311 and 2312 which are connected to the ground layer through metal vias 2313 at the center;
  • the two electromagnetic bandgap elements 241 of the second electromagnetic bandgap EBG layer 24 are respectively square and rectangular metal patches 2411 and 2412 of different sizes, the metal patches 2411 and 2412 passing through the metal vias 2413 at the center and
  • the power layers are connected.
  • the electromagnetic bandgap structure and its function according to the embodiment of the present invention are combined with actual data. Describe. In the embodiment of the present invention, only the following data is taken as an example. In practical applications, the components in the electromagnetic bandgap structure can be selected according to actual requirements.
  • the first electromagnetic band gap EBG layer 23 is formed by two horizontally cascading of two different sizes of square metal patches 2311 and 2312.
  • the metal patch 2311 has a size of 3.75 mm ⁇ 3.75 mm, and the metal patch The size of the 2312 is 1.75 mm x 1.75 mm, and the gap 232 between all the metal patches is 0.25 mm.
  • the center of each metal patch is connected to the ground through the metal via 2313.
  • the second electromagnetic band gap EBG layer is composed of two different sizes of metal patches 2411 and 2412 which are periodically arranged in a horizontal cascade.
  • the metal patch 2411 is a square patch unit having a size of 7.75 mm ⁇ 7.75 mm.
  • the metal patch 2412 is a rectangular patch unit having a size of 5.75 mm ⁇ 3.75 mm; all metal patch gaps are 0.25 mm, as shown in FIG. 2, each metal patch center passes through the metal via 2413 and the power layer. Connected.
  • FIG. 5 is a top plan view showing a longitudinal cascading structure of a first electromagnetic band gap EBG layer and a second electromagnetic band gap EBG layer according to an embodiment of the present invention.
  • the electromagnetic bandgap structure shown in FIG. 5 and FIG. 2 as an example, the suppression effect of the electromagnetic bandgap structure of the embodiment of the present invention on the synchronous switching noise is proved by simulation.
  • the size of the metal plate selected as the power layer and the ground layer is 40 mm ⁇ 32 mm, and the distance between the power supply layer and the ground layer is 0.7 mm.
  • the non-conductive substrate material filled between the power supply layer and the ground layer is a common FR4 material, and its relative dielectric constant. 4.4, the loss tangent is 0.02, the power layer and the ground layer remain continuous and intact, and the first electromagnetic band gap EBG layer and the second electromagnetic band gap EBG layer are embedded in the power layer and the ground layer FR4 material, wherein the first electromagnetic band gap EBG layer 0.1mm from the power supply layer, and the second electromagnetic band gap EBG layer is 0.1mm from the ground layer;
  • one test port P1 and P2 are respectively loaded, and the coordinates of the two test points and the origin are as shown in FIG. 5.
  • the simulation curve of S21 of the two test ports is shown in Figure 6.
  • the simulation curve shows that the stopband frequency range of the EBG structure is 1.3GHz ⁇ 23.5GHz, and the stopband bandwidth is about 22 GHz; because the distance between the two test ports is only 30 mm, the EBG structure described in the embodiment of the present invention can be applied to a miniaturized PCB.
  • the stop band generated by the cascading of the larger size metal patch is located in the low frequency range
  • the stop band generated by the cascading of the smaller size metal patch is located in the high frequency range
  • the electromagnetic bandgap structure of the embodiment of the present invention can ensure the power layer and the ground layer.
  • the synchronous switching noise is suppressed in the continuous ultra-wideband stopband range of about 22 GHz, the suppression depth is below -40 dB, and it is easy to implement on a miniaturized PCB, and can be combined with the existing printed circuit board.
  • the process is compatible, easy to implement, low in cost, high in efficiency, and can be applied to PCB design of terminal products (such as 5G terminal products) with higher performance requirements in terms of speed and the like in the future, and improves the overall performance index of the product.
  • the above description is only one embodiment of the present invention, and does not limit the scope of protection of the present invention.
  • the electromagnetic band gap structure of the three-dimensional cascade described in the embodiments of the present invention is within the spirit and principle of the present invention. , including EBG structure patch shape (such as polygon, circle, etc.), patch size, gap between patch units, number of different patch units per layer EBG structure (such as two or more), substrate medium Any simple modifications, equivalent substitutions, improvements, etc. made in materials and the like shall be included in the scope of protection of the present invention.
  • FIG. 7 is a schematic structural view of a printed circuit board according to an embodiment of the present invention.
  • the printed circuit board includes any of the electromagnetic band gap structures of FIGS. 2 to 6.
  • the PCB board of the embodiment of the present invention is described in detail below with reference to the embodiments.
  • the PCB board includes: a signal layer 71, a ground layer 72, an EBG structure 73, a signal layer 74, a ground layer 75, and a signal layer 76.
  • the formation layer 77, the signal layer 78, and the bottom layer 79 are filled with a suitable non-conductive substrate material between each layer, such as a common FR4 or a high dielectric constant ceramic dielectric material, etc.
  • the size of the body and the distance between the layers are determined according to the product requirements and the level of the PCB manufacturing process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Structure Of Printed Boards (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

