JPH04122711A - Production of polybutadiene - Google Patents

Production of polybutadiene

Info

Publication number
JPH04122711A
JPH04122711A JP24263290A JP24263290A JPH04122711A JP H04122711 A JPH04122711 A JP H04122711A JP 24263290 A JP24263290 A JP 24263290A JP 24263290 A JP24263290 A JP 24263290A JP H04122711 A JPH04122711 A JP H04122711A
Authority
JP
Japan
Prior art keywords
polymerization
butadiene
cis
butene
polybutadiene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24263290A
Other languages
Japanese (ja)
Inventor
Nobuhiro Tsujimoto
辻本 信弘
Kazuyuki Tanaka
一幸 田中
Tetsuji Nakajima
哲司 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP24263290A priority Critical patent/JPH04122711A/en
Publication of JPH04122711A publication Critical patent/JPH04122711A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a polybutadiene having a low gel content and improved cost efficiency by polymerizing 1,3-butadiene at a temperature at which no phase separation occurs in the presence of a specified catalyst in a solvent based on cis-2-butene. CONSTITUTION:To a solution of 10-70wt.% 1,3-butadiene (A) in a solvent (B) comprising a 4C fraction based on cis-2-butene, desirably a mixture of cis-2- butene with trans-2-butene are added 0.1-10mmol, per mol of component A, of an organoaluminum compound (C) and 0.1-1mol, per mol of component C, of water (D). The resulting mixture is aged at -10 to 60 deg.C for a time in the range defined by the formula [wherein theta is the aging time (min), and T is the aging temperature ( deg.K)] and 0.0001-0.2mmol, per mol of component A, of a cobalt compound (E) is added to the aged mixture and reacted in a temperature range in which no phase separation occurs, whereby component A is polymerized in component B in the presence of a cobalt compound/water/organoaluminum compound catalyst comprising components C to E.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、シス−2−ブテンを主成分とするC4留分を
重合溶媒として1.3−ブタジエンを重合する高シス−
1,4−ポリブタジエンの製造方法間する。
Detailed Description of the Invention [Industrial Application Field] The present invention is a high cis-
A method for producing 1,4-polybutadiene.

〔従来の技術] 1.3−ブタジエンを、チーグラー・ナンタ系触媒を用
いて高シス−1,4−重合する際の重合溶媒として、従
来はベンゼン、トルエン、ヘキサン等が一般的に用いら
れてきた。しかし、これらの溶媒を重合溶媒として用い
た場合、得られる重合溶液の粘度が高くなるので、攪拌
、伝熱、移送等が困難になるという問題があった。又、
これらの溶媒は沸点が高いため、重合溶液からの回収が
困難であった。
[Prior Art] Conventionally, benzene, toluene, hexane, etc. have been generally used as a polymerization solvent when 1,3-butadiene is subjected to high cis-1,4-polymerization using a Ziegler-Nanta catalyst. Ta. However, when these solvents are used as polymerization solvents, the resulting polymerization solution has a high viscosity, making stirring, heat transfer, transportation, etc. difficult. or,
Since these solvents have high boiling points, it has been difficult to recover them from the polymerization solution.

上記の問題点を解決するため、ベンゼンやトルエン、ヘ
キサンの替わりに、シス−2−ブテンを主成分とするC
4留分を重合溶媒として用いることが試みられた。
In order to solve the above problems, instead of benzene, toluene, and hexane, C
Attempts were made to use the four fractions as polymerization solvents.

シス−2−ブテンを主成分とするC4留分を重合溶媒と
する重合方法としては、例えば、水とジエチルアルミニ
ウムクロライドをヘンイン中で予め反応させてクロルエ
チルアルミノキサンを得、これにコバルト化合物を添加
して触媒とし、上記のC4留分を溶媒としで1,3−ブ
タジエンを重合するという方法(特公昭44−5238
)が試みられた。
As a polymerization method using a C4 fraction containing cis-2-butene as a main component as a polymerization solvent, for example, water and diethylaluminum chloride are reacted in advance to obtain chloroethylaluminoxane, and a cobalt compound is added to this. A method in which 1,3-butadiene is polymerized using the C4 fraction as a catalyst and the above C4 fraction as a solvent (Japanese Patent Publication No. 44-5238
) was attempted.

又、沸点150°C以上のパラフィン系炭化水素中でコ
バルト化合物−水一有機アルミニウム化合物触媒を8周
製し、上記のC4留分を溶媒として13−ブタシュンを
重合するという重合方法が試みられた(特公昭47−1
1810)。
In addition, a polymerization method was attempted in which a cobalt compound-water-organoaluminum compound catalyst was prepared eight times in a paraffinic hydrocarbon having a boiling point of 150°C or higher, and 13-butashun was polymerized using the above C4 fraction as a solvent. (Tokuko Showa 47-1
1810).

