WO2016176855A1 - 血流成像方法及系统 - Google Patents

血流成像方法及系统 Download PDF

Info

Publication number
WO2016176855A1
WO2016176855A1 PCT/CN2015/078449 CN2015078449W WO2016176855A1 WO 2016176855 A1 WO2016176855 A1 WO 2016176855A1 CN 2015078449 W CN2015078449 W CN 2015078449W WO 2016176855 A1 WO2016176855 A1 WO 2016176855A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood flow
ultrasound image
ultrasound
flow imaging
image
Prior art date
Application number
PCT/CN2015/078449
Other languages
English (en)
French (fr)
Inventor
沈莹莹
李雷
思罗尔⋅詹姆士⋅帕特里克
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to PCT/CN2015/078449 priority Critical patent/WO2016176855A1/zh
Priority to CN201910980657.1A priority patent/CN110801246B/zh
Priority to CN201580009018.0A priority patent/CN106028947B/zh
Publication of WO2016176855A1 publication Critical patent/WO2016176855A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves

Definitions

  • the invention relates to the field of medical detection, and in particular to a blood flow imaging method and system.
  • Ultrasound uses the Doppler effect to detect the motion information of blood flow or tissue in the human body in real time, which is an irreplaceable inspection method.
  • the probe sends an ultrasonic beam to the target part of the human body, and if the blood flow or the velocity component of the tissue in the human body is detected in the beam moving direction, the motion information can be extracted from the echo. And display it in the form of image or spectrum.
  • the angle between the direction of emission of the ultrasound beam and the velocity of blood flow or tissue determines the relationship between the resulting motion information and the actual blood flow or tissue velocity.
  • the doctor will change the Doppler blood flow imaging parameters such as the emission direction of the ultrasonic beam to obtain the signal with the best sensitivity and richer content.
  • Doppler blood flow imaging parameters include ultrasonic beam emission direction, ROI (region of interest) position, Doppler sampling line position, width of sampled SV (sample volume), and more The blood flow calibration angle in the sampling valve SV of the Puller. Adjustment of these parameters is more common in the use of line array probes.
  • doctors need to adjust the control of the Doppler blood flow imaging parameters according to the different targets. For example, moving the position of the sampling frame to the position where the target blood flow information is displayed completely, adjusting the angle of the ultrasonic beam to make the blood flow information more abundant and sensitive, moving the position of the sampling door to the part with rich blood flow information, adjusting the width of the sampling door, and manually adjusting The blood flow angle correction line makes the obtained Doppler spectrum signal signal to noise ratio higher. For the doctor, each time a target is replaced, the parameters need to be reset. Frequent adjustments increase the workload of the doctor.
  • Embodiments of the present invention provide a blood flow imaging method and system, and realize quick setting of blood flow imaging parameters
  • the imaging display is used to improve the efficiency of blood flow imaging detection.
  • a blood flow imaging method comprising the following steps,
  • An ultrasound image obtained from the adjusted blood flow imaging parameters is displayed.
  • the activation trigger signal is generated every predetermined time, every predetermined frame of ultrasound image generation or when the user manually adjusts one or more of the blood flow imaging parameters.
  • calculating a difference factor for indicating a difference between the first ultrasound image and the second ultrasound image according to the first ultrasound image and the second ultrasound image further comprising the steps of:
  • the difference factor is calculated based on the first selected area and the second selected area.
  • calculating a difference factor for indicating a difference between the first ultrasound image and the second ultrasound image according to the first ultrasound image and the second ultrasound image comprises:
  • the difference factor is obtained according to the correlation coefficient, the gradation difference value, and/or the mean value difference.
  • calculating the difference factor according to the first selected area and the second selected area includes:
  • the difference factor is obtained according to the correlation coefficient, the gradation difference value, and/or the mean value difference.
  • the first selected area includes an image area corresponding to the Doppler sampling frame in the first ultrasound image; and the second selected area includes a Doppler sampling frame in the second ultrasound image Corresponding image area.
  • the preset condition is that the difference factor is greater than or less than a preset first threshold.
  • the method further comprises: comparing the adjusted blood flow imaging parameters and the blood flow imaging parameters before the adjustment, when the adjusted blood flow imaging parameters and the blood flow imaging before the adjustment When the difference between the parameters is less than the preset second threshold, the adjusted blood flow imaging parameters are discarded.
  • the blood flow imaging parameters include: an emission direction of the ultrasonic wave, a position of a Doppler sampling frame, an angle of a Doppler sampling frame, a position of a Doppler sampling line, a position of a Doppler sampling gate, The angle of the Doppler sampling gate, the width of the Doppler sampling gate, and/or the blood flow calibration angle within the Doppler sampling gate.
  • the first ultrasound image includes a first B-type image
  • the second ultrasound image includes a second B-type image
  • the first ultrasound image includes a first color blood flow image
  • the second ultrasound image includes a second color blood flow image
  • the first ultrasound image includes a first B-type image and a first color blood flow image
  • the second ultrasound image includes a second B-type image and a second color blood flow image
  • adjusting at least one of the blood flow imaging parameters includes:
  • At least one of the blood flow imaging parameters is adjusted based on the target blood flow.
  • the data information includes a blood flow centerline of blood flow, a blood flow velocity, a blood flow radius, and a blood flow length.
  • a blood flow imaging method comprising:
  • An ultrasound image is obtained by transmitting ultrasound waves according to the adjusted blood flow imaging parameters and receiving ultrasound echoes.
  • a blood flow imaging system comprising:
  • An ultrasonic probe for transmitting ultrasonic waves to a target area and receiving echo data of the ultrasonic waves
  • a signal processing module configured to receive echo data of the ultrasonic wave to obtain an ultrasound image, where the ultrasound image includes a first ultrasound image acquired at a first moment and a second ultrasound image acquired at a second moment;
  • a comparison module configured to receive the first ultrasound image and the second ultrasound image, and calculate, according to the first ultrasound image and the second ultrasound image, the first ultrasound image and the first a difference factor between the differences between the two ultrasound images;
  • An adjustment module configured to receive the difference factor, and adjust a blood flow imaging parameter according to the difference factor
  • control module configured to receive the blood flow imaging parameter and control the transmitting and receiving module of the ultrasonic probe to send the ultrasonic wave
  • a display module configured to generate and display the first ultrasound image and the second ultrasound image according to the signal processing module.
  • the signal processing module includes a B-type signal processing unit and a Doppler signal processing unit, and the B-type signal processing unit is configured to process a B-type image in the ultrasound image; the Doppler signal processing unit For processing an ultrasound image in the ultrasound image.
  • the invention analyzes and obtains the ultrasonic image obtained, automatically extracts the motion information of the blood flow, obtains and compares the difference factor, and starts the setting of the blood flow forming parameter as needed, thereby improving the setting efficiency and the accuracy rate.
  • FIG. 1 is a schematic flow chart of a blood flow imaging method according to a first embodiment of the present invention
  • FIG. 2 is a schematic diagram of blood flow center line extraction of the blood flow imaging method of the present invention.
  • FIG. 3 is a schematic diagram of a blood flow imaging method of the present invention for selecting a target blood flow in a target blood flow of a plurality of blood flows;
  • FIG. 4 to FIG. 6 are schematic diagrams showing the position setting of the sampling frame of the blood flow imaging method of the present invention.
  • FIG. 7 to FIG. 8 are schematic diagrams showing the position setting of the sampling frame when the blood flow information method of the present invention is small
  • FIG. 10 are schematic diagrams of ultrasonic images after adjustment of blood flow imaging parameters of the blood flow imaging method of the present invention.
  • FIG. 11 is a schematic flow chart of a blood flow imaging method according to a second embodiment of the present invention.
  • Figure 12 is a schematic view showing the configuration of a blood flow imaging system provided by the present invention.
  • a first embodiment of the present invention provides a blood flow imaging method, including the following steps:
  • Step S101 Acquire a first ultrasound image obtained by transmitting an ultrasound wave according to a blood flow imaging parameter and receiving an ultrasound echo at a first time.
  • the first ultrasound image and its data information can be acquired by the ultrasound probe.
  • the data information includes information such as a blood flow center line, a blood flow velocity, a blood flow radius, a blood flow length, and the like in the ultrasound image.
