WO2016175458A1 - Method for forming metal mesh and semiconductor device having metal mesh - Google Patents

Method for forming metal mesh and semiconductor device having metal mesh Download PDF

Info

Publication number
WO2016175458A1
WO2016175458A1 PCT/KR2016/003093 KR2016003093W WO2016175458A1 WO 2016175458 A1 WO2016175458 A1 WO 2016175458A1 KR 2016003093 W KR2016003093 W KR 2016003093W WO 2016175458 A1 WO2016175458 A1 WO 2016175458A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal mesh
forming
substrate
network
cnt
Prior art date
Application number
PCT/KR2016/003093
Other languages
French (fr)
Korean (ko)
Inventor
김태근
이병룡
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2016175458A1 publication Critical patent/WO2016175458A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions

Definitions

  • the present invention relates to a metal mesh, and more particularly, to a metal mesh forming method and a semiconductor device having a metal mesh.
  • Metal mesh structure refers to the formation of a network (network) shape using a metal.
  • Metal mesh films applied to display devices are pointed out by visibility problems and moire (Moire) phenomenon.
  • the visibility problem is a phenomenon in which a metal pattern is visible in a product implementation. This problem can be solved by blackening a black material on the pattern or by minimizing the line width (thickness) of the pattern to less than 1.8 ⁇ m. In other words, producing fine particles is a key technology.
  • the moiré phenomenon is a phenomenon in which the mesh pattern overlaps two sheets, and the grid pattern of the display is added to it, and it looks like a wave, which is a problem of pattern design.
  • This is the key technology for the design of a pattern that transmits electrical signals well, and the moire phenomenon does not occur when the ultra fine line width of 1 ⁇ m or less is realized. Therefore, fabrication of metal mesh with nano sized line width is essential.
  • a metal mesh structure In order to form such a metal mesh structure, various methods are used. For example, a method of dispersing nanostructures (carbon nanotubes, silver nanowires, etc.) on a solution and then applying them onto a substrate, forming a metal mesh through a photolithography process, roll printing, gravure printing, and offset printing The method of forming a metal mesh using printing methods, such as these, etc. are mentioned.
  • the method of applying the nanostructure on the substrate has the advantage that it is possible to form a nano-scale metal mesh structure, but there is a limit to lower the resistance value because the particles are not organically connected to each other, or nanoparticles There is a problem that a variation in transmittance or a haze of the formed metal mesh occurs due to aggregation of these.
  • the method of forming the metal mesh through photolithography has a problem that not only the process is complicated, but also the process cost and time consuming.
  • the implementation of metal mesh with nano size line width through photolithography process has various technical difficulties.
  • a method of forming a metal mesh using a conventional printing method has a problem that the mesh line width cannot be reduced.
  • the problem to be solved by the present invention is to provide a metal mesh forming method having a nano-size line width in a low-cost process and a semiconductor device having a metal mesh manufactured thereby.
  • Metal mesh forming method for solving the above problems, (a) forming a network interconnecting a nano-size material (nano material) longer than the width on the substrate; (b) forming a patterned layer on the substrate so that a portion of the network is submerged; (c) removing the network to form a pattern corresponding to the network on the pattern layer; (d) depositing a metal on the substrate to form a metal mesh corresponding to the pattern; And (e) removing the pattern layer to leave only the metal mesh on the substrate.
  • nano-size material nano material
  • a network may be formed by a spray method or a dipping method.
  • a pattern layer may be formed by depositing any one of oxide compounds including SiO 2 and Ga 2 O 3 on the substrate on which the network is formed. .
  • a pattern layer may be removed by applying a BOE (Buffered Oxide Etch) method.
  • the nanomaterial according to an embodiment of the present invention may be any one of CNT, Au, Ag, Cu, Si, GaN, ZnO, SiO 2 TiO 2 .
  • the step (c) is a CNT by applying an O 2 plasma treatment method or an oxygen heat treatment method, Can be removed.
  • the step (c) is a metal having a higher reduction potential than the CNT on the pattern layer;
  • the CNT may be removed by applying an O 2 plasma treatment method or an oxygen heat treatment method.
  • the metal mesh forming method according to an embodiment of the present invention may further comprise forming a transparent electrode layer formed of any one of CNT, graphene, ITO on the substrate on which the metal mesh is formed. have.
  • the semiconductor device according to the preferred embodiment of the present invention for solving the above problems is formed by the metal mesh forming method of any one of the above-described methods.
  • the present invention is formed by forming a network with a nano-sized material on a substrate including a light emitting device or a light receiving device, and forming a pattern layer so that a part of the network is submerged, and then removing the nanomaterial forming the network from the pattern layer, By forming a nano-sized pattern on the layer, depositing a metal thereon, and removing the pattern layer, a metal mesh having a nano-sized line width may be formed on the substrate.
  • the present invention can not only form a metal mesh having a nano-size line width in a simple process, but also have a width corresponding to the line width of a desired metal mesh, compared to a metal mesh forming method using a conventional photolithography process.
  • the line width of the metal mesh can be easily adjusted, so that the visibility problem and the moire phenomenon can be easily solved.
  • FIGS. 1A to 1D are process charts illustrating a metal mesh forming method according to a preferred embodiment of the present invention.
  • FIG. 2 is a view showing the structure of the CNT which is an example of the nanomaterial used to form the metal mesh in accordance with a preferred embodiment of the present invention.
  • FIG 3 is a diagram illustrating an example of further forming a metal layer on a pattern layer.
  • FIG. 4 is a diagram illustrating an example in which a transparent electrode layer is further formed on a metal mesh.
  • FIGS. 1A to 1D are process diagrams illustrating a metal mesh forming method according to a preferred embodiment of the present invention.
  • FIGS. 1A to 1D a method of forming a metal mesh 150 according to an exemplary embodiment of the present invention will be described.
  • a substrate 110 on which a metal mesh is to be formed is prepared.
  • the nanomaterials 120-1 to 120-n are formed thereon to form a network 120.
  • the nanomaterial applied to the present invention is defined as a material having a length longer than the diameter as a nano-sized material
  • a representative example is a carbon nanotube (CNT)
  • Au, Ag, Cu, Si, GaN , Nanowires such as ZnO, SiO 2 , TiO 2 , and nanorods may be applied.
  • the line widths of the metal mesh 150 formed on the substrate 110 are determined according to the widths of the nano wires and the nano bars, the width and the material of the nano wires and the nano bars are not only the line widths of the desired metal mesh 150 but also described later. It is selected in consideration of the process. In a preferred embodiment of the present invention to be described later to form a metal mesh 150 using CNT.
  • the substrate 110 of the present invention is a concept that generically refers to the structure on which the metal mesh 150 is to be formed. That is, the substrate of the present invention may be a light emitting device or a light receiving device, for example, a light emitting device having an n-GaN layer, an active layer, and a p-GaN layer formed on a semiconductor substrate 110, or an n-GaN layer, an active layer, and p-.
  • the GaN layer and the ITO transparent electrode layer may be sequentially light emitting devices.
  • the metal mesh 150 of the present invention may be formed on the P-GaN layer or the ITO transparent electrode layer.
  • the nano-materials arranged on the substrate 110 are connected to each other defined as the network 120, in a preferred embodiment of the present invention in a manner to form a network 120, a mixture of nano-materials
  • the dipping method of dipping and drying the substrate 110 in an air or a spray method of spraying and drying a solution mixed with nanomaterials onto the substrate 110 was used, but the network 120 composed of nanomaterials was used. If there is no way that can be formed on the substrate 110 is not limited.
  • the pattern layer 130 is formed on the substrate 110.
  • the pattern layer 130 is used to transfer the shape of the network 120 formed of nanomaterials, and as illustrated in FIG. 1B, only a portion of the nanomaterials forming the network 120 is locked, rather than the width of the nanomaterial.
  • the pattern layer 130 is formed by depositing a pattern layer forming material on the substrate 110 at a low thickness.
  • the network 120 is formed of CNTs, and an oxide compound such as SiO 2 or Ga 2 O 3 is deposited thereon to form a pattern layer 130.
  • the thickness of the pattern layer 130 should be adjusted according to the width of the nanomaterial forming the network 120.
  • the diameters of the CNTs forming the network 120 vary from 1 nm to 25 nm, as well as the CNTs of the single wall structure shown in A of FIG. 2, as well as the Multi- shown in B of FIG. 2. CNTs with a wall structure can also be applied.
  • the pattern layer 130 is formed to have a thickness of about 50% to 80% of the CNT width in consideration of the width of the CNT.
  • the material forming the pattern layer 130 is not limited to an oxide compound as long as it can selectively remove nanomaterials inside the pattern layer 130 in a process to be described later.
  • the nanomaterial network 120 is formed of an oxide compound such as ZnO, SiO 2 , TiO 2, or the like, a material other than the oxide compound may be used in consideration of a process of removing the nano material network 120 later. It is preferable to form the pattern layer 130.
  • the network 120 formed in the pattern layer 130 is removed to form the same pattern 140 as the shape of the network 120 in the pattern layer 130.
  • various methods may be applied depending on the nanomaterial forming the network 120.
  • 400 degrees of O 2 plasma treatment may be used.
  • the CNT was removed by sublimation with carbon dioxide by applying an oxygen heat treatment method at the above temperature.
  • the network 120 when the network 120 is formed of a nanomaterial other than the above-described CNT, the network 120 formed of the nanomaterial may be removed using an etching solution corresponding to each nanomaterial as shown in Table 1 below. .
  • Nano wire / nano rod Etching solution Ni H3PO4: HNO3: CH3COOH: H2O
  • Au AquaRegia HCl: HNO3
  • Ag NH4OH: H2O2: CH3OH
  • Cu 150g
  • Sodiumpersulfate: 1000ml H2O) Si HF: HNO3: H2O
  • GaN Acid / H2O2 OR KOH
  • ZnO with HCl, H3PO4 and NH4Cl) SiO 2 (HF) TiO 2 (H3PO4-H2O2)
  • the metal to form the metal mesh 150 on the pattern layer 130 as shown in FIG. 1D By depositing the metal to fill the voids (ie, the metal mesh pattern) of the network 120 is removed, the metal mesh 150 is formed on the substrate 110, the pattern layer 130 from the substrate 110 ), The metal mesh 150 is finally formed on the substrate 110.
  • the pattern layer 130 is removed by performing wet etching with a solution corresponding to the type of the material forming the pattern layer 130.
  • the pattern layer 130 is formed by using a buffered oxide etching (BOE) method. Removed.
  • BOE buffered oxide etching
  • CNT is applied by O 2 plasma treatment or oxygen heat treatment at a temperature of 400 degrees or more. Was removed by sublimation with carbon dioxide.
  • a metal having a higher reduction potential than CNT on the patterned layer, such as Au, Pt, Ag and Cu, the CNT is more smoothly oxidized during the heat treatment.
  • a pattern layer is formed to a thickness of about 50% to 60% of the CNT width, and a reduction potential is higher than CNT, such as Au, Pt, Ag, and Cu, up to about 80% of the CNT width thereon.
  • CNT such as Au, Pt, Ag, and Cu
  • the metals such as Au, Pt, Ag, and Cu deposited on the CNT fall into the pattern formed on the pattern layer, and when the metal is deposited on the pattern layer to form the metal mesh, the inside of the pattern Metals such as Au, Pt, Ag, and Cu in the metal mesh together with the deposited metal to form a metal mesh, it is easy to apply to the existing process does not need a separate removal process.
  • the current dispersion and the formation of a conductive material of a transparent material such as CNT, graphene, and ITO are further formed on the metal mesh formed on the substrate.
  • the current injection effect can be further improved.
  • the metal mesh 150 formed by the method of forming the metal mesh 150 described above may be provided in a semiconductor device such as a light emitting device and a light receiving device.
  • the semiconductor device including the metal mesh 150 illustrated in FIG. 1D may be manufactured in a structure in which the metal mesh 150 is formed on the substrate 110 including the light emitting layer therein.
  • the semiconductor device including the metal mesh 150 illustrated in FIG. 1D may be manufactured in a structure in which the metal mesh 150 is formed on the substrate 110 including the light receiving layer therein.