更に、1,3−ブタジエンを精留するときに缶出液とし
て得られる炭化水素が1,2−ブタジエンを含有してい
るので、これを分子量調節剤及び重合溶媒の補填剤とし
て、重合溶液に添加することも試みられた(特公昭49
−18635)。
Furthermore, since the hydrocarbon obtained as the bottoms when rectifying 1,3-butadiene contains 1,2-butadiene, it is added to the polymerization solution as a molecular weight regulator and a supplement for the polymerization solvent. Attempts were also made to add
-18635).

これらの方法においては、シス−2−ブテンを主成分と
するC4留分を重合溶媒に用いることにより重合溶液の
粘度が大きく低下し、攪拌、伝熱、移送等はずっと容易
になった。又、溶媒の沸点も低いので、溶媒の回収も容
易になった。
In these methods, by using a C4 fraction containing cis-2-butene as a main component as a polymerization solvent, the viscosity of the polymerization solution is greatly reduced, making stirring, heat transfer, transportation, etc. much easier. Furthermore, since the boiling point of the solvent was low, recovery of the solvent was also facilitated.

しかし、ゲル含有量の低減という点では不十分であり、
ゲル含量0.2%以上のゲル含量の高いポリブタジェン
しか得られなかった。
However, it is insufficient in terms of reducing gel content;
Only polybutadiene with a high gel content of 0.2% or more was obtained.

又、触媒をヘンゼンやパラフィン中で調製してから1,
3−ブタジエンの重合溶媒溶液に添加する方法において
は、工業的実施には経済性の面で問題があった。
Alternatively, after preparing the catalyst in Hensen or paraffin, 1.
The method of adding 3-butadiene to a polymerization solvent solution has problems in terms of economic efficiency in industrial implementation.

〔本発明の解決すべき課題〕[Problems to be solved by the present invention]

本発明は、シス−2−ブテンを主成分とするC4留分を
重合溶媒として1.3−ブタシュンを重合する高シス−
1,4−ポリブタジエンの製造方法において、ゲル含有
量の少ないポリブタシュンが得られ、且つ経済性にも優
れた製造方法を提供することを目的とする。
The present invention is a high-cis-based polymerization method in which 1,3-butashune is polymerized using a C4 fraction containing cis-2-butene as a main component as a polymerization solvent.
An object of the present invention is to provide a method for producing 1,4-polybutadiene, which allows polybutashene with a low gel content to be obtained and which is also excellent in economic efficiency.

〔発明の構成] 本発明は、シス−2−ブテンを主成分とするC4留分か
らなる重合溶媒中で、コバルト化合物水−有機アルミニ
ウム化合物系の触媒により13−ブタジエンを重合し、
高シス−I、4−ポリブタジエンを製造する方法におい
て、 ■(aH,3−ブタジエンの重合溶媒溶液中で、触媒成
分の水と有機アルミニウム化合物を、θ≧] Q [1
lI7Q/T)弓・661θ:熟成時間(分) T : 77成温度(K) で示される時間θの間、熟成し、 (b)次いでコバルト化合物を添加して、[2]この重
合触媒の存在下で、相分離の起こらない温度範囲で、1
,3−ブタシュンを重合することを特徴とする、 シスー鳳 4−ポリブタジエンの重合方法である。
[Structure of the Invention] The present invention involves polymerizing 13-butadiene using a cobalt compound water-organoaluminum compound catalyst in a polymerization solvent consisting of a C4 fraction containing cis-2-butene as a main component.
In the method for producing high cis-I,4-polybutadiene, (1) (in a polymerization solvent solution of aH,3-butadiene, water and an organoaluminum compound as catalyst components are mixed, θ≧) Q [1
lI7Q/T) Bow・661θ: Aging time (minutes) T: 77Aging temperature (K) for a period of time θ shown by (b) Next, a cobalt compound is added to [2] 1 in the presence of a temperature range in which phase separation does not occur.
, 3-butadiene is polymerized.

本発明において熟成時間θは、 θ≧101N37o/71弓・66 θ:熟成時間(分) T:熟成温度(K) の範囲でなくではならない。In the present invention, the ripening time θ is θ≧101N37o/71 bow/66 θ: Aging time (minutes) T: Ripening temperature (K) Must be within the range of

熟成温度は−10〜60 ’Cの範囲が好ましく、O〜
50’Cの範囲が特に好ましい。熟成温度が10’Cよ
り低いと熟成時間θが長くなり過ぎるので好ましくない
。又、熟成温度が60°Cを越えると、触媒の重合活性
が低下する問題がある。
The ripening temperature is preferably in the range of -10 to 60'C, and in the range of O to 60'C.
A range of 50'C is particularly preferred. If the ripening temperature is lower than 10'C, the ripening time θ becomes too long, which is not preferable. Furthermore, if the aging temperature exceeds 60°C, there is a problem that the polymerization activity of the catalyst decreases.