  • the blood flow imaging parameters include: an emission direction of the ultrasonic wave, a position of a Doppler sampling frame, an angle of a Doppler sampling frame, a position of a Doppler sampling line, a position of a Doppler sampling gate, Doppler The angle of the sampling gate, the width of the Doppler sampling gate, and/or the blood flow calibration angle within the Doppler sampling gate.
  • various known image segmentation methods can be employed to achieve acquisition of the blood flow centerline of the ultrasound image.
  • the contour of the ultrasound image can be acquired first.
  • the black area in Fig. 2 is the ultrasound image
  • the white line is the center line of the blood flow obtained by fitting
  • the white square is the center point of the acquired blood flow.
  • the step size associated with the diameter of the blood flow is used to search for the other side boundary of the blood flow from the boundary of the blood flow side (from left to right in Fig. 2), and the blood at the current step position is found point by point.
  • the center of the flow is used, and the obtained blood flow center data is used to perform blood flow center line fitting processing.
  • the detection method of the blood flow boundary can be obtained by using a snake model, a gradient vector length (GVF) energy model, a topological adaptive active contour (T-snake) model, and the like.
  • VVF gradient vector length
  • T-snake topological adaptive active contour
  • the middle segment data of the ultrasound image is used to extract the blood flow center line, or the blood flow center line is fitted with a curve, and the above treatment can improve the long-term blood flow of the commonly used peripheral blood vessels, carotid arteries and the like.
  • the blood flow centerline extraction capability of the data It can be understood that the blood flow center line fitting advance method can adopt applicable prior art as needed, and details are not described herein again.
  • the first ultrasound image may be a B-type image and/or a color blood flow image.
  • the specific area may select an image within a certain range centering on the center point of the sampling frame, or may be selected by using other usage rules.
  • the regions corresponding to the B-type image and the color blood flow image may be different sizes.
  • Step S102 acquiring ultrasonic waves according to the blood flow imaging parameters and receiving at the second time A second ultrasound image obtained by ultrasound echo. Similar to step S101, in this step, the second ultrasound image and the corresponding image at the second moment are acquired by the ultrasound probe.
  • the second ultrasound image may be a B-type image and/or a color blood flow image.
  • the first ultrasound image and the second ultrasound image of the ultrasound image are sequentially acquired, and the time interval between acquiring the first ultrasound image and acquiring the second ultrasound image may be set as needed.
  • Step S103 calculating a difference factor for indicating a difference between the first ultrasound image and the second ultrasound image according to the first ultrasound image and the second ultrasound image.
  • the difference factor may be calculated by the comparison module: first, calculating a correlation coefficient of the first ultrasound image and the second ultrasound image, a pixel gray value of the first ultrasound image, and the a mean difference between a grayscale difference between pixel grayscale values of the second ultrasound image and/or a mean value of the pixel grayscale value of the first ultrasound image and a mean value of the pixel grayscale value of the second ultrasound image .
  • the difference factor is obtained according to the correlation coefficient, the gradation difference value, and/or the mean value difference.
  • the correlation coefficients may include, but are not limited to, blood flow imaging parameters.
  • Step S1031 Selecting a first selected area in the first ultrasound image; the first selected area includes an image area corresponding to the Doppler sampling frame in the first ultrasound image.
  • Step S1032 selecting a second selected area in the second ultrasound image; the second selected area includes an image area corresponding to the Doppler sampling frame in the second ultrasound image.
  • Step S1033 calculating the difference factor according to the first selected area and the second selected area.
  • step S1033 first, calculating a correlation coefficient of the first selected area and the second selected area, a pixel gray value of the first selected area, and a pixel of the second selected area a gray value difference between gray value values and/or a mean value difference between a mean value of the pixel gray value of the first selected region and a mean value of the pixel gray value of the second selected region; and then, according to The difference factor is obtained by the correlation coefficient, the gradation difference value, and/or the mean value difference.
  • Step S104 when it is confirmed that the difference factor satisfies a preset condition, adjusting at least one of the blood flow imaging parameters.
  • an adjustment module is set to adjust the blood flow imaging parameters.
  • the preset condition is that the difference factor is greater than or less than a preset first threshold. It can be understood that any suitable preset conditions in the prior art can be used in this step as needed, such as setting a specific
  • the trigger condition confirms that the preset condition is triggered immediately after the user adjusts the blood flow imaging parameter.
  • step S104 may include the following steps:
  • Step S1041 Acquire an ultrasound image obtained by transmitting ultrasound waves to the imaging target according to the blood flow imaging parameter and receiving the ultrasound echo in a period of time; in this step, the ultrasound pulse may be sent to the target area through the ultrasound probe and the ultrasound pulse is received. Echo information and generate an ultrasound image corresponding to the echo information.
  • Step S1042 Acquire data information of the ultrasound image; the data information may include, but is not limited to, blood flow center line, flow rate, blood flow radius, length, and the like.
  • Step S1043 Select a target blood flow according to the data information; in this step, select a target blood flow in the plurality of blood flows in the ultrasound image, and obtain a target flow of the target blood flow and a blood flow direction of the target point. And the blood flow radius of the target point.
  • the target blood flow in the current ultrasound image may be selected through the blood flow center line, the flow velocity, the blood flow radius, and the length in the plurality of blood flows, and
  • the center point of the target blood flow is a target point.
  • the selection decision of the target blood flow can be any applicable algorithm in the prior art.
  • FIG. 3 a schematic diagram of a target blood flow selection decision for a plurality of blood flows is shown. The figure shows the blood flow obtained before optimization in the case of multiple blood flows.
  • the target blood flow and the target point of the target blood flow are obtained by the flow velocity of the blood flow, the blood flow radius, and the length, and are represented by the center line and the square center point in the image.
  • a target blood flow is selected in a plurality of blood flows in the ultrasound image
  • a plurality of normalized parameter indicators A, B, C, . . . . . , N may be set and respectively
  • the weight coefficients corresponding to each normalized parameter index are set to a_coef, b_coef, c_coef, . . . . . , n_coef.
  • the blood flow importance K judgment formula is:
  • K A*a_coef+B*b_coef+C*c_coef+ ⁇ +N*n_coef
  • the blood flow is calculated separately for each blood flow, and the blood flow of each blood flow is obtained, and the blood flow with the highest K value is taken as the target blood flow.
  • a 1 _nor a 1 /max(a 1 ,a 2 )
  • a 2 _nor a 2 /max(a 1 ,a 2 )
  • b 1 _nor b 1 /max(b 1 ,b 2 )
  • K 1 a 1 _nor*a_coef+b 1 _nor*b_coef
  • K 2 a 2 _nor*a_coef+b 2 _nor*b_coef
  • the target blood flow is blood flow 1; conversely, the target blood flow is blood flow 2 .
  • Step S1044 adjusting at least one of the blood flow imaging parameters according to the target blood flow.
  • the scanning range of the ultrasound probe can be controlled according to blood flow imaging parameters such as the center of the sampling frame, the center of the sampling gate, the blood flow angle in the sampling gate, and the sampling gate width. The scan angle is adjusted and can be further redisplayed.
  • the appropriate angle and position of the selected target blood flow can be adjusted by setting the sampling frame.
  • a target blood flow appears on the left side of the ultrasound image, where A is the position of the target point and B is the angle of the target point.
  • A is the position of the target point
  • B is the angle of the target point.
  • the position of A is the center position of the optimized sampling frame, at which the angle from the vertical emission to the stepwise increase of the sampling frame angle to the angle B is performed.
  • the center of the sampling frame deviates more and more from the initial position A, and the blood flow data displayed before the optimization becomes less and less as the angle increases.
  • the angle and position of the sampling frame can be adjusted and optimized by the principle of angle priority or position priority.
  • the optimization effect is as shown in 6; in the case of position priority, the optimization effect is as shown in 5.
  • the angle priority when the blood flow sampling frame can no longer cover the original target blood flow after the angle priority adjustment, the user is prompted to move the ultrasonic probe to move the target blood flow to the center of the ultrasonic image for display. .
  • the target blood flow shifting blood flow sampling frame occurs after data optimization. It can be understood that the adjustment of the angle and position of the target blood flow can be implemented by using the applicable prior art, and details are not described herein again.