Abstract

The present invention enables: a network to be formed from a nanosized material on a substrate including a light-emitting element or a light receiving element; a pattern layer to be formed such that a part of the network is embedded, and then, a nanomaterial for forming a network to be removed from the pattern layer, thereby forming a nanosized pattern to be formed at the pattern layer; and the pattern layer to be removed after metal is deposited on the pattern, thereby forming, on the substrate, a metal mesh having a nanosized line width. Therefore, compared with a method for forming a metal mesh by using a conventional photolithography process, the present invention can form, through a simple process, a metal mesh having a nanosized line width and can also easily adjust the line width of the metal mesh by using a nanomaterial having a width corresponding to a desired line width of the metal mesh, such that a visibility problem and a moire phenomenon can be simply resolved.

Description

메탈 메쉬 형성 방법 및 메탈 메쉬를 구비하는 반도체 소자Semiconductor device including metal mesh forming method and metal mesh
본 발명은 메탈 메쉬에 관한 것으로서, 보다 구체적으로는 메탈 메쉬 형성 방법 및 메탈 메쉬를 구비하는 반도체 소자에 관한 것이다.The present invention relates to a metal mesh, and more particularly, to a metal mesh forming method and a semiconductor device having a metal mesh.
메탈 메쉬 구조(Metal Mesh Structure)란 금속을 이용하여 망(network) 형상을 형성시킨 것을 의미한다. 디스플레이 장치에 적용되는 Metal Mesh 필름은 시인성 문제와 모아레(Moire) 현상이 단점으로 지적된다. 시인성 문제란 제품 구현시 메탈 패턴이 눈에 보이는 현상인데, 이러한 문제는 패턴에 검정 물질을 입히는 흑화 방식 또는 패턴의 선폭(두께)을 1.8μm 미만으로 미세화시킴으로써 해결할 수 있다. 즉, 미세한 입자를 만들어 내는 것이 핵심 기술력이다. Metal mesh structure (Metal Mesh Structure) refers to the formation of a network (network) shape using a metal. Metal mesh films applied to display devices are pointed out by visibility problems and moire (Moire) phenomenon. The visibility problem is a phenomenon in which a metal pattern is visible in a product implementation. This problem can be solved by blackening a black material on the pattern or by minimizing the line width (thickness) of the pattern to less than 1.8 μm. In other words, producing fine particles is a key technology.
모아레 현상이란 메쉬 패턴이 2장 겹쳐지며 여기에 디스플레이의 격자무늬가 더해져서 물결처럼 보이는 현상으로 패턴 설계의 문제라고 볼 수 있다. 이는 전기적 신호를 잘 전달하는 패턴의 설계가 핵심 기술이며, 모아레 현상도 1μm 이하의 초미세 선폭을 구현할 경우 발생하지 않기 때문에 미세 선폭 구현은 가장 중요한 사안이다. 따라서 nano 사이즈의 선폭을 갖는 Metal Mesh 제작이 필수적이다. The moiré phenomenon is a phenomenon in which the mesh pattern overlaps two sheets, and the grid pattern of the display is added to it, and it looks like a wave, which is a problem of pattern design. This is the key technology for the design of a pattern that transmits electrical signals well, and the moire phenomenon does not occur when the ultra fine line width of 1μm or less is realized. Therefore, fabrication of metal mesh with nano sized line width is essential.
이러한 메탈 메쉬 구조를 형성시키기 위하여, 다양한 방법들이 이용되고 있다. 예를 들면, 나노 구조체(탄소나노튜브, 은 나노선 등)를 용액 상에 분산시킨 후에 기판 상에 도포하는 방법, 사진 식각 공정을 통해 메탈 메쉬를 형성하는 방법, 롤 인쇄, 그라비아 인쇄, 옵셋 인쇄 등의 인쇄법을 이용하여 메탈 메쉬를 형성하는 방법 등이 있다. In order to form such a metal mesh structure, various methods are used. For example, a method of dispersing nanostructures (carbon nanotubes, silver nanowires, etc.) on a solution and then applying them onto a substrate, forming a metal mesh through a photolithography process, roll printing, gravure printing, and offset printing The method of forming a metal mesh using printing methods, such as these, etc. are mentioned.
그런데, 나노 구조체를 기판 상에 도포하는 방법의 경우에는 나노 스케일의 메탈 메쉬 구조를 형성 가능하다는 장점이 있으나, 입자들이 서로 유기적으로 연결된 상태가 아니어서 저항값을 낮추는 데에 한계가 있거나, 나노 입자들의 뭉침(aggregation) 현상 등으로 인해 형성된 메탈 메쉬의 투과도 편차 또는 Haze 현상이 발생한다는 문제점이 있다. By the way, the method of applying the nanostructure on the substrate has the advantage that it is possible to form a nano-scale metal mesh structure, but there is a limit to lower the resistance value because the particles are not organically connected to each other, or nanoparticles There is a problem that a variation in transmittance or a haze of the formed metal mesh occurs due to aggregation of these.
한편, 사진식각공정(photolithography)을 통해 메탈 메쉬를 형성하는 방법은 공정이 복잡할 뿐만 아니라, 공정비용 및 시간이 많이 소요된다는 문제점이 있었다. 특히 사진식각공정을 통한 nano 사이즈의 선폭을 가지는 Metal Mesh의 구현은 여러 기술적 어려움을 가지고 있다. 또한, 종래 인쇄법을 이용하여 메탈 메쉬를 형성하는 방법은 메쉬 선폭을 줄일 수 없다는 문제가 있다.On the other hand, the method of forming the metal mesh through photolithography has a problem that not only the process is complicated, but also the process cost and time consuming. In particular, the implementation of metal mesh with nano size line width through photolithography process has various technical difficulties. In addition, a method of forming a metal mesh using a conventional printing method has a problem that the mesh line width cannot be reduced.
따라서, 더 간단하게 nano 크기의 선폭을 갖는 Metal Mesh를 형성 할 수 있는 방법과 전류 분산을 해결할 수 있는 방법의 개발이 요구된다.Therefore, it is necessary to develop a method for forming a metal mesh having a nano-sized line width and a method for solving current dispersion more simply.
본 발명이 해결하고 하는 과제는 저비용의 공정으로 nano 크기의 선폭을 갖는 메탈 메쉬 형성 방법 및 이에 의해서 제조된 메탈 메쉬를 구비하는 반도체 소자를 제공하는 것이다.The problem to be solved by the present invention is to provide a metal mesh forming method having a nano-size line width in a low-cost process and a semiconductor device having a metal mesh manufactured thereby.
