WO2016175026A1 - Process for producing diene-based rubber that suffers no coloring over time, and diene-based rubber obtained thereby - Google Patents

Process for producing diene-based rubber that suffers no coloring over time, and diene-based rubber obtained thereby Download PDF

Info

Publication number
WO2016175026A1
WO2016175026A1 PCT/JP2016/061830 JP2016061830W WO2016175026A1 WO 2016175026 A1 WO2016175026 A1 WO 2016175026A1 JP 2016061830 W JP2016061830 W JP 2016061830W WO 2016175026 A1 WO2016175026 A1 WO 2016175026A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
water
diene
mmol
aging
Prior art date
Application number
PCT/JP2016/061830
Other languages
French (fr)
Japanese (ja)
Inventor
悠嗣 松平
幹夫 松野
林 高弘
山下 博司
隆志 細田
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to MYPI2017703795A priority Critical patent/MY182436A/en
Priority to CN201680025348.3A priority patent/CN107614545B/en
Priority to KR1020177034090A priority patent/KR102562930B1/en
Publication of WO2016175026A1 publication Critical patent/WO2016175026A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/70Iron group metals, platinum group metals or compounds thereof

Definitions

  • the present invention has been made in view of the above problems, and is a method for producing a high-quality and high-productivity diene rubber that reduces coloration with time and exhibits excellent activity by an industrially simple method. And it aims at providing the diene type rubber
  • the method for producing a diene rubber according to the present invention comprises (A) a diene monomer dissolved in (B) an organic solvent, (C) water dissolved therein, and then (D1) an organoaluminum cocatalyst is added. After aging the water and the organoaluminum (D2) from the start of ripening to the end of ripening while maintaining a temperature range of ⁇ 30 to 17 ° C., (E) polymerizing with a transition metal catalyst, and after polymerization, (F) polymerization It is preferable to add a terminator and, in some cases, (G) an antioxidant.
  • TBC 4-tertiary butyl catechol
  • non-aromatic hydrocarbons are preferable, and cyclohexane is particularly preferable.
  • the aging start temperature is preferably ⁇ 30 to 17 ° C., more preferably ⁇ 20 to 15 ° C., and particularly preferably ⁇ 15 to 10 ° C.
  • the ripening end temperature is preferably ⁇ 30 to 17 ° C., more preferably ⁇ 20 to 15 ° C., and particularly preferably ⁇ 15 to 10 ° C.
  • the ripening start temperature and the ripening end temperature do not have to be the same.
  • the ripening is started in the temperature range of -30 to 17 ° C, and the ripening is performed while maintaining the temperature range of -30 to 17 ° C. It is important that ripening is completed in the temperature range.
  • the cocatalyst is aged in the temperature range as described above, it is possible to produce a high-performance rubber that is less colored over time and has a high linearity value.
  • the start of aging is (C) the time when (D1) organoaluminum is added to an organic solvent in which water is dissolved, and the end of aging is the time when (E) the transition metal catalyst is added. Point to.
  • (D1) by using together the conditions that limit the range of the molar ratio (Al / H 2 O) between the organoaluminum cocatalyst and water, the effect of preventing coloration with time and high functionality are further created.
  • cobalt salt or complex is preferably used as the cobalt-based catalyst.
  • cobalt salts such as cobalt chloride, cobalt bromide, cobalt nitrate, cobalt octylate (ethylhexanoate), cobalt naphthenate, cobalt acetate, and cobalt malonate; cobalt bisacetylacetonate and trisacetylacetonate
  • organic base complexes such as acetoacetic acid ethyl ester cobalt, cobalt salt pyridine complex and picoline complex, or ethyl alcohol complex.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

Provided are: a process for producing, in an industrially simple manner, a diene-based rubber which is reduced in coloring over time, can exhibit high functions, shows excellent activity, and has high quality and high productivity; and a diene-based rubber obtained by the production process. The process for producing a diene-based rubber that suffers no coloring over time is characterized by including, before polymerizing a diene-based monomer, a step in which water and an organoaluminum compound are matured at a temperature kept in the range of -30 to 17ºC throughout the period from the beginning to the end of the maturation.