上記の条件で熟成して、ゲル化の大きな因子の一つであ
るカチオンを失活させた後、この溶液にコバルト成分を
添加して、特定の条件で1.3−ブタジエンを高シス1
,4−重合する。これにより、重合時のゲルの生成、及
び重合槽内へのゲルの付着防止を図ることができ、ゲル
含有量の少ない高シス−1,4−ポリブタジエンを長時
間連続して製造することができる。
After aging under the above conditions to deactivate cations, which are one of the major factors in gelation, a cobalt component is added to this solution, and 1,3-butadiene with high cis
,4-polymerize. This makes it possible to prevent the formation of gel during polymerization and the adhesion of gel in the polymerization tank, making it possible to continuously produce high cis-1,4-polybutadiene with a low gel content over a long period of time. .

重合温度は臨界温度以下、即ち相分離の起こらない温度
範囲でなくてはならない。臨界温度は、圧力、重合溶媒
の種類及び組成、ポリブタジェンの濃度や分子量によっ
て決まる温度である。臨界温度より高い温度では、重合
溶液はポリブタジェン濃度の高い相と低い相とに相分離
する。そして、ポリブタジェン濃度が高い相ではゲル化
が起こり易い。従って、臨界温度よりも高い温度で重合
するとポリブタジェン濃度の高い相でゲル化が著しく進
行し、ゲル含有量の少ないシス−1,4−ポリブタジエ
ンが得られない。
The polymerization temperature must be below a critical temperature, that is, within a temperature range in which phase separation does not occur. The critical temperature is determined by the pressure, the type and composition of the polymerization solvent, and the concentration and molecular weight of polybutadiene. Above the critical temperature, the polymerization solution undergoes phase separation into a polybutadiene-rich phase and a polybutadiene-poor phase. Gelation is likely to occur in a phase with a high polybutadiene concentration. Therefore, if polymerization is carried out at a temperature higher than the critical temperature, gelation will proceed significantly in the phase with a high polybutadiene concentration, making it impossible to obtain cis-1,4-polybutadiene with a low gel content.

次に、本発明で使用する重合溶媒、及び触媒等について
説明する。
Next, the polymerization solvent, catalyst, etc. used in the present invention will be explained.

重合溶媒は、シス−2−ブテンを主成分とするC4留分
からなる。このC4留分はシス−2−ブテンとトランス
−2−ブテンの含有量の合計が50重量%以上であるこ
とが好ましい。そして、シス−2−ブテン、トランス−
2−ブテンの他に、n−ブタン、ブテン−1、プロパン
、エタン等の炭化水素を含んでいてもよい。特に好まし
いのは、実質的にシス−2−ブテンとトランス−2−ブ
テンからなるものである。但し、シス−2−ブテンとト
ランス−2−ブテンの含有量の合計が50重量%よりも
少ないC4留分はポリブタジェンの溶解性が低いので、
重合溶液が不均一になりやすい。
The polymerization solvent consists of a C4 fraction containing cis-2-butene as a main component. It is preferable that the total content of cis-2-butene and trans-2-butene in this C4 fraction is 50% by weight or more. and cis-2-butene, trans-
In addition to 2-butene, it may also contain hydrocarbons such as n-butane, butene-1, propane, and ethane. Particularly preferred are those consisting essentially of cis-2-butene and trans-2-butene. However, since the C4 fraction in which the total content of cis-2-butene and trans-2-butene is less than 50% by weight has low solubility of polybutadiene,
The polymerization solution tends to become non-uniform.

従って、重合溶媒としては好ましくない。重合溶液が不
均一になると、ゲルが発生しやすくなるからである。
Therefore, it is not preferred as a polymerization solvent. This is because if the polymerization solution becomes non-uniform, gel is likely to occur.

尚、ポリブタジェン製造プラントを長期運転すると、1
.3−ブタジエンの不純物であるシス2−ブテンが溜ま
ってくるが、これも、重合溶媒として好ましく用いるこ
とができる。
In addition, if a polybutadiene production plant is operated for a long time, 1
.. Although cis-2-butene, which is an impurity of 3-butadiene, accumulates, this can also be preferably used as a polymerization solvent.

触媒は、1.3−ブタジエンの重合溶媒溶液に水と有機
アルミニウム化合物とを添加し、時間θの間熟成したも
のにコバルト化合物を添加したものである。
The catalyst was prepared by adding water and an organoaluminum compound to a polymerization solvent solution of 1,3-butadiene and aging it for a period of time θ, to which a cobalt compound was added.

