WO2016175112A1 - Adhesive tape for work processing - Google Patents

Adhesive tape for work processing Download PDF

Info

Publication number
WO2016175112A1
WO2016175112A1 PCT/JP2016/062581 JP2016062581W WO2016175112A1 WO 2016175112 A1 WO2016175112 A1 WO 2016175112A1 JP 2016062581 W JP2016062581 W JP 2016062581W WO 2016175112 A1 WO2016175112 A1 WO 2016175112A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
sensitive adhesive
meth
adhesive tape
acrylate
Prior art date
Application number
PCT/JP2016/062581
Other languages
French (fr)
Japanese (ja)
Inventor
雄一朗 小升
泰史 藤本
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to SG11201708797YA priority Critical patent/SG11201708797YA/en
Priority to KR1020177030737A priority patent/KR102528633B1/en
Priority to JP2017515510A priority patent/JP6541775B2/en
Priority to CN201680023562.5A priority patent/CN108307635B/en
Publication of WO2016175112A1 publication Critical patent/WO2016175112A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09J175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature

Definitions

  • the present invention relates to a workpiece processing adhesive tape, and more particularly to a semiconductor wafer surface protecting adhesive tape used for protecting the surface of a bumped semiconductor wafer.
  • a sheet including a resin layer in which the storage elastic modulus at 25 ° C. and 60 ° C. is adjusted to be in a specific range is known (for example, see Patent Document 1).
  • This surface protective sheet is formed by attaching a resin layer having a drop in storage elastic modulus at room temperature (25 ° C.) and storage elastic modulus at high temperature (60 ° C.) to attach it to a wafer surface having an uneven portion at high temperature.
  • the resin layer is softened, the unevenness of the wafer surface is absorbed, and the height difference of the wafer surface is reduced.
  • the side resin layer is formed of a thermoplastic elastomer such as a polystyrene-based elastomer, a polyolefin-based elastomer, a polyurethane-based elastomer, and a polyester-based elastomer (see Patent Document 2).
  • an adhesive tape in which an intermediate layer and an adhesive layer are provided on one surface of a substrate is also known.
  • this pressure-sensitive adhesive tape it is known that the storage elastic modulus at 25 ° C. of the intermediate layer is set to about 30 to 1000 kPa and the pressure-sensitive adhesive layer is formed of an energy ray curable pressure-sensitive adhesive in order to increase unevenness absorbability.
  • Patent Document 3 When an energy ray curable pressure sensitive adhesive is used for the surface protection sheet as in Patent Document 3, it becomes easy to improve the sticking property to the semiconductor wafer and the peelability.
  • the energy ray-curable pressure-sensitive adhesive used in the surface protective sheet is mainly used in the acrylic type because the adhesiveness is easily adjusted and the embedding property of the bumps is easily secured.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to a surface shape of a work represented by adhesion to a work such as a semiconductor wafer, releasability, and embedding of bumps. It is to provide a work processing pressure-sensitive adhesive tape with less adhesive residue on the surface of the work, even if the work to be applied has a non-flat surface shape while improving the followability of the pressure-sensitive adhesive layer.
  • the present invention provides the following adhesive tapes for processing workpieces (1) to (16).
  • An adhesive tape for work processing comprising (B).
  • the energy ray curable compound (B) is at least one selected from a (meth) acrylate monomer (B1) and a urethane (meth) acrylate (B2). Adhesive tape.
  • the energy ray curable compound (B) contains at least a (meth) acrylate monomer (B1), and the (meth) acrylate monomer (B1) is a polyhydric alcohol and a complete (meth) acrylic acid.
  • the pressure-sensitive adhesive tape for workpiece processing according to the above (2) which is a polyfunctional (meth) acrylic acid ester which is an ester.
  • the pressure-sensitive adhesive layer is formed from a pressure-sensitive adhesive composition containing at least a urethane polymer (A ′), the energy ray-curable compound (B), and a crosslinking agent (C). 6.
  • the crosslinking agent (C) includes a crosslinking agent (C1) containing a photopolymerizable unsaturated bond.
  • the pressure-sensitive adhesive composition further comprises a compound (D) having a photopolymerizable unsaturated bond and a reactive functional group capable of reacting with the crosslinking agent (C).
  • the adhesive tape for workpiece processing according to any one of the above.
  • the pressure-sensitive adhesive layer has a breaking stress after irradiation with energy rays of 2.5 MPa or more.
  • weight average molecular weight (Mw) is a value in terms of polystyrene measured by gel permeation chromatography (GPC), and specifically measured based on the method described in the examples. Value.
  • GPC gel permeation chromatography
  • (meth) acrylate is used as a word indicating both “acrylate” and “methacrylate”, and the same applies to other similar terms.
  • the pressure-sensitive adhesive tape for workpiece processing of the present invention (hereinafter also simply referred to as “pressure-sensitive adhesive tape”) includes a base material and a pressure-sensitive adhesive layer provided on one surface side of the base material. Moreover, the adhesive tape may have an intermediate
  • the adhesive tape may be composed of two or three layers as described above, and may be further provided with other layers. For example, a release material may be further provided on the pressure-sensitive adhesive layer.
  • each member which comprises an adhesive tape is demonstrated in detail.
  • the base material used for an adhesive tape is not specifically limited, It is preferable that it is a resin film. Resin films are preferable because they are less likely to generate dust than paper and non-woven fabrics, are suitable for processed parts of electronic parts, and are easily available.
  • the substrate may be a single layer film made of one resin film or a multilayer film in which a plurality of resin films are laminated.
  • the resin film used as the base material include polyolefin film, vinyl halide polymer film, acrylic resin film, rubber film, cellulose film, polyester film, polycarbonate film, polystyrene film, and polyphenylene sulfide. Examples thereof include a system film and a cycloolefin polymer film.
  • a polyester film is preferable, and among the polyester films, From the viewpoint of easy availability and high thickness accuracy, a polyethylene terephthalate film is preferred.
  • the thickness of the substrate is not particularly limited, but is preferably 10 to 200 ⁇ m, more preferably 25 to 150 ⁇ m.
  • stacked the easily bonding layer or the adhesive layer further on the surface of the resin film may contain a filler, a colorant, an antistatic agent, an antioxidant, an organic lubricant, a catalyst and the like as long as the effects of the present invention are not impaired.
  • the substrate may be transparent or may be colored as desired, but is preferably one that transmits energy rays to a degree sufficient to cure the pressure-sensitive adhesive layer.
  • an intermediate layer may be provided on one surface of the substrate.
  • the pressure-sensitive adhesive tape of the present invention has an intermediate layer, so that the bumps are provided in the pressure-sensitive adhesive layer and the intermediate layer even when the bumps are provided on the work and the unevenness of the surface of the work is large. Thereby, it becomes easy to keep the surface on the opposite side to the surface affixed to the workpiece
  • the intermediate layer used in the present invention preferably has a loss tangent (tan ⁇ ) (hereinafter also simply referred to as “loss tangent”) at 50 ° C. measured at a frequency of 1 Hz of 1.0 or more.
  • the loss tangent of the intermediate layer is such a value, when the work processing pressure-sensitive adhesive tape is attached to an uneven work such as a wafer with bumps, the intermediate layer is sufficiently deformed and can easily follow the unevenness.
  • the loss tangent of the intermediate layer is more preferably 1.5 or more, and still more preferably 1. 65 or more, more preferably 1.8 or more.
  • the loss tangent of the intermediate layer is preferably 5.0 or less, more preferably 4.0 or less.
  • the above-mentioned loss tangent of the intermediate layer is more specifically a value measured based on the method described in Examples described later.
  • the thickness of the intermediate layer can be appropriately adjusted according to the state of the adherend surface to which the adhesive tape is affixed, but it is preferable from the viewpoint of being able to absorb relatively high bumps. Is 10 to 600 ⁇ m, more preferably 25 to 550 ⁇ m, still more preferably 35 to 500 ⁇ m.
  • middle layer is formed from the resin composition for intermediate
  • middle layers contains urethane (meth) acrylate.
  • Urethane (meth) acrylate (X) Urethane (meth) acrylate (X) is a compound having at least a (meth) acryloyl group and a urethane bond, and has a property of being polymerized by irradiation with energy rays.
  • an energy ray has an energy quantum in electromagnetic waves or a charged particle beam, and points out active light, such as an ultraviolet-ray, or an electron beam.
  • the number of (meth) acryloyl groups in the urethane (meth) acrylate (X) may be monofunctional, bifunctional, or trifunctional or higher, but in order to make the loss tangent 1.0 or higher, the resin composition for the intermediate layer Preferably contains a monofunctional urethane (meth) acrylate. This is because the monofunctional urethane (meth) acrylate does not participate in the formation of the three-dimensional network structure in the polymerization structure, and therefore, the three-dimensional network structure is hardly formed in the intermediate layer, and the loss tangent is easily increased.
  • urethane (meth) acrylate (X) used for the resin composition for intermediate layers for example, a terminal isocyanate urethane prepolymer obtained by reacting a polyol compound and a polyisocyanate compound has a (meth) acryloyl group. It can be obtained by reacting a compound.
  • Urethane (meth) acrylate (X) may be used alone or in combination of two or more.
  • the polyol compound is not particularly limited as long as it is a compound having two or more hydroxy groups.
  • Specific examples of the polyol compound include alkylene diol, polyether type polyol, polyester type polyol, and polycarbonate type polyol. Among these, polyether type polyols are preferable.
  • the polyol compound may be a bifunctional diol, a trifunctional triol, or a tetrafunctional or higher polyol, but from the viewpoint of availability, versatility, reactivity, etc., a bifunctional diol Are preferred, and polyether type diols are more preferred.
  • the polyether type diol is preferably a compound represented by the following formula (1).
  • R is a divalent hydrocarbon group, preferably an alkylene group, more preferably an alkylene group having 1 to 6 carbon atoms.
  • alkylene groups having 1 to 6 carbon atoms an ethylene group, a propylene group, and a tetramethylene group are preferable, and a propylene group and a tetramethylene group are more preferable.
  • N is the number of repeating units of alkylene oxide, preferably 10 to 250, more preferably 25 to 205, and still more preferably 40 to 185.
  • n is the said range, it will become easy to prepare an intermediate
  • polyethylene glycol, polypropylene glycol, and polytetramethylene glycol are preferable, and polypropylene glycol and polytetramethylene glycol are more preferable.
  • a terminal isocyanate urethane prepolymer having an ether bond [-(-RO-) n-] introduced therein is produced.
  • the urethane (meth) acrylate contains a structural unit derived from the polyether type diol.
  • the polyester type polyol is obtained by polycondensation of a polyol component and a polybasic acid component.
  • the polyol component include ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, pentanediol, 3-methyl-1,5-pentanediol, 2,2,4-trimethyl-1,3-pentanediol, hexanediol, octanediol, 2,2-diethyl-1,3-propanediol, 2-ethyl-2 -Known various glycols such as butyl-1,3-propanediol, 1,4-cyclohexanedimethanol, ethylene glycol or propylene glycol adduct of bisphenol A, and the like.
  • polybasic acid component used for the production of the polyester type polyol a compound generally known as a polybasic acid component of polyester can be used.
  • the polybasic acid component include dibasic acids such as adipic acid, maleic acid, succinic acid, oxalic acid, fumaric acid, malonic acid, glutaric acid, pimelic acid, azelaic acid, sebacic acid, and suberic acid; Dibasic acids such as phthalic acid, isophthalic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, aromatic polybasic acids such as polybasic acids such as trimellitic acid and pyromellitic acid, anhydrides corresponding to these, The derivative
  • the polyester-type polyol is not particularly limited, and examples thereof include a reaction product of the above-described glycols and alkylene carbonate.
  • the number average molecular weight calculated from the hydroxyl value of the polyol compound is preferably 1,000 to 10,000, more preferably 2,000 to 9,000, and still more preferably 3,000 to 7,000. If the number average molecular weight is 1,000 or more, a situation in which it becomes difficult to control the viscoelastic properties of the intermediate layer due to the generation of an excessive amount of urethane bonds is preferable. On the other hand, if the number average molecular weight is 10,000 or less, it is preferable because the obtained intermediate layer can be prevented from being excessively softened.
  • the number average molecular weight calculated from the hydroxyl value of the polyol compound is a value calculated from [number of polyol functional groups] ⁇ 56.11 ⁇ 1000 / [hydroxyl value (unit: mgKOH / g)].
  • polyisocyanate compound examples include aliphatic polyisocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate; isophorone diisocyanate, norbornane diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, dicyclohexylmethane-2,4 ′.
  • -Cycloaliphatic diisocyanates such as diisocyanate, ⁇ , ⁇ '-diisocyanate dimethylcyclohexane; 4,4'-diphenylmethane diisocyanate, tolylene diisocyanate, xylylene diisocyanate, tolidine diisocyanate, tetramethylene xylylene diisocyanate, naphthalene-1,5- And aromatic diisocyanates such as diisocyanate.
  • isophorone diisocyanate, hexamethylene diisocyanate, and xylylene diisocyanate are preferable from the viewpoint of handleability.
  • Examples of the compound having a (meth) acryloyl group include a (meth) acrylate having a hydroxy group.
  • the (meth) acrylate having a hydroxy group is not particularly limited as long as it is a compound having a hydroxy group and a (meth) acryloyl group in at least one molecule.
  • Specific examples of the (meth) acrylate having a hydroxy group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and 4-hydroxycyclohexyl (meth).
  • the weight average molecular weight of the urethane (meth) acrylate (X) for the intermediate layer resin composition thus obtained is preferably 1,000 to 100,000, more preferably 3,000 to 80,000, Preferably, it is 5,000 to 65,000. If the weight average molecular weight is 1,000 or more, in the polymer of urethane (meth) acrylate and a polymerizable monomer described later, due to the intermolecular force between the structures derived from urethane (meth) acrylate, This is preferable because moderate hardness is imparted to the intermediate layer.
  • the blending amount of urethane (meth) acrylate (X) in the resin composition for an intermediate layer is preferably 20 to 70% by mass, more preferably 25 to 60% by mass, and further preferably 30 to 50% based on the total amount of the composition.
  • the mass is more preferably 33 to 47% by mass. If the blending amount of urethane (meth) acrylate is within such a range, an intermediate layer having a high loss tangent can be easily formed.
  • the intermediate layer resin composition further contains, for example, a thiol group-containing compound (Y) or a polymerizable monomer (Z). It is preferable to do.
  • a thiol group-containing compound (Y) is not particularly limited as long as it is a compound having at least one thiol group in the molecule, but from the viewpoint of easily increasing the loss tangent, a polyfunctional thiol group-containing compound is preferable. A tetrafunctional thiol group-containing compound is more preferred.
  • thiol group-containing compound (Y) examples include nonyl mercaptan, 1-dodecanethiol, 1,2-ethanedithiol, 1,3-propanedithiol, triazinethiol, triazinedithiol, triazinetrithiol, 1,2 , 3-propanetrithiol, tetraethylene glycol-bis (3-mercaptopropionate), trimethylolpropane tris (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakisthio Glucolate, dipentaerythritol hexakis (3-mercaptopropionate), tris [(3-mercaptopropionyloxy) -ethyl] -isocyanurate, 1,4-bis (3-mercaptobutyryloxy) Butane, pentaerythri
  • the molecular weight of the thiol group-containing compound (Y) is preferably 200 to 3,000, more preferably 300 to 2,000. If the said molecular weight is the said range, compatibility with urethane (meth) acrylate (X) will become favorable and film forming property can be made favorable.
  • the amount of the thiol group-containing compound (Y) is preferably 1.0 to 4.9 masses per 100 mass parts in total of the urethane (meth) acrylate (X) and the polymerizable monomer (Z) described later. Parts, more preferably 1.5 to 4.8 parts by mass. When the blending amount is 1.0 part by mass or more, an intermediate layer having a high loss tangent can be easily formed, and the pump absorbability can be improved. On the other hand, if the said compounding quantity is 4.9 mass parts or less, the seepage of the intermediate
  • the resin composition for intermediate layers used in the present invention further contains a polymerizable monomer (Z) from the viewpoint of improving the film forming property.
  • the polymerizable monomer (Z) is a polymerizable compound other than the urethane (meth) acrylate (X), and is a compound that can be polymerized with other components by irradiation with energy rays.
  • the polymerizable monomer (Z) means one excluding the resin component.
  • the polymerizable monomer (Z) is preferably a compound having at least one (meth) acryloyl group.
  • the “resin component” refers to an oligomer or high molecular weight body having a repeating structure in the structure, and refers to a compound having a weight average molecular weight of 1,000 or more.
  • Examples of the polymerizable monomer (Z) include an alkyl (meth) acrylate having an alkyl group having 1 to 30 carbon atoms, a (meth) acrylate having a functional group such as a hydroxyl group, an amide group, an amino group, and an epoxy group, (Meth) acrylate having alicyclic structure, (meth) acrylate having aromatic structure, (meth) acrylate having heterocyclic structure, styrene, hydroxyethyl vinyl ether, hydroxybutyl vinyl ether, N-vinylformamide, N-vinyl Examples include vinyl compounds such as pyrrolidone, N-vinylcaprolactam, and allyl glycidyl ether.
  • alkyl (meth) acrylate having an alkyl group having 1 to 30 carbon atoms examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl ( (Meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, Nonyl (meth) acrylate, decyl (meth) acrylate, undecyl (meth) acrylate, dodecyl (meth) acrylate, tridecyl (meth) acrylate, tetradecyl (meth)
  • Examples of the (meth) acrylate having a functional group include hydroxyl group-containing (meth) acrylates such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and hydroxybutyl (meth) acrylate; (meth) acrylamide, N, N -Dimethyl (meth) acrylamide, N-butyl (meth) acrylamide, N-methylol (meth) acrylamide, N-methylolpropane (meth) acrylamide, N-methoxymethyl (meth) acrylamide, N-butoxymethyl (meth) acrylamide, etc.
  • hydroxyl group-containing (meth) acrylates such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and hydroxybutyl (meth) acrylate
  • Amide group-containing compounds primary amino group-containing (meth) acrylates, secondary amino group-containing (meth) acrylates, tertiary amino group-containing (meth) acrylates and other amino group-containing (meth) acrylates; glycidyl ( Meta) Acrylate, and epoxy groups such as methyl glycidyl (meth) acrylate (meth) acrylate.
  • Examples of the (meth) acrylate having an alicyclic structure include isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyloxy (meth) acrylate, and cyclohexyl (meth) ) Acrylate, adamantane (meth) acrylate and the like.
  • Examples of the (meth) acrylate having an aromatic structure include phenylhydroxypropyl (meth) acrylate, benzyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, and the like.
  • Examples of the (meth) acrylate having a heterocyclic structure include tetrahydrofurfuryl (meth) acrylate and morpholine (meth) acrylate.
  • the polymerizable monomer preferably includes a (meth) acrylate having a functional group and a (meth) acrylate having an alicyclic structure. More preferably, it includes (meth) acrylate and isobornyl (meth) acrylate.
  • the blending amount of the (meth) acrylate having an alicyclic structure in the intermediate layer resin composition is preferably 32 to 53% by mass, more preferably 35 to 51% by mass, based on the total amount of the composition. More preferably, it is 37 to 48% by mass, and still more preferably 40 to 47% by mass. Further, the blending amount of the (meth) acrylate having an alicyclic structure with respect to the total amount of the polymerizable monomer (Z) contained in the intermediate layer resin composition is preferably 52 to 87% by mass from the above viewpoint. More preferably, it is 55 to 85% by mass, still more preferably 60 to 80% by mass, and still more preferably 65 to 77% by mass. When the blending amount of the (meth) acrylate having an alicyclic structure is in such a range, the loss tangent is easily set to 1.0 or more.
  • the blending amount of the polymerizable monomer (Z) in the intermediate layer resin composition is preferably 30 to 80% by mass, more preferably 40 to 75% by mass, still more preferably 50 to 70% by mass, and more. More preferably, it is 53 to 67% by mass. If the blending amount of the polymerizable monomer (Z) is within such a range, the intermediate layer is flexible because the portion formed by polymerization of the polymerizable monomer (Z) in the intermediate layer has high mobility. It becomes easier to form an intermediate layer whose loss tangent satisfies the above requirements.
  • the mass ratio of urethane (meth) acrylate (X) and polymerizable monomer (Z) in the intermediate layer resin composition [urethane (meth) acrylate / polymerizable monomer] is The ratio is preferably 20/80 to 60/40, more preferably 30/70 to 50/50, and still more preferably 35/65 to 45/55.
  • middle layers contains an energy beam polymerization initiator (R) further.
  • the intermediate layer resin composition can be easily cured by energy rays such as ultraviolet rays. Since the energy ray polymerization initiator (R) is generally also referred to as “photopolymerization initiator”, in the present specification, it is also simply referred to as “photopolymerization initiator”.
  • photopolymerization initiator examples include photopolymerization initiators such as benzoin compounds, acetophenone compounds, acylphosphinoxide compounds, titanocene compounds, thioxanthone compounds, and peroxide compounds, and photosensitizers such as amines and quinones. More specifically, for example, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, 2 , 2-dimethoxy-1,2-diphenylethane-1-one and the like.
  • photopolymerization initiators such as benzoin compounds, acetophenone compounds, acylphosphinoxide compounds, titanocene compounds, thioxanthone compounds, and peroxide compounds
  • photosensitizers such as amines and quinones. More specifically, for example,
  • photopolymerization initiators may be used alone or in combination of two or more.
  • the blending amount of the photopolymerization initiator is preferably 0.05 to 15 parts by mass, more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass in total of the urethane (meth) acrylate and the polymerizable monomer. More preferably, it is 0.3 to 5 parts by mass.
  • the resin composition for intermediate layers may contain other additives as long as the effects of the present invention are not impaired.
  • additives include cross-linking agents, antioxidants, softeners (plasticizers), fillers, rust inhibitors, pigments, and dyes.
  • the amount of other additives is preferably 0.01 to 6 parts by mass, more preferably 100 parts by mass in total of urethane (meth) acrylate and polymerizable monomer. Is 0.1 to 3 parts by mass.
  • middle layers may contain resin components other than urethane (meth) acrylate, but urethane as a resin component It is preferable to contain only (meth) acrylate.
  • the content of the resin component other than the urethane (meth) acrylate contained in the intermediate layer resin composition is preferably 5% by mass or less, more preferably 1% by mass or less, and still more preferably 0.1% by mass or less. More preferably, it is 0 mass%.
  • the intermediate layer may be formed of an intermediate layer resin composition containing other resin components instead of urethane (meth) acrylate (X).
  • the intermediate layer may be formed using a curable composition containing a non-reactive urethane polymer or oligomer and a polymerizable monomer, or a composition containing an ethylene- ⁇ -olefin copolymer.
  • a curable composition may contain the energy beam polymerization initiator mentioned above.
  • the ethylene- ⁇ -olefin copolymer is obtained by polymerizing ethylene and an ⁇ -olefin monomer.
  • ⁇ -olefin monomers include propylene, 1-butene, 2-methyl-1-butene, 2-methyl-1-pentene, 1-hexene, 2,2-dimethyl-1-butene, and 2-methyl-1-hexene.
  • ⁇ -olefin monomers can be used alone or in combination of two or more.
  • the ethylene- ⁇ -olefin copolymer may be one obtained by polymerizing ethylene, an ⁇ -olefin monomer, and another monomer.
  • Examples of other monomer components include vinyl compounds such as vinyl acetate, styrene, acrylonitrile, methacrylonitrile, and vinyl ketone; unsaturated carboxylic acids such as acrylic acid and methacrylic acid; methyl acrylate, ethyl acrylate, acrylic acid-n -Unsaturated carboxylic acid esters such as propyl, methyl methacrylate, ethyl methacrylate, methacrylic acid-n-propyl; unsaturated carboxylic acid amides such as acrylamide and methacrylamide. These monomers can be used alone or in combination of two or more.
  • An adhesive layer is provided on a base material, and when an intermediate layer is provided, it is provided on the intermediate layer.
  • the pressure-sensitive adhesive layer of the present invention contains at least a urethane resin (A) and an energy ray-curable compound (B) that is non-reactive with the urethane resin (A) and has a molecular weight of 35,000 or less.
  • the pressure-sensitive adhesive layer contains the urethane-based resin (A)
  • the cohesive force and mechanical strength of the pressure-sensitive adhesive layer are increased. It is difficult for adhesive residue to occur on the workpiece surface.
  • an adhesive layer will have energy-beam sclerosis
  • work becomes favorable. Furthermore, since the energy ray curable compound (B) is non-reactive, as will be described later, the storage elastic modulus of the pressure-sensitive adhesive layer becomes low, and it becomes easy to ensure followability to the unevenness of the work surface.
  • the pressure-sensitive adhesive layer preferably has a breaking stress after irradiation with energy rays of 2.5 MPa or more.
  • the breaking stress is 2.5 MPa or more, the mechanical strength becomes a sufficient value, and it becomes easy to reduce the above adhesive residue.
  • the breaking stress is preferably 2.8 to 30 MPa, more preferably 3.0 to 25 MPa from the viewpoint of easily improving the embedding property of the protrusion, the adhesiveness of the pressure-sensitive adhesive layer, and the peelability while suppressing adhesive residue. is there.
  • the breaking stress is measured by the method described in Examples described later.
  • the breaking stress can be adjusted by changing the type of the urethane resin (A). It can also be adjusted by the amount of the photopolymerizable unsaturated bond described later.
  • Increasing the amount of the photopolymerizable unsaturated bond contained in the pressure-sensitive adhesive layer increases the breaking stress, and decreasing it decreases the breaking stress. There is a tendency. Similarly, it can also be adjusted by the amount of the cross-linking agent component described later. When the amount of the cross-linking agent component is increased, the breaking stress tends to increase, and when it is decreased, the breaking stress tends to decrease.
  • the pressure-sensitive adhesive layer is energy ray curable, it can be made relatively soft before energy beam irradiation, and the pressure-sensitive adhesive layer can easily follow the unevenness formed on the workpiece surface.
  • the adhesive tape is cured by being irradiated with an energy ray, so that the adhesive force is reduced and the adhesive tape is easily peeled off from the workpiece.
  • the adhesive strength of the adhesive tape after irradiation with energy rays is preferably 2000 mN / 25 mm or less.
  • the adhesive tape of the present invention having an intermediate layer is applied to a workpiece having bumps or other large protrusions (for example, a height of 200 ⁇ m or more) on the surface, the adhesive tape in which the protrusions are usually attached to the surface of the workpiece. This is a state absorbed by the intermediate layer. For this reason, when the adhesive tape is peeled from the adhesive tape, adhesive residue is likely to be generated. However, by setting the adhesive force to 2000 mN / 25 mm or less, it becomes easy to prevent such adhesive residue from occurring.
  • the adhesive strength of the adhesive tape after irradiation with energy rays is preferably 50 to 1750 mN / 25 mm, more preferably 100 to 1500 nN / 25 mm.
  • the adhesive strength of the adhesive tape before irradiation with energy rays is, for example, greater than 2000 mN / 25 mm, preferably 3000 to 30000 mN / 25 mm, more preferably 3500 to 9000 mN / m.
  • the adhesive strength of the adhesive tape is measured when the adhesive layer surface of the adhesive tape is affixed to a silicon mirror wafer and peeled at a peeling angle of 180 ° and a peeling speed of 300 mm / min in an environment of 23 ° C.
  • the adhesive force can be adjusted by changing the type of the urethane-based resin (A) or the energy beam curable compound (B).
  • the adhesive strength after irradiation with energy rays can be adjusted by the amount of photopolymerizable unsaturated bonds described later, and decreases when the amount of photopolymerizable unsaturated bonds contained in the adhesive composition is increased. When it is less, it tends to be higher. Furthermore, it becomes easy to make the adhesive force after energy ray irradiation low also by mix
  • the urethane resin (A) is a polymer containing at least one of a urethane bond and a urea bond.
  • the pressure-sensitive adhesive layer of the present invention is composed of a urethane-based pressure-sensitive adhesive composition (hereinafter also simply referred to as “pressure-sensitive adhesive composition”) containing at least a urethane polymer (A ′) and an energy ray-curable compound (B).
  • the urethane-based resin (A) is formed from at least a urethane polymer (A ′) as a main agent.
  • a crosslinking agent (C), a compound (D), etc. are further contained in a urethane type adhesive composition as needed.
  • the urethane resin (A) may be crosslinked with a crosslinking agent (C). Further, as described above, the urethane-based pressure-sensitive adhesive composition is bonded directly or indirectly to the urethane polymer (A ′), such as the compound (D), in addition to the crosslinking agent (C).
  • the layer may contain a compound constituting the urethane resin (A) as a unit.
  • a crosslinking agent (C) and a compound (D) it couple
  • the blending amount of the urethane polymer (A ′) is the total amount of the pressure-sensitive adhesive composition in order to blend components (B) to (E) described later in appropriate amounts while ensuring the tackiness of the pressure-sensitive adhesive layer. Is preferably 30 to 85% by mass, more preferably 35 to 80% by mass, and still more preferably 37 to 77% by mass.
  • the total amount of the main component reactive compound and the urethane polymer (A ′) is preferably 40 to 95% by mass, more preferably 45 to 94% by mass, and further preferably 50 to 50% by mass with respect to the total amount of the pressure-sensitive adhesive composition. 93% by mass.
  • the urethane resin (A) preferably has a photopolymerizable unsaturated bond.
  • both the urethane resin (A) and the energy ray curable compound (B) are light in the pressure-sensitive adhesive layer of the work processing pressure-sensitive adhesive tape. It will have a polymerizable unsaturated bond. Therefore, by irradiating the adhesive layer with energy rays, a bond is formed between the urethane resin (A) and the energy ray curable compound (B) by the polymerization reaction, and adhesion of the adhesive tape after energy ray irradiation is achieved.
  • the method for introducing a photopolymerizable unsaturated bond into the urethane resin (A) is not particularly limited.
  • the urethane polymer (A ′) before introduction of the photopolymerizable unsaturated bond has a hydroxyl group
  • a functional group capable of reacting with the hydroxyl group and a function containing a photopolymerizable unsaturated bond such as a (meth) acryloyl group. It is possible to introduce a photopolymerizable unsaturated bond by reacting a compound having a group with the hydroxyl group.
  • Examples of the compound having a functional group capable of reacting with a hydroxyl group and a functional group containing a photopolymerizable unsaturated bond include methacryloyloxyethyl isocyanate. Such a compound may be reacted in advance with the urethane polymer (A ′), or may be contained in the pressure-sensitive adhesive layer and reacted with the urethane polymer (A ′) at the time of forming the pressure-sensitive adhesive layer. . Further, as will be described later, the urethane resin (A) is crosslinked with the urethane polymer (A ′) by using the crosslinking agent (C1) having a photopolymerizable unsaturated bond as the crosslinking agent (C). A polymerizable unsaturated bond may be introduced. Furthermore, you may introduce
  • urethane polymer (A ′) examples include those containing at least one of a urethane bond and a urea bond, and specific examples include a polyurethane polyol having a hydroxyl group at the terminal obtained by reacting a polyol and a polyisocyanate compound. . Further, the urethane polymer (A ′) may be obtained by reacting a polyol and a polyisocyanate compound, and a urethane polymer having a terminal isocyanate may be used.
  • polyester polyols and polyether polyols examples include polyester polyols and polyether polyols.
  • a known polyester polyol is used as the polyester polyol.
  • Polyester polyol is an ester of an acid component and at least one of a glycol component and a polyol component.
  • the acid component include terephthalic acid, adipic acid, azelaic acid, sebacic acid, phthalic anhydride, isophthalic acid, trimellitic acid, and the like. Can be mentioned.
  • glycol components ethylene glycol, propylene glycol, diethylene glycol, butylene glycol, 1,6-hexane glycol, 3-methyl-1,5-pentanediol, 3,3′-dimethylol heptane, polyoxyethylene glycol, polyoxy
  • examples include propylene glycol, 1,4-butanediol, neopentyl glycol, and butylethylpentanediol.
  • the polyol component include glycerin, trimethylolpropane, and pentaerythritol.
  • polyester polyols obtained by ring-opening polymerization of lactones such as polycaprolactone, poly ( ⁇ -methyl- ⁇ -valerolactone), and polyvalerolactone may be used.
  • polyether polyol obtained by polymerizing oxirane compounds such as ethylene oxide, propylene oxide, butylene oxide, tetrahydrofuran using low molecular weight polyols such as water, propylene glycol, ethylene glycol, glycerin and trimethylolpropane as initiators Specifically, those having 2 or more functional groups such as polypropylene glycol, polyethylene glycol, and polytetramethylene glycol are used.
  • polyisocyanate compound examples include known aromatic polyisocyanates, aliphatic polyisocyanates, araliphatic polyisocyanates, and alicyclic polyisocyanates.
  • Aromatic polyisocyanates include 1,3-phenylene diisocyanate, 4,4'-diphenyl diisocyanate, 1,4-phenylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate Isocyanate, 4,4'-toluidine diisocyanate, 2,4,6-triisocyanate toluene, 1,3,5-triisocyanate benzene, dianisidine diisocyanate, 4,4'-diphenyl ether diisocyanate, 4,4 ', 4 "- And triphenylmethane triisocyanate.
  • Aliphatic polyisocyanates include trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, pentamethylene diisocyanate, 1,2-propylene diisocyanate, 2,3-butylene diisocyanate, 1,3-butylene diisocyanate, dodecamethylene diisocyanate, 2,4 , 4-trimethylhexamethylene diisocyanate and the like.
  • Examples of the araliphatic polyisocyanate include ⁇ , ⁇ ′-diisocyanate-1,3-dimethylbenzene, ⁇ , ⁇ ′-diisocyanate-1,4-dimethylbenzene, ⁇ , ⁇ ′-diisocyanate-1,4-diethylbenzene, 1, Examples thereof include 4-tetramethylxylylene diisocyanate and 1,3-tetramethylxylylene diisocyanate.
  • the alicyclic polyisocyanates include 3-isocyanate methyl-3,5,5-trimethylcyclohexyl isocyanate, 1,3-cyclopentane diisocyanate, 1,3-cyclohexane diisocyanate, 1,4-cyclohexane diisocyanate, methyl-2,4- And cyclohexane diisocyanate, methyl-2,6-cyclohexane diisocyanate, 4,4′-methylenebis (cyclohexyl isocyanate), 1,4-bis (isocyanate methyl) cyclohexane, 1,4-bis (isocyanate methyl) cyclohexane, and the like. .
  • the polyisocyanate compound can be used in combination with a trimethylolpropane adduct of the polyisocyanate compound, a burette reacted with water, a trimer having an isocyanurate ring, or the like.
  • a trimethylolpropane adduct of the polyisocyanate compound a burette reacted with water, a trimer having an isocyanurate ring, or the like.
  • the polyisocyanate compound 4,4′-diphenylmethane diisocyanate, hexamethylene diisocyanate, 3-isocyanate methyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate) and the like are preferable.
  • the polyurethane polyol may be obtained by further reacting a diamine such as ethylenediamine, N-aminoethylethanolamine, isophoronediamine, xylylenediamine in addition to the polyol and the polyfunctional isocyanate.
  • a diamine such as ethylenediamine, N-aminoethylethanolamine, isophoronediamine, xylylenediamine
  • ethylene glycol, 1,4-butanediol, neopentyl glycol, butylethylpentanediol, glycerin, trimethylolpropane, pentaerythritol and the like are used. Also good.
  • reaction with a polyol and a polyisocyanate compound is normally performed in presence of catalysts, such as a tertiary amine type compound and an organometallic compound.
  • the urethane polymer (A ′) is not limited to those described above, and may be, for example, a Michael addition type urethane polymer.
  • Examples of the Michael addition type urethane polymer include the following (1) and (2).
  • (1) A urethane prepolymer having an isocyanate group (—NCO) at the terminal obtained by reacting the polyol with a polyisocyanate compound is reacted with an amino compound obtained by Michael addition reaction of a polyamine and an unsaturated compound.
  • What (2) A product obtained by reacting a polyamine in addition to the above polyol and polyisocyanate compound, and reacting a polyurethane urea having a primary or secondary amino group at the terminal with a Michael addition reaction of an unsaturated compound.
  • polyamine used in the Michael addition type urethane polymer known ones can be used. Specifically, ethylenediamine, propylenediamine, trimethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, Aliphatic polyamines such as ethylenetetramine, diethylenetriamine, triaminopropane, 2,2,4-trimethylhexamethylenediamine, tolylenediamine, hydrazine, piperazine, isophoronediamine, dicyclohexylmethane-4,4'-diamine, etc. Examples include polyamines and aromatic polyamines such as phenylenediamine and xylylenediamine.
  • polyoxyalkylene glycol diamine represented by the following general formula (2) can also be used.
  • n represents an arbitrary integer of 2 to 4
  • m represents an arbitrary integer of 2 to 50.
  • a dendrimer having a primary or secondary amino group at the terminal can also be used as a polyamine.
  • isophorone diamine, 2,2,4-trimethylhexamethylene diamine, and hexamethylene diamine are preferable from the viewpoint of easy control of the reaction.
  • the unsaturated compound used in the Michael addition type urethane polymer is used for the purpose of modifying the urethane polymer. Therefore, the type of unsaturated compound to be used can be arbitrarily selected according to the purpose of modification.
  • unsaturated compounds include (meth) acrylic unsaturated compounds, amide unsaturated compounds, fatty acid vinyl unsaturated compounds, vinyl ether unsaturated compounds, ⁇ -olefin unsaturated compounds, allyl unsaturated compounds, acetic acid Examples include allylic unsaturated compounds, vinyl cyanide unsaturated compounds, styrene or vinylbenzene unsaturated compounds.
  • the functional groups possessed by such unsaturated compounds include alkyl groups, polyalkylene glycol groups, alkoxy groups, phenoxy groups, hydroxyl groups, carboxyl groups, perfluoroalkyl groups, alkoxysilyl groups, epoxy groups, as well as amide groups and dialkyls.
  • Nitrogen-containing groups such as amino groups and quaternary ammonium bases can be exemplified, but it is preferable to have a hydroxyl group so that the urethane polymer (A ′) contains a hydroxyl group as described above.
  • the unsaturated compound those described in, for example, JP-A No. 2002-121256 (European Publication No. EP1146061A1) are used.
  • the urethane polymer (A ′) used in the present invention preferably has a weight average molecular weight of 10,000 to 300,000, more preferably 30,000 to 150,000.
  • a weight average molecular weight 10,000 to 300,000, more preferably 30,000 to 150,000.
  • the energy ray-curable compound (B) used in the present invention is non-reactive with the urethane resin (A) and has a photopolymerizable unsaturated bond.
  • non-reactive means that it contains not only the “photopolymerizable unsaturated bond” but also contains not only the urethane polymer (A ′) but also a functional group that reacts with the main compound reactive compound, and the compound (B) Is a compound which has not reacted with the urethane resin (A) in the pressure-sensitive adhesive layer.
  • the energy ray curable compound (B) is obtained by reacting the urethane polymer (A ′), the crosslinking agent (C), and other components (for example, the component (D)) used as necessary. It is a compound that does not react with the components (A ′), (C), and (D) when the pressure-sensitive adhesive layer is formed.
  • energy-beam curable compound (B) will exist as a component which does not comprise urethane type resin (A) in an adhesive layer.
  • Urethane polymers generally have a high cohesive force and a high storage elastic modulus, so it is difficult to embed protrusions such as bumps on the surface of the work alone, but in the present invention, the energy ray curable compound (B) does not constitute a urethane polymer chain.
  • the storage elastic modulus of the pressure-sensitive adhesive layer is lowered, and it becomes easy to ensure the embedding property to the bump.
  • the photopolymerizable unsaturated bond means an unsaturated bond that reacts upon irradiation with energy rays, and is usually an ethylenic double bond, preferably a carbon-carbon contained in a (meth) acryloyl group. It is a double bond.
  • the molecular weight of the energy ray curable compound (B) is 35,000 or less. When the molecular weight is larger than 35,000, it becomes difficult to lower the storage elastic modulus of the pressure-sensitive adhesive layer, and it becomes difficult to ensure the embedding property to the bump. Moreover, there exists a possibility that compatibility with a urethane type resin (A) may deteriorate.
  • the molecular weight of the energy ray curable compound (B) is preferably 150 to 35,000, and more preferably 200 to 34,000.
  • the molecular weight is the formula weight when the formula weight can be specified, and the weight average molecular weight when the formula weight cannot be specified.
  • the compounding amount of the energy ray curable compound (B) varies depending on the compound used, but 100 parts by mass of the urethane resin (A) (that is, 100 parts by mass of the urethane polymer (A ′) and the main component reactive compound). In the following, the same is true): usually 1 to 120 parts by mass, preferably 2 to 100 parts by mass, more preferably 4 to 90 parts by mass.
  • the energy ray curable compound (B) include compounds having a (meth) acryloyl group.
  • the (meth) acryloyl group (photopolymerizable unsaturated bond) in one molecule of the energy ray curable compound (B) may be one or more functional groups, preferably two functional groups or more, and 2 to 12 functional groups. Is more preferable.
  • at least 1 sort (s) selected from the (meth) acrylate monomer (B1) and urethane (meth) acrylate (B2) as a specific example of the energy-beam curable compound (B) used by this invention is mentioned. .
  • the (meth) acrylate monomer (B1) is a compound having a (meth) acryloyl group in the molecule, and the number of the (meth) acryloyl group is preferably bifunctional or more, more preferably 3 to 6.
  • a (meth) acryloyl group is used so that the adhesive strength of the adhesive tape can be easily reduced after energy ray irradiation to the adhesive layer.
  • the pressure-sensitive adhesive layer contains a (meth) acrylate monomer (B1) having a number of 4 or more.
  • Examples of the (meth) acrylate monomer (B1) include polyfunctional (meth) acrylic acid esters in which all the hydroxyl groups of the polyhydric alcohol are complete esters formed with (meth) acrylic acid and esters.
  • the carbon number of the polyhydric alcohol is preferably 4 to 10.
  • the (meth) acrylate monomer (B1) preferably has a molecular weight of 150 to 1000, more preferably 200 to 800.
  • Specific compounds of the polyfunctional (meth) acrylic acid ester include trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,4-butylene glycol di ( Examples include meth) acrylate and 1,6-hexanediol di (meth) acrylate. Among these, pentaerythritol tetra (meth) acrylate is preferable.
  • the structure of the (meth) acrylate monomer (B1) can be specified, and the molecular weight means a formula weight.
  • the (meth) acrylate monomer (B1) is preferable because even with a small blending amount, adhesive residue can be prevented and the adhesive force can be appropriately reduced by energy ray curing.
  • the blending amount of the (meth) acrylate monomer (B1) is specifically preferably 1 to 20 parts by weight, more preferably 2 to 15 parts by weight with respect to 100 parts by weight of the urethane resin (A). More preferably, it is 3 to 10 parts by mass.
  • the energy ray-curable compound (B) can appropriately prevent adhesive residue from the pressure-sensitive adhesive layer and reduce the pressure-sensitive adhesive force of the pressure-sensitive adhesive layer appropriately by irradiation with energy rays by setting the blending amount as described above. Is possible.
  • Urethane (meth) acrylate (B2) is a polymer having a urethane bond and having a (meth) acryloyl group at the terminal.
  • the urethane (meth) acrylate (B2) is obtained by reacting a polyol compound with a polyisocyanate compound to produce a terminal isocyanate urethane polymer and reacting a compound having a (meth) acryloyl group with the terminal functional group. Compound etc. are mentioned.
  • Such urethane (meth) acrylate (B2) has energy ray curability by the action of the (meth) acryloyl group.
  • the polyol compound, polyisocyanate compound, and compound having a (meth) acryloyl group used to obtain the urethane (meth) acrylate (B2) are added to the urethane (meth) acrylate (X) of the intermediate layer described above.
  • the polyol compound, the polyisocyanate compound, and the compound having a (meth) acryloyl group that are used are appropriately selected and used, and a specific description thereof is omitted.
  • the urethane (meth) acrylate (B2) has a (meth) acryloyl group, and the (meth) acryloyl group in one molecule is preferably bifunctional or more, more preferably 2 to 12, and even more preferably. 2 to 10 functional. Thus, it becomes easy to reduce adhesive force by energy ray hardening by setting it as polyfunctionality.
  • the molecular weight of the urethane (meth) acrylate (B2) is 35000 or less, preferably 2000 to 35000, more preferably 5000 to 34000.
  • the molecular weight of urethane (meth) acrylate (B2) means a weight average molecular weight.
  • the molecular weight of the urethane (meth) acrylate in such a range, the storage elastic modulus of the pressure-sensitive adhesive layer is lowered, and it becomes easy to ensure followability to the unevenness of the workpiece surface. Moreover, the movement of the urethane (meth) acrylate (B2) in the pressure-sensitive adhesive layer is suppressed, and the stability over time of the pressure-sensitive adhesive tape is improved.
  • the blending amount of the urethane (meth) acrylate (B2) is 30 to 120 with respect to 100 parts by mass of the urethane resin (A). Mass parts are preferred, 40 to 100 parts by mass are preferred, and 50 to 90 parts by mass are more preferred.
  • the pressure-sensitive adhesive composition of the present invention preferably further contains a crosslinking agent (C).
  • the crosslinking agent (C) reacts with the urethane polymer (A ′) to crosslink the urethane polymer (A ′).
  • the pressure-sensitive adhesive composition has a high crosslink density and can easily form a pressure-sensitive adhesive layer having high mechanical strength. Moreover, it becomes easy to prevent the adhesive residue etc. at the time of peeling an adhesive tape.
  • the crosslinking agent (C) is preferably a crosslinking agent having two or more isocyanate groups so that it can react with the hydroxyl group.
  • the pressure-sensitive adhesive composition contains a crosslinking agent, it is usually crosslinked by being applied and then heated.
  • the urethane polymer (A ′) may have an isocyanate group and the crosslinking agent (C) may have a hydroxyl group. Since the urethane polymer (A ′) generally has a hydroxyl group or an isocyanate group because of its production method, the urethane polymer (A ′) and the crosslinking agent (C) are thus bonded by a urethane bond. Bonding is preferred.
  • crosslinking agent (C) usable in the present invention it is preferable to use a crosslinking agent (C1) containing a photopolymerizable unsaturated bond.
  • the crosslinking agent (C1) containing a photopolymerizable unsaturated bond is preferably a compound having two or more isocyanate groups and a (meth) acryloyl group, and more preferably a urethane having at least two isocyanate groups.
  • (Meth) acrylate is used.
  • the urethane (meth) acrylate has a weight average molecular weight of preferably 500 to 2,000, more preferably 700 to 1,000.
  • the photopolymerizable unsaturated bonds in the same molecule of the crosslinking agent (C1) are polymerized. It tends to be easy. Therefore, the reaction between the photopolymerizable unsaturated bond of the cross-linking agent (C1) and the photopolymerizable unsaturated bond of other molecules is unlikely to occur, and the adhesive force of the adhesive tape is reduced by the energy ray irradiation to the adhesive layer. May be less effective. Therefore, what has a preferable photopolymerizable unsaturated bond in 1 molecule as a crosslinking agent (C1) is preferable.
  • Examples of the urethane (meth) acrylate used as the cross-linking agent (C1) include “EBECRYL 4150” manufactured by Daicel Ornex.
  • the crosslinking agent (C1) having a photopolymerizable unsaturated bond by using the crosslinking agent (C1) having a photopolymerizable unsaturated bond, the urethane resin (A) has a photopolymerizable unsaturated bond in the pressure-sensitive adhesive layer.
  • the crosslinking agent containing a hydroxyl group and a photopolymerizable unsaturated bond examples include an acrylic polymer having a hydroxyl group and a (meth) acryloyl group in the side chain.
  • the urethane resin (A) crosslinked with the crosslinking agent (C1) is a so-called acrylic urethane resin, but the urethane resin (A) of the present invention includes such an acrylic urethane resin.
  • the amount of the crosslinking agent (C1) containing a photopolymerizable unsaturated bond is preferably 5 to 60 parts by mass, more preferably 10 to 50 parts by mass with respect to 100 parts by mass of the urethane resin (A). More preferred is ⁇ 45 parts by mass.
  • the pressure-sensitive adhesive composition may contain a crosslinking agent (C2) that does not contain a photopolymerizable unsaturated bond as the crosslinking agent (C).
  • a crosslinking agent (C2) when the urethane polymer (A ′) has a hydroxyl group, it can be appropriately selected from the polyisocyanate compounds used for synthesizing the urethane polymer (A ′) listed above. It is.
  • a known polyol can be used as the crosslinking agent (C2).
  • the pressure-sensitive adhesive composition can sufficiently increase the cross-linking density of the pressure-sensitive adhesive layer by containing the cross-linking agent (C2).
  • All of the crosslinking agents (C) may be crosslinking agents (C1) having a photopolymerizable unsaturated bond, or all may be crosslinking agents (C2) having no photopolymerizable unsaturated bond.
  • the blending amount of the crosslinking agent (C2) containing no photopolymerizable unsaturated bond is preferably 0.2 to 15 parts by mass, and 0.5 to 10 parts by mass with respect to 100 parts by mass of the urethane resin (A). More preferred. Further, as described above, when used in combination with the crosslinking agent (C1), the blending amount of the crosslinking agent (C2) containing no photopolymerizable unsaturated bond may be relatively small, and the urethane resin (A ) It is preferably 0.2 to 5 parts by mass, more preferably 0.5 to 2 parts by mass with respect to 100 parts by mass.
  • the pressure-sensitive adhesive composition may further contain a compound (D) having a photopolymerizable unsaturated bond and a reactive functional group capable of reacting with the crosslinking agent (C). preferable.
  • the compound (D) having a reactive functional group reacts with the crosslinking agent (C) when the urethane polymer (A ′) reacts with the crosslinking agent (C) to form a urethane polymer chain.
  • a photopolymerizable unsaturated bond is introduced into the urethane resin (A) by the compound (D).
  • Examples of the reactive functional group contained in the compound (D) include an isocyanate group and a hydroxyl group.
  • the (meth) acrylate monomer which has a hydroxyl group and a (meth) acryloyl group is mentioned.
  • the number of (meth) acryloyl groups (that is, photopolymerizable unsaturated bonds) in one molecule of compound (D) is preferably 2 or more, more preferably 2 to 5 in one molecule.
  • the (meth) acrylate monomer used as component (D) preferably has a molecular weight of 150 to 3,000, more preferably 200 to 2,000.
  • Examples of the (meth) acrylate monomer used as the component (D) include polyhydric alcohols and polyfunctional (meth) acrylic acid esters that are partial esters of (meth) acrylic acid.
  • the carbon number of the polyhydric alcohol is preferably 4 to 10.
  • Specific examples of the compound include pentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, and dipentaerythritol penta (meth) acrylate.
  • pentaerythritol tri (meth) acrylate is exemplified. Is preferred.
  • the compounding amount of the compound (D) is preferably 1 to 30 parts by mass, more preferably 2 to 20 parts by mass, and further preferably 3 to 15 parts by mass with respect to 100 parts by mass of the urethane resin (A). .
  • blending a compound (D) in such a range without having a bad influence on the adhesive performance of an adhesive layer, it becomes easy to reduce adhesive force by hardening of an energy ray, and it becomes easy to prevent adhesive residue.
  • a compound (D) is normally used when an energy-beam curable compound (B) contains a (meth) acrylate monomer (B1).
  • the compound (D) and the (meth) acrylate monomer (B1) are used in combination, the effects of the present invention are more easily exhibited.
  • the pressure-sensitive adhesive composition preferably further contains an energy ray polymerization initiator (E).
  • the pressure-sensitive adhesive layer can be easily cured by irradiation with energy rays by containing the energy ray polymerization initiator (E).
  • the energy ray polymerization initiator (E) can be appropriately selected from photopolymerization initiators that can be used in the resin compositions for intermediate layers listed above.
  • the compounding amount of the energy ray polymerization initiator (E) is a urethane polymer (A ′) having a photopolymerizable unsaturated bond, a crosslinking agent (C1), an energy ray curable compound (B), and a compound (D).
  • the total amount of the compounds having a photopolymerizable unsaturated bond such as 100 parts by mass is preferably 0.05 to 25 parts by mass, more preferably 0.1 to 20 parts by mass, still more preferably 0.3 to 15 parts by mass. Part.
  • the pressure-sensitive adhesive composition may contain other additives conventionally used for urethane-based pressure-sensitive adhesives, such as fillers such as calcium carbonate and titanium oxide, colorants, antioxidants, antifoaming agents, It may contain a light stabilizer or the like.
  • the thickness of the pressure-sensitive adhesive layer can be appropriately adjusted according to the surface state of the adherend surface to which the pressure-sensitive adhesive tape is applied, such as the bump height on the wafer surface, but is preferably 2 to 150 ⁇ m, more preferably 5 to The thickness is 100 ⁇ m, more preferably 8 to 50 ⁇ m.
  • the release material provided on the pressure-sensitive adhesive layer and the release material used in the process of the production method described below are a release sheet that has been subjected to a single-sided release process, a release sheet that has been subjected to a double-sided release process, etc.
  • coated the release agent on the base material of this are mentioned.
  • the release material substrate include polyester film such as polyethylene terephthalate resin, polybutylene terephthalate resin, polyethylene naphthalate resin, and plastic film such as polyolefin resin film such as polypropylene resin and polyethylene resin.
  • the release agent examples include rubber elastomers such as silicone resins, olefin resins, isoprene resins, and butadiene resins, long chain alkyl resins, alkyd resins, and fluorine resins.
  • the thickness of the release material is not particularly limited, but is preferably 5 to 200 ⁇ m, more preferably 10 to 120 ⁇ m.
  • the production method of the pressure-sensitive adhesive tape of the present invention is not particularly limited, and can be produced by a known method.
  • the intermediate layer may be formed, for example, by directly applying a solution of the resin composition for the intermediate layer on one surface of the substrate to form a coating film, and then drying and curing treatment as necessary. it can.
  • the intermediate layer is formed on the release material by applying a solution of the resin composition for the intermediate layer to the release treatment surface of the release material to form a coating film, and then drying and semi-curing as necessary.
  • a semi-cured layer may be formed, this semi-cured layer may be bonded to a substrate, and the semi-cured layer may be completely cured.
  • the intermediate layer is preferably cured by polymerizing by irradiating the coating film with energy rays.
  • the energy ray is preferably ultraviolet light.
  • the pressure-sensitive adhesive layer is preferably formed by applying the pressure-sensitive adhesive composition, heating and cross-linking the pressure-sensitive adhesive composition, and drying as necessary. At this time, the pressure-sensitive adhesive composition may be applied directly to the intermediate layer or the base material, or may be applied to the release treatment surface of the release material to form a pressure-sensitive adhesive layer, and then the intermediate layer or the base material. You may form by sticking an adhesive layer together. The release material disposed on the pressure-sensitive adhesive layer may be peeled off as necessary.
  • an organic solvent may be further added to the resin composition for the intermediate layer or the pressure-sensitive adhesive composition, so that the intermediate layer resin composition or the pressure-sensitive adhesive composition may be diluted.
  • the organic solvent to be used include methyl ethyl ketone, acetone, ethyl acetate, tetrahydrofuran, dioxane, cyclohexane, n-hexane, toluene, xylene, n-propanol, isopropanol and the like.
  • middle layers or an adhesive composition may be used as it is, and 1 or more types of other organic solvents other than that may be used. May be added.
  • the intermediate layer resin composition or the pressure-sensitive adhesive composition can be applied by a known application method. Examples of the coating method include spin coating, spray coating, bar coating, knife coating, roll coating, blade coating, die coating, and gravure coating.
  • the pressure-sensitive adhesive tape of the present invention is used when affixing to various workpieces and processing the workpiece, and is preferably affixed to a workpiece surface having irregularities and protrusions. Moreover, it is more preferable to affix to the semiconductor wafer surface, especially the wafer surface in which the bump was formed, and to use as a semiconductor wafer surface protection adhesive tape. Further, the adhesive tape is more preferably used as a bag grind tape that is attached to the surface of a semiconductor wafer and protects a circuit formed on the wafer surface during subsequent grinding of the wafer back surface.
  • the temperature of the adhesive tape when the adhesive tape is applied to the surface of the semiconductor wafer is, for example, about 40 to 80 ° C., and preferably 50 to 70 ° C.
  • the pressure-sensitive adhesive layer is energy-ray curable, and the pressure-sensitive adhesive tape attached to the work surface of a semiconductor wafer or the like is peeled off from the work surface after being irradiated with energy rays and cured with energy rays. is there. Therefore, since the adhesive tape is peeled after the adhesive force is lowered, the peelability is improved. Further, as described above, the adhesive tape after curing is less likely to have adhesive residue when peeled off.
  • the adhesive tape is not limited to a back grind sheet when used for a semiconductor wafer, and can be used for other purposes.
  • the adhesive tape may be attached to the back surface of the wafer and used as a dicing sheet that holds the wafer when the wafer is diced.
  • the wafer may be a wafer in which protrusions such as bumps or irregularities are formed on the back surface of the wafer, such as a wafer in which through electrodes are formed.
  • the measurement method and evaluation method in the present invention are as follows. [Weight average molecular weight (Mw), number average molecular weight (Mn)] Using a gel permeation chromatograph (product name “HLC-8220”, manufactured by Tosoh Corporation), measurement was performed under the following conditions, and values measured in terms of standard polystyrene were used. (Measurement condition) Column: “TSK guard column HXL-H” “TSK gel GMHXL ( ⁇ 2)” “TSK gel G2000HXL” (both manufactured by Tosoh Corporation) Column temperature: 40 ° C. Developing solvent: Tetrahydrofuran Flow rate: 1.0 mL / min
  • a belt conveyor type ultraviolet irradiation device (product name “ECS-4011GX”) is used as an ultraviolet irradiation device, and a high-pressure mercury lamp (product name “Igraphics”, product name “ H04-L41 "), and the irradiation conditions are as follows: illuminance of 112 mW / cm 2 with a light wavelength of 365 nm, light amount of 177 mJ / cm 2 (measured with an ultraviolet light meter“ UVPF-A1 ”manufactured by I-Graphics) went.
  • a polyethylene terephthalate film-based release film (product name “SP-PET 381031”, thickness 38 ⁇ m, manufactured by Lintec Co., Ltd.) is laminated, and further irradiated with ultraviolet rays (using the above-described ultraviolet irradiation device and ultraviolet source).
  • ultraviolet rays using the above-described ultraviolet irradiation device and ultraviolet source.
  • an illuminance of 271 mW / cm 2 and a light amount of 1,200 mJ / cm 2 were performed and cured completely to form an intermediate layer having a thickness of 200 ⁇ m with a release film attached to both sides.
  • an intermediate layer laminate (thickness: 1,000 ⁇ m) was prepared by peeling the PET-based release film and aligning the release surfaces and sequentially laminating them.
  • the obtained intermediate layer laminate was punched into a circle with a diameter of 10 mm to obtain a sample for measuring viscoelasticity.
  • a viscoelasticity measuring device manufactured by TA Instruments Inc., product name “ARES”
  • the above sample was strained at a frequency of 1 Hz and stored at ⁇ 50 to 150 ° C. at a heating rate of 4 ° C./min.
  • the elastic modulus (G ′) was measured, and the loss tangent (tan ⁇ ) at 50 ° C. was obtained.
  • a pressure-sensitive adhesive layer (thickness: 200 ⁇ m) having a polyethylene terephthalate release film (product name: “SP-PET381031” manufactured by Lintec Corporation) attached to both surfaces was prepared.
  • the pressure-sensitive adhesive layer was formed on one release film by changing the thickness to 40 ⁇ m, and then the other release film was attached to the pressure-sensitive adhesive layer.
  • Five pressure-sensitive adhesive layers sandwiched between such release films were prepared, and the surfaces of the pressure-sensitive adhesive layers exposed by peeling one release film were opposed to each other and laminated. By repeating this procedure, a pressure-sensitive adhesive layer having a thickness of 200 ⁇ m in which five pressure-sensitive adhesive layers were laminated was obtained.
  • the laminate of the pressure-sensitive adhesive layer sandwiched between two release films was irradiated with ultraviolet rays at an illuminance of 220 mW / cm and an irradiation speed of 15 mm / sec using a UV irradiation apparatus “RAD-2000 m / 12” manufactured by Lintec Corporation. Then, the hardened
  • UV light was irradiated from the adhesive tape side at an illumination intensity of 220 mW / cm and an irradiation speed of 15 mm / sec with a UV irradiation apparatus “RAD-2000 m / 12” manufactured by Lintec Corporation.
  • the evaluation wafer with the adhesive tape obtained in this way was measured for the diameter of the circular void generated around the bump from the base material side using a digital microscope (manufactured by Keyence Corporation, product name “VHX-1000”).
  • the embedding property was calculated by the following formula.
  • Embeddability void diameter / bump diameter ⁇ 100 [%]
  • the calculated embedding property was evaluated according to the following evaluation criteria, with the best embedding having an appropriate void of 110% or more and less than 130%.
  • A: Embedding property 110% or more and less than 130%
  • B: Embedment property 130% or more and less than 140%
  • C: Embedment property 110% or less, or 140% or more
  • An intermediate layer resin composition was prepared by blending 1.0 part by weight of phenyl-propan-1-one (manufactured by BASF, product name “Darocur 1173”, solid content concentration: 100 parts by weight).
  • This intermediate layer resin composition was coated on a polyethylene terephthalate film-based release film (manufactured by Lintec Corporation, product name “SP-PET 381031”, thickness 38 ⁇ m) by a fountain die method to form a coating film. And the ultraviolet-ray was irradiated from the coating-film side, and the semi-hardened layer was formed.
  • a belt conveyor type ultraviolet irradiation device product name “ECS-401GGX”
  • a high-pressure mercury lamp product name “H04” manufactured by Eye Graphics Co., Ltd.
  • a base material made of polyethylene terephthalate (PET) film (product name “Cosmo Shine A4100”, thickness 50 ⁇ m, manufactured by Toyobo Co., Ltd.) was laminated, and further irradiated with ultraviolet rays from the PET film side (above) Irradiance of 271 mW / cm 2 and light intensity of 1200 mJ / cm 2 ) is used, and cured completely to form an intermediate layer having a thickness of 300 ⁇ m on the base PET film.
  • the loss tangent (tan ⁇ ) of the intermediate layer at 50 ° C. measured at a frequency of 1 Hz was 1.92.
  • each mass part is shown in terms of solid content when diluted with a diluent.
  • Example 1 As the urethane polymer (A ′), a polyurethane polyol having a urethane skeleton and having a plurality of hydroxyl groups (product name “SH-101” manufactured by Toyochem Co., Ltd., weight average molecular weight: 100,000) is prepared.
  • (A ′) 32 parts by mass of 100 parts by mass of urethane acrylate having a plurality of isocyanate groups as a crosslinking agent (C1) (manufactured by Daicel Ornex, product name “EBECRYL4150”, weight average molecular weight: 1,040)
  • Crosslinking agent (C1) manufactured by Daicel Ornex, product name “EBECRYL4150”, weight average molecular weight: 1,040
  • Mixture of pentaerythritol tetraacrylate (formula weight: 352) as the curable compound (B) and pentaerythritol triacrylate (formula weight: 298) as the compound (D) (mass ratio (C: D) 40: 60)
  • Product name “A-TMM-3LM-N” manufactured by Shin-Nakamura Chemical Co., Ltd.) 7 parts by mass, 5 parts by mass of 2,2-dimethoxy-1,2-diphenylethane-1-one (manufacture
  • the prepared pressure-sensitive adhesive composition was applied to a polyethylene terephthalate release film (manufactured by Lintec Corporation, product name “SP-PET 381031”, thickness 38 ⁇ m), heated at 100 ° C. for 2 minutes, dried and then released onto the release film. An adhesive layer having a thickness of 10 ⁇ m was formed. Then, after removing the release film on the base material with the intermediate layer previously prepared, and pasting the adhesive layer on the release film to the exposed intermediate layer, the unnecessary part at the end in the width direction is cut and removed. And the adhesive tape with which the base material, the intermediate
  • Example 2 The procedure was the same as in Example 1 except that the pressure-sensitive adhesive composition was adjusted by changing the urethane polymer (A ′) to Toyochem Co., Ltd., product name “SP-205”, weight average molecular weight: 98,000). An adhesive tape was prepared.
  • Example 3 17 parts by mass of “A-TMM-3LM-N” was added to urethane acrylate as an energy ray curable compound (B) (manufactured by Negami Kogyo Co., Ltd., product name “UN-6200”, bifunctional, weight average molecular weight 6,270). ) A pressure-sensitive adhesive tape was prepared in the same procedure as in Example 1 except that the pressure-sensitive adhesive composition was adjusted by changing to 100 parts by mass.
  • Example 4 A pressure-sensitive adhesive tape was prepared in the same procedure as in Example 3 except that the pressure-sensitive adhesive composition was prepared by changing the urethane polymer (A ′) to the product name “SP-205” manufactured by Toyochem Co., Ltd.
  • Example 5 Example 1 except that 17 parts by mass of “A-TMM-3LM-N” was changed to 100 parts by mass of urethane acrylate (hexafunctional, weight average molecular weight 33,000) as the energy ray-curable compound (B). An adhesive tape was prepared in the same procedure.
  • the obtained acrylic pressure-sensitive adhesive composition was applied to a polyethylene terephthalate-based release film (manufactured by Lintec Corporation, product name “SP-PET 381031”, thickness 38 ⁇ m) and dried to form a pressure-sensitive adhesive layer having a thickness of 10 ⁇ m. .
  • SP-PET 381031 thickness 38 ⁇ m
  • the adhesive tape in which the base material, the intermediate layer, the adhesive layer, and the release film were provided in this order was obtained. The evaluation results of this adhesive tape are shown in Table 1.
  • the pressure-sensitive adhesive composition is urethane-based, and the urethane-based resin (A) contains the non-reactive energy ray-curable compound (B), so that the embedding property of the bump (
  • the followability of the pressure-sensitive adhesive layer to the surface shape of the workpiece was improved, and the breaking stress was high, and adhesive residue at the time of peeling could be prevented.
  • the adhesive force before energy ray curing was increased and the adhesive force after curing was sufficiently low, the peelability and adhesiveness were excellent.
  • Comparative Examples 1 to 3 since the pressure-sensitive adhesive composition was acrylic, the rupture stress was low and adhesive residue could not be prevented.
  • it was urethane type in the comparative example 4 since it did not contain an energy-beam curable compound (B), it was inferior to the softness

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Laminated Bodies (AREA)

Abstract

This adhesive tape for work processing is provided with a base and an adhesive layer that is arranged on one surface of the base. The adhesive layer contains (A) a urethane resin and (B) an energy ray-curable compound that is not reactive with the urethane resin (A), while having a photopolymerizable unsaturated bond and a molecular weight of 35,000 or less.