Description

経時着色しないジエン系ゴムの製造方法及びそれによって得られたジエン系ゴムMethod for producing diene rubber not colored over time and diene rubber obtained thereby
 本発明は、従来のジエン系ゴムで発生する経時着色を防止した、経時着色しないジエン系ゴムの製造方法及びそれによって得られたジエン系ゴムに関するものである。 The present invention relates to a method for producing a non-colored diene rubber which prevents the coloration with time that occurs with conventional diene rubbers, and a diene rubber obtained thereby.
 通常、ジエン系ゴムは、製造工程で各種触媒、助触媒、安定剤等の数多くの化合物を加えることが多い。特に、安定剤を添加することで、製品の安定性を図っていることから、こうした添加剤は必須となっている。しかしながら、添加剤の種類や量が多いと、着色や臭いなどの副作用が生ずることが多く、思わぬ問題が起こりうる。 Usually, diene rubbers often add many compounds such as various catalysts, promoters and stabilizers in the production process. In particular, these additives are essential because the stability of the product is achieved by adding stabilizers. However, when there are many kinds and amounts of additives, side effects such as coloring and odor often occur, and unexpected problems may occur.
 特に着色が生じると、製品に透明性を求められる用途、望む色に着色させたい用途に関しては、大きな問題となることが多く、その解決方法がこれまで数多く図られている。 Especially when coloring occurs, there is often a big problem regarding applications in which transparency is required for a product or applications in which a desired color is desired, and many solutions have been attempted so far.
 例えば、特許文献1では、クロロプレンの重合体の製造に際し、重合停止剤としてジエチルヒドロキシルアミンとフェノール系老化防止剤を併用して、着色防止を行っている。 For example, in Patent Document 1, in the production of a chloroprene polymer, diethylhydroxylamine and a phenolic anti-aging agent are used in combination as a polymerization terminator to prevent coloring.
 また、特許文献2では、ブタジエンゴムの重合後に1種類以上のフェノール性化合物を混合し、かつpH値が4~11の範囲、かつ酸素含有量が0~0.3ppmになるよう調整することで、安定かつ無色のポリブタジエンゴムを提供している。 Further, in Patent Document 2, one or more phenolic compounds are mixed after polymerization of butadiene rubber, adjusted to have a pH value in the range of 4 to 11 and an oxygen content of 0 to 0.3 ppm. , Providing stable and colorless polybutadiene rubber.
 さらに、先行文献3では、ポリマーの重合に際し、酸化防止剤又は重合抑制剤からなる配合物に対して、外配でアリールホスフィン化合物およびシラザン化合物からなる群より選ばれた一種以上の化合物を加えることで、着色防止を図っている。 Furthermore, in the prior art document 3, at the time of polymerizing, one or more compounds selected from the group consisting of an arylphosphine compound and a silazane compound are added to the blend consisting of an antioxidant or a polymerization inhibitor. In order to prevent coloring.
 しかしながら、どの着色防止方法も従来の製造工程で使用した添加剤に更に化合物を加えることが多く、また、製造工程がより複雑になるなど、コストの面において必ずしも優位であるとは言い難い。 However, in any coloring prevention method, a compound is often added to the additive used in the conventional production process, and the production process is more complicated, and it is not necessarily advantageous in terms of cost.
 そこで本発明者らは、特許文献4に示したように、有機アルミニウムと酸化防止剤の比率をコントロールすることで着色改善を行った。また、特許文献5に示したように、有機アルミニウムと水との熟成時間を最適化することで、経時着色に優れる製造方法を発明してきた。 Therefore, the present inventors improved the coloring by controlling the ratio of the organic aluminum and the antioxidant as shown in Patent Document 4. In addition, as shown in Patent Document 5, a manufacturing method having excellent coloration with time has been invented by optimizing the aging time of organic aluminum and water.
特開平06-345832号公報Japanese Patent Application Laid-Open No. 06-345832 特表2003-535926号公報Special Table 2003-535926 特開2009-249308号公報JP 2009-249308 A 特開2011-195632号公報JP 2011-195632 A 特開2011-201972号公報JP 2011-201972 A
 本発明者らは、これまでに、上記特許文献4、5の手法で経時着色を低減させてきたが、更に改善することが要求されている状況にあった。これまでの検討では、実験条件を一定下で比較するために、熟成温度を20℃で均一にした上で、熟成時間変更による比較を行っていた。例えば、特許文献5の実施例1では、原料混合溶液に水を添加し、攪拌、溶解後、10℃まで低下させた後、有機アルミニウムを添加していた。有機アルミニウムと水とは、接触後の発熱反応により温度上昇が起こる。また、熟成中は、外気温の影響による温度上昇が起こる。それらの温度上昇に加え、お湯、氷水といった熱源、冷媒を用いることで常に20℃にコントロールした下で、熟成時間の比較を行ってきた。この20℃というのは、年間を通して揃え易い温度であることから設定していた。 The inventors of the present invention have so far reduced the coloring over time by the methods of Patent Documents 4 and 5 described above, but there has been a demand for further improvement. In the examination so far, in order to compare the experimental conditions under a constant condition, the aging temperature was made uniform at 20 ° C. and the comparison was made by changing the aging time. For example, in Example 1 of Patent Document 5, water was added to the raw material mixed solution, and after stirring and dissolving, the temperature was lowered to 10 ° C., and then organoaluminum was added. Organic aluminum and water rise in temperature due to an exothermic reaction after contact. Further, during the aging, the temperature rises due to the influence of the outside air temperature. In addition to these temperature increases, aging times have been compared under constant control at 20 ° C. by using a heat source such as hot water and ice water and a refrigerant. This 20 ° C. was set because it was easy to prepare all year round.
 さらに、ラボ実験においては、条件を揃えるために簡単に温度を上下できるが、工業的に合成ゴムを製造しているプラントにおいては、原料ブタジエンや溶媒を蒸留して再使用しているため、通常は優に30℃を超えるような温度になっているのが実情である。 Furthermore, in laboratory experiments, the temperature can be easily increased or decreased to ensure the same conditions. However, in plants that manufacture synthetic rubber industrially, the raw material butadiene and solvent are distilled and reused. The actual situation is that the temperature is well above 30 ° C.
 本発明は、上記問題点に鑑みてなされたものであり、工業的に簡単な方法で、経時着色を低減し、また優れた活性を示す、高品質かつ高生産性なジエン系ゴムの製造方法及びそれによって得られたジエン系ゴムを提供することを目的とする。 The present invention has been made in view of the above problems, and is a method for producing a high-quality and high-productivity diene rubber that reduces coloration with time and exhibits excellent activity by an industrially simple method. And it aims at providing the diene type rubber | gum obtained by it.
 本発明者らは、以上の目的を達成するために、鋭意検討した結果、これまでは、冷却のためのエネルギーを必要とするため、熟成温度を低温に保ち続けることは行わなかったが、発熱反応に伴う温度上昇、外気温による温度上昇を、冷媒を用いて抑制し、有機アルミニウムと水との熟成反応の温度を、-30~17℃といった低温で熟成の初めから終わりまでコントロールすることで、原料中に含まれる不純物と有機アルミニウムとの副反応を抑制し、それによって副反応生成物になる経時着色原因物質の生成を抑制しつつ、水と有機アルミニウムの熟成反応を促進することができ、経時着色を低減し、また優れた活性を示す、高品質かつ高生産性な製造方法を提供できることを見出し、本発明に至った。 As a result of intensive investigations to achieve the above object, the present inventors have so far required energy for cooling, and have not kept the ripening temperature at a low temperature. By controlling the temperature rise due to the reaction and the temperature rise due to the outside temperature using a refrigerant, the temperature of the aging reaction between organoaluminum and water is controlled from the beginning to the end of aging at a low temperature of −30 to 17 ° C. It is possible to promote the aging reaction of water and organoaluminum while suppressing the side reaction between impurities contained in the raw material and organoaluminum, thereby inhibiting the generation of color-causing substances that become side reaction products. The inventors have found that it is possible to provide a high-quality and high-productivity manufacturing method that reduces coloring with time and exhibits excellent activity, and has led to the present invention.
 すなわち、本発明は、ジエン系ゴムの製造方法において、ジエン系モノマーを重合させる前に、熟成開始から熟成終了まで-30~17℃の温度範囲を保って、水と有機アルミニウムとを熟成させる工程を有することを特徴とする経時着色しないジエン系ゴムの製造方法に関する。 That is, the present invention provides a process for aging water and organoaluminum in a method for producing a diene rubber by maintaining a temperature range of −30 to 17 ° C. from the start of ripening to the end of ripening before polymerizing the diene monomer. The present invention relates to a method for producing a diene rubber that does not color with time.
 また、本発明は、前記製造方法によって得られた経時着色しないジエン系ゴムに関する。 The present invention also relates to a diene rubber obtained by the above production method and not colored over time.
 以上のように、本発明によれば、工業的に簡単な方法で、経時着色を低減し、また優れた活性を示す、高品質かつ高生産性かつ高機能なジエン系ゴムの製造方法及びそれによって得られたジエン系ゴムを提供することができる。 As described above, according to the present invention, a method for producing a high-quality, high-productivity, high-functional diene rubber that reduces coloring over time and exhibits excellent activity by an industrially simple method, and the same The diene rubber obtained by the above can be provided.
 本発明のジエン系ゴムの製造方法は、(A)ジエン系モノマーを(B)有機溶媒に溶かし、その中へ(C)水を溶解し、次いで、(D1)有機アルミニウム助触媒を投入後、前記水と有機アルミニウムを(D2)熟成開始から熟成終了まで-30~17℃の温度範囲を保って熟成した後に、(E)遷移金属触媒を入れて重合をさせ、重合後、(F)重合停止剤及び、場合によっては(G)酸化防止剤を添加することが好ましい。 The method for producing a diene rubber according to the present invention comprises (A) a diene monomer dissolved in (B) an organic solvent, (C) water dissolved therein, and then (D1) an organoaluminum cocatalyst is added. After aging the water and the organoaluminum (D2) from the start of ripening to the end of ripening while maintaining a temperature range of −30 to 17 ° C., (E) polymerizing with a transition metal catalyst, and after polymerization, (F) polymerization It is preferable to add a terminator and, in some cases, (G) an antioxidant.
(A)ジエン系モノマー
 ジエン系モノマーとしては、例えば、1,3-ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチルブタジエン、2-フェニル-1,3-ブタジエン等が挙げられる。これらは、一種単独で用いても、二種以上を混合してもよく、さらに1,3-ヘキサジエンなど他のジエンと共重合して用いてもよい。中でも好ましいのは、1,3-ブタジエンである。
(A) Diene Monomer Examples of the diene monomer include 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethylbutadiene, 2-phenyl-1,3-butadiene, and the like. These may be used singly or in combination of two or more, and may be used by copolymerizing with other dienes such as 1,3-hexadiene. Of these, 1,3-butadiene is preferred.
