WO2012177102A2 - Method for preparing carbon nanotube film - Google Patents

Method for preparing carbon nanotube film Download PDF

Info

Publication number
WO2012177102A2
WO2012177102A2 PCT/KR2012/005000 KR2012005000W WO2012177102A2 WO 2012177102 A2 WO2012177102 A2 WO 2012177102A2 KR 2012005000 W KR2012005000 W KR 2012005000W WO 2012177102 A2 WO2012177102 A2 WO 2012177102A2
Authority
WO
WIPO (PCT)
Prior art keywords
binder layer
etching
carbon nanotube
coating layer
cnt coating
Prior art date
Application number
PCT/KR2012/005000
Other languages
French (fr)
Korean (ko)
Other versions
WO2012177102A3 (en
Inventor
정다정
방윤영
김승렬
Original Assignee
(주)탑나노시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)탑나노시스 filed Critical (주)탑나노시스
Priority to CN201280031027.6A priority Critical patent/CN103635422A/en
Publication of WO2012177102A2 publication Critical patent/WO2012177102A2/en
Publication of WO2012177102A3 publication Critical patent/WO2012177102A3/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation

Definitions

  • the present invention relates to a carbon nanotube film manufacturing method, and more specifically, to form a carbon nanotube pattern in a desired shape on a substrate, carbon nanotubes that can be applied to various fields such as charging, display, optical It relates to a film production method.
  • transparent conductive films have high conductivity (for example, sheet resistance of 1 ⁇ 10 3 ⁇ / sq or less) and high transmittance (80% or more) in the visible region.
  • the transparent conductive film may include a plasma display panel (PDP), a liquid crystal display (LCD) device, a light emitting diode (LED), an organic light emitting diode (OLED), and an organic light emitting diode (OLED).
  • PDP plasma display panel
  • LCD liquid crystal display
  • LED light emitting diode
  • OLED organic light emitting diode
  • OLED organic light emitting diode
  • OLED organic light emitting diode
  • OLED organic light emitting diode
  • the carbon nanotubes are evaluated as an ideal material capable of realizing conductivity while maintaining optical properties due to the theoretical percolation concentration of only 0.04%, and when light is coated on a specific substrate in nanometer units, light transmits in the visible region. It can be used as a transparent electrode because it shows transparency and maintains electrical property, which is a unique characteristic of carbon nanotubes.
  • carbon nanotubes can be printed and used in a paste state in addition to the direct growth method, so that the large area is easy.
  • Carbon nanotubes are chemically very stable and resistant to wet etching. Accordingly, dry etching is used to form the carbon nanotube pattern.
  • the carbon nanotube film manufacturing method according to a preferred embodiment of the present invention, the step of forming a base binder layer comprising a wet etchable material on the substrate, and the carbon nanotube on the upper surface of the base binder layer Forming a CNT coating layer, forming a top binder layer including a wet etchable material on an upper surface of the CNT coating layer, and wet etching the CNT coating layer, the top binder layer, and a target binder layer to be etched. Removal is performed through etching.
  • Carbon nanotube film manufacturing method the step of forming a CNT coating layer comprising a carbon nanotube on the upper surface of the substrate, and forming a wet etchable top binder layer on the upper surface of the CNT coating layer And removing the etching target region of the top coating layer through wet etching, and plasma etching the exposed portion of the CNT coating layer to the outside.
  • Carbon nanotube film production method forming a CNT coating layer comprising an additive containing a carbon nanotube and a wet etchable material on the substrate, and a wet surface on the CNT coating layer Forming an etchable top binder layer, and removing the CNT coating layer and the etching target region of the top binder layer through wet etching.
  • a method of manufacturing a carbon nanotube film includes forming a wet etchable base binder layer on a substrate, and forming carbon nanotubes and wet etchable nanoparticles on an upper surface of the base binder layer. Forming a CNT coating layer including particles, forming a wet etchable top binder layer on the upper surface of the CNT coating layer, wet etching the CNT coating layer, the top binder layer, and a region to be etched of the base binder layer. It includes removing through.
  • a pattern may be formed by wet etching carbon nanotubes. Accordingly, it is possible to form a fine carbon nanotube pattern, it is possible to quickly form a carbon nanotube pattern even in the case of a large area carbon nanotube film.
  • FIG. 1 is a flowchart of a carbon nanotube film manufacturing method according to a first embodiment of the present invention.
  • FIGS 2 to 6 are cross-sectional views showing each step of the carbon nanotube film manufacturing method according to the first embodiment of the present invention.
  • FIG. 7 is a flow chart of a carbon nanotube film manufacturing method according to a second embodiment of the present invention.
  • FIGS. 8 to 12 are cross-sectional views showing each step of the carbon nanotube film manufacturing method according to a second embodiment of the present invention.
  • FIG. 13 is a flow chart of a carbon nanotube film manufacturing method according to a third embodiment of the present invention.
  • FIG. 18 is a flowchart illustrating a carbon nanotube film manufacturing method according to a fourth preferred embodiment of the present invention.
  • 19 to 21 are cross-sectional views showing each step before etching in the carbon nanotube film manufacturing method according to the fourth embodiment of the present invention.
  • FIG. 1 is a flow chart showing each step of the method for producing a carbon nanotube film (S100) according to an embodiment of the present invention.
  • the carbon nanotube film manufacturing method (S100) includes forming a base binder layer including a wet etchable material on a substrate (S110). Forming a CNT coating layer including carbon nanotubes on the upper surface of the base binder layer (S120), and forming a top binder layer including a wet etchable material on the upper surface of the CNT coating layer (S130); The wet etching is performed to remove the CNT coating layer, the top binder layer and the etching target region of the base binder layer (S140).
  • FIG. 2 to 6 are cross-sectional views showing each step of the carbon nanotube film production method of the present invention. 2 to 6, each step of the carbon nanotube film manufacturing method according to the first embodiment of the present invention will be described in more detail.
  • a base binder layer 120 including a wet etchable material is formed on the substrate 110.
  • the substrate 110 may be glass or a material such as a polymer such as PET, PC, PI, PEN, COC, or the like.
  • the substrate 110 is coated with a CNT coating layer on the upper surface, it can be applied as a display panel, a touch screen, a lighting means.
  • the substrate 110 is preferably made of a transparent material.
  • the substrate 110 may be used as a member requiring flexibility such as electronic paper.
  • the base material is made of a transparent inorganic substrate or a transparent polymer substrate to have flexibility.
  • the base binder layer 120 is made of a binder material including a wet etchable material.
  • the wet etchable material may be a ceramic-based and metal oxide, and may be, for example, a material such as TiO 2, SiO 2, ZnO, SnO, SiNx, SiON, SiN x , ITO, ATO, or the like.
  • the base binder layer 120 functions to bond the substrate 110 and the carbon nanotube coating layer 130 (see FIG. 3) to be described later.
  • the base binder layer 120 is wet-etched together with the top binder layer 140 (see FIG. 4), which will be described later, and the CNT coating layer 130 between the base binder layer 120 and the top binder layer. 4) is wet etched.
  • the CNT coating layer 130 is formed on the base binder layer 120.
  • the CNT coating layer 130 includes carbon nanotubes (c). Carbon Nanotubes (CNTs) form a tube where one carbon is bonded to another carbon atom in a hexagonal honeycomb pattern to form a tube. The diameter of the tube is extremely small, at the nanometer level, and exhibits unique electrochemical properties. When the nanotubes are formed of a thin conductive film on a plastic or glass substrate, they can be used as transparent electrodes because they exhibit high transmittance and conductivity in the visible light region.
  • the coating method of the CNT coating layer 120 may use a general wet coating method such as spray coating, gravure coating, slot die coating, dip coating, bar coating, roll to roll coating.
  • a part of the carbon nanotubes (C) constituting the CNT coating layer 130 may be inserted into the base binder layer 120 to be bonded.
  • a top binder layer 140 including a wet etchable material is coated on the CNT coating layer 130.
  • the top binder layer 140 is made of a binder material.
  • the top binder layer 140 may be a binder including a ceramic-based and metal oxide, and may include, for example, materials such as TiO 2, SiO 2, ZnO, SnO, SiNx, SiON, SiN x , ITO, ATO, and the like. .
  • the binder material serves to bond between the carbon nanotube strands. Therefore, at least a portion of the top binder layer 140 is coupled to the carbon nanotube strands of the CNT coating layer 130. Accordingly, the CNT coating layer 130 is coupled to the bottom by the binder material of the base binder layer 120, and is coupled to the binder material of the top binder layer 140 to the upper side.
  • the etching target region E of the base binder layer 120, the CNT coating layer 130, and the top binder layer 140 is removed by wet etching.
  • the etching paste 150 is pattern-coated on the etching target region E of the top binder layer 140.
  • the surface on which the etching paste 150 is applied is etched by the wet etching equipment.
  • the etching paste has a viscosity of about thousands to tens of thousands of Cps and is patterned on the top binder layer.
  • the screen printing method can be used as a method of pattern-forming the said etching paste 150.
  • the screen printing method may be performed by disposing a screen mask on the top binder layer 140 and printing an etching paste on the top binder layer through the hollow portion of the screen mask with a squeeze.
  • the coating layer may be subjected to a heat treatment step of heating to an appropriate temperature to react with the etching paste.
  • the etching rate can be increased by introducing heat into the etching paste through the above process.
  • the etching paste 150, the top binder layer 140, the CNT coating layer 130, and the base binder layer 120 to which the etching paste is applied are removed by washing. Go through the steps.
  • the washing step when the etching paste 150 is rinsed in di-water, the top binder layer 140 coated with the etching paste 150 and the etching paste, the CNT coating layer 130, and the base The binder layer 120 is etched and removed to complete the patterned carbon nanotube film 100.
  • top binder layer 140 and the base binder layer 120 is made of a material that can be removed by wet etching.
  • the CNT coating layer 130 is bound to the top binder layer 140 on the upper side and bound to the base binder layer 120 on the lower side, so that the top binder layer 140 and the base binder layer 120 are bound. ) Is etched along the etching paste 150, thereby allowing the CNT coating layer 130 bound thereto to be etched.
  • the wet etching method is not limited to the wet etching method using the above-described etching paste. That is, the wet etching that can be applied to the present invention can apply a photoresist method. That is, a photoresist, which is a photosensitive resin, is coated, and a photoresist is selectively transmitted by transmitting light having a wavelength in a specific region using a mask serving as a patterned disc, and then a photoresist is selectively developed.
  • the etching target region E which is a portion selectively exposed by the developing process, can be removed by a chemical method such as an etching solution or a reactive gas.
  • the present invention is not limited to the etching paste coating method or the photoresist method, and the top binder layer 140, the CNT coating layer 130, and the base binder layer (in the etching target region E) using a chemical solution ( If 120 can be melted, all of the present invention.
  • the CNT coating layer 130 is patterned by wet etching. Accordingly, there is an advantage that the conventional wet etching equipment for forming a pattern of an electrode such as ITO can be applied as it is. In addition, there is an advantage that can be quickly etched, and have a fine pattern width.
  • the carbon nanotube film manufacturing method S200 includes forming a CNT coating layer including carbon nanotubes on an upper surface of the substrate (S210), and a wet-etchable tower on the upper surface of the CNT coating layer. Forming a binder layer (S220), removing the etching target region of the top coating layer through wet etching (S230), and plasma etching the exposed portion of the CNT coating layer (S240). Include.
  • FIGS. 8 to 12 are cross-sectional views showing each step of the method for manufacturing a carbon nanotube film according to the second embodiment of the present invention.
  • the CNT coating layer 230 including the carbon nanotubes (c) is formed on the substrate 210.
  • the substrate 210 may be glass as described above, or may be a material such as a polymer such as PET, PC, PI, PEN, COC, or the like.
  • the substrate is coated with a CNT coating layer, it can be applied to a display panel or a touch screen.
  • the substrate is preferably made of a transparent material.
  • the substrate may be used as a member requiring flexibility such as electronic paper.
  • the base material is made of a transparent inorganic substrate or a transparent polymer substrate to have flexibility.
  • the CNT coating layer 230 includes carbon nanotubes (c).
  • the coating method of the CNT coating layer 120 may use a general wet coating method such as spray coating, gravure coating, slot die coating, dip coating, bar coating, roll to roll coating.
  • the top binder layer 240 made of a wet etchable material is formed on the upper surface of the CNT coating layer 230.
  • the top binder layer 240 may be a binder including a ceramic-based and a metal oxide, and may include, for example, materials such as TiO 2, SiO 2, ZnO, SnO, SiNx, SiON, SiN x , ITO, ATO, and the like. .
  • the etching target region of the top binder layer 240 is removed by wet etching.
  • an etching paste 250 is formed on the etching target region E of the top binder layer 240, and then washed to form the etching paste 250. Step 250 and the top binder layer 240 covered with the etching paste 250 may be removed.
  • a photoresist which is a photosensitive resin
  • a photoresist is coated on the top binder layer, and light is selectively reacted with the photoresist by transmitting light having a wavelength in a specific region using a mask serving as a pattern disc. After developing, develop the reaction part.
  • the top binder layer can be selectively removed by chemically etching the portions selectively exposed by the developing process.
  • the top binder layer 240 is removed from the CNT coating layer 230, and the exposed portion of the CNT coating layer 230 is exposed to the outside.
  • chemical dry etching is meant an etching in which the reactive species generated in the plasma are supplied to the surface of the material to be etched where a chemical reaction occurs between the reactive species and the surface atoms, resulting in the generation of volatile gases.
  • the CNT coating layer 230 may be subjected to oxygen plasma etching. Then, the carbon of the CNT coating layer 230 is chemically combined with oxygen during plasma etching to remove carbon dioxide (CO 2) to form a patterned carbon nanotube film 200.
  • Chemical dry etching methods include reactive ion etching, reactive sputter etching, reactive ion beam milling, and the like, in addition to the plasma etching.
  • the plasma etching equipment 290 By using the plasma etching equipment 290, there is an advantage that the etching time is shortened compared to the laser etching method commonly used for the CNT coating layer pattern of the conventional carbon nanotube film.
  • the degree of plasma etching may be adjusted so that the carbon nanotubes (c) constituting the CNT coating layer may not be completely removed, but may remain so that electricity does not flow.
  • the remaining carbon nanotubes (c) function to prevent visual differences from the CNT coating layer 230 other than the region to be removed. Accordingly, the user can see the surface having a homogeneous color instead of the mottled shape with the naked eye.
  • FIG. 13 is a flowchart illustrating a carbon nanotube film manufacturing method S300 according to a third embodiment of the present invention.
  • the carbon nanotube film manufacturing method (S300) according to the third exemplary embodiment of the present invention forms a CNT coating layer including an additive containing carbon nanotubes and a wet etchable material on a substrate.
  • Step S310 forming a wet etchable top binder layer on the upper surface of the CNT coating layer (S320), and removing the etching target regions of the CNT coating layer and the top binder layer through wet etching (S330). Rough
  • a CNT coating layer 330 including a carbon nanotube (c) and an additive 336 containing a wet etchable material is formed on the substrate 310.
  • the additive 336 containing the wet etchable material is a material that can be removed by wet etching, and the carbon nanotubes (c) must be firmly bonded to each other, and the carbon nanotubes bonded thereto by wet etching are also removed.
  • the additive containing the wet etchable material may be an additive including a ceramic series and a metal oxide, and may include, for example, a material such as TiO 2, SiO 2, ZnO, SnO, SiNx, SiON, SiN x , ITO, ATO, or the like. have.
  • the concentration of the additive 336 preferably accounts for 0.001 to 30% by weight relative to the total weight of the solution forming the CNT coating layer. This is because the etching effect is lowered when it is lower than 0.001wt%, and when it is higher than 30wt%, there is a problem that the conductivity is deteriorated due to the increase of the amount of the additive.
  • top binder layer 340 is formed on the CNT coating layer 330.
  • the top binder layer 340 is the same as the material and function of the top binder layers 140 and 240 of the first and second embodiments of the present invention, so a detailed description thereof will be omitted.
  • the etching target region E of the top binder layer 340 and the CNT coating layer 330 is removed by wet etching.
  • An example of a wet etching method is a method of using an etching paste as shown in FIGS. 16 and 17.
  • the etching paste 350 is coated on the etching target region E of the top binder layer 340. After that, as shown in FIG. 17, the etching paste 350 and the CNT coating layer 330 covered by the etching paste are removed through the cleaning, thereby completing the patterned carbon nanotube film 300. .
  • the CNT coating layer 330 includes a wet etchable additive
  • the top binder layer 350 is made of a wet etchable material, so that the carbon nanotubes are wetted with the top binder layer and the additive during wet etching. Can be removed together.
  • wet etching method of this invention is not limited only to the method by the said etching paste as mentioned above.
  • FIGS. 19 to 21 illustrate each step before etching in a method of manufacturing a carbon nanotube film according to a fourth preferred embodiment of the present invention. It is sectional drawing which shows.
  • the carbon nanotube film manufacturing method (S400) includes forming a wet-etchable base binder layer on a substrate (S410) and the base binder layer. Forming a CNT coating layer including carbon nanotubes and wet etchable nanoparticles on the upper surface (S420), forming a wet etchable top binder layer on the upper surface of the CNT coating layer (S430), and wet etching Removing the CNT coating layer, the top binder layer, and the etching target region of the base binder layer through (S440).
  • removing the etching target region of the CNT coating layer, the top binder layer, and the base binder layer by wet etching may include removing the etching target region of the first embodiment of the present invention (S140); Since the steps are substantially the same, a description thereof will be omitted.
  • the base material 410, the binder 421 of the base binder layer 420, the binder 443 of the top binder layer 440, and the carbon nanotube (C) also according to the first embodiment of the present invention Functions of the base material 110, the binder 121 of the base binder layer 120, the binder 143 of the top binder layer 140, and the carbon nanotube C in the description of the carbon nanotube film manufacturing method And since the material is substantially the same, it will be mainly described for the difference.
  • a wet etchable base binder layer 420 is formed on the substrate 410.
  • the binder 421 used for the base binder layer 420 is applied according to the material of the substrate. Therefore, the binder used for the base binder layer 420 may not be wet etched.
  • the base binder layer 420 may be wet etched by further including wet-etchable nanoparticles 423 regardless of whether the binder is wet etchable.
  • the nanoparticles 423 may be ceramic nanoparticles or metal oxide nanoparticles.
  • the nanoparticles are TiO 2 , SiO 2 , SiON, SiN x , SiN x , ZnO, SnO, Al 2 O 3 , ZrO 2 , Y 2 O 3 , WO 3 , V 2 O 5 , NiO, Mn At least one selected from 3 O 4 , MgO, La 2 O 3 , Fe 2 O 3 , Cr 2 O 3 , Co 3 O 4 , CuO, CeO 2 , ITO, ATO, AZO, FTO, GZO, Sb 2 O 3 Can be.
  • the solvent alcohols, amines, distilled water and general organic solvents can be selected, and the solvent preferably has a boiling point of 150 ° C. or lower so that it can be easily removed later.
  • the base binder layer 420 may be formed by mixing the binder 421 and the nanoparticles 423 in a solvent to form a base binder solution, and then coating the substrate on the substrate.
  • the size of the nanoparticles 423 may be 1nm to 1 ⁇ m.
  • the size of the nanoparticles is less than 1 nm, even if the nanoparticles are wet-etched, there is a problem in that the etching is not performed together with the binder because the influence on the base binder layer is insignificant. This is because there is a problem that the coating surface is not uniformly dispersed within the sink, or the coating surface is formed unevenly after coating.
  • the nanoparticles 423 preferably has a content of 1 to 500 relative to 100 parts by weight of the base binder, which is wet etching when less than 1 part by weight. This is because the problem is that if the content is more than 500 parts by weight, the physical properties of the base binder layer are changed, and the particles after the coating scatter light to increase haze.
  • the CNT coating layer 430 is formed on the base binder layer 420.
  • the CNT coating layer 430 includes a wet etchable nanoparticle 433.
  • the nanoparticles 433 are bound to a binder together with the carbon nanotubes (C), thereby adhering to the carbon nanotubes (C). Accordingly, during the wet etching, the nanoparticles 433 are etched and the carbon nanotubes C are also etched.
  • the nanoparticles 433 may be ceramic nanoparticles or metal oxide nanoparticles.
  • the nanoparticles are TiO 2 , SiO 2 , SiON, SiN x , SiN x , ZnO, SnO, Al 2 O 3 , ZrO 2 , Y 2 O 3 , WO 3 , V 2 O 5 , NiO, Mn At least one selected from 3 O 4 , MgO, La 2 O 3 , Fe 2 O 3 , Cr 2 O 3 , Co 3 O 4 , CuO, CeO 2 , ITO, ATO, AZO, FTO, GZO, Sb 2 O 3 Can be.
  • the CNT coating layer 430 may be formed by coating a CNT coating solution on the upper surface of the base binder layer 420.
  • the CNT coating solution may be prepared by mixing a binder, a nanoparticle 433 and a carbon nanotube (C) in a solvent.
  • carbon nanotubes (C) are dispersed.
  • One example of the carbon nanotube dispersion method is to disperse the carbon nanotubes in an organic solvent such as amide-based DMF (NN-dimethylformamide) or NMP (1,2-dichlorobenzene, N-methylpyrrolidone).
  • organic solvent such as amide-based DMF (NN-dimethylformamide) or NMP (1,2-dichlorobenzene, N-methylpyrrolidone).
  • Another example of the carbon nanotube dispersion method may be a water-soluble dispersant.
  • the water-soluble dispersant include sodium dodecyl sulfate (SDS), triton x-100 (tx-100), sodium dodecylbenzene sulfonate (NaDDBS), and gum arabic.
  • a binder and nanoparticles are added to a solvent in which carbon nanotubes are dispersed.
  • the binder can be applied to any conventional binder for binding between the carbon nanotubes.
  • the size of the nanoparticles may be 1nm to 1 ⁇ m.
  • the forming of the CNT coating layer may be performed by coating a CNT coating solution in which a nanoparticle and carbon nanotubes are mixed in a solvent, and the nanoparticles may have a content of 1 to 500 with respect to 100 parts by weight of CNT. .
  • the size of the nanoparticles 433 is preferably 1nm to 1 ⁇ m.
  • the size of the nanoparticles is less than 1 nm, even if the nanoparticles are wet etched, the effect on the CNT coating layer is insignificant, and the etching solution penetrates into the base binder layer, thereby preventing the CNT coating layer and the base binder layer from being etched together. This is because when the size of the nanoparticles exceeds 1 ⁇ m, the nanoparticles do not uniformly disperse in the coating solution and sink or decrease the dispersibility of CNTs.
  • the nanoparticles 433 preferably have a content of 1 to 500 with respect to 100 parts by weight of the carbon nanotubes, which is less than 1 part by weight of the wet etching is not properly, 500 weight If the addition exceeds, the dispersibility of the CNT coating solution is lowered, the physical properties of the CNT coating layer after the coating is changed, and the nanoparticles scatter light to increase the haze.
  • nanoparticles 433 examples include Titanium IV 2-propanolato, trisisooctadecanoato-O, Titanium IV bis 2-methyl-2-propenoato-O, isooctadecanoato-O 2-propanolato, Titanium IV 2-propanolato, and tris (dodecyl). ) benzenesulfanato-O, Titanium IV 2-propanolato, tris (dioctyl) phosphato-O, Zirconium IV 2.
  • 2-dimethyl 1,3propanediolato bis (dioctyl) pyrophosphato-O, (adduct) 2 moles N, N-dimethylamino -alkyl propenoamide, Zirconium IV (2-ethyl, 2-propenolatomethyl) 1,3-propanediolato, cyclobis 2-dimethylamino pyrophosphato-O, adduct with 2 moles of methanesulfonic acid, and Zirconium IV tetrakis 2,2 (bis-2 propenolatomethyl butanolato, adduct with 2 moles of di-tridecyl, hydrogen phosphite, Zirconium IV 2-ethyl, 2-propenolatomethyl 1, 3-propanediolato, cyclo di 2, 2- (bis 2-propenolatomethyl) butanolatopyrophosphato-O, O Can be.
  • a wet etchable top binder layer 440 is coated on the CNT coating layer 430.
  • the top binder layer 440 may be formed by mixing wet etchable nanoparticles 443 with a binder 441.
  • the binder can be selected according to the function of the top binder layer, and in this case, a binder which cannot be wet etched can be used as the main material of the top binder layer.
  • the entire top binder layer may be wet-etched as the nanoparticles are wet etched.
  • the nanoparticles may have a size of 1 nm to 1 ⁇ m.
  • the size of the nanoparticles is less than 1 nm, even if the nanoparticles are wet etched, the effects on the binder layer are insignificant, so that the nanoparticles may not be etched together with the binder. This is because there is a problem that the coating surface is not uniformly dispersed, or the coating surface is unevenly formed after coating.
  • the nanoparticles preferably have a content of 1 to 500 with respect to 100 parts by weight of the top binder, which is less than 1 part by weight of the wet etching is not properly, 500 This is because when the weight part is exceeded, the physical properties of the base binder layer are changed, and the particles after coating have a problem in that haze is increased by scattering light.
  • the etching target regions of the base binder layer 420, the CNT coating layer 430, and the top binder layer 440 may be removed by wet etching.
  • the CNT coating layer 430 is bound to the top binder layer 440 on the upper side and the base binder layer 420 on the lower side, and nanoparticles are added to the CNT coating layer.
  • the layer 440 and base binder layer 420 are etched along the etching paste, allowing the CNT coating layer 430 bound thereto to be easily etched.
  • the etchant etches the nanoparticles exposed to the outside of the top binder layer 440 and the CNT coating layer.
  • the etchant then etches the base binder layer 420 through the etched portion of the CNT coating layer. Thereafter, upon washing, the remaining CNT coating layers are etched together.
  • the present invention can be applied to the field in which the charging film is applied in the display industry, the semiconductor industry, the optical field, the lighting field, and the like.