コバルト化合物としては、コバルト有機酸塩ヤコハルト
錯化合物が、重合溶媒の主成分であるシス−2−ブテン
に可溶な点で好ましい。具体的には、コバルトオクトエ
ート、コハルトナフテート、コバルトトリアセチルアセ
トネート、塩化コバルトピリジン錯体、塩化コバルトト
リフェニルホスフィン錯体等が好適である。
As the cobalt compound, a cobalt organic acid salt Yacohard complex compound is preferable because it is soluble in cis-2-butene, which is the main component of the polymerization solvent. Specifically, cobalt octoate, cobalt naphtate, cobalt triacetylacetonate, cobalt chloride pyridine complex, cobalt chloride triphenylphosphine complex, etc. are suitable.

有機アルミニウム化合物としては、一般式%式% ル、又はアリール基、nは1.5〜2)で表されるハロ
ゲン化有機アルミニウムが好適である。具体的にはジエ
チルアルミニウムモノクロライド、ジ−n−ブチルアル
ミニウムモノクロライド、ジ−イソブチルアルミニウム
モノクロライド、エチルアルミニウムセスキクロライド
等が好適である。
As the organoaluminum compound, an organoaluminum halide represented by the general formula % or an aryl group, where n is 1.5 to 2) is suitable. Specifically, diethylaluminum monochloride, di-n-butylaluminum monochloride, di-isobutylaluminum monochloride, ethylaluminum sesquichloride, etc. are suitable.

1.3−ブタジエンの重合溶媒溶液中の1,3ブタジエ
ンの濃度及び触媒の使用量は次の通りである。
The concentration of 1,3-butadiene in the polymerization solvent solution of 1,3-butadiene and the amount of catalyst used are as follows.

1.3−ブタジエン濃度は10〜70重量%の範囲が好
ましい。特に好ましい範囲は20〜50重量%である。
The 1,3-butadiene concentration is preferably in the range of 10 to 70% by weight. A particularly preferred range is 20 to 50% by weight.

濃度が70重量%より高い場合は重合反応の制御が困難
となり、又熟成段階でカチオンポリマーの析出が多くな
るので好ましくない。
If the concentration is higher than 70% by weight, it is not preferable because it becomes difficult to control the polymerization reaction and more cationic polymers are precipitated during the ripening stage.

又、10重量部より低い場合はポリブタジェンを効率良
く製造できなくなる。
Moreover, if it is less than 10 parts by weight, polybutadiene cannot be efficiently produced.

触媒の使用量は、1,3−ブタジエン1moj2に対し
てコバルト化合物が0.0001〜0.2 m mO!
、好ましくは0.005〜O,1mmof、有機アルミ
ニウム化合物が0.1〜10mmoffi、好ましくは
0.2〜8mmofである。水はを機アルミニウム化合
物1moA当たり0.1〜1 m o 1、好ましくは
0.2〜0.7 m o lである。
The amount of catalyst used is 0.0001 to 0.2 mO of cobalt compound per moj2 of 1,3-butadiene!
, preferably 0.005 to 0.1 mmoff, and the organic aluminum compound has a concentration of 0.1 to 10 mmoff, preferably 0.2 to 8 mmoff. The amount of water is 0.1 to 1 mol, preferably 0.2 to 0.7 mol per moA of aluminum compound.

このほか、必要に応して1.5−シクロオクタジエンや
1,2−ブタジエン等の既知の分子量調節剤を添加して
もよい。
In addition, known molecular weight regulators such as 1,5-cyclooctadiene and 1,2-butadiene may be added if necessary.

以下、実施例により、本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

[実施例] 以下に本発明の実施例を示す。[Example] Examples of the present invention are shown below.

裏庭±1 本実施例では連続法で24時間連続運転して13−ブタ
ジエンの重合を行った。
backyard ±1 In this example, 13-butadiene was polymerized by continuous operation for 24 hours.

先ず、1.3−ブタジエンの重合溶媒溶液を、内容量3
!の攪拌機付熟成槽に毎時101の速さで供給し、ジエ
チルアルミニウムモノクロライドを毎時4.59g (
38,1mmofり(7)速さで供給し、混合液を30
°Cで平均滞留時間18分間で熟成した。1,3−ブタ
ジエンの重合溶媒溶液には、水分を45■/!の割合で
含み、1,3−ブタジエンが30重量%、シス−2−ブ
テンが56重量%、トランス−2−ブテンが13重量%
であり、残部は、n−ブタン、プロパン、エタン等であ
るものを用いた。
First, a polymerization solvent solution of 1,3-butadiene was added to an inner volume of 3
! diethylaluminum monochloride was fed at a rate of 101/hr to a ripening tank with an agitator, and the feed rate was 4.59g/hr (
38.1 mmof (7)
Aged at °C with an average residence time of 18 minutes. The 1,3-butadiene polymerization solvent solution contains 45 μ/! of water! Contains 30% by weight of 1,3-butadiene, 56% by weight of cis-2-butene, and 13% by weight of trans-2-butene.
The remainder was n-butane, propane, ethane, etc.

