KR102562930B1 - Method for producing diene-based rubber that is not colored over time and diene-based rubber obtained thereby - Google Patents
Method for producing diene-based rubber that is not colored over time and diene-based rubber obtained thereby Download PDFInfo
- Publication number
- KR102562930B1 KR102562930B1 KR1020177034090A KR20177034090A KR102562930B1 KR 102562930 B1 KR102562930 B1 KR 102562930B1 KR 1020177034090 A KR1020177034090 A KR 1020177034090A KR 20177034090 A KR20177034090 A KR 20177034090A KR 102562930 B1 KR102562930 B1 KR 102562930B1
- Authority
- KR
- South Korea
- Prior art keywords
- aging
- diene
- temperature
- water
- mmol
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F36/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
- C08F36/02—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
- C08F36/04—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/70—Iron group metals, platinum group metals or compounds thereof
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
Abstract
공업적으로 간단한 방법으로, 경시 착색을 저감하고, 고기능성을 발현할 수 있으며, 또한 우수한 활성을 나타내는, 고품질이며 또한 고생산성의 디엔계 고무의 제조 방법 및 그에 의해 얻어진 디엔계 고무를 제공한다.
디엔계 고무의 제조 방법에 있어서, 디엔계 모노머를 중합시키기 전에, 숙성 개시로부터 숙성 종료까지 -30~17℃의 온도 범위를 유지하여, 물과 유기 알루미늄을 숙성시키는 공정을 갖는 것을 특징으로 하는 경시 착색되지 않는 디엔계 고무의 제조 방법이다.Provided is an industrially simple method for producing a high-quality and highly productive diene-based rubber that can reduce discoloration with time, exhibit high functionality, and exhibit excellent activity, and a diene-based rubber obtained thereby.
In a method for producing a diene rubber, a step of aging water and organoaluminium by maintaining a temperature range of -30 to 17 ° C. from the start of aging to the end of aging before polymerizing the diene monomer It is a method for producing a non-colored diene rubber.
Description
본 발명은 종래의 디엔계 고무에서 발생하는 경시 착색을 방지한, 경시 착색되지 않는 디엔계 고무의 제조 방법 및 그에 의해 얻어진 디엔계 고무에 관한 것이다. The present invention relates to a method for producing a diene rubber that does not discolor with time, and a diene rubber obtained thereby, preventing discoloration occurring in conventional diene rubber.
통상, 디엔계 고무는, 제조 공정에서 각종 촉매, 조촉매, 안정제 등의 수많은 화합물을 첨가하는 경우가 많다. 특히, 안정제를 첨가함으로써, 제품의 안정성을 도모하고 있기 때문에, 이러한 첨가제는 필수로 되어 있다. 그러나, 첨가제의 종류나 양이 많으면, 착색이나 냄새 등의 부작용이 발생하는 경우가 많아, 생각지도 못한 문제가 일어날 수 있다. Usually, many compounds, such as various catalysts, cocatalysts, and stabilizers, are often added to diene-based rubber in the manufacturing process. In particular, since stability of the product is achieved by adding a stabilizer, such an additive is essential. However, when the type or amount of the additive is large, side effects such as coloring or odor often occur, and unexpected problems may occur.
특히 착색이 발생하면, 제품에 투명성이 요구되는 용도, 바라는 색으로 착색시키고 싶은 용도에 대해서는, 큰 문제가 되는 경우가 많아, 그 해결 방법이 지금까지 수많이 도모되고 있다.In particular, when coloration occurs, it often becomes a big problem for applications requiring transparency of the product or applications in which it is desired to color the product in a desired color, and many solutions have been sought so far.
예컨대, 특허문헌 1에서는, 클로로프렌의 중합체의 제조 시에, 중합 정지제로서 디에틸히드록실아민과 페놀계 노화 방지제를 병용하여, 착색 방지를 행하고 있다.For example, in Patent Literature 1, during production of a chloroprene polymer, diethylhydroxylamine and a phenolic anti-aging agent are used in combination as a polymerization terminator to prevent discoloration.
또한, 특허문헌 2에서는, 부타디엔 고무의 중합 후에 1종류 이상의 페놀성 화합물을 혼합하고, 또한 pH값이 4~11의 범위, 또한 산소 함유량이 0~0.3 ppm이 되도록 조정함으로써, 안정적이고 또한 무색의 폴리부타디엔 고무를 제공하고 있다.Further, in Patent Literature 2, after polymerization of butadiene rubber, one or more phenolic compounds are mixed, and the pH value is adjusted to be in the range of 4 to 11 and the oxygen content to be 0 to 0.3 ppm, thereby obtaining a stable and colorless product. Polybutadiene rubber is provided.