公开了一种电磁带隙结构,包括:非导电基板(21)、覆盖于非导电基板(21)上下两面的金属板(22),嵌入在两层金属板(22)中间的第一电磁带隙层(23)和第二电磁带隙层(24);其中,第一电磁带隙层(23)由两种不同尺寸的电磁带隙元件(2311,2312)周期性横向级联构成,第二电磁带隙层(24)由两种不同尺寸的电磁带隙元件(2411,2412)周期性横向级联构成;第一电磁带隙层(23)和第二电磁带隙层(24)进行纵向级联。此外,还公开了一种包括前述电磁带隙结构的印刷电路板。

Description

一种电磁带隙结构及印刷电路板 技术领域
本实用新型涉及电路设计技术领域,特别涉及一种电磁带隙结构及印刷电路板。
背景技术
在高速数字电路系统中,随着系统时钟和信号传输速率的提高,信号切换速度越来越快,数字IC规模不断扩大,印刷电路板(PCB,Printed Circuit Board)的元件数量和布线密度均急剧增加,以至于PCB的电磁效应已不能忽略。另外,随着数字系统向低功耗方向的发展,对供电系统的稳定性要求也越来越高。目前集成电路晶体管尺寸已小至50nm,供电电压低至0.6V,未来晶片的频率将走向10GHz时代。当前,PCB已成为一个高性能的系统,而不像以往设计,只是将其作为支撑电子元器件的平台。
在多层PCB中,通常是由作为电源层和地层的一对平行金属平板来构成供电系统,为有源器件提供直流电源。当频率很低时,电源层和地层起到了一个大容量去耦电容器的作用,但在频率较高时,电源层和地层相当于一个平行平板谐振器,在某种意义上也相当于一个微波贴片天线。谐振时产生的高阻抗,会导致较大的电磁干扰辐射,同时也会产生同步开关噪声(SSN,Simultaneous Switching Noise),影响高速数字电路中的信号完整性。
所述SSN是指PCB上的多个有源器件同时处于开关状态时,产生的瞬间变化的电流在经过回流路径上存在的电感时形成交流压降,从而引起的噪声,SSN会产生信号完整性与电磁兼容等问题。在未来传输速率更高、信号切换速度更快、供电平稳性要求更高、集成度更高和PCB日益小型化 的设计中,SSN问题会变得更为严重,因此如何消除高速电路中的同步开关噪声已成为PCB设计人员必须要面对和攻克的一个重要难题。
5G网络预计在2020年实现商用,其峰值速率将达到10GHz,是4G峰值速率的100倍,因此5G终端产品,如智能手机、数据卡类等,的PCB设计势必需要解决同步开关噪声等信号完整性和电磁兼容问题。
现有技术中,为了抑制SSN,已经提出了很多方案,如在电源与地平面之间增加去耦电容器,但是,在频率很高时,电容不能再被当作理想的电容看待,电容的寄生参数的影响不能再被忽略,考虑到电容具有一定的物理尺寸,以及起连接作用的安装焊盘和过孔,其寄生参数包括一个等效串联电感和一个等效串联电阻,电容的简化模型如图1所示;
对电容的高频特性影响最大的是寄生电感Ls和寄生电阻Rs,由图1可知电容的阻抗Zc和谐振频率fR为:
Figure PCTCN2016076932-appb-000001
Figure PCTCN2016076932-appb-000002
由上述公式可知,电容器在谐振频率以下时,表现为容性;而在谐振频率以上时,表现为感性,感性情况下,电容器的去耦作用逐渐减弱;电容器的等效阻抗随着频率的增加先减小后增大,当处于串联谐振频率时,等效阻抗达到最小值Rs。由于电容在谐振点的阻抗最低,所以设计时尽量选用fR和实际工作频率相近的电容。