  • FIG. 7 and FIG. 8 a schematic diagram of the target blood flow decision when the blood flow information in the current sampling frame is small.
  • the blood flow information obtained in the target region in the ultrasonic image shows that the amount of data information is too small to judge the blood flow direction.
  • it can be changed.
  • the cavity of the sampling frame is moved under the cavity in the direction in which the ultrasonic wave is emitted. This situation is more common when the sampling frame only shows a very small part of the blood flow, and it is impossible to judge the direction of blood flow.
  • the center point of the sampling frame of the ultrasonic probe and the angle of the sampling frame may be adjusted according to the target point of the target blood flow and the direction of blood flow movement of the target point, and the color of the target point of the adjusted target blood flow is obtained.
  • Blood flow image or Doppler image Compare the color flow image or the Doppler image filling degree before and after the adjustment, and select the center point of the sampling frame corresponding to the higher filling degree and the sampling frame angle as the final sampling frame.
  • the corresponding blood flow imaging parameters can be obtained according to the sampling frame setting.
  • the target point position can be used as the center of the sampling frame and the center of the sampling gate, and the ultrasonic beam emission direction of the ultrasonic probe and the blood flow angle of the Doppler sampling gate are taken according to the flow direction of the target blood flow at the target point position, according to the target.
  • the blood flow radius of the target blood flow at the point is taken as the sampling gate width.
  • the sampling gate width is R*R_coef.
  • Figure 7 shows the effect of adjusting the blood flow sampling frame and sampling line before optimization.
  • Figure 8 is a schematic diagram showing the effect of optimizing and optimizing the blood flow sampling frame and sampling line parameters at the same time.
  • Step S105 comparing the adjusted blood flow imaging parameter and the blood flow imaging parameter before adjustment, and discarding when the difference between the adjusted blood flow imaging parameter and the blood flow imaging parameter before adjustment is less than a preset second threshold Adjusted blood flow imaging parameters. It can be understood that step S105 can also be omitted, that is, after step S104 is performed, the process directly proceeds to step S106.
  • Step S106 transmitting an ultrasonic wave according to the adjusted blood flow imaging parameter and receiving an ultrasonic echo to obtain an ultrasonic image.
  • a second embodiment of the present invention provides a blood flow imaging method, including the following steps:
  • Step S201 a series of ultrasound images obtained by transmitting ultrasound waves according to blood flow imaging parameters and receiving ultrasonic echoes; in this step, transmitting ultrasonic pulses to the target area through the ultrasonic probe and receiving echo information of the ultrasonic pulses, and generating the The ultrasound image corresponding to the echo information.
  • the ultrasound image is acquired over a period of time by the ultrasound probe, and the blood flow velocity extreme point in the time period is further acquired and retained. It can be understood that the length of time of the period of time can be set as needed, that is, the ultrasound image of the preset time of any length can be taken in this step. Further, in this step, the blood flow velocity extreme point in the time period can be obtained, thereby improving the analysis accuracy rate of the blood flow obtaining difficulty portion.
  • the ultrasound image may be a B-type image formed by signal processing, a Doppler image, a color blood flow image, or a combined display image of the above various images.
  • Step S202 ultrasonic image preprocessing.
  • image preprocessing is performed on the ultrasound image acquired during a period of time, thereby facilitating image recognition and use.
  • the image preprocessing in this step can be performed in various manners, for example, simple correction processing of blood flow color inversion caused by insufficient pulse repetition frequency (PRF) can be realized, and the improvement is improved.
  • PRF pulse repetition frequency
  • the accuracy of the analysis; the differentiation of multiple blood flows can also be achieved by setting the threshold.
  • the blood flow velocity from the blood vessel wall to the center of the blood vessel is a change process from low speed to high speed, and the blood flow is different from the direction of movement of the ultrasonic probe (flowing toward the ultrasonic probe and away from the ultrasonic probe) in the actual image. It is represented by two types of colors, reddish and bluish.
  • step S202 can be omitted.
  • Step S203 displaying the series of ultrasound images
  • Step S204 monitoring whether a start trigger signal is received, and when confirming that the start trigger signal is received: acquiring a first ultrasonic image obtained by transmitting an ultrasonic wave according to the blood flow imaging parameter and receiving an ultrasonic echo at a first time; Transmitting an ultrasonic wave according to the blood flow imaging parameter at a second time and receiving a second ultrasound image obtained by the ultrasonic echo;
  • the activation trigger signal is generated every predetermined time, every predetermined frame of ultrasound image generation, or when the user manually adjusts one or more of the blood flow imaging parameters. If the time counter or the frame number counter can be used, the operation of acquiring the ultrasound image of the specific area is performed after every certain period of time or after obtaining a certain number of frames. It can be understood that the specific implementation process of step S204 can be the same as S101 and S102 in the first embodiment.
  • Step S205 calculating, according to the first ultrasound image and the second ultrasound image, a representation A difference factor of the difference between the first ultrasound image and the second ultrasound image; it can be understood that the specific implementation process of this step can be the same as S103 in the first embodiment.
  • step S206 when it is confirmed that the difference factor satisfies the preset condition, at least one of the blood flow imaging parameters is adjusted; it can be understood that the specific implementation process of this step may be the same as S104 in the first embodiment.
  • Step S207 transmitting an ultrasonic wave according to the adjusted blood flow imaging parameter and receiving an ultrasonic echo to obtain an ultrasound image
  • Step S208 displaying an ultrasound image obtained according to the adjusted blood flow imaging parameter.
  • the present invention also provides a blood flow imaging system, comprising:
  • An ultrasonic probe 11 for transmitting ultrasonic waves to a target area and receiving echo data of the ultrasonic waves.
  • a signal processing module 13 configured to receive echo data of the ultrasonic wave to acquire an ultrasound image; the ultrasound image includes a first ultrasound image acquired at a first moment and a second ultrasound image acquired at a second moment; the signal The processing module 13 includes a B-type signal processing unit 131 and a Doppler signal processing unit 133 for processing a B-type image in the ultrasound image; the Doppler signal processing unit 133 Processing an ultrasound image in the ultrasound image.
  • the comparison module 15 is configured to receive the first ultrasound image and the second ultrasound image, and calculate, according to the first ultrasound image and the second ultrasound image, the first ultrasound image and the The difference factor between the differences between the second ultrasound images.
  • the adjusting module 17 is configured to receive the difference factor, and adjust blood flow imaging parameters according to the difference factor; the blood flow imaging parameters include a sampling frame center, a sampling gate center, a blood flow angle within the sampling gate, and a sampling gate width.
  • the control module 18 is configured to receive the blood flow imaging parameter and control the transmitting and receiving module of the ultrasonic probe 11 to emit ultrasonic waves.
  • parameters such as the scanning range, the scanning angle, and the scanning power of the ultrasound probe can be adjusted to facilitate capturing the corresponding ultrasound image.
  • the display module 19 is configured to generate and display the first ultrasound image and the second ultrasound image according to the signal processing module 13.
  • the blood flow imaging method and system of the present invention analyzes and processes the obtained ultrasound image Bleeding flow motion information to achieve optimal adjustment of blood flow imaging parameters.
  • the optimization and adjustment of the blood flow imaging method of the invention is convenient and convenient, and the parameters such as the angle and position of the blood flow sampling frame, the sampling line angle, the position, the sampling volume width and the blood flow correction angle are quickly optimized, and can be implemented as needed to achieve the most Optimize the display.
  • the blood flow imaging method and system of the present invention can adjust the setting of the blood flow forming parameters as needed by acquiring and comparing the difference factors, thereby improving the setting efficiency and the accuracy rate.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Hematology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种血流成像方法及系统,包括以下步骤,获取第一超声图像(S101);获第二超声图像(S102);根据所述第一超声图像和所述第二超声图像计算用于表示所述第一超声图像与所述第二超声图像之间的差异的差异因子(S103);确认所述差异因子满足预设条件时,调整所述血流成像参数中的至少一个(S104);根据调整后的所述血流成像参数发射超声波并接收超声回波,获得超声图像(S106)。该血流成像方法及系统通过对获得的超声图像进行分析处理、提取出血流运动信息,从而实现对血流成像参数的优化调整,调整过程方便便捷,可实现参数的快速优化。