상술한 과제를 해결하기 위한 본 발명의 바람직한 실시예에 따른 메탈 메쉬 형성 방법은, (a) 기판 위에 폭보다 길이가 더 긴 나노 사이즈의 물질(나노 물질)이 상호 연결된 네트워크를 형성하는 단계; (b) 상기 네트워크의 일부가 잠기도록 상기 기판위에 패턴층을 형성하는 단계; (c) 상기 네트워크를 제거하여 상기 패턴층위에 네트워크에 대응되는 패턴을 형성하는 단계; (d) 상기 기판위에 메탈을 증착하여 상기 패턴에 대응되는 메탈 메쉬를 형성하는 단계; 및 (e) 상기 패턴층을 제거하여 상기 기판위에 상기 메탈 메쉬만을 잔존시키는 단계를 포함한다.Metal mesh forming method according to a preferred embodiment of the present invention for solving the above problems, (a) forming a network interconnecting a nano-size material (nano material) longer than the width on the substrate; (b) forming a patterned layer on the substrate so that a portion of the network is submerged; (c) removing the network to form a pattern corresponding to the network on the pattern layer; (d) depositing a metal on the substrate to form a metal mesh corresponding to the pattern; And (e) removing the pattern layer to leave only the metal mesh on the substrate.
또한, 본 발명의 일 실시예에 따른 상기 (a) 단계는, 스프레이(spray) 방식 또는 디핑(dipping) 방식으로 네트워크를 형성할 수 있다.In addition, in step (a) according to an embodiment of the present invention, a network may be formed by a spray method or a dipping method.
또한, 본 발명의 일 실시예에 따른 상기 (b) 단계는, 네트워크가 형성된 상기 기판위에 SiO2 및 Ga2O3를 포함하는 산화물계 화합물들 중 어느 하나를 증착하여 패턴층을 형성할 수 있다.In addition, in the step (b) according to an embodiment of the present invention, a pattern layer may be formed by depositing any one of oxide compounds including SiO 2 and Ga 2 O 3 on the substrate on which the network is formed. .
또한, 본 발명의 일 실시예에 따른 상기 (e) 단계는, BOE(Buffered Oxide Etch) 방식을 적용하여 패턴층을 제거할 수 있다.In addition, in the step (e) according to an embodiment of the present invention, a pattern layer may be removed by applying a BOE (Buffered Oxide Etch) method.
또한, 본 발명의 일 실시예에 따른 상기 나노 물질은 CNT, Au, Ag, Cu, Si, GaN, ZnO, SiO2 TiO2 중 어느 하나일 수 있다.In addition, the nanomaterial according to an embodiment of the present invention may be any one of CNT, Au, Ag, Cu, Si, GaN, ZnO, SiO 2 TiO 2 .
또한, 본 발명의 일 실시예에 따른 메탈 메쉬 형성 방법에서, 상기 나노 물질이 CNT(Carbon Nano Tube)인 경우에, 상기 (c) 단계는 O2 플라즈마 처리방식 또는 산소 열처리 방식을 적용하여, CNT를 제거할 수 있다.In addition, in the metal mesh forming method according to an embodiment of the present invention, when the nanomaterial is a carbon nanotube (CNT), the step (c) is a CNT by applying an O 2 plasma treatment method or an oxygen heat treatment method, Can be removed.
또한, 본 발명의 일 실시예에 따른 메탈 메쉬 형성 방법에서, 상기 나노 물질이 CNT(Carbon Nano Tube)인 경우에, 상기 (c) 단계는 상기 패턴층 위에 상기 CNT 보다 환원 전위가 높은 금속을 상기 기판위에 추가로 증착하여 형성한 후, O2 플라즈마 처리방식 또는 산소 열처리 방식을 적용하여, CNT를 제거할 수 있다.In addition, in the metal mesh forming method according to an embodiment of the present invention, when the nanomaterial is a carbon nanotube (CNT), the step (c) is a metal having a higher reduction potential than the CNT on the pattern layer; After further depositing and forming on the substrate, the CNT may be removed by applying an O 2 plasma treatment method or an oxygen heat treatment method.
또한, 본 발명의 바람직한 일 실시예에 따른 메탈 메쉬 형성 방법은, (f) 상기 메탈 메쉬가 형성된 기판위에, CNT, 그래핀, ITO 중 어느 하나로 형성되는 투명 전극층을 형성하는 단계를 더 포함할 수 있다.In addition, the metal mesh forming method according to an embodiment of the present invention, (f) may further comprise forming a transparent electrode layer formed of any one of CNT, graphene, ITO on the substrate on which the metal mesh is formed. have.
한편, 상술한 과제를 해결하기 위한 본 발명의 바람직한 실시예에 따른 반도체 소자는 상술한 방법들 중 어느 하나의 메탈 메쉬 형성 방법에 의해서 형성된다.Meanwhile, the semiconductor device according to the preferred embodiment of the present invention for solving the above problems is formed by the metal mesh forming method of any one of the above-described methods.
[유리한 효과][Favorable effect]
본 발명은 발광 소자 또는 수광 소자를 포함하는 기판 위에 나노 사이즈의 물질로 네트워크를 형성하고, 네트워크의 일부가 잠기도록 패턴층을 형성한 후, 패턴층에서 네트워크를 형성하는 나노 물질을 제거함으로써, 패턴층에 나노 사이즈의 패턴을 형성하고, 그 위에 금속을 증착한 후 패턴층을 제거함으로써, 기판위에 나노 사이즈의 선폭을 갖는 메탈 메쉬를 형성할 수 있다.The present invention is formed by forming a network with a nano-sized material on a substrate including a light emitting device or a light receiving device, and forming a pattern layer so that a part of the network is submerged, and then removing the nanomaterial forming the network from the pattern layer, By forming a nano-sized pattern on the layer, depositing a metal thereon, and removing the pattern layer, a metal mesh having a nano-sized line width may be formed on the substrate.
따라서, 본 발명은 종래의 사진 식각 공정을 이용하는 메탈 메쉬 형성 방법에 비하여 간단한 공정으로 나노 사이즈의 선폭을 갖는 메탈 메쉬를 형성할 수 있을 뿐만 아니라, 소망하는 메탈 메쉬의 선폭에 대응되는 폭을 갖는 나노 물질을 이용함으로써 용이하게 메탈 메쉬의 선폭을 조절할 수 있어, 간단하게 시인성 문제와 모아레(Moire) 현상을 해결 할 수 있다. Therefore, the present invention can not only form a metal mesh having a nano-size line width in a simple process, but also have a width corresponding to the line width of a desired metal mesh, compared to a metal mesh forming method using a conventional photolithography process. By using the material, the line width of the metal mesh can be easily adjusted, so that the visibility problem and the moire phenomenon can be easily solved.