Abstract

The present invention provides a method for preparing a carbon nanotube film which can be wet-etched. The method for preparing a carbon nanotube film, according to the present invention, comprises the steps of: forming a base binder layer including a material which can be wet-etched, on a substrate; forming a CNT coating layer including carbon nanotube, on the upper surface of the base binder layer; forming a top binder layer including a material which can be wet-etched, on the upper surface of the CNT coating layer; and removing the regions to be etched of the CNT coating layer, the top binder layer, and the base binder layer through wet-etching.

Description

탄소나노튜브필름 제조 방법 Carbon Nanotube Film Manufacturing Method
본 발명은 탄소나노튜브 필름 제조방법에 관한 것으로서, 보다 구체적으로는 기재 상에 원하는 형상으로 탄소나노튜브 패턴을 형성시켜서, 대전분야, 디스플레이분야, 광학분야 등 여러 분야에 적용할 수 있는 탄소나노튜브필름 제조방법에 관한 것이다.The present invention relates to a carbon nanotube film manufacturing method, and more specifically, to form a carbon nanotube pattern in a desired shape on a substrate, carbon nanotubes that can be applied to various fields such as charging, display, optical It relates to a film production method.
일반적으로 투명전도성 필름은 높은 전도성 (예를 들면, 1x103Ω/sq 이하의 면저항)과 가시영역에서 높은 투과율(80%이상)을 가진다. 이에 따라서 상기 투명전도성 필름은 플라즈마 디스플레이 패널(Plasma Display Panel, PDP), 액정 디스플레이(Liquid crystal Display, LCD)소자, 발광다이오드(Light Emitting Diode, LED), 유기 전계 발광다이오드(Organic Light Emitting Diode, OLED), 터치패널 또는 태양전지 등에서 각종 수광소자와 발광소자의 전극으로 이용되는 것 이외에 자동차 창유리나 건축물의 창유리 등에 쓰이는 대전 방지막, 전자파 차폐막 등의 투명전자파 차폐제 및 열선 반사막, 냉동 쇼케이스 등의 투명 발열체로 사용되고 있다. In general, transparent conductive films have high conductivity (for example, sheet resistance of 1 × 10 3 Ω / sq or less) and high transmittance (80% or more) in the visible region. Accordingly, the transparent conductive film may include a plasma display panel (PDP), a liquid crystal display (LCD) device, a light emitting diode (LED), an organic light emitting diode (OLED), and an organic light emitting diode (OLED). ), As an electrode of various light-receiving elements and light-emitting elements in touch panels or solar cells, as well as transparent electromagnetic wave shielding agents such as antistatic films and electromagnetic wave shielding films used in automobile window glass or building window glass, and transparent heating elements such as heat ray reflecting films and refrigerated showcases. It is used.
최근에는 기재 상에 코팅되는 전극을 탄소나노튜브로 하는 것에 대한 연구가 진행되고 있다.Recently, research has been made on using carbon nanotubes as electrodes coated on a substrate.
상기 탄소나노튜브는 이론적 퍼콜레이션 농도가 0.04%에 불과하여 광학적 성질을 유지시키면서 전도성을 구현할 수 있는 이상적인 재료로 평가되고 있으며 나노미터 단위로 특정 기재위에 박막으로 코팅하게 되면 가시광선 영역에서 빛이 투과되어 투명성을 나타내며 탄소나노튜브가 가지고 있는 고유한 특성인 전기적 성질을 유지하게 되어 투명전극으로 사용할 수 있다. 또한, 탄소나노튜브는 직접적인 성장방식 외에도 페이스트 상태로 인쇄하여 사용할 수 있으므로 대면적화가 쉽다.The carbon nanotubes are evaluated as an ideal material capable of realizing conductivity while maintaining optical properties due to the theoretical percolation concentration of only 0.04%, and when light is coated on a specific substrate in nanometer units, light transmits in the visible region. It can be used as a transparent electrode because it shows transparency and maintains electrical property, which is a unique characteristic of carbon nanotubes. In addition, carbon nanotubes can be printed and used in a paste state in addition to the direct growth method, so that the large area is easy.
탄소나노튜브는 화학적으로 매우 안정적이고 내성이 강해서 습식 에칭이 어렵다. 이에 따라서 탄소나노튜브 패턴을 형성하기 위해서는 건식 에칭이 사용된다. Carbon nanotubes are chemically very stable and resistant to wet etching. Accordingly, dry etching is used to form the carbon nanotube pattern.
종래에는 탄소나노튜브 패턴을 형성시키기 위한 건식 에칭 방법의 하나로서, 레이저를 사용하였다. 그런데, 상기 레이저는 빔 사이즈가 작음으로써, 대면적의 패턴을 형성시키는데 걸리는 작업시간이 길어지고, 패턴 불량률이 높다는 문제점이 있다. Conventionally, lasers have been used as one of the dry etching methods for forming carbon nanotube patterns. However, since the laser has a small beam size, there is a problem in that a work time for forming a large area pattern is long and a pattern defect rate is high.
또한 상기 탄소나노튜브 필름에 탄소나노튜브 패턴을 형성시키기 위해서는, 종래에 통상적으로 사용되는 습식 에칭 장비 이외의 별도의 건식 장비를 제작하여 적용하여야 한다는 문제점이 있다.In addition, in order to form a carbon nanotube pattern on the carbon nanotube film, there is a problem that a separate dry equipment other than the conventional wet etching equipment used to be manufactured and applied.
본 발명은, 대면적 및 미세한 탄소나노튜브 패턴을 간단하고 신속하게 제조할 수 있는 탄소나노튜브 필름 제조 방법을 제공하는 것을 목적으로 한다.It is an object of the present invention to provide a method for producing a carbon nanotube film which can produce a large area and a fine carbon nanotube pattern simply and quickly.
따라서, 본 발명의 바람직한 실시예에 따른 탄소나노튜브 필름 제조 방법은, 기재 상에, 습식 에칭 가능한 소재를 포함하는 베이스 바인더층을 형성시키는 단계와, 상기 베이스 바인더층 상면에, 탄소나노튜브를 포함하는 CNT 코팅층을 형성시키는 단계와, 상기 CNT 코팅층 상면에, 습식 에칭 가능한 소재를 포함하는 탑 바인더층을 형성시키는 단계와, 상기 CNT 코팅층과, 탑 바인더층과, 베이스 바인더층의 에칭 대상 영역을 습식 에칭을 통하여 제거하는 단계를 거친다. Therefore, the carbon nanotube film manufacturing method according to a preferred embodiment of the present invention, the step of forming a base binder layer comprising a wet etchable material on the substrate, and the carbon nanotube on the upper surface of the base binder layer Forming a CNT coating layer, forming a top binder layer including a wet etchable material on an upper surface of the CNT coating layer, and wet etching the CNT coating layer, the top binder layer, and a target binder layer to be etched. Removal is performed through etching.
본 발명의 바람직한 다른 실시예에 따른 탄소나노튜브 필름 제조 방법은, 기재 상면에, 탄소나노튜브를 포함하는 CNT 코팅층을 형성시키는 단계와, 상기 CNT 코팅층 상면에, 습식 에칭 가능한 탑 바인더층을 형성시키는 단계와, 상기 탑코팅층의 에칭 대상 영역을 습식 에칭을 통하여 제거하는 단계와, 상기 CNT 코팅층 중 외부로 노출된 부분을 플라즈마에칭 처리하는 단계를 거친다.Carbon nanotube film manufacturing method according to another embodiment of the present invention, the step of forming a CNT coating layer comprising a carbon nanotube on the upper surface of the substrate, and forming a wet etchable top binder layer on the upper surface of the CNT coating layer And removing the etching target region of the top coating layer through wet etching, and plasma etching the exposed portion of the CNT coating layer to the outside.
본 발명의 바람직한 또 다른 실시예에 따른 탄소나노튜브 필름 제조 방법은, 기재 상에 탄소나노튜브 및 습식 에칭 가능한 물질이 들어간 첨가제를 포함하는 CNT 코팅층을 형성시키는 단계와, 상기 CNT 코팅층상면에, 습식 에칭 가능한 탑 바인더층을 형성시키는 단계와, 상기 CNT 코팅층 및 탑 바인더층의 에칭 대상 영역을 습식 에칭을 통하여 제거하는 단계를 포함한다.Carbon nanotube film production method according to another preferred embodiment of the present invention, forming a CNT coating layer comprising an additive containing a carbon nanotube and a wet etchable material on the substrate, and a wet surface on the CNT coating layer Forming an etchable top binder layer, and removing the CNT coating layer and the etching target region of the top binder layer through wet etching.
본 발명의 바람직한 또 더 다른 실시예에 따른 탄소나노튜브 필름 제조 방법은, 기재 상에, 습식 에칭 가능한 베이스 바인더층을 형성시키는 단계와, 상기 베이스 바인더층 상면에, 탄소나노튜브 및 습식 에칭 가능한 나노 입자를 포함하는 CNT 코팅층을 형성시키는 단계와, 상기 CNT 코팅층 상면에, 습식 에칭 가능한 탑 바인더층을 형성시키는 단계와, 상기 CNT 코팅층과, 탑 바인더층과, 베이스 바인더층의 에칭 대상 영역을 습식 에칭을 통하여 제거하는 단계를 포함한다.According to still another preferred embodiment of the present invention, a method of manufacturing a carbon nanotube film includes forming a wet etchable base binder layer on a substrate, and forming carbon nanotubes and wet etchable nanoparticles on an upper surface of the base binder layer. Forming a CNT coating layer including particles, forming a wet etchable top binder layer on the upper surface of the CNT coating layer, wet etching the CNT coating layer, the top binder layer, and a region to be etched of the base binder layer. It includes removing through.
본 발명에 따르면, 탄소나노튜브를 습식 에칭하여 패턴 형성이 가능하다. 이에 따라서 미세한 탄소나노튜브 패턴의 형성이 가능하고, 대면적의 탄소나노튜브필름의 경우에도 신속하게 탄소나노튜브 패턴을 형성시킬 수 있다. According to the present invention, a pattern may be formed by wet etching carbon nanotubes. Accordingly, it is possible to form a fine carbon nanotube pattern, it is possible to quickly form a carbon nanotube pattern even in the case of a large area carbon nanotube film.
또한, 기존의 습식 에칭 장비를 적용하여서 탄소나노튜브 패턴을 형성시킬 수 있음으로써, 제조 비용이 저감된다.In addition, by applying a conventional wet etching equipment to form a carbon nanotube pattern, the manufacturing cost is reduced.
도 1은 본 발명의 바람직한 제1 실시예에 따른 탄소나노튜브 필름 제조 방법의 흐름도다.1 is a flowchart of a carbon nanotube film manufacturing method according to a first embodiment of the present invention.
도 2 내지 도 6은 본 발명의 바람직한 제1 실시예에 따른 탄소나노튜브 필름 제조 방법의 각 단계를 도시한 단면도들이다.2 to 6 are cross-sectional views showing each step of the carbon nanotube film manufacturing method according to the first embodiment of the present invention.
도 7은 본 발명의 바람직한 제2 실시예에 따른 탄소나노튜브 필름 제조 방법의 흐름도다.7 is a flow chart of a carbon nanotube film manufacturing method according to a second embodiment of the present invention.
도 8 내지 도 12는 본 발명의 바람직한 제2 실시예에 따른 탄소나노튜브 필름 제조 방법의 각 단계를 도시한 단면도들이다.8 to 12 are cross-sectional views showing each step of the carbon nanotube film manufacturing method according to a second embodiment of the present invention.
도 13은 본 발명의 바람직한 제3 실시예에 따른 탄소나노튜브 필름 제조 방법의 흐름도다.13 is a flow chart of a carbon nanotube film manufacturing method according to a third embodiment of the present invention.
도 14 내지 도 17은 본 발명의 바람직한 제3 실시예에 따른 탄소나노튜브 필름 제조 방법의 각 단계를 도시한 단면도들이다.14 to 17 are cross-sectional views showing respective steps of the carbon nanotube film manufacturing method according to the third preferred embodiment of the present invention.
도 18은 본 발명의 바람직한 제4 실시예에 따른 탄소나노튜브 필름 제조 방법의 흐름도다.18 is a flowchart illustrating a carbon nanotube film manufacturing method according to a fourth preferred embodiment of the present invention.
도 19 내지 도 21은 본 발명의 바람직한 제4 실시예에 따른 탄소나노튜브 필름 제조 방법 중 에칭 전의 각 단계를 도시한 단면도들이다.19 to 21 are cross-sectional views showing each step before etching in the carbon nanotube film manufacturing method according to the fourth embodiment of the present invention.
이하, 본 발명의 바람직한 실시예를 첨부된 도면을 참고하여 설명한다.Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