Description

ワーク加工用粘着テープAdhesive tape for workpiece processing
 本発明は、ワーク加工用粘着テープに関し、特に、バンプ付き半導体ウエハの表面を保護するために使用される半導体ウエハ表面保護用粘着テープに関する。 The present invention relates to a workpiece processing adhesive tape, and more particularly to a semiconductor wafer surface protecting adhesive tape used for protecting the surface of a bumped semiconductor wafer.
 情報端末機器の薄型化、小型化、多機能化が急速に進む中、それらに搭載される半導体装置も同様に、薄型化、高密度化が求められており、半導体ウエハの薄型化も要望されている。従来、その要望に対応するために、半導体ウエハの裏面を研削して、薄型化することが行われている。また、近年、半導体ウエハは、高さ30~100μm程度のはんだ等からなるバンプがウエハ表面に形成されることがある。そのようなバンプ付き半導体ウエハが裏面研削される場合、バンプ部分を保護するために、バンプが形成されたウエハ表面には、表面保護シートが貼付されることがある。 As information terminal devices are rapidly becoming thinner, smaller, and multifunctional, semiconductor devices mounted on them are also required to be thinner and denser, and semiconductor wafers are also required to be thinner. ing. Conventionally, in order to meet the demand, the back surface of a semiconductor wafer is ground and thinned. In recent years, bumps made of solder or the like having a height of about 30 to 100 μm are sometimes formed on the surface of a semiconductor wafer. When such a semiconductor wafer with bumps is subjected to back grinding, a surface protective sheet may be attached to the wafer surface on which the bumps are formed in order to protect the bump portions.
 従来、表面保護シートとしては、25℃及び60℃における貯蔵弾性率を特定の範囲となるように調整した樹脂層を含むものが知られている(例えば、特許文献1参照)。この表面保護シートは、室温(25℃)における貯蔵弾性率と、高温(60℃)における貯蔵弾性率に落差のある樹脂層を設けることで、凹凸部分を有するウエハ表面に高温で貼り付けることによって、樹脂層を軟化させ、ウエハ表面の凹凸を吸収し、ウエハ表面の高低差を小さくしようとしている。 Conventionally, as a surface protection sheet, a sheet including a resin layer in which the storage elastic modulus at 25 ° C. and 60 ° C. is adjusted to be in a specific range is known (for example, see Patent Document 1). This surface protective sheet is formed by attaching a resin layer having a drop in storage elastic modulus at room temperature (25 ° C.) and storage elastic modulus at high temperature (60 ° C.) to attach it to a wafer surface having an uneven portion at high temperature. The resin layer is softened, the unevenness of the wafer surface is absorbed, and the height difference of the wafer surface is reduced.
 また、表面保護シートとしては、密着性と剥離性を良好にするために、基材の上に所定の引張弾性率を有する2つの樹脂層を設け、この2つの樹脂層のうち、貼り付け面側の樹脂層が、ポリスチレン系エラストマー、ポリオレフィン系エラストマー、ポリウレタン系エラストマー、およびポリエステル系エラストマーなどの熱可塑性エラストマーで形成したものが知られている(特許文献2参照)。 Moreover, as a surface protection sheet, in order to make adhesiveness and peelability favorable, two resin layers which have a predetermined tensile elastic modulus are provided on a base material, and a sticking surface is provided among these two resin layers. It is known that the side resin layer is formed of a thermoplastic elastomer such as a polystyrene-based elastomer, a polyolefin-based elastomer, a polyurethane-based elastomer, and a polyester-based elastomer (see Patent Document 2).
 さらに、表面保護シートとしては、基材の一方の面に、中間層、及び粘着剤層を設けた粘着テープも知られている。この粘着テープにおいては、凹凸吸収性を高めるために、中間層の25℃における貯蔵弾性率を30~1000kPa程度にするとともに、粘着剤層をエネルギー線硬化型粘着剤により形成することが知れている(例えば、特許文献3参照)。特許文献3のように、表面保護シートにエネルギー線硬化型粘着剤を使用すると、半導体ウエハへの貼り付け性、及び剥離性を良好にしやすくなる。なお、従来、表面保護シートにおいて使用されるエネルギー線硬化型粘着剤は、接着性が調整しやすく、また、バンプの埋め込み性を確保しやすいため、アクリル系のものが主に使用されている。 Furthermore, as a surface protective sheet, an adhesive tape in which an intermediate layer and an adhesive layer are provided on one surface of a substrate is also known. In this pressure-sensitive adhesive tape, it is known that the storage elastic modulus at 25 ° C. of the intermediate layer is set to about 30 to 1000 kPa and the pressure-sensitive adhesive layer is formed of an energy ray curable pressure-sensitive adhesive in order to increase unevenness absorbability. (For example, refer to Patent Document 3). When an energy ray curable pressure sensitive adhesive is used for the surface protection sheet as in Patent Document 3, it becomes easy to improve the sticking property to the semiconductor wafer and the peelability. Conventionally, the energy ray-curable pressure-sensitive adhesive used in the surface protective sheet is mainly used in the acrylic type because the adhesiveness is easily adjusted and the embedding property of the bumps is easily secured.
特許第4603578号公報Japanese Patent No. 4603578 特許第4918181号公報Japanese Patent No. 4918181 特許第4367769号公報Japanese Patent No. 4367769
 ところで、近年、半導体装置の更なる高密度化、小型化に伴い、バンプ高さが高くなる傾向にあり、200μm以上の高さを有するものも検討されつつある。しかし、バンプ高さが高くて、高低差が大きい半導体ウエハに対しては、特許文献3に記載されるアクリル系の表面保護シートを使用すると、シート剥離時にバンプに粘着剤残渣(糊残り)が多数発生することがある。アクリル系のエネルギー線硬化型粘着剤は、凝集力や機械的強度が比較的低いためである。
 一方で、例えば特許文献1、2では、表面保護シートの貼付面に、ポリウレタン系エラストマー等のアクリル系粘着剤以外の材料を使用することが検討されている。しかし、特許文献1、2では、それら材料のエネルギー線硬化型粘着剤への適用が検討されているわけではなく、接着性、剥離性、及びバンプの埋め込み性を確保するには更なる改良が必要である。
By the way, in recent years, as the density and size of semiconductor devices are further increased, the bump height tends to increase, and those having a height of 200 μm or more are being studied. However, for a semiconductor wafer having a high bump height and a large height difference, if an acrylic surface protection sheet described in Patent Document 3 is used, an adhesive residue (adhesive residue) is left on the bump when the sheet is peeled off. Many may occur. This is because the acrylic energy ray curable pressure-sensitive adhesive has relatively low cohesive force and mechanical strength.
On the other hand, for example, in Patent Documents 1 and 2, the use of materials other than acrylic pressure-sensitive adhesives such as polyurethane-based elastomers on the application surface of the surface protection sheet has been studied. However, in Patent Documents 1 and 2, the application of these materials to an energy ray curable pressure-sensitive adhesive is not considered, and further improvements are required to ensure adhesion, peelability, and bump embedding. is necessary.
 本発明は、以上の実情に鑑みてなされたものであり、本発明の課題は、半導体ウエハ等のワークへの粘着性、剥離性、及びバンプの埋め込み性に代表される、ワークの表面形状への粘着剤層の追従性を良好にしつつ、貼付されるワークが、表面形状が平坦でないものであっても、ワーク表面における糊残りが少ないワーク加工用粘着テープを提供することである。 The present invention has been made in view of the above circumstances, and an object of the present invention is to a surface shape of a work represented by adhesion to a work such as a semiconductor wafer, releasability, and embedding of bumps. It is to provide a work processing pressure-sensitive adhesive tape with less adhesive residue on the surface of the work, even if the work to be applied has a non-flat surface shape while improving the followability of the pressure-sensitive adhesive layer.
 本発明者らは、鋭意検討の結果、粘着剤としてウレタン系粘着剤を使用し、かつその組成を特定のものとすることで上記課題が解決できることを見出し、以下の本発明を完成させた。本発明は、以下の(1)~(16)のワーク加工用粘着テープを提供する。
(1)基材と、前記基材の一方の面側に設けられる粘着剤層と備え、
 前記粘着剤層が、ウレタン系樹脂(A)と、前記ウレタン系樹脂(A)に非反応で、かつ光重合性不飽和結合を有し、分子量が35,000以下であるエネルギー線硬化性化合物(B)とを含むワーク加工用粘着テープ。
(2)前記エネルギー線硬化性化合物(B)が、(メタ)アクリレートモノマー(B1)、及びウレタン(メタ)アクリレート(B2)から選択される少なくとも1種である上記(1)に記載のワーク加工用粘着テープ。
(3)前記エネルギー線硬化性化合物(B)が、少なくとも(メタ)アクリレートモノマー(B1)を含むとともに、前記(メタ)アクリレートモノマー(B1)が、多価アルコールと、(メタ)アクリル酸の完全エステルである多官能(メタ)アクリル酸エステルである上記(2)に記載のワーク加工用粘着テープ。
(4)前記エネルギー線硬化性化合物(B)は、1分子中に(メタ)アクリロイル基を2官能以上有する上記(1)~(3)のいずれかに記載のワーク加工用粘着テープ。
(5)前記ウレタン系樹脂(A)が光重合性不飽和結合を有する上記(1)~(4)のいずれかに記載のワーク加工用粘着テープ。
(6)前記粘着剤層が、少なくともウレタンポリマー(A’)と、前記エネルギー線硬化性化合物(B)と、架橋剤(C)とを含む粘着剤組成物から形成され、
 前記ウレタン系樹脂(A)が、ウレタンポリマー(A’)を前記架橋剤(C)により架橋したものである上記(1)~(5)のいずれかに記載のワーク加工用粘着テープ。
(7)前記架橋剤(C)が、光重合性不飽和結合を含有する架橋剤(C1)を含む上記(6)に記載のワーク加工用粘着テープ。
(8)前記ウレタンポリマー(A’)と前記架橋剤(C)とをウレタン結合により結合している上記(6)又は(7)に記載のワーク加工用粘着テープ。
(9)前記粘着剤組成物が、光重合性不飽和結合と、前記架橋剤(C)と反応可能な反応性官能基とを有する化合物(D)をさらに含有する上記(6)~(8)のいずれかに記載のワーク加工用粘着テープ。
(10)前記化合物(D)が、多価アルコールと、(メタ)アクリル酸の部分エステルである多官能(メタ)アクリル酸エステルである上記(9)に記載のワーク加工用粘着テープ。
(11)前記粘着剤層のエネルギー線照射後の破断応力が、2.5MPa以上である上記(1)~(10)のいずれかに記載のワーク加工用粘着テープ。
(12)前記基材及び前記粘着剤層の間に、中間層を有する上記(1)~(11)のいずれかに記載のワーク加工用粘着テープ。
(13)前記中間層の厚さが、10~600μmである、上記(12)に記載のワーク加工用粘着テープ。
(14)前記中間層が、周波数1Hzで測定した50℃における損失正接が1.0以上である上記(12)又は(13)に記載のワーク加工用粘着テープ。
(15)エネルギー線照射後の粘着力が、2000mN/25mm以下である上記(1)~(14)のいずれかに記載のワーク加工用粘着テープ。
(16)半導体ウエハ表面保護用粘着テープである上記(1)~(15)のいずれかに記載のワーク加工用粘着テープ。
As a result of intensive studies, the present inventors have found that the above-mentioned problems can be solved by using a urethane-based pressure-sensitive adhesive as the pressure-sensitive adhesive and making the composition specific, and have completed the following present invention. The present invention provides the following adhesive tapes for processing workpieces (1) to (16).
(1) A substrate and a pressure-sensitive adhesive layer provided on one surface side of the substrate,
Energy ray-curable compound in which the pressure-sensitive adhesive layer is non-reactive with the urethane resin (A) and the urethane resin (A), has a photopolymerizable unsaturated bond, and has a molecular weight of 35,000 or less. An adhesive tape for work processing comprising (B).
(2) Work processing according to the above (1), wherein the energy ray curable compound (B) is at least one selected from a (meth) acrylate monomer (B1) and a urethane (meth) acrylate (B2). Adhesive tape.
(3) The energy ray curable compound (B) contains at least a (meth) acrylate monomer (B1), and the (meth) acrylate monomer (B1) is a polyhydric alcohol and a complete (meth) acrylic acid. The pressure-sensitive adhesive tape for workpiece processing according to the above (2), which is a polyfunctional (meth) acrylic acid ester which is an ester.
(4) The work processing pressure-sensitive adhesive tape according to any one of (1) to (3), wherein the energy ray-curable compound (B) has two or more (meth) acryloyl groups in one molecule.
(5) The pressure-sensitive adhesive tape for workpiece processing according to any one of the above (1) to (4), wherein the urethane resin (A) has a photopolymerizable unsaturated bond.
(6) The pressure-sensitive adhesive layer is formed from a pressure-sensitive adhesive composition containing at least a urethane polymer (A ′), the energy ray-curable compound (B), and a crosslinking agent (C).
6. The work processing pressure-sensitive adhesive tape according to any one of the above (1) to (5), wherein the urethane resin (A) is obtained by crosslinking the urethane polymer (A ′) with the crosslinking agent (C).
(7) The work processing pressure-sensitive adhesive tape according to (6), wherein the crosslinking agent (C) includes a crosslinking agent (C1) containing a photopolymerizable unsaturated bond.
(8) The work processing pressure-sensitive adhesive tape according to (6) or (7), wherein the urethane polymer (A ′) and the cross-linking agent (C) are bonded by a urethane bond.
(9) The above (6) to (8), wherein the pressure-sensitive adhesive composition further comprises a compound (D) having a photopolymerizable unsaturated bond and a reactive functional group capable of reacting with the crosslinking agent (C). ) The adhesive tape for workpiece processing according to any one of the above.
(10) The work processing pressure-sensitive adhesive tape according to (9), wherein the compound (D) is a polyfunctional (meth) acrylic ester which is a partial ester of polyhydric alcohol and (meth) acrylic acid.
(11) The work processing pressure-sensitive adhesive tape according to any one of (1) to (10), wherein the pressure-sensitive adhesive layer has a breaking stress after irradiation with energy rays of 2.5 MPa or more.
(12) The work processing pressure-sensitive adhesive tape according to any one of (1) to (11), wherein an intermediate layer is provided between the substrate and the pressure-sensitive adhesive layer.
(13) The pressure-sensitive adhesive tape for workpiece processing according to (12), wherein the intermediate layer has a thickness of 10 to 600 μm.
(14) The work processing pressure-sensitive adhesive tape according to (12) or (13), wherein the intermediate layer has a loss tangent at 50 ° C. measured at a frequency of 1 Hz of 1.0 or more.
(15) The pressure-sensitive adhesive tape for workpiece processing according to any one of the above (1) to (14), wherein the adhesive strength after irradiation with energy rays is 2000 mN / 25 mm or less.
(16) The work processing pressure-sensitive adhesive tape according to any one of the above (1) to (15), which is a semiconductor wafer surface protecting pressure-sensitive adhesive tape.
 本発明では、粘着性、剥離性、及びワークの表面形状への粘着剤層の追従性を良好にしつつ、ワーク表面における糊残りが少ないワーク加工用粘着テープを提供することが可能である。 In the present invention, it is possible to provide a pressure-sensitive adhesive tape for work processing with less adhesive residue on the work surface while improving the pressure-sensitive adhesiveness, peelability, and followability of the pressure-sensitive adhesive layer to the surface shape of the work.
 以下の記載において、「重量平均分子量(Mw)」は、ゲルパーミエーションクロマトグラフィー(GPC)法で測定されるポリスチレン換算の値であり、具体的には実施例に記載の方法に基づいて測定した値である。
 また、本明細書中の記載において、例えば「(メタ)アクリレート」とは、「アクリレート」及び「メタクリレート」の双方を示す語として用いており、他の類似用語についても同様である。
In the following description, “weight average molecular weight (Mw)” is a value in terms of polystyrene measured by gel permeation chromatography (GPC), and specifically measured based on the method described in the examples. Value.
In the description of the present specification, for example, “(meth) acrylate” is used as a word indicating both “acrylate” and “methacrylate”, and the same applies to other similar terms.
 以下、実施形態を用いて本発明を説明する。
 本発明のワーク加工用粘着テープ(以下、単に“粘着テープ”ともいう)は、基材と、基材の一方の面側に設けられた粘着剤層とを備えるものである。また、粘着テープは、この基材と、粘着剤層の間に中間層を有していてもよい。粘着テープは、以上のように2層又は3層から構成されてもよいし、さらに他の層が設けられてもよい。例えば、粘着剤層の上に、さらに剥離材を設けてもよい。
 以下、粘着テープを構成する各部材について詳細に説明する。
Hereinafter, the present invention will be described using embodiments.
The pressure-sensitive adhesive tape for workpiece processing of the present invention (hereinafter also simply referred to as “pressure-sensitive adhesive tape”) includes a base material and a pressure-sensitive adhesive layer provided on one surface side of the base material. Moreover, the adhesive tape may have an intermediate | middle layer between this base material and an adhesive layer. The adhesive tape may be composed of two or three layers as described above, and may be further provided with other layers. For example, a release material may be further provided on the pressure-sensitive adhesive layer.
Hereinafter, each member which comprises an adhesive tape is demonstrated in detail.
<基材>
 粘着テープに使用される基材は、特に限定はされないが、樹脂フィルムであることが好ましい。樹脂フィルムは、紙や不織布と比べて塵芥発生が少ないために電子部品の加工部材に好適であり、入手が容易であるため好ましい。基材は、1つの樹脂フィルムからなる単層フィルムであってもよく、複数の樹脂フィルムを積層した複層フィルムであってもよい。
 基材として用いられる樹脂フィルムとしては、例えば、ポリオレフィン系フィルム、ハロゲン化ビニル重合体系フィルム、アクリル樹脂系フィルム、ゴム系フィルム、セルロース系フィルム、ポリエステル系フィルム、ポリカーボネート系フィルム、ポリスチレン系フィルム、ポリフェニレンサルファイド系フィルム、シクロオレフィンポリマー系フィルム等が挙げられる。
 これらの中でも、ウエハを極薄にまで研削する際にウエハを安定して保持できるという観点、並びに厚みの精度が高いフィルムであるとの観点から、ポリエステル系フィルムが好ましく、ポリエステル系フィルムの中でも、入手が容易で、厚み精度が高いとの観点から、ポリエチレンテレフタレートフィルムが好ましい。
 また、基材の厚みは、特に限定されないが、好ましくは10~200μm、より好ましくは25~150μmである。
<Base material>
Although the base material used for an adhesive tape is not specifically limited, It is preferable that it is a resin film. Resin films are preferable because they are less likely to generate dust than paper and non-woven fabrics, are suitable for processed parts of electronic parts, and are easily available. The substrate may be a single layer film made of one resin film or a multilayer film in which a plurality of resin films are laminated.
Examples of the resin film used as the base material include polyolefin film, vinyl halide polymer film, acrylic resin film, rubber film, cellulose film, polyester film, polycarbonate film, polystyrene film, and polyphenylene sulfide. Examples thereof include a system film and a cycloolefin polymer film.
Among these, from the viewpoint that the wafer can be stably held when grinding the wafer to an extremely thin thickness, and from the viewpoint of being a film having a high thickness accuracy, a polyester film is preferable, and among the polyester films, From the viewpoint of easy availability and high thickness accuracy, a polyethylene terephthalate film is preferred.
The thickness of the substrate is not particularly limited, but is preferably 10 to 200 μm, more preferably 25 to 150 μm.
 なお、基材の粘着剤層又は中間層に対する接着性を向上させる観点から、樹脂フィルムの表面に更に易接着層又は粘着剤層を積層した基材を用いてもよい。更に、本発明で用いる基材には、本発明の効果を損なわない範囲において、フィラー、着色剤、帯電防止剤、酸化防止剤、有機滑剤、触媒等を含有させてもよい。また、基材は、透明なものであっても、所望により着色されていてもよいが、粘着剤層を硬化するのに十分な程度にエネルギー線を透過するものが好ましい。 In addition, you may use the base material which laminated | stacked the easily bonding layer or the adhesive layer further on the surface of the resin film from a viewpoint of improving the adhesiveness with respect to the adhesive layer or intermediate | middle layer of a base material. Furthermore, the base material used in the present invention may contain a filler, a colorant, an antistatic agent, an antioxidant, an organic lubricant, a catalyst and the like as long as the effects of the present invention are not impaired. The substrate may be transparent or may be colored as desired, but is preferably one that transmits energy rays to a degree sufficient to cure the pressure-sensitive adhesive layer.
<中間層>
 本発明の粘着テープでは、基材の一方の面に、中間層が設けられていてもよい。本発明の粘着テープは、中間層を有することで、ワークにバンプが設けられているなど、ワーク表面の凹凸の高低差が大きい場合であっても、凸部が粘着剤層及び中間層に埋め込まれ、それにより、粘着テープのワークに貼付されている面とは逆側の面を平坦に保つことが容易となる。本発明で用いる中間層は、周波数1Hzで測定した50℃における損失正接(tanδ)(以下、単に「損失正接」ともいう)が1.0以上となることが好ましい。
 中間層の損失正接が、このような値であると、ワーク加工用粘着テープをバンプ付きウエハ等の凹凸のあるワークに貼付する際、中間層が十分に変形し、容易に凹凸に追従できる。中間層がバンプ等の凹凸を十分に吸収して、例えばバンプ付きウエハの表面に対する良好な貼付状態を得る観点から、中間層の損失正接は、より好ましくは1.5以上、更に好ましくは1.65以上、より更に好ましくは1.8以上である。
 また、中間層の加熱時の流動性を適切な範囲に調整する観点から、中間層の損失正接は、好ましくは5.0以下、より好ましくは4.0以下である。
 なお、上記した中間層の損失正接は、より具体的には、後述する実施例に記載した方法に基づいて測定した値である。
<Intermediate layer>
In the pressure-sensitive adhesive tape of the present invention, an intermediate layer may be provided on one surface of the substrate. The pressure-sensitive adhesive tape of the present invention has an intermediate layer, so that the bumps are provided in the pressure-sensitive adhesive layer and the intermediate layer even when the bumps are provided on the work and the unevenness of the surface of the work is large. Thereby, it becomes easy to keep the surface on the opposite side to the surface affixed to the workpiece | work of an adhesive tape flat. The intermediate layer used in the present invention preferably has a loss tangent (tan δ) (hereinafter also simply referred to as “loss tangent”) at 50 ° C. measured at a frequency of 1 Hz of 1.0 or more.
When the loss tangent of the intermediate layer is such a value, when the work processing pressure-sensitive adhesive tape is attached to an uneven work such as a wafer with bumps, the intermediate layer is sufficiently deformed and can easily follow the unevenness. From the viewpoint of the intermediate layer sufficiently absorbing irregularities such as bumps and obtaining a good sticking state on the surface of the wafer with bumps, for example, the loss tangent of the intermediate layer is more preferably 1.5 or more, and still more preferably 1. 65 or more, more preferably 1.8 or more.
Further, from the viewpoint of adjusting the fluidity during heating of the intermediate layer to an appropriate range, the loss tangent of the intermediate layer is preferably 5.0 or less, more preferably 4.0 or less.
The above-mentioned loss tangent of the intermediate layer is more specifically a value measured based on the method described in Examples described later.
 また、中間層の厚さは、粘着テープが貼付される被着面の状態に応じて適宜調整することができるが、比較的高さの高いバンプも吸収することが可能となる観点から、好ましくは10~600μm、より好ましくは25~550μm、更に好ましくは35~500μmである。 Further, the thickness of the intermediate layer can be appropriately adjusted according to the state of the adherend surface to which the adhesive tape is affixed, but it is preferable from the viewpoint of being able to absorb relatively high bumps. Is 10 to 600 μm, more preferably 25 to 550 μm, still more preferably 35 to 500 μm.
中間層は、中間層用樹脂組成物より形成されたものである。また、中間層用樹脂組成物は、ウレタン(メタ)アクリレートを含むことが好ましい。
(ウレタン(メタ)アクリレート(X))
 ウレタン(メタ)アクリレート(X)は、少なくとも(メタ)アクリロイル基及びウレタン結合を有する化合物であり、エネルギー線照射により重合する性質を有するものである。なお、エネルギー線とは、電磁波または荷電粒子線の中でエネルギー量子を有するものであり、紫外線などの活性光または電子線などを指す。
 ウレタン(メタ)アクリレート(X)中の(メタ)アクリロイル基数は、単官能、2官能、もしくは3官能以上でもよいが、損失正接を1.0以上としやすくするために、中間層用樹脂組成物が単官能ウレタン(メタ)アクリレートを含むことが好ましい。単官能ウレタン(メタ)アクリレートは、重合構造において3次元網目構造の形成に関与しないため、中間層に3次元網目構造が形成されにくくなり、損失正接を高めやすくなるためである。
An intermediate | middle layer is formed from the resin composition for intermediate | middle layers. Moreover, it is preferable that the resin composition for intermediate | middle layers contains urethane (meth) acrylate.
(Urethane (meth) acrylate (X))
Urethane (meth) acrylate (X) is a compound having at least a (meth) acryloyl group and a urethane bond, and has a property of being polymerized by irradiation with energy rays. In addition, an energy ray has an energy quantum in electromagnetic waves or a charged particle beam, and points out active light, such as an ultraviolet-ray, or an electron beam.
The number of (meth) acryloyl groups in the urethane (meth) acrylate (X) may be monofunctional, bifunctional, or trifunctional or higher, but in order to make the loss tangent 1.0 or higher, the resin composition for the intermediate layer Preferably contains a monofunctional urethane (meth) acrylate. This is because the monofunctional urethane (meth) acrylate does not participate in the formation of the three-dimensional network structure in the polymerization structure, and therefore, the three-dimensional network structure is hardly formed in the intermediate layer, and the loss tangent is easily increased.
 中間層用樹脂組成物に用いられるウレタン(メタ)アクリレート(X)としては、例えば、ポリオール化合物と、ポリイソシアネート化合物とを反応させて得られる末端イソシアネートウレタンプレポリマーに、(メタ)アクリロイル基を有する化合物を反応させて得ることができる。ウレタン(メタ)アクリレート(X)は、1種又は2種以上を組み合わせて用いてもよい。 As urethane (meth) acrylate (X) used for the resin composition for intermediate layers, for example, a terminal isocyanate urethane prepolymer obtained by reacting a polyol compound and a polyisocyanate compound has a (meth) acryloyl group. It can be obtained by reacting a compound. Urethane (meth) acrylate (X) may be used alone or in combination of two or more.
〔ポリオール化合物〕
 ポリオール化合物は、ヒドロキシ基を2つ以上有する化合物であれば特に制限されない。
 具体的なポリオール化合物としては、例えば、アルキレンジオール、ポリエーテル型ポリオール、ポリエステル型ポリオール、ポリカーボネート型ポリオール等が挙げられる。
 これらの中でも、ポリエーテル型ポリオールが好ましい。
 なお、ポリオール化合物としては、2官能のジオール、3官能のトリオール、4官能以上のポリオールのいずれであってもよいが、入手の容易性、汎用性、反応性等の観点から、2官能のジオールが好ましく、ポリエーテル型ジオールがより好ましい。
[Polyol compound]
The polyol compound is not particularly limited as long as it is a compound having two or more hydroxy groups.
Specific examples of the polyol compound include alkylene diol, polyether type polyol, polyester type polyol, and polycarbonate type polyol.
Among these, polyether type polyols are preferable.
The polyol compound may be a bifunctional diol, a trifunctional triol, or a tetrafunctional or higher polyol, but from the viewpoint of availability, versatility, reactivity, etc., a bifunctional diol Are preferred, and polyether type diols are more preferred.
 ポリエーテル型ジオールは、下記式(1)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000001
The polyether type diol is preferably a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000001
 上記式(1)中、Rは、2価の炭化水素基であるが、アルキレン基が好ましく、炭素数1~6のアルキレン基がより好ましい。炭素数1~6のアルキレン基の中でも、エチレン基、プロピレン基、テトラメチレン基が好ましく、プロピレン基、テトラメチレン基がより好ましい。
 また、nは、アルキレンオキサイドの繰り返し単位数であり、好ましくは10~250、より好ましくは25~205、更に好ましくは40~185である。nが上記範囲であれば、得られるウレタン(メタ)アクリレートのウレタン結合濃度を適度にし、損失正接が上記要件を満たすように中間層を調製することが容易となる。
 上記式(1)で表される化合物の中でも、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコールが好ましく、ポリプロピレングリコール、ポリテトラメチレングリコールがより好ましい。
 ポリエーテル型ジオールとポリイソシアネート化合物との反応により、エーテル結合部〔-(-R-O-)n-〕が導入された末端イソシアネートウレタンプレポリマーを生成する。このようなポリエーテル型ジオールを用いることで、ウレタン(メタ)アクリレートは、ポリエーテル型ジオールから誘導される構成単位を含有する。
In the above formula (1), R is a divalent hydrocarbon group, preferably an alkylene group, more preferably an alkylene group having 1 to 6 carbon atoms. Among the alkylene groups having 1 to 6 carbon atoms, an ethylene group, a propylene group, and a tetramethylene group are preferable, and a propylene group and a tetramethylene group are more preferable.
N is the number of repeating units of alkylene oxide, preferably 10 to 250, more preferably 25 to 205, and still more preferably 40 to 185. If n is the said range, it will become easy to prepare an intermediate | middle layer so that the urethane bond density | concentration of the urethane (meth) acrylate obtained may be moderated, and a loss tangent may satisfy | fill the said requirements.
Among the compounds represented by the formula (1), polyethylene glycol, polypropylene glycol, and polytetramethylene glycol are preferable, and polypropylene glycol and polytetramethylene glycol are more preferable.
By reacting the polyether type diol with the polyisocyanate compound, a terminal isocyanate urethane prepolymer having an ether bond [-(-RO-) n-] introduced therein is produced. By using such a polyether type diol, the urethane (meth) acrylate contains a structural unit derived from the polyether type diol.
 ポリエステル型ポリオールはポリオール成分と多塩基酸成分を重縮合させることにより得られる。ポリオール成分しては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ネオペンチルグリコール、ペンタンジオール、3-メチル-1,5-ペンタンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、ヘキサンジオール、オクタンジオール、2,2-ジエチル-1,3-プロパンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、1,4-シクロヘキサンジメタノール、ビスフェノールAのエチレングリコールまたはプロピレングリコール付加物等の公知の各種グリコール類などが挙げられる。
 ポリエステル型ポリオールの製造に用いられる多塩基酸成分としては、一般にポリエステルの多塩基酸成分として知られている化合物を使用することができる。
 具体的な多塩基酸成分としては、例えば、アジピン酸、マレイン酸、コハク酸、シュウ酸、フマル酸、マロン酸、グルタル酸、ピメリン酸、アゼライン酸、セバシン酸、スベリン酸等の二塩基酸;フタル酸、イソフタル酸、テレフタル酸、2,6-ナフタレンジカルボン酸等の二塩基酸や、トリメリット酸、ピロメリット酸等の多塩基酸等の芳香族多塩基酸、これらに対応する無水物やその誘導体及びダイマー酸、水添ダイマー酸等が挙げられる。これらの中でも、適度な硬度を有する塗膜を形成する観点から、芳香族多塩基酸が好ましい。ポリエステル型ポリオールの製造するためのエステル化反応には、必要に応じて各種公知の触媒を使用してもよい。
 ポリカーボネート型ポリオールとしては、特に限定されず、例えば、前述したグリコール類とアルキレンカーボネートとの反応物等が挙げられる。
The polyester type polyol is obtained by polycondensation of a polyol component and a polybasic acid component. Examples of the polyol component include ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, neopentyl glycol, pentanediol, 3-methyl-1,5-pentanediol, 2,2,4-trimethyl-1,3-pentanediol, hexanediol, octanediol, 2,2-diethyl-1,3-propanediol, 2-ethyl-2 -Known various glycols such as butyl-1,3-propanediol, 1,4-cyclohexanedimethanol, ethylene glycol or propylene glycol adduct of bisphenol A, and the like.
As the polybasic acid component used for the production of the polyester type polyol, a compound generally known as a polybasic acid component of polyester can be used.
Specific examples of the polybasic acid component include dibasic acids such as adipic acid, maleic acid, succinic acid, oxalic acid, fumaric acid, malonic acid, glutaric acid, pimelic acid, azelaic acid, sebacic acid, and suberic acid; Dibasic acids such as phthalic acid, isophthalic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, aromatic polybasic acids such as polybasic acids such as trimellitic acid and pyromellitic acid, anhydrides corresponding to these, The derivative | guide_body, dimer acid, hydrogenated dimer acid, etc. are mentioned. Among these, an aromatic polybasic acid is preferable from the viewpoint of forming a coating film having an appropriate hardness. In the esterification reaction for producing the polyester-type polyol, various known catalysts may be used as necessary.
The polycarbonate type polyol is not particularly limited, and examples thereof include a reaction product of the above-described glycols and alkylene carbonate.