도 1a 내지 도 1d는 본 발명의 바람직한 실시예에 따른 메탈 메쉬 형성 방법을 설명하는 공정도이다.1A to 1D are process charts illustrating a metal mesh forming method according to a preferred embodiment of the present invention.
도 2는 본 발명의 바람직한 실시예에 따라서 메탈 메쉬 형성에 이용되는 나노 물질의 일 예인 CNT의 구조를 도시한 도면이다.2 is a view showing the structure of the CNT which is an example of the nanomaterial used to form the metal mesh in accordance with a preferred embodiment of the present invention.
도 3은 패턴층 위에 추가로 금속층을 형성하는 일 예를 도시한 도면이다.3 is a diagram illustrating an example of further forming a metal layer on a pattern layer.
도 4는 메탈 메쉬 위에 투명 전극층을 추가로 형성한 일 예를 도시한 도면이다.4 is a diagram illustrating an example in which a transparent electrode layer is further formed on a metal mesh.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예들을 설명한다.Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
도 1a 내지 도 1d 는 본 발명의 바람직한 실시예에 따른 메탈 메쉬 형성 방법을 설명하는 공정도이다.1A to 1D are process diagrams illustrating a metal mesh forming method according to a preferred embodiment of the present invention.
도 1a 내지 도 1d를 참조하여, 본 발명의 바람직한 실시예에 따른 메탈 메쉬(150) 형성 방법을 설명하면, 먼저, 도 1a에 도시된 바와 같이, 메탈 메쉬가 형성될 기판(110)을 준비하고, 그 위에 나노 물질들(120-1~120-n)이 상호 연결되는 네트워크(120)를 형성한다.Referring to FIGS. 1A to 1D, a method of forming a metal mesh 150 according to an exemplary embodiment of the present invention will be described. First, as shown in FIG. 1A, a substrate 110 on which a metal mesh is to be formed is prepared. In addition, the nanomaterials 120-1 to 120-n are formed thereon to form a network 120.
여기서, 본 발명에 적용되는 나노 물질은 나노 사이즈의 물질로서, 직경보다 길이가 더 긴 물질로서 정의되고, 대표적인 예로 CNT(Carbon Nano Tube)가 있으며, 그 밖에, Au, Ag, Cu, Si, GaN, ZnO, SiO2, TiO2 등의 나노 와이어 및 나노 막대 등이 적용될 수 있다. 나노 와이어 및 나노 막대의 폭에 따라서 기판(110)위에 형성되는 메탈 메쉬(150)의 선폭이 결정되므로, 나노 와이어 및 나노 막대의 폭 및 재질은 소망하는 메탈 메쉬(150)의 선폭뿐만 아니라, 후술하는 공정을 고려하여 선택된다. 후술하는 본 발명의 바람직한 실시예에서는 CNT를 이용하여 메탈 메쉬(150)를 형성하였다.Here, the nanomaterial applied to the present invention is defined as a material having a length longer than the diameter as a nano-sized material, a representative example is a carbon nanotube (CNT), in addition, Au, Ag, Cu, Si, GaN , Nanowires such as ZnO, SiO 2 , TiO 2 , and nanorods may be applied. Since the line widths of the metal mesh 150 formed on the substrate 110 are determined according to the widths of the nano wires and the nano bars, the width and the material of the nano wires and the nano bars are not only the line widths of the desired metal mesh 150 but also described later. It is selected in consideration of the process. In a preferred embodiment of the present invention to be described later to form a metal mesh 150 using CNT.
한편, 본 발명의 기판(110)은 메탈 메쉬(150)가 형성될 구조체를 총칭하는 개념이다. 즉, 본 발명의 기판은 발광 소자 또는 수광 소자일 수 있는데, 예컨대, 반도체 기판(110)위에 n-GaN층, 활성층, p-GaN층이 형성된 발광 소자이거나, n-GaN층, 활성층, p-GaN층 및 ITO 투명 전극층이 순차적으로 발광 소자일 수 있다. 상기 예의 경우에, 본 발명의 메탈 메쉬(150)는 P-GaN층 또는 ITO 투명 전극층 위에 형성될 수 있다.On the other hand, the substrate 110 of the present invention is a concept that generically refers to the structure on which the metal mesh 150 is to be formed. That is, the substrate of the present invention may be a light emitting device or a light receiving device, for example, a light emitting device having an n-GaN layer, an active layer, and a p-GaN layer formed on a semiconductor substrate 110, or an n-GaN layer, an active layer, and p-. The GaN layer and the ITO transparent electrode layer may be sequentially light emitting devices. In the above example, the metal mesh 150 of the present invention may be formed on the P-GaN layer or the ITO transparent electrode layer.
본 발명에서는, 기판(110) 위에 나노 물질들이 서로 연결된 상태로 배열된 것을 네트워크(120)로 정의하고, 본 발명의 바람직한 실시예에서는 네트워크(120)를 형성하는 방식으로, 나노 물질들이 혼합된 용액에 기판(110)을 담갔다가 꺼내어 건조시키는 디핑(dipping) 방식 또는 나노 물질이 혼합된 용액을 기판(110)위에 분사하여 건조시키는 스프레이(spray) 방식을 이용하였으나, 나노 물질로 구성된 네트워크(120)를 기판(110)위에 형성할 수 있는 방식이라면 제한이 없다.In the present invention, the nano-materials arranged on the substrate 110 are connected to each other defined as the network 120, in a preferred embodiment of the present invention in a manner to form a network 120, a mixture of nano-materials The dipping method of dipping and drying the substrate 110 in an air or a spray method of spraying and drying a solution mixed with nanomaterials onto the substrate 110 was used, but the network 120 composed of nanomaterials was used. If there is no way that can be formed on the substrate 110 is not limited.
나노 물질로 네트워크(120)가 기판(110)위에 형성되면, 도 1b에 도시된 바와 같이, 기판(110) 위에 패턴층(130)을 형성한다. 패턴층(130)은 나노 물질로 형성된 네트워크(120)의 형상을 전사하기 위한 것으로서, 도 1b에 도시된 바와 같이, 네트워크(120)를 형성하는 나노 물질들의 일부만이 잠기도록, 나노 물질의 폭보다 낮은 두께로 기판(110)위에 패턴층 형성 물질을 증착함으로써 패턴층(130)을 형성한다. 본 발명의 바람직한 실시예에서는 CNT로 네트워크(120)를 형성하였고, 그 위에 SiO2 또는 Ga2O3 와 같은 산화물계 화합물을 증착하여 패턴층(130)을 형성하였다. When the network 120 is formed on the substrate 110 with the nanomaterial, as shown in FIG. 1B, the pattern layer 130 is formed on the substrate 110. The pattern layer 130 is used to transfer the shape of the network 120 formed of nanomaterials, and as illustrated in FIG. 1B, only a portion of the nanomaterials forming the network 120 is locked, rather than the width of the nanomaterial. The pattern layer 130 is formed by depositing a pattern layer forming material on the substrate 110 at a low thickness. In a preferred embodiment of the present invention, the network 120 is formed of CNTs, and an oxide compound such as SiO 2 or Ga 2 O 3 is deposited thereon to form a pattern layer 130.
