WO2016175552A1 - Method for preparing conductive resin composite, and conductive resin composite prepared thereby - Google Patents

Method for preparing conductive resin composite, and conductive resin composite prepared thereby Download PDF

Info

Publication number
WO2016175552A1
WO2016175552A1 PCT/KR2016/004406 KR2016004406W WO2016175552A1 WO 2016175552 A1 WO2016175552 A1 WO 2016175552A1 KR 2016004406 W KR2016004406 W KR 2016004406W WO 2016175552 A1 WO2016175552 A1 WO 2016175552A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
resin composite
based material
polymer resin
graphite
Prior art date
Application number
PCT/KR2016/004406
Other languages
French (fr)
Korean (ko)
Inventor
고석근
이철수
이정환
강병관
이성원
조북룡
Original Assignee
주식회사 지엘머티리얼즈
주식회사 화진
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 지엘머티리얼즈, 주식회사 화진 filed Critical 주식회사 지엘머티리얼즈
Publication of WO2016175552A1 publication Critical patent/WO2016175552A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Definitions

  • the present invention relates to a method for producing a conductive resin composite in which a carbon-based material is uniformly dispersed and a conductive resin composite produced thereby.
  • plastic materials Due to the development of science and technology, plastic materials have been used for the purpose of lightening and functionalizing materials in various fields. As the demand for improvement of electrical characteristics, thermal characteristics, and structural characteristics of plastic materials It is a fact that it is increasing.
  • the Green Cine electric vehicle is increasingly important to increase the distance traveled by a single charge through the lightening of the cooling system of the battery cell, especially the heat sink.
  • the housing of the electronic device is made of a polymer resin in various automobiles, antistatic property is required to avoid malfunction due to static electricity.
  • a conductive material is added to the polymer resin in order to selectively or simultaneously impart electrical and thermal conductivity.
  • the higher the aspect ratio of the conductive material to be added the higher the conductivity improvement effect can be obtained even with a smaller amount of additive used.
  • many shearing forces are required in processing.
  • conductive materials are not well dispersed in the resin and are dispersed in a specific portion. Therefore, in order to form a conductive path in the polymeric resin matrix, a larger amount of conductive material than the theoretical value must be used, which causes another problem such as a decrease in mechanical properties and an increase in cost.
  • the conductive property of the conductive carbon-based material / polymer resin composite is determined by the characteristics and the amount of the filler contained in the resin composite, And the nature of the conductive network across the polymer resin composite.
  • the conductive material as a filler must be well dispersed in the polymer resin and evenly dispersed in the polymer resin matrix (composite).
  • the carbon-based material is likely to be agglomerated by a strong van der Waals force. This causes degradation of the mechanical properties and thermal properties of the polymer resin composite. Therefore, it is very important to uniformly disperse the conductive carbon-based material in the polymer resin in the production of the conductive carbon-based material / polymer resin composite.
  • the thermally conductive additive when the thermally conductive additive is added to the polymer resin, the workability of the polymer resin decreases and the thermal conductivity increases as the amount of the additive increases. Even if the thermal conductivity improves, the amount of additive that can be added is limited because the function of the polymer raw material is lost if the processability is deteriorated. As a result, it is essential to prepare a thermally conductive additive having excellent dispersibility in order to improve the heat conductivity and the processability of the polymer resin.
  • An object of the present invention is to provide a method for producing a conductive resin composite having excellent electrical, thermal and mechanical properties by uniformly dispersing a carbon-based material and enhancing mutual affinity with a polymer resin.
  • a method of manufacturing a semiconductor device comprising: a) forming inorganic nanoparticles on a surface of a carbon-based material by physical vacuum deposition; And b) mixing the carbon-based material in which the inorganic nanoparticles are formed with a polymer resin to prepare a carbon-based material / polymer resin composite.
  • a method of manufacturing a carbon-based material comprising the steps of: a1) modifying a surface of a carbon-based material by injecting a reactive gas while irradiating an ion beam onto the surface of the carbon- And b1) preparing a carbon-based material / polymer resin composite by mixing the surface-modified carbon-based material with a polymer resin.
  • the present invention it is possible to mix the carbon-based material and the polymeric resin quickly and uniformly in the production of the carbon / polymer resin composite due to the excellent dispersibility of the functionalized carbon-based material, Can be produced.
  • the resin composite prepared according to the present invention has excellent compatibility with existing processes and can be easily applied to various application fields using existing manufacturing processes used in various plastic materials applications requiring electric conductivity or thermal conductivity.
  • the functional polymer resin composite produced according to the present invention has improved electrical conductivity, thermal conductivity, and mechanical properties, and can be used as a material for parts such as an electric / electronic device, thereby securing the safety of the device and increasing the efficiency.
  • Fig. 1 is a conceptual diagram of a process for forming inorganic nanoparticles on the surface of a powdery or granular carbonaceous material.
  • FIG. 2 is a schematic view of a vacuum deposition apparatus equipped with a stirring vessel for forming inorganic nanoparticles on the surface of a powdery or granular carbonaceous material according to an embodiment of the present invention.
  • FIG 3 is a schematic view of an apparatus for modifying the surface of a carbon-based material in powder or granular form using an ion beam and a reactive gas according to another embodiment of the present invention.
  • FIG. 4 is a photograph showing the dispersion state of conventional graphite powder and distilled water in the distilled water and the functional graphite (5% copper / graphite) powder produced by the method of the present invention.
  • Figure 5 is a photograph of a surface of conventional graphite powder and functional graphite (5% copper / graphite) powder.
  • FIG. 6 is a graph showing a change in processability and functionality of a general polymer composite resin depending on the amount of graphite added.
  • FIG. 7 is a photograph of the surface of graphite / epoxy and functional graphite / epoxy composite resin prepared according to the present invention.
  • 5% PVC means that the addition amount of the functional graphite powder is 5 vol% based on the volume of polyvinyl chloride (PVC).
  • a method of manufacturing a semiconductor device comprising the steps of: a) forming inorganic nanoparticles on a surface of a carbon-based material by physical vacuum deposition; And b) mixing the carbon-based material in which the inorganic nanoparticles are formed with a polymer resin to prepare a carbon / polymer resin composite.
  • inorganic nanoparticles are formed on the surface of the carbon-based material by physical vacuum deposition to produce a functional carbon-based powder.
  • the carbon-based material may be graphite, carbon nanotube, graphene, carbon black, carbon fiber, or a mixture of two or more thereof.
  • the carbon-based material is a material having both electrical conductivity and thermal conductivity, and may be a graphite, carbon nanotube, graphene, carbon black, carbon fiber, nano- or micro-sized metal wire, or a mixture of two or more thereof .
  • Graphite can be natural graphite, impression graphite, high crystalline graphite, synthetic graphite or a mixture thereof.
  • Graphite particles have a form in which a planar carbon layer is piled up with a weak van der Waals force and exhibits high electrical conductivity and disperses graphite particles in a resin composite to help form an electron transfer path, Effect can be obtained.
  • expanded graphite can be used.
  • Expanded graphite is also called nano-graphite or nano-structured graphite, in which graphite is oxidized into chromic acid and diluted sulfuric acid solution and heated so that water is accumulated between the graphite layers and expanded to 100 to 700% of the initial volume.
  • Expanded graphite has voids inside thereof and has very low dispersibility, but it is advantageous because it has excellent thermal conductivity and electrical conductivity.
  • Carbon nanotubes are classified as Single Walled Carbon Nanotubes (SWCNTs), Double Walled Carbon Nanotubes (DWCNTs), and Multi Walled Carbon Nanotubes (MWCNTs).
  • SWCNTs Single Walled Carbon Nanotubes
  • DWCNTs Double Walled Carbon Nanotubes
  • MWCNTs Multi Walled Carbon Nanotubes
  • SWCNTs Single Walled Carbon Nanotubes
  • DWCNTs Double Walled Carbon Nanotubes
  • MWCNTs Multi Walled Carbon Nanotubes
  • the graphene is a thin film type nano material in which atoms are intertwined like a wire net in a carbon layer, and the electrical, thermal and mechanical properties are excellent.
  • the carbon-based material has a particle size of 0.01 to 100 mu m, preferably 0.1 to 100 mu m.
  • a carbon-based material having a particle size exceeding 100 ⁇ m the carbon-based material can not be uniformly dispersed in the resin composite, resulting in deterioration of the physical properties of the resin composite, which is not preferable for use as an electrically conductive or thermally conductive material.
  • the carbon-based material is preferably a powdery or granular material having a purity of 99.0% or more.
  • the inorganic nanoparticles are nanosized inorganic materials.
  • the inorganic material may be, but is not necessarily limited to, silver, copper, brass, platinum, gold, palladium, nickel, cobalt, chromium, aluminum, lead or combinations thereof.
  • the inorganic nanoparticles may be conductive copper particles, conductive silver particles, conductive aluminum particles, lead (Pb) particles which are low-melting point metals having high resistance to corrosion, or the like, or a combination thereof, depending on the characteristics of the resin composite.
  • the step a) is performed in a vacuum deposition apparatus having a vacuum deposition vessel and an evaporation source.
  • FIG. 2 shows a vacuum deposition apparatus used for forming nanosized inorganic particles on the surface of a carbon-based powder according to the present invention.
  • the vacuum deposition apparatus disclosed in FIG. 2 includes a vacuum deposition chamber 1; A stirring tank (3) provided in the vacuum evaporation tank; A stirring blade (4) provided in the stirring tank and stirring the carbon-based powder; And an evaporation source (2) provided in the upper part of the stirring tank in the vacuum deposition tank and generating vapor particles for nanoparticle formation.
  • the shape of the stirring vanes provided in the stirring tank may be any one of a screw type, a paddle type, a turbine type, a propeller type, an anchor type, a ribbon ) Type, or the like, or a combination thereof.
  • the physical vacuum deposition method of step a) comprises the steps of: i) introducing the carbon-based powder into a stirring tank in a vacuum deposition chamber; ii) vacuum evacuation to perform a vacuum deposition process; iii) stirring the carbon-based powder; iv) generating evaporation particles for forming nano-sized inorganic particles using an evaporation source; And v) depositing the evaporation particles on the carbon-based powder to form inorganic particles.
  • the stirring speed of the carbon-based powder to be stirred by the stirring wing of the stirring tank is controlled to be 0.1 to 400 rpm.
  • the stirring speed within the above range, it is possible to control so that the carbon-based powder is pulverized due to impact or collision between the carbon-based powders so as not to cause aggregation of the carbon-based powder.
  • the working pressure of the vacuum deposition chamber is preferably adjusted to 5 ⁇ 10 -4 to 5 ⁇ 10 -3 torr.
  • the distance of mean free path of atomic particles becomes short, making it difficult for inorganic nanoparticles to form on the surface of graphite powder.
  • thermal evaporation E-beam evaporation
  • E-beam evaporation direct current sputtering
  • DC sputtering direct current sputtering
  • DC sputtering cathode arc vapor deposition
  • magnetron sputtering RF sputtering
  • ion beam sputtering molecular beam epitaxy
  • Discharge process laser ablation, or the like
  • the deposition of the evaporation particles on the carbon-based powder in the step v) may be performed after the inorganic particles are deposited on the carbon-based powder to form nuclei, and then the nuclei form nano-sized metal particles by the additional deposition of the metal particles
  • Inorganic particles or inorganic films are formed by depositing inorganic particles on the carbon-based powder part where inorganic particles are not deposited, or on the carbon-based powder part where inorganic particles are not deposited, Step.
  • the evaporation particles are deposited on the carbon-based powder to a thickness of 1 A to 10 mu m per unit area per minute.
  • the degree of vacuum of the vacuum deposition chamber is controlled by including an inert gas.
  • the inert gas may be argon (Ar), neon (Ne), N 2 , O 2, and the like.
  • the size of the inorganic particles formed on the carbon-based powder is preferably 1 to 100 nm.
  • the step a) includes the steps of: injecting graphite powder into a stirring tank in a vacuum evaporation tank; Performing vacuum evacuation to perform a vacuum deposition process; Stirring the graphite powder; Generating nano-sized metal particles or metal particles for forming a metal film by using an evaporation source; And a process for producing a functionalized graphite powder coated with an adhesive on a graphite powder surface which proceeds to a step of depositing metal particles on the surface of the graphite powder.
  • a high-purity impression graphite powder was placed in a vacuum deposition apparatus equipped with a stirring vessel, and a functional graphite powder having an adhered substance formed on the surface of graphite was prepared by the vacuum deposition method of the present invention.
  • the resulting adhesives on the graphite surface may be conductive copper particles, conductive silver particles, conductive aluminum particles, lead (Pb) particles which are low-melting metal with high corrosion resistance, or the like, or a combination thereof depending on the characteristics of the resin composite.
  • the production method of the present invention includes a step of mixing a carbon-based material in which inorganic nanoparticles are formed with a polymer resin to prepare a carbon-based material / polymer resin composite.
  • a nano-sized metal particle or metal film formed on the surface of graphite powder using physical vacuum vapor deposition that is, a resin filled with a polymer resin using graphite functionalized with a coating adhesive as a filler Complex.
  • the content of the carbon-based material used in the resin composite is preferably 1.0 to 20% by weight, and more preferably 5 to 10% by weight based on the weight of the resin composite. When the content is less than 1.0% by weight, And if it exceeds 20% by weight, the physical properties of the resin composite are deteriorated, which is not preferable for use as an electrically conductive or thermally conductive material.
  • the content of the carbon-based material used in the resin composite is preferably 1 to 20% by volume based on the volume of the polymer resin.
  • the content is less than 1% by volume, the effect on electrical properties is insignificant.
  • the content is more than 20% by volume, the physical properties of the resin composite are deteriorated, which is not preferable for use as an electrically conductive or thermally conductive material.
  • the polymer resin may be a thermoplastic or thermosetting polymer resin.
  • the thermoplastic polymer resin may be a polyacetal resin, an acrylic resin, a polycarbonate resin, a styrene resin, a polyester resin, a vinyl resin, a polyethylene resin, a polyphenylene ether resin, a polyolefin resin, a polyarylate resin, A polyether sulfone resin, a polyether sulfone resin, a polyether sulfone resin, a polyether sulfone resin, a polyether sulfone resin, a polyether sulfone resin, a polyether sulfone resin, a polyether sulfone resin, a polyether sulfone resin, A polypyrrolidine resin, a polypyrrolidine resin, a polydibenzofuran resin, a polysulfone resin, a polyurea resin, a polyphosphazene resin, or a liquid crystal polymer resin alone or in combination of two or more of these resins. May be copoly
  • thermosetting polymer resin may be selected from the group consisting of epoxy resin, urethane resin, bismaleimide resin, ester resin, phenol resin and urea resin, and mixtures thereof.
  • the content of the polymer resin used in the resin composite is 85.0 to 98.9% by weight, preferably 90 to 97.7% by weight. If it is contained in an amount of less than 85.0% by weight, the characteristics specific to the polymer such as impact resistance and elongation can not be exhibited. If it exceeds 98.9% by weight, the electrical conductivity is not sufficiently improved.
  • the mixing of the carbon-based material in which the inorganic nanoparticles of step b) is formed and the polymer resin is a melt-shearing-kneading process.
  • the carbon-based material / polymer resin pellets are produced by uniformly dispersing the carbon-based material into the polymer at a high temperature and a high shear force by using an extruder or the like to increase the capacity and lower the manufacturing cost .
  • the mixing of the carbon-based material formed with the inorganic nanoparticles of step b) and the polymer resin may be performed by dispersing the carbon-based material in the polymer resin and curing the carbon-based material.
  • Another aspect of the present invention is a method for manufacturing a carbon-based material, comprising the steps of: a1) modifying a surface of a carbon-based material by injecting a reactive gas while irradiating an ion beam onto the surface of the carbon- And b1) preparing a carbon / polymer resin composite by mixing the surface-modified carbon-based material and the polymer resin to produce a carbon / polymer resin composite.
  • the step a1) comprises the steps of: i) introducing the carbon-based powder into a stirring tank in a vacuum evaporation tank; ii) vacuum evacuation to perform a vacuum deposition process; iii) stirring the carbon-based powder; And iv) a step of modifying the surface of the carbon-based powder by injecting a reactive gas while irradiating the surface of the carbon-based powder with an ion beam using an ion source or an ion gun.
  • the reactive gas may be oxygen, nitrogen, ammonia, or a mixed gas thereof.
  • Another aspect of the present invention provides a conductive resin composite comprising a carbon-based material in which inorganic nanoparticles formed according to the above-described method are formed, and a polymer resin.
  • the conductive resin composite may be used as a material for components such as electric / electronic devices in the form of pellets.
  • the conductive resin composite was used as a metal graphite brush material.
  • the conductive resin composite was used as an electrode material for a redox flow cell.
  • Another aspect of the present invention provides a polymer resin molded article produced using the conductive resin composite.
  • the product form of the polymer resin molded article may be embodied without limitation as long as it is in the form of a polymer resin molded article which can be used for an electrically conductive or thermally conductive material.
  • the functional graphite powder was dispersed in distilled water to evaluate the degree of dispersion.
  • FIG. 4 is a photograph showing the dispersion state of conventional graphite powder and the above-mentioned functional graphite (5 wt% copper / graphite) powder in distilled water.
  • conventional graphite powders are not dispersed in distilled water but are concentrated on the surface of water, but the functional graphite (5 wt% copper / graphite) powders are well dispersed throughout the distilled water. From this, it can be seen that the surface energy of the graphite powder was increased by the copper nanoparticles formed on the surface of the graphite powder, and the surface property of the graphite powder was changed from hydrophobic to hydrophilic.
  • the surface of the graphite was analyzed by an electron microscope to confirm the surface state of the functional graphite (5 wt% copper / graphite) powder.
  • FIG. 5 is a photograph of the surface of conventional graphite powder and the above-mentioned functional graphite (5% copper / graphite) powder.
  • the surface of the conventional graphite powder has a surface with a low surface roughness
  • the surface of the functional graphite has a rough surface with increased roughness due to the formation of copper nanoparticles have.
  • the functional graphite powder and polyvinyl chloride (PVC) were mixed and melt-shear kneaded to prepare PVC / graphite pellets.
  • the addition amount of the functional graphite powder was 5 vol% based on the volume of polyvinyl chloride (PVC).
  • the functional graphite powder and polyvinyl chloride (PVC) were mixed and melt-shear kneaded to prepare PVC / graphite pellets.
  • the addition amount of the functional graphite powder was 10% by volume based on the volume of polyvinyl chloride (PVC).
  • the functional graphite powder and polyethylene (PE) were mixed and melt-shear kneaded to prepare PE / graphite pellets.
  • the addition amount of the functional graphite powder was 10% by volume based on the volume of polyethylene (PE).
  • the functional graphite powder and polyethylene (PE) were mixed and melt-shear kneaded to prepare PE / graphite pellets.
  • the addition amount of the functional graphite powder was 15 vol% based on the volume of the polyethylene (PE).
  • the functional graphite powder and the epoxy resin were mixed and melt-shear kneaded to prepare a resin composite.
  • the amount of the functional graphite powder added was 5 vol% based on the volume of the epoxy resin.
  • the surface of the resin composite was analyzed by an optical microscope. Referring to FIG. 7, it can be seen that, in the case of ordinary graphite powder, when mixed with an epoxy resin, they are not mixed as a whole and are gathered at a specific position. On the other hand, it can be confirmed that the functional graphite powder prepared according to the present invention is uniformly mixed with the epoxy as a whole.
  • Example 1 Example 2
  • Example 3 Example 4 Maximum modulus of elasticity modulus -6% -20% + 10% + 9% Maximum increase rate of tensile strength -24% -22% -31% -29% Maximum rate of change in tensile strain -38% -36% -37% -32%
  • the mechanical properties are deteriorated by 50% or more by adding 10 vol%.
  • the resin complexes of Examples 1 to 4 to which the functional graphite powder was added, The coefficient, the tensile strength and the reduction rate of the tensile strain were significantly lower.
  • the resin complexes prepared according to Examples 3 to 4 exhibited increased elastic modulus values of 10% and 9%, respectively. Therefore, it was confirmed that the resin composite produced according to the present invention has superior performance to the conventional product.