熟成槽から出てきた熟成済の1,3−ブタジエン溶液を
、内容量5!の攪拌機付重合槽(第1重合槽)に毎時1
(lの速さで供給し、コバルトオクトエートを毎時4’
Omg (0,116mmo p!、)、分子量調節剤
の1.2−ブタジエンを毎時3.25g (60mmo
f)の速さで供給して、重合温度40″C1平均滞留時
間30分の条件で重合を行った。
The aged 1,3-butadiene solution that came out of the aging tank was reduced to a content of 5! 1 hour per hour in a polymerization tank with a stirrer (first polymerization tank)
(Feeding cobalt octoate at a rate of 4'/h
Omg (0,116 mmo p!,), 3.25 g (60 mmo p!,) of the molecular weight regulator 1,2-butadiene per hour.
The polymerization was carried out at a polymerization temperature of 40'' and an average residence time of 30 minutes.

第1重合槽内の重合溶液のポリブタジェン濃度は12重
量%であったので、重合温度はこのポリマー濃度での臨
界温度よりも低く、重合溶液の相分離は起こっていなか
った。
Since the polybutadiene concentration of the polymerization solution in the first polymerization tank was 12% by weight, the polymerization temperature was lower than the critical temperature at this polymer concentration, and no phase separation of the polymerization solution occurred.

第1重合槽から出てきた重合溶液を、第2重合槽に毎時
10ffiの速さで連続的に供給し、更に1゜2ブタジ
エンを毎時1.62g (30mmoff)、コバルト
オクトエートを毎時40■(0,116mmob)の速
さで供給して、重合温度49°C1平均滞留時間30分
間の条件で重合を継続した。第2重合槽には、第1重合
槽と同し型の内容N5rのものを用いた。
The polymerization solution coming out of the first polymerization tank was continuously fed to the second polymerization tank at a rate of 10ffi per hour, and 1.62g (30mmoff) of 1°2 butadiene and 40mmoff of cobalt octoate were added per hour. (0,116 mmob), and the polymerization was continued at a polymerization temperature of 49° C. and an average residence time of 30 minutes. The second polymerization tank used was of the same type as the first polymerization tank, but had a N5r content.

第2重合槽内の重合溶液のポリブタジェン濃度は18重
量%であったので、重合温度は、この濃度でのしu昇温
度よりも低かった。
Since the polybutadiene concentration of the polymerization solution in the second polymerization tank was 18% by weight, the polymerization temperature was lower than the u rise temperature at this concentration.

第2重合槽から出てきた重合溶液を、第3重合槽に毎時
10βの速さで連続的に供給して、重合温度55°C1
平均滞留時間30分間の条件で重合を継続した。第3重
合槽には、第1重合槽と同し型の内容量5!のものを用
いた。
The polymerization solution coming out of the second polymerization tank is continuously supplied to the third polymerization tank at a rate of 10β per hour, and the polymerization temperature is 55°C1.
Polymerization was continued at an average residence time of 30 minutes. The third polymerization tank has the same type of content as the first polymerization tank, with an internal capacity of 5! I used the one from

第3重合槽内の重合溶液のポリブタジェン濃度は22重
量%であったので、重合温度は、この濃度での臨界温度
よりも低かった。
Since the polybutadiene concentration of the polymerization solution in the third polymerization tank was 22% by weight, the polymerization temperature was lower than the critical temperature at this concentration.

第3重合槽から出てきた重合溶液を撹拌機付混合槽に連
続的に供給し、これに2.6−t−ブチルフェノール7
.5重量%のヘキサン溶液を毎時100蔵供給し、更に
少量のメタノールを混合し、重合を停止した。
The polymerization solution coming out of the third polymerization tank is continuously supplied to a mixing tank equipped with a stirrer, and 2,6-t-butylphenol 7
.. A 5% by weight hexane solution was fed at 100 volumes per hour, and a small amount of methanol was further mixed to stop the polymerization.

更に、この重合溶液に対して30容量%の水を加えて攪
拌、水洗し、水を分離後、脱揮により溶媒及び未反応の
1,3−ブタジエンを除去し、得られたポリブタジェン
を真空乾燥した。
Furthermore, 30% by volume of water was added to this polymerization solution, stirred and washed with water. After separating the water, the solvent and unreacted 1,3-butadiene were removed by devolatilization, and the obtained polybutadiene was vacuum-dried. did.