도 1은 본 발명의 바람직한 일 실시예에 따른 탄소나노튜브 필름의 제조 방법(S100)의 각 단계를 도시한 흐름도이다.1 is a flow chart showing each step of the method for producing a carbon nanotube film (S100) according to an embodiment of the present invention.
도 1에 도시된 바와 같이, 본 발명의 바람직한 제1실시예에 따른 탄소나노튜브필름 제조 방법(S100)은, 기재 상에 습식 에칭 가능한 소재를 포함하는 베이스 바인더층을 형성시키는 단계(S110)와, 상기 베이스 바인더층 상면에, 탄소나노튜브를 포함하는 CNT 코팅층을 형성시키는 단계(S120)와, 상기 CNT 코팅층 상면에, 습식 에칭 가능한 소재를 포함하는 탑 바인더층을 형성시키는 단계(S130)와, 습식 에칭을 통하여 상기 CNT 코팅층과, 탑 바인더층과, 베이스 바인더층의 에칭 대상 영역을 제거하는 단계(S140)를 거친다. As shown in FIG. 1, the carbon nanotube film manufacturing method (S100) according to the first embodiment of the present invention includes forming a base binder layer including a wet etchable material on a substrate (S110). Forming a CNT coating layer including carbon nanotubes on the upper surface of the base binder layer (S120), and forming a top binder layer including a wet etchable material on the upper surface of the CNT coating layer (S130); The wet etching is performed to remove the CNT coating layer, the top binder layer and the etching target region of the base binder layer (S140).
도 2 내지 도 6은 본 발명의 탄소나노튜브 필름 제조 방법의 각 단계를 도시한 단면도이다. 도 2 내지 도 6을 참조하여, 본 발명의 제1 실시예에 따른 탄소나노튜브 필름 제조 방법의 각 단계를 보다 상세히 설명한다. 먼저 도 2에 도시된 바와 같이, 기재(110)상에, 습식 에칭 가능한 소재를 포함하는 베이스 바인더층(120)을 형성시키는 단계를 거친다.2 to 6 are cross-sectional views showing each step of the carbon nanotube film production method of the present invention. 2 to 6, each step of the carbon nanotube film manufacturing method according to the first embodiment of the present invention will be described in more detail. First, as shown in FIG. 2, a base binder layer 120 including a wet etchable material is formed on the substrate 110.
기재(110)는 유리이거나, PET, PC, PI, PEN, COC등의 폴리머 등의 소재일 수 있다. 이 경우, 상기 기재(110)는 그 상면에 CNT 코팅층이 코팅되어서, 디스플레이 패널, 터치 스크린, 조명수단 등으로 적용될 수 있다. 이를 위하여 상기 기재(110)는 투명한 소재로 이루어지는 것이 바람직하다. The substrate 110 may be glass or a material such as a polymer such as PET, PC, PI, PEN, COC, or the like. In this case, the substrate 110 is coated with a CNT coating layer on the upper surface, it can be applied as a display panel, a touch screen, a lighting means. To this end, the substrate 110 is preferably made of a transparent material.
또한 상기 기재(110)는 전자종이 등의 유연성이 필요한 부재로 사용할 수 있다. 이 경우에는 상기 기재가 투명 무기물 기판 또는 투명 폴리머 기판으로 이루어져서 유연성을 가질 수 있는 것이 바람직하다.In addition, the substrate 110 may be used as a member requiring flexibility such as electronic paper. In this case, it is preferable that the base material is made of a transparent inorganic substrate or a transparent polymer substrate to have flexibility.
베이스 바인더층(120)은 습식 에칭 가능한 물질을 포함하는 바인더 소재로 이루어진다. 상기 습식 에칭 가능한 물질은 세라믹 계열 및 금속산화물일 수 있으며, 예를 들어 TiO2, SiO2, ZnO, SnO, SiNx, SiON, SiNx, ITO, ATO등의 물질일 수 있다. The base binder layer 120 is made of a binder material including a wet etchable material. The wet etchable material may be a ceramic-based and metal oxide, and may be, for example, a material such as TiO 2, SiO 2, ZnO, SnO, SiNx, SiON, SiN x , ITO, ATO, or the like.
상기 베이스 바인더층(120)은 상기 기재(110)와 후술하는 탄소나노튜브 코팅층(130; 도 3 참조) 사이를 접합시키는 기능을 한다. 또한 후에 상세히 설명하겠지만, 상기 베이스 바인더층(120)은 후술하는 탑 바인더층(140; 도 4 참조)과 함께 습식 에칭되면서, 상기 베이스 바인더층(120)과 탑 바인더층 사이에 있는 CNT 코팅층(130: 도 4 참조)이 습식 에칭되도록 한다. The base binder layer 120 functions to bond the substrate 110 and the carbon nanotube coating layer 130 (see FIG. 3) to be described later. In addition, as will be described in detail later, the base binder layer 120 is wet-etched together with the top binder layer 140 (see FIG. 4), which will be described later, and the CNT coating layer 130 between the base binder layer 120 and the top binder layer. 4) is wet etched.
그 후에, 도 3에 도시된 바와 같이, 상기 베이스 바인더층(120) 상에 CNT 코팅층(130)을 형성시킨다. CNT 코팅층(130)은 탄소나노튜브(c)를 포함한다. 탄소나노튜브(Carbon Nanotube:CNT)는 하나의 탄소가 다른 탄소원자와 육각형 벌집무늬로 결합되어 튜브형태를 이루고 있고, 튜브의 직경이 나노미터 수준으로 극히 작아서 특유의 전기 화학적 특성을 나타낸다.이러한 탄소나노튜브를 플라스틱이나 유리 기판에 얇은 도전막으로 형성시키면 가시광선 영역에서 높은 투과도와 전도성을 나타내므로 투명전극으로 사용이 가능하다.Thereafter, as shown in FIG. 3, the CNT coating layer 130 is formed on the base binder layer 120. The CNT coating layer 130 includes carbon nanotubes (c). Carbon Nanotubes (CNTs) form a tube where one carbon is bonded to another carbon atom in a hexagonal honeycomb pattern to form a tube. The diameter of the tube is extremely small, at the nanometer level, and exhibits unique electrochemical properties. When the nanotubes are formed of a thin conductive film on a plastic or glass substrate, they can be used as transparent electrodes because they exhibit high transmittance and conductivity in the visible light region.
상기 CNT 코팅층(120)의 코팅 방법은 스프레이 코팅, 그라비아 코팅, 슬롯다이 코팅, 딥코팅, 바코팅, 롤투롤 코팅 등 일반적인 습식 코팅 방식을 이용할 수 있다.The coating method of the CNT coating layer 120 may use a general wet coating method such as spray coating, gravure coating, slot die coating, dip coating, bar coating, roll to roll coating.
이 경우, 상기 CNT 코팅층(130)을 이루는 탄소나노튜브(C) 일부는 상기 베이스 바인더층(120)에 삽입되어서 결합될 수 있다.In this case, a part of the carbon nanotubes (C) constituting the CNT coating layer 130 may be inserted into the base binder layer 120 to be bonded.
그 후에, 도 4에 도시된 바와 같이, 상기 CNT 코팅층(130) 상면에, 습식 에칭 가능한 소재를 포함하는 탑 바인더층(140)을 도포한다. 상기 탑 바인더층(140)은 바인더 소재로 이루어진다. 상기 탑 바인더층(140)은 세라믹 계열 및 금속산화물을 포함하는 바인더 일 수 있으며, 예를 들어 TiO2, SiO2, ZnO, SnO, SiNx, SiON, SiNx, ITO, ATO 등의 물질을 포함할 수 있다.Thereafter, as shown in FIG. 4, a top binder layer 140 including a wet etchable material is coated on the CNT coating layer 130. The top binder layer 140 is made of a binder material. The top binder layer 140 may be a binder including a ceramic-based and metal oxide, and may include, for example, materials such as TiO 2, SiO 2, ZnO, SnO, SiNx, SiON, SiN x , ITO, ATO, and the like. .
바인더 소재는 탄소나노튜브 가닥 사이를 결합시키는 기능을 한다. 따라서 상기 탑 바인더층(140)의 적어도 일부는 상기 CNT 코팅층(130)의 탄소나노튜브 가닥들과 서로 결합되어 있다. 이에 따라서 CNT 코팅층(130)은 하측으로는 베이스 바인더층(120)의 바인더 소재에 의하여 결합되고, 상측으로는 탑 바인더층(140)의 바인더 소재와 결합되어 있다. The binder material serves to bond between the carbon nanotube strands. Therefore, at least a portion of the top binder layer 140 is coupled to the carbon nanotube strands of the CNT coating layer 130. Accordingly, the CNT coating layer 130 is coupled to the bottom by the binder material of the base binder layer 120, and is coupled to the binder material of the top binder layer 140 to the upper side.
그 후에, 상기 베이스 바인더층(120), CNT 코팅층(130) 및 탑 바인더층(140)의 에칭 대상 영역(E)을 습식 에칭을 통하여 제거하는 단계를 거친다. Thereafter, the etching target region E of the base binder layer 120, the CNT coating layer 130, and the top binder layer 140 is removed by wet etching.
에칭 페이스트를 사용하는 방법을 예로 들면, 도 5에 도시된 바와 같이, 상기 탑 바인더층(140)의 에칭 대상 영역(E) 상에 에칭 페이스트(150)를 패턴 도포시키는 단계를 거친다. 에칭 페이스트(150)가 도포된 면은 습식 에칭 장비에 의하여 에칭된다. 상기 에칭 페이스트는 점도가 수천 내지 수만Cps 정도로서 상기 탑 바인더층에 패턴 형성된다. For example, as shown in FIG. 5, the etching paste 150 is pattern-coated on the etching target region E of the top binder layer 140. The surface on which the etching paste 150 is applied is etched by the wet etching equipment. The etching paste has a viscosity of about thousands to tens of thousands of Cps and is patterned on the top binder layer.
상기 에칭 페이스트(150)를 패턴 형성시키는 방법으로서는, 스크린 인쇄법을 사용할 수 있다. 상기 스크린 인쇄법은 상기 탑 바인더층(140) 상에 스크린 마스크를 배치시키고, 스퀴즈로 에칭 페이스트를 상기 스크린 마스크의 중공부를 통하여 상기 탑 바인더층에 인쇄함으로써 이루어질 수 있다. As a method of pattern-forming the said etching paste 150, the screen printing method can be used. The screen printing method may be performed by disposing a screen mask on the top binder layer 140 and printing an etching paste on the top binder layer through the hollow portion of the screen mask with a squeeze.
그 후에, 도시되지는 않으나, 상기 코팅층이 에칭 페이스트와 반응할 수 있도록 적절한 온도로 가열하는 열처리 단계를 거칠 수 있다. 상기 공정을 통하여 에칭 페이스트에 열을 투입함으로써 에칭 속도를 높일 수 있다. Thereafter, although not shown, the coating layer may be subjected to a heat treatment step of heating to an appropriate temperature to react with the etching paste. The etching rate can be increased by introducing heat into the etching paste through the above process.
그 후에, 도 6에 도시된 바와 같이, 세정을 통하여, 상기 에칭 페이스트(150)와, 상기 에칭 페이스트가 도포된 탑 바인더층(140), CNT 코팅층(130) 및 베이스 바인더층(120)을 제거하는 단계를 거친다. 상기 세정단계는 초순수(Di-water)에 상기 에칭 페이스트(150)를 씻어내면, 상기 에칭 페이스트(150) 및 상기 에칭 페이스트가 도포된 탑 바인더층(140)과, CNT 코팅층(130)과, 베이스 바인더층(120)이 에칭되어 제거됨으로써 패턴화된 탄소나노튜브 필름(100)이 완성된다.Thereafter, as illustrated in FIG. 6, the etching paste 150, the top binder layer 140, the CNT coating layer 130, and the base binder layer 120 to which the etching paste is applied are removed by washing. Go through the steps. In the washing step, when the etching paste 150 is rinsed in di-water, the top binder layer 140 coated with the etching paste 150 and the etching paste, the CNT coating layer 130, and the base The binder layer 120 is etched and removed to complete the patterned carbon nanotube film 100.
원래, 탄소나노튜브(C)는 습식 에칭에 의하여 제거되지 않는다. 반면, 탑 바인더층(140) 및 베이스 바인더층(120)은 습식 에칭에 의하여 제거될 수 있는 소재로 이루어진다. Originally, carbon nanotubes (C) are not removed by wet etching. On the other hand, the top binder layer 140 and the base binder layer 120 is made of a material that can be removed by wet etching.
본 발명은 상기 CNT 코팅층(130)이 상측으로는 탑 바인더층(140)과 바인딩되고, 하측으로는 베이스 바인더층(120)과 바인딩되도록 하여서, 상기 탑 바인더층(140) 및 베이스 바인더층(120)이 에칭 페이스트(150)를 따라서 에칭되면서, 이에 바인딩 된 CNT 코팅층(130)이 에칭되도록 한다.According to the present invention, the CNT coating layer 130 is bound to the top binder layer 140 on the upper side and bound to the base binder layer 120 on the lower side, so that the top binder layer 140 and the base binder layer 120 are bound. ) Is etched along the etching paste 150, thereby allowing the CNT coating layer 130 bound thereto to be etched.