Abstract

The present invention relates to a method for preparing a conductive resin composite, comprising the steps of: a) forming inorganic nanoparticles on the surface of a carbon-based material by using a physical vacuum deposition method; and b) preparing a carbon-based material/polymer resin composite by mixing the carbon-based material, having inorganic nanoparticles formed thereon, and a polymer resin.

Description

전도성 수지 복합체의 제조방법 및 이에 따라 제조한 전도성 수지 복합체METHOD OF MANUFACTURING CONDUCTIVE RESIN COMPOSITE AND CONDUCTIVE RESIN COMPOSITE THEREFROM
본 발명은 탄소계 재료가 균일하게 분산된 전도성 수지 복합체의 제조방법 및 이에 따라 제조한 전도성 수지 복합체에 관한 것이다.The present invention relates to a method for producing a conductive resin composite in which a carbon-based material is uniformly dispersed and a conductive resin composite produced thereby.
과학 기술의 발달로 인해 다양한 분야에서 소재의 경량화 및 기능화 목적으로 플라스틱 소재가 사용되고 있으며, 다양한 분야에서의 사용을 위해 플라스틱 소재의 전기적인 특성, 열적인 특성, 및 구조적인 특성 등의 개선 요구가 갈수록 증대되고 있는 실정이다.Due to the development of science and technology, plastic materials have been used for the purpose of lightening and functionalizing materials in various fields. As the demand for improvement of electrical characteristics, thermal characteristics, and structural characteristics of plastic materials It is a fact that it is increasing.
예를 들어 자동차의 경우, 주행과 관련된 전자 제어시스템 뿐만 아니라 각종 안전장치 및 편의 장치를 장착하고 있는데, 전자장치에서 발생하는 열을 효율적으로 방출하는 소재가 요구되고 있다. 특히 그린카인 전기 자동차는 배터리 셀의 냉각시스템, 특히 방열판의 경량화를 통해 1회 충전으로 주행할 수 있는 주행거리의 증대가 중요시되고 있다. 또한 각종 자동차 내에 전자기기의 하우징을 고분자 수지로 하는 경우 정전기에 의한 오작동을 피하기 위해 대전 방지성이 필요하게 된다.For example, in the case of an automobile, various safety devices and convenience devices as well as an electronic control system related to driving are mounted, and materials for efficiently emitting heat generated from electronic devices are required. Particularly, the Green Cine electric vehicle is increasingly important to increase the distance traveled by a single charge through the lightening of the cooling system of the battery cell, especially the heat sink. Also, when the housing of the electronic device is made of a polymer resin in various automobiles, antistatic property is required to avoid malfunction due to static electricity.
최근 전자기기들의 기능 및 성능이 향상됨에 따라, 전자부품들의 전력소비 및 발열량이 증가하고 있는데, 전자기기의 회로기판 위에 탑재된 발열체와 방열체(heat discharging bodies)사이에, 상기 발열체로부터 발생되는 열을 방출시키기 위해, 열전도성 시트, 열전도성 그리스(grease), 열전도성 부착제, 열전도성이 있는 상변화 부재(phase change members) 등이 삽입되고 있다. BACKGROUND ART [0002] With recent improvements in function and performance of electronic devices, electric power consumption and heat generation of electronic components are increasing. The heat generated between the heat generating bodies mounted on the circuit boards of electronic devices and heat discharging bodies, A thermally conductive sheet, a thermally conductive grease, a thermally conductive adhesive, a thermally conductive phase change member, and the like are inserted in order to emit light.
한편, 전자기기의 크기와 두께가 감소함에 따라, 회로기판과 같은 부재를 배치하기 위한 전자기기 하우징(housing) 내의 공간이 점점 더 협소해지고 있다. 따라서, 하우징 내의 제한된 공간에서 발열체에 의해 발생되는 열을 효과적으로 확산시키기 위해서는, 얇고 경량의 흑연, 탄소계 재료, 또는 금속물질로 제조된 열확산 시트(thermal diffusion sheets) 등이 요구되고 있다.On the other hand, as the size and thickness of electronic devices have decreased, the space within the electronics housing for placing members such as circuit boards has become increasingly narrow. Therefore, in order to effectively diffuse the heat generated by the heating element in the limited space in the housing, there is a demand for thin and lightweight graphite, carbon-based material, or thermal diffusion sheets made of a metal material.
일반적으로 고분자 수지에 전기 및 열전도성을 선택적 혹은 동시에 부여하기 위하여 전도성 재료를 첨가 사용하게 된다. 일반적으로 첨가되는 전도성 재료의 어스펙트비(aspect ratio)가 클수록 보다 적은 양의 첨가제 사용량으로도 높은 전도성 향상 효과를 얻을 수 있다. 그러나, 균일한 분산을 위하여 가공시 많은 전단력을 필요로 하며 일반적인 전도성 재료의 경우 수지 내에서 분산이 잘 이루어지지 않고 특정 부분에 응집되기 때문에 분산에 한계가 있다. 따라서 고분자 수지 매트릭스 내에서 전도성 경로를 형성시키기 위해서는 이론치보다 더 많은 양의 전도성 재료를 사용하여야 하고, 이로 인하여 기계적 물성 저하 및 비용 상승과 같은 또 다른 문제를 야기한다.In general, a conductive material is added to the polymer resin in order to selectively or simultaneously impart electrical and thermal conductivity. Generally, the higher the aspect ratio of the conductive material to be added, the higher the conductivity improvement effect can be obtained even with a smaller amount of additive used. However, in order to achieve uniform dispersion, many shearing forces are required in processing. In general, conductive materials are not well dispersed in the resin and are dispersed in a specific portion. Therefore, in order to form a conductive path in the polymeric resin matrix, a larger amount of conductive material than the theoretical value must be used, which causes another problem such as a decrease in mechanical properties and an increase in cost.
한편, 고분자 수지의 전기전도성 혹은 열전도성을 증진시키기 위하여 탄소계 재료를 첨가하는 경우, 전도성 탄소계 물질/고분자 수지 복합체의 도전 특성은 수지 복합체 속에 들어있는 충전재의 특성과 첨가량에 의해 결정되며, 또한 고분자 수지 복합체 전반에 걸쳐 있는 도전 네트워크(network)의 특성에 의해 좌우된다고 할 수 있다. 최적의 물성을 발현하는 전도성 네트워크를 얻으려면 충전재인 전도성 재료가 고분자 수지에 충분히 잘 섞여 고분자 수지 매트릭스 (복합체) 내에 고르게 분산되어 있어야 한다.On the other hand, when the carbon-based material is added to improve the electrical conductivity or thermal conductivity of the polymer resin, the conductive property of the conductive carbon-based material / polymer resin composite is determined by the characteristics and the amount of the filler contained in the resin composite, And the nature of the conductive network across the polymer resin composite. In order to obtain a conductive network that exhibits optimum physical properties, the conductive material as a filler must be well dispersed in the polymer resin and evenly dispersed in the polymer resin matrix (composite).
그런데, 탄소계 재료는 강한 반데르발스 힘(van der Waals force)에 의해 응집되기 쉽다. 이는 고분자 수지 복합체의 기계적 물성 및 열적 특성을 저하시키는 원인이 되므로, 전도성 탄소계 재료/고분자수지 복합체를 제조함에 있어, 고분자 수지 내에 전도성 탄소계 재료를 균일하게 분산시키는 것이 매우 중요하다. However, the carbon-based material is likely to be agglomerated by a strong van der Waals force. This causes degradation of the mechanical properties and thermal properties of the polymer resin composite. Therefore, it is very important to uniformly disperse the conductive carbon-based material in the polymer resin in the production of the conductive carbon-based material / polymer resin composite.
현재 수지 복합체의 열전도도를 증가시키기 위하여 팽창흑연을 고분자 수지에 첨가하는 것이 당업계에 일반적으로 알려져 있다. 그러나 팽창흑연을 고분자 물질에 첨가할 경우, 작업 곤란성 및 가공 곤란성, 낮은 윤활특성, 낮은 산화 저항성 및 먼지가 잘 달라붙음 등의 단점이 있다. 특히 고분자 컴파운더(compounder)에서 팽창흑연을 가공할 때는 팽창흑연을 포함한 고분자의 압출이 곤란해지는 유동성 문제가 발생한다. Currently, it is generally known in the art to add expanded graphite to polymer resins to increase the thermal conductivity of the resin composite. However, when expanded graphite is added to a polymer material, it has disadvantages such as difficulty in working and difficulty in processing, low lubrication property, low oxidation resistance, and adhesion of dust. Particularly, when the expanded graphite is processed in a polymeric compounder, there arises a fluidity problem that makes it difficult to extrude the polymer including expanded graphite.
또한, 일반적으로 흑연과 같은 첨가물을 고분자 수지와 혼합 시 첨가물의 양이 10% 정도만 되어도 고분자 수지의 굽힙강도(flexural strength) 및 충격강도 (impact strength) 등 기계적인 물성이 50% 이상 감소하게 된다. 이러한 결과의 원인은 흑연분말이 고분자 수지 내에서 균일하게 분포하지 못한 것에 기인한 것으로 판단된다. In general, when additives such as graphite are mixed with a polymer resin, the mechanical properties such as flexural strength and impact strength of the polymer resin are reduced by 50% or more even if the amount of additives is only about 10%. These results are attributed to the fact that the graphite powder was not uniformly distributed in the polymer resin.
일반적으로 고분자 수지 내에 열전도성 첨가물을 첨가할 때 첨가물의 양이 증가할수록 고분자 수지에 대한 가공성이 떨어지고 열전도도는 증가하게 된다. 열전도성이 좋아지더라도 가공성이 나빠지게 되면 고분자 원재료의 기능을 잃어버리기 때문에 투입할 수 있는 첨가물의 양은 제한적이다. 결과적으로 고분자 수지의 가공성이 우수하면서 열전도성을 개선하기 위해서는 분산성이 우수한 열전도성 첨가물의 제조가 필수적이다.Generally, when the thermally conductive additive is added to the polymer resin, the workability of the polymer resin decreases and the thermal conductivity increases as the amount of the additive increases. Even if the thermal conductivity improves, the amount of additive that can be added is limited because the function of the polymer raw material is lost if the processability is deteriorated. As a result, it is essential to prepare a thermally conductive additive having excellent dispersibility in order to improve the heat conductivity and the processability of the polymer resin.