1時間当たりのポリブタジェンの生成量は1.35kg
であった。このポリブタジェンのムーニー粘度M L 
、。4  (100°C)は42であり、シス−14−
構造の含有率は98.0%であった。そして、ゲル含有
量は0.03重量%と少なかった。
The amount of polybutadiene produced per hour is 1.35 kg.
Met. Mooney viscosity M L of this polybutadiene
,. 4 (100°C) is 42, cis-14-
The structure content was 98.0%. The gel content was as low as 0.03% by weight.

夫施班I 本実施例では連続法で24時間連続運転して13−ブタ
ジエンの重合を行った。
In this example, 13-butadiene was polymerized by continuous operation for 24 hours.

先ず、1.3−ブタジエンの重合溶媒溶液を、内容量3
1の攪拌機付熟成槽に毎時10!の速さで供給し、ジエ
チルアルミニウムモノクロライドを毎時4.59g (
38,1mmoffi)の速さで供給し、30゛Cで平
均滞留時間18分間で熟成した。
First, a polymerization solvent solution of 1,3-butadiene was added to an inner volume of 3
10 per hour in a aging tank with a stirrer! feeds diethylaluminium monochloride at a rate of 4.59g/hour (
The mixture was fed at a rate of 38.1 mmoffi) and aged at 30°C with an average residence time of 18 minutes.

1.3−ブタジエンの重合溶媒溶液には、水分を45■
/!の割合で含み、1.3−ブタジエンが30重量%、
シス−2−ブテンが56重量%、トランス−2−ブテン
が13重量%であり、残部が、h−ブタン、プロパン、
エタン等であるものを用いた。
1. Add 45 μm of water to the polymerization solvent solution of 3-butadiene.
/! containing 30% by weight of 1,3-butadiene,
Cis-2-butene is 56% by weight, trans-2-butene is 13% by weight, and the balance is h-butane, propane,
Ethane or the like was used.

熟成槽から出てきた熟成済の1.3−ブタジエン溶液を
、内容量51の攪拌機付重合槽(第1重合槽)に毎時1
0!の速さで供給し、コバルトオクトエートを毎時80
mg (0,232mmo ff1)、12−ブタジエ
ンを毎時4.06 g (75mm。
The aged 1,3-butadiene solution that has come out of the aging tank is transferred to a polymerization tank (first polymerization tank) with a stirrer having an internal capacity of 51 cm per hour.
0! Delivering cobalt octoate at a rate of 80% per hour
mg (0,232 mmoff1), 12-butadiene at 4.06 g (75 mm.

りの速さで供給して、重合温度40°C3平均滞留時間
30分の条件で重合を行った。
The polymerization was carried out at a polymerization temperature of 40° C. and an average residence time of 30 minutes.

第1重合槽内の重合溶液のポリブタシュン濃度は16重
量%であったので、重合温度は、この濃度での臨界温度
よりも低かった。
The polybutashun concentration of the polymerization solution in the first polymerization tank was 16% by weight, so the polymerization temperature was below the critical temperature at this concentration.

第1重合槽から出てきた重合溶液を攪拌機付混合槽に連
続的に供給し、これに2.6−t−ブチルフェノール7
.5重量%のヘキサン溶液を毎時100m1供給し、更
に少量のメタノールを混合し、重合を停止した。
The polymerization solution coming out of the first polymerization tank is continuously supplied to a mixing tank equipped with a stirrer, and 2,6-t-butylphenol 7
.. 100 ml of 5% by weight hexane solution was supplied per hour, and a small amount of methanol was further mixed to stop the polymerization.

更に、この重合溶液に対して30容量%の水を加えて各
番、水洗し、水を分離後、脱揮により溶媒及び未反応の
ポリブタジェンを除去し、得られたポリブタジェンを真
空乾燥した。
Further, 30% by volume of water was added to this polymerization solution, and the polymerization solution was washed with water each time. After separating the water, the solvent and unreacted polybutadiene were removed by devolatilization, and the obtained polybutadiene was vacuum-dried.

1時間当たりのポリブタジェンの生成量は980gであ
った。このポリブタジェンのムーニー粘度ML、。、(
100″C)は40であり、シス−14−構造の含有率
は98.0%であった。そして、ゲル含有量は0.02
重量%と少なかった。
The amount of polybutadiene produced per hour was 980 g. Mooney viscosity ML of this polybutadiene. ,(
100″C) was 40, the content of cis-14-structure was 98.0%, and the gel content was 0.02
It was as low as % by weight.

ル較拠上 実施例2の重合温度を60″Cにした以外は実施例2と
同様にして、1,3−ブタジエンの連続重合を行った。
Continuous polymerization of 1,3-butadiene was carried out in the same manner as in Example 2 except that the polymerization temperature in Example 2 was changed to 60''C for the sake of comparison.