 ポリオール化合物の水酸基価から算出した数平均分子量としては、好ましくは1,000~10,000、より好ましくは2,000~9,000、更に好ましくは3,000~7,000である。当該数平均分子量が1,000以上であれば、過剰な量のウレタン結合の生成に起因して中間層の粘弾性特性の制御が困難となるという事態が回避されるため好ましい。一方、当該数平均分子量が10,000以下であれば、得られる中間層が過度に軟化することを防ぐことができるため好ましい。
 なお、ポリオール化合物の水酸基価から算出した数平均分子量は、〔ポリオール官能基数〕×56.11×1000/〔水酸基価(単位:mgKOH/g)〕から算出された値である。
The number average molecular weight calculated from the hydroxyl value of the polyol compound is preferably 1,000 to 10,000, more preferably 2,000 to 9,000, and still more preferably 3,000 to 7,000. If the number average molecular weight is 1,000 or more, a situation in which it becomes difficult to control the viscoelastic properties of the intermediate layer due to the generation of an excessive amount of urethane bonds is preferable. On the other hand, if the number average molecular weight is 10,000 or less, it is preferable because the obtained intermediate layer can be prevented from being excessively softened.
The number average molecular weight calculated from the hydroxyl value of the polyol compound is a value calculated from [number of polyol functional groups] × 56.11 × 1000 / [hydroxyl value (unit: mgKOH / g)].
〔ポリイソシアネート化合物〕
 ポリイソシアネート化合物としては、例えば、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート等の脂肪族ポリイソシアネート;イソホロンジイソシアネート、ノルボルナンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、ジシクロヘキシルメタン-2,4’-ジイソシアネート、ω,ω’-ジイソシアネートジメチルシクロヘキサン等の脂環族ジイソシアネート類;4,4’-ジフェニルメタンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネート、トリジンジイソシアネート、テトラメチレンキシリレンジイソシアネート、ナフタレン-1,5-ジイソシアネート等の芳香族ジイソシアネート類等が挙げられる。
 これらの中でも、取り扱い性の観点から、イソホロンジイソシアネートやヘキサメチレンジイソシアネート、キシリレンジイソシアネートが好ましい。
[Polyisocyanate compound]
Examples of the polyisocyanate compound include aliphatic polyisocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate; isophorone diisocyanate, norbornane diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, dicyclohexylmethane-2,4 ′. -Cycloaliphatic diisocyanates such as diisocyanate, ω, ω'-diisocyanate dimethylcyclohexane; 4,4'-diphenylmethane diisocyanate, tolylene diisocyanate, xylylene diisocyanate, tolidine diisocyanate, tetramethylene xylylene diisocyanate, naphthalene-1,5- And aromatic diisocyanates such as diisocyanate.
Among these, isophorone diisocyanate, hexamethylene diisocyanate, and xylylene diisocyanate are preferable from the viewpoint of handleability.
{(メタ)アクリロイル基を有する化合物}
 (メタ)アクリロイル基を有する化合物としては、ヒドロキシ基を有する(メタ)アクリレートが挙げられる。ヒドロキシ基を有する(メタ)アクリレートとしては、少なくとも1分子中にヒドロキシ基及び(メタ)アクリロイル基を有する化合物であれば、特に限定されない。
 具体的なヒドロキシ基を有する(メタ)アクリレートとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシシクロヘキシル(メタ)アクリレート、5-ヒドロキシシクロオクチル(メタ)アクリレート、2-ヒドロキシ-3-フェニルオキシプロピル(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート;N-メチロール(メタ)アクリルアミド等のヒドロキシ基含有(メタ)アクリルアミド;ビニルアルコール、ビニルフェノール、ビスフェノールAのジグリシジルエステルに(メタ)アクリル酸を反応させて得られる反応物等が挙げられる。
 これらの中でも、ヒドロキシアルキル(メタ)アクリレートが好ましく、2-ヒドロキシエチル(メタ)アクリレートがより好ましい。
{Compound having (meth) acryloyl group}
Examples of the compound having a (meth) acryloyl group include a (meth) acrylate having a hydroxy group. The (meth) acrylate having a hydroxy group is not particularly limited as long as it is a compound having a hydroxy group and a (meth) acryloyl group in at least one molecule.
Specific examples of the (meth) acrylate having a hydroxy group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and 4-hydroxycyclohexyl (meth). Acrylate, 5-hydroxycyclooctyl (meth) acrylate, 2-hydroxy-3-phenyloxypropyl (meth) acrylate, pentaerythritol tri (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, etc. Hydroxy-alkyl (meth) acrylates; hydroxy-group-containing (meth) acrylamides such as N-methylol (meth) acrylamide; vinyl alcohol, vinyl phenol, bisphenol The reaction product obtained by the diglycidyl ester of Nord A (meth) acrylic acid is reacted, and the like.
Among these, hydroxyalkyl (meth) acrylate is preferable, and 2-hydroxyethyl (meth) acrylate is more preferable.
 このようにして得られる中間層用樹脂組成物用のウレタン(メタ)アクリレート(X)の重量平均分子量は、好ましくは1,000~100,000、より好ましくは3,000~80,000、更に好ましくは5,000~65,000である。当該重量平均分子量が1,000以上であれば、ウレタン(メタ)アクリレートと後述する重合性単量体との重合物において、ウレタン(メタ)アクリレート由来の構造同士の分子間力に起因して、中間層に適度な硬さが付与されるため好ましい。
 中間層用樹脂組成物中のウレタン(メタ)アクリレート(X)の配合量は、組成物全量基準で、好ましくは20~70質量%、より好ましくは25~60質量%、更に好ましくは30~50質量%、より更に好ましくは33~47質量%である。ウレタン(メタ)アクリレートの配合量がこのような範囲にあれば、損失正接が高い中間層を形成しやすくなる。
The weight average molecular weight of the urethane (meth) acrylate (X) for the intermediate layer resin composition thus obtained is preferably 1,000 to 100,000, more preferably 3,000 to 80,000, Preferably, it is 5,000 to 65,000. If the weight average molecular weight is 1,000 or more, in the polymer of urethane (meth) acrylate and a polymerizable monomer described later, due to the intermolecular force between the structures derived from urethane (meth) acrylate, This is preferable because moderate hardness is imparted to the intermediate layer.
The blending amount of urethane (meth) acrylate (X) in the resin composition for an intermediate layer is preferably 20 to 70% by mass, more preferably 25 to 60% by mass, and further preferably 30 to 50% based on the total amount of the composition. The mass is more preferably 33 to 47% by mass. If the blending amount of urethane (meth) acrylate is within such a range, an intermediate layer having a high loss tangent can be easily formed.
 中間層用樹脂組成物は、上記ウレタン(メタ)アクリレート(X)に加えて、例えば、チオール基含有化合物(Y)又は重合性単量体(Z)をさらに含有するが、これらの両方を含有することが好ましい。
(チオール基含有化合物(Y))
 チオール基含有化合物(Y)としては、分子中に少なくとも1つのチオール基を有する化合物であれば、特に制限されないが、損失正接を高くしやすくする観点から、多官能のチオール基含有化合物が好ましく、4官能のチオール基含有化合物がより好ましい。
 具体的なチオール基含有化合物(Y)としては、例えば、ノニルメルカプタン、1-ドデカンチオール、1,2-エタンジチオール、1,3-プロパンジチオール、トリアジンチオール、トリアジンジチオール、トリアジントリチオール、1,2,3-プロパントリチオール、テトラエチレングリコール-ビス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキスチオグルコレート、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)、トリス[(3-メルカプトプロピオニロキシ)-エチル]-イソシアヌレート、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、1,3,5-トリス(3-メルカプトブチルオキシエチル)-1,3,5-トリアジン-2,4,6-(1H,3H,5H)-トリオン等が挙げられる。
 なお、これらのチオール基含有化合物(Y)は、1種又は2種以上を組み合わせて用いてもよい。
In addition to the urethane (meth) acrylate (X), the intermediate layer resin composition further contains, for example, a thiol group-containing compound (Y) or a polymerizable monomer (Z). It is preferable to do.
(Thiol group-containing compound (Y))
The thiol group-containing compound (Y) is not particularly limited as long as it is a compound having at least one thiol group in the molecule, but from the viewpoint of easily increasing the loss tangent, a polyfunctional thiol group-containing compound is preferable. A tetrafunctional thiol group-containing compound is more preferred.
Specific examples of the thiol group-containing compound (Y) include nonyl mercaptan, 1-dodecanethiol, 1,2-ethanedithiol, 1,3-propanedithiol, triazinethiol, triazinedithiol, triazinetrithiol, 1,2 , 3-propanetrithiol, tetraethylene glycol-bis (3-mercaptopropionate), trimethylolpropane tris (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakisthio Glucolate, dipentaerythritol hexakis (3-mercaptopropionate), tris [(3-mercaptopropionyloxy) -ethyl] -isocyanurate, 1,4-bis (3-mercaptobutyryloxy) Butane, pentaerythritol tetrakis (3-mercaptobutyrate), 1,3,5-tris (3-mercaptobutyloxyethyl) -1,3,5-triazine-2,4,6- (1H, 3H, 5H) -Triions and the like.
In addition, you may use these thiol group containing compounds (Y) 1 type or in combination of 2 or more types.
 チオール基含有化合物(Y)の分子量は、好ましくは200~3,000、より好ましくは300~2,000である。当該分子量が上記範囲であれば、ウレタン(メタ)アクリレート(X)との相溶性が良好となり、製膜性を良好にすることができる。
 チオール基含有化合物(Y)の配合量は、ウレタン(メタ)アクリレート(X)及び後述する重合性単量体(Z)の合計100質量部に対して、好ましくは1.0~4.9質量部、より好ましくは1.5~4.8質量部である。
 当該配合量が1.0質量部以上であれば、損失正接が高い中間層を形成しやすくなり、パンプ吸収性を向上させることができる。一方、当該配合量が4.9質量部以下であれば、ロール状に巻き取った際の中間層の浸み出し等を抑制することができる。
The molecular weight of the thiol group-containing compound (Y) is preferably 200 to 3,000, more preferably 300 to 2,000. If the said molecular weight is the said range, compatibility with urethane (meth) acrylate (X) will become favorable and film forming property can be made favorable.
The amount of the thiol group-containing compound (Y) is preferably 1.0 to 4.9 masses per 100 mass parts in total of the urethane (meth) acrylate (X) and the polymerizable monomer (Z) described later. Parts, more preferably 1.5 to 4.8 parts by mass.
When the blending amount is 1.0 part by mass or more, an intermediate layer having a high loss tangent can be easily formed, and the pump absorbability can be improved. On the other hand, if the said compounding quantity is 4.9 mass parts or less, the seepage of the intermediate | middle layer at the time of winding up in roll shape etc. can be suppressed.
(重合性単量体(Z))
 本発明で用いる中間層用樹脂組成物には、製膜性を向上させる観点から、更に、重合性単量体(Z)を含むことが好ましい。重合性単量体(Z)は、上記のウレタン(メタ)アクリレート(X)以外の重合性化合物であって、エネルギー線の照射により他の成分と重合可能な化合物である。ただし、重合性単量体(Z)とは、樹脂成分を除くものを意味する。重合性単量体(Z)は、少なくとも1つの(メタ)アクリロイル基を有する化合物が好ましい。
 なお、本明細書において、「樹脂成分」とは、構造中に繰り返し構造を有するオリゴマー又は高分子量体を指し、重量平均分子量が1,000以上の化合物をいう。
(Polymerizable monomer (Z))
It is preferable that the resin composition for intermediate layers used in the present invention further contains a polymerizable monomer (Z) from the viewpoint of improving the film forming property. The polymerizable monomer (Z) is a polymerizable compound other than the urethane (meth) acrylate (X), and is a compound that can be polymerized with other components by irradiation with energy rays. However, the polymerizable monomer (Z) means one excluding the resin component. The polymerizable monomer (Z) is preferably a compound having at least one (meth) acryloyl group.
In the present specification, the “resin component” refers to an oligomer or high molecular weight body having a repeating structure in the structure, and refers to a compound having a weight average molecular weight of 1,000 or more.
 重合性単量体(Z)としては、例えば、炭素数1~30のアルキル基を有するアルキル(メタ)アクリレート、水酸基、アミド基、アミノ基、エポキシ基等の官能基を有する(メタ)アクリレート、脂環式構造を有する(メタ)アクリレート、芳香族構造を有する(メタ)アクリレート、複素環式構造を有する(メタ)アクリレート、スチレン、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル、N-ビニルホルムアミド、N-ビニルピロリドン、N-ビニルカプロラクタム、アリルグリシジルエーテル等のビニル化合物等が挙げられる。 Examples of the polymerizable monomer (Z) include an alkyl (meth) acrylate having an alkyl group having 1 to 30 carbon atoms, a (meth) acrylate having a functional group such as a hydroxyl group, an amide group, an amino group, and an epoxy group, (Meth) acrylate having alicyclic structure, (meth) acrylate having aromatic structure, (meth) acrylate having heterocyclic structure, styrene, hydroxyethyl vinyl ether, hydroxybutyl vinyl ether, N-vinylformamide, N-vinyl Examples include vinyl compounds such as pyrrolidone, N-vinylcaprolactam, and allyl glycidyl ether.
 炭素数1~30のアルキル基を有するアルキル(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ウンデシル(メタ)アクレート、ドデシル(メタ)アクリレート、トリデシル(メタ)アクリレート、テトラデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、エイコシル(メタ)アクリレート等が挙げられる。 Examples of the alkyl (meth) acrylate having an alkyl group having 1 to 30 carbon atoms include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl ( (Meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, Nonyl (meth) acrylate, decyl (meth) acrylate, undecyl (meth) acrylate, dodecyl (meth) acrylate, tridecyl (meth) acrylate, tetradecyl (meth) acrylate, hexadecyl (meth) acrylate, octa Sil (meth) acrylate, eicosyl (meth) acrylate.
 官能基を有する(メタ)アクリレートとしては、例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート等の水酸基含有(メタ)アクリレート;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-メチロールプロパン(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド等のアミド基含有化合物;第1級アミノ基含有(メタ)アクリレート、第2級アミノ基含有(メタ)アクリレート、第3級アミノ基含有(メタ)アクリレート等のアミノ基含有(メタ)アクリレート;グリシジル(メタ)アクリレート、メチルグリシジル(メタ)アクリレート等のエポキシ基含有(メタ)アクリレート等が挙げられる。 Examples of the (meth) acrylate having a functional group include hydroxyl group-containing (meth) acrylates such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and hydroxybutyl (meth) acrylate; (meth) acrylamide, N, N -Dimethyl (meth) acrylamide, N-butyl (meth) acrylamide, N-methylol (meth) acrylamide, N-methylolpropane (meth) acrylamide, N-methoxymethyl (meth) acrylamide, N-butoxymethyl (meth) acrylamide, etc. Amide group-containing compounds: primary amino group-containing (meth) acrylates, secondary amino group-containing (meth) acrylates, tertiary amino group-containing (meth) acrylates and other amino group-containing (meth) acrylates; glycidyl ( Meta) Acrylate, and epoxy groups such as methyl glycidyl (meth) acrylate (meth) acrylate.
 脂環式構造を有する(メタ)アクリレートとしては、例えば、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニルオキシ(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、アダマンタン(メタ)アクリレート等が挙げられる。
 芳香族構造を有する(メタ)アクリレートとしては、例えば、フェニルヒドロキシプロピル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート等が挙げられる。
 複素環式構造を有する(メタ)アクリレートとしては、例えば、テトラヒドロフルフリル(メタ)アクリレート、モルホリン(メタ)アクリレート等が挙げられる。
Examples of the (meth) acrylate having an alicyclic structure include isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyloxy (meth) acrylate, and cyclohexyl (meth) ) Acrylate, adamantane (meth) acrylate and the like.
Examples of the (meth) acrylate having an aromatic structure include phenylhydroxypropyl (meth) acrylate, benzyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, and the like.
Examples of the (meth) acrylate having a heterocyclic structure include tetrahydrofurfuryl (meth) acrylate and morpholine (meth) acrylate.
 これらの中でも、上記ウレタン(メタ)アクリレート(X)との相溶性の観点からは、比較的嵩高い基を有するものが好ましく、より具体的には、脂環式構造を有する(メタ)アクリレート、芳香族構造を有する(メタ)アクリレート、複素環式構造を有する(メタ)アクリレートが好ましく、脂環式構造を有する(メタ)アクリレートがより好ましい。また、損失正接を1.0以上にしやすくする観点から、重合性単量体として、官能基を有する(メタ)アクリレート及び脂環式構造を有する(メタ)アクリレートを含むことが好ましく、水酸基含有(メタ)アクリレート及びイソボルニル(メタ)アクリレートを含むことがより好ましい。 Among these, from the viewpoint of compatibility with the urethane (meth) acrylate (X), those having a relatively bulky group are preferable, and more specifically, (meth) acrylate having an alicyclic structure, A (meth) acrylate having an aromatic structure and a (meth) acrylate having a heterocyclic structure are preferable, and a (meth) acrylate having an alicyclic structure is more preferable. In addition, from the viewpoint of easily making the loss tangent 1.0 or more, the polymerizable monomer preferably includes a (meth) acrylate having a functional group and a (meth) acrylate having an alicyclic structure. More preferably, it includes (meth) acrylate and isobornyl (meth) acrylate.
 中間層用樹脂組成物中の脂環式構造を有する(メタ)アクリレートの配合量は、上記観点から、組成物全量基準で、好ましくは32~53質量%、より好ましくは35~51質量%、更に好ましくは37~48質量%、より更に好ましくは40~47質量%である。
 また、中間層用樹脂組成物中に含まれる重合性単量体(Z)の全量に対する、脂環式構造を有する(メタ)アクリレートの配合量は、上記観点から、好ましくは52~87質量%、より好ましくは55~85質量%、更に好ましくは60~80質量%、より更に好ましくは65~77質量%である。脂環式構造を有する(メタ)アクリレートの配合量がこのような範囲であると、損失正接を1.0以上にしやすくなる。
From the above viewpoint, the blending amount of the (meth) acrylate having an alicyclic structure in the intermediate layer resin composition is preferably 32 to 53% by mass, more preferably 35 to 51% by mass, based on the total amount of the composition. More preferably, it is 37 to 48% by mass, and still more preferably 40 to 47% by mass.
Further, the blending amount of the (meth) acrylate having an alicyclic structure with respect to the total amount of the polymerizable monomer (Z) contained in the intermediate layer resin composition is preferably 52 to 87% by mass from the above viewpoint. More preferably, it is 55 to 85% by mass, still more preferably 60 to 80% by mass, and still more preferably 65 to 77% by mass. When the blending amount of the (meth) acrylate having an alicyclic structure is in such a range, the loss tangent is easily set to 1.0 or more.
 また、中間層用樹脂組成物中の重合性単量体(Z)の配合量は、好ましくは30~80質量%、より好ましくは40~75質量%、更に好ましくは50~70質量%、より更に好ましくは53~67質量%である。重合性単量体(Z)の配合量がこのような範囲にあれば、中間層中における重合性単量体(Z)が重合してなる部分の運動性が高いために、中間層が柔軟となる傾向があり、損失正接が上記要件を満たす中間層を形成することがより容易となる。
 また、同様の観点から、中間層用樹脂組成物中のウレタン(メタ)アクリレート(X)と重合性単量体(Z)との質量比〔ウレタン(メタ)アクリレート/重合性単量体〕は、好ましくは20/80~60/40、より好ましくは30/70~50/50、更に好ましくは35/65~45/55である。
The blending amount of the polymerizable monomer (Z) in the intermediate layer resin composition is preferably 30 to 80% by mass, more preferably 40 to 75% by mass, still more preferably 50 to 70% by mass, and more. More preferably, it is 53 to 67% by mass. If the blending amount of the polymerizable monomer (Z) is within such a range, the intermediate layer is flexible because the portion formed by polymerization of the polymerizable monomer (Z) in the intermediate layer has high mobility. It becomes easier to form an intermediate layer whose loss tangent satisfies the above requirements.
From the same viewpoint, the mass ratio of urethane (meth) acrylate (X) and polymerizable monomer (Z) in the intermediate layer resin composition [urethane (meth) acrylate / polymerizable monomer] is The ratio is preferably 20/80 to 60/40, more preferably 30/70 to 50/50, and still more preferably 35/65 to 45/55.
(エネルギー線重合開始剤(R))
 中間層用樹脂組成物は、更にエネルギー線重合開始剤(R)を含むことが好ましい。エネルギー線重合開始剤(R)を含有することで、中間層用樹脂組成物を紫外線等のエネルギー線により容易に硬化することが可能になる。エネルギー線重合開始剤(R)は、一般的に、「光重合開始剤」ともいうため、本明細書では、以下、単に「光重合開始剤」ともいう。
 光重合開始剤としては、例えば、ベンゾイン化合物、アセトフェノン化合物、アシルフォスフィノキサイド化合物、チタノセン化合物、チオキサントン化合物、パーオキサイド化合物等の光重合開始剤、アミンやキノン等の光増感剤等が挙げられ、より具体的には、例えば、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン等が挙げられる。
 これらの光重合開始剤は、1種又は2種以上を組み合わせて用いてもよい。
 光重合開始剤の配合量は、ウレタン(メタ)アクリレート及び重合性単量体の合計100質量部に対して、好ましくは0.05~15質量部、より好ましくは0.1~10質量部、更に好ましくは0.3~5質量部である。
(Energy beam polymerization initiator (R))
It is preferable that the resin composition for intermediate | middle layers contains an energy beam polymerization initiator (R) further. By containing the energy ray polymerization initiator (R), the intermediate layer resin composition can be easily cured by energy rays such as ultraviolet rays. Since the energy ray polymerization initiator (R) is generally also referred to as “photopolymerization initiator”, in the present specification, it is also simply referred to as “photopolymerization initiator”.
Examples of the photopolymerization initiator include photopolymerization initiators such as benzoin compounds, acetophenone compounds, acylphosphinoxide compounds, titanocene compounds, thioxanthone compounds, and peroxide compounds, and photosensitizers such as amines and quinones. More specifically, for example, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, 2 , 2-dimethoxy-1,2-diphenylethane-1-one and the like.
These photopolymerization initiators may be used alone or in combination of two or more.
The blending amount of the photopolymerization initiator is preferably 0.05 to 15 parts by mass, more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass in total of the urethane (meth) acrylate and the polymerizable monomer. More preferably, it is 0.3 to 5 parts by mass.
(その他の添加剤)
 中間層用樹脂組成物は、本発明の効果を損なわない範囲で、その他の添加剤を含有してもよい。その他の添加剤としては、例えば、架橋剤、酸化防止剤、軟化剤(可塑剤)、充填剤、防錆剤、顔料、染料等が挙げられる。これらの添加剤を配合する場合、その他の添加剤の配合量は、ウレタン(メタ)アクリレート及び重合性単量体の合計100質量部に対して、好ましくは0.01~6質量部、より好ましくは0.1~3質量部である。
 なお、中間層用樹脂組成物は、本発明の効果を損なわない範囲で、ウレタン(メタ)アクリレートに加えて、ウレタン(メタ)アクリレート以外の樹脂成分を含有してもよいが、樹脂成分としてウレタン(メタ)アクリレートのみを含有することが好ましい。
 中間層用樹脂組成物中に含まれるウレタン(メタ)アクリレート以外の樹脂成分の含有量は、好ましくは5質量%以下、より好ましくは1質量%以下、更に好ましくは0.1質量%以下、より更に好ましくは0質量%である。
(Other additives)
The resin composition for intermediate layers may contain other additives as long as the effects of the present invention are not impaired. Examples of other additives include cross-linking agents, antioxidants, softeners (plasticizers), fillers, rust inhibitors, pigments, and dyes. When these additives are blended, the amount of other additives is preferably 0.01 to 6 parts by mass, more preferably 100 parts by mass in total of urethane (meth) acrylate and polymerizable monomer. Is 0.1 to 3 parts by mass.
In addition, in the range which does not impair the effect of this invention, the resin composition for intermediate | middle layers may contain resin components other than urethane (meth) acrylate, but urethane as a resin component It is preferable to contain only (meth) acrylate.
The content of the resin component other than the urethane (meth) acrylate contained in the intermediate layer resin composition is preferably 5% by mass or less, more preferably 1% by mass or less, and still more preferably 0.1% by mass or less. More preferably, it is 0 mass%.
 また、中間層は、ウレタン(メタ)アクリレート(X)の代わりに、他の樹脂成分を含む中間層用樹脂組成物により形成されてもよい。例えば、中間層は、非反応性のウレタンポリマー又はオリゴマーと、重合性単量体とを含む硬化性組成物や、エチレン-α-オレフィン共重合体を含む組成物を用いて形成してもよい。非反応性のウレタンポリマー又はオリゴマーは、公知のものを用いればよく、重合性単量体としては、上述したものと同じものを用いることができる。このような硬化性組成物は、上述したエネルギー線重合開始剤を含有していてもよい。 The intermediate layer may be formed of an intermediate layer resin composition containing other resin components instead of urethane (meth) acrylate (X). For example, the intermediate layer may be formed using a curable composition containing a non-reactive urethane polymer or oligomer and a polymerizable monomer, or a composition containing an ethylene-α-olefin copolymer. . As the non-reactive urethane polymer or oligomer, a known one may be used, and as the polymerizable monomer, the same one as described above can be used. Such a curable composition may contain the energy beam polymerization initiator mentioned above.
 エチレン-α-オレフィン共重合体は、エチレンとα-オレフィンモノマーとを重合して得られる。α-オレフィンモノマーとしては、プロピレン、1-ブテン、2-メチル-1-ブテン、2-メチル-1-ペンテン、1-ヘキセン、2,2-ジメチル-1-ブテン、2-メチル-1-ヘキセン、4-メチル-1-ペンテン、1-ヘプテン、3-メチル-1-ヘキセン、2,2-ジメチル-1-ペンテン、3,3-ジメチル-1-ペンテン、2,3-ジメチル-1-ペンテン、3-エチル-1-ペンテン、2,2,3-トリメチル-1-ブテン、1-オクテン、2,2,4-トリメチル-1-オクテンなどが挙げられる。これらのα-オレフィンモノマーは単独で、又は2種以上を組み合わせて用いることができる。
 また、エチレン-α-オレフィン共重合体は、エチレンとα-オレフィンモノマーと他のモノマーとを重合したものであってもよい。他のモノマー成分としては、例えば、酢酸ビニル、スチレン、アクリロニトリル、メタクリロニトリル、ビニルケトン等のビニル化合物;アクリル酸、メタクリル酸等の不飽和カルボン酸;アクリル酸メチル、アクリル酸エチル、アクリル酸-n-プロピル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸-n-プロピル等の不飽和カルボン酸エステル;アクリルアミド、メタクリルアミド等の不飽和カルボン酸アミド等が挙げられる。これらモノマーは単独で、あるいは2種以上を組み合わせて用いることができる。
The ethylene-α-olefin copolymer is obtained by polymerizing ethylene and an α-olefin monomer. Examples of α-olefin monomers include propylene, 1-butene, 2-methyl-1-butene, 2-methyl-1-pentene, 1-hexene, 2,2-dimethyl-1-butene, and 2-methyl-1-hexene. 4-methyl-1-pentene, 1-heptene, 3-methyl-1-hexene, 2,2-dimethyl-1-pentene, 3,3-dimethyl-1-pentene, 2,3-dimethyl-1-pentene , 3-ethyl-1-pentene, 2,2,3-trimethyl-1-butene, 1-octene, 2,2,4-trimethyl-1-octene, and the like. These α-olefin monomers can be used alone or in combination of two or more.
The ethylene-α-olefin copolymer may be one obtained by polymerizing ethylene, an α-olefin monomer, and another monomer. Examples of other monomer components include vinyl compounds such as vinyl acetate, styrene, acrylonitrile, methacrylonitrile, and vinyl ketone; unsaturated carboxylic acids such as acrylic acid and methacrylic acid; methyl acrylate, ethyl acrylate, acrylic acid-n -Unsaturated carboxylic acid esters such as propyl, methyl methacrylate, ethyl methacrylate, methacrylic acid-n-propyl; unsaturated carboxylic acid amides such as acrylamide and methacrylamide. These monomers can be used alone or in combination of two or more.
<粘着剤層>
 粘着剤層は、基材の上に設けられ、また、中間層が設けられる場合には、その中間層の上に設けられるものである。本発明の粘着剤層は、少なくともウレタン系樹脂(A)と、ウレタン系樹脂(A)と非反応で、かつ分子量が35,000以下であるエネルギー線硬化性化合物(B)とを含む。
 本発明では、粘着剤層が、ウレタン系樹脂(A)を含有することで、粘着剤層の凝集力及び機械的強度が高くなるため、エネルギー線硬化後に粘着テープをワークから剥離する際、バンプ等のワーク表面に糊残りが生じにくくなる。また、少なくともエネルギー線硬化性化合物(B)を含有することで、粘着剤層はエネルギー線硬化性を有するものとなる。そのため、粘着テープをワークから剥離する際の剥離性能が良好になる。さらに、エネルギー線硬化性化合物(B)が非反応であることで、後述するように、粘着剤層の貯蔵弾性率が低くなり、ワーク表面の凹凸への追従性を確保しやすくなる。
<Adhesive layer>
An adhesive layer is provided on a base material, and when an intermediate layer is provided, it is provided on the intermediate layer. The pressure-sensitive adhesive layer of the present invention contains at least a urethane resin (A) and an energy ray-curable compound (B) that is non-reactive with the urethane resin (A) and has a molecular weight of 35,000 or less.
In the present invention, since the pressure-sensitive adhesive layer contains the urethane-based resin (A), the cohesive force and mechanical strength of the pressure-sensitive adhesive layer are increased. It is difficult for adhesive residue to occur on the workpiece surface. Moreover, an adhesive layer will have energy-beam sclerosis | hardenability by containing an energy-beam curable compound (B) at least. Therefore, the peeling performance at the time of peeling an adhesive tape from a workpiece | work becomes favorable. Furthermore, since the energy ray curable compound (B) is non-reactive, as will be described later, the storage elastic modulus of the pressure-sensitive adhesive layer becomes low, and it becomes easy to ensure followability to the unevenness of the work surface.
 粘着剤層は、エネルギー線照射後の破断応力が2.5MPa以上であることが好ましい。破断応力が2.5MPa以上となると機械的強度が十分な値となり、上記した糊残りを低減しやすくなる。また、糊残りを抑えつつ、突起の埋め込み性、粘着剤層の接着性及び剥離性を向上させやすい点から上記破断応力は、好ましくは2.8~30MPa、より好ましくは3.0~25MPaである。なお、破断応力は、後述する実施例に記載の方法で測定したものである。
 なお、破断応力は、ウレタン系樹脂(A)の種類を変更することで調整することが可能である。また、後述する光重合性不飽和結合の量によっても調整可能であり、粘着剤層に含有される光重合性不飽和結合の量を多くすると破断応力は大きくなり、少なくすると破断応力が小さくなる傾向にある。同様に、後述する架橋剤成分の量によっても調整可能であり、架橋剤成分の量を多くすると破断応力は大きくなり、少なくすると破断応力が小さくなる傾向にある。
The pressure-sensitive adhesive layer preferably has a breaking stress after irradiation with energy rays of 2.5 MPa or more. When the breaking stress is 2.5 MPa or more, the mechanical strength becomes a sufficient value, and it becomes easy to reduce the above adhesive residue. Further, the breaking stress is preferably 2.8 to 30 MPa, more preferably 3.0 to 25 MPa from the viewpoint of easily improving the embedding property of the protrusion, the adhesiveness of the pressure-sensitive adhesive layer, and the peelability while suppressing adhesive residue. is there. The breaking stress is measured by the method described in Examples described later.
The breaking stress can be adjusted by changing the type of the urethane resin (A). It can also be adjusted by the amount of the photopolymerizable unsaturated bond described later. Increasing the amount of the photopolymerizable unsaturated bond contained in the pressure-sensitive adhesive layer increases the breaking stress, and decreasing it decreases the breaking stress. There is a tendency. Similarly, it can also be adjusted by the amount of the cross-linking agent component described later. When the amount of the cross-linking agent component is increased, the breaking stress tends to increase, and when it is decreased, the breaking stress tends to decrease.
 粘着剤層は、エネルギー線硬化性であるため、エネルギー線照射前においては、比較的軟質にすることができ、粘着剤層がワーク表面に形成された凹凸に追従しやすくなる。また、粘着テープは、エネルギー線が照射され硬化することで粘着力が低下して、ワークから剥離しやすくなる。
 粘着テープの剥離時の糊残りを抑制する観点から、粘着テープのエネルギー線照射後の粘着力は、2000mN/25mm以下であることが好ましい。特に、中間層を有する本発明の粘着テープを、表面にバンプ等の大きな突起(例えば、高さ200μm以上)があるワークに貼付する場合には、通常、突起がワーク表面に貼付された粘着テープの中間層によって吸収された状態である。そのため、そこから粘着テープを剥離すると糊残りが発生しやすいが、粘着力を2000mN/25mm以下とすることで、そのような糊残りの発生を防止しやすくなる。粘着テープのエネルギー線照射後の粘着力は、好ましくは50~1750mN/25mm、より好ましくは100~1500nN/25mmである。
Since the pressure-sensitive adhesive layer is energy ray curable, it can be made relatively soft before energy beam irradiation, and the pressure-sensitive adhesive layer can easily follow the unevenness formed on the workpiece surface. In addition, the adhesive tape is cured by being irradiated with an energy ray, so that the adhesive force is reduced and the adhesive tape is easily peeled off from the workpiece.