이 때, 도 2에 도시된 바와 같이, 나노 물질의 폭이 다양하므로, 네트워크(120)를 형성하는 나노 물질의 폭에 따라서 패턴층(130)의 두께가 조절되어야 한다. 도 2에 도시된 예에서, 네트워크(120)를 형성하는 CNT의 직경은 1nm부터 25nm 까지 다양하고, 도 2의 A에 도시된 single wall 구조의 CNT 뿐만 아니라, 도 2의 B에 도시된 Multi-wall 구조의 CNT도 적용이 가능하다. 본 발명의 바람직한 실시예에서는 CNT의 폭을 고려하여 CNT 폭의 약 50%~80%의 두께로 패턴층(130)을 형성하였다. 또한, 패턴층(130)을 형성하는 물질의 경우에도, 후술하는 공정에서 선택적으로 패턴층(130) 내부의 나노 물질을 제거할 수 있는 것이라면 산화물계 화합물에 한정되지 않는다.In this case, as shown in FIG. 2, since the width of the nanomaterial varies, the thickness of the pattern layer 130 should be adjusted according to the width of the nanomaterial forming the network 120. In the example shown in FIG. 2, the diameters of the CNTs forming the network 120 vary from 1 nm to 25 nm, as well as the CNTs of the single wall structure shown in A of FIG. 2, as well as the Multi- shown in B of FIG. 2. CNTs with a wall structure can also be applied. In the preferred embodiment of the present invention, the pattern layer 130 is formed to have a thickness of about 50% to 80% of the CNT width in consideration of the width of the CNT. In addition, the material forming the pattern layer 130 is not limited to an oxide compound as long as it can selectively remove nanomaterials inside the pattern layer 130 in a process to be described later.
또한, 나노 물질 네트워크(120)가 ZnO, SiO2, TiO2 등과 같은 산화물계 화합물로 형성된 경우에는, 이후에 나노 물질 네트워크(120)를 제거하는 공정을 고려하여 산화물계 화합물 이외의 물질을 이용하여 패턴층(130)을 형성하는 것이 바람직하다.In addition, when the nanomaterial network 120 is formed of an oxide compound such as ZnO, SiO 2 , TiO 2, or the like, a material other than the oxide compound may be used in consideration of a process of removing the nano material network 120 later. It is preferable to form the pattern layer 130.
그 후, 도 1c에 도시된 바와 같이, 패턴층(130) 내부에 형성된 네트워크(120)를 제거하여, 패턴층(130) 내부에 네트워크(120)의 형상과 동일한 패턴(140)을 형성한다. 패턴층(130) 내부의 네트워크(120)를 제거하는 방식으로는 네트워크(120)를 형성하는 나노 물질에 따라서 다양한 방식이 적용될 수 있다. 도 1c에 도시된 예에서, 본 발명의 바람직한 실시예는 CNT를 이용하여 네트워크(120)를 형성하였으므로, 패턴층(130)을 손상시키지 않고, CNT 만을 제거하기 위해서, O2 플라즈마 처리나 400도 이상의 온도에서 산소 열처리 방식을 적용하여 CNT를 이산화탄소로 승화시켜 제거하였다.Thereafter, as shown in FIG. 1C, the network 120 formed in the pattern layer 130 is removed to form the same pattern 140 as the shape of the network 120 in the pattern layer 130. As a method of removing the network 120 inside the pattern layer 130, various methods may be applied depending on the nanomaterial forming the network 120. In the example shown in FIG. 1C, since the preferred embodiment of the present invention forms the network 120 using CNTs, in order to remove only CNTs without damaging the pattern layer 130, 400 degrees of O 2 plasma treatment may be used. The CNT was removed by sublimation with carbon dioxide by applying an oxygen heat treatment method at the above temperature.
한편, 상술한 CNT 이외의 나노 물질로 네트워크(120)를 형성한 경우에는, 아래의 표 1과 같이 각 나노 물질에 대응되는 에칭 용액을 이용하여 나노 물질로 형성된 네트워크(120)를 제거할 수 있다.Meanwhile, when the network 120 is formed of a nanomaterial other than the above-described CNT, the network 120 formed of the nanomaterial may be removed using an etching solution corresponding to each nanomaterial as shown in Table 1 below. .
나노 와이어/나노 막대Nano wire / nano rod 에칭 용액Etching solution
NiNi (H3PO4:HNO3:CH3COOH:H2O)(3:3:1:1 비율) (H3PO4: HNO3: CH3COOH: H2O) (3: 3: 1: 1 ratio)
AuAu AquaRegia (HCl:HNO3)(3:1 비율)AquaRegia (HCl: HNO3) (3: 1 ratio)
AgAg (NH4OH:H2O2:CH3OH)(1:1:4 비율)(NH4OH: H2O2: CH3OH) (1: 1: 4 ratio)
CuCu (150g Sodiumpersulfate : 1000ml H2O)(150g Sodiumpersulfate: 1000ml H2O)
SiSi (HF:HNO3:H2O)(HF: HNO3: H2O)
GaNGaN (Acid/H2O2 OR KOH)(Acid / H2O2 OR KOH)
ZnOZnO (with HCl, H3PO4 and NH4Cl)(with HCl, H3PO4 and NH4Cl)
SiO2 SiO 2 (HF)(HF)
TiO2 TiO 2 (H3PO4-H2O2)(H3PO4-H2O2)
패턴층(130)에서 나노 물질 네트워크(120)가 제거되어 네트워크(120) 패턴(140)이 형성되면, 도 1d에 도시된 바와 같이, 패턴층(130) 위에 메탈 메쉬(150)를 형성할 금속을 증착하여 나노 물질이 제거된 네트워크(120)의 빈자리(즉, 메탈 메쉬 패턴)를 메탈로 채움으로써, 기판(110) 위에 메탈 메쉬(150)를 형성하고, 기판(110)으로부터 패턴층(130)을 제거함으로써 기판(110)위에 메탈 메쉬(150)를 최종적으로 형성한다.When the nanomaterial network 120 is removed from the pattern layer 130 to form the network 120 pattern 140, the metal to form the metal mesh 150 on the pattern layer 130 as shown in FIG. 1D. By depositing the metal to fill the voids (ie, the metal mesh pattern) of the network 120 is removed, the metal mesh 150 is formed on the substrate 110, the pattern layer 130 from the substrate 110 ), The metal mesh 150 is finally formed on the substrate 110.
패턴층(130)을 제거하는 방식으로는, 패턴층(130)을 형성하는 물질의 종류에 대응되는 용액으로 습식 식각을 수행하여 패턴층(130)을 제거한다. 상술한 본 발명의 바람직한 실시예에서는 산화물계 화합물을 증착하여 패턴층(130)을 형성하였으므로, 이를 기판(110)으로부터 분리하기 위해서, BOE(Buffered Oxide Etch) 방식을 이용하여 패턴층(130)을 제거하였다.In the method of removing the pattern layer 130, the pattern layer 130 is removed by performing wet etching with a solution corresponding to the type of the material forming the pattern layer 130. In the above-described preferred embodiment of the present invention, since the oxide layer compound is deposited to form the pattern layer 130, in order to separate it from the substrate 110, the pattern layer 130 is formed by using a buffered oxide etching (BOE) method. Removed.