 本発明において使用する原料ジエン系モノマーは、重合禁止剤を含んでもよい。重合禁止剤としては、通常用いられる禁止剤を用いることができ、特に限定するものではないが、例えば、チオジフェニルアミン、4-ターシャリーブチルカテコール、2,2-メチレンビス-4-メチル-6-ターシャリーブチルフェノール、ハイドロキノン、o-ニトロフェノール、m-ニトロフェノール、p-ニトロフェノール、2,4-ジニトロフェノール、2,4,6-トリニトロフェノール、p-メトキシフェノール、p-ベンゾキノン、フェノチアジン、アンスラキノン、2,6-ジ-t-ブチルヒドロキシトルエン等が挙げられる。 The raw material diene monomer used in the present invention may contain a polymerization inhibitor. As the polymerization inhibitor, a commonly used inhibitor can be used and is not particularly limited. For example, thiodiphenylamine, 4-tertiarybutylcatechol, 2,2-methylenebis-4-methyl-6-tersia Libutylphenol, hydroquinone, o-nitrophenol, m-nitrophenol, p-nitrophenol, 2,4-dinitrophenol, 2,4,6-trinitrophenol, p-methoxyphenol, p-benzoquinone, phenothiazine, anthraquinone 2,6-di-t-butylhydroxytoluene and the like.
 更に、ジエチルヒドロキシルアミン、ジメチルヒドロキシルアミン、メチルエチルヒドロキシルアミン、ジプロピルヒドロキシルアミン、ジブチルヒドロキシルアミン、ジペンチルヒドロキシルアミン、リン酸、ホスホン酸、ホスフィン酸、ジホスホン酸、二リン酸、トリポリリン酸、およびメタリン酸から選ばれるリン酸化合物、リン酸二水素アルキルエステル化合物、リン酸水素ジアルキルエステル化合物、リン酸トリアルキルエステル化合物なども重合禁止剤として使用できる。 In addition, diethylhydroxylamine, dimethylhydroxylamine, methylethylhydroxylamine, dipropylhydroxylamine, dibutylhydroxylamine, dipentylhydroxylamine, phosphoric acid, phosphonic acid, phosphinic acid, diphosphonic acid, diphosphoric acid, tripolyphosphoric acid, and metaphosphoric acid A phosphoric acid compound, a dihydrogen phosphate alkyl ester compound, a hydrogen phosphate dialkyl ester compound, a phosphoric acid trialkyl ester compound, and the like selected from can also be used as a polymerization inhibitor.
 この中でも特に、4-ターシャリーブチルカテコール(TBCと略記)が好ましい。 Of these, 4-tertiary butyl catechol (abbreviated as TBC) is particularly preferable.
(B)有機溶媒
 本発明において使用する有機溶媒としては、トルエン、ベンゼン、キシレン等の芳香族系炭化水素、n-ヘキサン、ブタン、ヘプタン、ペンタン等の脂肪族炭化水素、シクロペンタン、シクロヘキサン等の脂環式炭化水素、1-ブテン、シス-2-ブテン、トランス-2-ブテン等のオレフィン系炭化水素、ミネラルスピリット、ソルベントナフサ、ケロシン等の炭化水素系溶媒や、塩化メチレン等のハロゲン化炭化水素系溶媒等が挙げられる。また、1,3-ブタジエンそのものを重合溶媒としてもよい。
(B) Organic solvent Examples of the organic solvent used in the present invention include aromatic hydrocarbons such as toluene, benzene and xylene, aliphatic hydrocarbons such as n-hexane, butane, heptane and pentane, cyclopentane and cyclohexane. Olefnic hydrocarbons such as alicyclic hydrocarbons, 1-butene, cis-2-butene, trans-2-butene, etc., hydrocarbon solvents such as mineral spirits, solvent naphtha, kerosene, and halogenated carbonization such as methylene chloride. Examples thereof include hydrogen-based solvents. Further, 1,3-butadiene itself may be used as a polymerization solvent.
 溶媒として好ましくは、非芳香族炭化水素であり、特にシクロヘキサンが好ましい。 As the solvent, non-aromatic hydrocarbons are preferable, and cyclohexane is particularly preferable.
(C)水
 本発明において、水を入れるタイミングは、(A)ジエン系モノマーを(B)有機溶媒に溶かした後であり、かつその後投入する(D1)有機アルミニウム助触媒とのモル比のバランスが重要となる。
 (D1)有機アルミニウム助触媒と水とのモル比(Al/HO)は、1~2.5であれば良好であるが、1.05~2.4であればより好ましく、1.1~2.3であれば特に好ましい。(D1)有機アルミニウム助触媒と水とのモル比(Al/HO)が、1~2.5の範囲であると、発色(黄褐色の変化)を防ぐことが可能であるだけでなく、重合活性の著しい低下を防ぐことが可能であることから、生産性の面においても上記モル比は重要である。
(C) Water In the present invention, the timing of adding water is after (A) the diene monomer is dissolved in (B) an organic solvent, and then charged (D1) The molar ratio balance with the organoaluminum promoter is added. Is important.
(D1) The molar ratio (Al / H 2 O) between the organoaluminum promoter and water is preferably 1 to 2.5, more preferably 1.05 to 2.4. 1 to 2.3 is particularly preferable. (D1) When the molar ratio (Al / H 2 O) between the organoaluminum cocatalyst and water is in the range of 1 to 2.5, it is possible not only to prevent color development (change in yellowish brown color). The molar ratio is also important in terms of productivity because it is possible to prevent a significant decrease in polymerization activity.
 (D1)有機アルミニウム助触媒と水とのモル比(Al/HO)が、1より小さいあるいは2.5より大きいと、重合するゴムの生産性が落ち、かつ発色(黄褐色の変化)が生じやすくなるので好ましくない。 (D1) When the molar ratio (Al / H 2 O) between the organoaluminum cocatalyst and water is less than 1 or greater than 2.5, the productivity of the rubber to be polymerized decreases and the color develops (changes in tan) This is not preferable because it tends to occur.
(D1)有機アルミニウム助触媒
 本発明において、使用できる有機アルミニウム助触媒としては、トリアルキルアルミニウム、ジアルキルアルミニウムクロライド、ジアルキルアルミニウムブロマイド、アルキルアルミニウムセスキクロライド、アルキルアルミニウムセスキブロマイド、アルキルアルミニウムジクロライド等を挙げることができる。
(D1) Organoaluminum promoter In the present invention, examples of the organoaluminum promoter that can be used include trialkylaluminum, dialkylaluminum chloride, dialkylaluminum bromide, alkylaluminum sesquichloride, alkylaluminum sesquibromide, and alkylaluminum dichloride. it can.
 これらの有機アルミニウム助触媒は、一種類を用いてもよいし、二種類以上を併用することもできる。中でも特に、トリアルキルアルミニウム、ジアルキルアルミニウムクロライドが好ましく、両者を併用した場合に、特に本願の効果を発揮できるため、トリアルキルアルミニウム、ジアルキルアルミニウムクロライドを併用して用いることがより好ましい。 These organoaluminum promoters may be used alone or in combination of two or more. Of these, trialkylaluminum and dialkylaluminum chloride are particularly preferred, and when both are used in combination, the effects of the present application can be exhibited. Therefore, it is more preferable to use trialkylaluminum and dialkylaluminum chloride in combination.
 具体的な化合物としては、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、トリヘキシルアルミニウム、トリオクチルアルミニウム、トリデシルアルミニウムなどのトリアルキルアルミニウム;ジメチルアルミニウムクロライド、ジエチルアルミニウムクロライドなどのジアルキルアルミニウムクロライドを挙げることができる。 Specific compounds include trialkylaluminum such as trimethylaluminum, triethylaluminum, triisobutylaluminum, trihexylaluminum, trioctylaluminum and tridecylaluminum; and dialkylaluminum chloride such as dimethylaluminum chloride and diethylaluminum chloride. it can.
 さらに、セスキエチルアルミニウムクロライド、エチルアルミニウムジクロライドなどのような有機アルミニウムハロゲン化合物;ジエチルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライド、セスキエチルアルミニウムハイドライドのような水素化有機アルミニウム化合物も含まれる。 Furthermore, organoaluminum halogen compounds such as sesquiethylaluminum chloride and ethylaluminum dichloride; hydrogenated organoaluminum compounds such as diethylaluminum hydride, diisobutylaluminum hydride and sesquiethylaluminum hydride are also included.
 (D2)水と有機アルミニウムの熟成温度
 水と有機アルミニウムの熟成温度は、-30~17℃であるが、-15~15℃がより好ましく、-10~10℃が特に好ましい。熟成温度が17℃を超えると有機アルミと不純物との反応を進めてしまい経時着色の原因物質を生成してしまう。また、本来の熟成の目的である有機アルミと水との熟成反応生成物であるアルモキサン量が減少し活性を低下させてしまう。一方、温度が-30℃より低くても有機アルミと不純物の副反応を抑制し、経時着色の低減は可能であるが、その温度まで冷媒を用いて下げることは工業的に好ましくない。
(D2) Aging temperature of water and organoaluminum The aging temperature of water and organoaluminum is −30 to 17 ° C., more preferably −15 to 15 ° C., and particularly preferably −10 to 10 ° C. When the aging temperature exceeds 17 ° C., the reaction between the organic aluminum and the impurities proceeds, and a causative substance for coloration with time is generated. In addition, the amount of alumoxane, which is an aging reaction product of organic aluminum and water, which is the original purpose of aging, is reduced and the activity is lowered. On the other hand, even if the temperature is lower than −30 ° C., side reaction between the organic aluminum and impurities can be suppressed and coloring with time can be reduced. However, it is industrially not preferable to reduce the temperature to that temperature using a refrigerant.
 一般に、水と有機アルミニウムの熟成は、発熱反応であり、例えば10℃で熟成を開始しても、10℃を保って熟成が終了することはない。また、熟成温度は、外気温による温度上昇などの影響も受けやすい。しかしながら、通常は、冷却のためのエネルギーを必要とするため、熟成温度を熟成開始から終了まで、低温でコントロールし続けることは行われていない。 Generally, aging of water and organoaluminum is an exothermic reaction. For example, even when aging is started at 10 ° C., aging does not end at 10 ° C. In addition, the aging temperature is easily affected by a temperature increase due to the outside air temperature. However, normally, since energy for cooling is required, the aging temperature is not continuously controlled at a low temperature from the start to the end of aging.
 一方、本発明においては、水と有機アルミニウムの熟成温度を、冷媒を用いて、熟成開始から熟成終了まで低温でコントロールし続けることが重要である。
 本発明において、熟成開始温度は、-30~17℃が好ましく、-20~15℃がより好ましく、-15~10℃が特に好ましい。また、熟成終了温度は、-30~17℃が好ましく、-20~15℃がより好ましく、-15~10℃が特に好ましい。熟成開始温度と熟成終了温度は同一である必要はなく、-30~17℃の温度範囲で熟成が開始され、-30~17℃の温度範囲を保ったまま熟成し、-30~17℃の温度範囲で熟成が終了することが重要である。上記のような温度範囲で助触媒を熟成すると、経時着色が低下し、リニアリティ値も高い高機能ゴムを製造することが可能である。
On the other hand, in the present invention, it is important to keep the aging temperatures of water and organoaluminum at a low temperature from the start of aging to the end of aging using a refrigerant.
In the present invention, the aging start temperature is preferably −30 to 17 ° C., more preferably −20 to 15 ° C., and particularly preferably −15 to 10 ° C. The ripening end temperature is preferably −30 to 17 ° C., more preferably −20 to 15 ° C., and particularly preferably −15 to 10 ° C. The ripening start temperature and the ripening end temperature do not have to be the same. The ripening is started in the temperature range of -30 to 17 ° C, and the ripening is performed while maintaining the temperature range of -30 to 17 ° C. It is important that ripening is completed in the temperature range. When the cocatalyst is aged in the temperature range as described above, it is possible to produce a high-performance rubber that is less colored over time and has a high linearity value.
 本発明において、熟成の開始とは、(C)水を溶解させた有機溶媒に(D1)有機アルミニウムを添加した時点であり、熟成の終了とは、(E)遷移金属触媒を添加した時点を指す。 In the present invention, the start of aging is (C) the time when (D1) organoaluminum is added to an organic solvent in which water is dissolved, and the end of aging is the time when (E) the transition metal catalyst is added. Point to.