이에 따라, 현재 이 분야에서는 전도성 탄소계 재료를 고분자 수지 내에 균일하게 분산시키고 고분자 수지와의 상호 친화력을 향상시키기 위한 방법에 관한 지속적인 요구가 있다.Accordingly, there is a continuing need in the art for a method for uniformly dispersing a conductive carbon-based material in a polymeric resin and improving the mutual affinity with the polymeric resin.
본 발명은 탄소계 재료가 균일하게 분산되고 고분자 수지와의 상호 친화력이 향상되어 우수한 전기적, 열적 및 기계적 물성을 갖는 전도성 수지 복합체의 제조방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a method for producing a conductive resin composite having excellent electrical, thermal and mechanical properties by uniformly dispersing a carbon-based material and enhancing mutual affinity with a polymer resin.
상기 목적을 달성하기 위하여, 본 발명의 일 측면은 a)탄소계 재료의 표면에 물리적인 진공 증착법을 이용하여 무기물 나노입자를 형성하는 단계; 및 b)상기 무기물 나노입자가 형성된 탄소계 재료와 고분자 수지를 혼합하여 탄소계 재료/고분자 수지 복합체를 제조하는 단계를 포함하는 것을 특징으로 하는 전도성 수지 복합체의 제조방법을 제공한다.According to an aspect of the present invention, there is provided a method of manufacturing a semiconductor device, comprising: a) forming inorganic nanoparticles on a surface of a carbon-based material by physical vacuum deposition; And b) mixing the carbon-based material in which the inorganic nanoparticles are formed with a polymer resin to prepare a carbon-based material / polymer resin composite.
또한, 본 발명의 다른 측면은 a1)탄소계 재료의 표면에 이온 빔을 조사하면서 반응성 가스를 주입하여 탄소계 재료 표면을 개질하는 단계; 및 b1)상기 표면이 개질된 탄소계 재료와 고분자 수지를 혼합하여 탄소계 재료/고분자 수지 복합체를 제조하는 단계를 포함하는 것을 특징으로 하는 전도성 수지 복합체의 제조방법을 제공한다.According to another aspect of the present invention, there is provided a method of manufacturing a carbon-based material, comprising the steps of: a1) modifying a surface of a carbon-based material by injecting a reactive gas while irradiating an ion beam onto the surface of the carbon- And b1) preparing a carbon-based material / polymer resin composite by mixing the surface-modified carbon-based material with a polymer resin.
본 발명에 따르면 기능화된 탄소계 소재의 뛰어난 분산성으로 인하여 탄소/고분자 수지복합체를 제조 시 빠르고 균일하게 탄소계 소재와 고분자 수지의 혼합을 가능하게 하여 탄소계 소재가 고분자 수지의 내부에 균일하게 분산된 수지 복합체를 제조할 수 있다. According to the present invention, it is possible to mix the carbon-based material and the polymeric resin quickly and uniformly in the production of the carbon / polymer resin composite due to the excellent dispersibility of the functionalized carbon-based material, Can be produced.
본 발명에 따라 제조된 수지 복합체는 기존공정과의 호환성이 우수하므로 전기전도성 혹은 열전도성이 요구되는 다양한 플라스틱 소재 응용분야에서 이용되는 기존의 제조공정을 이용하여 다양한 응용분야에 쉽게 적용할 수 있다.The resin composite prepared according to the present invention has excellent compatibility with existing processes and can be easily applied to various application fields using existing manufacturing processes used in various plastic materials applications requiring electric conductivity or thermal conductivity.
본 발명에 따라 제조된 기능성 고분자 수지 복합체는 전기전도성 및 열전도성, 기계적 물성이 개선되어 전기/전자 장치 등의 부품의 소재로 사용하여 장치의 안전성을 확보하고 효율을 증대시키는 효과를 나타낼 수 있다.The functional polymer resin composite produced according to the present invention has improved electrical conductivity, thermal conductivity, and mechanical properties, and can be used as a material for parts such as an electric / electronic device, thereby securing the safety of the device and increasing the efficiency.
도 1은 분말 또는 입상 형태의 탄소계 재료의 표면에 무기물 나노입자를 형성시키는 공정에 대한 개념도이다.Fig. 1 is a conceptual diagram of a process for forming inorganic nanoparticles on the surface of a powdery or granular carbonaceous material.
도 2는 본 발명의 일 실시예에 따라 분말 또는 입상 형태의 탄소계 재료의 표면에 무기물 나노입자를 형성하는 교반용기를 갖춘 진공증착 장치의 개략도이다.2 is a schematic view of a vacuum deposition apparatus equipped with a stirring vessel for forming inorganic nanoparticles on the surface of a powdery or granular carbonaceous material according to an embodiment of the present invention.
도 3은 본 발명의 다른 실시예에 따라 분말 또는 입상 형태의 탄소계 재료의 표면을 이온빔과 반응성 가스를 이용하여 개질하는 장치의 개략도이다.3 is a schematic view of an apparatus for modifying the surface of a carbon-based material in powder or granular form using an ion beam and a reactive gas according to another embodiment of the present invention.
도 4는 증류수 내에서 종래의 흑연분말 및 본 발명 방법으로 제조한 기능성 흑연(5% 구리/흑연) 분말의 분산상태를 보여주는 사진이다.4 is a photograph showing the dispersion state of conventional graphite powder and distilled water in the distilled water and the functional graphite (5% copper / graphite) powder produced by the method of the present invention.
도 5는 종래의 흑연분말 및 기능성 흑연(5% 구리/흑연) 분말의 표면사진이다.Figure 5 is a photograph of a surface of conventional graphite powder and functional graphite (5% copper / graphite) powder.
도 6은 흑연의 첨가량에 따른 일반적인 고분자 복합수지의 가공성 및 기능성에 대한 변화 그래프이다.FIG. 6 is a graph showing a change in processability and functionality of a general polymer composite resin depending on the amount of graphite added.
도 7은 본 발명에 따라 제조한 흑연/에폭시 및 기능성 흑연/에폭시 복합수지의 표면사진이다.7 is a photograph of the surface of graphite / epoxy and functional graphite / epoxy composite resin prepared according to the present invention.
도 8은 본 발명에 따라 PVC 및 PE에 기능성 흑연 분말을 첨가하여 제조된 고분자 수지 복합체의 탄성계수(elastic modulus), 인장강도(tensile strength) 및 인장변형(tensile strain)의 변화 그래프이다. 도면에서 PVC 5%는 기능성 흑연 분말의 첨가량이 폴리비닐클로라이드(PVC)의 부피에 대하여 5 부피%인 경우를 의미한다.8 is a graph showing changes in elastic modulus, tensile strength, and tensile strain of a polymer resin composite prepared by adding functional graphite powder to PVC and PE according to the present invention. In the figure, 5% PVC means that the addition amount of the functional graphite powder is 5 vol% based on the volume of polyvinyl chloride (PVC).
<부호의 설명><Description of Symbols>
1: 진공 증착조1: Vacuum deposition vessel
2: 증착원2: evaporation source
3: 교반조3: stirring tank
4: 교반날개4: stirring blade
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명의 일 측면은, a)탄소계 재료의 표면에 물리적인 진공 증착법을 이용하여 무기물 나노입자를 형성하는 단계; 및 b)상기 무기물 나노입자가 형성된 탄소계 재료와 고분자 수지를 혼합하여 탄소/고분자 수지 복합체를 제조하는 단계를 포함하는 것을 특징으로 하는 전도성 수지 복합체의 제조방법을 제공한다.According to an aspect of the present invention, there is provided a method of manufacturing a semiconductor device, comprising the steps of: a) forming inorganic nanoparticles on a surface of a carbon-based material by physical vacuum deposition; And b) mixing the carbon-based material in which the inorganic nanoparticles are formed with a polymer resin to prepare a carbon / polymer resin composite.
상기 a)단계는 탄소계 재료의 표면에 물리적인 진공 증착법을 이용하여 무기물 나노입자를 형성하여 기능성 탄소계 분말을 제조하는 단계이다.In the step a), inorganic nanoparticles are formed on the surface of the carbon-based material by physical vacuum deposition to produce a functional carbon-based powder.
상기 탄소계 재료는 흑연, 탄소나노튜브, 그라핀, 카본블랙, 탄소섬유 혹은 이들의 2 종 이상의 혼합물질일 수 있다.The carbon-based material may be graphite, carbon nanotube, graphene, carbon black, carbon fiber, or a mixture of two or more thereof.
상기 탄소계 재료는 전기전도성 및 열전도성을 동시에 갖는 재료로서, 흑연, 탄소나노튜브, 그라핀, 카본블랙, 탄소섬유, 나노- 또는 마이크로- 크기의 금속와이어, 또는 이들의 2종 이상의 혼합재료일 수 있다.The carbon-based material is a material having both electrical conductivity and thermal conductivity, and may be a graphite, carbon nanotube, graphene, carbon black, carbon fiber, nano- or micro-sized metal wire, or a mixture of two or more thereof .
흑연은 천연흑연인 인상흑연, 고결정질 흑연, 합성 흑연 또는 이들의 혼합물이 사용될 수 있다. Graphite can be natural graphite, impression graphite, high crystalline graphite, synthetic graphite or a mixture thereof.
흑연 입자는 평면의 탄소층이 층층이 쌓여 약한 반데르발스 힘으로 결합되어 있는 형태를 가지며, 높은 전기전도성을 보이고, 수지 복합체에 흑연 입자가 분산됨으로써 전자 이동 경로가 형성되는데 도움을 주어 전기전도성 향상에 효과를 얻을 수 있다. Graphite particles have a form in which a planar carbon layer is piled up with a weak van der Waals force and exhibits high electrical conductivity and disperses graphite particles in a resin composite to help form an electron transfer path, Effect can be obtained.
본 발명의 바람직한 구체예에서는, 팽창 흑연을 사용할 수 있다. 팽창 흑연은 나노 흑연, 또는 나노 구조 흑연이라고도 하는데, 결정질 흑연을 크롬산 및 묽은 황산 용액에 산화하고, 가열하여 물이 흑연의 층 사이에 집적되어 초기 부피에 비해 100~700%로 팽창되어진 흑연이다. 팽창 흑연은 그 내부에 공극을 포함하고 있고 분산성이 매우 낮은 특성이 있으나, 열전도 및 전기전도 특성이 우수하여 유리하다. In a preferred embodiment of the present invention, expanded graphite can be used. Expanded graphite is also called nano-graphite or nano-structured graphite, in which graphite is oxidized into chromic acid and diluted sulfuric acid solution and heated so that water is accumulated between the graphite layers and expanded to 100 to 700% of the initial volume. Expanded graphite has voids inside thereof and has very low dispersibility, but it is advantageous because it has excellent thermal conductivity and electrical conductivity.