Description

血流成像方法及系统 技术领域
本发明涉及医疗检测领域,尤其涉及一种血流成像方法及系统。
背景技术
医用超声成像技术已成为临床中广泛应用的一种辅助诊断工具。超声波利用多普勒效应实时探测人体中血流或组织的运动信息,更是一个无法替代的检查手段。
在超声多普勒检查中,探头发送超声波束射向人体目标部位,在波束运动方向上如果检测到人体内血流或组织的运动速度分量,则可以从回波中提取出这部分运动信息,并用图像或频谱的方式显示出来。在这个过程中,超声波束的发射方向与血流或组织运动速度之间的夹角、决定了得到的运动信息与实际血流或组织运动速度之间的关系。为得到更为准确丰富的运动信息,医生会通过改变超声波束的发射方向等多普勒血流成像参数、以获得灵敏度最佳、内容更丰富的信号。常见的调整多普勒血流成像参数有超声波束发射方向、多普勒取样框ROI(region of interest)位置、多普勒取样线位置、多普勒取样门SV(sample volume)的宽度、多普勒取样门SV内血流校准角度等。这些参数的调整在线阵探头的使用中更为普遍。
在当前的系统设计中,医生需要根据关注目标的不同而调整手柄鼠标等控件实现对多普勒血流成像参数的调节。例如,将取样框位置移动到目标血流信息显示比较完整的位置,调节超声波束发射角度使得血流信息更加丰富灵敏,移动取样门位置到血流信息丰富的部位,调整取样门宽度、手动调节血流角度校正线使得获得的多普勒频谱信号信噪比更高。对医生来说,每更换一个目标部位即需要重设一遍参数,频繁调整加剧了医生的工作量。
发明内容
本发明实施例提供一种血流成像方法及系统,实现血流成像参数的快捷设 置及成像显示,提高血流成像检测的效率。
一种血流成像方法,包括以下步骤,
根据血流成像参数发射超声波并接收超声回波,获得的一系列超声图像;
显示所述一系列超声图像;
监测是否接收到启动触发信号,当确认接收到所述启动触发信号时:获取在第一时刻处根据所述血流成像参数发射超声波并接收超声回波获得的第一超声图像;获取在第二时刻处根据所述血流成像参数发射超声波并接收超声回波获得的第二超声图像;
根据所述第一超声图像和所述第二超声图像计算用于表示所述第一超声图像与所述第二超声图像之间的差异的差异因子;
确认所述差异因子满足预设条件时,调整所述血流成像参数中的至少一个;
根据调整后的所述血流成像参数发射超声波并接收超声回波,获得超声图像;
显示根据调整后的所述血流成像参数获得的超声图像。
进一步的,所述启动触发信号每隔预定时间产生、每隔预定帧超声图像产生或者当用户手动调节了所述血流成像参数中的一个或者多个之后产生。
进一步的,根据所述第一超声图像和所述第二超声图像计算用于表示所述第一超声图像与所述第二超声图像之间的差异的差异因子时,进一步包括以下步骤:
在所述第一超声图像中选择第一选定区域;
在所述第二超声图像中选择第二选定区域;
根据所述第一选定区域和所述第二选定区域计算所述差异因子。
进一步的,根据所述第一超声图像和所述第二超声图像计算用于表示所述第一超声图像与所述第二超声图像之间的差异的差异因子包括:
计算所述第一超声图像与所述第二超声图像的相关系数、所述第一超声图像的像素灰度值与所述第二超声图像的像素灰度值之间的灰度差值和/或所述第一超声图像的像素灰度值均值与所述第二超声图像的像素灰度值均值之间的均值差值;
根据所述相关系数、所述灰度差值和/或所述均值差值获得所述差异因子。
进一步的,根据所述第一选定区域和所述第二选定区域计算所述差异因子包括:
计算所述第一选定区域与所述第二选定区域的相关系数、所述第一选定区域的像素灰度值与所述第二选定区域的像素灰度值之间的灰度差值和/或所述第一选定区域的像素灰度值均值与所述第二选定区域的像素灰度值均值之间的均值差值;
根据所述相关系数、所述灰度差值和/或所述均值差值获得所述差异因子。
进一步的,所述第一选定区域包含所述第一超声图像中与多普勒取样框对应的图像区域;所述第二选定区域包含所述第二超声图像中与多普勒取样框对应的图像区域。
进一步的,所述预设条件为所述差异因子大于或者小于预设的第一阈值。
进一步的,调整所述血流成像参数中的至少一个之后还包括:比较调整后的血流成像参数和调整前的血流成像参数,当调整后的血流成像参数与调整前的血流成像参数之间的差异小于预设的第二阈值时,放弃调整后的血流成像参数。
进一步的,所述血流成像参数包括:所述超声波的发射方向、多普勒取样框的位置、多普勒取样框的角度、多普勒取样线的位置、多普勒取样门的位置、多普勒取样门的角度、多普勒取样门的宽度和/或多普勒取样门内的血流校准角度。
进一步的,所述第一超声图像包括第一B型图像,所述第二超声图像包括第二B型图像;
或所述第一超声图像包括第一彩色血流图像,所述第二超声图像包括第二彩色血流图像;
或所述第一超声图像包括第一B型图像及第一彩色血流图像,所述第二超声图像包括第二B型图像及第二彩色血流图像。
进一步的,调整所述血流成像参数中的至少一个包括:
获取一段时间内的根据所述血流成像参数向成像目标发射超声波并接收超声回波获得的超声图像;
获取所述超声图像的数据信息;
根据所述数据信息选取目标血流;
根据所述目标血流调整所述血流成像参数中的至少一个。
进一步的,所述数据信息包括血流的血流中心线、血流流速、血流半径、血流长度。
一种血流成像方法,包括:
获取在第一时刻处根据血流成像参数发射超声波并接收超声回波获得的第一超声图像;
获取在第二时刻处根据所述血流成像参数发射超声波并接收超声回波获得的第二超声图像;
根据所述第一超声图像和所述第二超声图像计算用于表示所述第一超声图像与所述第二超声图像之间的差异的差异因子;
确认所述差异因子满足预设条件时,调整所述血流成像参数中的至少一个;
根据调整后的所述血流成像参数发射超声波并接收超声回波,获得超声图像。
一种血流成像系统,包括:
超声探头,所述超声探头用于向目标区域发射超声波,并接收所述超声波的回波数据;
信号处理模块,用于接收所述超声波的回波数据以获取超声图像,所述超声图像包括在第一时刻获取的第一超声图像及在第二时刻获取的第二超声图像;
比对模块,用于接收所述第一超声图像与所述第二超声图像,并根据所述第一超声图像和所述第二超声图像计算用于表示所述第一超声图像与所述第二超声图像之间的差异的差异因子;
调整模块,用于接收所述差异因子,并根据所述差异因子调整血流成像参数;
控制模块,用于接收所述血流成像参数并控制所述时超声探头的收发模块发送超声波;
显示模块,用于根据所述信号处理模块生成并显示第一超声图像、第二超声图像。
进一步的,所述信号处理模块包括B型信号处理单元及多普勒信号处理单元,所述B型信号处理单元用于处理所述超声图像中的B型图像;所述多普勒信号处理单元用于处理所述超声图像中的超声图像。
本发明通过对获得的超声图像进行分析处理、自动提取出血流运动信息,通过获取并比对差异因子,按需启动血流成型参数的设置,提升设置效率及准确率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明第一实施例提供的血流成像方法的流程示意图;
图2是本发明的血流成像方法的血流中心线提取示意图;
图3是本发明的血流成像方法于多条血流的目标血流选取目标血流的示意图;
图4至图6是本发明的血流成像方法的取样框位置设置示意图;
图7至图8是本发明的血流成像方法在血流信息较少时的取样框位置设置示意图;
图9至图10是本发明的血流成像方法的血流成像参数调整后的超声图像示意图;
图11是本发明第二实施例提供的血流成像方法的流程示意图;