 本発明のジエン系ゴムの製造方法においては、(A)ジエン系モノマーを(B)有機溶媒に溶かし、その中へ(C)水を溶解し、次いで、(D1)有機アルミニウム助触媒を水とのモル比(Al/HO)が、1~2.5の範囲になるようにして投入し、(D2)熟成開始から熟成終了まで-30~17℃の温度範囲を保って、(D3)1~60分間熟成時間した後に、(E)遷移金属触媒を入れて重合をさせると、経時着色しないジエン系ゴムを製造するのにより効果的である。 In the method for producing a diene rubber of the present invention, (A) a diene monomer is dissolved in (B) an organic solvent, (C) water is dissolved therein, and then (D1) an organoaluminum promoter is added to water. The molar ratio (Al / H 2 O) is in the range of 1 to 2.5, and (D2) is maintained at a temperature range of −30 to 17 ° C. from the start of ripening to the end of ripening (D3 It is more effective to produce a diene rubber which does not color with time when (E) a transition metal catalyst is added and polymerized after aging for 1 to 60 minutes.
 即ち、(D1)有機アルミニウム助触媒と水とのモル比(Al/HO)の範囲を限定する条件を併用することで、より一層、経時着色防止効果と高機能性を創出する。 That is, (D1) by using together the conditions that limit the range of the molar ratio (Al / H 2 O) between the organoaluminum cocatalyst and water, the effect of preventing coloration with time and high functionality are further created.
(D3)水と有機アルミニウムの熟成時間
 また、水と(D3)有機アルミニウムの熟成時間は、1~60分が特に好ましく、3~50分がより好ましく、5~45分が最も好ましい。熟成時間が1分より短いと、熟成反応生成物であるアルモキサンが十分形成できず、未反応の有機アルミニウムと不純物との反応を進めてしまい、熟成時間が60分より長いと、不安定なアルモキサンを維持し続けることができず、重合反応で働くことができず、触媒当たりの生成ポリマーが減少し、着色原因となってしまう傾向にある。
(D3) Aging time of water and organoaluminum The aging time of water and (D3) organoaluminum is particularly preferably 1 to 60 minutes, more preferably 3 to 50 minutes, and most preferably 5 to 45 minutes. If the aging time is shorter than 1 minute, the alumoxane that is an aging reaction product cannot be sufficiently formed, and the reaction between the unreacted organoaluminum and impurities proceeds. If the aging time is longer than 60 minutes, the unstable alumoxane Can not continue to be maintained, can not work in the polymerization reaction, the polymer produced per catalyst is reduced, tends to cause coloration.
(E)遷移金属触媒
 本発明において、使用できる遷移金属触媒としては、コバルト系触媒が挙げられる。
(E) Transition metal catalyst In the present invention, examples of the transition metal catalyst that can be used include a cobalt-based catalyst.
 コバルト系触媒としては、コバルトの塩や錯体が好ましく用いられる。特に好ましいものは、塩化コバルト、臭化コバルト、硝酸コバルト、オクチル酸(エチルヘキサン酸)コバルト、ナフテン酸コバルト、酢酸コバルト、マロン酸コバルト等のコバルト塩;コバルトのビスアセチルアセトネートやトリスアセチルアセトネート、アセト酢酸エチルエステルコバルト、コバルト塩のピリジン錯体やピコリン錯体等の有機塩基錯体、もしくはエチルアルコール錯体などが挙げられる。 As the cobalt-based catalyst, a cobalt salt or complex is preferably used. Particularly preferred are cobalt salts such as cobalt chloride, cobalt bromide, cobalt nitrate, cobalt octylate (ethylhexanoate), cobalt naphthenate, cobalt acetate, and cobalt malonate; cobalt bisacetylacetonate and trisacetylacetonate And organic base complexes such as acetoacetic acid ethyl ester cobalt, cobalt salt pyridine complex and picoline complex, or ethyl alcohol complex.
 この中でも特にオクチル酸コバルトが好ましい。 Of these, cobalt octylate is particularly preferable.
 また、本発明のジエン系ゴムは、コバルト系以外の触媒により製造することができる。
 コバルト系以外の触媒としては、ニッケル系或いはネオジウム系などの触媒を挙げることができる。
The diene rubber of the present invention can be produced with a catalyst other than cobalt.
Examples of catalysts other than cobalt-based catalysts include nickel-based and neodymium-based catalysts.
 ニッケル系触媒としては、ニッケル化合物-有機アルミニウム化合物からなる触媒系などが挙げられる。 Examples of the nickel-based catalyst include a catalyst system composed of a nickel compound-organoaluminum compound.
 また、ニッケル化合物としては、ナフテン酸ニッケル、ギ酸ニッケル、オクチル酸ニッケル、ステアリン酸ニッケル、クエン酸ニッケル、安息香酸ニッケル、トルイル酸ニッケルなどの有機酸塩;ニッケルアセチルアセトナートなどの有機錯化合物;アルキルベンゼンスルホン酸ニッケル;ニッケルオキシボレートなどが挙げられる。 Examples of the nickel compound include organic acid salts such as nickel naphthenate, nickel formate, nickel octylate, nickel stearate, nickel citrate, nickel benzoate and nickel toluate; organic complex compounds such as nickel acetylacetonate; Examples include nickel sulfonate; nickel oxyborate.
 この中でも、オクチル酸ニッケルが好ましい。 Of these, nickel octylate is preferable.
 さらに、金属触媒の種類に応じたジエン系ポリマーの形態として、リチウム触媒重合-ポリブタジエン(Li-BR)、コバルト触媒重合-ポリブタジエン(Co-BR)、ネオジム触媒重合-ポリブタジエン(Nd-BR)、ニッケル触媒重合-ポリブタジエン(Ni-BR)、チタン触媒重合-ポリブタジエン(Ti-BR)、スチレン-ブタジエンーブロックコポリマー(SB、SBS、SEBS)、ランダムスチレン-ブタジエン-コポリマー(L-SBR)、ブタジエン-イソプレン-コポリマー(BI)、スチレン-ブタジエン-イソプレン-ターポリマー(SIB)などが挙げられる。 Furthermore, the form of diene polymer according to the type of metal catalyst includes lithium catalyst polymerization-polybutadiene (Li-BR), cobalt catalyst polymerization-polybutadiene (Co-BR), neodymium catalyst polymerization-polybutadiene (Nd-BR), nickel Catalytic polymerization-Polybutadiene (Ni-BR), Titanium catalytic polymerization-Polybutadiene (Ti-BR), Styrene-butadiene block copolymer (SB, SBS, SEBS), Random styrene-butadiene-copolymer (L-SBR), Butadiene-isoprene -Copolymer (BI), styrene-butadiene-isoprene-terpolymer (SIB) and the like.
 中でも特に、コバルト触媒重合-ポリブタジエン(Co-BR)が本願発明の方法では最適である。 In particular, cobalt-catalyzed polymerization-polybutadiene (Co-BR) is most suitable for the method of the present invention.
 また、本発明においては、重合の際に公知の分子量調節剤、例えば、シクロオクタジエン、アレンなどの非共役ジエン類、またはエチレン、プロピレン、ブテン-1などのα-オレフィン類を添加することができる。 In the present invention, a known molecular weight regulator, for example, non-conjugated dienes such as cyclooctadiene and allene, or α-olefins such as ethylene, propylene and butene-1 may be added during the polymerization. it can.
 本発明において、重合温度は-30~100℃の範囲が好ましく、30~80℃の範囲が特に好ましい。重合時間は5分~12時間の範囲が好ましく、10分~6時間が特に好ましい。また、重合圧は、常圧又は10気圧(ゲージ圧)程度までの加圧下に行われる。 In the present invention, the polymerization temperature is preferably in the range of −30 to 100 ° C., particularly preferably in the range of 30 to 80 ° C. The polymerization time is preferably in the range of 5 minutes to 12 hours, particularly preferably 10 minutes to 6 hours. The polymerization pressure is performed under normal pressure or a pressure up to about 10 atmospheres (gauge pressure).
(F)重合停止剤
 ジエン系ゴムの重合の中断は、通常の方法で、水、アルコール、有機酸または無機酸および/またはフェノールの添加により行われる。本発明による重合は、水で中断させるのがコストの面で有利である。
(F) Polymerization terminator The polymerization of the diene rubber is interrupted by the addition of water, alcohol, organic acid or inorganic acid and / or phenol in the usual manner. It is advantageous in terms of cost to interrupt the polymerization according to the invention with water.
 この中でも、分散性が良く、好ましい重合停止剤としては、水や低級アルコールなどが挙げられ、水の使用量としては、トータルの原料混合溶液に対する割合が1.38×10-8~9.9vol%であることが好ましく、2.76×10-8~5vol%であることがより好ましく、4.14×10-8~3vol%であることがさらにより好ましい。トータルの原料混合溶液とは、反応器へ仕込む原料であるジエン系モノマー、溶媒との総和量である。 Among them, preferable dispersibility is preferable because of good dispersibility. Water, lower alcohols and the like can be mentioned. The amount of water used is 1.38 × 10 −8 to 9.9 vol with respect to the total raw material mixed solution. %, Preferably 2.76 × 10 −8 to 5 vol%, more preferably 4.14 × 10 −8 to 3 vol%. The total raw material mixed solution is the total amount of the diene monomer and solvent that are raw materials charged into the reactor.
 低級アルコールとしては、炭素数が5以下のものがよく、具体的にはメタノール、エタノール、プロパノール、イソプロパノール、ブタノール、ter-ブチルアルコール、ペンタノールとそれらの異性体が挙げられる。これらは、単独で用いても、混合して用いてもよい。 As the lower alcohol, those having 5 or less carbon atoms are preferable, and specific examples include methanol, ethanol, propanol, isopropanol, butanol, ter-butyl alcohol, pentanol and isomers thereof. These may be used alone or in combination.
 また、本発明においては、(F)重合停止剤の後、必要に応じて(G)酸化防止剤を添加してもよいが、(G)酸化防止剤と(F)重合停止剤を添加する順序が逆になってもよい。 In the present invention, (G) an antioxidant may be added as necessary after (F) the polymerization terminator, but (G) the antioxidant and (F) the polymerization terminator are added. The order may be reversed.
(G)酸化防止剤
 酸化防止剤としては、4,6-ビス(オクチルメチル)-o-クレゾール、第3級ブチルヒドロキノン、ジニトロクロロベンゼン、ヒドロキノンと水、ジメチルジチオカルバミン酸塩、多硫化ナトリウム、ポリエチレンポリアミン、ジエチルヒドロキシルアミン、ヒドロキシルアミン等のアミン系化合物、ベンゾキノンなどのキノン系化合物、硝酸ナトリウム、ソジウムジチオカーバメイト、フェノチアジン、2,6-t-ブチル-4-メチルフェノールなどが挙げられる。
(G) Antioxidants Antioxidants include 4,6-bis (octylmethyl) -o-cresol, tertiary butylhydroquinone, dinitrochlorobenzene, hydroquinone and water, dimethyldithiocarbamate, sodium polysulfide, polyethylene polyamine Amine compounds such as diethylhydroxylamine and hydroxylamine, quinone compounds such as benzoquinone, sodium nitrate, sodium dithiocarbamate, phenothiazine, and 2,6-t-butyl-4-methylphenol.
 この中でも、4,6-ビス(オクチルメチル)-o-クレゾールが好ましい。 Of these, 4,6-bis (octylmethyl) -o-cresol is preferable.
 酸化防止剤の添加量は、ジエン系モノマー1モルに対して8.256×10-6~3.754×10-4モルの添加量が好ましい。酸化防止剤も原料中に含まれる不純物と同様に有機アルミニウムと反応するため、酸化防止剤の添加量が3.754×10-4より多くては、経時着色が悪く、また、逆に8.256×10-6より少なすぎては、劣化が進み、着色が悪化することに繋がる。 The addition amount of the antioxidant is preferably from 8.256 × 10 −6 to 3.754 × 10 −4 mol with respect to 1 mol of the diene monomer. Since the antioxidant also reacts with organoaluminum in the same manner as the impurities contained in the raw material, if the amount of the antioxidant added exceeds 3.754 × 10 −4 , the coloration with time deteriorates, and conversely, 8. If it is less than 256 × 10 −6 , the deterioration proceeds and the coloration is deteriorated.
 本発明により製造されるジエン系ゴムは、経時着色が低く、リニアリティが高いことを特徴とする。具体的には、ΔYI(YI(2ヶ月)-YI(1週間))の値が、15以下であることが好ましい。リニアリティ値の指標としては、Tcp/MLの値で表されるが、一般的にリニアリティ値が高い程、耐摩耗性、高弾性率、低ロス等の高機能性を発現する事ができ好ましい。 The diene rubber produced according to the present invention is characterized by low coloration with time and high linearity. Specifically, the value of ΔYI (YI (2 months) −YI (1 week)) is preferably 15 or less. The index of linearity value is represented by the value of Tcp / ML. Generally, the higher the linearity value, the better the high functionality such as wear resistance, high elastic modulus, and low loss is preferable.