탄소나노튜브(CNT)는 단일벽 탄소나노튜브(Single Walled Carbon Nanotube: SWCNT), 이중벽 탄소나노튜브(Double Walled Carbon Nanotube : DWCNT), 다층벽 탄소나노튜브(Multi Walled Carbon Nanotube : MWCNT)로 분류될 수 있다. 고분자 수지의 충전재로 사용할 때는 SWCNT, DWCNT, MWCNT로 각각 사용되거나 또는 이들의 혼합물일 수 있고, 그 크기는 수지 복합체의 용도에 따라 다양하게 선택하여 사용할 수 있다. Carbon nanotubes (CNTs) are classified as Single Walled Carbon Nanotubes (SWCNTs), Double Walled Carbon Nanotubes (DWCNTs), and Multi Walled Carbon Nanotubes (MWCNTs). . When it is used as a filler for a polymer resin, it may be used as SWCNT, DWCNT, MWCNT, or a mixture thereof. The size may be selected variously depending on the use of the resin composite.
그라핀은 하나의 탄소층에 원자들이 철망처럼 얽혀 있는 얇은 막 형태의 나노소재로서, 전기적ㆍ열적ㆍ기계적 성질이 탁월하다.The graphene is a thin film type nano material in which atoms are intertwined like a wire net in a carbon layer, and the electrical, thermal and mechanical properties are excellent.
상기 탄소계 재료는 0.01 ㎛ 내지 100 ㎛의 입자 크기, 바람직하게는 0.1 내지 100㎛의 입자크기를 갖는다. 100 ㎛를 초과하는 탄소계 재료를 사용할 경우, 수지 복합체 내에 탄소계 재료가 균일하게 분산될 수 없어 수지 복합체의 물성이 저하되어 전기전도성 또는 열전도성 소재로 사용하기에 바람직하지 못하다.The carbon-based material has a particle size of 0.01 to 100 mu m, preferably 0.1 to 100 mu m. When a carbon-based material having a particle size exceeding 100 μm is used, the carbon-based material can not be uniformly dispersed in the resin composite, resulting in deterioration of the physical properties of the resin composite, which is not preferable for use as an electrically conductive or thermally conductive material.
상기 탄소계 재료는 99.0% 이상의 순도를 가지는 분말 또는 입상 형태의 재료가 바람직하다.The carbon-based material is preferably a powdery or granular material having a purity of 99.0% or more.
상기 무기물 나노입자는 나노 크기의 무기물 재료이다. 상기 무기물 재료는 은, 구리, 황동, 백금, 금, 팔라듐, 니켈, 코발트, 크롬, 알미늄, 납 또는 이들의 조합일 수 있으나, 반드시 이에 제한되지는 않는다.The inorganic nanoparticles are nanosized inorganic materials. The inorganic material may be, but is not necessarily limited to, silver, copper, brass, platinum, gold, palladium, nickel, cobalt, chromium, aluminum, lead or combinations thereof.
바람직하게는, 상기 무기물 나노입자는 수지 복합체의 특성에 따라 전도성 구리 입자, 전도성 은 입자, 전도성 알루미늄 입자, 내부식성이 강한 저융점 금속인 납(Pb)입자 등 또는 이들의 조합일 수 있다.Preferably, the inorganic nanoparticles may be conductive copper particles, conductive silver particles, conductive aluminum particles, lead (Pb) particles which are low-melting point metals having high resistance to corrosion, or the like, or a combination thereof, depending on the characteristics of the resin composite.
상기 a) 단계는 진공 증착조와 증착원을 구비한 진공 증착 장치에서 진행된다. The step a) is performed in a vacuum deposition apparatus having a vacuum deposition vessel and an evaporation source.
도 2는 본 발명에 따라 탄소계 분말 표면에 나노 크기의 무기물 입자를 형성하기 위해 사용되는 진공증착장치에 관한 것이다. 도 2에 개시된 진공증착장치는 진공 증착조(1); 상기 진공 증착조 내에 구비된 교반조(3); 상기 교반조 내에 구비되고 탄소계 분말을 교반하는 교반날개(4); 및 상기 진공 증착조 내에 교반조 상부에 구비되고 나노입자 형성을 위한 증기 입자를 발생시키는 증착원(2)으로 구성된다.2 shows a vacuum deposition apparatus used for forming nanosized inorganic particles on the surface of a carbon-based powder according to the present invention. The vacuum deposition apparatus disclosed in FIG. 2 includes a vacuum deposition chamber 1; A stirring tank (3) provided in the vacuum evaporation tank; A stirring blade (4) provided in the stirring tank and stirring the carbon-based powder; And an evaporation source (2) provided in the upper part of the stirring tank in the vacuum deposition tank and generating vapor particles for nanoparticle formation.
상기 교반조에 구비되는 교반날개의 형상은 담체의 종류 및 특성에 따라 스크류(screw) 타입, 페달(paddle) 타입, 터빈(turbine) 타입, 프로펠러(propeller) 타입, 앙카(anchor) 타입, 리본(ribbon) 타입 등 또는 이들의 조합일 수 있다. The shape of the stirring vanes provided in the stirring tank may be any one of a screw type, a paddle type, a turbine type, a propeller type, an anchor type, a ribbon ) Type, or the like, or a combination thereof.
본 발명의 바람직한 구체예에서, 상기 단계 a)의 물리적인 진공 증착법은 i)탄소계 분말을 진공 증착조 내의 교반조에 투입하는 단계; ii)진공증착 공정을 수행하기 위하여 진공배기를 하는 단계; iii)상기 탄소계 분말을 교반하는 단계; iv)증착원을 이용하여 나노 크기의 무기물 입자 형성을 위한 증발 입자를 발생시키는 단계; 및 v)상기 탄소계 분말 상에 상기 증발 입자를 증착하여 무기물 입자를 형성하는 단계로 진행될 수 있다.In a preferred embodiment of the present invention, the physical vacuum deposition method of step a) comprises the steps of: i) introducing the carbon-based powder into a stirring tank in a vacuum deposition chamber; ii) vacuum evacuation to perform a vacuum deposition process; iii) stirring the carbon-based powder; iv) generating evaporation particles for forming nano-sized inorganic particles using an evaporation source; And v) depositing the evaporation particles on the carbon-based powder to form inorganic particles.
상기 iii)단계에서 교반조는 탄소계 분말이 교반조의 교반날개에 의하여 교반되는 속도가 0.1 내지 400 rpm 이 되도록 제어되는 것이 바람직하다. 교반속도를 상기 범위 내에서 제어함으로써 탄소계 분말 간의 충격 또는 충돌로 인하여 탄소계 분말이 분쇄되어 탄소계 분말의 응집을 유발하지 않도록 조절할 수 있다.In the step iii), it is preferable that the stirring speed of the carbon-based powder to be stirred by the stirring wing of the stirring tank is controlled to be 0.1 to 400 rpm. By controlling the stirring speed within the above range, it is possible to control so that the carbon-based powder is pulverized due to impact or collision between the carbon-based powders so as not to cause aggregation of the carbon-based powder.
또한, 상기 진공 증착조의 작업진공도(working pressure)는 5 x 10-4 내지 5 x 10-3 torr로 조절되는 것이 바람직하다. 진공도가 5 x 10-3 torr 이하의 저진공에서는 원자 입자들의 평균 자유 행적의 거리가 짧아져서 무기물 나노입자들이 흑연분말의 표면에 형성되기가 어렵다.In addition, the working pressure of the vacuum deposition chamber is preferably adjusted to 5 × 10 -4 to 5 × 10 -3 torr. At low vacuum of 5 x 10 -3 torr or less, the distance of mean free path of atomic particles becomes short, making it difficult for inorganic nanoparticles to form on the surface of graphite powder.
상기 iv) 단계에서 무기물 나노 입자 형성을 위한 증발 입자를 발생시키기 위한 방법으로 열증착(Thermal Evaporation), 전자빔 증착(E-beam Evaporation), DC 스퍼터링(Direct Current Sputtering, DC Sputtering), 캐소드 아크 증착법(cathodic arc sputtering), DC 마그네트론 증착법(DC magnetron sputtering), RF 스퍼터링(Radio-Frequency Sputtering, RF Sputtering), 이온빔 스퍼터링(Ion Beam Sputtering), 분자빔 에피텍시(Molecular Beam Epitaxy), 아크방전법(Arc Discharge Process), 레이저 어블레이션(Laser Ablation) 등을 사용할 수 있다. As a method for generating evaporated particles for forming inorganic nanoparticles in the step iv), thermal evaporation, E-beam evaporation, direct current sputtering (DC sputtering), cathode arc vapor deposition (DC) magnetron sputtering, RF sputtering, ion beam sputtering, molecular beam epitaxy, arc discharge, Discharge process, laser ablation, or the like can be used.
상기 v)단계에서 탄소계 분말 상에 증발 입자를 증착하는 것은, 무기물 입자가 탄소계 분말상에 증착되어 핵을 형성하며, 이후 핵이 금속 입자의 추가적인 증착에 의해 나노 크기의 금속입자를 형성한 후에 탄소계 분말이 교반, 회전되어 혼합되며, 무기물 입자가 증착되지 않은 새로운 탄소계 분말상, 또는 무기물 입자가 증착되지 않은 탄소계 분말 부위에 무기물 입자가 증착됨으로써, 나노 크기의 무기물 입자 또는 무기물 막을 형성하는 단계일 수 있다.The deposition of the evaporation particles on the carbon-based powder in the step v) may be performed after the inorganic particles are deposited on the carbon-based powder to form nuclei, and then the nuclei form nano-sized metal particles by the additional deposition of the metal particles Inorganic particles or inorganic films are formed by depositing inorganic particles on the carbon-based powder part where inorganic particles are not deposited, or on the carbon-based powder part where inorganic particles are not deposited, Step.
바람직하게는, 상기 v)단계에서 증발 입자는 탄소계 분말 상에 분당 단위면적당 1 Å 내지 10 ㎛ 두께로 증착된다.Preferably, in the step v), the evaporation particles are deposited on the carbon-based powder to a thickness of 1 A to 10 mu m per unit area per minute.
진공 증착조의 진공도는 불활성 가스를 포함시켜 조절하며, 불활성 가스는 아르곤(Ar), 네온(Ne), N2, O2 등일 수 있으나, 반드시 이에 제한되지는 않는다.The degree of vacuum of the vacuum deposition chamber is controlled by including an inert gas. The inert gas may be argon (Ar), neon (Ne), N 2 , O 2, and the like.
상기 탄소계 분말 상에 형성되는 무기물 입자의 크기는 1~100 nm인 것이 바람직하다.The size of the inorganic particles formed on the carbon-based powder is preferably 1 to 100 nm.
본 발명의 바람직한 구체예에서, 상기 a)단계는 흑연 분말을 진공 증착조 내의 교반조에 투입하는 단계; 진공증착 공정을 수행하기 위하여 진공배기를 하는 단계; 흑연분말을 교반하는 단계; 증착원을 이용하여 나노 크기의 금속입자 또는 금속막 형성을 위한 금속 입자를 발생시키는 단계; 및 흑연 분말의 표면 상에 금속 입자를 증착하는 단계로 진행되는 흑연분말 표면상에 유착물로 코팅된 기능화된 흑연 분말의 제조방법일 수 있다.In a preferred embodiment of the present invention, the step a) includes the steps of: injecting graphite powder into a stirring tank in a vacuum evaporation tank; Performing vacuum evacuation to perform a vacuum deposition process; Stirring the graphite powder; Generating nano-sized metal particles or metal particles for forming a metal film by using an evaporation source; And a process for producing a functionalized graphite powder coated with an adhesive on a graphite powder surface which proceeds to a step of depositing metal particles on the surface of the graphite powder.