또한, 선행문헌 3에서는, 폴리머의 중합 시에, 산화 방지제 또는 중합 억제제로 이루어지는 배합물에 대해, 외배(外配)로 아릴포스핀 화합물 및 실라잔 화합물로 이루어지는 군에서 선택된 1종 이상의 화합물을 첨가함으로써, 착색 방지를 도모하고 있다. Further, in Prior Document 3, during polymerization of a polymer, by adding at least one compound selected from the group consisting of an arylphosphine compound and a silazane compound externally to a combination comprising an antioxidant or a polymerization inhibitor. , to prevent discoloration.
그러나, 어느 착색 방지 방법도 종래의 제조 공정에서 사용한 첨가제에 또한 화합물을 첨가하는 경우가 많고, 또한, 제조 공정이 보다 복잡해지는 등, 비용의 면에서 반드시 우위라고는 말하기 어렵다.However, it is difficult to say that any coloration prevention method is necessarily superior in terms of cost, for example, in many cases, a compound is added to the additives used in the conventional manufacturing process, and the manufacturing process becomes more complicated.
그래서 본 발명자들은, 특허문헌 4에 나타낸 바와 같이, 유기 알루미늄과 산화 방지제의 비율을 컨트롤함으로써 착색 개선을 행하였다. 또한, 특허문헌 5에 나타낸 바와 같이, 유기 알루미늄과 물의 숙성 시간을 최적화함으로써, 경시 착색에 우수한 제조 방법을 발명해 왔다.Then, as shown in Patent Document 4, the present inventors performed coloring improvement by controlling the ratio of organoaluminum and antioxidant. Furthermore, as shown in Patent Document 5, a manufacturing method excellent in coloration over time has been invented by optimizing the aging time of organoaluminum and water.
본 발명자들은, 지금까지, 상기 특허문헌 4, 5의 수법으로 경시 착색을 저감시켜 왔으나, 더 개선하는 것이 요구되고 있는 상황에 있었다. 지금까지의 검토에서는, 실험 조건을 일정하에서 비교하기 위해서, 숙성 온도를 20℃로 균일하게 한 후에, 숙성 시간 변경에 의한 비교를 행하고 있었다. 예컨대, 특허문헌 5의 실시예 1에서는, 원료 혼합 용액에 물을 첨가하고, 교반, 용해 후, 10℃까지 저하시킨 후, 유기 알루미늄을 첨가하고 있었다. 유기 알루미늄과 물은, 접촉 후의 발열 반응에 의해 온도 상승이 발생한다. 또한, 숙성 중에는, 외기온의 영향에 의한 온도 상승이 발생한다. 이들의 온도 상승에 더하여, 뜨거운 물, 얼음물과 같은 열원, 냉매를 이용함으로써 항상 20℃로 컨트롤한 아래에서, 숙성 시간의 비교를 행해 왔다. 이 20℃라고 하는 것은, 연중 같게 하기 쉬운 온도이기 때문에 설정하고 있었다.The inventors of the present invention have been reducing coloration with time by the methods of Patent Literatures 4 and 5, but there is a situation where further improvement is required. In the studies so far, in order to compare the experimental conditions under constant conditions, the aging temperature was made uniform at 20 ° C., and then the comparison was performed by changing the aging time. For example, in Example 1 of Patent Document 5, organoaluminum was added after water was added to the raw material mixture solution, stirred and dissolved, and then lowered to 10°C. Organic aluminum and water generate a temperature rise by an exothermic reaction after contact. In addition, during aging, a temperature rise occurs due to the influence of outside air temperature. In addition to these temperature rises, comparison of aging times has been performed under constant control at 20°C by using a heat source such as hot water or ice water and a refrigerant. This 20°C was set because it is a temperature that is easy to keep the same throughout the year.
또한, 연구실 실험에 있어서는, 조건을 일치시키기 위해서 간단히 온도를 올렸다 내렸다 할 수 있으나, 공업적으로 합성 고무를 제조하고 있는 플랜트에 있어서는, 원료 부타디엔이나 용매를 증류하여 재사용하고 있기 때문에, 통상은 족히 30℃를 초과하는 것과 같은 온도로 되어 있는 것이 실정이다. Also, in laboratory experiments, the temperature can be simply raised and lowered to match the conditions, but in plants producing synthetic rubber industrially, raw material butadiene and solvents are distilled and reused, so it is usually well within 30 The actual situation is that the temperature is such that it exceeds °C.