한편, 상술한 본 발명의 바람직한 실시예에서는, 나노 물질로 CNT를 이용하여 네트워크를 형성하고, 그 위에 패턴층을 형성한 후, O2 플라즈마 처리나 400도 이상의 온도에서 산소 열처리 방식을 적용하여 CNT를 이산화탄소로 승화시켜 제거하였다. 이 때, CNT 제거를 보다 원활하게 수행하기 위해서, Au, Pt, Ag 및 Cu와 같이 CNT보다 환원 전위가 높은 금속을 패턴층 위에 증착시킴으로써, 열처리시에 CNT가 보다 원활하게 산화되도록 한다. Meanwhile, in the above-described preferred embodiment of the present invention, after forming a network using CNT as a nanomaterial, and forming a pattern layer thereon, CNT is applied by O 2 plasma treatment or oxygen heat treatment at a temperature of 400 degrees or more. Was removed by sublimation with carbon dioxide. At this time, in order to perform CNT removal more smoothly, by depositing a metal having a higher reduction potential than CNT on the patterned layer, such as Au, Pt, Ag and Cu, the CNT is more smoothly oxidized during the heat treatment.
도 3을 참조하면, CNT 폭의 약 50%~60% 두께까지 패턴층을 형성하고, 그 위에 CNT 폭의 약 80%에 이르기까지 Au, Pt, Ag, 및 Cu와 같이 CNT보다 환원 전위가 높은 금속을 증착하여 금속층(170)을 형성한 후 열처리를 수행하면, CNT 단독으로 열처리를 수행할 때보다 원활한 산화 반응이 일어나서, 보다 효과적으로 CNT 를 제거할 수 있다.Referring to FIG. 3, a pattern layer is formed to a thickness of about 50% to 60% of the CNT width, and a reduction potential is higher than CNT, such as Au, Pt, Ag, and Cu, up to about 80% of the CNT width thereon. When the heat treatment is performed after the metal is deposited to form the metal layer 170, a smooth oxidation reaction may occur than when the heat treatment is performed by CNT alone, and thus CNTs may be more effectively removed.
아울러, CNT 가 제거되면, CNT 위에 증착되어 있던 Au, Pt, Ag, 및 Cu 와 같은 금속들은 패턴층에 형성된 패턴 내부로 떨어지게 되고, 메탈 메쉬를 형성하기 위해서 패턴층 위에 메탈을 증착하면, 패턴 내부에 있는 Au, Pt, Ag, 및 Cu 와 같은 메탈들은 증착되는 메탈과 함께 메탈 메쉬를 형성하게 되므로, 별도의 제거 과정이 필요하지 않아 기존 공정에 적용이 용이하다. In addition, when the CNT is removed, the metals such as Au, Pt, Ag, and Cu deposited on the CNT fall into the pattern formed on the pattern layer, and when the metal is deposited on the pattern layer to form the metal mesh, the inside of the pattern Metals such as Au, Pt, Ag, and Cu in the metal mesh together with the deposited metal to form a metal mesh, it is easy to apply to the existing process does not need a separate removal process.
한편, 상술한 본 발명의 바람직한 실시예에서는 반도체 기판위에 메탈 메쉬를 형성하는 방법만을 설명하였는데, 기판에 형성된 메탈 메쉬 위에 CNT, 그래핀, ITO 와 같은 투명한 재질의 전도성 물질을 더 형성함으로써 전류 분산 및 전류 주입 효과를 더욱 향상시킬 수 있다. Meanwhile, in the above-described preferred embodiment of the present invention, only the method of forming the metal mesh on the semiconductor substrate has been described, but the current dispersion and the formation of a conductive material of a transparent material such as CNT, graphene, and ITO are further formed on the metal mesh formed on the substrate. The current injection effect can be further improved.
도 4에 도시된 바와 같이, 메탈 메쉬가 형성된 기판을 CNT 또는 그래핀이 혼합된 용액에 담갔다가 꺼내면, 기판위에 전체 면적에 CNT 또는 그래핀 층이 형성되어 메탈 메쉬가 접촉하지 않은 기판의 영역에도 전류가 주입되므로, 보다 양호한 전류 주입 및 전류 확산 효과를 나타낼 수 있다. 아울러, 메탈 메쉬가 형성된 기판 위에 투명한 전극층(예컨대, ITO)을 증착하여 형성하는 경우에도, 상술한 바와 동일한 효과가 나타남을 당업자는 알 수 있을 것이다. As shown in FIG. 4, when the substrate on which the metal mesh is formed is immersed in a solution containing CNT or graphene, and taken out, a CNT or graphene layer is formed on the entire area of the substrate, so that the metal mesh is not in contact with the substrate. Since current is injected, better current injection and current spreading effects can be exhibited. In addition, even if the transparent electrode layer (for example, ITO) is formed on the substrate on which the metal mesh is formed, those skilled in the art will recognize that the same effects as described above.
한편, 지금까지 설명한 메탈 메쉬(150) 형성 방법에 의해서 형성된 메탈 메쉬(150)는 발광 소자 및 수광 소자와 같은 반도체 소자에 구비될 수 있다. 도 1d 에 도시된 메탈 메쉬(150)를 구비하는 반도체 소자는, 발광층을 내부에 포함하는 기판(110)위에 메탈 메쉬(150)가 형성되는 구조로 제조될 수 있다. 마찬가지로, 도 1d 에 도시된 메탈 메쉬(150)를 구비하는 반도체 소자는, 수광층을 내부에 포함하는 기판(110)위에 메탈 메쉬(150)가 형성된 구조로 제조될 수 있다.Meanwhile, the metal mesh 150 formed by the method of forming the metal mesh 150 described above may be provided in a semiconductor device such as a light emitting device and a light receiving device. The semiconductor device including the metal mesh 150 illustrated in FIG. 1D may be manufactured in a structure in which the metal mesh 150 is formed on the substrate 110 including the light emitting layer therein. Similarly, the semiconductor device including the metal mesh 150 illustrated in FIG. 1D may be manufactured in a structure in which the metal mesh 150 is formed on the substrate 110 including the light receiving layer therein.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far I looked at the center of the preferred embodiment for the present invention. Those skilled in the art will appreciate that the present invention can be implemented in a modified form without departing from the essential features of the present invention. Therefore, the disclosed embodiments should be considered in descriptive sense only and not for purposes of limitation. The scope of the present invention is shown in the claims rather than the foregoing description, and all differences within the scope will be construed as being included in the present invention.