한편, 습식 에칭 방법으로서는 상기한 에칭 페이스트를 이용한 습식 에칭 방법에 한정되지 않는 것은 명백하다. 즉, 본 발명에 적용될 수 있는 습식 에칭은 포토레지스트법을 적용할 수 있다. 즉, 감광성 수지인 포토레지스트를 도포하고, 패턴원판 역할을 하는 마스크를 이용하여서 특정 영역대의 파장을 가지는 빛을 투과시켜서 포토레지스트에 선택적으로 광반응을 일으킨 다음, 반응한 부분을 현상한다. 현상공정에 의해 선택적으로 노출된 부분인 에칭 대상 영역(E)을 에칭 용액이나 반응성 가스 등의 화학적인 방법으로 제거 할 수 있다. On the other hand, it is obvious that the wet etching method is not limited to the wet etching method using the above-described etching paste. That is, the wet etching that can be applied to the present invention can apply a photoresist method. That is, a photoresist, which is a photosensitive resin, is coated, and a photoresist is selectively transmitted by transmitting light having a wavelength in a specific region using a mask serving as a patterned disc, and then a photoresist is selectively developed. The etching target region E, which is a portion selectively exposed by the developing process, can be removed by a chemical method such as an etching solution or a reactive gas.
본 발명은 에칭 페이스트 도포법이나, 포토레지스트법에 한정되지는 않으며, 화학적인 용액을 이용하여 에칭 대상 영역(E)에 있는 탑 바인더층(140), CNT 코팅층(130), 및 베이스 바인더층(120)을 녹여낼 수 있다면, 모두 본 발명에 해당한다. The present invention is not limited to the etching paste coating method or the photoresist method, and the top binder layer 140, the CNT coating layer 130, and the base binder layer (in the etching target region E) using a chemical solution ( If 120 can be melted, all of the present invention.
본 발명에 따르면, CNT 코팅층(130)을 습식 에칭으로 패턴 형성시킨다. 이에 따라서 종래의 ITO 등의 전극의 패턴을 형성하기 위한 습식 에칭장비를그대로 적용할 수 있다는 장점이 있다. 또한, 신속한 에칭이 가능하고, 미세한 패턴 폭을 가질 수 있는 장점이 있다. According to the present invention, the CNT coating layer 130 is patterned by wet etching. Accordingly, there is an advantage that the conventional wet etching equipment for forming a pattern of an electrode such as ITO can be applied as it is. In addition, there is an advantage that can be quickly etched, and have a fine pattern width.
도 7은 본 발명의 제2 실시예에 따른 탄소나노튜브 필름 제조 방법의 단계를 도시한 흐름도다. 도 7에 도시된 바와 같이, 탄소나노튜브 필름 제조 방법(S200)은, 기재 상면에, 탄소나노튜브를 포함하는 CNT 코팅층을 형성시키는 단계(S210)와, 상기 CNT 코팅층 상면에, 습식 에칭 가능한 탑 바인더층을 형성시키는 단계(S220)와, 상기 탑코팅층의 에칭 대상 영역을 습식 에칭을 통하여 제거하는 단계(S230)와, 상기 CNT 코팅층 중 외부로 노출된 부분을 플라즈마 에칭 처리하는 단계(S240)를 포함한다.7 is a flow chart showing the steps of the carbon nanotube film manufacturing method according to a second embodiment of the present invention. As shown in FIG. 7, the carbon nanotube film manufacturing method S200 includes forming a CNT coating layer including carbon nanotubes on an upper surface of the substrate (S210), and a wet-etchable tower on the upper surface of the CNT coating layer. Forming a binder layer (S220), removing the etching target region of the top coating layer through wet etching (S230), and plasma etching the exposed portion of the CNT coating layer (S240). Include.
도 8 내지 도 12는 본 발명의 제2실시예에 따른 탄소나노튜브 필름의 제조방법의 각 단계를 도시한 단면도들이다. 8 to 12 are cross-sectional views showing each step of the method for manufacturing a carbon nanotube film according to the second embodiment of the present invention.
먼저 도 8에 도시된 바와 같이, 기재(210) 상에 탄소나노튜브(c)를 포함하는 CNT 코팅층(230)을 형성시키는 단계를 거친다. 상기 기재(210)는 상기한 바와 같이 유리이거나, PET, PC, PI, PEN, COC등의 폴리머 등의 소재일 수 있다. 이 경우, 상기 기재는 CNT 코팅층이 코팅되어서, 디스플레이 패널 또는 터치 스크린 등으로 적용될 수 있다. 이를 위하여 상기 기재는 투명한 소재로 이루어지는 것이 바람직하다. 또한 상기 기재는 전자종이 등의 유연성이 필요한 부재로 사용할 수 있다. 이 경우에는 상기 기재가 투명 무기물 기판 또는 투명 폴리머 기판으로 이루어져서 유연성을 가질 수 있는 것이 바람직하다.First, as shown in FIG. 8, the CNT coating layer 230 including the carbon nanotubes (c) is formed on the substrate 210. The substrate 210 may be glass as described above, or may be a material such as a polymer such as PET, PC, PI, PEN, COC, or the like. In this case, the substrate is coated with a CNT coating layer, it can be applied to a display panel or a touch screen. For this purpose, the substrate is preferably made of a transparent material. In addition, the substrate may be used as a member requiring flexibility such as electronic paper. In this case, it is preferable that the base material is made of a transparent inorganic substrate or a transparent polymer substrate to have flexibility.
CNT 코팅층(230)은 탄소나노튜브(c)를 포함한다. 상기 CNT 코팅층(120)의 코팅 방법은 스프레이 코팅, 그라비아 코팅, 슬롯다이 코팅, 딥코팅, 바코팅, 롤투롤 코팅 등 일반적인 습식 코팅 방식을 이용할 수 있다.The CNT coating layer 230 includes carbon nanotubes (c). The coating method of the CNT coating layer 120 may use a general wet coating method such as spray coating, gravure coating, slot die coating, dip coating, bar coating, roll to roll coating.
그 다음에, 도 9에 도시된 바와 같이, 상기 CNT 코팅층(230) 상면에, 습식 에칭 가능한 소재로 이루어진 탑 바인더층(240)을 형성시킨다. 상기 탑 바인더층(240)은 세라믹 계열 및 금속산화물을 포함하는 바인더 일 수 있으며, 예를 들어 TiO2, SiO2, ZnO, SnO, SiNx, SiON, SiNx, ITO, ATO 등의 물질을 포함할 수 있다.Next, as shown in FIG. 9, the top binder layer 240 made of a wet etchable material is formed on the upper surface of the CNT coating layer 230. The top binder layer 240 may be a binder including a ceramic-based and a metal oxide, and may include, for example, materials such as TiO 2, SiO 2, ZnO, SnO, SiNx, SiON, SiN x , ITO, ATO, and the like. .
그 후에, 상기 탑 바인더층(240)의 에칭대상 영역을 습식 에칭하여 제거한다. Thereafter, the etching target region of the top binder layer 240 is removed by wet etching.
상기 습식 에칭 방법 중 하나로서, 도 10 및 도 11에 도시된 바와 같이, 상기 탑 바인더층(240)의 에칭 대상 영역(E) 상에 에칭 페이스트(250)를 형성시킨 다음, 세정하여서 상기 에칭 페이스트(250) 및 상기 에칭 페이스트(250)에 덮여 있는 탑 바인더층(240)을 제거하는 단계를 거칠 수 있다. As one of the wet etching methods, as illustrated in FIGS. 10 and 11, an etching paste 250 is formed on the etching target region E of the top binder layer 240, and then washed to form the etching paste 250. Step 250 and the top binder layer 240 covered with the etching paste 250 may be removed.
상기 습식 에칭 방법 중 다른 하나로서, 상기 탑 바인더층 상에 감광성 수지인 포토레지스트를 도포하고, 패턴원판 역할을 하는 마스크를 이용하여서 특정 영역대의 파장을 가지는 빛을 투과시켜서 포토레지스트에 선택적으로 광반응을 일으킨 다음, 반응한 부분을 현상한다. 현상공정에 의해 선택적으로 노출된 부분을 화학적으로 에칭함으로써, 탑 바인더층을 선택적으로제거할 수 있다.As another wet etching method, a photoresist, which is a photosensitive resin, is coated on the top binder layer, and light is selectively reacted with the photoresist by transmitting light having a wavelength in a specific region using a mask serving as a pattern disc. After developing, develop the reaction part. The top binder layer can be selectively removed by chemically etching the portions selectively exposed by the developing process.
그 후에, 도 12에 도시된 바와 같이, 상기 CNT 코팅층(230) 중 탑 바인더층(240)이 제거되어서 외부로 노출된 부분을 화학적 건식 에칭 방법 처리한다. 화학적 건식 에칭은 플라즈마에서 생성된 반응 종들이 에칭될 물질의 표면에 공급되어 그곳에서 반응 종과 표면원자들 사이에 화학반응이 일어나고, 그 결과 휘발성 기체를 생성시킴으로써 진행되는 에칭을 의미한다.Thereafter, as shown in FIG. 12, the top binder layer 240 is removed from the CNT coating layer 230, and the exposed portion of the CNT coating layer 230 is exposed to the outside. By chemical dry etching is meant an etching in which the reactive species generated in the plasma are supplied to the surface of the material to be etched where a chemical reaction occurs between the reactive species and the surface atoms, resulting in the generation of volatile gases.
화학적 건식 에칭 방법 중 하나로서, 상기 CNT 코팅층(230)을 산소 플라즈마 에칭 처리할 수 있다. 그러면, CNT 코팅층(230)의 탄소는 플라즈마 에칭시의 산소와 화학적으로 결합하여서 이산화탄소(CO2)로 되어서 제거됨으로써, 패턴화된 탄소나노튜브 필름(200)이 제조된다. 화학적 건식 에칭 방법으로서는 상기 플라즈마에칭 이외에, 반응이온 에칭, 반응스퍼터에칭, 반응 이온빔밀링 등을 포함한다. As one of the chemical dry etching methods, the CNT coating layer 230 may be subjected to oxygen plasma etching. Then, the carbon of the CNT coating layer 230 is chemically combined with oxygen during plasma etching to remove carbon dioxide (CO 2) to form a patterned carbon nanotube film 200. Chemical dry etching methods include reactive ion etching, reactive sputter etching, reactive ion beam milling, and the like, in addition to the plasma etching.
플라즈마에칭 장비(290)를 사용함으로써, 종래의 탄소나노튜브 필름의 CNT 코팅층 패턴을 위하여 통상적으로 사용되는 레이저 에칭법에 비하여 에칭시간이 단축된다는 장점이 있다. By using the plasma etching equipment 290, there is an advantage that the etching time is shortened compared to the laser etching method commonly used for the CNT coating layer pattern of the conventional carbon nanotube film.
이 경우, 상기 산소 플라즈마 에칭 작업시에, 플라즈마 에칭 정도를 조절하여서CNT 코팅층을 이루는 탄소나노튜브(c)들을 완전히 제거하지 않은 상태이면서도, 전기가 흐르지 않도록 잔존시킬 수 있다. 상기 잔존된 탄소나노튜브(c)들이, 제거대상영역 이외의 CNT 코팅층(230)과의 육안상 차이가 나지 않도록 하는 기능을 한다. 이에 따라서 사용자가 육안으로 얼룩덜룩한 형상이 아닌, 균질한 색상을 가진 면을 볼 수 있게 된다. In this case, during the oxygen plasma etching operation, the degree of plasma etching may be adjusted so that the carbon nanotubes (c) constituting the CNT coating layer may not be completely removed, but may remain so that electricity does not flow. The remaining carbon nanotubes (c) function to prevent visual differences from the CNT coating layer 230 other than the region to be removed. Accordingly, the user can see the surface having a homogeneous color instead of the mottled shape with the naked eye.
도 13은 본 발명의 제3실시예에 따른 탄소나노튜브 필름 제조 방법(S300)을 도시한 흐름도다. 도 13에 도시된 바와 같이, 본 발명의 제3 실시예에 따른 탄소나노튜브 필름 제조 방법(S300)은, 기재 상에 탄소나노튜브 및 습식 에칭 가능한 물질이 들어간 첨가제를 포함하는 CNT 코팅층을 형성시키는 단계(S310)와, 상기 CNT 코팅층 상면에, 습식 에칭 가능한 탑 바인더층을 형성시키는 단계(S320)와, 상기 CNT 코팅층 및 탑 바인더층의 에칭 대상 영역을 습식 에칭을 통하여 제거하는 단계(S330)를 거친다.FIG. 13 is a flowchart illustrating a carbon nanotube film manufacturing method S300 according to a third embodiment of the present invention. As shown in FIG. 13, the carbon nanotube film manufacturing method (S300) according to the third exemplary embodiment of the present invention forms a CNT coating layer including an additive containing carbon nanotubes and a wet etchable material on a substrate. Step S310, forming a wet etchable top binder layer on the upper surface of the CNT coating layer (S320), and removing the etching target regions of the CNT coating layer and the top binder layer through wet etching (S330). Rough
도 14 내지 도 17은 본 발명의 제3실시예에 따른 탄소나노튜브 필름 제조 방법의 각 단계를 도시한 단면도이다. 14 to 17 are cross-sectional views showing each step of the carbon nanotube film manufacturing method according to the third embodiment of the present invention.