一般情况下,尺寸小的电容器电感值较小,容值也小,因而其谐振频率较高,常用于高频去耦;尺寸较大的电容器,能提供较大的电流,其容值较大,谐振频率较低,只能用作低频去耦;为了得到较大的容值和较高的谐振频率,通常会把多个小电容并联使用,用来增大容值,降低等效串联电阻(ESR,Equivalent Series Resistance)和等效串联电感(ESL,Equivalent  Series Inductance)。n个相同的电容并联后,等效电容C变为nC,ESL变为L/n,ESR变为R/n,但谐振频率不变。电源层和地层平面对本身就是一个等效的电容,所以它也会和在一定频率下呈感性的电容发生并联谐振。去耦电容在谐振频率附近处呈现低阻抗,可以为返回电流提供更短的路径,从而在一定程度上抑制SSN的传播。
但是,由于去耦电容封装本身的寄生电感,使得电容的作用范围十分有限,当工作频率高于600MHz时,寄生电感会与电容器产生自谐振,限制了频率带宽,因此采用去耦电容器的旁路技术不能有效地解决高频同步开关噪声问题。
实用新型内容
有鉴于此,本实用新型实施例期望提供一种电磁带隙结构及印刷电路板,能够实现在连续超宽频段范围内对同步开关噪声的有效抑制。
为达到上述目的,本实用新型实施例的技术方案是这样实现的:
本实用新型实施例提供了一种电磁带隙结构,所述电磁带隙结构包括:非导电基板、覆盖于非导电基板上下两面的金属板,嵌入在两层金属板中间的非导电基板中的第一电磁带隙EBG层和第二电磁带隙EBG层;
其中,所述第一电磁带隙EBG层由两种不同尺寸的电磁带隙元件周期性横向级联构成,所述第二电磁带隙EBG层由两种不同尺寸的电磁带隙元件周期性横向级联构成。
上述方案中,所述非导电基板材料为FR4材料。
上述方案中,所述覆盖于非导电基板上下两面的金属板分别为电源层和地层;所述第一电磁带隙EBG层与电源层相邻,所述第二电磁带隙EBG层与地层相邻。
上述方案中,所述第一电磁带隙EBG层的两种不同尺寸的电磁带隙元件与所述第二电磁带隙EBG层的两种不同尺寸的电磁带隙元件的尺寸不 同。
上述方案中,所述第一电磁带隙EBG层的两种电磁带隙元件为两种不同尺寸的正方形金属贴片,所述金属贴片在中心处通过金属过孔和地层相连。
上述方案中,所述的第二电磁带隙EBG层的两种电磁带隙元件分别为不同尺寸的正方形和长方形金属贴片,所述金属贴片在中心处通过金属过孔和电源层相连。
上述方案中,所述金属贴片之间有间隙。
本实用新型实施例还提供了一种印刷电路板,所述印刷电路板包括上述任一项所述电磁带隙结构。
本实用新型实施例提供的电磁带隙结构包括:非导电基板、覆盖于非导电基板上下两面的金属板,嵌入在两层金属板中间的第一电磁带隙(EBG,Electromagnetic Band Gap)层和第二电磁带隙EBG层;其中,所述第一电磁带隙EBG层由两种不同尺寸的电磁带隙元件周期性横向级联构成,所述第二电磁带隙EBG层由两种不同尺寸的电磁带隙元件周期性横向级联构成;所述第一电磁带隙EBG层和第二EBG进行纵向级。如此,采用现有常规PCB制造工艺,通过在电源层和地层之间引入两层电磁带隙结构,在保持电源层和地层均完整的情况下,实现了连续超宽频段范围内对同步开关噪声的有效抑制,易于实现,降低了设计成本。
附图说明
图1为电容的简化模型示意图;
图2为本实用新型实施例电磁带隙结构侧视示意图;
图3为本实用新型实施例第一电磁带隙EBG层结构俯视示意图;
图4为本实用新型实施例第二电磁带隙EBG层结构俯视示意图;
图5为本实用新型实施例第一电磁带隙EBG层和第二电磁带隙EBG 层纵向级联结构俯视示意图;
图6为本实用新型实施例测试端口的S21的仿真曲线示意图;
图7为本实用新型实施例印刷电路板结构示意图。
具体实施方式