 本発明により製造される経時着色しないジエン系ゴムは、全ての種類の加硫物を製造するため、例えば、タイヤ、ホース、履物部材、工業用ベルト、医療用ゴム、スポーツ用品、クローラ又はパッキンを製造するために、ならびにビニル芳香族化合物、例えば、ポリスチレンおよび塊状法により製造されたABS-ポリマーを基礎とするポリマーの耐衝撃性変性のために使用することもできる。 The diene rubber that is not colored over time produced according to the present invention is used to produce all types of vulcanizates. For example, tires, hoses, footwear members, industrial belts, medical rubber, sporting goods, crawlers, or packings are used. It can also be used for the production and for the impact modification of polymers based on vinyl aromatic compounds such as polystyrene and bulk-processed ABS-polymers.
 以下、本発明を実施例に基づいて具体的に説明するが、これらは本発明の目的を限定するものではない。まず、以下に、実施例で用いた分析方法を示す。 Hereinafter, the present invention will be specifically described based on examples, but these do not limit the object of the present invention. First, the analysis methods used in the examples are shown below.
(着色測定)
 着色の判断は、目視のほか、日本電色工業(株)製NDJ-300Aによりイエローインデックス(YI値)にて定量的に測定を行った。
(Coloring measurement)
In addition to visual observation, the coloration was quantitatively measured with a yellow index (YI value) using NDJ-300A manufactured by Nippon Denshoku Industries Co., Ltd.
(転化率の計算)
 原料混合溶液(シクロヘキサン20wt%、ブタジエン40wt%、ブテン40wt%)1Lの場合、比重0.65であるため重量は650gになる。重量650g中ブタジエンモノマーは40wt%なので、650×0.4=260gと計算できる。
 重合反応後、例えばポリブタジエンを120g得ることができた場合、120g/260g≒0.46となり転化率46%となる。
(Calculation of conversion)
In the case of 1 L of the raw material mixed solution (cyclohexane 20 wt%, butadiene 40 wt%, butene 40 wt%), the specific gravity is 0.65, so the weight is 650 g. Since the butadiene monomer is 40 wt% in the weight of 650 g, it can be calculated that 650 × 0.4 = 260 g.
For example, when 120 g of polybutadiene can be obtained after the polymerization reaction, 120 g / 260 g≈0.46, and the conversion is 46%.
(ムーニー粘度(ML1+4,100℃))
 JIS K 6300に準拠して測定した。
(Mooney viscosity (ML 1 + 4 , 100 ° C))
It measured based on JISK6300.
(トルエン溶液粘度(Tcp))
 ポリマー2.28gをトルエン50mlに溶解した後、標準液として粘度計校正用標準液(JIS Z 8809)を用い、キャノンフェンスケ粘度計No.400を使用して、25℃で測定した。
(Toluene solution viscosity (Tcp))
After dissolving 2.28 g of the polymer in 50 ml of toluene, a standard solution for calibrating viscometer (JIS Z 8809) was used as a standard solution, and Canon Fenske viscometer No. 400 was used and measured at 25 ° C.
(トルエン溶液粘度/ムーニー粘度(Tcp/ML1+4,100℃))
 リニアリティの指標である。リニアリティとは、ポリマーの分子鎖の広がり方の指標。
リニアリティ値が高いほど直鎖のポリマーを意味し、リニアリティ値が高いゴムは一般的に耐摩耗性、高弾性率、低ロス性に優れると言われている。
(Toluene solution viscosity / Mooney viscosity (Tcp / ML 1 + 4 , 100 ° C.))
It is an index of linearity. Linearity is an index of how the molecular chain of a polymer spreads.
A higher linearity value means a linear polymer, and a rubber having a higher linearity value is generally said to be excellent in wear resistance, high elastic modulus, and low loss.
(実施例1)
 内容量1.5Lの重合用オートクレーブの内部を窒素置換し、原料混合溶液(シクロヘキサン20wt%、ブタジエン40wt%、ブテン40wt%)を、1Lを仕込んで攪拌した。次いで、水3.64mmolを添加して室温にて30分間攪拌を続けた。その後、10℃(熟成開始温度)まで低下させた後、ジエチルアルミニウムクロライド(DEAC)3mmol、トリエチルアルミニウム(TEA)1mmol添加し、10℃を氷水とお湯で温度を一定にコントロールして15分間攪拌させて熟成させた。全有機アルミニウム触媒(4mmol/l)と水とのモル比(Al/HO)は1.10である。その後、分子量調節剤として1,5-シクロオクタジエン(COD)11mmol添加し、溶液の温度を50℃として、オクチル酸コバルト(Co(Oct))7.8μmolを添加し、重合を開始し、30分間重合を行った。反応後、酸化防止剤として4,6-ビス(オクチルメチル)-o-クレゾール(cas-ナンバー110553-27-0)を0.2355mmolをエタノール溶液で添加し、1分間攪拌した。
 その後、回収したポリブタジエン溶液から、溶媒を100℃、1時間真空乾燥させることによって、ポリブタジエンを得た。結果を表1に示す。なお、着色測定は、製造1週間後、2週間後、1ヵ月後、2ヵ月後に行った。
(Example 1)
The inside of the polymerization autoclave having an internal volume of 1.5 L was purged with nitrogen, and 1 L of a raw material mixed solution (cyclohexane 20 wt%, butadiene 40 wt%, butene 40 wt%) was charged and stirred. Next, 3.64 mmol of water was added and stirring was continued at room temperature for 30 minutes. Then, after lowering to 10 ° C (ripening start temperature), 3 mmol of diethylaluminum chloride (DEAC) and 1 mmol of triethylaluminum (TEA) were added, and the temperature was kept constant at 10 ° C with ice water and hot water for 15 minutes. And matured. The molar ratio (Al / H 2 O) between the total organoaluminum catalyst (4 mmol / l) and water is 1.10. Thereafter, 11 mmol of 1,5-cyclooctadiene (COD) was added as a molecular weight regulator, the temperature of the solution was 50 ° C., 7.8 μmol of cobalt octylate (Co (Oct) 2 ) was added, and polymerization was started. Polymerization was carried out for 30 minutes. After the reaction, 0.2355 mmol of 4,6-bis (octylmethyl) -o-cresol (cas-number 110553-27-0) as an antioxidant was added in an ethanol solution and stirred for 1 minute.
Thereafter, the solvent was vacuum dried at 100 ° C. for 1 hour from the recovered polybutadiene solution to obtain polybutadiene. The results are shown in Table 1. The color measurement was carried out after 1 week, 2 weeks, 1 month and 2 months after production.
(実施例2)
 水溶解後、10℃まで低下させた後、ジエチルアルミニウムクロライド(DEAC)3mmol、トリエチルアルミニウム(TEA)1mmol添加し、15℃に氷水とお湯で温度を一定にコントロールして15分間攪拌させて熟成させた以外は実施例1と同様にして行った。結果を表1に示す。
(Example 2)
After dissolving in water, the temperature is lowered to 10 ° C., 3 mmol of diethylaluminum chloride (DEAC) and 1 mmol of triethylaluminum (TEA) are added, and the temperature is kept constant at 15 ° C. with ice water and hot water, and the mixture is aged for 15 minutes. The procedure was the same as in Example 1 except that. The results are shown in Table 1.
(実施例3)
 水溶解後、10℃まで低下させた後、ジエチルアルミニウムクロライド(DEAC)3mmol、トリエチルアルミニウム(TEA)1mmol添加し、17℃に氷水とお湯で温度を一定にコントロールして15分間攪拌させて熟成させた以外は実施例1と同様にして行った。結果を表1に示す。
(Example 3)
After dissolution in water, the temperature is lowered to 10 ° C., then 3 mmol of diethylaluminum chloride (DEAC) and 1 mmol of triethylaluminum (TEA) are added. The temperature is kept constant at 17 ° C. with ice water and hot water, and the mixture is aged for 15 minutes. The procedure was the same as in Example 1 except that. The results are shown in Table 1.
(比較例1)
 水溶解後、20℃まで低下させ、ジエチルアルミニウムクロライド(DEAC)3mmol、トリエチルアルミニウム(TEA)1mmol添加し、20℃に氷水とお湯で温度を一定にコントロールして15分間攪拌させて熟成させた以外は実施例1と同様にして行った。結果を表1に示す。
(Comparative Example 1)
After dissolving in water, the temperature was lowered to 20 ° C., 3 mmol of diethylaluminum chloride (DEAC) and 1 mmol of triethylaluminum (TEA) were added, and the temperature was kept constant at 20 ° C. with ice water and hot water, and the mixture was aged for 15 minutes. Was carried out in the same manner as in Example 1. The results are shown in Table 1.
(比較例2)
 水溶解後、10℃まで低下させた後、ジエチルアルミニウムクロライド(DEAC)3mmol、トリエチルアルミニウム(TEA)1mmol添加し、20℃に氷水とお湯で温度を一定にコントロールして15分間攪拌させて熟成させた以外は実施例1と同様にして行った。結果を表1に示す。
(Comparative Example 2)
After dissolving in water, the temperature is lowered to 10 ° C., 3 mmol of diethylaluminum chloride (DEAC) and 1 mmol of triethylaluminum (TEA) are added, and the temperature is kept constant at 20 ° C. with ice water and hot water, and the mixture is aged for 15 minutes. The procedure was the same as in Example 1 except that. The results are shown in Table 1.
(実施例4)
 水溶解後、5℃まで低下させ、ジエチルアルミニウムクロライド(DEAC)3mmol、トリエチルアルミニウム(TEA)1mmol添加し、5℃に氷水とお湯で温度を一定にコントロールして15分間攪拌させて熟成させた以外は実施例1と同様にして行った。結果を表1に示す。
Example 4
After dissolving in water, the temperature was lowered to 5 ° C., 3 mmol of diethylaluminum chloride (DEAC) and 1 mmol of triethylaluminum (TEA) were added, the temperature was kept constant at 5 ° C. with ice water and hot water, and the mixture was aged by stirring for 15 minutes. Was carried out in the same manner as in Example 1. The results are shown in Table 1.
(実施例5)
 水溶解後、5℃まで低下させ、ジエチルアルミニウムクロライド(DEAC)3mmol、トリエチルアルミニウム(TEA)1mmol添加し、15℃に氷水とお湯で温度を一定にコントロールして15分間攪拌させて熟成させた以外は実施例1と同様にして行った。結果を表1に示す。
(Example 5)
After dissolving in water, the temperature was lowered to 5 ° C., 3 mmol of diethylaluminum chloride (DEAC) and 1 mmol of triethylaluminum (TEA) were added, and the temperature was kept constant at 15 ° C. with ice water and hot water, and the mixture was aged for 15 minutes. Was carried out in the same manner as in Example 1. The results are shown in Table 1.
(実施例6)
 水溶解後、5℃まで低下させ、ジエチルアルミニウムクロライド(DEAC)3mmol、トリエチルアルミニウム(TEA)1mmol添加し、17℃に氷水とお湯で温度を一定にコントロールして15分間攪拌させて熟成させた以外は実施例1と同様にして行った。結果を表1に示す。
(Example 6)
After dissolving in water, the temperature was lowered to 5 ° C., 3 mmol of diethylaluminum chloride (DEAC) and 1 mmol of triethylaluminum (TEA) were added, and the temperature was kept constant at 17 ° C. with ice water and hot water, and the mixture was aged by stirring for 15 minutes. Was carried out in the same manner as in Example 1. The results are shown in Table 1.
(実施例7)
 水溶解後、5℃まで低下させた後、ジエチルアルミニウムクロライド(DEAC)3mmol、トリエチルアルミニウム(TEA)1mmol添加し、冷却したメタノール水とお湯で温度を-20℃にコントロールして15分間攪拌させて熟成させた以外は実施例1と同様にして行った。結果を表1に示す。
(Example 7)
After dissolution in water, the temperature was lowered to 5 ° C., 3 mmol of diethylaluminum chloride (DEAC) and 1 mmol of triethylaluminum (TEA) were added, and the temperature was controlled at −20 ° C. with cooled methanol water and hot water, and the mixture was stirred for 15 minutes. The same procedure as in Example 1 was performed except that the mixture was aged. The results are shown in Table 1.
(比較例3)