From the viewpoint of suppressing the adhesive residue when the adhesive tape is peeled off, the adhesive strength of the adhesive tape after irradiation with energy rays is preferably 2000 mN / 25 mm or less. In particular, when the pressure-sensitive adhesive tape of the present invention having an intermediate layer is applied to a workpiece having bumps or other large protrusions (for example, a height of 200 μm or more) on the surface, the adhesive tape in which the protrusions are usually attached to the surface of the workpiece. This is a state absorbed by the intermediate layer. For this reason, when the adhesive tape is peeled from the adhesive tape, adhesive residue is likely to be generated. However, by setting the adhesive force to 2000 mN / 25 mm or less, it becomes easy to prevent such adhesive residue from occurring. The adhesive strength of the adhesive tape after irradiation with energy rays is preferably 50 to 1750 mN / 25 mm, more preferably 100 to 1500 nN / 25 mm.
 また、粘着テープのエネルギー線照射前の粘着力は、例えば2000mN/25mmより大きくなるものであるが、好ましくは3000~30000mN/25mm、より好ましくは3500~9000mN/mである。エネルギー線照射前の粘着力がこのような範囲であると、ワーク表面への接着性が良好となり、ワークの保護性能が良好となる。
 なお、粘着テープの粘着力は、粘着テープの粘着剤層面をシリコンミラーウエハに貼付して、23℃の環境下、剥離角度180°、剥離速度300mm/分で剥離したときに測定されるものであり、具体的には後述する実施例に記載の方法で測定されるものである。
 粘着力は、ウレタン系樹脂(A)やエネルギー線硬化性化合物(B)の種類等を変更することで調整することが可能である。また、エネルギー線照射後の粘着力は、後述する光重合性不飽和結合の量によっても調整可能であり、粘着剤組成物に含有される光重合性不飽和結合の量を多くすると低くなり、少なくすると高くなる傾向にある。さらに、エネルギー線照射後の粘着力は、後述するように光重合性不飽和結合を含有する架橋剤(C1)や化合物(D)を配合することでも低くしやすくなる。
Further, the adhesive strength of the adhesive tape before irradiation with energy rays is, for example, greater than 2000 mN / 25 mm, preferably 3000 to 30000 mN / 25 mm, more preferably 3500 to 9000 mN / m. When the adhesive force before energy beam irradiation is in such a range, the adhesion to the workpiece surface is good, and the protection performance of the workpiece is good.
The adhesive strength of the adhesive tape is measured when the adhesive layer surface of the adhesive tape is affixed to a silicon mirror wafer and peeled at a peeling angle of 180 ° and a peeling speed of 300 mm / min in an environment of 23 ° C. Specifically, it is measured by the method described in the examples described later.
The adhesive force can be adjusted by changing the type of the urethane-based resin (A) or the energy beam curable compound (B). In addition, the adhesive strength after irradiation with energy rays can be adjusted by the amount of photopolymerizable unsaturated bonds described later, and decreases when the amount of photopolymerizable unsaturated bonds contained in the adhesive composition is increased. When it is less, it tends to be higher. Furthermore, it becomes easy to make the adhesive force after energy ray irradiation low also by mix | blending the crosslinking agent (C1) and compound (D) containing a photopolymerizable unsaturated bond so that it may mention later.
(ウレタン系樹脂(A))
 ウレタン系樹脂(A)は、ウレタン結合及び尿素結合の少なくとも一方を含有する重合体である。また、本発明の粘着剤層は、少なくともウレタンポリマー(A’)と、エネルギー線硬化性化合物(B)とを含むウレタン系粘着剤組成物(以下、単に「粘着剤組成物」ともいう)から形成されるものであり、ウレタン系樹脂(A)は、少なくとも主剤であるウレタンポリマー(A’)から構成される。また、ウレタン系粘着剤組成物には、必要に応じて、架橋剤(C)、化合物(D)等がさらに含まれる。
(Urethane resin (A))
The urethane resin (A) is a polymer containing at least one of a urethane bond and a urea bond. The pressure-sensitive adhesive layer of the present invention is composed of a urethane-based pressure-sensitive adhesive composition (hereinafter also simply referred to as “pressure-sensitive adhesive composition”) containing at least a urethane polymer (A ′) and an energy ray-curable compound (B). The urethane-based resin (A) is formed from at least a urethane polymer (A ′) as a main agent. Moreover, a crosslinking agent (C), a compound (D), etc. are further contained in a urethane type adhesive composition as needed.
 ウレタン系樹脂(A)は、架橋剤(C)により架橋されたものであってもよい。また、上記のようにウレタン系粘着剤組成物は、架橋剤(C)以外にも、化合物(D)等のように、ウレタンポリマー(A’)に直接又は間接的に結合して、粘着剤層において一体としてウレタン系樹脂(A)を構成する化合物を含有していてもよい。
 なお、架橋剤(C)及び化合物(D)のように、ウレタンポリマー(A’)に直接又は間接的に結合して、ウレタンポリマー(A’)とともに、粘着剤層において一体としてウレタン系樹脂(A)を構成する化合物を総称して“主剤反応性化合物”という。
 本発明において、ウレタンポリマー(A’)の配合量は、粘着剤層の粘着性を確保しつつ、後述する成分(B)~(E)を適切な量配合するために、粘着剤組成物全量に対して、好ましくは30~85質量%、より好ましくは35~80質量%、さらに好ましくは37~77質量%である。また、主剤反応性化合物とウレタンポリマー(A’)の配合量合計は、粘着剤組成物全量に対して、好ましくは40~95質量%、より好ましくは45~94質量%、さらに好ましくは50~93質量%である。
The urethane resin (A) may be crosslinked with a crosslinking agent (C). Further, as described above, the urethane-based pressure-sensitive adhesive composition is bonded directly or indirectly to the urethane polymer (A ′), such as the compound (D), in addition to the crosslinking agent (C). The layer may contain a compound constituting the urethane resin (A) as a unit.
In addition, like a crosslinking agent (C) and a compound (D), it couple | bonds directly or indirectly with a urethane polymer (A '), and a urethane type resin (A') is united with a urethane-type resin (A ') integrally with an adhesive layer. The compounds constituting A) are collectively referred to as “main agent reactive compounds”.
In the present invention, the blending amount of the urethane polymer (A ′) is the total amount of the pressure-sensitive adhesive composition in order to blend components (B) to (E) described later in appropriate amounts while ensuring the tackiness of the pressure-sensitive adhesive layer. Is preferably 30 to 85% by mass, more preferably 35 to 80% by mass, and still more preferably 37 to 77% by mass. The total amount of the main component reactive compound and the urethane polymer (A ′) is preferably 40 to 95% by mass, more preferably 45 to 94% by mass, and further preferably 50 to 50% by mass with respect to the total amount of the pressure-sensitive adhesive composition. 93% by mass.
 ウレタン系樹脂(A)は、光重合性不飽和結合を有することが好ましい。ウレタン系樹脂(A)が光重合性不飽和結合を有すると、ワーク加工用粘着テープの粘着剤層において、ウレタン系樹脂(A)と、エネルギー線硬化性化合物(B)のいずれもが、光重合性不飽和結合を有することになる。このため、粘着剤層にエネルギー線を照射することにより、重合反応によってウレタン系樹脂(A)とエネルギー線硬化性化合物(B)の間に結合が形成され、エネルギー線照射後の粘着テープの粘着力をより低減させやすくなり、粘着テープをワークから剥離する際の剥離性が良好になる。さらには、粘着テープをワークから剥離した際に生じる糊残りをより一層低減することが可能になる。また、エネルギー線照射による粘着剤層の硬化を、エネルギー線硬化性化合物(B)のみで生じさせる場合と比べて、エネルギー線照射後の粘着剤層の強度が高くなる傾向があり、糊残りの発生の抑制がより容易である。 The urethane resin (A) preferably has a photopolymerizable unsaturated bond. When the urethane resin (A) has a photopolymerizable unsaturated bond, both the urethane resin (A) and the energy ray curable compound (B) are light in the pressure-sensitive adhesive layer of the work processing pressure-sensitive adhesive tape. It will have a polymerizable unsaturated bond. Therefore, by irradiating the adhesive layer with energy rays, a bond is formed between the urethane resin (A) and the energy ray curable compound (B) by the polymerization reaction, and adhesion of the adhesive tape after energy ray irradiation is achieved. It becomes easier to reduce the force, and the peelability when peeling the adhesive tape from the work becomes good. Furthermore, it is possible to further reduce the adhesive residue generated when the adhesive tape is peeled from the workpiece. Moreover, compared with the case where the curing of the pressure-sensitive adhesive layer by the energy beam irradiation is caused only by the energy beam curable compound (B), the strength of the pressure-sensitive adhesive layer after the energy beam irradiation tends to increase, and the adhesive residue It is easier to suppress the occurrence.
ウレタン系樹脂(A)に光重合性不飽和結合を導入する方法は特に限定されない。例えば、光重合性不飽和結合導入前のウレタンポリマー(A’)が水酸基を有する場合には、水酸基と反応可能な官能基と、(メタ)アクリロイル基等の光重合性不飽和結合を含む官能基とを有する化合物を、上記水酸基に反応させて、光重合性不飽和結合を導入することが可能である。上記水酸基と反応可能な官能基と光重合性不飽和結合を含む官能基を有する化合物としては、例えば、メタクリロイルオキシエチルイソシアネート等が挙げられる。このような化合物は、ウレタンポリマー(A’)に予め反応させておいてもよいし、粘着剤層に含有させておいて、粘着剤層形成時にウレタンポリマー(A’)に反応させてもよい。
 また、後述するように、架橋剤(C)として、光重合性不飽和結合を有する架橋剤(C1)を用いてウレタンポリマー(A’)を架橋することにより、ウレタン系樹脂(A)に光重合性不飽和結合を導入してもよい。さらに、後述する化合物(D)により、ウレタン系樹脂(A)に光重合性不飽和結合を導入してもよい。
The method for introducing a photopolymerizable unsaturated bond into the urethane resin (A) is not particularly limited. For example, when the urethane polymer (A ′) before introduction of the photopolymerizable unsaturated bond has a hydroxyl group, a functional group capable of reacting with the hydroxyl group and a function containing a photopolymerizable unsaturated bond such as a (meth) acryloyl group. It is possible to introduce a photopolymerizable unsaturated bond by reacting a compound having a group with the hydroxyl group. Examples of the compound having a functional group capable of reacting with a hydroxyl group and a functional group containing a photopolymerizable unsaturated bond include methacryloyloxyethyl isocyanate. Such a compound may be reacted in advance with the urethane polymer (A ′), or may be contained in the pressure-sensitive adhesive layer and reacted with the urethane polymer (A ′) at the time of forming the pressure-sensitive adhesive layer. .
Further, as will be described later, the urethane resin (A) is crosslinked with the urethane polymer (A ′) by using the crosslinking agent (C1) having a photopolymerizable unsaturated bond as the crosslinking agent (C). A polymerizable unsaturated bond may be introduced. Furthermore, you may introduce | transduce a photopolymerizable unsaturated bond into a urethane type resin (A) with the compound (D) mentioned later.
<ウレタンポリマー(A’)>
 ウレタンポリマー(A’)は、ウレタン結合及び尿素結合の少なくとも一方を含有するものが挙げられ、具体的には、ポリオール及びポリイソシアネート化合物を反応させて得られる末端に水酸基を有するポリウレタンポリオールが挙げられる。また、ウレタンポリマー(A’)は、ポリオール及びポリイソシアネート化合物を反応させて得られ、末端がイソシアネートであるウレタンポリマーを用いてもよい。
<Urethane polymer (A ')>
Examples of the urethane polymer (A ′) include those containing at least one of a urethane bond and a urea bond, and specific examples include a polyurethane polyol having a hydroxyl group at the terminal obtained by reacting a polyol and a polyisocyanate compound. . Further, the urethane polymer (A ′) may be obtained by reacting a polyol and a polyisocyanate compound, and a urethane polymer having a terminal isocyanate may be used.
 ウレタンポリマー(A’)に使用されるポリオールとしては、ポリエステルポリオール及びポリエーテルポリオールが挙げられる。
 ポリエステルポリオールとしては公知のポリエステルポリオールが用いられる。ポリエステルポリオールは、酸成分と、グリコール成分及びポリオール成分の少なくとも一方とのエステルであり、酸成分としてはテレフタル酸、アジピン酸、アゼライン酸、セバチン酸、無水フタル酸、イソフタル酸、トリメリット酸等が挙げられる。また、グリコール成分としてエチレングリコール、プロピレングリコール、ジエチレングリコール、ブチレングリコール、1,6-ヘキサングリコール、3-メチル-1,5-ペンタンジオール、3,3’-ジメチロールヘプタン、ポリオキシエチレングリコール、ポリオキシプロピレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、ブチルエチルペンタンジオールが挙げられ、ポリオール成分としてグリセリン、トリメチロールプロパン、ペンタエリスリトール等が挙げられる。
 その他、ポリカプロラクトン、ポリ(β-メチル-γ-バレロラクトン)、ポリバレロラクトン等のラクトン類を開環重合して得られるポリエステルポリオール等でもよい。
Examples of the polyol used in the urethane polymer (A ′) include polyester polyols and polyether polyols.
A known polyester polyol is used as the polyester polyol. Polyester polyol is an ester of an acid component and at least one of a glycol component and a polyol component. Examples of the acid component include terephthalic acid, adipic acid, azelaic acid, sebacic acid, phthalic anhydride, isophthalic acid, trimellitic acid, and the like. Can be mentioned. Further, as glycol components, ethylene glycol, propylene glycol, diethylene glycol, butylene glycol, 1,6-hexane glycol, 3-methyl-1,5-pentanediol, 3,3′-dimethylol heptane, polyoxyethylene glycol, polyoxy Examples include propylene glycol, 1,4-butanediol, neopentyl glycol, and butylethylpentanediol. Examples of the polyol component include glycerin, trimethylolpropane, and pentaerythritol.
In addition, polyester polyols obtained by ring-opening polymerization of lactones such as polycaprolactone, poly (β-methyl-γ-valerolactone), and polyvalerolactone may be used.
 また、ポリエーテルポリオールとしては公知のポリエーテルポリオールが用いられる。例えば、水、プロピレングリコール、エチレングリコール、グリセリン、トリメチロールプロパン等の低分子量ポリオールを開始剤として用いて、エチレンオキシド、プロピレンオキシド、ブチレンオキシド、テトラヒドロフラン等のオキシラン化合物を重合させることにより得られるポリエーテルポリオール、具体的にはポリプロピレングリコール、ポリエチレングリコール、ポリテトラメチレングリコール等の官能基数が2以上のものが用いられる。 In addition, a known polyether polyol is used as the polyether polyol. For example, polyether polyols obtained by polymerizing oxirane compounds such as ethylene oxide, propylene oxide, butylene oxide, tetrahydrofuran using low molecular weight polyols such as water, propylene glycol, ethylene glycol, glycerin and trimethylolpropane as initiators Specifically, those having 2 or more functional groups such as polypropylene glycol, polyethylene glycol, and polytetramethylene glycol are used.
 ポリイソシアネート化合物としては公知の芳香族ポリイソシアネート、脂肪族ポリイソシアネート、芳香脂肪族ポリイソシアネート、脂環族ポリイソシアネート等が挙げられる。芳香族ポリイソシアネートとしては1,3-フェニレンジイソシアネート、4,4’-ジフェニルジイソシアネート、1,4-フェニレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-トルイジンジイソシアネート、2,4,6-トリイソシアネートトルエン、1,3,5-トリイソシアネートベンゼン、ジアニシジンジイソシアネート、4,4’-ジフェニルエーテルジイソシアネート、4,4’,4”-トリフェニルメタントリイソシアネート等を挙げることができる。 Examples of the polyisocyanate compound include known aromatic polyisocyanates, aliphatic polyisocyanates, araliphatic polyisocyanates, and alicyclic polyisocyanates. Aromatic polyisocyanates include 1,3-phenylene diisocyanate, 4,4'-diphenyl diisocyanate, 1,4-phenylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate Isocyanate, 4,4'-toluidine diisocyanate, 2,4,6-triisocyanate toluene, 1,3,5-triisocyanate benzene, dianisidine diisocyanate, 4,4'-diphenyl ether diisocyanate, 4,4 ', 4 "- And triphenylmethane triisocyanate.
 脂肪族ポリイソシアネートとしてはトリメチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ペンタメチレンジイソシアネート、1,2-プロピレンジイソシアネート、2,3-ブチレンジイソシアネート、1,3-ブチレンジイソシアネート、ドデカメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート等を挙げることができる。 Aliphatic polyisocyanates include trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, pentamethylene diisocyanate, 1,2-propylene diisocyanate, 2,3-butylene diisocyanate, 1,3-butylene diisocyanate, dodecamethylene diisocyanate, 2,4 , 4-trimethylhexamethylene diisocyanate and the like.
 芳香脂肪族ポリイソシアネートとしてはω,ω’-ジイソシアネート-1,3-ジメチルベンゼン、ω,ω’-ジイソシアネート-1,4-ジメチルベンゼン、ω,ω’-ジイソシアネート-1,4-ジエチルベンゼン、1,4-テトラメチルキシリレンジイソシアネート、1,3-テトラメチルキシリレンジイソシアネート等を挙げることができる。 Examples of the araliphatic polyisocyanate include ω, ω′-diisocyanate-1,3-dimethylbenzene, ω, ω′-diisocyanate-1,4-dimethylbenzene, ω, ω′-diisocyanate-1,4-diethylbenzene, 1, Examples thereof include 4-tetramethylxylylene diisocyanate and 1,3-tetramethylxylylene diisocyanate.
 脂環族ポリイソシアネートとしては3-イソシアネートメチル-3,5,5-トリメチルシクロヘキシルイソシアネート、1,3-シクロペンタンジイソシアネート、1,3-シクロヘキサンジイソシアネート、1,4-シクロヘキサンジイソシアネート、メチル-2,4-シクロヘキサンジイソシアネート、メチル-2,6-シクロヘキサンジイソシアネート、4,4’-メチレンビス(シクロヘキシルイソシアネート)、1,4-ビス(イソシアネートメチル)シクロヘキサン、1,4-ビス(イソシアネートメチル)シクロヘキサン等を挙げることができる。
 また、上記ポリイソシアネート化合物は、上記ポリイソシアネート化合物のトリメチロールプロパンアダクト体、水と反応したビュウレット体、イソシアヌレート環を有する3量体等と併用することができる。
 ポリイソシアネート化合物としては、4,4’-ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、3-イソシアネートメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(イソホロンジイソシアネート)等が好ましい。
The alicyclic polyisocyanates include 3-isocyanate methyl-3,5,5-trimethylcyclohexyl isocyanate, 1,3-cyclopentane diisocyanate, 1,3-cyclohexane diisocyanate, 1,4-cyclohexane diisocyanate, methyl-2,4- And cyclohexane diisocyanate, methyl-2,6-cyclohexane diisocyanate, 4,4′-methylenebis (cyclohexyl isocyanate), 1,4-bis (isocyanate methyl) cyclohexane, 1,4-bis (isocyanate methyl) cyclohexane, and the like. .
The polyisocyanate compound can be used in combination with a trimethylolpropane adduct of the polyisocyanate compound, a burette reacted with water, a trimer having an isocyanurate ring, or the like.
As the polyisocyanate compound, 4,4′-diphenylmethane diisocyanate, hexamethylene diisocyanate, 3-isocyanate methyl-3,5,5-trimethylcyclohexyl isocyanate (isophorone diisocyanate) and the like are preferable.
 また、ポリウレタンポリオールは、ポリオールと多官能イソシアネートに加えて、エチレンジアミン、N-アミノエチルエタノールアミン、イソホロンジアミン、キシリレンジアミン等のジアミンをさらに反応させたものであってもよい。さらに、ポリオールとしては、上記したポリエステルポリオール、ポリエーテルポリオールに加えて、エチレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、ブチルエチルペンタンジオール、グリセリン、トリメチロールプロパン、ペンタエリスリトール等を使用してもよい。
 なお、ポリオール及びポリイソシアネート化合物との反応は、通常、3級アミン系化合物、有機金属系化合物等の触媒の存在下で行われるものである。
The polyurethane polyol may be obtained by further reacting a diamine such as ethylenediamine, N-aminoethylethanolamine, isophoronediamine, xylylenediamine in addition to the polyol and the polyfunctional isocyanate. Further, as the polyol, in addition to the above-described polyester polyol and polyether polyol, ethylene glycol, 1,4-butanediol, neopentyl glycol, butylethylpentanediol, glycerin, trimethylolpropane, pentaerythritol and the like are used. Also good.
In addition, reaction with a polyol and a polyisocyanate compound is normally performed in presence of catalysts, such as a tertiary amine type compound and an organometallic compound.
 ウレタンポリマー(A’)としては、上記したものに限定されず、例えば、マイケル付加型ウレタンポリマーであってもよい。
 マイケル付加型ウレタンポリマーとしては、例えば次の(1)や(2)のようなものが挙げられる。
(1)上記ポリオールとポリイソシアネート化合物とを反応させて得られる、末端にイソシアネート基(-NCO)を有するウレタンプレポリマーに、ポリアミンと不飽和化合物とをマイケル付加反応させてなるアミノ化合物を反応させてなるもの、
(2)上記ポリオール、ポリイソシアネート化合物に加えて、ポリアミンを反応させて得られ、末端に一級または二級のアミノ基を有するポリウレタンウレアに、不飽和化合物をマイケル付加反応させてなるもの。
The urethane polymer (A ′) is not limited to those described above, and may be, for example, a Michael addition type urethane polymer.
Examples of the Michael addition type urethane polymer include the following (1) and (2).
(1) A urethane prepolymer having an isocyanate group (—NCO) at the terminal obtained by reacting the polyol with a polyisocyanate compound is reacted with an amino compound obtained by Michael addition reaction of a polyamine and an unsaturated compound. What
(2) A product obtained by reacting a polyamine in addition to the above polyol and polyisocyanate compound, and reacting a polyurethane urea having a primary or secondary amino group at the terminal with a Michael addition reaction of an unsaturated compound.
 マイケル付加型ウレタンポリマーにおいて使用されるポリアミンとしては、公知のものを使用することができ、具体的には、エチレンジアミン、プロピレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、トリエチレンテトラミン、ジエチレントリアミン、トリアミノプロパン、2,2,4-トリメチルヘキサメチレンジアミン、トリレンジアミン、ヒドラジン、ピペラジン等の脂肪族ポリアミン、イソホロンジアミン、ジシクロヘキシルメタン-4,4’-ジアミン等の脂環式ポリアミン、及びフェニレンジアミン、キシリレンジアミン等の芳香族ポリアミンが挙げられる。さらには、2-ヒドロキシエチルエチレンジアミン、N-(2-ヒドロキシエチル)プロピレンジアミン、(2-ヒドロキシエチルプロピレン)ジアミン、(ジ-2-ヒドロキシエチルエチレン)ジアミン、(ジ-2-ヒドロキシエチルプロピレン)ジアミン、(2-ヒドロキシプロピルエチレン)ジアミン、(ジ-2-ヒドロキシプロピルエチレン)ジアミン等の分子内に水酸基を有するジアミン類及びダイマー酸のカルボキシル基をアミノ基に転化したダイマージアミン、両末端にプロポキシアミンを有し、下記一般式(2)で示されるポリオキシアルキレングリコールジアミン等も使用することができる。
  H2-NCH2-CH2-CH2-O(Cn2n-O)m-CH2-CH2-CH2-NH2  (2)
(なお、式(2)中、nは2~4の任意の整数、mは2~50の任意の整数を示す。)
さらに、ポリアミンとして末端に一級または二級アミノ基を有するデンドリマーも使用することができる。
 上記したポリアミンの中では、イソホロンジアミン、2,2,4-トリメチルヘキサメチレンジアミン、ヘキサメチレンジアミンが、反応の制御が容易である点から好ましい。
As the polyamine used in the Michael addition type urethane polymer, known ones can be used. Specifically, ethylenediamine, propylenediamine, trimethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, Aliphatic polyamines such as ethylenetetramine, diethylenetriamine, triaminopropane, 2,2,4-trimethylhexamethylenediamine, tolylenediamine, hydrazine, piperazine, isophoronediamine, dicyclohexylmethane-4,4'-diamine, etc. Examples include polyamines and aromatic polyamines such as phenylenediamine and xylylenediamine. Further, 2-hydroxyethylethylenediamine, N- (2-hydroxyethyl) propylenediamine, (2-hydroxyethylpropylene) diamine, (di-2-hydroxyethylethylene) diamine, (di-2-hydroxyethylpropylene) diamine , (2-hydroxypropylethylene) diamine, (di-2-hydroxypropylethylene) diamine and other diamines having a hydroxyl group in the molecule, dimer amine obtained by converting the carboxyl group of dimer acid to an amino group, and propoxyamine at both ends And polyoxyalkylene glycol diamine represented by the following general formula (2) can also be used.
H 2 —NCH 2 —CH 2 —CH 2 —O (C n H 2n —O) m —CH 2 —CH 2 —CH 2 —NH 2 (2)
(In formula (2), n represents an arbitrary integer of 2 to 4, and m represents an arbitrary integer of 2 to 50.)
Furthermore, a dendrimer having a primary or secondary amino group at the terminal can also be used as a polyamine.
Among the polyamines described above, isophorone diamine, 2,2,4-trimethylhexamethylene diamine, and hexamethylene diamine are preferable from the viewpoint of easy control of the reaction.
 また、マイケル付加型ウレタンポリマーにおいて使用される不飽和化合物は、ウレタンポリマーを変性する目的で使用される。したがって、使用する不飽和化合物の種類は変性の目的に応じて任意に選択することができる。不飽和化合物としては例えば、(メタ)アクリル系不飽和化合物、アミド系不飽和化合物、脂肪酸ビニル系不飽和化合物、ビニルエーテル系不飽和化合物、α-オレフィン系不飽和化合物、アリル系不飽和化合物、酢酸アリル系不飽和化合物、シアン化ビニル系不飽和化合物、スチレンまたはビニルベンゼン系不飽和化合物等が挙げられる。
 使用する不飽和化合物の種類は変性の目的に応じて任意に選択することができるが、不飽和化合物が有する官能基に着目して選択することが好ましい。このような不飽和化合物が有する官能基としては、アルキル基、ポリアルキレングリコール基、アルコキシ基、フェノキシ基、水酸基、カルボキシル基、パーフルオロアルキル基、アルコキシシリル基、エポキシ基、さらにはアミド基やジアルキルアミノ基、四級アンモニウム塩基等の窒素含有基等を例示することができるが、上記したようにウレタンポリマー(A’)に水酸基を含有させるために、水酸基を有することが好ましい。
 なお、これらは不飽和化合物の具体例としては、例えば、特開2002-121256号公報(欧州公開公報EP1146061A1)に記載されるものが使用される。
Further, the unsaturated compound used in the Michael addition type urethane polymer is used for the purpose of modifying the urethane polymer. Therefore, the type of unsaturated compound to be used can be arbitrarily selected according to the purpose of modification. Examples of unsaturated compounds include (meth) acrylic unsaturated compounds, amide unsaturated compounds, fatty acid vinyl unsaturated compounds, vinyl ether unsaturated compounds, α-olefin unsaturated compounds, allyl unsaturated compounds, acetic acid Examples include allylic unsaturated compounds, vinyl cyanide unsaturated compounds, styrene or vinylbenzene unsaturated compounds.
Although the kind of unsaturated compound to be used can be arbitrarily selected according to the purpose of modification, it is preferable to select it by paying attention to the functional group of the unsaturated compound. The functional groups possessed by such unsaturated compounds include alkyl groups, polyalkylene glycol groups, alkoxy groups, phenoxy groups, hydroxyl groups, carboxyl groups, perfluoroalkyl groups, alkoxysilyl groups, epoxy groups, as well as amide groups and dialkyls. Nitrogen-containing groups such as amino groups and quaternary ammonium bases can be exemplified, but it is preferable to have a hydroxyl group so that the urethane polymer (A ′) contains a hydroxyl group as described above.
As specific examples of the unsaturated compound, those described in, for example, JP-A No. 2002-121256 (European Publication No. EP1146061A1) are used.
 本発明で使用されるウレタンポリマー(A’)は、重量平均分子量が10,000~300,000であることが好ましく、30,000~150,000であることがより好ましい。10,000以上であることで、粘着剤層の凝集力が向上し、より高い糊残りを抑制する効果が得られる。また、300,000以下とすることで、粘着剤組成物から粘着剤層を形成する際に溶媒で希釈したり、加熱して溶融させたりしてもプロセス適性に影響するような粘度上昇を招きにくいという利点がある。 The urethane polymer (A ′) used in the present invention preferably has a weight average molecular weight of 10,000 to 300,000, more preferably 30,000 to 150,000. By being 10,000 or more, the cohesive force of an adhesive layer improves and the effect which suppresses a higher adhesive residue is acquired. Further, by setting the viscosity to 300,000 or less, viscosity increase that affects process suitability even if diluted with a solvent or melted by heating when forming a pressure-sensitive adhesive layer from the pressure-sensitive adhesive composition is caused. There is an advantage that it is difficult.
(エネルギー線硬化性化合物(B))
 本発明で使用されるエネルギー線硬化性化合物(B)は、ウレタン系樹脂(A)に非反応であり、かつ光重合性不飽和結合を有するものである。
 ここで、非反応とは、「光重合性不飽和結合」以外に、ウレタンポリマー(A’)のみならず、主剤反応性化合物と反応する官能基も含有しないことを意味し、化合物(B)は粘着剤層においてウレタン系樹脂(A)に対して反応していない化合物である。
 すなわち、エネルギー線硬化性化合物(B)は、ウレタンポリマー(A’)と、架橋剤(C)と、必要に応じて使用されるその他成分(例えば、(D)成分)とが反応することで粘着剤層が形成される際に、これら(A’)、(C)、(D)成分と反応しない化合物である。
(Energy ray curable compound (B))
The energy ray-curable compound (B) used in the present invention is non-reactive with the urethane resin (A) and has a photopolymerizable unsaturated bond.
Here, non-reactive means that it contains not only the “photopolymerizable unsaturated bond” but also contains not only the urethane polymer (A ′) but also a functional group that reacts with the main compound reactive compound, and the compound (B) Is a compound which has not reacted with the urethane resin (A) in the pressure-sensitive adhesive layer.
That is, the energy ray curable compound (B) is obtained by reacting the urethane polymer (A ′), the crosslinking agent (C), and other components (for example, the component (D)) used as necessary. It is a compound that does not react with the components (A ′), (C), and (D) when the pressure-sensitive adhesive layer is formed.
 このように、エネルギー線硬化性化合物(B)は、粘着剤層においてウレタン系樹脂(A)を構成しない成分として存在することになる。ウレタンポリマーは、一般的に凝集力が高く貯蔵弾性率も高いため、単独ではワーク表面のバンプ等の突起を埋め込みにくいが、本発明では、ウレタンポリマー鎖を構成しないエネルギー線硬化性化合物(B)が配合されることで、粘着剤層の貯蔵弾性率が低くなり、バンプへの埋め込み性を確保しやすくなる。
 なお、本発明において、光重合性不飽和結合は、エネルギー線照射により反応する不飽和結合を意味し、通常、エチレン性二重結合であり、好ましくは(メタ)アクリロイル基に含まれる炭素-炭素二重結合である。
Thus, energy-beam curable compound (B) will exist as a component which does not comprise urethane type resin (A) in an adhesive layer. Urethane polymers generally have a high cohesive force and a high storage elastic modulus, so it is difficult to embed protrusions such as bumps on the surface of the work alone, but in the present invention, the energy ray curable compound (B) does not constitute a urethane polymer chain. By blending, the storage elastic modulus of the pressure-sensitive adhesive layer is lowered, and it becomes easy to ensure the embedding property to the bump.
In the present invention, the photopolymerizable unsaturated bond means an unsaturated bond that reacts upon irradiation with energy rays, and is usually an ethylenic double bond, preferably a carbon-carbon contained in a (meth) acryloyl group. It is a double bond.
 エネルギー線硬化性化合物(B)の分子量は、35,000以下となるものである。分子量が35,000より大きくなると、粘着剤層の貯蔵弾性率を低下させにくくなり、バンプへの埋め込み性を確保しにくくなる。また、ウレタン系樹脂(A)との相溶性が悪化するおそれがある。エネルギー線硬化性化合物(B)の分子量は、好ましくは150~35,000であり、さらに好ましくは200~34,000である。なお、分子量とは、式量が特定できる場合は式量であり、式量が特定できない場合は重量平均分子量を意味する。
 エネルギー線硬化性化合物(B)の配合量は、使用される化合物によって異なるが、ウレタン系樹脂(A)100質量部(すなわち、ウレタンポリマー(A’)及び主剤反応性化合物の合計100質量部を意味する。以下同じ。)に対して、通常、1~120質量部、好ましくは2~100質量部、より好ましくは4~90質量部である。エネルギー線硬化性化合物(B)の配合量をこのような範囲とすることで、ワーク表面への追従性と、糊残りを抑制を両立した粘着剤層が得られやすい。
The molecular weight of the energy ray curable compound (B) is 35,000 or less. When the molecular weight is larger than 35,000, it becomes difficult to lower the storage elastic modulus of the pressure-sensitive adhesive layer, and it becomes difficult to ensure the embedding property to the bump. Moreover, there exists a possibility that compatibility with a urethane type resin (A) may deteriorate. The molecular weight of the energy ray curable compound (B) is preferably 150 to 35,000, and more preferably 200 to 34,000. The molecular weight is the formula weight when the formula weight can be specified, and the weight average molecular weight when the formula weight cannot be specified.
The compounding amount of the energy ray curable compound (B) varies depending on the compound used, but 100 parts by mass of the urethane resin (A) (that is, 100 parts by mass of the urethane polymer (A ′) and the main component reactive compound). In the following, the same is true): usually 1 to 120 parts by mass, preferably 2 to 100 parts by mass, more preferably 4 to 90 parts by mass. By setting the blending amount of the energy ray curable compound (B) in such a range, it is easy to obtain a pressure-sensitive adhesive layer that is compatible with the workpiece surface and suppresses adhesive residue.
 エネルギー線硬化性化合物(B)の具体的な化合物としては、(メタ)アクリロイル基を有する化合物が挙げられる。エネルギー線硬化性化合物(B)の一分子中の(メタ)アクリロイル基(光重合性不飽和結合)は、1官能以上であればよいが、2官能以上が好ましく、2~12官能であることがより好ましい。
 また、本発明で使用されるエネルギー線硬化性化合物(B)の具体例としては、(メタ)アクリレートモノマー(B1)、及びウレタン(メタ)アクリレート(B2)から選択される少なくとも1種が挙げられる。
Specific examples of the energy ray curable compound (B) include compounds having a (meth) acryloyl group. The (meth) acryloyl group (photopolymerizable unsaturated bond) in one molecule of the energy ray curable compound (B) may be one or more functional groups, preferably two functional groups or more, and 2 to 12 functional groups. Is more preferable.
Moreover, at least 1 sort (s) selected from the (meth) acrylate monomer (B1) and urethane (meth) acrylate (B2) as a specific example of the energy-beam curable compound (B) used by this invention is mentioned. .