在本实用新型实施例中,所述电磁带隙结构包括:非导电基板、覆盖于非导电基板上下两面的金属板,嵌入在两层金属板中间的非导电基板中的第一电磁带隙(EBG)层和第二电磁带隙EBG层;其中,所述第一电磁带隙EBG层由两种不同尺寸的电磁带隙元件周期性横向级联构成,所述第二电磁带隙EBG层由两种不同尺寸的电磁带隙元件周期性横向级联构成;所述第一电磁带隙EBG层和第二EBG进行纵向级联。
本实用新型实施例中,EBG结构是具有带阻特性的周期性结构,可以采用金属、铁磁或铁电等材料植入基质材料,或者由多种符合要求的材料周期性排列而成;本实用新型实施例中,以金属贴片为例,所述EBG结构通过金属贴片周期性排列而成,当电磁波入射到EBG结构时,金属贴片表面会产生感应电流,电流从一个金属贴片通过金属过孔和地面流到另一个金属贴片,形成电感;电荷在金属贴片窄缝的边缘以及贴片和地面之间积累形成电容;所以本实用新型实施例所述EBG结构可以等效为电容电感并联网络。当入射电磁波的频率等于所述等效网络即EBG结构的谐振频率时,EBG结构和地平面之间的阻抗Z趋于无限大,形成了高阻抗平面,也就是说当入射电磁波的频率在谐振频率附近时,所述入射电磁波将被高阻表面阻挡而不能传播,从而达到降低SSN的目的。
下面结合附图及实施例,对本实用新型实施例电磁带隙结构进行详细的说明。
图2为本实用新型实施例电磁带隙结构侧视结构示意图,本实施例中,所述电磁带隙结构包括:非导电基板21、覆盖于非导电基板上下两面的金 属板22、嵌入在两层金属板22中间的非导电基板21中的第一电磁带隙EBG层23和第二电磁带隙EBG层24,其中,
所述第一电磁带隙EBG层23由两种不同尺寸的电磁带隙元件231周期性横向级联构成,所述第二EBG24层由两种不同尺寸的电磁带隙元件241周期性横向级联构成;所述第一电磁带隙EBG层23和第二EBG24进行纵向级联。
本实用新型实施例中,所述非导电基板21材料为FR4材料;
如图2所示,所述覆盖于非导电基板21上下两面的金属板22分别为电源层和地层;所述第一电磁带隙EBG层23与电源层相邻,所述第二电磁带隙EBG层24与地层相邻。
图3为本实用新型实施例第一电磁带隙EBG层结构俯视示意图,图4为本实用新型实施例第二电磁带隙EBG层结构俯视示意图,如图2、图3和图4所示,所述第一电磁带隙EBG层23的两种不同尺寸的电磁带隙元件231与所述第二电磁带隙EBG层24的两种不同尺寸的电磁带隙元件241的尺寸不同:所述第一电磁带隙EBG层23的两种电磁带隙元件231为两种不同尺寸的正方形金属贴片2311和2312,所述金属贴片2311和2312在中心处通过金属过孔2313和地层相连;所述的第二电磁带隙EBG层24的两种电磁带隙元件241分别为不同尺寸的正方形和长方形金属贴片2411和2412,所述金属贴片2411和2412在中心处通过金属过孔2413和电源层相连。所述第一电磁带隙EBG层23和所述第二电磁带隙EBG层24的电磁带隙元件(231、241)之间有间隙232和242。
由于不同尺寸的金属贴片级联产生的阻带的频段范围不同,因此,可以通过选择合适的基板材料和金属贴片尺寸,可实现连续宽频段范围内的阻带效果,从而达到对同步开关噪声更好的抑制。
下面结合实际数据,对本实用新型实施例所述电磁带隙结构及其功能 进行描述。本实用新型实施例中,仅仅是以下述数据为例,实际应用中,所述电磁带隙结构中的元件可以根据实际需求选取符合要求的尺寸。
如图3所示,第一电磁带隙EBG层23由两种不同尺寸的正方形金属贴片2311和2312周期性排列横向级联构成,金属贴片2311尺寸为3.75mm×3.75mm,金属贴片2312尺寸为1.75mm×1.75mm,所有金属贴片之间的间隙232均为0.25mm,如图2所示,每个金属贴片中心通过金属过孔2313和地层相连。如图4所示,第二电磁带隙EBG层由两种不同尺寸的金属贴片2411和2412周期性排列横向级联构成,金属贴片2411为正方形贴片单元,尺寸为7.75mm×7.75mm,金属贴片2412为长方形贴片单元,其尺寸为5.75mm×3.75mm;所有金属贴片间隙均为0.25mm,如图2所示,每个金属贴片中心通过金属过孔2413和电源层相连。