먼저 도 14에 도시된 바와 같이, 기판(310) 상에 탄소나노튜브(c) 및 습식 에칭 가능한 물질이 들어간 첨가제(336)를 포함하는CNT 코팅층(330)을 형성시키는 단계를 거친다. 상기 습식 에칭 가능한 물질이 들어간 첨가제(336)는 습식 에칭에 의하여 제거 가능한 소재로, 상기 탄소나노튜브(c)와 결합이 단단히 되어 있어야 함과 동시에, 습식 에칭에 의하여 이와 결합된 탄소나노튜브 또한 제거되는 소재로 이루어져야 한다. 상기 습식 에칭 가능한 물질이 들어간 첨가제는세라믹 계열 및 금속산화물을 포함하는 첨가제일 수 있으며, 예를 들어 TiO2, SiO2, ZnO, SnO, SiNx,SiON, SiNx, ITO, ATO 등의 물질을 포함할 수 있다.First, as shown in FIG. 14, a CNT coating layer 330 including a carbon nanotube (c) and an additive 336 containing a wet etchable material is formed on the substrate 310. The additive 336 containing the wet etchable material is a material that can be removed by wet etching, and the carbon nanotubes (c) must be firmly bonded to each other, and the carbon nanotubes bonded thereto by wet etching are also removed. It should be made of material The additive containing the wet etchable material may be an additive including a ceramic series and a metal oxide, and may include, for example, a material such as TiO 2, SiO 2, ZnO, SnO, SiNx, SiON, SiN x , ITO, ATO, or the like. have.
이 경우, 첨가제(336)의 농도는, CNT 코팅층을 이루는 용액의 총중량 대비 0.001 내지30w%를 차지하는 것이 바람직하다. 이는 0.001wt%보다 낮은 경우 에칭효과가 열화되고, 30wt%보다 높을 경우 첨가제의 양 증가로 전도성이 열화된다는 문제점이 있기 때문이다.In this case, the concentration of the additive 336 preferably accounts for 0.001 to 30% by weight relative to the total weight of the solution forming the CNT coating layer. This is because the etching effect is lowered when it is lower than 0.001wt%, and when it is higher than 30wt%, there is a problem that the conductivity is deteriorated due to the increase of the amount of the additive.
그 다음, 상기 CNT 코팅층(330) 상면에, 습식 에칭 가능한 탑 바인더층(340)을 형성시킨다. 상기 탑 바인더층(340)은 본 발명의 제1, 2실시예의 탑 바인더층(140, 240)과 그 소재 및 기능이 동일하므로 상세한 설명은 생략한다. Next, a wet etchable top binder layer 340 is formed on the CNT coating layer 330. The top binder layer 340 is the same as the material and function of the top binder layers 140 and 240 of the first and second embodiments of the present invention, so a detailed description thereof will be omitted.
그 후에, 습식 에칭을 통하여 탑 바인더층(340) 및 CNT 코팅층(330)의 에칭대상 영역(E)을 제거하는 단계를 거친다. Thereafter, the etching target region E of the top binder layer 340 and the CNT coating layer 330 is removed by wet etching.
습식 에칭 방법의 예로는 도 16 및 도 17에 도시된 바와 같이 에칭 페이스트를 사용하는 방법을 들 수 있다. An example of a wet etching method is a method of using an etching paste as shown in FIGS. 16 and 17.
즉, 도 16에 도시된 바와 같이, 상기 탑 바인더층(340)의 에칭 대상 영역(E) 상에 에칭 페이스트(350)를 도포한다. 그 후에 도 17에 도시된 바와 같이, 세정을 통하여, 상기 에칭 페이스트(350)와, 상기 에칭 페이스트에 덮여있던 CNT 코팅층(330)이 제거됨으로써, 패턴화된 탄소나노튜브 필름(300)이 완성된다. That is, as shown in FIG. 16, the etching paste 350 is coated on the etching target region E of the top binder layer 340. After that, as shown in FIG. 17, the etching paste 350 and the CNT coating layer 330 covered by the etching paste are removed through the cleaning, thereby completing the patterned carbon nanotube film 300. .
탄소나노튜브는 원래 습식 에칭 방법에 의하여 에칭되지 않는다. 본 발명에 의하면, CNT 코팅층(330) 내에 습식 에칭 가능한 첨가제를 포함시키고, 탑 바인더층(350)을 습식 에칭 가능한 소재로 이루어지도록 함으로써, 습식 에칭시에 탄소나노튜브도 상기 탑 바인더층 및 첨가제와 함께 제거될 수 있다. Carbon nanotubes are not originally etched by wet etching methods. According to the present invention, the CNT coating layer 330 includes a wet etchable additive, and the top binder layer 350 is made of a wet etchable material, so that the carbon nanotubes are wetted with the top binder layer and the additive during wet etching. Can be removed together.
한편, 본 발명의 습식 에칭 방법은 상기한 바와 같이, 상기 에칭 페이스트에 의한 방법만으로 한정되지 않는 것은 명확하다. In addition, it is clear that the wet etching method of this invention is not limited only to the method by the said etching paste as mentioned above.
도 18은 본 발명의 바람직한 제4 실시예에 따른 탄소나노튜브 필름 제조 방법의 흐름도이고, 도 19 내지 도 21은 본 발명의 바람직한 제4 실시예에 따른 탄소나노튜브 필름 제조 방법 중 에칭 전의 각 단계를 도시한 단면도들이다.18 is a flowchart illustrating a method of manufacturing a carbon nanotube film according to a fourth preferred embodiment of the present invention, and FIGS. 19 to 21 illustrate each step before etching in a method of manufacturing a carbon nanotube film according to a fourth preferred embodiment of the present invention. It is sectional drawing which shows.
도 18에 도시된 바와 같이, 본 발명의 제4 실시예에 따른 탄소나노튜브필름 제조 방법(S400)은, 기재 상에 습식 에칭 가능한 베이스 바인더층을 형성시키는 단계(S410)와, 상기 베이스 바인더층 상면에, 탄소나노튜브 및 습식 에칭 가능한 나노 입자를 포함하는 CNT 코팅층을 형성시키는 단계(S420)와, 상기 CNT 코팅층 상면에, 습식 에칭 가능한 탑 바인더층을 형성시키는 단계(S430)와, 습식 에칭을 통하여 상기 CNT 코팅층과, 탑 바인더층과, 베이스 바인더층의 에칭 대상 영역을 제거하는 단계(S440)를 거친다. As shown in FIG. 18, the carbon nanotube film manufacturing method (S400) according to the fourth embodiment of the present invention includes forming a wet-etchable base binder layer on a substrate (S410) and the base binder layer. Forming a CNT coating layer including carbon nanotubes and wet etchable nanoparticles on the upper surface (S420), forming a wet etchable top binder layer on the upper surface of the CNT coating layer (S430), and wet etching Removing the CNT coating layer, the top binder layer, and the etching target region of the base binder layer through (S440).
이하, 도 19 내지 도 21을 참조하여, 본 발명의 제4실시예에 따른 탄소나노튜브필름 제조 방법을 설명한다. 이 경우, 습식 에칭을 통하여 상기 CNT 코팅층과, 탑 바인더층과, 베이스 바인더층의 에칭 대상 영역을 제거하는 단계(S440)는 본 발명의 제1실시예의 에칭 대상 영역을 제거하는 단계(S140)와 실질적으로 동일한 단계이므로 이에 대한 설명은 생략한다. 또한, 기재(410), 베이스 바인더층(420)의 바인더(421)와, 탑 바인더층(440)의 바인더(443)와, 탄소나논튜브(C) 또한, 본 발명의 제1실시예에 따른 탄소나노튜브 필름 제조방법의 설명에서의, 기재(110), 베이스 바인더층(120)의 바인더(121)와, 탑 바인더층(140)의 바인더(143)와, 탄소나논튜브(C)와 기능 및 재질이 실질적으로 동일하므로, 차이점을 중심으로 설명한다. Hereinafter, a carbon nanotube film manufacturing method according to a fourth embodiment of the present invention will be described with reference to FIGS. 19 to 21. In this case, removing the etching target region of the CNT coating layer, the top binder layer, and the base binder layer by wet etching may include removing the etching target region of the first embodiment of the present invention (S140); Since the steps are substantially the same, a description thereof will be omitted. In addition, the base material 410, the binder 421 of the base binder layer 420, the binder 443 of the top binder layer 440, and the carbon nanotube (C) also according to the first embodiment of the present invention Functions of the base material 110, the binder 121 of the base binder layer 120, the binder 143 of the top binder layer 140, and the carbon nanotube C in the description of the carbon nanotube film manufacturing method And since the material is substantially the same, it will be mainly described for the difference.
먼저 도 19에 도시된 바와 같이, 기재(410) 상에 습식 에칭 가능한 베이스 바인더층(420)을 형성시키는 단계를 거친다. First, as shown in FIG. 19, a wet etchable base binder layer 420 is formed on the substrate 410.
상기 베이스 바인더층(420)에 사용되는 바인더(421)는 기재의 소재에 맞추어 적용한다. 따라서, 상기 베이스 바인더층(420)에 사용되는 바인더가 습식 에칭 불가능할 수도 있다. The binder 421 used for the base binder layer 420 is applied according to the material of the substrate. Therefore, the binder used for the base binder layer 420 may not be wet etched.
상기 베이스 바인더층(420)은, 바인더의 습식 에칭 가능여부에 관계없이 습식 에칭 가능한 나노 입자(nano particle)(423)를 더 포함함으로써 습식 에칭 가능해진다. 이 경우, 상기 나노 입자(423)는 세라믹계 나노 입자 또는 금속 산화물계 나노 입자일 수 있다. 이 경우 상기 나노 입자는 TiO2, SiO2, SiON, SiNx계, SiNx계, ZnO, SnO, Al2O3, ZrO2, Y2O3, WO3, V2O5, NiO, Mn3O4, MgO, La2O3, Fe2O3, Cr2O3, Co3O4, CuO, CeO2, ITO, ATO, AZO, FTO, GZO, Sb2O3 중 선택된 적어도 하나일 수 있다.The base binder layer 420 may be wet etched by further including wet-etchable nanoparticles 423 regardless of whether the binder is wet etchable. In this case, the nanoparticles 423 may be ceramic nanoparticles or metal oxide nanoparticles. In this case, the nanoparticles are TiO 2 , SiO 2 , SiON, SiN x , SiN x , ZnO, SnO, Al 2 O 3 , ZrO 2 , Y 2 O 3 , WO 3 , V 2 O 5 , NiO, Mn At least one selected from 3 O 4 , MgO, La 2 O 3 , Fe 2 O 3 , Cr 2 O 3 , Co 3 O 4 , CuO, CeO 2 , ITO, ATO, AZO, FTO, GZO, Sb 2 O 3 Can be.
이 경우, 용매는 알코올류, 아민류, 증류수 및 일반적인 유기 용매를 선정할 수 있고, 상기 용매는 후에 제거가 용이하도록, 끓는점이 150℃ 이하인 것이 바람직하다.In this case, as the solvent, alcohols, amines, distilled water and general organic solvents can be selected, and the solvent preferably has a boiling point of 150 ° C. or lower so that it can be easily removed later.
상기 베이스 바인더층(420)은, 용매에, 바인더(421) 및 나노 입자(423)를 혼합하여서, 베이스 바인더 용액을 형성시킨 후에, 이를 상기 기재에 코팅시킴으로써 이루어질 수 있다. The base binder layer 420 may be formed by mixing the binder 421 and the nanoparticles 423 in a solvent to form a base binder solution, and then coating the substrate on the substrate.
이 경우, 상기 나노 입자(423)의 사이즈는 1㎚ 내지 1㎛일 수 있다. 상기 나노 입자의 사이즈가 1㎚ 미만인 경우에는나노 입자가 습식에칭 되더라도 베이스 바인더 층에 미치는 영향이 미미해 바인더와 함께 에칭이 되지 않는 문제가 있고, 상기 나노 입자의 사이즈가 1㎛를 초과하는 경우에는 코팅액 내에서 균일하게 분산되어 있지 않고 가라앉거나, 코팅 후 코팅면이불균일하게 형성되는 문제점이 있기 때문이다.In this case, the size of the nanoparticles 423 may be 1nm to 1㎛. When the size of the nanoparticles is less than 1 nm, even if the nanoparticles are wet-etched, there is a problem in that the etching is not performed together with the binder because the influence on the base binder layer is insignificant. This is because there is a problem that the coating surface is not uniformly dispersed within the sink, or the coating surface is formed unevenly after coating.
또한, 상기 베이스바인더층(420)을 이루는 베이스 바인더 용액에서, 상기 나노 입자(423)는 상기 베이스 바인더 100 중량부 대비 1 내지 500의 함량을 가지는 것이 바람직한데, 이는 1 중량부 미만인 경우에는 습식 에칭이 제대로 되지 않으며, 500 중량부가 초과하는 경우에는 베이스 바인더층의 물성을 변화시키고, 코팅 후 입자들이 빛을 산란시켜 헤이즈가 높아지는 문제가 있기 때문이다.In addition, in the base binder solution constituting the base binder layer 420, the nanoparticles 423 preferably has a content of 1 to 500 relative to 100 parts by weight of the base binder, which is wet etching when less than 1 part by weight. This is because the problem is that if the content is more than 500 parts by weight, the physical properties of the base binder layer are changed, and the particles after the coating scatter light to increase haze.
그 후에, 도 20에 도시된 바와 같이, 상기 베이스 바인더층(420) 상에 CNT 코팅층(430)을 형성시킨다. 상기 CNT 코팅층(430)은, 습식 에칭 가능한 나노 입자(433)를 포함한다. 상기 나노 입자(433)는 상기 탄소나노튜브(C)와 함께 바인더에 바인딩 되어서, 상기 탄소나노튜브(C)에 붙게 된다. 이에 따라서 습식 에칭 시에, 상기 나노 입자(433)가 에칭되면서 상기 탄소나노튜브(C)도 함께 에칭된다. Thereafter, as shown in FIG. 20, the CNT coating layer 430 is formed on the base binder layer 420. The CNT coating layer 430 includes a wet etchable nanoparticle 433. The nanoparticles 433 are bound to a binder together with the carbon nanotubes (C), thereby adhering to the carbon nanotubes (C). Accordingly, during the wet etching, the nanoparticles 433 are etched and the carbon nanotubes C are also etched.