图12是本发明提供的一种血流成像系统的构成示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部 的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,本发明第一实施例提供一种血流成像方法,包括以下步骤:
步骤S101,获取在第一时刻处根据血流成像参数发射超声波并接收超声回波获得的第一超声图像。
在本步骤中,可通过超声探头获取第一超声图像及其数据信息。所述数据信息包括超声图像中的血流中心线、血流流速、血流半径、血流长度等信息。所述血流成像参数包括:所述超声波的发射方向、多普勒取样框的位置、多普勒取样框的角度、多普勒取样线的位置、多普勒取样门的位置、多普勒取样门的角度、多普勒取样门的宽度和/或多普勒取样门内的血流校准角度。在本步骤中可采用多种已知的图像分割方法实现超声图像的血流中心线的获取。如图2所示,可先获取超声图像的轮廓,图2中黑色区域为超声图像,白色直线为拟合获取的血流中心线,白色方块为获取的血流中心点。在本实施例中,采用与血流直径相关的步长从血流一侧边界搜寻到血流另一侧边界(图2中为从左到右),逐点找到当前步长位置处的血流圆心,再利用获得的血流圆心数据进行血流中心线拟合处理。可以理解的是,血流边界的检测获取方法可采用活动轮廓(snake)模型、梯度矢量长(GVF)能量模型、拓扑自适应活动轮廓(T-snake)模型等方式获取。
为减少血流数据受血流形状的影响,也可采用各类提高血流中心线获取准确率的方法。如,使用超声图像的中间段数据进行血流中心线的提取,或者对血流中心线的拟合采用一次曲线进行处理,通过以上处理可提高对常用的外周血管、颈动脉等长直血流数据的血流中心线提取能力。可以理解的是,所述血流中心线拟合提前方法可按需采用适用的现有技术,在此不再赘述。
在本步骤中,所述第一超声图像可为B型图像及/或彩色血流图像。在本实施例中,所述特定区域可以取样框中心点为中心选取一定范围内的图像,或采用其他使用规则进行选取。
在本步骤中,当所述第一超声图像包括B型图像与彩色血流图像时,所述B型图像与彩色血流图像对应的区域可为不同大小。
步骤S102,获取在第二时刻处根据所述血流成像参数发射超声波并接收 超声回波获得的第二超声图像。与步骤S101类似,本步骤中,通过超声探头获取第二时刻的第二超声图像及相应的图像。所述第二超声图像可为B型图像及/或彩色血流图像。
本发明提供的血流成像方法中先后获取超声图像的第一超声图像与第二超声图像,获取所述第一超声图像与获取第二超声图像之间的时间间隔可按需自行设置。
步骤S103,根据所述第一超声图像和所述第二超声图像计算用于表示所述第一超声图像与所述第二超声图像之间的差异的差异因子。在本步骤中,可通过比对模块对差异因子进行计算:首先,计算所述第一超声图像与所述第二超声图像的相关系数、所述第一超声图像的像素灰度值与所述第二超声图像的像素灰度值之间的灰度差值和/或所述第一超声图像的像素灰度值均值与所述第二超声图像的像素灰度值均值之间的均值差值。而后,根据所述相关系数、所述灰度差值和/或所述均值差值获得所述差异因子。所述相关系数可包括但不限于血流成像参数。
在本步骤中,进一步包括以下步骤:
步骤S1031,在所述第一超声图像中选择第一选定区域;所述第一选定区域包含所述第一超声图像中与多普勒取样框对应的图像区域。
步骤S1032,在所述第二超声图像中选择第二选定区域;所述第二选定区域包含所述第二超声图像中与多普勒取样框对应的图像区域。
步骤S1033,根据所述第一选定区域和所述第二选定区域计算所述差异因子。在本步骤S1033中,首先,计算所述第一选定区域与所述第二选定区域的相关系数、所述第一选定区域的像素灰度值与所述第二选定区域的像素灰度值之间的灰度差值和/或所述第一选定区域的像素灰度值均值与所述第二选定区域的像素灰度值均值之间的均值差值;而后,根据所述相关系数、所述灰度差值和/或所述均值差值获得所述差异因子。
步骤S104,确认所述差异因子满足预设条件时,调整所述血流成像参数中的至少一个。在本步骤中,设置调整模块,对血流成像参数进行调整。具体的,所述预设条件为所述差异因子大于或者小于预设的第一阈值。可以理解的是,本步骤中可根据需要采用现有技术中任意适用的预设条件,如可设置特定 触发条件,当使用者调节血流成像参数后立刻确认触发所述预设条件。
进一步的,步骤S104可包括以下步骤:
步骤S1041,获取一段时间内的根据所述血流成像参数向成像目标发射超声波并接收超声回波获得的超声图像;在本步骤中,可通过超声探头向目标区域发送超声脉冲并接收超声脉冲的回波信息,并生成所述回波信息相对应的超声图像。
步骤S1042,获取所述超声图像的数据信息;所述数据信息可包括但不限于血流中心线、流速、血流半径、长度等数据。
步骤S1043,根据所述数据信息选取目标血流;在本步骤中,于所述超声图像中的多条血流中选取目标血流,获取目标血流的目标点、目标点的血流运动方向及目标点的血流半径。
在本步骤中,当所述超声图像中存在多条血流时,可通过血流中心线、流速、血流半径、长度于多条血流中选择当前超声图像中的目标血流,并取所述目标血流的中心点为目标点。目标血流的选取决策可采用现有技术中的任意适用算法。在本实施例中,如图3所示为多条血流的目标血流选取决策示意图。图中显示为多条血流情况下优化前获得的血流情况。通过血流的流速、血流半径、长度获取目标血流及目标血流的目标点,并在图像中以中心线及正方形中心点的形式表示。
在本步骤中,在于所述超声图像中的多条血流中选取确认一条目标血流时,可设置若干归一化参数指标A、B、C、······、N,并分别设置每个归一化参数指标对应的权重系数分别为a_coef、b_coef、c_coef、·······、n_coef。则,血流重要性K判断公式为:
K=A*a_coef+B*b_coef+C*c_coef+······+N*n_coef
对多条血流分别计算,获取各个血流的K值,以K值最高的血流为目标血流。
具体的,假设当前使用的参数有两个,分别为流速A、长度B,分别对应的权重系数为a_coef=0.4和b_coef=0.6。在取样框内找到两根血流1和2,分别有系数a1,a2(流速)和b1,b2(长度)。对流速和长度进行归一化可得
a1_nor=a1/max(a1,a2)
a2_nor=a2/max(a1,a2)
b1_nor,=b1/max(b1,b2)
b2_nor=b2/max(b1,b2)
则,计算得到的重要性分别为
K1=a1_nor*a_coef+b1_nor*b_coef
K2=a2_nor*a_coef+b2_nor*b_coef
由此,如果K1>K2,则目标血流为血流1;反之,目标血流为血流2。
步骤S1044,根据所述目标血流调整所述血流成像参数中的至少一个。如图9及图10所示,在本步骤中,可根据所述取样框中心、取样门中心、取样门内血流角度、取样门宽度等血流成像参数控制所述超声探头的扫描范围及扫描角度进行调整,并可进一步重新加以显示。
例如,当目标血流位置处于超声图像左侧或右侧的角度盲区时,可通过设置取样框,调整选择目标血流适当的角度与位置。
如图4所示,在超声图像左侧出现目标血流,其中A为目标点的位置,B为目标点的角度。假设以A的位置为优化后的取样框中心点位置,在该位置上从垂直发射到逐级增大取样框角度至角度B。随着角度的增加,取样框中心偏离初始位置A越来越多,表现为优化前显示的血流数据随着角度的增大越来越少。在最佳位置与最佳角度二者不可兼得的情况下,可采用角度优先或位置优先的原则对取样框的角度及位置进行调整优化。在角度优先的情况下,优化效果如6所示;在位置优先的情况下,优化效果如5所示。