图5为本实用新型实施例第一电磁带隙EBG层和第二电磁带隙EBG层纵向级联结构俯视示意图。以图5和图2所述电磁带隙结构为例,通过仿真,证明本实用新型实施例所述电磁带隙结构对同步开关噪声的抑制效果。
选择作为电源层和地层的金属板的尺寸均为40mm×32mm,电源层和地层的距离为0.7mm,电源层和地层之间填充的非导电基板材料为常见的FR4材料,其相对介电常数为4.4,损耗角正切为0.02,电源层和地层保持连续完整,第一电磁带隙EBG层和第二电磁带隙EBG层嵌入到电源层和地层FR4材料中,其中第一电磁带隙EBG层距电源层为0.1mm,第二电磁带隙EBG层距地层为0.1mm;
在坐标为(4mm,8mm),(34mm,8mm)的位置处,分别加载1个测试端口P1和P2,这两个测试点和原点的坐标如图5所示。两个测试端口的S21的仿真曲线示意图如图6所示:抑制深度为-40dB时,由仿真曲线可知,所述EBG结构的阻带频段范围为1.3GHz~23.5GHz,阻带带宽大约为 22GHz;因为两个测试端口的距离仅有30mm,因此,本实用新型实施例所述EBG结构可以应用于小型化的PCB上。
本实用新型实施例所述电磁带隙结构,由于较大尺寸的金属贴片级联产生的阻带位于低频率范围,较小尺寸的金属贴片级联产生的阻带位于高频率范围,通过选择合适的金属贴片的尺寸和基板介质材料,可以获得连续频段内的超宽带阻带带宽;由以上实例可以看出,本实用新型实施例所述电磁带隙结构可以在保证电源层和地层完整的情况下,实现了在大约22GHz的连续超宽带阻带范围内对同步开关噪声的抑制,抑制深度达到-40dB以下,且便于在小型化PCB上实现,能够与现有的印制电路板工艺兼容,易实现,成本低,效益高,可应用在未来对速率等方面性能要求更高的终端产品(如5G终端产品)的PCB设计中,提高产品的整体性能指标。
以上所述仅为本实用新型的一个实施例,并不限定本实用新型的保护范围,凡在本实用新型的精神和原则之内,对本实用新型实施例所述三维级联的电磁带隙结构,包括EBG结构贴片形状(如多边形、圆形等)、贴片尺寸、贴片单元之间的间隙、每层EBG结构的不同贴片单元的数量(如两种或更多)、基板介质材料等方面所作的任何简单修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。
本实用新型实施例还提供了一种印刷电路板,图7为本实用新型实施例印刷电路板结构示意图,所述印刷电路板包括图2至图6任一种电磁带隙结构。
下面结合实施例,对本实用新型实施例PCB板进行详细描述,如图7所示,所述PCB板包括:信号层71、地层72、EBG结构73、信号层74、地层75、信号层76、地层77、信号层78、底层79,每层之间填充合适的非导电基板材料,如常见的FR4或高介电常数的陶瓷介质材料等,PCB自 身的尺寸大小以及板层之间的距离依据产品需求和PCB制作工艺水平确定,通过选择EBG结构73内部元件的参数,可抑制高速PCB板上内部产生的同步开关噪声,从而保证PCB板的整体性能指标。
虽然本实用新型以一种较佳的实施例揭露如上,然而并非限定本实用新型,在不背离本实用新型实质的情况下,可以对本实用新型做出各种相应的改变和变形,这些改变和变形都属于本实用新型的权利要求保护范围。
以上所述,仅为本实用新型的较佳实施例而已,并非用于限定本实用新型的保护范围。