重合中、重合槽より重合溶液を耐圧ガラス容器に抜き出
して観察したところ、ポリフタジエン濃厚層と希薄層の
二層に分離していることが判った。この重合溶液のポリ
ブタジェン濃度は、溶液全体に対して13重量%であっ
た。
During the polymerization, the polymerization solution was extracted from the polymerization tank into a pressure-resistant glass container and observed, and it was found that the solution was separated into two layers: a polyphtadiene-rich layer and a diluted layer. The polybutadiene concentration of this polymerization solution was 13% by weight based on the entire solution.

10時間連続運転して1時間当たりのポリブタジェン生
成量は800gであった。このポリブタジェンのムーニ
ー粘度ML、。、(100°C)は38であり、シス−
1,4−構造の含有率は97.6%であった。そして、
ゲル含を量は1.2重量%と多かった。
After continuous operation for 10 hours, the amount of polybutadiene produced per hour was 800 g. Mooney viscosity ML of this polybutadiene. , (100°C) is 38, and cis-
The content of 1,4-structure was 97.6%. and,
The gel content was as high as 1.2% by weight.

此if引2 1.3−ブタジエンの重合溶媒溶液を、内容量31の攪
拌機付重合槽に毎時101の速さで供給し、ジエチルア
ルミニウムモノクロライドを毎時4.59g (38,
1mmof)、コバルトオクトエートを毎時80■(0
,232mmoffi)、1.2ブタジエンを毎時4.
06 g (45mmo l)の速さで供給し、重合温
度40°C1平均滞留時間30分の条件で重合した。
If this is subtraction 2, a polymerization solvent solution of 1.3-butadiene is fed to a polymerization tank with an internal capacity of 31 and equipped with a stirrer at a rate of 101 per hour, and diethylaluminum monochloride is fed at a rate of 4.59 g per hour (38,
1mmof), cobalt octoate at 80mm/hour (0
, 232 mmoffi), 1.2 butadiene per hour.
The polymer was supplied at a rate of 0.6 g (45 mmol) and polymerized at a polymerization temperature of 40° C. and an average residence time of 30 minutes.

1.3−ブタジエンの重合溶媒溶液には、水分を45■
/lの割合で含み、その組成は1,3ブタジ工ン30重
量%、シス−2−ブテン56重量%、トランス−2−ブ
テン13重量%であり、残部は、n−ブタン、プロパン
、エタン等であるものを用いた。
1. Add 45 μm of water to the polymerization solvent solution of 3-butadiene.
/l, and its composition is 30% by weight of 1,3-butadiene, 56% by weight of cis-2-butene, 13% by weight of trans-2-butene, and the remainder is n-butane, propane, and ethane. etc. were used.

重合溶液中のポリブタジェン濃度は14重量%であった
The polybutadiene concentration in the polymerization solution was 14% by weight.

重合後、実施例2と同様に処理してポリブタジェンを得
た。
After polymerization, the same treatment as in Example 2 was carried out to obtain polybutadiene.

10時間連続運転して1時間当たりのポリブタジェンの
生成量は860gであった。このポリフタジエンのムー
ニー粘度ML、、、(100°C)は39であり、シス
−1,4−構造の含有率は97゜5%であった。そして
、ゲル含有量は0.45重量%と多かった。
After continuous operation for 10 hours, the amount of polybutadiene produced per hour was 860 g. The Mooney viscosity ML, (100°C) of this polyphtadiene was 39, and the content of cis-1,4-structure was 97°5%. The gel content was as high as 0.45% by weight.

〔本発明の効果] 本発明では、1.3−ブタジエンの重合溶媒溶液に、触
媒成分である水と有機アルミニウム化合物を添加し、所
定時間熟成の後、コバルト化合物を添加し、重合を行っ
ている。そして、重合は相分離の起こらない温度範囲で
行っている。
[Effects of the present invention] In the present invention, water and an organoaluminum compound as catalyst components are added to a polymerization solvent solution of 1,3-butadiene, and after aging for a predetermined time, a cobalt compound is added and polymerization is performed. There is. The polymerization is carried out within a temperature range in which phase separation does not occur.

このため、重合溶媒にシス−2−ブテンを主成分とする
C4留分を用いているにも係わらず、ゲル含有量の極め
て少ないポリブタジェンが得られる。
Therefore, even though a C4 fraction containing cis-2-butene as a main component is used as a polymerization solvent, polybutadiene with an extremely low gel content can be obtained.