본 발명의 일 실시예에선, 고순도 인상흑연 분말을 교반용기를 갖춘 진공증착장치에 넣고 본 발명의 진공증착방법에 의해 흑연표면에 유착물이 생성된 기능성 흑연분말을 제조하였다.In one embodiment of the present invention, a high-purity impression graphite powder was placed in a vacuum deposition apparatus equipped with a stirring vessel, and a functional graphite powder having an adhered substance formed on the surface of graphite was prepared by the vacuum deposition method of the present invention.
흑연표면에 생성된 유착물은 수지 복합체의 특성에 따라 전도성 구리 입자, 전도성 은 입자, 전도성 알루미늄 입자, 내부식성이 강한 저융점 금속인 납(Pb)입자 등 또는 이들의 조합일 수 있다.The resulting adhesives on the graphite surface may be conductive copper particles, conductive silver particles, conductive aluminum particles, lead (Pb) particles which are low-melting metal with high corrosion resistance, or the like, or a combination thereof depending on the characteristics of the resin composite.
본 발명의 제조방법은 b) 무기물 나노입자가 형성된 탄소계 재료와 고분자 수지를 혼합하여 탄소계 재료/고분자 수지 복합체를 제조하는 단계를 포함한다.The production method of the present invention includes a step of mixing a carbon-based material in which inorganic nanoparticles are formed with a polymer resin to prepare a carbon-based material / polymer resin composite.
본 발명의 일 구체예에선, 물리적인 진공 증착법을 이용하여 흑연분말의 표면에 생성된 나노 크기의 금속입자 또는 금속막, 즉 코팅 유착물로 기능화된 흑연을 충전재로 사용하여 고분자 수지에 충전시킨 수지 복합체를 제조하였다.In one embodiment of the present invention, a nano-sized metal particle or metal film formed on the surface of graphite powder using physical vacuum vapor deposition, that is, a resin filled with a polymer resin using graphite functionalized with a coating adhesive as a filler Complex.
수지 복합체에 사용되는 탄소계 재료의 함량은 수지 복합체의 중량에 대하여 1.0 내지 20 중량%, 및 바람직하게는 5 내지 10 중량%로 포함되는 것이 바람직하며, 1.0 중량% 미만으로 포함될 경우, 전기적 성질에 대한 효과가 미미하며, 20 중량%를 초과하여 포함될 경우, 수지 복합체의 물성이 저하되어 전기전도성 또는 열전도성 소재로 사용하기에 바람직하지 못하다.The content of the carbon-based material used in the resin composite is preferably 1.0 to 20% by weight, and more preferably 5 to 10% by weight based on the weight of the resin composite. When the content is less than 1.0% by weight, And if it exceeds 20% by weight, the physical properties of the resin composite are deteriorated, which is not preferable for use as an electrically conductive or thermally conductive material.
다르게는, 수지 복합체에 사용되는 탄소계 재료의 함량은 고분자 수지의 부피에 대하여 1~20 부피%인 것이 바람직하다. 1 부피% 미만으로 포함될 경우, 전기적 성질에 대한 효과가 미미하며, 20 부피%를 초과하여 포함될 경우, 수지 복합체의 물성이 저하되어 전기전도성 또는 열전도성 소재로 사용하기에 바람직하지 못하다.Alternatively, the content of the carbon-based material used in the resin composite is preferably 1 to 20% by volume based on the volume of the polymer resin. When the content is less than 1% by volume, the effect on electrical properties is insignificant. When the content is more than 20% by volume, the physical properties of the resin composite are deteriorated, which is not preferable for use as an electrically conductive or thermally conductive material.
상기 고분자 수지는 열가소성 또는 열경화성 고분자 수지일 수 있다.The polymer resin may be a thermoplastic or thermosetting polymer resin.
열가소성 고분자 수지는 폴리아세탈 수지, 아크릴계 수지, 폴리카보네이트 수지, 스티렌계 수지, 폴리에스테르 수지, 비닐계 수지, 폴리에틸렌 수지, 폴리페닐렌에테르 수지, 폴리올레핀 수지, 폴리아릴레이트 수지, 폴리아미드수지, 폴리아미드이미드 수지, 폴리아릴설폰 수지, 폴리에테르이미드 수지, 폴리에테르설폰 수지, 폴리페닐렌설피드 수지, 폴리이미드 수지, 폴리에테르케톤 수지, 폴리벤족사졸 수지, 폴리옥사디아졸 수지, 폴리벤조티아졸 수지, 폴리벤지미다졸 수지, 폴리피리딘 수지, 폴리트리아졸 수지, 폴리피롤리딘 수지, 폴리디벤조퓨란수지, 폴리설폰 수지, 폴리우레아 수지, 폴리포스파젠 수지 또는 액정중합체 수지를 단독으로, 또는 이들 수지를 둘 이상 공중합하거나 혼합하여 사용할 수 있다. The thermoplastic polymer resin may be a polyacetal resin, an acrylic resin, a polycarbonate resin, a styrene resin, a polyester resin, a vinyl resin, a polyethylene resin, a polyphenylene ether resin, a polyolefin resin, a polyarylate resin, A polyether sulfone resin, a polyether sulfone resin, a polyether sulfone resin, a polyether sulfone resin, a polyether sulfone resin, a polyether sulfone resin, a polyether sulfone resin, a polyether sulfone resin, A polypyrrolidine resin, a polypyrrolidine resin, a polydibenzofuran resin, a polysulfone resin, a polyurea resin, a polyphosphazene resin, or a liquid crystal polymer resin alone or in combination of two or more of these resins. May be copolymerized or mixed.
열경화성 고분자 수지는 에폭시 수지, 우레탄 수지, 비스말레이미드 수지, 에스테르 수지, 페놀 수지, 요소 수지를 들 수 있으며 이들의 혼합물로 이루어진 군 중에서 선택된다.The thermosetting polymer resin may be selected from the group consisting of epoxy resin, urethane resin, bismaleimide resin, ester resin, phenol resin and urea resin, and mixtures thereof.
수지 복합체에 사용되는 고분자 수지의 함량은 85.0 내지 98.9 중량%, 바람직하게는 90 내지 97.7 중량%이다. 85.0 중량% 미만으로 포함될 경우 내충격성 및 연신율과 같은 고분자 특유의 특성이 발현되지 못하며, 98.9 중량%을 초과하여 포함될 경우 전기전도성이 충분히 향상되지 못하여 바람직하지 못하다.The content of the polymer resin used in the resin composite is 85.0 to 98.9% by weight, preferably 90 to 97.7% by weight. If it is contained in an amount of less than 85.0% by weight, the characteristics specific to the polymer such as impact resistance and elongation can not be exhibited. If it exceeds 98.9% by weight, the electrical conductivity is not sufficiently improved.
상기 b)단계의 무기물 나노입자가 형성된 탄소계 재료와 고분자 수지의 혼합은 용융전단혼련(melt mixing) 과정인 것이 바람직하다. It is preferable that the mixing of the carbon-based material in which the inorganic nanoparticles of step b) is formed and the polymer resin is a melt-shearing-kneading process.
용융전단혼련 방법을 사용할 경우 압출기(extruder) 등을 이용하여 높은 온도와 고전단력 하에서 탄소계 재료를 고분자 내로 고르게 분산시켜 탄소계 재료/고분자 수지 펠렛을 제조함으로써, 대용량화가 가능하고 제조단가를 낮추는 효과가 있다. When the melt-shear kneading method is used, the carbon-based material / polymer resin pellets are produced by uniformly dispersing the carbon-based material into the polymer at a high temperature and a high shear force by using an extruder or the like to increase the capacity and lower the manufacturing cost .
다르게는, 상기 b)단계의 무기물 나노입자가 형성된 탄소계 재료와 고분자 수지의 혼합은 고분자 수지에 탄소계 재료를 분산시킨 후 경화시키는 단계일 수 있다.Alternatively, the mixing of the carbon-based material formed with the inorganic nanoparticles of step b) and the polymer resin may be performed by dispersing the carbon-based material in the polymer resin and curing the carbon-based material.
본 발명의 다른 측면은, a1)탄소계 재료의 표면에 이온 빔을 조사하면서 반응성 가스를 주입하여 탄소계 재료 표면을 개질하는 단계; 및 b1)상기 표면이 개질된 탄소계 재료와 고분자 수지를 혼합하여 탄소/고분자 수지 복합체를 제조하는 단계를 포함하는 것을 특징으로 하는 전도성 수지 복합체의 제조방법을 제공한다.Another aspect of the present invention is a method for manufacturing a carbon-based material, comprising the steps of: a1) modifying a surface of a carbon-based material by injecting a reactive gas while irradiating an ion beam onto the surface of the carbon- And b1) preparing a carbon / polymer resin composite by mixing the surface-modified carbon-based material and the polymer resin to produce a carbon / polymer resin composite.
상기 a1)단계는 i)탄소계 분말을 진공 증착조 내의 교반조에 투입하는 단계; ii)진공증착 공정을 수행하기 위하여 진공배기를 하는 단계; iii)상기 탄소계 분말을 교반하는 단계; 및 iv) 이온원 (ion source, ion gun)을 이용하여 탄소계 분말의 표면에 이온 빔을 조사하면서 반응성 가스를 주입하여 탄소계 분말의 표면을 개질하는 단계로 진행될 수 있다.The step a1) comprises the steps of: i) introducing the carbon-based powder into a stirring tank in a vacuum evaporation tank; ii) vacuum evacuation to perform a vacuum deposition process; iii) stirring the carbon-based powder; And iv) a step of modifying the surface of the carbon-based powder by injecting a reactive gas while irradiating the surface of the carbon-based powder with an ion beam using an ion source or an ion gun.
상기 반응성 가스는 산소, 질소, 암모니아 또는 이들의 혼합 가스일 수 있다.The reactive gas may be oxygen, nitrogen, ammonia, or a mixed gas thereof.
본 발명의 다른 측면은, 상기 제조방법에 따라 제조한 무기물 나노입자가 형성된 탄소계 재료와 고분자 수지로 이루어진 전도성 수지 복합체를 제공한다.Another aspect of the present invention provides a conductive resin composite comprising a carbon-based material in which inorganic nanoparticles formed according to the above-described method are formed, and a polymer resin.
상기 전도성 수지 복합체는 펠릿 형태로서 전기/전자 장치 등의 부품의 소재로 사용될 수 있다. The conductive resin composite may be used as a material for components such as electric / electronic devices in the form of pellets.
본 발명의 일 실시예에서, 상기 전도성 수지 복합체는 금속 흑연질 브러쉬 재료로 사용되었다. In one embodiment of the present invention, the conductive resin composite was used as a metal graphite brush material.
본 발명의 다른 실시예에서, 상기 전도성 수지 복합체는 레독스 흐름 전지용 전극 재료로 사용되었다.In another embodiment of the present invention, the conductive resin composite was used as an electrode material for a redox flow cell.