본 발명은 상기 문제점을 감안하여 이루어진 것으로, 공업적으로 간단한 방법으로, 경시 착색을 저감하고, 또한 우수한 활성을 나타내는, 고품질이며 또한 고생산성의 디엔계 고무의 제조 방법 및 그에 의해 얻어진 디엔계 고무를 제공하는 것을 목적으로 한다. The present invention has been made in view of the above problems, and is an industrially simple method, reducing discoloration with time and exhibiting excellent activity, a method for producing a high-quality and highly productive diene-based rubber, and a diene-based rubber obtained thereby intended to provide
본 발명자들은, 이상의 목적을 달성하기 위해서 예의 검토한 결과, 지금까지는, 냉각을 위한 에너지를 필요로 하기 때문에, 숙성 온도를 저온으로 계속 유지하는 것은 행하지 않았으나, 발열 반응에 따르는 온도 상승, 외기온에 의한 온도 상승을, 냉매를 이용해서 억제하여, 유기 알루미늄과 물의 숙성 반응의 온도를, -30~17℃와 같은 저온에서 숙성의 처음부터 끝까지 컨트롤함으로써, 원료 중에 포함되는 불순물과 유기 알루미늄의 부반응을 억제하고, 그에 의해 부반응 생성물이 되는 경시 착색 원인 물질의 생성을 억제하면서, 물과 유기 알루미늄의 숙성 반응을 촉진할 수 있으며, 경시 착색을 저감하고, 또한 우수한 활성을 나타내는, 고품질이며 또한 고생산성의 제조 방법을 제공할 수 있는 것을 발견하고, 본 발명에 이르렀다.As a result of intensive studies to achieve the above object, the inventors of the present invention have so far not kept the aging temperature at a low temperature because energy for cooling is required. The temperature rise is suppressed using a refrigerant, and the temperature of the aging reaction between organic aluminum and water is controlled from the beginning to the end of aging at a low temperature such as -30 to 17 ° C. and thereby suppressing the generation of a substance that causes coloration with time as a side reaction product, while promoting the aging reaction of water and organoaluminum, reducing coloration with time and exhibiting excellent activity, high-quality and high-productivity production It was discovered that a method could be provided, and the present invention was reached.
즉, 본 발명은 디엔계 고무의 제조 방법에 있어서, 디엔계 모노머를 중합시키기 전에, 숙성 개시로부터 숙성 종료까지 -30~17℃의 온도 범위를 유지하여, 물과 유기 알루미늄을 숙성시키는 공정을 갖는 것을 특징으로 하는 경시 착색되지 않는 디엔계 고무의 제조 방법에 관한 것이다.That is, the present invention is a method for producing a diene-based rubber, comprising a step of aging water and organic aluminum by maintaining a temperature range of -30 to 17 ° C. from the start of aging to the end of aging before polymerizing the diene-based monomer. It relates to a method for producing a diene-based rubber that is not colored over time.
또한, 본 발명은 상기 제조 방법에 의해 얻어진 경시 착색되지 않는 디엔계 고무에 관한 것이다.Furthermore, the present invention relates to a diene-based rubber obtained by the above production method that is not colored over time.
이상과 같이, 본 발명에 의하면, 공업적으로 간단한 방법으로, 경시 착색을 저감하고, 또한 우수한 활성을 나타내는, 고품질이며 또한 고생산성이고 또한 고기능의 디엔계 고무의 제조 방법 및 그에 의해 얻어진 디엔계 고무를 제공할 수 있다. As described above, according to the present invention, a method for producing a high-quality, highly productive, and highly functional diene-based rubber that reduces discoloration with time and exhibits excellent activity by an industrially simple method, and a diene-based rubber obtained thereby can provide.
본 발명의 디엔계 고무의 제조 방법은, (A) 디엔계 모노머를 (B) 유기 용매에 녹이고, 그 안에 (C) 물을 용해하며, 계속해서, (D1) 유기 알루미늄 조촉매를 투입 후, 상기 물과 유기 알루미늄을 (D2) 숙성 개시로부터 숙성 종료까지 -30~17℃의 온도 범위를 유지하여 숙성한 후에, (E) 전이 금속 촉매를 넣어 중합을 시키고, 중합 후, (F) 중합 정지제 및 경우에 따라서는 (G) 산화 방지제를 첨가하는 것이 바람직하다. In the method for producing a diene rubber of the present invention, (A) a diene monomer is dissolved in (B) an organic solvent, (C) water is dissolved therein, and then (D1) an organic aluminum cocatalyst is added, After aging the water and organic aluminum by maintaining the temperature range of -30 ~ 17 ℃ from the start of aging to the end of aging (D2), (E) polymerization by adding a transition metal catalyst, and after polymerization, (F) termination of polymerization It is preferable to add an antioxidant and, in some cases, (G) an antioxidant.