Claims (9)

  1. (a) 기판 위에 폭보다 길이가 더 긴 나노 사이즈의 물질(나노 물질)이 상호 연결된 네트워크를 형성하는 단계;(a) forming a network of interconnected nano-sized materials (nano materials) longer than width on the substrate;
    (b) 상기 네트워크의 일부가 잠기도록 상기 기판위에 패턴층을 형성하는 단계;(b) forming a patterned layer on the substrate so that a portion of the network is submerged;
    (c) 상기 네트워크를 제거하여 상기 패턴층위에 네트워크에 대응되는 패턴을 형성하는 단계;(c) removing the network to form a pattern corresponding to the network on the pattern layer;
    (d) 상기 기판위에 메탈을 증착하여 상기 패턴에 대응되는 메탈 메쉬를 형성하는 단계; 및(d) depositing a metal on the substrate to form a metal mesh corresponding to the pattern; And
    (e) 상기 패턴층을 제거하여 상기 기판위에 상기 메탈 메쉬만을 잔존시키는 단계를 포함하는 것을 특징으로 하는 메탈 메쉬 형성 방법.(e) removing the pattern layer to leave only the metal mesh on the substrate.
  2. 제 1 항에 있어서, 상기 (a) 단계는The method of claim 1, wherein step (a)
    스프레이(spray) 방식 또는 디핑(dipping) 방식으로 네트워크를 형성하는 것을 특징으로 하는 메탈 메쉬 형성 방법.A method of forming a metal mesh, characterized in that to form a network by spray (spray) or dipping (dipping) method.
  3. 제 1 항에 있어서, 상기 (b) 단계는The method of claim 1, wherein step (b)
    네트워크가 형성된 상기 기판위에 SiO2 및 Ga2O3를 포함하는 산화물계 화합물들 중 어느 하나를 증착하여 패턴층을 형성하는 것을 특징으로 하는 메탈 메쉬 형성 방법.Forming a pattern layer by depositing any one of oxide-based compounds comprising SiO 2 and Ga 2 O 3 on the substrate on which the network is formed.
  4. 제 3 항에 있어서, 상기 (e) 단계는 The method of claim 3, wherein step (e)
    BOE(Buffered Oxide Etch) 방식을 적용하여 패턴층을 제거하는 것을 특징으로 하는 메탈 메쉬 형성 방법.Metal mesh forming method characterized in that to remove the pattern layer by applying a BOE (Buffered Oxide Etch) method.
  5. 제 1 항에 있어서, The method of claim 1,
    상기 나노 물질은 CNT, Au, Ag, Cu, Si, GaN, ZnO, SiO2, TiO2 중 어느 하나인 것을 특징으로 하는 메탈 메쉬 형성 방법.The nanomaterial is CNT, Au, Ag, Cu, Si, GaN, ZnO, SiO 2 , TiO 2 metal mesh forming method, characterized in that any one.
  6. 제 5 항에 있어서, The method of claim 5,
    상기 나노 물질이 CNT(Carbon Nano Tube)인 경우에, When the nanomaterial is a carbon nanotube (CNT),
    상기 (c) 단계는 O2 플라즈마 처리방식 또는 산소 열처리 방식을 적용하여, CNT를 제거하는 것을 특징으로 하는 메탈 메쉬 형성 방법.The step (c) is a method of forming a metal mesh, characterized in that to remove the CNT by applying an O 2 plasma treatment method or an oxygen heat treatment method.
  7. 제 5 항에 있어서, The method of claim 5,
    상기 나노 물질이 CNT(Carbon Nano Tube)인 경우에, When the nanomaterial is a carbon nanotube (CNT),
    상기 (c) 단계는 상기 패턴층 위에 상기 CNT 보다 환원 전위가 높은 금속을 상기 기판위에 추가로 증착하여 형성한 후, O2 플라즈마 처리방식 또는 산소 열처리 방식을 적용하여, CNT를 제거하는 것을 특징으로 하는 메탈 메쉬 형성 방법.In the step (c), a metal having a higher reduction potential than that of the CNT is formed on the substrate by further depositing it on the substrate, and then removing the CNT by applying an O 2 plasma treatment method or an oxygen heat treatment method. How to form a metal mesh.
  8. 제 1 항에 있어서, The method of claim 1,
    (f) 상기 메탈 메쉬가 형성된 기판위에, CNT, 그래핀, ITO 중 어느 하나로 형성되는 투명 전극층을 형성하는 단계를 더 포함하는 것을 특징으로 하는 메탈 메쉬 형성 방법.(f) forming a transparent electrode layer formed on any one of CNT, graphene and ITO on the substrate on which the metal mesh is formed.
  9. 제 1 항의 메탈 메쉬 형성 방법에 의해서 형성된 메탈 메쉬를 구비하는 반도체 소자.A semiconductor device comprising a metal mesh formed by the metal mesh forming method of claim 1.
PCT/KR2016/003093 2015-04-28 2016-03-25 Method for forming metal mesh and semiconductor device having metal mesh WO2016175458A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0059717 2015-04-28
KR1020150059717A KR101766828B1 (en) 2015-04-28 2015-04-28 Method for forming metal mesh and semiconductor device having the metal mesh