상기 나노 입자(433)는 세라믹계나노입자 또는 금속 산화물계나노 입자일 수 있다. 이 경우 상기 나노 입자는 TiO2, SiO2, SiON, SiNx계, SiNx계, ZnO, SnO, Al2O3, ZrO2, Y2O3, WO3, V2O5, NiO, Mn3O4, MgO, La2O3, Fe2O3, Cr2O3, Co3O4, CuO, CeO2, ITO, ATO, AZO, FTO, GZO, Sb2O3 중 선택된 적어도 하나일 수 있다. The nanoparticles 433 may be ceramic nanoparticles or metal oxide nanoparticles. In this case, the nanoparticles are TiO 2 , SiO 2 , SiON, SiN x , SiN x , ZnO, SnO, Al 2 O 3 , ZrO 2 , Y 2 O 3 , WO 3 , V 2 O 5 , NiO, Mn At least one selected from 3 O 4 , MgO, La 2 O 3 , Fe 2 O 3 , Cr 2 O 3 , Co 3 O 4 , CuO, CeO 2 , ITO, ATO, AZO, FTO, GZO, Sb 2 O 3 Can be.
상기 CNT 코팅층(430)은 CNT 코팅용액을 상기 베이스 바인더층(420) 상면에 코팅시킴으로써 이루어질 수 있다. 이 경우, 상기 CNT 코팅 용액은, 용매에, 바인더와, 나노 입자(433) 및 탄소나노튜브(C)를 혼합하여서 제조할 수 있다. The CNT coating layer 430 may be formed by coating a CNT coating solution on the upper surface of the base binder layer 420. In this case, the CNT coating solution may be prepared by mixing a binder, a nanoparticle 433 and a carbon nanotube (C) in a solvent.
상기 CNT 코팅 용액을 제조하는 일 방법으로서는 먼저 탄소나노튜브(C)를 분산시킨다. As one method of preparing the CNT coating solution, first, carbon nanotubes (C) are dispersed.
탄소나노튜브 분산 방법 중 하나의 예로는 탄소나노튜브를 amide계열의 DMF(NN-dimethylformamide), NMP (1,2-dichlorobenzene, N-methylpyrrolidone)등의 유기 용매에 넣어 초음파로 분산시킬 수 있다. One example of the carbon nanotube dispersion method is to disperse the carbon nanotubes in an organic solvent such as amide-based DMF (NN-dimethylformamide) or NMP (1,2-dichlorobenzene, N-methylpyrrolidone).
탄소나노튜브 분산 방법 중 다른 예로는 수용성 분산제를 적용할 수 있다. 상기 수용성 분산제로는 SDS (Sodium Dodecyl Sulfate), Triton X-100(TX-100), NaDDBS(Sodium Dodecylbenzene Sulfonate), Gum Arabic 등이 있다. Another example of the carbon nanotube dispersion method may be a water-soluble dispersant. Examples of the water-soluble dispersant include sodium dodecyl sulfate (SDS), triton x-100 (tx-100), sodium dodecylbenzene sulfonate (NaDDBS), and gum arabic.
그 후에, 탄소나노튜브가 분산된 용매에, 바인더와, 나노 입자를 투입한다. 바인더는 상기 탄소나노튜브 사이를 바인딩하는 통상의 바인더는 모두 적용 가능하다. Thereafter, a binder and nanoparticles are added to a solvent in which carbon nanotubes are dispersed. The binder can be applied to any conventional binder for binding between the carbon nanotubes.
이 경우, 이 경우, 상기 나노 입자의 사이즈는 1㎚ 내지 1㎛일 수 있다.In this case, in this case, the size of the nanoparticles may be 1nm to 1㎛.
한편, 상기 CNT 코팅층을 형성시키는 단계는, 용매에, 나노 입자 및 탄소나노튜브를 혼합한 CNT 코팅용액을 코팅함으로써 이루어지고, 상기 나노 입자는 CNT 100중량부 대비 1 내지 500의 함량을 가질 수 있다.Meanwhile, the forming of the CNT coating layer may be performed by coating a CNT coating solution in which a nanoparticle and carbon nanotubes are mixed in a solvent, and the nanoparticles may have a content of 1 to 500 with respect to 100 parts by weight of CNT. .
이 경우, 상기 나노 입자(433)의 사이즈는 1㎚내지 1㎛인 것이 바람직하다. 상기 나노 입자의 사이즈가 1㎚ 미만인 경우에는 나노 입자가 습식 에칭 되더라도 CNT 코팅층에 미치는 영향이 미미하고, 베이스 바인더층으로 에칭액이 침투해 CNT 코팅층과 베이스 바인더층이 함께 에칭이 되지 않는 문제가 있고, 상기 나노 입자의 사이즈가 1㎛를 초과하는 경우에는 코팅액 내에서 균일하게 분산되어 있지 않고 가라앉거나, CNT의 분산성을 저하시키는 문제점이 있기 때문이다.In this case, the size of the nanoparticles 433 is preferably 1nm to 1㎛. When the size of the nanoparticles is less than 1 nm, even if the nanoparticles are wet etched, the effect on the CNT coating layer is insignificant, and the etching solution penetrates into the base binder layer, thereby preventing the CNT coating layer and the base binder layer from being etched together. This is because when the size of the nanoparticles exceeds 1 μm, the nanoparticles do not uniformly disperse in the coating solution and sink or decrease the dispersibility of CNTs.
또한, 상기 CNT 코팅 용액에서, 상기 나노 입자(433)는 상기 탄소나노튜브 100 중량부 대비 1 내지 500 의 함량을 가지는 것이 바람직한데, 이는 1 중량부 미만인 경우에는 습식 에칭이 제대로 되지 않으며, 500 중량부가 초과하는 경우에는 CNT 코팅액의 분산성을 저하시키며, 코팅 후 CNT 코팅층의 물성을 변화시키고, 나노 입자들이 빛을 산란시켜 헤이즈가 높아지는 문제가 있기 때문이다.In addition, in the CNT coating solution, the nanoparticles 433 preferably have a content of 1 to 500 with respect to 100 parts by weight of the carbon nanotubes, which is less than 1 part by weight of the wet etching is not properly, 500 weight If the addition exceeds, the dispersibility of the CNT coating solution is lowered, the physical properties of the CNT coating layer after the coating is changed, and the nanoparticles scatter light to increase the haze.
상기 나노 입자(433)의 예로서는, Titanium IV 2-propanolato, trisisooctadecanoato-O와, Titanium IV bis 2-methyl-2-propenoato-O, isooctadecanoato-O 2-propanolato와, Titanium IV 2-propanolato, tris(dodecyl)benzenesulfanato-O와, Titanium IV 2-propanolato, tris(dioctyl)phosphato-O와, Zirconium IV 2. 2-dimethyl 1,3propanediolato, bis(dioctyl)pyrophosphato-O, (adduct) 2 moles N,N-dimethylamino-alkyl propenoamide와, Zirconium IV (2-ethyl, 2-propenolatomethyl)1,3-propanediolato, cyclobis 2-dimethylamino pyrophosphato-O, adduct with 2 moles of methanesulfonic acid와, Zirconium IV tetrakis 2,2(bis-2 propenolatomethyl)butanolato, adduct with 2 moles of di-tridecyl, hydrogen phosphite와, Zirconium IV 2-ethyl, 2-propenolatomethyl 1, 3-propanediolato, cyclo di 2, 2-(bis 2-propenolatomethyl) butanolatopyrophosphato-O, O를 들 수 있다. Examples of the nanoparticles 433 include Titanium IV 2-propanolato, trisisooctadecanoato-O, Titanium IV bis 2-methyl-2-propenoato-O, isooctadecanoato-O 2-propanolato, Titanium IV 2-propanolato, and tris (dodecyl). ) benzenesulfanato-O, Titanium IV 2-propanolato, tris (dioctyl) phosphato-O, Zirconium IV 2. 2-dimethyl 1,3propanediolato, bis (dioctyl) pyrophosphato-O, (adduct) 2 moles N, N-dimethylamino -alkyl propenoamide, Zirconium IV (2-ethyl, 2-propenolatomethyl) 1,3-propanediolato, cyclobis 2-dimethylamino pyrophosphato-O, adduct with 2 moles of methanesulfonic acid, and Zirconium IV tetrakis 2,2 (bis-2 propenolatomethyl butanolato, adduct with 2 moles of di-tridecyl, hydrogen phosphite, Zirconium IV 2-ethyl, 2-propenolatomethyl 1, 3-propanediolato, cyclo di 2, 2- (bis 2-propenolatomethyl) butanolatopyrophosphato-O, O Can be.
그 후에, 도 21에 도시된 바와 같이, 상기 CNT 코팅층(430) 상면에, 습식 에칭 가능한 탑 바인더층(440)을 도포한다.Thereafter, as shown in FIG. 21, a wet etchable top binder layer 440 is coated on the CNT coating layer 430.
상기 탑 바인더층(440)은, 습식 에칭 가능한 나노 입자(443)를 바인더(441)와 혼합하여서 이루어절 수 있다. 이는 상기 탑 바인더층의 기능에 맞추어서, 바인더를 선택할 수 있고, 이 경우 습식 에칭 불가능한 바인더를 탑 바인더층의 주 소재로 할 수 있다. The top binder layer 440 may be formed by mixing wet etchable nanoparticles 443 with a binder 441. The binder can be selected according to the function of the top binder layer, and in this case, a binder which cannot be wet etched can be used as the main material of the top binder layer.
이 경우, 상기 바인더(441)에 나노 입자(443)를 첨가하면, 상기 나노 입자가 습식 에칭됨에 따라서 전체 탑 바인더층이 습식 에칭 가능하게 된다. In this case, when the nanoparticles 443 are added to the binder 441, the entire top binder layer may be wet-etched as the nanoparticles are wet etched.
상기 나노 입자의 사이즈는 1㎚내지1㎛일 수 있다. 상기 나노 입자의 사이즈가 1㎚미만인 경우에는 나노 입자가 습식 에칭 되더라도 바인더 층에 미치는 영향이 미미해 바인더와 함께 에칭이 되지 않는 문제가 있고, 상기 나노 입자의 사이즈가 1㎛ 초과하는 경우에는 코팅액 내에서 균일하게 분산되어 있지 않고 가라앉거나, 코팅 후 코팅면이 불균일하게 형성되는 문제점이 있기 때문이다.The nanoparticles may have a size of 1 nm to 1 μm. When the size of the nanoparticles is less than 1 nm, even if the nanoparticles are wet etched, the effects on the binder layer are insignificant, so that the nanoparticles may not be etched together with the binder. This is because there is a problem that the coating surface is not uniformly dispersed, or the coating surface is unevenly formed after coating.
또한, 상기 탑 바인더층을 이루는 탑 바인더 용액에서, 상기 나노 입자는 상기 탑 바인더 100중량부 대비 1 내지 500의 함량을 가지는 것이 바람직한데, 이는 1 중량부 미만인 경우에는 습식 에칭이 제대로 되지 않으며, 500 중량부가 초과하는 경우에는 베이스 바인더층의 물성을 변화시키고, 코팅 후 입자들이 빛을 산란시켜 헤이즈가 높아지는 문제가 있기 때문이다.In addition, in the top binder solution constituting the top binder layer, the nanoparticles preferably have a content of 1 to 500 with respect to 100 parts by weight of the top binder, which is less than 1 part by weight of the wet etching is not properly, 500 This is because when the weight part is exceeded, the physical properties of the base binder layer are changed, and the particles after coating have a problem in that haze is increased by scattering light.
그 후에, 도면에 도시되지는 않으나, 상기 베이스 바인더층(420), CNT 코팅층(430) 및 탑 바인더층(440)의 에칭 대상 영역을 습식 에칭을 통하여 제거하는 단계를 거치게 된다.Thereafter, although not shown in the drawings, the etching target regions of the base binder layer 420, the CNT coating layer 430, and the top binder layer 440 may be removed by wet etching.
본 발명은 상기 CNT 코팅층(430)이 상측으로는 탑 바인더층(440)과 바인딩되고, 하측으로는 베이스 바인더층(420)과 바인딩되도록 하는 동시에, CNT 코팅층이 나노 입자가 첨가됨으로써, 상기 탑 바인더층(440) 및 베이스 바인더층(420)이 에칭 페이스트를 따라서 에칭되면서, 이에 바인딩 된 CNT 코팅층(430)이 용이하게 에칭되도록 한다.According to the present invention, the CNT coating layer 430 is bound to the top binder layer 440 on the upper side and the base binder layer 420 on the lower side, and nanoparticles are added to the CNT coating layer. The layer 440 and base binder layer 420 are etched along the etching paste, allowing the CNT coating layer 430 bound thereto to be easily etched.
즉, 에천트가 탑 바인더층(440) 및 CNT 코팅층의 외부로 노출된 나노 입자를 에칭시킨다. 그 후에 상기 CNT 코팅층의 에칭된 부분을 통하여 에천트가 베이스 바인더층(420)을 에칭시킨다. 그 후에, 세척을 하게 되면, 남아있던 CNT 코팅층이 함께 에칭된다. That is, the etchant etches the nanoparticles exposed to the outside of the top binder layer 440 and the CNT coating layer. The etchant then etches the base binder layer 420 through the etched portion of the CNT coating layer. Thereafter, upon washing, the remaining CNT coating layers are etched together.
상술한 바와 같이, 본 발명의 바람직한 실시예를 참조하여 설명하였지만 해당기술분야의 숙련된 당업자라면 하기의 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.As described above, although described with reference to a preferred embodiment of the present invention, those skilled in the art will be variously modified and changed within the scope without departing from the spirit and scope of the invention described in the claims below I can understand that you can.
본 발명은 디스플레이 산업, 반도체 산업, 광학분야, 조명분야 등에서 대전필름이 적용되는 분야에 적용할 수 있다.The present invention can be applied to the field in which the charging film is applied in the display industry, the semiconductor industry, the optical field, the lighting field, and the like.