 水溶解後、5℃まで低下させ、ジエチルアルミニウムクロライド(DEAC)3mmol、トリエチルアルミニウム(TEA)1mmol添加し、20℃に氷水とお湯で温度を一定にコントロールして15分間攪拌させて熟成させた以外は実施例1と同様にして行った。結果を表1に示す。
(Comparative Example 3)
After dissolving in water, the temperature was lowered to 5 ° C., 3 mmol of diethylaluminum chloride (DEAC) and 1 mmol of triethylaluminum (TEA) were added, and the temperature was kept constant at 20 ° C. with ice water and hot water, and the mixture was aged by stirring for 15 minutes. Was carried out in the same manner as in Example 1. The results are shown in Table 1.
(実施例8)
 原料混合溶液(シクロヘキサン20wt%、ブタジエン40wt%、ブテン40wt%)を、半量の500mLを仕込んで攪拌した。次いで、水3.64mmolを添加して室温にて30分間攪拌を続けた。その後、10℃(熟成開始温度)まで低下させた後、ジエチルアルミニウムクロライド(DEAC)3mmol、トリエチルアルミニウム(TEA)1mmol添加し、15℃に氷水とお湯で温度を一定にコントロールして15分間攪拌させて熟成させた。その後、残りの原料混合溶液500mlを送り込んだ。それ以外は実施例1と同様にして行った。結果を表1に示す。
(Example 8)
A half amount of 500 mL of a raw material mixed solution (cyclohexane 20 wt%, butadiene 40 wt%, butene 40 wt%) was charged and stirred. Next, 3.64 mmol of water was added and stirring was continued at room temperature for 30 minutes. Thereafter, the temperature is lowered to 10 ° C. (ripening start temperature), 3 mmol of diethylaluminum chloride (DEAC) and 1 mmol of triethylaluminum (TEA) are added, and the temperature is kept constant at 15 ° C. with ice water and hot water and stirred for 15 minutes. And matured. Thereafter, the remaining 500 ml of the raw material mixed solution was fed. Other than that was carried out in the same manner as in Example 1. The results are shown in Table 1.
[規則26に基づく補充 13.05.2016] 
Figure WO-DOC-TABLE-1
     total Al/H(*):全有機アルミニウム触媒と水とのモル比を意味する。
     ΔYI(**):YI(2ヶ月)-YI(1週間)の値である。
[Supplement under rule 26 13.05.2016]
Figure WO-DOC-TABLE-1
total Al / H (*) : means the molar ratio of the total organoaluminum catalyst to water.
ΔYI (**) : YI (2 months) −YI (1 week).
 表1の結果より、実施例1~3は比較例1、2と比べ、経時着色(経過日数あたりのYIの変化量)が低く、さらに転化率も高いことが分かる。また、実施例4~7は比較例3と比べるとリニアリティが高いことが分かる。 From the results of Table 1, it can be seen that Examples 1 to 3 have lower coloration with time (change in YI per elapsed day) and higher conversion than Comparative Examples 1 and 2. Further, it can be seen that Examples 4 to 7 have higher linearity than Comparative Example 3.
 また、実施例4~7は比較例3と比べ、経時着色(経過日数あたりのYIの変化量)が低く、さらに転化率も高いことが分かる。 In addition, it can be seen that Examples 4 to 7 have lower coloration with time (change in YI per elapsed day) and higher conversion than Comparative Example 3.
 さらに、実施例8のように、熟成濃度を200%にした場合にも、経時着色(経過日数あたりのYIの変化量)が低いため、熟成濃度は100%で行ってもよいし、200%で行ってもよいことが分かった。また、熟成温度をコントロールすることでリニアリティ(Tcp/ML)が高い高機能ゴムを製造する事ができる。実施例1~3は比較例1、2に比べリニアリティが高く、実施例4~7は比較例3と比べるとリニアリティが高い。 Furthermore, as in Example 8, even when the ripening concentration is 200%, the aging concentration (change amount of YI per elapsed days) is low, so the aging concentration may be 100% or 200%. It turned out to be possible to go. Further, by controlling the aging temperature, it is possible to produce a highly functional rubber having a high linearity (Tcp / ML). Examples 1 to 3 have higher linearity than Comparative Examples 1 and 2, and Examples 4 to 7 have higher linearity than Comparative Example 3.
(実施例9)
 内容量1.5Lの重合用オートクレーブの内部を窒素置換し、原料混合溶液(シクロヘキサン20wt%、ブタジエン40wt%、ブテン40wt%)を、1Lを仕込んで攪拌した。次いで、水2.67mmolを添加して室温にて30分間攪拌を続けた。その後、10℃(熟成開始温度)まで低下させた後、ジエチルアルミニウムクロライド(DEAC)3mmol、トリエチルアルミニウム(TEA)1mmol添加し、10℃を氷水とお湯で温度を一定にコントロールして15分間攪拌させて熟成させた。全有機アルミニウム触媒(4mmol/l)と水とのモル比(Al/HO)は1.5である。その後、分子量調節剤として1,5-シクロオクタジエン(COD)11mmol添加し、溶液の温度を50℃として、オクチル酸コバルト(Co(Oct))7.8μmolを添加し、重合を開始し、30分間重合を行った。反応後、酸化防止剤として4,6-ビス(オクチルメチル)-o-クレゾール(cas-ナンバー110553-27-0)を0.2355mmolをエタノール溶液で添加し、1分間攪拌した。結果を表2に示す。
Example 9
The inside of the polymerization autoclave having an internal volume of 1.5 L was purged with nitrogen, and 1 L of a raw material mixed solution (cyclohexane 20 wt%, butadiene 40 wt%, butene 40 wt%) was charged and stirred. Next, 2.67 mmol of water was added and stirring was continued at room temperature for 30 minutes. Then, after lowering to 10 ° C (ripening start temperature), 3 mmol of diethylaluminum chloride (DEAC) and 1 mmol of triethylaluminum (TEA) were added, and the temperature was kept constant at 10 ° C with ice water and hot water for 15 minutes. And matured. The molar ratio (Al / H 2 O) between the total organoaluminum catalyst (4 mmol / l) and water is 1.5. Thereafter, 11 mmol of 1,5-cyclooctadiene (COD) was added as a molecular weight regulator, the temperature of the solution was 50 ° C., 7.8 μmol of cobalt octylate (Co (Oct) 2 ) was added, and polymerization was started. Polymerization was carried out for 30 minutes. After the reaction, 0.2355 mmol of 4,6-bis (octylmethyl) -o-cresol (cas-number 110553-27-0) as an antioxidant was added in an ethanol solution and stirred for 1 minute. The results are shown in Table 2.
(実施例10)
 内容量1.5Lの重合用オートクレーブの内部を窒素置換し、原料混合溶液(シクロヘキサン25wt%、ブタジエン38wt%、ブテン37wt%)を、1Lを仕込んで攪拌した。次いで、水1.50mmolを添加して室温にて30分間攪拌を続けた。その後、10℃(熟成開始温度)まで低下させた後、ジエチルアルミニウムクロライド(DEAC)2.7mmol、トリエチルアルミニウム(TEA)0.3mmol添加し、10℃を氷水とお湯で温度を一定にコントロールして15分間攪拌させて熟成させた。全有機アルミニウム触媒(3mmol/l)と水とのモル比(Al/HO)は2.0である。その後、分子量調節剤として1,5-シクロオクタジエン(COD)10.5mmol添加し、溶液の温度を50℃として、オクチル酸コバルト(Co(Oct))11.7μmolを添加し、重合を開始し、30分間重合を行った。反応後、酸化防止剤として4,6-ビス(オクチルメチル)-o-クレゾール(cas-ナンバー110553-27-0)を0.2355mmolをエタノール溶液で添加し、1分間攪拌した。結果を表2に示す。
(Example 10)
The inside of the polymerization autoclave having an internal volume of 1.5 L was purged with nitrogen, and 1 L of a raw material mixed solution (cyclohexane 25 wt%, butadiene 38 wt%, butene 37 wt%) was charged and stirred. Next, 1.50 mmol of water was added and stirring was continued at room temperature for 30 minutes. Thereafter, the temperature was lowered to 10 ° C. (ripening start temperature), 2.7 mmol of diethylaluminum chloride (DEAC) and 0.3 mmol of triethylaluminum (TEA) were added, and the temperature was controlled to be constant at 10 ° C. with ice water and hot water. The mixture was aged by stirring for 15 minutes. The molar ratio (Al / H 2 O) between the total organoaluminum catalyst (3 mmol / l) and water is 2.0. Thereafter, 10.5 mmol of 1,5-cyclooctadiene (COD) was added as a molecular weight regulator, the temperature of the solution was 50 ° C., and 11.7 μmol of cobalt octylate (Co (Oct) 2 ) was added to initiate polymerization. For 30 minutes. After the reaction, 0.2355 mmol of 4,6-bis (octylmethyl) -o-cresol (cas-number 110553-27-0) as an antioxidant was added in an ethanol solution and stirred for 1 minute. The results are shown in Table 2.
(実施例11)
 内容量1.5Lの重合用オートクレーブの内部を窒素置換し、原料混合溶液(シクロヘキサン30wt%、ブタジエン35wt%、ブテン35wt%)を、1Lを仕込んで攪拌した。次いで、水1.20mmolを添加して室温にて30分間攪拌を続けた。その後、10℃(熟成開始温度)まで低下させた後、ジエチルアルミニウムクロライド(DEAC)2.7mmol、トリエチルアルミニウム(TEA)0.3mmol添加し、10℃を氷水とお湯で温度を一定にコントロールして15分間攪拌させて熟成させた。全有機アルミニウム触媒(3mmol/l)と水とのモル比(Al/H2O)は2.5である。その後、分子量調節剤として1,5-シクロオクタジエン(COD)10mmol添加し、溶液の温度を50℃として、オクチル酸コバルト(Co(Oct)2)23.4μmolを添加し、重合を開始し、30分間重合を行った。反応後、酸化防止剤として4,6-ビス(オクチルメチル)-o-クレゾール(cas-ナンバー110553-27-0)を0.2355mmolをエタノール溶液で添加し、1分間攪拌した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
(Example 11)
The inside of the polymerization autoclave having an internal volume of 1.5 L was purged with nitrogen, and 1 L of a raw material mixed solution (cyclohexane 30 wt%, butadiene 35 wt%, butene 35 wt%) was charged and stirred. Next, 1.20 mmol of water was added and stirring was continued at room temperature for 30 minutes. Thereafter, the temperature was lowered to 10 ° C. (ripening start temperature), 2.7 mmol of diethylaluminum chloride (DEAC) and 0.3 mmol of triethylaluminum (TEA) were added, and the temperature was controlled to be constant at 10 ° C. with ice water and hot water. The mixture was aged by stirring for 15 minutes. The molar ratio of all organoaluminum catalyst (3 mmol / l) to water (Al / H 2 O) is 2.5. Thereafter, 10 mmol of 1,5-cyclooctadiene (COD) is added as a molecular weight regulator, the temperature of the solution is 50 ° C., 23.4 μmol of cobalt octylate (Co (Oct) 2) is added, and polymerization is started. Polymerization was carried out for 30 minutes. After the reaction, 0.2355 mmol of 4,6-bis (octylmethyl) -o-cresol (cas-number 110553-27-0) as an antioxidant was added in an ethanol solution and stirred for 1 minute. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 表1及び2の結果より、実施例1及び実施例9~11は比較例2と比べると、経時着色(ΔYI)が低く、転化率も高いことが分かる。 From the results of Tables 1 and 2, it can be seen that Example 1 and Examples 9 to 11 have lower coloration over time (ΔYI) and higher conversion than Comparative Example 2.
 以上より、表1はトリアルキルアルミニウム、ジアルキルアルミニウムクロライドの併用系においてAl/Hが1.1での比較で、表2はジアルキルアルミニウムクロライド単独系においてAl/Hが2.2での比較である。どちらの条件下においても、熟成温度を熟成開始から終わりまで17℃以下で維持することで、ΔYIと転化率とリニアリティアップにおいてめざましい改善効果が得られた。 From the above, Table 1 shows a comparison when Al / H is 1.1 in a combined system of trialkylaluminum and dialkylaluminum chloride, and Table 2 shows a comparison when Al / H is 2.2 in a dialkylaluminum chloride alone system. . Under both conditions, by maintaining the aging temperature at 17 ° C. or less from the start to the end of aging, a remarkable improvement effect was obtained in ΔYI, conversion rate, and linearity improvement.
 なお、17℃以下にした場合のΔYIの改善値はトリアルキルアルミニウム、ジアルキルアルミニウムクロライドの併用系の方が大きい。併用系の場合は、比較例2のΔYI=18.4に対し、実施例1のΔYI=11.7で、改善値は6.7である。
 以上のように、ΔYIの改善値としては、トリアルキルアルミニウム、ジアルキルアルミニウムクロライドの併用系の方が効果が大きく、また、トリアルキルアルミニウム、ジアルキルアルミニウムクロライドの併用系の方が、着色度の絶対値が大きいため、本願での改善メリットが大きい。
 