Publications (1)

Publication Number Publication Date
WO2016175458A1 true WO2016175458A1 (en) 2016-11-03

Family

ID=57199023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003093 WO2016175458A1 (en) 2015-04-28 2016-03-25 Method for forming metal mesh and semiconductor device having metal mesh

Country Status (2)

Country Link
KR (1) KR101766828B1 (en)
WO (1) WO2016175458A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080581A1 (en) * 2018-10-15 2020-04-23 한국로봇융합연구원 Stretchable conductor for wearable device, connection device using said stretchable conductor, flexible electrode, electronic element, and method for manufacturing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102071051B1 (en) 2018-01-03 2020-01-30 연세대학교 산학협력단 Oxide semiconductor thin film transistor and method of manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110079117A (en) * 2009-12-31 2011-07-07 고려대학교 산학협력단 Method for manufacturing patterned structures of substrate by electrospinning
JP2011192396A (en) * 2010-03-11 2011-09-29 Panasonic Electric Works Co Ltd Substrate for forming transparent conductive film, substrate with transparent conductive film, and manufacturing method of transparent conductive film
KR20120124346A (en) * 2011-05-03 2012-11-13 삼성전자주식회사 composition for forming strechable conductive pattern, method for producing the strechable conductive pattern using the same and electronic device comprising the strechable conductive electrode
KR20130058664A (en) * 2010-03-04 2013-06-04 가디언 인더스트리즈 코퍼레이션. Electronic devices including transparent conductive coatings including carbon nanotubes and nanowire composites, and methods of making the same
KR101500192B1 (en) * 2013-11-13 2015-03-06 주식회사 포스코 Transparent conductive films including graphene layer and mathod for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110079117A (en) * 2009-12-31 2011-07-07 고려대학교 산학협력단 Method for manufacturing patterned structures of substrate by electrospinning
KR20130058664A (en) * 2010-03-04 2013-06-04 가디언 인더스트리즈 코퍼레이션. Electronic devices including transparent conductive coatings including carbon nanotubes and nanowire composites, and methods of making the same
JP2011192396A (en) * 2010-03-11 2011-09-29 Panasonic Electric Works Co Ltd Substrate for forming transparent conductive film, substrate with transparent conductive film, and manufacturing method of transparent conductive film
KR20120124346A (en) * 2011-05-03 2012-11-13 삼성전자주식회사 composition for forming strechable conductive pattern, method for producing the strechable conductive pattern using the same and electronic device comprising the strechable conductive electrode
KR101500192B1 (en) * 2013-11-13 2015-03-06 주식회사 포스코 Transparent conductive films including graphene layer and mathod for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080581A1 (en) * 2018-10-15 2020-04-23 한국로봇융합연구원 Stretchable conductor for wearable device, connection device using said stretchable conductor, flexible electrode, electronic element, and method for manufacturing same
KR20200042576A (en) * 2018-10-15 2020-04-24 한국로봇융합연구원 Stretchable Conductor, Electric device and Flexible electrode for wearable device
KR102137805B1 (en) 2018-10-15 2020-07-27 한국로봇융합연구원 Stretchable Conductor, Electric device and Flexible electrode for wearable device

Also Published As

Publication number Publication date
KR101766828B1 (en) 2017-08-09
KR20160128018A (en) 2016-11-07

Similar Documents

Publication Publication Date Title
US11037693B2 (en) Graphene oxide-metal nanowire transparent conductive film
JP5694427B2 (en) Transparent electrode and electronic material including the same
Gong et al. Fabrication of highly transparent and flexible nanomesh electrode via self‐assembly of ultrathin gold nanowires
Guo et al. Flexible transparent conductors based on metal nanowire networks
TWI523043B (en) Preparation method of transparent conductive film
Fuh et al. Pattern transfer of aligned metal nano/microwires as flexible transparent electrodes using an electrospun nanofiber template
US20070153353A1 (en) Nanostructured thin-film networks
JP6632694B2 (en) Transparent conductor and process for fabricating the transparent conductor
WO2014196821A1 (en) Transparent conductive film having hybrid nanomaterial and method for manufacturing same
WO2014046373A1 (en) Organic light-emitting diode provided with transparent electrode having conductive filaments and method for manufacturing same
WO2016175458A1 (en) Method for forming metal mesh and semiconductor device having metal mesh
WO2012177102A2 (en) Method for preparing carbon nanotube film
CN105810305A (en) Flexible carbon nanometer tubes (CNTs)/metal nanowire composite transparent conductive membrane, and preparation method and application thereof
TW201535421A (en) Manufacturing conductive thin films comprising graphene and metal nanowires
WO2014112766A1 (en) Transparent electrode including nano-material layer, method for fabricating same, and optical element device, display device and touch panel device including same
KR100801670B1 (en) Fine electrode pattren manufacturing methode by the ink jet printing
KR101303590B1 (en) Complex conductive substrate and method of manufacturing thereof
JP2016018713A (en) Conductive film
KR101442458B1 (en) Transparent electrode, electronic material comprising the same
WO2017014441A1 (en) Semiconductor device including transparent electrode having conductive filament formed therein and method for manufacturing same
Kuromatsu et al. Development of poly (methyl methacrylate)-supported transfer technique of single-wall carbon nanotube conductive films for flexible devices
Hwang et al. Formation of electrically conducting, transparent films using silver nanoparticles connected by carbon nanotubes
WO2016148435A1 (en) Method for manufacturing transparent electrode having metal mesh structure, and transparent electrode manufactured using same
WO2013111947A1 (en) Method for isolating graphene oxide
Azuma et al. Zero percolation threshold in electric conductivity of aluminum nanowire network fabricated by chemical etching using an electrospun nanofiber mask

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16786644

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16786644

Country of ref document: EP

Kind code of ref document: A1