Claims (1)

【特許請求の範囲】[Claims] (1)シス−2−ブテンを主成分とするC_4留分を重
合溶媒として、コバルト化合物−水−有機アルミニウム
化合物系の触媒により1,3−ブタジエンを重合し、高
シス−1,4−ポリブタジエンを製造する方法において
、 [1](a)1,3−ブタジエンの重合溶媒溶液中、水
と有機アルミニウム化合物を、 θ≧10^[^(^1^3^7^0^/^T^)^−^
3^.^6^6^]θ:熟成時間(分) T:熟成温度(K) で示される時間θの間、熟成し、 (b)次いでコバルト化合物を添加して、 [2]この重合触媒の存在下で、相分離の起こらない温
度範囲で、1,3−ブタジエンを重合することを特徴と
する、 シス−1,4−ポリブタジエンの重合方法。
(1) Using the C_4 fraction containing cis-2-butene as a main component as a polymerization solvent, 1,3-butadiene is polymerized using a cobalt compound-water-organoaluminum compound catalyst, resulting in high-cis-1,4-polybutadiene. [1] (a) Water and an organoaluminum compound in a polymerization solvent solution of 1,3-butadiene, θ≧10^[^(^1^3^7^0^/^T^ )^-^
3^. ^6^6^] θ: Aging time (minutes) T: Aging temperature (K) Aging is performed for a period of time θ, (b) then a cobalt compound is added, and [2] the presence of this polymerization catalyst is A method for polymerizing cis-1,4-polybutadiene, which comprises polymerizing 1,3-butadiene at a temperature range in which phase separation does not occur.
JP24263290A 1990-09-14 1990-09-14 Production of polybutadiene Pending JPH04122711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24263290A JPH04122711A (en) 1990-09-14 1990-09-14 Production of polybutadiene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24263290A JPH04122711A (en) 1990-09-14 1990-09-14 Production of polybutadiene

Publications (1)

Publication Number Publication Date
JPH04122711A true JPH04122711A (en) 1992-04-23

Family

ID=17091942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24263290A Pending JPH04122711A (en) 1990-09-14 1990-09-14 Production of polybutadiene

Country Status (1)

Country Link
JP (1) JPH04122711A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013209466A (en) * 2012-03-30 2013-10-10 Ube Industries Ltd Method for producing diene rubber
JP5939333B1 (en) * 2015-04-28 2016-06-22 宇部興産株式会社 Method for producing diene rubber
US11242003B2 (en) 2016-01-21 2022-02-08 Wirtgen Gmbh System comprising construction machine, transport vehicle with loading space and image-recording device, and method for displaying an image stream during the loading or unloading of a transport vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013209466A (en) * 2012-03-30 2013-10-10 Ube Industries Ltd Method for producing diene rubber
JP5939333B1 (en) * 2015-04-28 2016-06-22 宇部興産株式会社 Method for producing diene rubber
WO2016175026A1 (en) * 2015-04-28 2016-11-03 宇部興産株式会社 Process for producing diene-based rubber that suffers no coloring over time, and diene-based rubber obtained thereby
US11242003B2 (en) 2016-01-21 2022-02-08 Wirtgen Gmbh System comprising construction machine, transport vehicle with loading space and image-recording device, and method for displaying an image stream during the loading or unloading of a transport vehicle

Similar Documents

Publication Publication Date Title
JP5249746B2 (en) Method for producing polydiene
JP3232113B2 (en) Synthesis of trans-1,4-polybutadiene
US20080076890A1 (en) Bulk polymerization process
JPS61268706A (en) Production of butadiene polymer or copolymer
JPS61268705A (en) Production of butadiene polymer or copolymer
JP2009161757A (en) Bulk polymerization process for manufacturing polydiene
EP2265649A1 (en) Method for bulk polymerization
KR100196884B1 (en) Catalyst system for polymerization of 1,3-butadiene to trans-1,4-polybutadiene
EP0231143B1 (en) Direct method for preparing syndiotactic 1,2-polybutadiene
JP3630502B2 (en) Rubber composition for tire
JP4736772B2 (en) Method for producing polybutadiene
JPS6336609B2 (en)
JP2000327703A (en) Suspension polymerization of conjugated diene
JPH04122711A (en) Production of polybutadiene
JPH1077310A (en) Cobalt-containing catalyst system
JPS58109512A (en) Production of reinforced polybutadiene rubber
US4224426A (en) Polymerization process for cis-1,4-polybutadiene using cycloalkane solvents and an aromatic polymerization regulator
JPS58109513A (en) Production of reinforced polybutadiene rubber
JP5785191B2 (en) High CIS polybutadiene rubber in harmless solvent and process for preparing the same
JPS62170B2 (en)
JPH04154820A (en) Polymerization for polybutadiene
JPH05247112A (en) Improved method for polymerizing polybutadiene
JPH04122709A (en) Production of cis-1,4-polybutadiene
JP5151148B2 (en) Method for producing vinyl cis-polybutadiene rubber
JPH0237927B2 (en) HOKYOHORIBUTA JENNOSEIZOHO