 (メタ)アクリレートモノマー(B1)は、分子中に(メタ)アクリロイル基を有する化合物であり、その(メタ)アクリロイル基の数は、好ましくは2官能以上、より好ましくは3~6である。特に、ウレタン系樹脂(A)が、光重合性不飽和結合を有しない場合には、粘着剤層へのエネルギー線照射の後に粘着テープの粘着力を低減させやすいように、(メタ)アクリロイル基の数が4官能以上である(メタ)アクリレートモノマー(B1)を粘着剤層が含有することが好ましい。
 (メタ)アクリレートモノマー(B1)としては、例えば、多価アルコールの全ての水酸基が、(メタ)アクリル酸とエステルを形成した完全エステルである多官能(メタ)アクリル酸エステルが挙げられる。ここで、多価アルコールの炭素数は4~10が好ましい。また、(メタ)アクリレートモノマー(B1)は、分子量が150~1000であることが好ましく、より好ましくは200~800となるものである。
 多官能(メタ)アクリル酸エステルの具体的な化合物としては、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブチレングリコールジ(メタ)アクリレート、1,6-へキサンジオールジ(メタ)アクリレート等が挙げられるが、これらの中では、ペンタエリスリトールテトラ(メタ)アクリレートが好ましい。
 なお、(メタ)アクリレートモノマー(B1)は、構造の特定が可能であり、分子量は式量を意味する。
The (meth) acrylate monomer (B1) is a compound having a (meth) acryloyl group in the molecule, and the number of the (meth) acryloyl group is preferably bifunctional or more, more preferably 3 to 6. In particular, when the urethane-based resin (A) does not have a photopolymerizable unsaturated bond, a (meth) acryloyl group is used so that the adhesive strength of the adhesive tape can be easily reduced after energy ray irradiation to the adhesive layer. It is preferable that the pressure-sensitive adhesive layer contains a (meth) acrylate monomer (B1) having a number of 4 or more.
Examples of the (meth) acrylate monomer (B1) include polyfunctional (meth) acrylic acid esters in which all the hydroxyl groups of the polyhydric alcohol are complete esters formed with (meth) acrylic acid and esters. Here, the carbon number of the polyhydric alcohol is preferably 4 to 10. The (meth) acrylate monomer (B1) preferably has a molecular weight of 150 to 1000, more preferably 200 to 800.
Specific compounds of the polyfunctional (meth) acrylic acid ester include trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,4-butylene glycol di ( Examples include meth) acrylate and 1,6-hexanediol di (meth) acrylate. Among these, pentaerythritol tetra (meth) acrylate is preferable.
The structure of the (meth) acrylate monomer (B1) can be specified, and the molecular weight means a formula weight.
 (メタ)アクリレートモノマー(B1)は、少ない配合量でも、糊残りを防止しかつエネルギー線硬化により粘着力を適切に低下させることが可能であることから好ましい。
 また、(メタ)アクリレートモノマー(B1)の配合量は、具体的には、ウレタン系樹脂(A)100質量部に対して、1~20質量部が好ましく、2~15質量部がより好ましく、3~10質量部であることがさらに好ましい。エネルギー線硬化性化合物(B)は、このような配合量とすることで、粘着剤層の糊残りを適切に防止し、かつエネルギー線照射により粘着剤層の粘着力を適切に低下させることが可能である。
The (meth) acrylate monomer (B1) is preferable because even with a small blending amount, adhesive residue can be prevented and the adhesive force can be appropriately reduced by energy ray curing.
Further, the blending amount of the (meth) acrylate monomer (B1) is specifically preferably 1 to 20 parts by weight, more preferably 2 to 15 parts by weight with respect to 100 parts by weight of the urethane resin (A). More preferably, it is 3 to 10 parts by mass. The energy ray-curable compound (B) can appropriately prevent adhesive residue from the pressure-sensitive adhesive layer and reduce the pressure-sensitive adhesive force of the pressure-sensitive adhesive layer appropriately by irradiation with energy rays by setting the blending amount as described above. Is possible.
 ウレタン(メタ)アクリレート(B2)は、ウレタン結合を有し、末端に(メタ)アクリロイル基を有するポリマーである。ウレタン(メタ)アクリレート(B2)としては、ポリオール化合物と、ポリイソシアネート化合物との反応により末端イソシアネートウレタンポリマーを生成し、その末端の官能基に(メタ)アクリロイル基を有する化合物を反応させて得られる化合物などが挙げられる。このようなウレタン(メタ)アクリレート(B2)は、(メタ)アクリロイル基の作用により、エネルギー線硬化性を有する。
 なお、ウレタン(メタ)アクリレート(B2)を得るために使用される、ポリオール化合物、ポリイソシアネート化合物、及び(メタ)アクリロイル基を有する化合物は、上記した中間層のウレタン(メタ)アクリレート(X)に使用される、ポリオール化合物、ポリイソシアネート化合物、及び(メタ)アクリロイル基を有する化合物それぞれから適宜選択して使用されるものであり、その具体的な説明は省略する。
Urethane (meth) acrylate (B2) is a polymer having a urethane bond and having a (meth) acryloyl group at the terminal. The urethane (meth) acrylate (B2) is obtained by reacting a polyol compound with a polyisocyanate compound to produce a terminal isocyanate urethane polymer and reacting a compound having a (meth) acryloyl group with the terminal functional group. Compound etc. are mentioned. Such urethane (meth) acrylate (B2) has energy ray curability by the action of the (meth) acryloyl group.
The polyol compound, polyisocyanate compound, and compound having a (meth) acryloyl group used to obtain the urethane (meth) acrylate (B2) are added to the urethane (meth) acrylate (X) of the intermediate layer described above. The polyol compound, the polyisocyanate compound, and the compound having a (meth) acryloyl group that are used are appropriately selected and used, and a specific description thereof is omitted.
 ウレタン(メタ)アクリレート(B2)は(メタ)アクリロイル基を有し、その1分子中の(メタ)アクリロイル基は、2官能以上であることが好ましく、より好ましくは2~12官能、さらに好ましくは2~10官能である。このように、多官能とすることで、エネルギー線硬化によって粘着力を低下させやすくなる。
 また、ウレタン(メタ)アクリレート(B2)の分子量は、35000以下となるものであるが、好ましくは2000~35000、より好ましくは5000~34000である。なお、ウレタン(メタ)アクリレート(B2)の分子量は、重量平均分子量を意味する。ウレタン(メタ)アクリレートの分子量をこのような範囲とすることで、粘着剤層の貯蔵弾性率を低下させて、ワーク表面の凹凸への追従性を確保しやすくなる。また、粘着剤層中におけるウレタン(メタ)アクリレート(B2)の移動が抑制され、粘着剤テープの経時の安定性が向上する。
The urethane (meth) acrylate (B2) has a (meth) acryloyl group, and the (meth) acryloyl group in one molecule is preferably bifunctional or more, more preferably 2 to 12, and even more preferably. 2 to 10 functional. Thus, it becomes easy to reduce adhesive force by energy ray hardening by setting it as polyfunctionality.
The molecular weight of the urethane (meth) acrylate (B2) is 35000 or less, preferably 2000 to 35000, more preferably 5000 to 34000. In addition, the molecular weight of urethane (meth) acrylate (B2) means a weight average molecular weight. By setting the molecular weight of the urethane (meth) acrylate in such a range, the storage elastic modulus of the pressure-sensitive adhesive layer is lowered, and it becomes easy to ensure followability to the unevenness of the workpiece surface. Moreover, the movement of the urethane (meth) acrylate (B2) in the pressure-sensitive adhesive layer is suppressed, and the stability over time of the pressure-sensitive adhesive tape is improved.
 エネルギー線硬化性化合物(B)がウレタン(メタ)アクリレート(B2)である場合、ウレタン(メタ)アクリレート(B2)の配合量は、ウレタン系樹脂(A)100質量部に対して、30~120質量部が好ましく、40~100質量部が好ましく、50~90質量部がさらに好ましい。ウレタン(メタ)アクリレート(B2)は、このような配合量とすることで、粘着剤層の粘着性能を良好に維持し、かつ埋め込み性を確保しやすくなる。また、エネルギー線硬化により粘着力を十分に低下させ、さらには、糊残りも低減させやすくなる。 When the energy ray curable compound (B) is urethane (meth) acrylate (B2), the blending amount of the urethane (meth) acrylate (B2) is 30 to 120 with respect to 100 parts by mass of the urethane resin (A). Mass parts are preferred, 40 to 100 parts by mass are preferred, and 50 to 90 parts by mass are more preferred. By setting the blending amount of the urethane (meth) acrylate (B2), the pressure-sensitive adhesive performance of the pressure-sensitive adhesive layer is favorably maintained and the embedding property is easily secured. Moreover, it becomes easy to reduce adhesive force sufficiently by energy beam hardening, and also to reduce adhesive residue.
(架橋剤(C))
 本発明の粘着剤組成物は、さらに架橋剤(C)を含有することが好ましい。架橋剤(C)は、ウレタンポリマー(A’)と反応して、ウレタンポリマー(A’)を架橋させるものである。粘着剤組成物は、架橋剤(C)を含有することで架橋密度が高く、機械的強度の高い粘着剤層を形成しやすくなる。また、粘着テープを剥離する際の糊残り等も防止しやすくなる。
 架橋剤(C)としては、ウレタンポリマー(A’)が水酸基を有する場合には、その水酸基と反応できるように、イソシアネート基を2つ以上有する架橋剤が好ましい。なお、粘着剤組成物は、架橋剤を含有する場合、通常、塗布された後加熱されることで架橋されるものである。
(Crosslinking agent (C))
The pressure-sensitive adhesive composition of the present invention preferably further contains a crosslinking agent (C). The crosslinking agent (C) reacts with the urethane polymer (A ′) to crosslink the urethane polymer (A ′). By containing the crosslinking agent (C), the pressure-sensitive adhesive composition has a high crosslink density and can easily form a pressure-sensitive adhesive layer having high mechanical strength. Moreover, it becomes easy to prevent the adhesive residue etc. at the time of peeling an adhesive tape.
When the urethane polymer (A ′) has a hydroxyl group, the crosslinking agent (C) is preferably a crosslinking agent having two or more isocyanate groups so that it can react with the hydroxyl group. When the pressure-sensitive adhesive composition contains a crosslinking agent, it is usually crosslinked by being applied and then heated.
 また、逆にウレタンポリマー(A’)がイソシアネート基を有しており、架橋剤(C)が水酸基を有するものであってもよい。ウレタンポリマー(A’)は、その製造方法上水酸基又はイソシアネート基を有していることが一般的であることから、このようにウレタンポリマー(A’)と架橋剤(C)は、ウレタン結合により結合していることが好ましい。 Conversely, the urethane polymer (A ′) may have an isocyanate group and the crosslinking agent (C) may have a hydroxyl group. Since the urethane polymer (A ′) generally has a hydroxyl group or an isocyanate group because of its production method, the urethane polymer (A ′) and the crosslinking agent (C) are thus bonded by a urethane bond. Bonding is preferred.
 本発明で使用可能な架橋剤(C)としては、光重合性不飽和結合を含有する架橋剤(C1)を使用することが好ましい。
 また、光重合性不飽和結合を含有する架橋剤(C1)は、好ましくは2つ以上のイソシアネート基と(メタ)アクリロイル基とを有する化合物であり、より好ましくはイソシアネート基を少なくとも2つ有するウレタン(メタ)アクリレートが使用される。
 このウレタン(メタ)アクリレートは、重量平均分子量が、500~2000が好ましく、700~1000がより好ましい。また、架橋剤(C1)の一分子が2つ以上の光重合性不飽和結合を有している場合には、架橋剤(C1)の同一分子中の光重合性不飽和結合同士が重合しやすい傾向がある。そのため、架橋剤(C1)が有する光重合性不飽和結合と他の分子が有する光重合性不飽和結合との反応が起こりにくく、粘着剤層へのエネルギー線照射によって粘着テープの粘着力が低下する効果が低いことがある。したがって、架橋剤(C1)として好ましいものは、一分子中に1つの光重合性不飽和結合を有するものである。また、架橋剤(C1)とし使用されるウレタン(メタ)アクリレートとしては、例えば、ダイセルオルネクス社製の「EBECRYL 4150」が挙げられる。
 本実施形態では、光重合性不飽和結合を有する架橋剤(C1)を使用することで、粘着剤層においてウレタン系樹脂(A)が光重合性不飽和結合を有することになる。
As the crosslinking agent (C) usable in the present invention, it is preferable to use a crosslinking agent (C1) containing a photopolymerizable unsaturated bond.
The crosslinking agent (C1) containing a photopolymerizable unsaturated bond is preferably a compound having two or more isocyanate groups and a (meth) acryloyl group, and more preferably a urethane having at least two isocyanate groups. (Meth) acrylate is used.
The urethane (meth) acrylate has a weight average molecular weight of preferably 500 to 2,000, more preferably 700 to 1,000. When one molecule of the crosslinking agent (C1) has two or more photopolymerizable unsaturated bonds, the photopolymerizable unsaturated bonds in the same molecule of the crosslinking agent (C1) are polymerized. It tends to be easy. Therefore, the reaction between the photopolymerizable unsaturated bond of the cross-linking agent (C1) and the photopolymerizable unsaturated bond of other molecules is unlikely to occur, and the adhesive force of the adhesive tape is reduced by the energy ray irradiation to the adhesive layer. May be less effective. Therefore, what has a preferable photopolymerizable unsaturated bond in 1 molecule as a crosslinking agent (C1) is preferable. Examples of the urethane (meth) acrylate used as the cross-linking agent (C1) include “EBECRYL 4150” manufactured by Daicel Ornex.
In this embodiment, by using the crosslinking agent (C1) having a photopolymerizable unsaturated bond, the urethane resin (A) has a photopolymerizable unsaturated bond in the pressure-sensitive adhesive layer.
 水酸基及び光重合性不飽和結合を含有する架橋剤としては、例えば、側鎖に水酸基及び(メタ)アクリロイル基を有するアクリル重合体が挙げられる。この場合には、架橋剤(C1)により架橋されたウレタン系樹脂(A)は、いわゆるアクリルウレタン樹脂となるが、本発明のウレタン系樹脂(A)にはこのようなアクリルウレタン樹脂も含まれるものとする。 Examples of the crosslinking agent containing a hydroxyl group and a photopolymerizable unsaturated bond include an acrylic polymer having a hydroxyl group and a (meth) acryloyl group in the side chain. In this case, the urethane resin (A) crosslinked with the crosslinking agent (C1) is a so-called acrylic urethane resin, but the urethane resin (A) of the present invention includes such an acrylic urethane resin. Shall.
 光重合性不飽和結合を含有する架橋剤(C1)の配合量は、ウレタン系樹脂(A)100質量部に対して、5~60質量部が好ましく、10~50質量部がより好ましく、15~45質量部がさらに好ましい。架橋剤(C1)をこのような配合量とすることで、粘着剤層の架橋密度を良好にしつつも、ウレタン系樹脂(A)に適切な量の光重合性不飽和結合を導入することが可能である。 The amount of the crosslinking agent (C1) containing a photopolymerizable unsaturated bond is preferably 5 to 60 parts by mass, more preferably 10 to 50 parts by mass with respect to 100 parts by mass of the urethane resin (A). More preferred is ~ 45 parts by mass. By setting the crosslinking agent (C1) to such a blending amount, it is possible to introduce an appropriate amount of a photopolymerizable unsaturated bond into the urethane resin (A) while improving the crosslinking density of the pressure-sensitive adhesive layer. Is possible.
 また、粘着剤組成物は、架橋剤(C)として、光重合性不飽和結合を含有しない架橋剤(C2)を含有していてもよい。架橋剤(C2)としては、ウレタンポリマー(A’)が水酸基を有する場合には、上記で列挙したウレタンポリマー(A’)を合成するために使用されるポリイソシアネート化合物から適宜選択して使用可能である。また、架橋前のポリマー(A’)がイソシアネート基を有する場合には、公知のポリオールを架橋剤(C2)として使用することができる。粘着剤組成物は、架橋剤(C2)を含有することで、粘着剤層の架橋密度を十分に高くすることが可能である。 The pressure-sensitive adhesive composition may contain a crosslinking agent (C2) that does not contain a photopolymerizable unsaturated bond as the crosslinking agent (C). As the crosslinking agent (C2), when the urethane polymer (A ′) has a hydroxyl group, it can be appropriately selected from the polyisocyanate compounds used for synthesizing the urethane polymer (A ′) listed above. It is. When the polymer (A ′) before crosslinking has an isocyanate group, a known polyol can be used as the crosslinking agent (C2). The pressure-sensitive adhesive composition can sufficiently increase the cross-linking density of the pressure-sensitive adhesive layer by containing the cross-linking agent (C2).
 架橋剤(C)は、全てが光重合性不飽和結合を有する架橋剤(C1)であってもよいし、全てが光重合性不飽和結合を有しない架橋剤(C2)であってもよいが、光重合性不飽和結合を有する架橋剤(C1)を含有することが好ましく、架橋剤(C1)と架橋剤(C2)の両方を含有することがより好ましい。 All of the crosslinking agents (C) may be crosslinking agents (C1) having a photopolymerizable unsaturated bond, or all may be crosslinking agents (C2) having no photopolymerizable unsaturated bond. However, it is preferable to contain the crosslinking agent (C1) which has a photopolymerizable unsaturated bond, and it is more preferable to contain both a crosslinking agent (C1) and a crosslinking agent (C2).
 光重合性不飽和結合を含有しない架橋剤(C2)の配合量は、ウレタン系樹脂(A)100質量部に対して、0.2~15質量部が好ましく、0.5~10質量部がより好ましい。また、上記したように、架橋剤(C1)と併用する場合には、光重合性不飽和結合を含有しない架橋剤(C2)の配合量は、比較的少なくてもよく、ウレタン系樹脂(A)100質量部に対して、0.2~5質量部が好ましく、0.5~2質量部がより好ましい。 The blending amount of the crosslinking agent (C2) containing no photopolymerizable unsaturated bond is preferably 0.2 to 15 parts by mass, and 0.5 to 10 parts by mass with respect to 100 parts by mass of the urethane resin (A). More preferred. Further, as described above, when used in combination with the crosslinking agent (C1), the blending amount of the crosslinking agent (C2) containing no photopolymerizable unsaturated bond may be relatively small, and the urethane resin (A ) It is preferably 0.2 to 5 parts by mass, more preferably 0.5 to 2 parts by mass with respect to 100 parts by mass.
(化合物(D))
 粘着剤組成物は、架橋剤(C)を含有する場合、光重合性不飽和結合と、架橋剤(C)と反応可能な反応性官能基とを有する化合物(D)をさらに含有することが好ましい。反応性官能基を有する化合物(D)は、ウレタンポリマー(A’)が架橋剤(C)と反応してウレタンポリマー鎖を形成するときに、架橋剤(C)に反応するものである。
 粘着剤組成物が化合物(D)を含有すると、化合物(D)によってウレタン系樹脂(A)に光重合性不飽和結合が導入されることになる。そのため、粘着剤層をエネルギー線により硬化する際、粘着剤層の粘着力が低減しやすくなり、糊残り等もさらに防止しやすくなる。また、経時で粘着テープの性能が安定しやすくなるという効果もある。
(Compound (D))
When the pressure-sensitive adhesive composition contains a crosslinking agent (C), the pressure-sensitive adhesive composition may further contain a compound (D) having a photopolymerizable unsaturated bond and a reactive functional group capable of reacting with the crosslinking agent (C). preferable. The compound (D) having a reactive functional group reacts with the crosslinking agent (C) when the urethane polymer (A ′) reacts with the crosslinking agent (C) to form a urethane polymer chain.
When the pressure-sensitive adhesive composition contains the compound (D), a photopolymerizable unsaturated bond is introduced into the urethane resin (A) by the compound (D). Therefore, when the pressure-sensitive adhesive layer is cured with energy rays, the pressure-sensitive adhesive force of the pressure-sensitive adhesive layer is easily reduced, and adhesive residue and the like are further easily prevented. In addition, there is also an effect that the performance of the adhesive tape is easily stabilized over time.
 化合物(D)に含有される反応性官能基としては、イソシアネート基や、水酸基が挙げられる。また、化合物(D)としては、水酸基と(メタ)アクリロイル基とを有する(メタ)アクリレートモノマーが挙げられる。化合物(D)の1分子中における(メタ)アクリロイル基(すなわち、光重合性不飽和結合)の数は、1分子中に2官能以上含まれることが好ましく、より好ましくは2~5官能である。
 成分(D)として使用される(メタ)アクリレートモノマーは、分子量が150~3,000であることが好ましく、より好ましくは200~2,000となるものである。
 成分(D)として使用される(メタ)アクリレートモノマーとしては、多価アルコールと、(メタ)アクリル酸の部分エステルである多官能(メタ)アクリル酸エステルが挙げられる。ここで、多価アルコールの炭素数は4~10が好ましい。具体的な化合物としては、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等が例示されるが、これらの中ではペンタエリスリトールトリ(メタ)アクリレートが好ましい。
Examples of the reactive functional group contained in the compound (D) include an isocyanate group and a hydroxyl group. Moreover, as a compound (D), the (meth) acrylate monomer which has a hydroxyl group and a (meth) acryloyl group is mentioned. The number of (meth) acryloyl groups (that is, photopolymerizable unsaturated bonds) in one molecule of compound (D) is preferably 2 or more, more preferably 2 to 5 in one molecule. .
The (meth) acrylate monomer used as component (D) preferably has a molecular weight of 150 to 3,000, more preferably 200 to 2,000.
Examples of the (meth) acrylate monomer used as the component (D) include polyhydric alcohols and polyfunctional (meth) acrylic acid esters that are partial esters of (meth) acrylic acid. Here, the carbon number of the polyhydric alcohol is preferably 4 to 10. Specific examples of the compound include pentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, and dipentaerythritol penta (meth) acrylate. Among these, pentaerythritol tri (meth) acrylate is exemplified. Is preferred.
 化合物(D)の配合量は、ウレタン系樹脂(A)100質量部に対して、1~30質量部が好ましく、2~20質量部がより好ましく、3~15質量部であることがさらに好ましい。化合物(D)をこのような範囲で配合することで、粘着剤層の粘着性能に悪影響を及ぼすことなく、エネルギー線の硬化により粘着力を低減させやすくなり、糊残りも防止しやすくなる。また、化合物(D)は、エネルギー線硬化性化合物(B)が(メタ)アクリレートモノマー(B1)を含有する場合に、通常使用されることが好ましい。このように、化合物(D)と(メタ)アクリレートモノマー(B1)を併用すると、本発明の効果をより発揮しやすくなる。 The compounding amount of the compound (D) is preferably 1 to 30 parts by mass, more preferably 2 to 20 parts by mass, and further preferably 3 to 15 parts by mass with respect to 100 parts by mass of the urethane resin (A). . By mix | blending a compound (D) in such a range, without having a bad influence on the adhesive performance of an adhesive layer, it becomes easy to reduce adhesive force by hardening of an energy ray, and it becomes easy to prevent adhesive residue. Moreover, it is preferable that a compound (D) is normally used when an energy-beam curable compound (B) contains a (meth) acrylate monomer (B1). Thus, when the compound (D) and the (meth) acrylate monomer (B1) are used in combination, the effects of the present invention are more easily exhibited.
(エネルギー線重合開始剤(E))
 粘着剤組成物は、さらにエネルギー線重合開始剤(E)を含有することが好ましい。粘着剤層は、エネルギー線重合開始剤(E)を含有することで、エネルギー線の照射により容易に硬化することが可能になる。エネルギー線重合開始剤(E)としては、上記で列挙した中間層用樹脂組成物に使用され得る光重合開始剤から適宜選択して使用可能である。
 エネルギー線重合開始剤(E)の配合量は、光重合性不飽和結合を有しているウレタンポリマー(A’)、架橋剤(C1)、エネルギー線硬化性化合物(B)、化合物(D)等の光重合性不飽和結合を有する化合物の合計100質量部に対して、好ましくは0.05~25質量部、より好ましくは0.1~20質量部、更に好ましくは0.3~15質量部である。
(Energy beam polymerization initiator (E))
The pressure-sensitive adhesive composition preferably further contains an energy ray polymerization initiator (E). The pressure-sensitive adhesive layer can be easily cured by irradiation with energy rays by containing the energy ray polymerization initiator (E). The energy ray polymerization initiator (E) can be appropriately selected from photopolymerization initiators that can be used in the resin compositions for intermediate layers listed above.
The compounding amount of the energy ray polymerization initiator (E) is a urethane polymer (A ′) having a photopolymerizable unsaturated bond, a crosslinking agent (C1), an energy ray curable compound (B), and a compound (D). The total amount of the compounds having a photopolymerizable unsaturated bond such as 100 parts by mass is preferably 0.05 to 25 parts by mass, more preferably 0.1 to 20 parts by mass, still more preferably 0.3 to 15 parts by mass. Part.
 なお、粘着剤組成物は、ウレタン系粘着剤に従来使用されているその他添加剤を含有していてもよく、炭酸カルシウム、酸化チタン等の充填剤、着色剤、酸化防止剤、消泡剤、光安定剤等を含有していてもよい。
 粘着剤層の厚さは、ウエハ表面のバンプ高さ等、粘着テープが貼付される被着面の表面状態に応じて適宜調整することができるが、好ましくは2~150μm、より好ましくは5~100μm、更に好ましくは8~50μmである。
The pressure-sensitive adhesive composition may contain other additives conventionally used for urethane-based pressure-sensitive adhesives, such as fillers such as calcium carbonate and titanium oxide, colorants, antioxidants, antifoaming agents, It may contain a light stabilizer or the like.
The thickness of the pressure-sensitive adhesive layer can be appropriately adjusted according to the surface state of the adherend surface to which the pressure-sensitive adhesive tape is applied, such as the bump height on the wafer surface, but is preferably 2 to 150 μm, more preferably 5 to The thickness is 100 μm, more preferably 8 to 50 μm.
<剥離材>
 粘着剤層の上に設けられる剥離材や、後述する製造方法の工程で使用される剥離材は、片面剥離処理された剥離シートや、両面剥離処理された剥離シート等が用いられ、剥離材用の基材上に剥離剤を塗布したもの等が挙げられる。
 剥離材用基材としては、例えば、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂等のポリエステル樹脂フィルム、ポリプロピレン樹脂、ポリエチレン樹脂等のポリオレフィン樹脂フィルム等のプラスチックフィルム等が挙げられる。
 剥離剤としては、例えば、シリコーン系樹脂、オレフィン系樹脂、イソプレン系樹脂、ブタジエン系樹脂等のゴム系エラストマー、長鎖アルキル系樹脂、アルキド系樹脂、フッ素系樹脂等が挙げられる。
 また、剥離材の厚みは、特に限定されないが、好ましくは5~200μm、より好ましくは10~120μmである。
<Release material>
The release material provided on the pressure-sensitive adhesive layer and the release material used in the process of the production method described below are a release sheet that has been subjected to a single-sided release process, a release sheet that has been subjected to a double-sided release process, etc. The thing etc. which apply | coated the release agent on the base material of this are mentioned.
Examples of the release material substrate include polyester film such as polyethylene terephthalate resin, polybutylene terephthalate resin, polyethylene naphthalate resin, and plastic film such as polyolefin resin film such as polypropylene resin and polyethylene resin.
Examples of the release agent include rubber elastomers such as silicone resins, olefin resins, isoprene resins, and butadiene resins, long chain alkyl resins, alkyd resins, and fluorine resins.
The thickness of the release material is not particularly limited, but is preferably 5 to 200 μm, more preferably 10 to 120 μm.
[粘着テープの製造方法]
 本発明の粘着テープは、その製造方法が特に制限されず、公知の方法により製造することができる。
 中間層は、例えば、基材の一方の面に、中間層用樹脂組成物の溶液を直接塗布し塗布膜を形成した後、必要に応じて乾燥し、かつ硬化処理を行って形成することができる。また、中間層は、剥離材の剥離処理面に、中間層用樹脂組成物の溶液を塗布し塗布膜を形成した後、必要に応じて乾燥し、半硬化処理を行うことで剥離材上に半硬化層を形成し、この半硬化層を基材に貼り合わせ、半硬化層を完全に硬化して形成してもよい。この際、剥離材は、半硬化層を完全に硬化する前、又は硬化した後に適宜除去すればよい。なお、中間層の硬化は、塗布膜に、エネルギー線を照射して、重合硬化させることが好ましい。エネルギー線は、紫外線であることが好ましい。また、中間層をオレフィン系材料を用いて形成する場合には、押出し成型等により中間層を形成してもよい。
[Production method of adhesive tape]
The production method of the pressure-sensitive adhesive tape of the present invention is not particularly limited, and can be produced by a known method.
The intermediate layer may be formed, for example, by directly applying a solution of the resin composition for the intermediate layer on one surface of the substrate to form a coating film, and then drying and curing treatment as necessary. it can. In addition, the intermediate layer is formed on the release material by applying a solution of the resin composition for the intermediate layer to the release treatment surface of the release material to form a coating film, and then drying and semi-curing as necessary. A semi-cured layer may be formed, this semi-cured layer may be bonded to a substrate, and the semi-cured layer may be completely cured. At this time, the release material may be appropriately removed before or after the semi-cured layer is completely cured. The intermediate layer is preferably cured by polymerizing by irradiating the coating film with energy rays. The energy ray is preferably ultraviolet light. Moreover, when forming an intermediate | middle layer using an olefin type material, you may form an intermediate | middle layer by extrusion molding etc.
 また、粘着剤層は、粘着剤組成物を塗布した後、粘着剤組成物を加熱して架橋し、かつ必要に応じて乾燥して、形成することが好ましい。この際、粘着剤組成物は、中間層又は基材上に直接塗布してもよいし、剥離材の剥離処理面に塗布して粘着剤層を形成し、その後、中間層又は基材の上に粘着剤層を貼り合わせて形成してもよい。粘着剤層の上に配置される剥離材は必要に応じて剥離してもよい。 The pressure-sensitive adhesive layer is preferably formed by applying the pressure-sensitive adhesive composition, heating and cross-linking the pressure-sensitive adhesive composition, and drying as necessary. At this time, the pressure-sensitive adhesive composition may be applied directly to the intermediate layer or the base material, or may be applied to the release treatment surface of the release material to form a pressure-sensitive adhesive layer, and then the intermediate layer or the base material. You may form by sticking an adhesive layer together. The release material disposed on the pressure-sensitive adhesive layer may be peeled off as necessary.
 中間層や粘着剤層を形成する際には、中間層用樹脂組成物もしくは粘着剤組成物に、さらに有機溶媒を配合して、中間層用樹脂組成物もしくは粘着剤組成物の希釈液としてもよい。用いる有機溶媒としては、例えば、メチルエチルケトン、アセトン、酢酸エチル、テトラヒドロフラン、ジオキサン、シクロヘキサン、n-ヘキサン、トルエン、キシレン、n-プロパノール、イソプロパノール等が挙げられる。
 なお、これらの有機溶媒は、中間層用樹脂組成物もしくは粘着剤組成物中に含まれる各成分の合成時に使用された有機溶媒をそのまま用いてもよいし、それ以外の1種以上の有機溶媒を加えてもよい。
 中間層用樹脂組成物もしくは粘着剤組成物は、公知の塗布方法により塗布することができる。塗布方法としては、例えば、スピンコート法、スプレーコート法、バーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法、グラビアコート法等が挙げられる。
When forming the intermediate layer or the pressure-sensitive adhesive layer, an organic solvent may be further added to the resin composition for the intermediate layer or the pressure-sensitive adhesive composition, so that the intermediate layer resin composition or the pressure-sensitive adhesive composition may be diluted. Good. Examples of the organic solvent to be used include methyl ethyl ketone, acetone, ethyl acetate, tetrahydrofuran, dioxane, cyclohexane, n-hexane, toluene, xylene, n-propanol, isopropanol and the like.
In addition, as these organic solvents, the organic solvent used at the time of the synthesis | combination of each component contained in the resin composition for intermediate | middle layers or an adhesive composition may be used as it is, and 1 or more types of other organic solvents other than that may be used. May be added.
The intermediate layer resin composition or the pressure-sensitive adhesive composition can be applied by a known application method. Examples of the coating method include spin coating, spray coating, bar coating, knife coating, roll coating, blade coating, die coating, and gravure coating.
[粘着テープの使用方法]
 本発明の粘着テープは、各種ワークに貼付し、ワークを加工する際に使用するものであって、凹凸や突起があるワーク面に貼付して使用することが好ましい。
 また、半導体ウエハ表面、特にバンプが形成されたウエハ表面に貼付して、半導体ウエハ表面保護用粘着テープとして使用することがより好ましい。また、粘着テープは、半導体ウエハ表面に貼付して、その後のウエハ裏面研削時に、ウエハ表面に形成された回路を保護するバッググラインドテープとして使用することがさらに好ましい。本発明の粘着テープが中間層を有する場合には、ウエハ表面にバンプ等により高低差があっても埋め込み性が良好であるため、ウエハ表面の保護性能が良好となる。この場合、粘着テープを半導体ウエハの表面に貼付するときの粘着テープの温度は、例えば、40~80℃程度であり、好ましくは50~70℃である。
[How to use adhesive tape]
The pressure-sensitive adhesive tape of the present invention is used when affixing to various workpieces and processing the workpiece, and is preferably affixed to a workpiece surface having irregularities and protrusions.
Moreover, it is more preferable to affix to the semiconductor wafer surface, especially the wafer surface in which the bump was formed, and to use as a semiconductor wafer surface protection adhesive tape. Further, the adhesive tape is more preferably used as a bag grind tape that is attached to the surface of a semiconductor wafer and protects a circuit formed on the wafer surface during subsequent grinding of the wafer back surface. When the pressure-sensitive adhesive tape of the present invention has an intermediate layer, the embedding property is good even if there is a height difference due to bumps or the like on the wafer surface, so that the protection performance of the wafer surface is good. In this case, the temperature of the adhesive tape when the adhesive tape is applied to the surface of the semiconductor wafer is, for example, about 40 to 80 ° C., and preferably 50 to 70 ° C.