进一步的,在本步骤中,当采用角度优先时,当经过角度优先调整后血流取样框无法再覆盖原目标血流时,提示使用者移动超声探头将目标血流移动至超声图像中央进行显示。通过设置提示,从而避免数据优化后出现目标血流移出血流取样框的情况。可以理解的是,目标血流的角度与位置的调整优化可采用适用的现有技术实现,在此不再赘述。
进一步的,当超声图像内的血流信息很少时,可在无法判断血流运动方向情况下实现目标点选择。如图7及图8所示,当当前取样框内血流信息很少时的目标血流决策示意图。如图7所示为超声图像中目标区域内获得的血流信息,可知该数据信息量太少以至于无法判断血流方向。如图8所示,可在不改 变超声波发射方向的腔体下移动取样框中心。此情况多见于当取样框内仅显示了血流的极少部分、无法判断血流运动方向的情况。
在本步骤中,还可根据所述目标血流的目标点、目标点的血流运动方向调整超声探头的取样框中心点及取样框角度,并获取调整后的目标血流的目标点的彩色血流图像或多普勒图像。比较调整前后的彩色血流图像或多普勒图像的充盈度,并选取较高充盈度对应的取样框中心点及取样框角度为最终取样框。
在本步骤中,可根据取样框设置情况获取相对应的血流成像参数。具体的,可将目标点位置作为取样框中心、取样门中心,根据目标点位置上的目标血流的流动方向取超声探头的超声波束发射方向与多普勒取样门内血流角度,根据目标点上的目标血流的血流半径取取样门宽度。例如,当目标血流半径为R,取样门宽度系数R_coef=0.6,那么取样门宽度为R*R_coef。如图7所示为调整优化前的血流取样框、取样线的效果示意图。如图8所示为调整优化后的血流取样框及取样线参数同时优化的效果示意图。
步骤S105,比较调整后的血流成像参数和调整前的血流成像参数,当调整后的血流成像参数与调整前的血流成像参数之间的差异小于预设的第二阈值时,放弃调整后的血流成像参数。可以理解的是,步骤S105也可省略,即执行步骤S104后直接进入步骤S106。
步骤S106,根据调整后的所述血流成像参数发射超声波并接收超声回波,获得超声图像。
请参见图11,本发明的第二实施例提供一种血流成像方法,包括以下步骤:
步骤S201,根据血流成像参数发射超声波并接收超声回波,获得的一系列超声图像;在本步骤中,通过超声探头向目标区域发送超声脉冲并接收超声脉冲的回波信息,并生成所述回波信息相对应的超声图像。在本步骤中,通过超声探头获取一段时间内的超声图像,并进一步获取并保留该时间段内的血流速度极值点。可以理解的是,所述一段时间的时间长短可根据需要自行设置,即在本步骤中可取任意时长的预设时间内的超声图像。进一步的,在本步骤中,可获取该时间段内的血流速度极值点,从而提升血流获取困难部位的分析准确率。可以理解的是,在生成超声图像时,可进行放大、数模转换、波束合成等 数据处理,其实现过程为现有技术,在此不再赘述。进一步的,在本步骤中,所述超声图像可为经过信号处理形成的B型图像、多普勒图像、彩色血流图像或以上各种图像的合并显示图像。
步骤S202,超声图像预处理。在本步骤中,对一段时间内获取的超声图像进行图像预处理,从而便于图像的识别及使用。
在本实施例中,本步骤中的图像预处理可采用多种方式进行,如可实现对因脉冲重复频率(radar pulse repetition frequency,PRF)不足造成的血流颜色反转进行简单校正处理,提高分析的准确率;还可通过对阈值的设置实现多条血流的区分。具体的,在实际进行检测的血管中,血流速度从血管壁到血管中央是从低速到高速的一个变化过程,血流相对超声探头运动方向不同(流向超声探头和远离超声探头)在实际图像中用偏红和偏蓝两类颜色表示。如果脉冲重复频率不足,血管中高速的血流数据将发生颜色反转,从偏红变为偏蓝或者从偏蓝变为偏红。通过颜色反转校正功能,对于颜色突变超过阈值的部分进行校正,可以将这部分发生反转的颜色校正回正确的方向。对于多根同向血流数据而言,在某些数据过于充盈的帧内,将发生多根血流数据连在一起无法区分的问题。通过设置较高的阈值数据,将阈值较低的血流数据删除,保留流速较大的数据,可以有效区分多根同向血流。可以理解的是,此步骤可按需实施或取消。可以理解的是,步骤S202可省略。
步骤S203,显示所述一系列超声图像;
步骤S204,监测是否接收到启动触发信号,当确认接收到所述启动触发信号时:获取在第一时刻处根据所述血流成像参数发射超声波并接收超声回波获得的第一超声图像;获取在第二时刻处根据所述血流成像参数发射超声波并接收超声回波获得的第二超声图像;
所述启动触发信号每隔预定时间产生、每隔预定帧超声图像产生或者当用户手动调节了所述血流成像参数中的一个或者多个之后产生。如可采用时间计数器或帧数计数器实现,从而在每隔一段时间或获取一定帧数后即执行获取所述特定区域的超声图像的操作。可以理解的是,步骤S204的具体实现过程可与第一实施例中的S101、S102相同。
步骤S205,根据所述第一超声图像和所述第二超声图像计算用于表示所 述第一超声图像与所述第二超声图像之间的差异的差异因子;可以理解的是,本步骤的具体实现过程可与第一实施例中的S103相同。
步骤S206,确认所述差异因子满足预设条件时,调整所述血流成像参数中的至少一个;可以理解的是,本步骤的具体实现过程可与第一实施例中的S104相同。
步骤S207,根据调整后的所述血流成像参数发射超声波并接收超声回波,获得超声图像;
步骤S208,显示根据调整后的所述血流成像参数获得的超声图像。
如图12所示,本发明还提供一种血流成像系统,包括:
超声探头11,所述超声探头11用于向目标区域发射超声波,并接收所述超声波的回波数据。
信号处理模块13,用于接收所述超声波的回波数据以获取超声图像;所述超声图像包括在第一时刻获取的第一超声图像及在第二时刻获取的第二超声图像;所述信号处理模块13包括B型信号处理单元131及多普勒信号处理单元133,所述B型信号处理单元131用于处理所述超声图像中的B型图像;所述多普勒信号处理单元133用于处理所述超声图像中的超声图像。
比对模块15,用于接收所述第一超声图像与所述第二超声图像,并根据所述第一超声图像和所述第二超声图像计算用于表示所述第一超声图像与所述第二超声图像之间的差异的差异因子。
调整模块17,用于接收所述差异因子,并根据所述差异因子调整血流成像参数;所述血流成像参数包括取样框中心、取样门中心、取样门内血流角度、取样门宽度。
控制模块18,用于接收所述血流成像参数并控制所述时超声探头11的收发模块发射超声波。当通过控制模块18对超声探头11进行控制时,可采用调整超声探头的扫描范围、扫描角度、扫描功率等参数,从而便于撷取相应的超声图像。
显示模块19,用于根据所述信号处理模块13生成并显示第一超声图像、第二超声图像。
本发明的血流成像方法及系统通过对获得的超声图像进行分析处理、提取 出血流运动信息,从而实现对血流成像参数的优化调整。本发明的血流成像方法的优化调整方便便捷,实现血流取样框角度和位置,取样线角度、位置、采样容积宽度及血流校正角度等参数的快速优化,可按需开启实施以实现最优化显示。且本发明的血流成像方法及系统通过获取并比对差异因子,按需启动血流成型参数的设置,提升设置效率及准确率。
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (15)