본 발명은 다른 측면은, 상기 전도성 수지 복합체를 이용하여 제조된 고분자 수지 성형품을 제공한다. 고분자 수지 성형품의 제품 형태는 전기 전도성 또는 열 전도성 소재 등에 이용될 수 있는 고분자 수지 성형품의 형태이면 그 구성의 제한이 없이 구현될 수 있다.Another aspect of the present invention provides a polymer resin molded article produced using the conductive resin composite. The product form of the polymer resin molded article may be embodied without limitation as long as it is in the form of a polymer resin molded article which can be used for an electrically conductive or thermally conductive material.
이하, 실시예를 통해 본 발명을 보다 상세히 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않아야 한다,Hereinafter, the present invention will be described in more detail with reference to Examples. However, the embodiments according to the present invention can be modified into various other forms, and the scope of the present invention should not be construed as being limited to the above-described embodiments.
<기능성 흑연 분말의 제조>&Lt; Production of functional graphite powder >
고순도 인상흑연(99% 이상) 분말 10 kg을 교반조에 투입하고 기본진공도(base pressure)에 도달하기까지 진공펌핑(vacuum pumping)을 수행하였다. 이 때의 기본진공도는 1 x 10-5 ~ 5 x 10-5 Torr 이며, 기본진공도에 도달한 후 흑연 분말을 교반하면서 구리 타겟을 사용하여 스퍼터링 방법으로 증착공정을 수행하였다. 진공증착이 수행되는 동안의 작업진공도(working pressure)는 1 x 10-4 ~ 5 x 10-3 Torr의 범위내에서 유지하였다. 증착공정에서 DC전원장치의 파워는 500W으로, 시간은 3시간 20분으로 하여 구리 나노입자의 함량이 1,000 ppm다.10 kg of high purity impression graphite (99% or more) powder was charged into a stirring tank and vacuum pumping was performed until a base pressure was reached. The basic vacuum degree at this time was 1 × 10 -5 to 5 × 10 -5 Torr. After reaching the basic degree of vacuum, the graphite powder was stirred and the deposition process was performed by the sputtering method using the copper target. The working pressure during the vacuum deposition was maintained in the range of 1 x 10 -4 to 5 x 10 -3 Torr. In the deposition process, the power of the DC power source is 500 W, and the copper nanoparticle content is 1,000 ppm at the time of 3 hours and 20 minutes.
그 결과 1~100nm 크기의 구리 나노입자가 흑연의 표면에 형성된 기능성 흑연(구리나노입자/흑연) 분말을 수득하였다. 기능성 흑연에 대한 구리의 함량은 5 중량%이다.As a result, a functional graphite (copper nanoparticle / graphite) powder having copper nanoparticles of 1 to 100 nm in size formed on the surface of graphite was obtained. The content of copper relative to the functional graphite is 5% by weight.
<분산성 평가 실험>&Lt; Dispersibility Evaluation Experiment &
상기 기능성 흑연 분말을 증류수에 분산시켜 분산 정도를 평가하였다.The functional graphite powder was dispersed in distilled water to evaluate the degree of dispersion.
도 4 는 증류수 내에서 종래의 흑연분말 및 상기 기능성 흑연(5 중량% 구리/흑연) 분말의 분산상태를 보여주는 사진이다. 도 4를 보면, 종래의 흑연분말은 증류수 내에서 분산되지 않고 물의 표면에 집중되어 뭉쳐 있으나, 상기 기능성 흑연(5 중량% 구리/흑연) 분말은 증류수 내에서 전체적으로 잘 분산되어 있는 것을 확인할 수 있다. 이로부터 흑연분말의 표면에 형성된 구리 나노입자들에 의해 흑연분말의 표면에너지가 높아져서 흑연분말의 표면특성이 소수성에서 친수성으로 변화되었음을 알 수 있다. 4 is a photograph showing the dispersion state of conventional graphite powder and the above-mentioned functional graphite (5 wt% copper / graphite) powder in distilled water. 4, conventional graphite powders are not dispersed in distilled water but are concentrated on the surface of water, but the functional graphite (5 wt% copper / graphite) powders are well dispersed throughout the distilled water. From this, it can be seen that the surface energy of the graphite powder was increased by the copper nanoparticles formed on the surface of the graphite powder, and the surface property of the graphite powder was changed from hydrophobic to hydrophilic.
상기 기능성 흑연(5 중량% 구리/흑연) 분말의 표면상태를 확인하기 위하여 흑연의 표면을 전자현미경으로 분석하였다.The surface of the graphite was analyzed by an electron microscope to confirm the surface state of the functional graphite (5 wt% copper / graphite) powder.
도 5는 종래의 흑연분말 및 상기 기능성 흑연 (5% 구리/흑연)분말의 표면사진이다. 도 5에서 확인할 수 있듯이 종래 흑연분말의 표면은 표면거칠기가 낮은 상태의 면이 형성되어 있고, 상기 기능성 흑연의 표면은 구리 나노입자의 형성으로 인해 거칠기가 증가된 형태로 거친 표면을 갖는 것을 확인할 수 있다.5 is a photograph of the surface of conventional graphite powder and the above-mentioned functional graphite (5% copper / graphite) powder. As can be seen from FIG. 5, the surface of the conventional graphite powder has a surface with a low surface roughness, and the surface of the functional graphite has a rough surface with increased roughness due to the formation of copper nanoparticles have.
<실시예 1> &Lt; Example 1 >
상기 기능성 흑연 분말과 폴리비닐클로라이드(PVC)를 혼합한 후 용융전단혼련하여 PVC/흑연 펠렛을 제조하였다. The functional graphite powder and polyvinyl chloride (PVC) were mixed and melt-shear kneaded to prepare PVC / graphite pellets.
기능성 흑연 분말의 첨가량은 폴리비닐클로라이드(PVC)의 부피에 대하여 5 부피%이었다. The addition amount of the functional graphite powder was 5 vol% based on the volume of polyvinyl chloride (PVC).
<실시예 2> &Lt; Example 2 >
상기 기능성 흑연 분말과 폴리비닐클로라이드(PVC)를 혼합한 후 용융전단혼련하여 PVC/흑연 펠렛을 제조하였다. The functional graphite powder and polyvinyl chloride (PVC) were mixed and melt-shear kneaded to prepare PVC / graphite pellets.
기능성 흑연 분말의 첨가량은 폴리비닐클로라이드(PVC)의 부피에 대하여 10 부피%이었다. The addition amount of the functional graphite powder was 10% by volume based on the volume of polyvinyl chloride (PVC).
<실시예 3> &Lt; Example 3 >
상기 기능성 흑연 분말과 폴리에틸렌(PE)을 혼합한 후 용융전단혼련하여 PE/흑연 펠렛을 제조하였다. The functional graphite powder and polyethylene (PE) were mixed and melt-shear kneaded to prepare PE / graphite pellets.
기능성 흑연 분말의 첨가량은 폴리에틸렌(PE)의 부피에 대하여 10 부피%이었다. The addition amount of the functional graphite powder was 10% by volume based on the volume of polyethylene (PE).
<실시예 4> <Example 4>
상기 기능성 흑연 분말과 폴리에틸렌(PE)을 혼합한 후 용융전단혼련하여 PE/흑연 펠렛을 제조하였다. The functional graphite powder and polyethylene (PE) were mixed and melt-shear kneaded to prepare PE / graphite pellets.
기능성 흑연 분말의 첨가량은 폴리에틸렌(PE)의 부피에 대하여 15 부피%이었다. The addition amount of the functional graphite powder was 15 vol% based on the volume of the polyethylene (PE).
<실시예 5>&Lt; Example 5 >
상기 기능성 흑연 분말과 에폭시 수지를 혼합한 후 용융전단혼련하여 수지 복합체를 제조하였다. 기능성 흑연 분말의 첨가량은 에폭시 수지의 부피에 대하여 5 부피%였다.The functional graphite powder and the epoxy resin were mixed and melt-shear kneaded to prepare a resin composite. The amount of the functional graphite powder added was 5 vol% based on the volume of the epoxy resin.
상기 수지 복합체의 표면을 광학현미경으로 분석하였다. 도 7을 보면, 일반 흑연 분말의 경우 에폭시 수지와 혼합하였을 때, 전체적으로 혼합되지 않고 특정 위치에서 뭉쳐 있는 것을 확인할 수 있다. 반면, 본 발명에 따라 제조된 기능성 흑연분말은 에폭시와 전체적으로 균일하게 혼합되어 있는 것을 확인할 수 있다. The surface of the resin composite was analyzed by an optical microscope. Referring to FIG. 7, it can be seen that, in the case of ordinary graphite powder, when mixed with an epoxy resin, they are not mixed as a whole and are gathered at a specific position. On the other hand, it can be confirmed that the functional graphite powder prepared according to the present invention is uniformly mixed with the epoxy as a whole.
<기계적 물성 분석><Mechanical Property Analysis>
상기 실시예 1 내지 4에 따라 제조한 수지 복합체의 기계적인 물성변화를 분석하여 그 결과를 하기 표 1에 나타냈다. The changes in mechanical properties of the resin complexes prepared according to Examples 1 to 4 were analyzed and the results are shown in Table 1 below.
도 8은 PVC 및 PE에 기능성 흑연을 첨가하여 제조된 고분자 복합수지의 탄성계수(elastic modulus), 인장강도(tensile strength) 및 인장변형(tensile strain)의 변화 그래프이다.8 is a graph of changes in elastic modulus, tensile strength, and tensile strain of a polymer composite resin prepared by adding functional graphite to PVC and PE.
실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4
탄성계수 최대증감률Maximum modulus of elasticity modulus -6%-6% -20%-20% +10%+ 10% +9%+ 9%
인장강도 최대증감률Maximum increase rate of tensile strength -24%-24% -22%-22% -31%-31% -29%-29%
인장변형 최대증감률Maximum rate of change in tensile strain -38%-38% -36%-36% -37%-37% -32%-32%
종래의 일반 흑연을 첨가한 고분자 수지의 경우 10 부피%의 첨가에 의해 기계적인 물성이 50% 이상 나빠지는데, 분석 결과 본 발명에 따라 기능성 흑연 분말이 첨가된 실시예 1 내지 4의 수지 복합체는 탄성계수, 인장강도, 인장변형의 감소율이 현저히 낮은 수치를 나타냈다. 특히 실시예 3 내지 4에 따라 제조한 수지 복합체는, 탄성계수 값이 오히려 각각 10%, 9% 증가하였다. 따라서, 본 발명에 따라 제조된 수지 복합체는 기존의 제품에 비해 성능이 우수한 것으로 확인되었다. In the case of the conventional graphite-added polymer resin, the mechanical properties are deteriorated by 50% or more by adding 10 vol%. As a result of the analysis, the resin complexes of Examples 1 to 4, to which the functional graphite powder was added, The coefficient, the tensile strength and the reduction rate of the tensile strain were significantly lower. In particular, the resin complexes prepared according to Examples 3 to 4 exhibited increased elastic modulus values of 10% and 9%, respectively. Therefore, it was confirmed that the resin composite produced according to the present invention has superior performance to the conventional product.