 本発明においては粘着剤層がエネルギー線硬化型であり、半導体ウエハ等のワーク表面に貼付された粘着テープは、エネルギー線が照射されてエネルギー線硬化された後、ワーク表面から剥離されるものである。したがって、粘着テープは、粘着力が低下させられてから剥離されるため、その剥離性が良好となる。また、上記のように硬化後の粘着テープは剥離される際に糊残りが発生しにくくなる。
 なお、粘着テープは、半導体ウエハ用に使用する場合、バックグラインドシートに限定されず、その他の用途に使用することも可能である。例えば、粘着テープは、ウエハ裏面に貼付し、ウエハをダイシングする際にウエハを保持するダイシングシートとして使用してもよい。この場合のウエハは、貫通電極が形成されているもの等、ウエハ裏面にバンプ等の突起や凹凸が形成されているものであってもよい。
In the present invention, the pressure-sensitive adhesive layer is energy-ray curable, and the pressure-sensitive adhesive tape attached to the work surface of a semiconductor wafer or the like is peeled off from the work surface after being irradiated with energy rays and cured with energy rays. is there. Therefore, since the adhesive tape is peeled after the adhesive force is lowered, the peelability is improved. Further, as described above, the adhesive tape after curing is less likely to have adhesive residue when peeled off.
The adhesive tape is not limited to a back grind sheet when used for a semiconductor wafer, and can be used for other purposes. For example, the adhesive tape may be attached to the back surface of the wafer and used as a dicing sheet that holds the wafer when the wafer is diced. In this case, the wafer may be a wafer in which protrusions such as bumps or irregularities are formed on the back surface of the wafer, such as a wafer in which through electrodes are formed.
 以下、実施例に基づき本発明をさらに詳細に説明するが、本発明はこれらの例によって制限されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
 本発明における測定方法、評価方法は以下のとおりである。
[重量平均分子量(Mw)、数平均分子量(Mn)]
 ゲル浸透クロマトグラフ装置(製品名「HLC-8220」、東ソー株式会社製)を用いて、下記の条件下で測定し、標準ポリスチレン換算にて測定した値を用いた。
(測定条件)
カラム:「TSK guard column HXL-H」「TSK gel GMHXL(×2)」「TSK gel G2000HXL」(いずれも東ソー株式会社製)
カラム温度:40℃  展開溶媒:テトラヒドロフラン  流速:1.0mL/min
The measurement method and evaluation method in the present invention are as follows.
[Weight average molecular weight (Mw), number average molecular weight (Mn)]
Using a gel permeation chromatograph (product name “HLC-8220”, manufactured by Tosoh Corporation), measurement was performed under the following conditions, and values measured in terms of standard polystyrene were used.
(Measurement condition)
Column: “TSK guard column HXL-H” “TSK gel GMHXL (× 2)” “TSK gel G2000HXL” (both manufactured by Tosoh Corporation)
Column temperature: 40 ° C. Developing solvent: Tetrahydrofuran Flow rate: 1.0 mL / min
[損失正接(tanδ)]
 各実施例及び比較例で用いた中間層用樹脂組成物を、ポリエチレンテレフタレートフィルム系剥離フィルム(リンテック株式会社製、製品名「SP-PET381031」、厚み38μm)上にファウンテンダイ方式で塗布して塗膜を形成した。そして、塗膜側から紫外線を照射して半硬化層を形成した。
 なお、紫外線照射は、紫外線照射装置として、ベルトコンベア式紫外線照射装置(アイグラフィクス社製、製品名「ECS-4011GX」)を用い、紫外線源として、高圧水銀ランプ(アイグラフィクス社製、製品名「H04-L41」)を使用し、照射条件として光波長365nmの照度112mW/cm、光量177mJ/cm(アイグラフィクス社製の紫外線光量計「UVPF-A1」にて測定)の条件下にて行った。
 形成した半硬化層の上に、ポリエチレンテレフタレートフィルム系剥離フィルム(リンテック株式会社製、製品名「SP-PET381031」、厚み38μm)をラミネートし、更に紫外線照射(上記の紫外線照射装置、紫外線源を用い、照射条件として、照度271mW/cm、光量1,200mJ/cm)を行い、完全に硬化させて、両面に剥離フィルムが貼付された厚さ200μmの中間層を形成した。
 このように形成した中間層を5つ準備し、PET系剥離フィルムを剥離して剥離面同士を合わせて順次積層することで中間層積層体(厚み1,000μm)を調製した。
 次に、得られた中間層積層体を直径10mmの円形に打ち抜き、粘弾性を測定するための試料を得た。粘弾性測定装置(ティー・エイ・インスツルメント社製、製品名「ARES」)により、上記の試料に周波数1Hzのひずみを与え、4℃/分の昇温速度で-50~150℃の貯蔵弾性率(G’)を測定し、50℃における損失正接(tanδ)を得た。
[Loss tangent (tan δ)]
The resin composition for the intermediate layer used in each Example and Comparative Example was applied by applying to a polyethylene terephthalate film release film (manufactured by Lintec Corporation, product name “SP-PET 381031”, thickness 38 μm) by a fountain die method. A film was formed. And the ultraviolet-ray was irradiated from the coating-film side, and the semi-hardened layer was formed.
For ultraviolet irradiation, a belt conveyor type ultraviolet irradiation device (product name “ECS-4011GX”) is used as an ultraviolet irradiation device, and a high-pressure mercury lamp (product name “Igraphics”, product name “ H04-L41 "), and the irradiation conditions are as follows: illuminance of 112 mW / cm 2 with a light wavelength of 365 nm, light amount of 177 mJ / cm 2 (measured with an ultraviolet light meter“ UVPF-A1 ”manufactured by I-Graphics) went.
On the formed semi-cured layer, a polyethylene terephthalate film-based release film (product name “SP-PET 381031”, thickness 38 μm, manufactured by Lintec Co., Ltd.) is laminated, and further irradiated with ultraviolet rays (using the above-described ultraviolet irradiation device and ultraviolet source). As an irradiation condition, an illuminance of 271 mW / cm 2 and a light amount of 1,200 mJ / cm 2 ) were performed and cured completely to form an intermediate layer having a thickness of 200 μm with a release film attached to both sides.
Five intermediate layers formed in this way were prepared, and an intermediate layer laminate (thickness: 1,000 μm) was prepared by peeling the PET-based release film and aligning the release surfaces and sequentially laminating them.
Next, the obtained intermediate layer laminate was punched into a circle with a diameter of 10 mm to obtain a sample for measuring viscoelasticity. Using a viscoelasticity measuring device (manufactured by TA Instruments Inc., product name “ARES”), the above sample was strained at a frequency of 1 Hz and stored at −50 to 150 ° C. at a heating rate of 4 ° C./min. The elastic modulus (G ′) was measured, and the loss tangent (tan δ) at 50 ° C. was obtained.
[破断応力]
 両面にポリエチレンテレフタレート系剥離フィルム(リンテック株式会社製、製品名「SP-PET381031」)が貼付された粘着剤層(厚み200μm)を調製した。ここでは、実施例、比較例と同様の方法で、一方の剥離フィルムの上に厚さを40μmに変更して粘着剤層を形成し、その後、粘着剤層に他方の剥離フィルムを貼付した。このような剥離フィルムに挟まれた粘着剤層を5枚準備し、一方の剥離フィルムを剥離して露出させた粘着剤層の表面同士を対向させて積層させた。この手順を繰り返していくことにより、5層の粘着剤層が積層された厚み200μmの粘着剤層を得た。2枚の剥離フィルムの間に挟まれた粘着剤層の積層体を、リンテック株式会社製UV照射装置「RAD-2000m/12」にて照度220mW/cm、照射速度15mm/秒で紫外線を照射した後、粘着剤層の硬化物を15mm×150mmに切り出した。次いで、両端25mm部分にフィルム引張り用のラベルを貼付し、測定対象部分が15mm×100mmの短冊型のサンプルを作製した。株式会社島津製作所製「オートグラフAG-IS500N」にて引張り速度200mm/分で測定した時の破断応力を測定した。
[Breaking stress]
A pressure-sensitive adhesive layer (thickness: 200 μm) having a polyethylene terephthalate release film (product name: “SP-PET381031” manufactured by Lintec Corporation) attached to both surfaces was prepared. Here, in the same manner as in Examples and Comparative Examples, the pressure-sensitive adhesive layer was formed on one release film by changing the thickness to 40 μm, and then the other release film was attached to the pressure-sensitive adhesive layer. Five pressure-sensitive adhesive layers sandwiched between such release films were prepared, and the surfaces of the pressure-sensitive adhesive layers exposed by peeling one release film were opposed to each other and laminated. By repeating this procedure, a pressure-sensitive adhesive layer having a thickness of 200 μm in which five pressure-sensitive adhesive layers were laminated was obtained. The laminate of the pressure-sensitive adhesive layer sandwiched between two release films was irradiated with ultraviolet rays at an illuminance of 220 mW / cm and an irradiation speed of 15 mm / sec using a UV irradiation apparatus “RAD-2000 m / 12” manufactured by Lintec Corporation. Then, the hardened | cured material of the adhesive layer was cut out to 15 mm x 150 mm. Next, labels for film tension were affixed to the 25 mm portions at both ends, and a strip-shaped sample having a measurement target portion of 15 mm × 100 mm was produced. The rupture stress was measured with “Autograph AG-IS500N” manufactured by Shimadzu Corporation at a tensile speed of 200 mm / min.
[エネルギー線照射前の粘着力]
 実施例及び比較例の粘着テープを25mm幅に均等に切断し、被着体であるシリコンミラーウエハの上に粘着テープを仮置きし、その上を重さ1kgのロールを1往復させ、自重による負荷をかけることにより貼付した。貼付後、23℃、相対湿度50%環境下で1時間保管した後に、引張試験機(オリエンテック社製,製品名「テンシロン」)を用いて、剥離角度180°、剥離速度300mm/分にて粘着テープを剥離したときの粘着力を測定した。
[エネルギー線照射後の粘着力]
 実施例及び比較例の粘着テープを25mm幅に均等に切断し、被着体であるシリコンミラーウエハの上に粘着テープを仮置きし、その上を重さ1kgのロールを1往復させ、自重による負荷をかけることにより貼付した。貼付後、23℃、相対湿度50%環境下で1時間保管し、リンテック株式会社製UV照射装置「RAD-2000m/12」にて照度220mW/cm、照射速度15mm/秒として粘着テープ側から紫外線を照射した後、23℃、相対湿度50%環境下に5分放置させた後に、引張試験機(オリエンテック社製,製品名「テンシロン」)を用いて、剥離角度180°、剥離速度300mm/分にて粘着テープを剥離したときの粘着力を測定した。
[Adhesive strength before energy beam irradiation]
The pressure-sensitive adhesive tapes of Examples and Comparative Examples are evenly cut to a width of 25 mm, and the pressure-sensitive adhesive tape is temporarily placed on the silicon mirror wafer that is the adherend, and a 1 kg roll is reciprocated once on the adhesive tape. Affixed by applying a load. After sticking, after storing for 1 hour in an environment of 23 ° C. and 50% relative humidity, using a tensile tester (Orientec, product name “Tensilon”) at a peeling angle of 180 ° and a peeling speed of 300 mm / min. The adhesive strength when the adhesive tape was peeled was measured.
[Adhesive strength after energy beam irradiation]
The pressure-sensitive adhesive tapes of Examples and Comparative Examples are evenly cut to a width of 25 mm, and the pressure-sensitive adhesive tape is temporarily placed on the silicon mirror wafer that is the adherend, and a 1 kg roll is reciprocated once on the adhesive tape. Affixed by applying a load. After sticking, it is stored for 1 hour in an environment of 23 ° C and 50% relative humidity, and UV light is applied from the adhesive tape side with an illumination intensity of 220 mW / cm and an irradiation speed of 15 mm / sec using a UV irradiation device “RAD-2000m / 12” manufactured by Lintec Corporation. After being irradiated for 5 minutes in an environment of 23 ° C. and 50% relative humidity, a tensile tester (product name “Tensilon”, manufactured by Orientec Co., Ltd.) was used. The adhesive strength when the adhesive tape was peeled in minutes was measured.
[埋込性評価]
 バンプ高さ250μm、ピッチ500μm、平面視における直径300μmの球状バンプ付きのウエハ(Waltz社製、8インチウエハ、バンプ仕様Sn/Ag/Cu=96.5/3/0.5質量%、ウエハ表面材質SiO2)に実施例及び比較例で作製した粘着テープを、リンテック株式会社製ラミネーター「RAD-3510F/12」を用いて貼付した。なお、貼付する際、装置のラミネートテーブルとラミネートロールを60℃に設定した。ラミネート後、リンテック株式会社製UV照射装置「RAD-2000m/12」にて照度220mW/cm、照射速度15mm/秒で粘着テープ側から紫外線を照射した。こうして得られた粘着テープが貼付された評価ウエハを、デジタル顕微鏡(株式会社キーエンス製、製品名「VHX-1000」)を用いて基材側からバンプ周辺に生じた円形の空隙の直径を測定し、以下の式により埋込性を算出した。
    埋込性=空隙の直径/バンプ径×100[%]
 算出した埋込性を110%以上130%未満の適度な空隙を有しているものを最良として、以下の評価基準で評価した。
   A:埋込性=110%以上130%未満
   B:埋込性=130%以上140%未満
   C:埋込性=110%未満、又は140%以上
[Embedment evaluation]
Wafer with spherical bumps having a bump height of 250 μm, a pitch of 500 μm, and a diameter of 300 μm in plan view (manufactured by Waltz, 8-inch wafer, bump specification Sn / Ag / Cu = 96.5 / 3 / 0.5 mass%, wafer surface The adhesive tapes produced in Examples and Comparative Examples were attached to the material SiO 2 ) using a laminator “RAD-3510F / 12” manufactured by Lintec Corporation. In addition, when sticking, the laminating table and laminating roll of the apparatus were set to 60 degreeC. After the lamination, UV light was irradiated from the adhesive tape side at an illumination intensity of 220 mW / cm and an irradiation speed of 15 mm / sec with a UV irradiation apparatus “RAD-2000 m / 12” manufactured by Lintec Corporation. The evaluation wafer with the adhesive tape obtained in this way was measured for the diameter of the circular void generated around the bump from the base material side using a digital microscope (manufactured by Keyence Corporation, product name “VHX-1000”). The embedding property was calculated by the following formula.
Embeddability = void diameter / bump diameter × 100 [%]
The calculated embedding property was evaluated according to the following evaluation criteria, with the best embedding having an appropriate void of 110% or more and less than 130%.
A: Embedding property = 110% or more and less than 130% B: Embedment property = 130% or more and less than 140% C: Embedment property = 110% or less, or 140% or more
[バンプへの糊残り評価]
 上記の埋込性評価試験と同様に作成した、粘着テープが貼付された評価ウエハから、23℃、相対湿度50%の環境下で引張試験機(オリエンテック社製,製品名「テンシロン」)にて引張速度120mm/分で粘着テープを剥離した。剥離後、ウエハを株式会社キーエンス製電子顕微鏡「VE-9800」にて、ウエハのバンプ部分を観察し、糊残りの有無を確認した。
[Evaluation of adhesive residue on bumps]
From an evaluation wafer prepared in the same manner as the above-described embedding evaluation test and attached with an adhesive tape, in a tensile tester (Orientec, product name “Tensilon”) in an environment of 23 ° C. and 50% relative humidity. Then, the adhesive tape was peeled off at a pulling speed of 120 mm / min. After peeling, the wafer was observed with an electron microscope “VE-9800” manufactured by Keyence Co., Ltd., and the bump portion of the wafer was observed to confirm the presence or absence of adhesive residue.
[中間層付基材の作製]
 単官能ウレタンアクリレート40質量部、イソボニルアクリレート(IBXA)45質量部、ヒドロキシプロピルアクリレート(HPA)15質量部、ペンタエリスリトールテトラキス(3-メルカプトブチレート)(昭和電工株式会社、製品名「カレンズMTPE1」、第2級4官能のチオール含有化合物、固形分濃度100質量部%)3.5質量部、架橋剤1.8質量部、及び光重合開始剤としての2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン(BASF社製、製品名「ダロキュア1173」、固形分濃度100質量部%)1.0質量部を配合して、中間層用樹脂組成物を調整した。この中間層用樹脂組成物を、ポリエチレンテレフタレートフィルム系剥離フィルム(リンテック株式会社製、製品名「SP-PET381031」、厚み38μm)上にファウンテンダイ方式で、塗布して塗膜を形成した。
 そして、塗膜側から紫外線を照射して半硬化層を形成した。なお、紫外線照射は、紫外線照射装置として、ベルトコンベア式紫外線照射装置(アイグラフィクス社製、製品名「ECS-401GGX」)を用い、紫外線源として高圧水銀ランプ(アイグラフィクス社製、製品名「H04-L41」)を使用し、照射条件として光波長365nmの照度112mW/cm2、光量177mJ/cm2(アイグラフィクス社製、製品名「UVPF-A1」にて測定)の条件下にて行った。
 形成した半硬化層の上に、ポリエチレンテレフタレート(PET)系フィルム(東洋紡株式会社製、製品名「コスモシャインA4100」、厚み50μm)からなる基材をラミネートしてPETフィルム側から更に紫外線照射(上記の紫外線照射装置、紫外線源を用い、照射条件として、照度271mW/cm2、光量1200mJ/cm2)を行い、完全に硬化させて、基材のPETフィルム上に厚さ300μmの中間層を形成し、中間層付基材を得た。
 なお、周波数1Hzで測定した50℃における中間層の損失正接(tanδ)は、1.92であった。
 なお、以下の実施例、比較例において各質量部は、希釈液で希釈されているものについては固形分換算で示したものである。
[Production of substrate with intermediate layer]
Monofunctional urethane acrylate 40 parts by mass, isobornyl acrylate (IBXA) 45 parts by mass, hydroxypropyl acrylate (HPA) 15 parts by mass, pentaerythritol tetrakis (3-mercaptobutyrate) (Showa Denko Co., Ltd., product name “Karenz MTPE1” , Secondary tetrafunctional thiol-containing compound, solid content concentration 100 parts by mass) 3.5 parts by mass, crosslinking agent 1.8 parts by mass, and 2-hydroxy-2-methyl-1- as a photopolymerization initiator An intermediate layer resin composition was prepared by blending 1.0 part by weight of phenyl-propan-1-one (manufactured by BASF, product name “Darocur 1173”, solid content concentration: 100 parts by weight). This intermediate layer resin composition was coated on a polyethylene terephthalate film-based release film (manufactured by Lintec Corporation, product name “SP-PET 381031”, thickness 38 μm) by a fountain die method to form a coating film.
And the ultraviolet-ray was irradiated from the coating-film side, and the semi-hardened layer was formed. For ultraviolet irradiation, a belt conveyor type ultraviolet irradiation device (product name “ECS-401GGX”) is used as an ultraviolet irradiation device, and a high-pressure mercury lamp (product name “H04” manufactured by Eye Graphics Co., Ltd.) is used as an ultraviolet ray source. -L41 "), and the irradiation conditions were an illuminance of 112 mW / cm 2 with a light wavelength of 365 nm and a light amount of 177 mJ / cm 2 (manufactured by IGraphics, product name“ UVPF-A1 ”). .
On the formed semi-cured layer, a base material made of polyethylene terephthalate (PET) film (product name “Cosmo Shine A4100”, thickness 50 μm, manufactured by Toyobo Co., Ltd.) was laminated, and further irradiated with ultraviolet rays from the PET film side (above) Irradiance of 271 mW / cm 2 and light intensity of 1200 mJ / cm 2 ) is used, and cured completely to form an intermediate layer having a thickness of 300 μm on the base PET film. Thus, a base material with an intermediate layer was obtained.
The loss tangent (tan δ) of the intermediate layer at 50 ° C. measured at a frequency of 1 Hz was 1.92.
In addition, in the following Examples and Comparative Examples, each mass part is shown in terms of solid content when diluted with a diluent.
[実施例1]
 ウレタンポリマー(A’)として、ウレタン骨格を有し、複数の水酸基を有するポリウレタンポリオール(トーヨーケム株式会社製、製品名「SH-101」、重量平均分子量:100,000)を用意し、このウレタンポリマー(A’)100質量部に、架橋剤(C1)として複数のイソシアネート基を有するウレタンアクリレート(ダイセルオルネクス製、製品名「EBECRYL4150」、重量平均分子量:1,040)を32質量部、エネルギー線硬化性化合物(B)としてのペンタエリスリトールテトラアクリレート(式量:352)及び化合物(D)としてのペンタエリスリトールトリアクリレート(式量:298)の混合物(質量比(C:D)=40:60)(新中村化学株式会社製、製品名「A-TMM-3LM-N」)を17質量部、エネルギー線重合開始剤(E)として2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(BASF社製、製品名「Irgacure651」)を5質量部、架橋剤(C2)としてポリイソシアネート化合物(トーヨーケム株式会社製「T-501B」)を1質量部添加して、10分間撹拌を行って、トルエンで希釈して固形分濃度40質量%の粘着剤組成物を調整した。
 次いで、調整した粘着剤組成物を、ポリエチレンテレフタレート系剥離フィルム(リンテック株式会社製、製品名「SP-PET381031」、厚み38μm)に塗布し、100℃で2分間加熱して、乾燥させ剥離フィルム上に厚さ10μmの粘着剤層を形成した。
 その後、先に作製した中間層付基材上の剥離フィルムを除去し、表出した中間層に、剥離フィルム上の粘着剤層を貼り合わせた後、幅方向における端部の不要部分を裁断除去して、基材、中間層、粘着剤層、及び剥離フィルムがこの順で設けられた粘着テープを得た。この粘着テープの評価結果を表1に示す。
[Example 1]
As the urethane polymer (A ′), a polyurethane polyol having a urethane skeleton and having a plurality of hydroxyl groups (product name “SH-101” manufactured by Toyochem Co., Ltd., weight average molecular weight: 100,000) is prepared. (A ′) 32 parts by mass of 100 parts by mass of urethane acrylate having a plurality of isocyanate groups as a crosslinking agent (C1) (manufactured by Daicel Ornex, product name “EBECRYL4150”, weight average molecular weight: 1,040) Mixture of pentaerythritol tetraacrylate (formula weight: 352) as the curable compound (B) and pentaerythritol triacrylate (formula weight: 298) as the compound (D) (mass ratio (C: D) = 40: 60) (Product name “A-TMM-3LM-N” manufactured by Shin-Nakamura Chemical Co., Ltd.) 7 parts by mass, 5 parts by mass of 2,2-dimethoxy-1,2-diphenylethane-1-one (manufactured by BASF, product name “Irgacure 651”) as an energy ray polymerization initiator (E), and crosslinking agent (C2) 1 part by weight of a polyisocyanate compound (“T-501B” manufactured by Toyochem Co., Ltd.) was added, stirred for 10 minutes, diluted with toluene to prepare a pressure-sensitive adhesive composition having a solid content concentration of 40% by weight.
Next, the prepared pressure-sensitive adhesive composition was applied to a polyethylene terephthalate release film (manufactured by Lintec Corporation, product name “SP-PET 381031”, thickness 38 μm), heated at 100 ° C. for 2 minutes, dried and then released onto the release film. An adhesive layer having a thickness of 10 μm was formed.
Then, after removing the release film on the base material with the intermediate layer previously prepared, and pasting the adhesive layer on the release film to the exposed intermediate layer, the unnecessary part at the end in the width direction is cut and removed. And the adhesive tape with which the base material, the intermediate | middle layer, the adhesive layer, and the peeling film were provided in this order was obtained. The evaluation results of this adhesive tape are shown in Table 1.
[実施例2]
 ウレタンポリマー(A’)をトーヨーケム株式会社製、製品名「SP-205」、重量平均分子量:98,000)に変更して粘着剤組成物を調整した以外は、実施例1と同様の手順にて粘着テープを作製した。
[Example 2]
The procedure was the same as in Example 1 except that the pressure-sensitive adhesive composition was adjusted by changing the urethane polymer (A ′) to Toyochem Co., Ltd., product name “SP-205”, weight average molecular weight: 98,000). An adhesive tape was prepared.
[実施例3]
 「A-TMM-3LM-N」17質量部を、エネルギー線硬化性化合物(B)としてのウレタンアクリレート(根上工業株式会社製、製品名「UN-6200」、2官能、重量平均分子量6,270)100質量部に変更して粘着剤組成物を調整した以外は、実施例1と同様の手順にて粘着テープを作製した。
[Example 3]
17 parts by mass of “A-TMM-3LM-N” was added to urethane acrylate as an energy ray curable compound (B) (manufactured by Negami Kogyo Co., Ltd., product name “UN-6200”, bifunctional, weight average molecular weight 6,270). ) A pressure-sensitive adhesive tape was prepared in the same procedure as in Example 1 except that the pressure-sensitive adhesive composition was adjusted by changing to 100 parts by mass.
[実施例4]
 ウレタンポリマー(A’)をトーヨーケム株式会社製、製品名「SP-205」に変更して粘着剤組成物を調整した以外は、実施例3と同様の手順にて粘着テープを作製した。
[Example 4]
A pressure-sensitive adhesive tape was prepared in the same procedure as in Example 3 except that the pressure-sensitive adhesive composition was prepared by changing the urethane polymer (A ′) to the product name “SP-205” manufactured by Toyochem Co., Ltd.
[実施例5]
 「A-TMM-3LM-N」17質量部を、エネルギー線硬化性化合物(B)としてのウレタンアクリレート(6官能、重量平均分子量33,000)100質量部に変更した以外は、実施例1と同様の手順にて粘着テープを作製した。
[Example 5]
Example 1 except that 17 parts by mass of “A-TMM-3LM-N” was changed to 100 parts by mass of urethane acrylate (hexafunctional, weight average molecular weight 33,000) as the energy ray-curable compound (B). An adhesive tape was prepared in the same procedure.
[比較例1]
 2-エチルヘキシルアクリレート94質量部、及び2-ヒドロキシエチルアクリレート6質量部を重合して得たアクリル共重合体に、2-イソシアネートエチルメタクリレート(昭和電工株式会社製、製品名「カレンズMOI」)をアクリル共重合体中の水酸基に対する付加率がモル数基準で50%となるように付加したメタクリロイル基付加アクリル共重合体(重量平均分子量:900,000、固形分量:35質量%)を調整した。この共重合体100質量部に、光重合開始剤として1-ヒドロキシルシクロヘキシルフェニルケトン(BASF社製、製品名「Irgacure184」)を3質量部、架橋剤としてポリイソシアネート化合物(トーヨーケム株式会社製、製品名「BHS-8515」)を0.8質量部添加し、30分間撹拌を行って、アクリル系粘着剤組成物を調整した。得られたアクリル系粘着剤組成物を、ポリエチレンテレフタレート系剥離フィルム(リンテック株式会社製、製品名「SP-PET381031」、厚み38μm)に塗布して、乾燥させ厚さ10μmの粘着剤層を形成した。
 先に作製した中間層付基材上の剥離フィルムを除去し、表出した中間層と、剥離フィルム上の粘着剤層を貼り合わせた後、幅方向における端部の不要部分を裁断除去して、基材、中間層、粘着剤層、及び剥離フィルムがこの順で設けられた粘着テープを得た。この粘着テープの評価結果を表1に示す。
[Comparative Example 1]
To an acrylic copolymer obtained by polymerizing 94 parts by mass of 2-ethylhexyl acrylate and 6 parts by mass of 2-hydroxyethyl acrylate, 2-isocyanate ethyl methacrylate (manufactured by Showa Denko KK, product name “Karenz MOI”) is acrylic. A methacryloyl group-added acrylic copolymer (weight average molecular weight: 900,000, solid content: 35 mass%) added so that the addition ratio to the hydroxyl group in the copolymer was 50% on the basis of the number of moles was prepared. To 100 parts by mass of this copolymer, 3 parts by mass of 1-hydroxylcyclohexyl phenyl ketone (manufactured by BASF, product name “Irgacure 184”) as a photopolymerization initiator, and polyisocyanate compound (manufactured by Toyochem Co., Ltd., product name) as a crosslinking agent 0.8 parts by mass of “BHS-8515”) was added and stirred for 30 minutes to prepare an acrylic pressure-sensitive adhesive composition. The obtained acrylic pressure-sensitive adhesive composition was applied to a polyethylene terephthalate-based release film (manufactured by Lintec Corporation, product name “SP-PET 381031”, thickness 38 μm) and dried to form a pressure-sensitive adhesive layer having a thickness of 10 μm. .
After removing the release film on the intermediate layer-prepared substrate previously prepared and pasting the exposed intermediate layer and the adhesive layer on the release film together, the unnecessary part at the end in the width direction is cut and removed. The adhesive tape in which the base material, the intermediate layer, the adhesive layer, and the release film were provided in this order was obtained. The evaluation results of this adhesive tape are shown in Table 1.
[比較例2]
 2-エチルヘキシルアクリレート90質量部、4-ヒドロキシブチルアクリレート10質量部を重合して得たアクリル共重合体に、2-イソシアネートエチルメタクリレート(昭和電工株式会社製、製品名「カレンズMOI」)をアクリル共重合体中の水酸基に対する付加率がモル数基準で65%となるように付加してメタクリロイル基付加アクリル共重合体(重量平均分子量:1,000,000、固形分量:25質量%)を得た。この共重合体100質量部に、光重合開始剤として1-ヒドロキシルシクロヘキシルフェニルケトン(BASF社製、製品名「Irgacure184」)を3質量部、架橋剤としてポリイソシアネート化合物(トーヨーケム株式会社製、製品名「BHS-8515」)を1.1質量部添加し、30分間撹拌を行って、アクリル系粘着剤組成物を調整した。それ以外は比較例1と同様の手順で粘着テープを作製した。
[Comparative Example 2]
To an acrylic copolymer obtained by polymerizing 90 parts by mass of 2-ethylhexyl acrylate and 10 parts by mass of 4-hydroxybutyl acrylate, 2-isocyanate ethyl methacrylate (manufactured by Showa Denko KK, product name “Karenz MOI”) was co-polymerized with acrylic. A methacryloyl group-added acrylic copolymer (weight average molecular weight: 1,000,000, solid content: 25% by mass) was obtained by adding such that the addition ratio to the hydroxyl group in the polymer was 65% on a molar basis. . To 100 parts by mass of this copolymer, 3 parts by mass of 1-hydroxylcyclohexyl phenyl ketone (product name “Irgacure 184”) as a photopolymerization initiator and a polyisocyanate compound (product name, manufactured by Toyochem Co., Ltd.) as a crosslinking agent 1.1 parts by weight of “BHS-8515”) was added and stirred for 30 minutes to prepare an acrylic pressure-sensitive adhesive composition. Otherwise, an adhesive tape was prepared in the same procedure as in Comparative Example 1.
[比較例3]
 2-エチルヘキシルアクリレート90質量部、4-ヒドロキシブチルアクリレート10質量部を重合して得たアクリル共重合体に、2-イソシアナートエチルメタクリレート(昭和電工株式会社製、製品名「カレンズMOI」)をアクリル共重合体中の水酸基に対する付加率がモル数基準で75%となるように付加してメタクリロイル基付加アクリル共重合体(重量平均分子量:1,000,000、固形分量:25質量%)を得た。
 この共重合体100質量部に、光重合開始剤として1-ヒドロキシルシクロヘキシルフェニルケトン(BASF社製、製品名「Irgacure184」)を5質量部、架橋剤としてポリイソシアネート化合物(製品名トーヨーケム株式会社製、製品名「BHS-8515」)を1.2質量部添加し、30分間撹拌を行って、アクリル系粘着剤組成物を調整した。それ以外は比較例1と同様の手順で粘着テープを作製した。
[Comparative Example 3]
Acrylic copolymer obtained by polymerizing 90 parts by mass of 2-ethylhexyl acrylate and 10 parts by mass of 4-hydroxybutyl acrylate was acrylic with 2-isocyanatoethyl methacrylate (manufactured by Showa Denko KK, product name “Karenz MOI”). A methacryloyl group-added acrylic copolymer (weight average molecular weight: 1,000,000, solid content: 25% by mass) is obtained by addition so that the addition ratio to the hydroxyl group in the copolymer is 75% on the basis of the number of moles. It was.
To 100 parts by mass of this copolymer, 5 parts by mass of 1-hydroxylcyclohexyl phenyl ketone (manufactured by BASF, product name “Irgacure 184”) as a photopolymerization initiator, and polyisocyanate compound (product name, manufactured by Toyochem Co., Ltd.) 1.2 parts by mass of product name “BHS-8515”) was added and stirred for 30 minutes to prepare an acrylic pressure-sensitive adhesive composition. Otherwise, an adhesive tape was prepared in the same procedure as in Comparative Example 1.
[比較例4]
 「A-TMM-3LM-N」を添加しない以外は、実施例1と同様の手順にて粘着テープを作製した。
[Comparative Example 4]
An adhesive tape was prepared in the same procedure as in Example 1 except that “A-TMM-3LM-N” was not added.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上の実施例1~5では、粘着剤組成物が、ウレタン系であるとともに、ウレタン系樹脂(A)に非反応のエネルギー線硬化性化合物(B)を含有することで、バンプの埋め込み性(ワークの表面形状への粘着剤層の追従性)が良好になるとともに、破断応力が高いものとなり剥離時の糊残りを防止することができた。さらに、エネルギー線硬化前の粘着力を高くするとともに、硬化後の粘着力を十分に低くできたため、剥離性、接着性が優れたものであった。
 一方で、比較例1~3では、粘着剤組成物が、アクリル系であったため、破断応力が低く糊残りを防止することができなかった。また、比較例4では、ウレタン系であったものの、エネルギー線硬化性化合物(B)を含有しないため、粘着剤層の柔軟性に劣り、埋め込み性が十分ではなかった。
In Examples 1 to 5 above, the pressure-sensitive adhesive composition is urethane-based, and the urethane-based resin (A) contains the non-reactive energy ray-curable compound (B), so that the embedding property of the bump ( The followability of the pressure-sensitive adhesive layer to the surface shape of the workpiece was improved, and the breaking stress was high, and adhesive residue at the time of peeling could be prevented. Furthermore, since the adhesive force before energy ray curing was increased and the adhesive force after curing was sufficiently low, the peelability and adhesiveness were excellent.
On the other hand, in Comparative Examples 1 to 3, since the pressure-sensitive adhesive composition was acrylic, the rupture stress was low and adhesive residue could not be prevented. Moreover, although it was urethane type in the comparative example 4, since it did not contain an energy-beam curable compound (B), it was inferior to the softness | flexibility of an adhesive layer and embedding property was not enough.