Claims (8)

  1. 一种电磁带隙结构,所述电磁带隙结构包括:非导电基板、覆盖于非导电基板上下两面的金属板,嵌入在两层金属板中间的非导电基板中的第一电磁带隙EBG层和第二电磁带隙EBG层;
    其中,所述第一电磁带隙EBG层由两种不同尺寸的电磁带隙元件周期性横向级联构成,所述第二电磁带隙EBG层由两种不同尺寸的电磁带隙元件周期性横向级联构成。
  2. 根据权利要求1所述电磁带隙结构,其中,所述非导电基板材料为FR4材料。
  3. 根据权利要求1所述电磁带隙结构,其中,所述覆盖于非导电基板上下两面的金属板分别为电源层和地层;所述第一电磁带隙EBG层与电源层相邻,所述第二电磁带隙EBG层与地层相邻。
  4. 根据权利要求3所述电磁带隙结构,其中,所述第一电磁带隙EBG层的两种不同尺寸的电磁带隙元件与所述第二电磁带隙EBG层的两种不同尺寸的电磁带隙元件的尺寸不同。
  5. 根据权利要求4所述电磁带隙结构,其中,所述第一电磁带隙EBG层的两种电磁带隙元件为两种不同尺寸的正方形金属贴片,所述金属贴片在中心处通过金属过孔和地层相连。
  6. 根据权利要求4所述电磁带隙结构,其中,所述的第二电磁带隙EBG层的两种电磁带隙元件分别为不同尺寸的正方形和长方形金属贴片,所述金属贴片在中心处通过金属过孔和电源层相连。
  7. 根据权利要求5或6所述电磁带隙结构,其中,所述金属贴片之间有间隙。
  8. 一种印刷电路板,所述印刷电路板包括权利要求1至6任一项所述电磁带隙结构。
PCT/CN2016/076932 2015-07-20 2016-03-21 一种电磁带隙结构及印刷电路板 WO2016177160A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201520528281.8U CN205071428U (zh) 2015-07-20 2015-07-20 一种电磁带隙结构及印刷电路板
CN201520528281.8 2015-07-20

Publications (1)

Publication Number Publication Date
WO2016177160A1 true WO2016177160A1 (zh) 2016-11-10

Family

ID=55397924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/076932 WO2016177160A1 (zh) 2015-07-20 2016-03-21 一种电磁带隙结构及印刷电路板

Country Status (2)

Country Link
CN (1) CN205071428U (zh)
WO (1) WO2016177160A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110364799A (zh) * 2019-07-15 2019-10-22 云南大学 双脊集成基片间隙波导
CN110648999A (zh) * 2018-06-26 2020-01-03 爱思开海力士有限公司 具有电磁带隙结构的封装基板以及采用其的半导体封装
CN113194599A (zh) * 2021-04-23 2021-07-30 四川九洲电器集团有限责任公司 一种基于多功能复合基板的一体化集成方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205071428U (zh) * 2015-07-20 2016-03-02 西安中兴新软件有限责任公司 一种电磁带隙结构及印刷电路板
CN106602255A (zh) * 2016-11-17 2017-04-26 中国人民解放军空军工程大学 小型单平面单馈全向圆极化天线及其设计方法
KR101866902B1 (ko) * 2017-03-07 2018-06-14 재단법인 파동에너지 극한제어 연구단 복합 물성을 갖는 메타 구조체 및 이를 이용한 장치
EP3570375A1 (en) * 2018-05-14 2019-11-20 Paris Sciences et Lettres - Quartier Latin Reconfigurable antenna assembly having a metasurface of metasurfaces
CN110177160A (zh) * 2019-05-31 2019-08-27 Oppo广东移动通信有限公司 可折叠壳体组件及可折叠电子设备
CN110232868B (zh) * 2019-05-31 2022-01-25 Oppo广东移动通信有限公司 壳体、壳体组件和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1201363A (zh) * 1997-05-19 1998-12-09 日本电气株式会社 降低由印刷电路板辐射的电磁噪音
US20060050010A1 (en) * 2004-09-08 2006-03-09 Jinwoo Choi Electromagnetic bandgap structure for isolation in mixed-signal systems
CN101610636A (zh) * 2008-01-21 2009-12-23 三星电机株式会社 电磁带隙结构及印刷电路板
CN102316670A (zh) * 2011-07-22 2012-01-11 西安电子科技大学 具有多周期平面电磁带隙的电路板
CN205071428U (zh) * 2015-07-20 2016-03-02 西安中兴新软件有限责任公司 一种电磁带隙结构及印刷电路板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1201363A (zh) * 1997-05-19 1998-12-09 日本电气株式会社 降低由印刷电路板辐射的电磁噪音
US20060050010A1 (en) * 2004-09-08 2006-03-09 Jinwoo Choi Electromagnetic bandgap structure for isolation in mixed-signal systems
CN101610636A (zh) * 2008-01-21 2009-12-23 三星电机株式会社 电磁带隙结构及印刷电路板
CN102316670A (zh) * 2011-07-22 2012-01-11 西安电子科技大学 具有多周期平面电磁带隙的电路板
CN205071428U (zh) * 2015-07-20 2016-03-02 西安中兴新软件有限责任公司 一种电磁带隙结构及印刷电路板