Claims (16)

  1. a) 탄소계 재료의 표면에 물리적인 진공 증착법을 이용하여 무기물 나노입자를 형성하는 단계; 및a) forming inorganic nanoparticles on the surface of the carbon-based material by physical vacuum deposition; And
    b) 상기 무기물 나노입자가 형성된 탄소계 재료와 고분자 수지를 혼합하여 탄소계 재료/고분자 수지 복합체를 제조하는 단계를 포함하는 것을 특징으로 하는 전도성 수지 복합체의 제조방법.and b) mixing the carbon-based material in which the inorganic nanoparticles are formed with a polymer resin to prepare a carbon-based material / polymer resin composite.
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 탄소계 재료는 흑연, 탄소나노튜브, 그라핀, 카본블랙, 탄소섬유 혹은 이들의 2 종 이상의 혼합물질인 것을 특징으로 하는 전도성 수지 복합체의 제조방법.Wherein the carbon-based material is graphite, carbon nanotube, graphene, carbon black, carbon fiber, or a mixture of two or more thereof.
  3. 청구항 1에 있어서, The method according to claim 1,
    상기 탄소계 재료는 0.01 ㎛ 내지 100 ㎛의 입자 크기를 갖는 것을 특징으로 하는 전도성 수지 복합체의 제조방법.Wherein the carbon-based material has a particle size of 0.01 mu m to 100 mu m.
  4. 청구항 1에 있어서, The method according to claim 1,
    상기 무기물의 재료는 은, 구리, 황동, 백금, 금, 팔라듐, 니켈, 코발트, 크롬, 알미늄, 납 또는 이들의 조합인 것을 특징으로 하는 전도성 수지 복합체의 제조방법.Wherein the material of the inorganic material is silver, copper, brass, platinum, gold, palladium, nickel, cobalt, chromium, aluminum, lead or a combination thereof.
  5. 청구항 1에 있어서, 상기 단계 a)의 물리적인 진공 증착법은 i)탄소계 분말을 진공 증착조 내의 교반조에 투입하는 단계; ii)진공증착 공정을 수행하기 위하여 진공배기를 하는 단계; iii)상기 탄소계 분말을 교반하는 단계; iv)증착원을 이용하여 나노 크기의 무기물 입자 형성을 위한 증발 입자를 발생시키는 단계; 및 v)상기 탄소계 분말 상에 상기 증발 입자를 증착하여 무기물 입자를 형성하는 단계로 진행되는 것을 특징으로 하는 전도성 수지 복합체의 제조방법.[2] The method of claim 1, wherein the physical vacuum deposition process of step a) comprises: i) introducing the carbon-based powder into a stirring tank in a vacuum deposition chamber; ii) vacuum evacuation to perform a vacuum deposition process; iii) stirring the carbon-based powder; iv) generating evaporation particles for forming nano-sized inorganic particles using an evaporation source; And v) depositing the evaporation particles on the carbon-based powder to form inorganic particles.
  6. 청구항 5에 있어서,The method of claim 5,
    상기 iii)단계에서 탄소계 분말은 0.1 내지 400 rpm의 속도로 교반되는 것을 특징으로 하는 전도성 수지 복합체의 제조방법.Wherein the carbon-based powder is agitated at a rate of 0.1 to 400 rpm in the step iii).
  7. 청구항 5에 있어서,The method of claim 5,
    상기 진공 증착조의 작업진공도(working pressure)는 5 x 10-4 내지 5 x 10-3 torr로 조절되는 것을 특징으로 하는 전도성 수지 복합체의 제조방법.Wherein the working pressure of the vacuum deposition chamber is adjusted to 5 x 10 -4 to 5 x 10 -3 torr.
  8. 청구항 5에 있어서,The method of claim 5,
    상기 iv) 단계에서 무기물 나노 입자 형성을 위한 증발 입자를 발생시키기 위한 방법으로 열증착(Thermal Evaporation), 전자빔 증착(E-beam Evaporation), DC 스퍼터링(DC Sputtering), 캐소드 아크 증착법 (cathodic arc sputtering), DC 마그네트론 증착법(DC magnetron sputtering), RF 스퍼터링(RF Sputtering), 이온빔 스퍼터링(Ion Beam Sputtering), 분자빔 에피텍시(Molecular Beam Epitaxy), 아크방전법(Arc Discharge Process) 또는 레이저 어블레이션(Laser Ablation)을 이용하는 것을 특징으로 하는 전도성 수지 복합체의 제조방법. In the step iv), thermal evaporation, E-beam evaporation, DC sputtering, cathodic arc sputtering, or the like may be used as a method for generating evaporated particles for forming inorganic nanoparticles. , DC magnetron sputtering, RF sputtering, ion beam sputtering, molecular beam epitaxy, arc discharge process, or laser ablation (laser ablation) Ablation) is used as the conductive resin composite.
  9. 청구항 5에 있어서,The method of claim 5,
    상기 v)단계에서 증발 입자는 탄소계 분말 상에 분당 단위면적당 1 Å 내지 10 ㎛ 두께로 증착되는 것을 특징으로 하는 전도성 수지 복합체의 제조방법.Wherein the vaporized particles are deposited on the carbon-based powder in a thickness of 1 to 10 [mu] m per unit area per minute in the step (v).
  10. 청구항 1에 있어서, 상기 수지 복합체에 사용되는 탄소계 재료의 함량은 수지 복합체의 중량에 대하여 1.0 내지 20 중량%인 것을 특징으로 하는 전도성 수지 복합체의 제조방법.[2] The method of producing a conductive resin composite material according to claim 1, wherein the content of the carbon-based material used in the resin composite is 1.0 to 20% by weight based on the weight of the resin composite.
  11. 청구항 1에 있어서, 상기 수지 복합체에 사용되는 탄소계 재료의 함량은 고분자 수지의 부피에 대하여 1~20 부피%인 것을 특징으로 하는 전도성 수지 복합체의 제조방법.The method for producing a conductive resin composite material according to claim 1, wherein the content of the carbon-based material used in the resin composite is 1 to 20% by volume based on the volume of the polymer resin.
  12. 청구항 1에 있어서, 상기 수지 복합체에 사용되는 고분자 수지의 함량은 85.0 내지 98.9 중량%인 것을 특징으로 하는 전도성 수지 복합체의 제조방법.The method of producing a conductive resin composite according to claim 1, wherein the content of the polymer resin used in the resin composite is 85.0 to 98.9% by weight.
  13. 청구항 1에 있어서, 상기 b)단계의 무기물 나노입자가 형성된 탄소계 재료와 고분자 수지의 혼합은 용융전단혼련(melt mixing) 과정인 것을 특징으로 하는 전도성 수지 복합체의 제조방법.[4] The method of claim 1, wherein the mixing of the carbon-based material with the inorganic polymer nanoparticles and the polymer resin is performed by melt-shearing.
  14. a1)탄소계 재료의 표면에 이온 빔을 조사하면서 반응성 가스를 주입하여 탄소계 재료 표면을 개질하는 단계; 및 a1) modifying the surface of the carbon-based material by injecting a reactive gas while irradiating the surface of the carbon-based material with an ion beam; And
    b1)상기 표면이 개질된 탄소계 재료와 고분자 수지를 혼합하여 탄소계 재료/고분자 수지 복합체를 제조하는 단계를 포함하는 것을 특징으로 하는 전도성 수지 복합체의 제조방법.b1) preparing a carbon-based material / polymer resin composite by mixing the surface-modified carbon-based material with a polymer resin.
  15. 청구항 14에 있어서, 15. The method of claim 14,
    상기 반응성 가스는 산소, 질소, 암모니아 또는 이들의 혼합 가스인 것을 특징으로 하는 전도성 수지 복합체의 제조방법.Wherein the reactive gas is oxygen, nitrogen, ammonia, or a mixed gas thereof.
  16. 청구항 1 또는 청구항 14의 제조방법에 따라 제조한 무기물 나노입자가 형성된 탄소계 재료와 고분자 수지로 이루어진 전도성 수지 복합체. A conductive resin composite comprising a carbon-based material in which inorganic nanoparticles formed according to the manufacturing method of claim 1 or 14 is formed and a polymer resin.
PCT/KR2016/004406 2015-04-30 2016-04-27 Method for preparing conductive resin composite, and conductive resin composite prepared thereby WO2016175552A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150061069A KR101733222B1 (en) 2015-04-30 2015-04-30 Method for manufacturing a conductive polymer composite and a conductive polymer composite manufactured by the same
KR10-2015-0061069 2015-04-30