Claims (17)

  1. 기재 상에, 습식 에칭 가능한 소재를 포함하는 베이스 바인더층을 형성시키는 단계;Forming a base binder layer on the substrate, the base binder layer comprising a wet etchable material;
    상기 베이스 바인더층 상면에, 탄소나노튜브를 포함하는 CNT 코팅층을 형성시키는 단계;Forming a CNT coating layer including carbon nanotubes on an upper surface of the base binder layer;
    상기 CNT 코팅층 상면에, 습식 에칭 가능한 소재를 포함하는 탑 바인더층을 형성시키는 단계; 및Forming a top binder layer on the CNT coating layer, the top binder layer comprising a wet etchable material; And
    상기 CNT 코팅층과, 탑 바인더층과, 베이스 바인더층의 에칭 대상 영역을 습식 에칭을 통하여 제거하는 단계;Removing the CNT coating layer, the top binder layer, and the etching target region of the base binder layer by wet etching;
    를 포함하는 탄소나노튜브 필름 제조 방법.Carbon nanotube film manufacturing method comprising a.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 습식 에칭하는 단계는:The wet etching step includes:
    상기 탑 바인더층의 에칭 대상 영역 상면에 에칭 페이스트를 도포시키는 단계; 및 상기 에칭 페이스트와, 상기 에칭 페이스트가 도포된 탑 바인더층과, CNT 코팅층과, 베이스 바인더층을 세정을 통하여 제거하는 단계;Applying an etching paste on an upper surface of the etching target region of the top binder layer; And removing the etching paste, the top binder layer coated with the etching paste, the CNT coating layer, and the base binder layer by washing.
    를 포함하는 것을 특징으로 하는 탄소나노튜브 필름 제조 방법. Carbon nanotube film manufacturing method comprising a.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 습식 에칭하는 단계는:The wet etching step includes:
    상기 탑 바인더층의 에칭 대상 영역에 맞추어 포토레지스트를 사용하여 마스크를 형성시키는 단계; 및Forming a mask using a photoresist in accordance with an etching target region of the top binder layer; And
    상기 마스크 상에서 에칭 용액 또는 반응성 가스를 공급하여서, 상기 에칭 대상 영역을 화학적으로 에칭하는 단계;Chemically etching the etching target region by supplying an etching solution or a reactive gas on the mask;
    를 포함하는 것을 특징으로 하는 탄소나노튜브 필름 제조 방법.Carbon nanotube film manufacturing method comprising a.
  4. 청구항 2 또는 청구항 3에 있어서,The method according to claim 2 or 3,
    상기 베이스 바인더층 및 탑 바인더층은, 세라믹 계열 및 금속산화물 소재를 포함하는 것을 특징으로 하는 탄소나노튜브 필름 제조 방법.The base binder layer and the top binder layer, the carbon nanotube film manufacturing method characterized in that it comprises a ceramic-based and metal oxide material.
  5. 기재 상면에, 탄소나노튜브를 포함하는 CNT 코팅층을 형성시키는 단계;Forming a CNT coating layer including a carbon nanotube on an upper surface of the substrate;
    상기 CNT 코팅층 상면에, 습식 에칭 가능한 탑 바인더층을 형성시키는 단계;Forming a wet etchable top binder layer on the CNT coating layer;
    상기 탑코팅층의 에칭 대상 영역을 습식 에칭을 통하여 제거하는 단계; 및Removing the etching target region of the top coating layer through wet etching; And
    상기 CNT 코팅층 중 외부로 노출된 부분을 플라즈마 면에칭 처리하는 단계; Plasma surface etching the exposed portion of the CNT coating layer to the outside;
    를 포함하는 탄소나노튜브 필름 제조 방법.Carbon nanotube film manufacturing method comprising a.
  6. 청구항5에 있어서,The method according to claim 5,
    상기 탑 바인더층은, 세라믹 계열 및금속산화물 소재를 포함하는 것을 특징으로 하는 탄소나노튜브 필름 제조 방법.The top binder layer is a carbon nanotube film manufacturing method comprising a ceramic-based and a metal oxide material.
  7. 청구항5에 있어서,The method according to claim 5,
    상기 CNT 코팅층 중 외부로 노출된 부분을 플라즈마에칭 처리하는 단계는, 산소 플라즈마에칭 처리하는 것을 특징으로 하는 탄소나노튜브 필름 제조 방법.Plasma etching the portion exposed to the outside of the CNT coating layer, carbon nanotube film manufacturing method characterized in that the oxygen plasma etching treatment.
  8. 청구항5에 있어서,The method according to claim 5,
    상기 습식 에칭하여 탑 바인더층을 제거하는 단계는, 상기 탑 바인더층을 에칭 페이스트도포법 또는 포토레지스트법에 의하여 상기 탑 바인더층을 제거하는 것을 특징으로 하는 탄소나노튜브 필름 제조 방법.In the wet etching, the top binder layer is removed, wherein the top binder layer is removed by the etching paste coating method or the photoresist method.
  9. 기재 상에 탄소나노튜브 및 습식에칭 가능한 물질이 들어간 첨가제를 포함하는 CNT 코팅층을 형성시키는 단계;Forming a CNT coating layer comprising an additive containing carbon nanotubes and a wet etchable material on the substrate;
    상기 CNT 코팅층 상면에, 습식 에칭 가능한 탑 바인더층을 형성시키는 단계 ; 및Forming a wet etchable top binder layer on the CNT coating layer; And
    상기 CNT 코팅층 및 탑 바인더층의 에칭 대상 영역을 습식 에칭을 통하여 제거하는 단계;Removing the etching target regions of the CNT coating layer and the top binder layer by wet etching;
    를 포함하는 탄소나노튜브 필름 제조 방법.Carbon nanotube film manufacturing method comprising a.
  10. 청구항 9에 있어서,The method according to claim 9,
    상기 첨가제의 농도는 CNT 코팅층을 이루는 용액의 중량당 0.001 내지 30wt% 함량을 차지하는 것을 특징으로 하는 탄소나노튜브 필름 제조 방법.The concentration of the additive is a carbon nanotube film production method characterized in that occupies 0.001 to 30wt% content per weight of the solution forming the CNT coating layer.
  11. 청구항 9에 있어서,The method according to claim 9,
    습식 에칭을 통하여 CNT 코팅층을 제거하는 단계는, 에칭 페이스트도포법 또는 포토레지스트법을 사용하여서, 상기 CNT 코팅층을 제거하는 것을 특징으로 하는 탄소나노튜브 필름 제조 방법.Removing the CNT coating layer through wet etching, using the etching paste coating method or photoresist method, the carbon nanotube film manufacturing method, characterized in that for removing the CNT coating layer.
  12. 기재 상에, 습식 에칭 가능한 베이스 바인더층을 형성시키는 단계;Forming a wet etchable base binder layer on the substrate;
    상기 베이스 바인더층 상면에, 탄소나노튜브 및 습식 에칭 가능한 나노 입자를 포함하는 CNT 코팅층을 형성시키는 단계;Forming a CNT coating layer on the base binder layer, the CNT coating layer including carbon nanotubes and wet-etchable nanoparticles;
    상기 CNT 코팅층 상면에, 습식 에칭 가능한 탑 바인더층을 형성시키는 단계; 및Forming a wet etchable top binder layer on the CNT coating layer; And
    상기 CNT 코팅층과, 탑 바인더층과, 베이스 바인더층의 에칭 대상 영역을 습식 에칭을 통하여 제거하는 단계;Removing the CNT coating layer, the top binder layer, and the etching target region of the base binder layer by wet etching;
    를 포함하는 탄소나노튜브 필름 제조 방법.Carbon nanotube film manufacturing method comprising a.
  13. 청구항 12에 있어서, The method according to claim 12,
    상기 나노 입자는, 세라믹계 나노 입자 또는 금속 산화물계 나노 입자인 것을 특징으로 하는 탄소나노튜브 필름 제조 방법.The nanoparticles are ceramic nanoparticles or metal oxide nanoparticles, characterized in that the carbon nanotube film production method.
  14. 청구항 13에 있어서, The method according to claim 13,
    상기 나노 입자는 상기 나노 입자는 TiO2, SiO2, SiON, SiNx계, SiNx계, ZnO, SnO, Al2O3, ZrO2, Y2O3, WO3, V2O5, NiO, Mn3O4, MgO, La2O3, Fe2O3, Cr2O3, Co3O4, CuO, CeO2, ITO, ATO, AZO, FTO, GZO, 및 Sb2O3 중 선택된 적어도 하나인 것을 특징으로 하는 탄소나노튜브 필름 제조 방법.The nanoparticles, the nanoparticles are TiO 2 , SiO 2 , SiON, SiN x system, SiN x system, ZnO, SnO, Al 2 O 3 , ZrO 2 , Y 2 O 3 , WO 3 , V 2 O 5 , NiO Selected from Mn 3 O 4 , MgO, La 2 O 3 , Fe 2 O 3 , Cr 2 O 3 , Co 3 O 4 , CuO, CeO 2 , ITO, ATO, AZO, FTO, GZO, and Sb 2 O 3 Carbon nanotube film production method characterized in that at least one.
  15. 청구항 13 또는 청구항 14에 있어서, The method according to claim 13 or 14,
    상기 나노 입자의 사이즈는 1 nm 내지 1 μm인 것을 특징으로 하는 탄소나노튜브 필름 제조 방법.Carbon nanotube film manufacturing method, characterized in that the size of the nanoparticles are 1 nm to 1 μm.
  16. 청구항 12에 있어서,The method according to claim 12,
    상기 CNT 코팅층을 형성시키는 단계는, 용매에, 나노 입자 및 탄소나노튜브를 혼합한 CNT 코팅용액을 코팅함으로써 이루어지고, Forming the CNT coating layer is made by coating a CNT coating solution in which nanoparticles and carbon nanotubes are mixed in a solvent,
    상기 나노 입자는 상기 탄소나노튜브 100중량부 대비 1 내지 500 중량부의 함량을 가지는 것을 특징으로 하는 탄소나노튜브 필름 제조 방법. The nanoparticles carbon nanotube film manufacturing method characterized in that it has a content of 1 to 500 parts by weight relative to 100 parts by weight of the carbon nanotubes.
  17. 청구항 12에 있어서, The method according to claim 12,
    상기 베이스 바인더층 및 탑 바인더층 중 적어도 하나는, 세라믹계 또는 금속 산화물계 나노 입자를 포함하는 것을 특징으로 하는 탄소나노튜브 필름 제조 방법.At least one of the base binder layer and the top binder layer, the carbon nanotube film manufacturing method characterized in that it comprises a ceramic-based or metal oxide-based nanoparticles.
PCT/KR2012/005000 2011-06-23 2012-06-25 Method for preparing carbon nanotube film WO2012177102A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280031027.6A CN103635422A (en) 2011-06-23 2012-06-25 Method for preparing carbon nanotube film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110060990A KR101285414B1 (en) 2011-06-23 2011-06-23 Method for manufacturing carbon nano tube film with pattern
KR10-2011-0060990 2011-06-23