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110648999A (zh) * 2018-06-26 2020-01-03 爱思开海力士有限公司 具有电磁带隙结构的封装基板以及采用其的半导体封装
CN110648999B (zh) * 2018-06-26 2022-11-15 爱思开海力士有限公司 具有电磁带隙结构的封装基板以及采用其的半导体封装
TWI816784B (zh) * 2018-06-26 2023-10-01 南韓商愛思開海力士有限公司 具有電磁帶隙結構的封裝基板和使用此封裝基板的半導體封裝
CN110364799A (zh) * 2019-07-15 2019-10-22 云南大学 双脊集成基片间隙波导
CN113194599A (zh) * 2021-04-23 2021-07-30 四川九洲电器集团有限责任公司 一种基于多功能复合基板的一体化集成方法

Also Published As

Publication number Publication date
CN205071428U (zh) 2016-03-02

Similar Documents

Publication Publication Date Title
WO2016177160A1 (zh) 一种电磁带隙结构及印刷电路板
EP3005557A1 (en) Vector inductor having multiple mutually coupled metalization layers providing high quality factor
WO2008054324A1 (en) Double-stacked ebg structure
Joo et al. A $ S $-Bridged Inductive Electromagnetic Bandgap Power Plane for Suppression of Ground Bounce Noise
KR101018796B1 (ko) 전자기 밴드갭 구조물 및 회로 기판
KR101018807B1 (ko) 전자기 밴드갭 구조물 및 회로 기판
CN103401077A (zh) 一种基于交指电容的小型化人工磁导体及应用
KR101018785B1 (ko) 전자기 밴드갭 구조물 및 회로 기판
CN102395245B (zh) 具有低频同时开关噪声抑制作用的u型电磁带隙电路板
Bansode et al. Simultaneous switching noise reduction in high speed circuits
CN105517318A (zh) 基于开环谐振器与x型桥的电源ebg结构
KR20120019634A (ko) 광대역 노이즈를 억제하는 전자기 밴드갭 구조
US6709977B2 (en) Integrated circuit having oversized components and method of manafacture thereof
Arghiani Simultaneous switching noise (SSN) suppression with a new Embedded Uniplanar Compact Electromagnetic Bandgap (EUCEBG) structure
Shen et al. Miniaturized and bandwidth-enhanced multilayer 1-D EBG structure for power noise suppression
CN103997200A (zh) 一种基于平面c-型桥电磁带隙结构的电源分配网络
CN111324995A (zh) 一种基于LTCC的1GHz低通滤波器及设计方法
Tereshchenko et al. Wide-band segmented power distribution networks
Shen et al. Compact hybrid open stub EBG structure for power noise suppression in WLAN band
Kim et al. Compact electromagnetic band gap structure for wideband noise suppression in multilayer PCB
Chen et al. Planar EBG structure for broadband suppression of simultaneous switching noise
KR20100055252A (ko) 이종 주기 형태의 전자기 밴드갭 구조물
Yingbo et al. A miniaturized multi-layer lowpass filter for microwave application
Scogna et al. Parallel-plate noise suppression using a ground surface perturbation lattice (GSPL) structure
Wang et al. Novel coplanar EBG low pass filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16789154

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16789154

Country of ref document: EP

Kind code of ref document: A1