Publications (1)

Publication Number Publication Date
WO2016175552A1 true WO2016175552A1 (en) 2016-11-03

Family

ID=57199374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/004406 WO2016175552A1 (en) 2015-04-30 2016-04-27 Method for preparing conductive resin composite, and conductive resin composite prepared thereby

Country Status (2)

Country Link
KR (1) KR101733222B1 (en)
WO (1) WO2016175552A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102352971B1 (en) * 2019-07-10 2022-01-21 한국생산기술연구원 Method for producing metal oxide nanocomposite

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR840003990A (en) * 1982-03-16 1984-10-06 죤 제이 헤이간 Compositions for the Preparation of Parts
JPH11233200A (en) * 1998-02-18 1999-08-27 Toray Ind Inc Connector
KR20100046556A (en) * 2008-10-27 2010-05-07 경북대학교 산학협력단 The single-walled carbon nanotube/cellulose composites and their manufacturing method
KR101135767B1 (en) * 2010-02-03 2012-04-16 고려대학교 산학협력단 Method of manufacturing carbon nano tube with sea urchin shape, conductive filler-polymer composite materials and composite separator for fuel cell using the metal-polymer composite materials
KR20120139228A (en) * 2011-06-17 2012-12-27 성균관대학교산학협력단 Metal-carbon hybrid adhesive having flexibility, adhesiveness and conductivity, and conductive pattern using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101946002B1 (en) 2012-09-04 2019-02-08 삼성전자주식회사 Composition for conductive polymer complex and method for producing the same
KR20140044617A (en) 2012-10-05 2014-04-15 주식회사 효성 Preparation method of carbon nanotube-polyester composite and carbon nanotube-polyester composite prepared thereby

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR840003990A (en) * 1982-03-16 1984-10-06 죤 제이 헤이간 Compositions for the Preparation of Parts
JPH11233200A (en) * 1998-02-18 1999-08-27 Toray Ind Inc Connector
KR20100046556A (en) * 2008-10-27 2010-05-07 경북대학교 산학협력단 The single-walled carbon nanotube/cellulose composites and their manufacturing method
KR101135767B1 (en) * 2010-02-03 2012-04-16 고려대학교 산학협력단 Method of manufacturing carbon nano tube with sea urchin shape, conductive filler-polymer composite materials and composite separator for fuel cell using the metal-polymer composite materials
KR20120139228A (en) * 2011-06-17 2012-12-27 성균관대학교산학협력단 Metal-carbon hybrid adhesive having flexibility, adhesiveness and conductivity, and conductive pattern using the same

Also Published As

Publication number Publication date
KR101733222B1 (en) 2017-05-08
KR20160129253A (en) 2016-11-09

Similar Documents

Publication Publication Date Title
Alemour et al. Review of Electrical Properties of Graphene Conductive Composites.
EP2268102A1 (en) Planar heating element obtained using dispersion of fine carbon fibers in water and process for producing the planar heating element
JP3850427B2 (en) Carbon fiber bonded body and composite material using the same
JP4817772B2 (en) Conductive resin composition, production method and use thereof
TWI352716B (en)
JP3118103B2 (en) Conductive member for electric circuit, electric circuit body and method of manufacturing the same
JP5268050B2 (en) Carbon nanotube-containing resin composition, cured product, molded article, and method for producing carbon nanotube-containing resin composition
KR20060061306A (en) Electrically conductive compositions and method of manufacture thereof
JP2006526058A (en) Conductive composition and method for producing the same
US7956108B2 (en) Product
EP1502315A2 (en) Electroconductive curable resin composition, cured product thereof and process for producing the same
JP2003306607A (en) Resin composition and method for producing the same
WO2010059008A2 (en) Conductive resin composition including carbon composite
Zhang et al. Electrical conductivity enhancement of epoxy by hybrid carbon nanotubes and self-made silver nanoparticles
US8911821B2 (en) Method for forming nanometer scale dot-shaped materials
Ram et al. Electromagnetic interference (EMI) shielding effectiveness (SE) of polymer-carbon composites
US7569161B2 (en) Electrically conducting polymer and production method and use thereof
KR101843795B1 (en) Method for Preparing Nano-sized Thin Film Coating
KR101761752B1 (en) Copper-carbon composite powder and manufacturing method the same
WO2016175552A1 (en) Method for preparing conductive resin composite, and conductive resin composite prepared thereby
JP2005264134A (en) Conductive polymer, its preparation process and its application
KR101853178B1 (en) Functionalization method for carbon materials by heat plasma procoessing, compositions manufactured by the method and emi shelidng materials using the compositions
JPH0674349B2 (en) Conductive resin composition
US20100240829A1 (en) Compositions for coating electrical interfaces including a nano-particle material and process for preparing
JP2595394B2 (en) Conductive resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16786738

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16786738

Country of ref document: EP

Kind code of ref document: A1