 
In addition, the improvement value of (DELTA) YI when set to 17 degrees C or less is larger in the combined use system of a trialkylaluminum and a dialkylaluminum chloride. In the case of the combined system, ΔYI = 11.7 of Example 1 and ΔII = 11.7 of Comparative Example 2 were improved to 6.7.
As described above, as the improved value of ΔYI, the combined system of trialkylaluminum and dialkylaluminum chloride is more effective, and the combined system of trialkylaluminum and dialkylaluminum chloride is the absolute value of coloring degree. Therefore, the improvement merit in this application is great.

Claims (2)

  1.  ジエン系ゴムの製造方法において、
     ジエン系モノマーを重合させる前に、熟成開始から熟成終了まで-30~17℃の温度範囲を保って、水とジエチルアルミニウムクロライド及びトリエチルアルミニウムを5~60分熟成させる工程を有し、
     ジエチルアルミニウムクロライド及びトリエチルアルミニウムと水とのモル比(Al/HO)が、1~2.5であることを特徴とするジエン系ゴムの製造方法。
    In the production method of diene rubber,
    A step of aging water, diethylaluminum chloride and triethylaluminum for 5 to 60 minutes while maintaining a temperature range of −30 to 17 ° C. from the start of aging to the end of aging before polymerizing the diene monomer;
    A method for producing a diene rubber, wherein the molar ratio (Al / H 2 O) of diethylaluminum chloride and triethylaluminum to water is 1 to 2.5.
  2.  請求項1記載の製造方法によって得られた経時着色しないジエン系ゴム。
     