Publications (2)

Publication Number Publication Date
WO2012177102A2 true WO2012177102A2 (en) 2012-12-27
WO2012177102A3 WO2012177102A3 (en) 2013-04-04

Family

ID=47423124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/005000 WO2012177102A2 (en) 2011-06-23 2012-06-25 Method for preparing carbon nanotube film

Country Status (3)

Country Link
KR (1) KR101285414B1 (en)
CN (1) CN103635422A (en)
WO (1) WO2012177102A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI776196B (en) * 2020-07-29 2022-09-01 國立虎尾科技大學 Producing method of micro-generator at low temperature

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101482780B1 (en) * 2013-08-29 2015-01-15 (주)탑나노시스 Manufacturing conductive nanowire film and touch panel including conductive nanowire film manufactured by the same
CN104945015A (en) * 2014-03-26 2015-09-30 苏州汉纳材料科技有限公司 Carbon nano tube transparent conducting thin film patterning method
US9980543B2 (en) 2014-04-30 2018-05-29 Hewlett-Packard Development Company, L.P. Protective case for a device
DE102014213676B4 (en) * 2014-07-15 2021-05-06 Robert Bosch Gmbh Battery cell, method for manufacturing a battery cell and battery system
EP3404486B1 (en) * 2017-05-15 2021-07-14 IMEC vzw A method for forming a pellicle
CN109406586A (en) * 2017-08-18 2019-03-01 蓝思科技(长沙)有限公司 Production method of carbon nano tube sensor and application thereof
CN113088957B (en) * 2021-02-20 2022-09-02 景德镇明兴航空锻压有限公司 Method for preparing wear-resistant and high-temperature-resistant coating on surface of titanium alloy through laser cladding

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110111202A1 (en) * 2009-11-12 2011-05-12 National Tsing Hua University Multilayer film structure, and method and apparatus for transferring nano-carbon material
US20110143496A1 (en) * 2009-12-11 2011-06-16 Du Pont Apollo Limited Method of making monolithic photovoltaic module on flexible substrate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6988925B2 (en) * 2002-05-21 2006-01-24 Eikos, Inc. Method for patterning carbon nanotube coating and carbon nanotube wiring

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110111202A1 (en) * 2009-11-12 2011-05-12 National Tsing Hua University Multilayer film structure, and method and apparatus for transferring nano-carbon material
US20110143496A1 (en) * 2009-12-11 2011-06-16 Du Pont Apollo Limited Method of making monolithic photovoltaic module on flexible substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI776196B (en) * 2020-07-29 2022-09-01 國立虎尾科技大學 Producing method of micro-generator at low temperature

Also Published As

Publication number Publication date
KR101285414B1 (en) 2013-07-11
KR20130000487A (en) 2013-01-03
CN103635422A (en) 2014-03-12
WO2012177102A3 (en) 2013-04-04

Similar Documents

Publication Publication Date Title
WO2012177102A2 (en) Method for preparing carbon nanotube film
Zhou et al. A method of printing carbon nanotube thin films
WO2012036453A2 (en) Transparent conductive sheet coated with antireflection layer and method for manufacturing same
WO2019066336A1 (en) Electrode substrate for transparent light-emitting diode display and method for manufacturing same
WO2010123265A2 (en) Carbon nanotube conductive film and method for manufacturing same
WO2013176155A1 (en) Method for producing patterned conductive base, patterned conductive base produced by same, and touch panel
WO2020040516A1 (en) Electrode substrate for transparent light-emitting diode display device, and transparent light-emitting diode display device comprising same
TW201542055A (en) Transfer film, producing method of transfer film, transparent laminate, producing method of t transparent laminate, capacitive device and image display device
WO2019022500A1 (en) Transparent light emitting element display
WO2011162461A1 (en) Transparent electrode and a production method therefor
WO2014035172A1 (en) Nano-wire-carbon nano-tube hybrid film and manufacturing method thereof
WO2020040518A1 (en) Embedded electrode substrate for transparent light-emitting element display, and method for manufacturing same
JP2016508285A (en) Conductive film having low visibility pattern and method for producing the same
WO2011043580A2 (en) Method for fabricating a plastic electrode film
CN103698925A (en) Colored film substrate, manufacture method of colored film substrate, liquid crystal display panel, and display device
WO2015163535A1 (en) Photomask for manufacturing light-transmitting conductor having nanostructured pattern and method for manufacturing same
WO2013157900A1 (en) Base material for forming conductive pattern and conductive pattern formed using same
KR20130097969A (en) Carbon nano tube transparent electrode, method for manufacturing the same, and coating composition for carbon nano tube transparent electrode
TW201623694A (en) Manufacturing method of transparent electrode and transparent electrode laminate
WO2015030115A1 (en) Patterned conductive laminate and method for producing same
WO2014010961A1 (en) Method for manufacturing carbon nanotube film
WO2011129613A2 (en) Method for manufacturing carbon nanotubes
JPWO2014098158A1 (en) Film forming method, conductive film, and insulating film
WO2017034292A1 (en) Method of manufacturing pattern of dispersed particles using electric field on nonconductive substrate
WO2016175458A1 (en) Method for forming metal mesh and semiconductor device having metal mesh

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12802541

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12802541

Country of ref document: EP

Kind code of ref document: A2