  1. 一种血流成像方法,其特征在于,包括以下步骤,
    根据血流成像参数发射超声波并接收超声回波,获得的一系列超声图像;
    显示所述一系列超声图像;
    监测是否接收到启动触发信号,当确认接收到所述启动触发信号时:获取在第一时刻处根据所述血流成像参数发射超声波并接收超声回波获得的第一超声图像;获取在第二时刻处根据所述血流成像参数发射超声波并接收超声回波获得的第二超声图像;
    根据所述第一超声图像和所述第二超声图像计算用于表示所述第一超声图像与所述第二超声图像之间的差异的差异因子;
    确认所述差异因子满足预设条件时,调整所述血流成像参数中的至少一个;
    根据调整后的所述血流成像参数发射超声波并接收超声回波,获得超声图像;
    显示根据调整后的所述血流成像参数获得的超声图像。
  2. 如权利要求1所述的血流成像方法,其特征在于,所述启动触发信号每隔预定时间产生、每隔预定帧超声图像产生或者当用户手动调节了所述血流成像参数中的一个或者多个之后产生。
  3. 如权利要求1所述的血流成像方法,其特征在于,根据所述第一超声图像和所述第二超声图像计算用于表示所述第一超声图像与所述第二超声图像之间的差异的差异因子时,进一步包括以下步骤:
    在所述第一超声图像中选择第一选定区域;
    在所述第二超声图像中选择第二选定区域;
    根据所述第一选定区域和所述第二选定区域计算所述差异因子。
  4. 如权利要求1所述的血流成像方法,其特征在于,根据所述第一超声图像和所述第二超声图像计算用于表示所述第一超声图像与所述第二超声图像之间的差异的差异因子包括:
    计算所述第一超声图像与所述第二超声图像的相关系数、所述第一超声图 像的像素灰度值与所述第二超声图像的像素灰度值之间的灰度差值和/或所述第一超声图像的像素灰度值均值与所述第二超声图像的像素灰度值均值之间的均值差值;
    根据所述相关系数、所述灰度差值和/或所述均值差值获得所述差异因子。
  5. 如权利要求3所述的血流成像方法,其特征在于,根据所述第一选定区域和所述第二选定区域计算所述差异因子包括:
    计算所述第一选定区域与所述第二选定区域的相关系数、所述第一选定区域的像素灰度值与所述第二选定区域的像素灰度值之间的灰度差值和/或所述第一选定区域的像素灰度值均值与所述第二选定区域的像素灰度值均值之间的均值差值;
    根据所述相关系数、所述灰度差值和/或所述均值差值获得所述差异因子。
  6. 如权利要求3所述的血流成像方法,其特征在于,所述第一选定区域包含所述第一超声图像中与多普勒取样框对应的图像区域;所述第二选定区域包含所述第二超声图像中与多普勒取样框对应的图像区域。
  7. 如权利要求1所述的血流成像方法,其特征在于,所述预设条件为所述差异因子大于或者小于预设的第一阈值。
  8. 如权利要求1所述的血流成像方法,其特征在于,调整所述血流成像参数中的至少一个之后还包括:比较调整后的血流成像参数和调整前的血流成像参数,当调整后的血流成像参数与调整前的血流成像参数之间的差异小于预设的第二阈值时,放弃调整后的血流成像参数。
  9. 如权利要求1至8中任意一项所述的血流成像方法,其特征在于,所述血流成像参数包括:所述超声波的发射方向、多普勒取样框的位置、多普勒取样框的角度、多普勒取样线的位置、多普勒取样门的位置、多普勒取样门的角度、多普勒取样门的宽度和/或多普勒取样门内的血流校准角度。
  10. 如权利要求1至8中任意一项所述的血流成像方法,其特征在于,所述第一超声图像包括第一B型图像,所述第二超声图像包括第二B型图像;
    或所述第一超声图像包括第一彩色血流图像,所述第二超声图像包括第二彩色血流图像;
    或所述第一超声图像包括第一B型图像及第一彩色血流图像,所述第二 超声图像包括第二B型图像及第二彩色血流图像。
  11. 如权利要求1至8中任意一项所述的血流成像方法,其特征在于,调整所述血流成像参数中的至少一个包括:
    获取一段时间内的根据所述血流成像参数向成像目标发射超声波并接收超声回波获得的超声图像;
    获取所述超声图像的数据信息;
    根据所述数据信息选取目标血流;
    根据所述目标血流调整所述血流成像参数中的至少一个。
  12. 如权利要求11所述的血流成像方法,其特征在于,所述数据信息包括血流的血流中心线、血流流速、血流半径、血流长度。
  13. 一种血流成像方法,其特征在于,包括:
    获取在第一时刻处根据血流成像参数发射超声波并接收超声回波获得的第一超声图像;
    获取在第二时刻处根据所述血流成像参数发射超声波并接收超声回波获得的第二超声图像;
    根据所述第一超声图像和所述第二超声图像计算用于表示所述第一超声图像与所述第二超声图像之间的差异的差异因子;
    确认所述差异因子满足预设条件时,调整所述血流成像参数中的至少一个;
    根据调整后的所述血流成像参数发射超声波并接收超声回波,获得超声图像。
  14. 一种血流成像系统,其特征在于,包括:
    超声探头,所述超声探头用于向目标区域发射超声波,并接收所述超声波的回波数据;
    信号处理模块,用于接收所述超声波的回波数据以获取超声图像,所述超声图像包括在第一时刻获取的第一超声图像及在第二时刻获取的第二超声图像;
    比对模块,用于接收所述第一超声图像与所述第二超声图像,并根据所述第一超声图像和所述第二超声图像计算用于表示所述第一超声图像与所述第 二超声图像之间的差异的差异因子;
    调整模块,用于接收所述差异因子,并根据所述差异因子调整血流成像参数;
    控制模块,用于接收所述血流成像参数并控制所述时超声探头的收发模块发送超声波;
    显示模块,用于根据所述信号处理模块生成并显示第一超声图像、第二超声图像。
  15. 如权利要求14所述的血流成像系统,其特征在于,所述信号处理模块包括B型信号处理单元及多普勒信号处理单元,所述B型信号处理单元用于处理所述超声图像中的B型图像;所述多普勒信号处理单元用于处理所述超声图像中的超声图像。
PCT/CN2015/078449 2015-05-07 2015-05-07 血流成像方法及系统 WO2016176855A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2015/078449 WO2016176855A1 (zh) 2015-05-07 2015-05-07 血流成像方法及系统
CN201910980657.1A CN110801246B (zh) 2015-05-07 2015-05-07 血流成像方法及系统
CN201580009018.0A CN106028947B (zh) 2015-05-07 2015-05-07 血流成像方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/078449 WO2016176855A1 (zh) 2015-05-07 2015-05-07 血流成像方法及系统