    A diene rubber obtained by the production method according to claim 1 and not colored over time.
PCT/JP2016/061830 2015-04-28 2016-04-12 Process for producing diene-based rubber that suffers no coloring over time, and diene-based rubber obtained thereby WO2016175026A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
MYPI2017703795A MY182436A (en) 2015-04-28 2016-04-12 Process for producing diene-based rubber that suffers no coloring over time, and diene-based rubber obtained thereby
CN201680025348.3A CN107614545B (en) 2015-04-28 2016-04-12 Process for producing diene rubber free from discoloration with time and diene rubber obtained thereby
KR1020177034090A KR102562930B1 (en) 2015-04-28 2016-04-12 Method for producing diene-based rubber that is not colored over time and diene-based rubber obtained thereby

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015091018A JP5939333B1 (en) 2015-04-28 2015-04-28 Method for producing diene rubber
JP2015-091018 2015-04-28

Publications (1)

Publication Number Publication Date
WO2016175026A1 true WO2016175026A1 (en) 2016-11-03

Family

ID=56184787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061830 WO2016175026A1 (en) 2015-04-28 2016-04-12 Process for producing diene-based rubber that suffers no coloring over time, and diene-based rubber obtained thereby

Country Status (6)

Country Link
JP (1) JP5939333B1 (en)
KR (1) KR102562930B1 (en)
CN (1) CN107614545B (en)
MY (1) MY182436A (en)
TW (1) TWI580697B (en)
WO (1) WO2016175026A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58101105A (en) * 1981-12-10 1983-06-16 Ube Ind Ltd Manufacture of cis-1,4-polybutadiene
JPH04122711A (en) * 1990-09-14 1992-04-23 Ube Ind Ltd Production of polybutadiene
JPH04122709A (en) * 1990-09-14 1992-04-23 Ube Ind Ltd Production of cis-1,4-polybutadiene
JPH05247112A (en) * 1992-03-03 1993-09-24 Ube Ind Ltd Improved method for polymerizing polybutadiene
JP2000017012A (en) * 1998-07-03 2000-01-18 Ube Ind Ltd Preparation of conjugated diene polymer
JP2004285175A (en) * 2003-03-20 2004-10-14 Ube Ind Ltd Stable molecular weight controlling method
JP2011184510A (en) * 2010-03-05 2011-09-22 Ube Industries Ltd Method for manufacturing color-suppressed butadiene rubber
JP2011195632A (en) * 2010-03-17 2011-10-06 Ube Industries Ltd Diene rubber suffering from no discoloration with time and method of manufacturing the same
JP2011201972A (en) * 2010-03-24 2011-10-13 Ube Industries Ltd Diene rubber free of time-dependent discoloration and production method thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3457319A (en) * 1966-06-13 1969-07-22 Columbian Carbon Oligomerization process and catalyst for use in same
US3753959A (en) * 1969-09-17 1973-08-21 Synthetic Rubber Co Ltd Alternating copolymers
JPS5247112A (en) * 1975-10-13 1977-04-14 Hitachi Ltd Automatic flusher of gas turbine
CA1223396A (en) * 1981-06-29 1987-06-23 Tooru Shibata Process for producing conjugated diene polymer
JP3392181B2 (en) 1993-06-03 2003-03-31 電気化学工業株式会社 Method for producing chloroprene graft copolymer
DE10027891A1 (en) 2000-06-06 2001-12-13 Bayer Ag Production of stable colorless diene rubber useful for toughening of vinyl aromatic polymers, comprises mixing with phenolic stabilizers in water at specified pH and oxygen content
WO2008108408A1 (en) * 2007-03-06 2008-09-12 Bridgestone Corporation Rubber composition and pneumatic tire comprising the same
ITMI20080570A1 (en) * 2008-04-02 2009-10-03 Polimeri Europa Spa PROCEDURE FOR THE PREPARATION OF POLYBUTADIENE BRANCHED HIGH CONTENT IN UNIT 1.4-CIS
JP5162306B2 (en) 2008-04-03 2013-03-13 精工化学株式会社 Anti-coloring agent
WO2011102518A1 (en) 2010-02-19 2011-08-25 宇部興産株式会社 Polybutadiene, modified polybutadiene, preparation methods for both, and rubber-reinforced styrene resin composition using same
CN101798405B (en) * 2010-03-12 2012-07-04 江苏工业学院 Nickel-system polybutadiene rubber composite anti-aging agent with anti-yellowing efficiency
WO2014136963A1 (en) * 2013-03-08 2014-09-12 宇部興産株式会社 Modified conjugated diene polymer, method for producing same, and rubber composition using same
JP5561410B2 (en) * 2013-06-25 2014-07-30 日本ゼオン株式会社 Conjugated diene rubber composition
CN104449419B (en) * 2014-12-05 2016-08-24 烟台泰盛精化科技有限公司 A kind of ultraviolet-heat dual cure optical adhesive containing POLYBUTADIENE EPOXY RESIN

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58101105A (en) * 1981-12-10 1983-06-16 Ube Ind Ltd Manufacture of cis-1,4-polybutadiene
JPH04122711A (en) * 1990-09-14 1992-04-23 Ube Ind Ltd Production of polybutadiene
JPH04122709A (en) * 1990-09-14 1992-04-23 Ube Ind Ltd Production of cis-1,4-polybutadiene
JPH05247112A (en) * 1992-03-03 1993-09-24 Ube Ind Ltd Improved method for polymerizing polybutadiene
JP2000017012A (en) * 1998-07-03 2000-01-18 Ube Ind Ltd Preparation of conjugated diene polymer
JP2004285175A (en) * 2003-03-20 2004-10-14 Ube Ind Ltd Stable molecular weight controlling method
JP2011184510A (en) * 2010-03-05 2011-09-22 Ube Industries Ltd Method for manufacturing color-suppressed butadiene rubber
JP2011195632A (en) * 2010-03-17 2011-10-06 Ube Industries Ltd Diene rubber suffering from no discoloration with time and method of manufacturing the same
JP2011201972A (en) * 2010-03-24 2011-10-13 Ube Industries Ltd Diene rubber free of time-dependent discoloration and production method thereof

Also Published As

Publication number Publication date
TW201700503A (en) 2017-01-01
JP5939333B1 (en) 2016-06-22
JP2016204580A (en) 2016-12-08
KR20170141229A (en) 2017-12-22
CN107614545B (en) 2020-05-05
KR102562930B1 (en) 2023-08-02
CN107614545A (en) 2018-01-19
MY182436A (en) 2021-01-25
TWI580697B (en) 2017-05-01

Similar Documents

Publication Publication Date Title
EP1189983B1 (en) Low molecular weight high-cis polybutadienes
US8304503B2 (en) Process for producing conjugated diene polymer
JP4950403B2 (en) Process for producing blends of syndiotactic 1,2-polybutadiene and rubbery elastomers with an iron-based catalyst system
US8283401B2 (en) Conjugated diene polymer manufacturing method, polybutadiene, and rubber composition utilizing the same
KR101993024B1 (en) Process for producing polydienes
US5448002A (en) Synthesis of trans-1,4-polybutadiene having controlled molecular weight
JP2019183164A (en) Process for preparing blend of cis-1,4-polybutadiene and syndiotactic 1,2-polybutadiene
US6310152B1 (en) Synthesis of elastomeric high trans-1,4-polybutadiene
KR20060050770A (en) Synthesis of cis-1,4-polybutadiene
JP2018503727A (en) Aged lanthanide-based catalyst system and use of the catalyst system in the preparation of cis-1,4-polydiene
JP2018505918A (en) Bulk polymerization of polyisoprene with preformed catalysts.
KR20030019195A (en) Synthesis of elastomeric high trans-1,4-polybutadiene
EP3938412B1 (en) Modified high cis polydiene polymer, related methods and rubber compositions
JP2018509494A (en) Cis-1,4-polydiene with improved cold flow resistance
EP0936242A1 (en) Metal deactivator for cobalt catalyzed polymers
JP5703575B2 (en) Diene rubber that does not discolor over time and method for producing the same
JP2019535887A (en) High cis-1,4 block copolymer of polybutadiene and polyisoprene
JP2014534331A (en) Process for producing polydienes
JP5939333B1 (en) Method for producing diene rubber
JP2011195632A (en) Diene rubber suffering from no discoloration with time and method of manufacturing the same
JP2011184510A (en) Method for manufacturing color-suppressed butadiene rubber
CN113906058B (en) Modified high cis polybutadiene polymers, related methods and rubber compositions
JP5482935B1 (en) Method for producing conjugated diene polymer, conjugated diene polymer obtained thereby, and method for preventing coloration of conjugated diene polymer
US6013736A (en) Metal deactivator for cobalt catalyzed polymers
CA2177937A1 (en) Process for preparing crystalline high 1,4 trans polybutadiene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16786303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177034090

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16786303

Country of ref document: EP

Kind code of ref document: A1