Claims (16)

  1.  基材と、前記基材の一方の面側に設けられる粘着剤層と備え、
     前記粘着剤層が、ウレタン系樹脂(A)と、前記ウレタン系樹脂(A)に非反応で、かつ光重合性不飽和結合を有し、分子量が35,000以下であるエネルギー線硬化性化合物(B)とを含むワーク加工用粘着テープ。
    A base material, and a pressure-sensitive adhesive layer provided on one surface side of the base material,
    Energy ray-curable compound in which the pressure-sensitive adhesive layer is non-reactive with the urethane resin (A) and the urethane resin (A), has a photopolymerizable unsaturated bond, and has a molecular weight of 35,000 or less. An adhesive tape for work processing comprising (B).
  2.  前記エネルギー線硬化性化合物(B)が、(メタ)アクリレートモノマー(B1)、及びウレタン(メタ)アクリレート(B2)から選択される少なくとも1種である請求項1に記載のワーク加工用粘着テープ。 The pressure-sensitive adhesive tape for workpiece processing according to claim 1, wherein the energy ray-curable compound (B) is at least one selected from a (meth) acrylate monomer (B1) and a urethane (meth) acrylate (B2).
  3.  前記エネルギー線硬化性化合物(B)が、少なくとも(メタ)アクリレートモノマー(B1)を含むとともに、前記(メタ)アクリレートモノマー(B1)が、多価アルコールと、(メタ)アクリル酸の完全エステルである多官能(メタ)アクリル酸エステルである請求項2に記載のワーク加工用粘着テープ。 The energy ray curable compound (B) contains at least a (meth) acrylate monomer (B1), and the (meth) acrylate monomer (B1) is a polyhydric alcohol and a complete ester of (meth) acrylic acid. The pressure-sensitive adhesive tape for workpiece processing according to claim 2, which is a polyfunctional (meth) acrylic ester.
  4.  前記エネルギー線硬化性化合物(B)は、1分子中に(メタ)アクリロイル基を2官能以上有する請求項1~3のいずれか1項に記載のワーク加工用粘着テープ。 The work processing pressure-sensitive adhesive tape according to any one of claims 1 to 3, wherein the energy ray curable compound (B) has two or more (meth) acryloyl groups in one molecule.
  5.  前記ウレタン系樹脂(A)が光重合性不飽和結合を有する請求項1~4のいずれか1項に記載のワーク加工用粘着テープ。 The pressure-sensitive adhesive tape for workpiece processing according to any one of claims 1 to 4, wherein the urethane resin (A) has a photopolymerizable unsaturated bond.
  6.  前記粘着剤層が、少なくともウレタンポリマー(A’)と、前記エネルギー線硬化性化合物(B)と、架橋剤(C)とを含む粘着剤組成物から形成され、
     前記ウレタン系樹脂(A)が、ウレタンポリマー(A’)を前記架橋剤(C)により架橋したものである請求項1~5のいずれか1項に記載のワーク加工用粘着テープ。
    The pressure-sensitive adhesive layer is formed from a pressure-sensitive adhesive composition containing at least a urethane polymer (A ′), the energy ray-curable compound (B), and a crosslinking agent (C).
    The pressure-sensitive adhesive tape for workpiece processing according to any one of claims 1 to 5, wherein the urethane resin (A) is obtained by crosslinking the urethane polymer (A ') with the crosslinking agent (C).
  7.  前記架橋剤(C)が、光重合性不飽和結合を含有する架橋剤(C1)を含む請求項6に記載のワーク加工用粘着テープ。 The pressure-sensitive adhesive tape for workpiece processing according to claim 6, wherein the crosslinking agent (C) includes a crosslinking agent (C1) containing a photopolymerizable unsaturated bond.
  8.  前記ウレタンポリマー(A’)と前記架橋剤(C)とをウレタン結合により結合している請求項6又は7に記載のワーク加工用粘着テープ。 The pressure-sensitive adhesive tape for workpiece processing according to claim 6 or 7, wherein the urethane polymer (A ') and the cross-linking agent (C) are bonded by a urethane bond.
  9.  前記粘着剤組成物が、光重合性不飽和結合と、前記架橋剤(C)と反応可能な反応性官能基とを有する化合物(D)をさらに含有する請求項6~8のいずれか1項に記載のワーク加工用粘着テープ。 9. The pressure-sensitive adhesive composition further comprises a compound (D) having a photopolymerizable unsaturated bond and a reactive functional group capable of reacting with the crosslinking agent (C). Adhesive tape for workpiece processing as described in 1.
  10.  前記化合物(D)が、多価アルコールと、(メタ)アクリル酸の部分エステルである多官能(メタ)アクリル酸エステルである請求項9に記載のワーク加工用粘着テープ。 The work processing pressure-sensitive adhesive tape according to claim 9, wherein the compound (D) is a polyfunctional (meth) acrylic ester which is a partial ester of polyhydric alcohol and (meth) acrylic acid.
  11.  前記粘着剤層のエネルギー線照射後の破断応力が、2.5MPa以上である請求項1~10のいずれか1項に記載のワーク加工用粘着テープ。 The pressure-sensitive adhesive tape for workpiece processing according to any one of claims 1 to 10, wherein a breaking stress of the pressure-sensitive adhesive layer after irradiation with energy rays is 2.5 MPa or more.
  12.  前記基材及び前記粘着剤層の間に、中間層を有する請求項1~11のいずれか1項に記載のワーク加工用粘着テープ。 12. The work processing pressure-sensitive adhesive tape according to claim 1, further comprising an intermediate layer between the base material and the pressure-sensitive adhesive layer.
  13.  前記中間層の厚さが、10~600μmである、請求項12に記載のワーク加工用粘着テープ。 The work processing pressure-sensitive adhesive tape according to claim 12, wherein the intermediate layer has a thickness of 10 to 600 µm.
  14.  前記中間層が、周波数1Hzで測定した50℃における損失正接が1.0以上である請求項12又は13に記載のワーク加工用粘着テープ。 The pressure-sensitive adhesive tape for workpiece processing according to claim 12 or 13, wherein the intermediate layer has a loss tangent at 50 ° C measured at a frequency of 1 Hz of 1.0 or more.
  15.  エネルギー線照射後の粘着力が、2000mN/25mm以下である請求項1~14のいずれか1項に記載のワーク加工用粘着テープ。 The pressure-sensitive adhesive tape for workpiece processing according to any one of claims 1 to 14, wherein the adhesive strength after irradiation with energy rays is 2000 mN / 25 mm or less.
  16.  半導体ウエハ表面保護用粘着テープである請求項1~15のいずれか1項に記載のワーク加工用粘着テープ。
     