Publications (1)

Publication Number Publication Date
WO2016176855A1 true WO2016176855A1 (zh) 2016-11-10

Family

ID=57082987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/078449 WO2016176855A1 (zh) 2015-05-07 2015-05-07 血流成像方法及系统

Country Status (2)

Country Link
CN (2) CN106028947B (zh)
WO (1) WO2016176855A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110584710A (zh) * 2019-09-03 2019-12-20 杭州晟视科技有限公司 一种血流成像方法及装置、存储介质
CN110604591A (zh) * 2018-12-29 2019-12-24 深圳迈瑞生物医疗电子股份有限公司 调整多普勒参数值的方法以及超声设备
CN111281424A (zh) * 2018-12-07 2020-06-16 深圳迈瑞生物医疗电子股份有限公司 一种超声成像范围的调节方法及相关设备
CN113925528A (zh) * 2020-06-29 2022-01-14 青岛海信医疗设备股份有限公司 多普勒成像方法和超声设备

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190365357A1 (en) * 2016-11-09 2019-12-05 Edan Instruments, Inc. Systems and methods for temporal persistence of doppler spectrum
CN108245194B (zh) * 2017-12-21 2020-06-19 四川省人民医院 基于布谷鸟优化策略的超声图像心脏流场运动估计方法
CN112469337B (zh) * 2018-08-28 2022-10-28 深圳迈瑞生物医疗电子股份有限公司 一种超声向量血流成像方法及装置、存储介质
CN110967506A (zh) * 2018-09-30 2020-04-07 深圳迈瑞生物医疗电子股份有限公司 样本分析仪、样本转运系统及其识别方法
EP3649959A1 (en) * 2018-11-06 2020-05-13 Koninklijke Philips N.V. Ultrasound control unit
CN109674493B (zh) * 2018-11-28 2021-08-03 深圳蓝韵医学影像有限公司 医用超声自动追踪颈动脉血管的方法、系统及设备
CN109615624B (zh) * 2018-12-05 2022-03-22 北京工业大学 一种基于超声图像的血流速度波形自动化识别方法
WO2021232192A1 (zh) * 2020-05-18 2021-11-25 深圳迈瑞生物医疗电子股份有限公司 超声造影成像方法、装置和存储介质
CN113171124A (zh) * 2020-07-30 2021-07-27 深圳市理邦精密仪器股份有限公司 血流测量方法、设备及存储介质
CN112120733B (zh) * 2020-08-31 2022-09-06 深圳市德力凯医疗设备股份有限公司 一种获取脑血流速度的方法、存储介质及终端设备
CN112826535B (zh) * 2020-12-31 2022-09-09 青岛海信医疗设备股份有限公司 一种超声成像中自动定位血管的方法和装置及设备
CN113081050A (zh) * 2021-02-24 2021-07-09 杰杰医疗科技(苏州)有限公司 一种彩色多普勒自动定位调节系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1097674B1 (en) * 1999-11-05 2005-08-31 General Electric Company Method and apparatus for adapting imaging system operation based on pixel intensity histogram
KR20070021420A (ko) * 2005-08-18 2007-02-23 주식회사 메디슨 초음파 영상 진단 시스템에서 초음파 영상 처리 장치 및방법
CN101252886A (zh) * 2005-06-29 2008-08-27 艾可瑞公司 不用基准标记而用超声波图像对软组织目标的动态跟踪
CN101647715A (zh) * 2007-08-28 2010-02-17 深圳迈瑞生物医疗电子股份有限公司 自动优化多普勒成像参数的方法和装置
CN101884551A (zh) * 2009-05-15 2010-11-17 深圳迈瑞生物医疗电子股份有限公司 提高超声多普勒成像自动调整性能的方法及其超声系统
US8585600B2 (en) * 2010-12-09 2013-11-19 Ge Medical Systems Global Technology Company, Llc Ultrasound volume probe navigation and control method and device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5363849A (en) * 1994-01-26 1994-11-15 Cardiovascular Imaging Systems, Inc. Enhancing intravascular ultrasonic blood vessel image
JPH09122126A (ja) * 1995-10-31 1997-05-13 Toshiba Corp 超音波診断装置
US6464641B1 (en) * 1998-12-01 2002-10-15 Ge Medical Systems Global Technology Company Llc Method and apparatus for automatic vessel tracking in ultrasound imaging
JP4996247B2 (ja) * 2004-05-26 2012-08-08 株式会社日立メディコ 超音波診断装置
CN101313856B (zh) * 2007-06-01 2012-07-18 深圳迈瑞生物医疗电子股份有限公司 彩色血流帧相关的方法和装置
JP4960162B2 (ja) * 2007-07-17 2012-06-27 株式会社東芝 超音波診断装置
KR101002079B1 (ko) * 2009-11-10 2010-12-17 한국표준과학연구원 혈관측정장치의 혈관측정방법
CN102370499B (zh) * 2010-08-26 2014-05-07 深圳迈瑞生物医疗电子股份有限公司 多普勒图像、b型图像和彩色血流图像同时显示的方法和系统
CN102551791B (zh) * 2010-12-17 2016-04-27 深圳迈瑞生物医疗电子股份有限公司 一种超声成像方法和装置
CN102551811B (zh) * 2010-12-30 2015-11-25 深圳迈瑞生物医疗电子股份有限公司 一种彩色血流增益调整的方法及装置
JP5743329B2 (ja) * 2012-01-19 2015-07-01 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 超音波診断装置及びその制御プログラム
CN102772227B (zh) * 2012-04-09 2014-01-29 飞依诺科技(苏州)有限公司 自适应超声彩色血流成像方法
US10357228B2 (en) * 2012-04-19 2019-07-23 Samsung Electronics Co., Ltd. Image processing method and apparatus
CN105073020B (zh) * 2013-03-12 2017-06-20 东芝医疗系统株式会社 超声波诊断装置及超声波图像处理方法
US20140303499A1 (en) * 2013-04-09 2014-10-09 Konica Minolta, Inc. Ultrasound diagnostic apparatus and method for controlling the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1097674B1 (en) * 1999-11-05 2005-08-31 General Electric Company Method and apparatus for adapting imaging system operation based on pixel intensity histogram
CN101252886A (zh) * 2005-06-29 2008-08-27 艾可瑞公司 不用基准标记而用超声波图像对软组织目标的动态跟踪
KR20070021420A (ko) * 2005-08-18 2007-02-23 주식회사 메디슨 초음파 영상 진단 시스템에서 초음파 영상 처리 장치 및방법
CN101647715A (zh) * 2007-08-28 2010-02-17 深圳迈瑞生物医疗电子股份有限公司 自动优化多普勒成像参数的方法和装置
CN101884551A (zh) * 2009-05-15 2010-11-17 深圳迈瑞生物医疗电子股份有限公司 提高超声多普勒成像自动调整性能的方法及其超声系统
US8585600B2 (en) * 2010-12-09 2013-11-19 Ge Medical Systems Global Technology Company, Llc Ultrasound volume probe navigation and control method and device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111281424A (zh) * 2018-12-07 2020-06-16 深圳迈瑞生物医疗电子股份有限公司 一种超声成像范围的调节方法及相关设备
CN110604591A (zh) * 2018-12-29 2019-12-24 深圳迈瑞生物医疗电子股份有限公司 调整多普勒参数值的方法以及超声设备
CN110584710A (zh) * 2019-09-03 2019-12-20 杭州晟视科技有限公司 一种血流成像方法及装置、存储介质
CN110584710B (zh) * 2019-09-03 2022-05-31 杭州晟视科技有限公司 一种血流成像方法及装置、存储介质
CN113925528A (zh) * 2020-06-29 2022-01-14 青岛海信医疗设备股份有限公司 多普勒成像方法和超声设备
CN113925528B (zh) * 2020-06-29 2023-11-03 青岛海信医疗设备股份有限公司 多普勒成像方法和超声设备

Also Published As

Publication number Publication date
CN106028947A (zh) 2016-10-12
CN110801246A (zh) 2020-02-18
CN110801246B (zh) 2022-08-02
CN106028947B (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
WO2016176855A1 (zh) 血流成像方法及系统
CN105559828B (zh) 血流成像方法及系统
EP1832894B1 (en) System and method for automatic gain compensation based on image processing
JP4787358B2 (ja) 超音波診断装置
EP1005834B1 (en) Method and apparatus for automatic doppler angle estimation in ultrasound imaging
US6663566B2 (en) Method and apparatus for automatic control of spectral doppler imaging
JP2006520619A (ja) 超音波カラーフロードプラ情報から合成されるフロースペクトログラム
RU2569695C2 (ru) Анализ митральной регургитации посредством ультразвукового формирования изображений
US11844656B2 (en) Ultrasound diagnostic apparatus, method of controlling ultrasound diagnostic apparatus, and non-transitory computer-readable recording medium storing therein computer-readable program for controlling ultrasound diagnostic apparatus
CN106333707B (zh) 超声多普勒图谱校正方法、装置及超声诊断系统
US20170296148A1 (en) Medical imaging system and method
JP4996247B2 (ja) 超音波診断装置
JP2012525191A (ja) スペクトルドップラー超音波撮像装置及び当該装置を自動制御するための方法
US20170086792A1 (en) Ultrasonic diagnostic device
KR101055581B1 (ko) 초음파 시스템 및 클러터 신호 제거용 필터 설정 방법
RU2605417C2 (ru) Фильтр пульсации стенок сосудов для ультразвукового анализа митральной регургитации
US20190298298A1 (en) Ultrasound imaging method
RU2589627C2 (ru) Автоматизированная идентификация положения регургитационного отверстия митрального клапана на ультразвуковом изображении
JP2011101715A (ja) 超音波診断装置
US11506771B2 (en) System and methods for flash suppression in ultrasound imaging
KR101381166B1 (ko) 조합모드 영상 내 b-모드 영상의 이득을 보정하는 초음파 의료 장치 및 그 방법
US20150201908A1 (en) Method and system for adaptive blood flow visualization based on regional flow characteristics
WO2018047425A1 (ja) 超音波診断装置、及びその作動方法
KR101117838B1 (ko) 스펙트럴 브로드닝 감소 방법 및 그를 위한 초음파 시스템
EP4390841A1 (en) Image acquisition method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15891107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 12.01.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15891107

Country of ref document: EP

Kind code of ref document: A1