    The adhesive tape for workpiece processing according to any one of claims 1 to 15, which is an adhesive tape for protecting a semiconductor wafer surface.
PCT/JP2016/062581 2015-04-30 2016-04-21 Adhesive tape for work processing WO2016175112A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SG11201708797YA SG11201708797YA (en) 2015-04-30 2016-04-21 Adhesive tape for work processing
KR1020177030737A KR102528633B1 (en) 2015-04-30 2016-04-21 Adhesive tape for workpiece processing
JP2017515510A JP6541775B2 (en) 2015-04-30 2016-04-21 Adhesive tape for work processing
CN201680023562.5A CN108307635B (en) 2015-04-30 2016-04-21 Adhesive tape for processing workpiece

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015093141 2015-04-30
JP2015-093141 2015-04-30

Publications (1)

Publication Number Publication Date
WO2016175112A1 true WO2016175112A1 (en) 2016-11-03

Family

ID=57198397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062581 WO2016175112A1 (en) 2015-04-30 2016-04-21 Adhesive tape for work processing

Country Status (6)

Country Link
JP (1) JP6541775B2 (en)
KR (1) KR102528633B1 (en)
CN (1) CN108307635B (en)
SG (1) SG11201708797YA (en)
TW (1) TWI778939B (en)
WO (1) WO2016175112A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190071558A (en) * 2017-12-14 2019-06-24 삼성에스디아이 주식회사 Adhesive composition, adhesive composition solution, adhesive layer and film for protecting surface
WO2019130741A1 (en) * 2017-12-26 2019-07-04 日東電工株式会社 Surface-protective sheet for optical member
CN109971377A (en) * 2017-12-26 2019-07-05 日东电工株式会社 Optical component surface protective plate
JP2019116609A (en) * 2017-12-26 2019-07-18 日東電工株式会社 Surface protection sheet for optical member
JP2020027916A (en) * 2018-08-17 2020-02-20 株式会社ディスコ Integration method for wafer
JP2020105452A (en) * 2018-12-28 2020-07-09 三星エスディアイ株式会社Samsung SDI Co., Ltd. Adhesive composition, cured product and surface protective film
JP2020105453A (en) * 2018-12-28 2020-07-09 三星エスディアイ株式会社Samsung SDI Co., Ltd. Thermosetting adhesive composition, thermoset and surface protective film
JP2020105454A (en) * 2018-12-28 2020-07-09 三星エスディアイ株式会社Samsung SDI Co., Ltd. Adhesive composition, cured product and surface protective film
WO2020170827A1 (en) * 2019-02-22 2020-08-27 東洋インキScホールディングス株式会社 Pressure-sensitive adhesive, and pressure-sensitive adhesive sheet and method for using same
WO2021125152A1 (en) * 2019-12-17 2021-06-24 昭和電工株式会社 Tape for semiconductor processing
GB2593754A (en) * 2020-04-01 2021-10-06 Henkel IP & Holding GmbH Redox curable compositions and methods of manufacture thereof
JP2021187968A (en) * 2020-06-01 2021-12-13 東洋インキScホールディングス株式会社 Adhesive sheet, adherend with adhesive sheet, and method of using adhesive sheet
WO2024106387A1 (en) * 2022-11-18 2024-05-23 日東電工株式会社 Adhesive sheet
WO2024106386A1 (en) * 2022-11-18 2024-05-23 日東電工株式会社 Adhesive sheet
WO2024106390A1 (en) * 2022-11-18 2024-05-23 日東電工株式会社 Adhesive sheet

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6618038B2 (en) * 2016-06-29 2019-12-11 荒川化学工業株式会社 Adhesive composition
KR102126046B1 (en) * 2017-08-31 2020-06-24 삼성에스디아이 주식회사 Adhesive film, adhesive composition for the same and display member comprising the same
KR102104714B1 (en) * 2018-05-02 2020-04-24 (재)한국건설생활환경시험연구원 Pressure-sensitive adhesive composition for 3D printer build sheet
KR102210259B1 (en) * 2018-07-11 2021-02-01 삼성에스디아이 주식회사 Adhesive film, adhesive composition for the same and display member comprising the same
KR102306588B1 (en) * 2018-10-02 2021-09-29 삼성에스디아이 주식회사 Adhesive protective film and optical member comprising the same
KR102581044B1 (en) * 2019-01-25 2023-09-20 주식회사 엘지화학 Surface protective film and method for manufacturing organic light emitting electronic device
CN113993663B (en) * 2019-09-05 2024-05-31 株式会社力森诺科 Back grinding belt

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000212530A (en) * 1998-11-20 2000-08-02 Lintec Corp Adhesive sheet and its use
WO2008044561A1 (en) * 2006-10-03 2008-04-17 Emulsion Technology Co., Ltd. Adhesive composition and adhesive sheet
JP2012039053A (en) * 2010-07-14 2012-02-23 Denki Kagaku Kogyo Kk Multilayer adhesive sheet and method of manufacturing electronic component
JP2014019715A (en) * 2012-07-12 2014-02-03 3M Innovative Properties Co Transparent adhesive sheet

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4918181B1 (en) 1967-05-31 1974-05-08
JPH10310748A (en) * 1997-05-12 1998-11-24 Sumitomo Bakelite Co Ltd Tacky sheet for processing semiconductor wafer
CN1137028C (en) * 1998-11-20 2004-02-04 琳得科株式会社 Pressure-sensitive adhesive piece and its application method
JP3764133B2 (en) * 2002-08-22 2006-04-05 電気化学工業株式会社 Adhesive tape for electronic components
JP3894908B2 (en) * 2003-06-24 2007-03-22 電気化学工業株式会社 Adhesive sheet for semiconductor wafer back grinding
JP4367769B2 (en) 2004-04-13 2009-11-18 日東電工株式会社 Adhesive sheet for holding and protecting semiconductor wafer and method for grinding back surface of semiconductor wafer
JP4603578B2 (en) 2005-02-18 2010-12-22 三井化学株式会社 Semiconductor wafer surface protection sheet and semiconductor wafer protection method using the protection sheet
JP5101111B2 (en) * 2007-01-05 2012-12-19 日東電工株式会社 Adhesive sheet for semiconductor substrate processing
US7986698B2 (en) * 2008-03-13 2011-07-26 Qualcomm Incorporated Methods and apparatus for using connection identifiers having different priorities at different times
JP5501060B2 (en) * 2009-04-02 2014-05-21 日東電工株式会社 Method for laminating adhesive sheet for protecting semiconductor wafer, and adhesive sheet for protecting semiconductor wafer used in this laminating method
JP4851613B2 (en) * 2009-12-22 2012-01-11 古河電気工業株式会社 Adhesive tape for semiconductor wafer surface protection
KR101442442B1 (en) * 2010-10-01 2014-09-22 쇼와 덴코 가부시키가이샤 Photocurable composition for transparent adhesive sheet
JP5544052B2 (en) * 2011-12-26 2014-07-09 リンテック株式会社 Dicing sheet with protective film forming layer and chip manufacturing method
CN102732159B (en) * 2012-06-25 2014-04-09 烟台开发区泰盛精化新材料有限公司 Peelable solder mask UV curing adhesive, and its preparation and application methods
JP6081094B2 (en) * 2012-07-13 2017-02-15 リンテック株式会社 Dicing sheet
JP6135243B2 (en) * 2013-03-29 2017-05-31 東洋インキScホールディングス株式会社 Adhesive and adhesive sheet using the same
TWI476260B (en) * 2013-05-13 2015-03-11 Chi Mei Corp Light curing and strippable adhesion composition and uses thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000212530A (en) * 1998-11-20 2000-08-02 Lintec Corp Adhesive sheet and its use
WO2008044561A1 (en) * 2006-10-03 2008-04-17 Emulsion Technology Co., Ltd. Adhesive composition and adhesive sheet
JP2012039053A (en) * 2010-07-14 2012-02-23 Denki Kagaku Kogyo Kk Multilayer adhesive sheet and method of manufacturing electronic component
JP2014019715A (en) * 2012-07-12 2014-02-03 3M Innovative Properties Co Transparent adhesive sheet

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102210257B1 (en) * 2017-12-14 2021-02-01 삼성에스디아이 주식회사 Adhesive composition, adhesive composition solution, adhesive layer and film for protecting surface
JP2019104870A (en) * 2017-12-14 2019-06-27 三星エスディアイ株式会社Samsung SDI Co., Ltd. Adhesive composition, solution thereof, adhesive layer, and surface protective film
KR20190071558A (en) * 2017-12-14 2019-06-24 삼성에스디아이 주식회사 Adhesive composition, adhesive composition solution, adhesive layer and film for protecting surface
JP7064857B2 (en) 2017-12-14 2022-05-11 三星エスディアイ株式会社 Adhesive composition, its solution, adhesive layer and surface protective film
WO2019130741A1 (en) * 2017-12-26 2019-07-04 日東電工株式会社 Surface-protective sheet for optical member
CN109971377A (en) * 2017-12-26 2019-07-05 日东电工株式会社 Optical component surface protective plate
JP2019116609A (en) * 2017-12-26 2019-07-18 日東電工株式会社 Surface protection sheet for optical member
CN111527167A (en) * 2017-12-26 2020-08-11 日东电工株式会社 Surface protection sheet for optical member
JP2020027916A (en) * 2018-08-17 2020-02-20 株式会社ディスコ Integration method for wafer
JP7191586B2 (en) 2018-08-17 2022-12-19 株式会社ディスコ Wafer integration method
JP7241537B2 (en) 2018-12-28 2023-03-17 三星エスディアイ株式会社 Thermosetting adhesive composition, thermosetting product and surface protection film
JP2020105452A (en) * 2018-12-28 2020-07-09 三星エスディアイ株式会社Samsung SDI Co., Ltd. Adhesive composition, cured product and surface protective film
JP7285072B2 (en) 2018-12-28 2023-06-01 三星エスディアイ株式会社 Adhesive composition, cured product and surface protective film
JP2020105454A (en) * 2018-12-28 2020-07-09 三星エスディアイ株式会社Samsung SDI Co., Ltd. Adhesive composition, cured product and surface protective film
JP2020105453A (en) * 2018-12-28 2020-07-09 三星エスディアイ株式会社Samsung SDI Co., Ltd. Thermosetting adhesive composition, thermoset and surface protective film
JP7241538B2 (en) 2018-12-28 2023-03-17 三星エスディアイ株式会社 Adhesive composition, cured product and surface protection film
WO2020170827A1 (en) * 2019-02-22 2020-08-27 東洋インキScホールディングス株式会社 Pressure-sensitive adhesive, and pressure-sensitive adhesive sheet and method for using same
CN113474428A (en) * 2019-02-22 2021-10-01 东洋油墨Sc控股株式会社 Adhesive and adhesive sheet and method of using the same
JP2020132799A (en) * 2019-02-22 2020-08-31 東洋インキScホールディングス株式会社 Adhesive and adhesive sheet and methods of use thereof
CN113474428B (en) * 2019-02-22 2023-03-28 东洋油墨Sc控股株式会社 Adhesive and adhesive sheet and method of using the same
WO2021125152A1 (en) * 2019-12-17 2021-06-24 昭和電工株式会社 Tape for semiconductor processing
GB2593754A (en) * 2020-04-01 2021-10-06 Henkel IP & Holding GmbH Redox curable compositions and methods of manufacture thereof
GB2593754B (en) * 2020-04-01 2022-12-28 Henkel Ag & Co Kgaa Redox curable compositions and methods of manufacture thereof
US11891512B2 (en) 2020-04-01 2024-02-06 Henkel Ag & Co. Kgaa Redox curable compositions and methods of manufacture thereof
JP2021187968A (en) * 2020-06-01 2021-12-13 東洋インキScホールディングス株式会社 Adhesive sheet, adherend with adhesive sheet, and method of using adhesive sheet
WO2024106387A1 (en) * 2022-11-18 2024-05-23 日東電工株式会社 Adhesive sheet
WO2024106386A1 (en) * 2022-11-18 2024-05-23 日東電工株式会社 Adhesive sheet
WO2024106390A1 (en) * 2022-11-18 2024-05-23 日東電工株式会社 Adhesive sheet

Also Published As

Publication number Publication date
KR20170140221A (en) 2017-12-20
SG11201708797YA (en) 2017-11-29
KR102528633B1 (en) 2023-05-03
CN108307635B (en) 2021-04-02
TWI778939B (en) 2022-10-01
TW201710428A (en) 2017-03-16
CN108307635A (en) 2018-07-20
JP6541775B2 (en) 2019-07-10
JPWO2016175112A1 (en) 2018-02-22

Similar Documents

Publication Publication Date Title
KR102528633B1 (en) Adhesive tape for workpiece processing
JP6566365B2 (en) Adhesive sheet for semiconductor processing
KR102314242B1 (en) Adhesive sheet
WO2017061132A1 (en) Sheet for semiconductor processing
TWI732895B (en) Adhesive sheet for semiconductor processing
JP6235893B2 (en) Back grind sheet
WO2012128311A1 (en) Base film and pressure-sensitive adhesive sheet provided therewith
KR102085533B1 (en) Film, sheet substrate for processing workpiece, and sheet for processing workpiece
JP6528259B2 (en) Surface protection film
TWI591704B (en) Back grinding tablets
KR101784191B1 (en) Method for manufacturing electronic component
JP2016192488A (en) Pressure-sensitive adhesive sheet for semiconductor processing
TW202016234A (en) Semiconductor processing adhesive tape and method of manufacturing semiconductor device
WO2012128312A1 (en) Base film and pressure-sensitive adhesive sheet provided therewith
JPWO2019181730A1 (en) Manufacturing method of adhesive tape and semiconductor device
WO2018092446A1 (en) Adhesive sheet for semiconductor processing
JP6717484B2 (en) Adhesive sheet
CN113453893A (en) Protective sheet for semiconductor processing and method for manufacturing semiconductor device
WO2023188272A1 (en) Adhesive tape for semiconductor processing
WO2019188817A1 (en) Sheet for work processing
JP2019070123A (en) Surface protective film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16786389

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017515510

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177030737

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11201708797Y

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16786389

Country of ref document: EP

Kind code of ref document: A1