(A) 디엔계 모노머(A) diene monomer
디엔계 모노머로서는, 예컨대, 1,3-부타디엔, 이소프렌, 1,3-펜타디엔, 2,3-디메틸부타디엔, 2-페닐-1,3-부타디엔 등을 들 수 있다. 이들은, 1종 단독으로 이용해도, 2종 이상을 혼합해도 좋고, 또한 1,3-헥사디엔 등 다른 디엔과 공중합하여 이용해도 좋다. 그 중에서도 바람직한 것은, 1,3-부타디엔이다.Examples of the diene monomer include 1,3-butadiene, isoprene, 1,3-pentadiene, 2,3-dimethylbutadiene, and 2-phenyl-1,3-butadiene. These may be used individually by 1 type, may mix 2 or more types, and may also be used copolymerized with other dienes, such as 1, 3- hexadiene. Among them, 1,3-butadiene is preferred.
본 발명에 있어서 사용하는 원료 디엔계 모노머는, 중합 금지제를 포함해도 좋다. 중합 금지제로서는, 통상 이용되는 금지제를 이용할 수 있고, 특별히 한정하는 것은 아니지만, 예컨대, 티오디페닐아민, 4-터셔리부틸카테콜, 2,2-메틸렌비스-4-메틸-6-터셔리부틸페놀, 하이드로퀴논, o-니트로페놀, m-니트로페놀, p-니트로페놀, 2,4-디니트로페놀, 2,4,6-트리니트로페놀, p-메톡시페놀, p-벤조퀴논, 페노티아진, 안트라퀴논, 2,6-디-t-부틸히드록시톨루엔 등을 들 수 있다.The raw material diene-based monomer used in the present invention may also contain a polymerization inhibitor. As the polymerization inhibitor, commonly used inhibitors can be used and are not particularly limited. sherry butylphenol, hydroquinone, o-nitrophenol, m-nitrophenol, p-nitrophenol, 2,4-dinitrophenol, 2,4,6-trinitrophenol, p-methoxyphenol, p-benzoquinone, phenothiazine, anthraquinone, 2,6-di-t-butylhydroxytoluene, and the like.
또한, 디에틸히드록실아민, 디메틸히드록실아민, 메틸에틸히드록실아민, 디프로필히드록실아민, 디부틸히드록실아민, 디펜틸히드록실아민, 인산, 포스폰산, 포스핀산, 디포스폰산, 이인산, 트리폴리인산, 및 메타인산에서 선택되는 인산 화합물, 인산이수소알킬에스테르 화합물, 인산수소디알킬에스테르 화합물, 인산트리알킬에스테르 화합물 등도 중합 금지제로서 사용할 수 있다. In addition, diethylhydroxylamine, dimethylhydroxylamine, methylethylhydroxylamine, dipropylhydroxylamine, dibutylhydroxylamine, dipentylhydroxylamine, phosphoric acid, phosphonic acid, phosphinic acid, diphosphonic acid, Phosphoric acid compounds selected from phosphoric acid, tripolyphosphoric acid and metaphosphoric acid, dihydrogenphosphate alkyl ester compounds, hydrogen phosphate dialkyl ester compounds, and phosphoric acid trialkyl ester compounds can also be used as polymerization inhibitors.
이 중에서도 특히, 4-터셔리부틸카테콜(TBC라고 약기)이 바람직하다.Among these, 4-tertiary butyl catechol (abbreviated as TBC) is particularly preferable.
(B) 유기 용매(B) organic solvent
본 발명에 있어서 사용하는 유기 용매로서는, 톨루엔, 벤젠, 크실렌 등의 방향족계 탄화수소, n-헥산, 부탄, 헵탄, 펜탄 등의 지방족 탄화수소, 시클로펜탄, 시클로헥산 등의 지환식 탄화수소, 1-부텐, 시스-2-부텐, 트랜스-2-부텐 등의 올레핀계 탄화수소, 미네랄 스피릿, 솔벤트 나프타, 케로신 등의 탄화수소계 용매나, 염화메틸렌 등의 할로겐화 탄화수소계 용매 등을 들 수 있다. 또한, 1,3-부타디엔 그 자체를 중합 용매로 해도 좋다.Examples of the organic solvent used in the present invention include aromatic hydrocarbons such as toluene, benzene and xylene, aliphatic hydrocarbons such as n-hexane, butane, heptane and pentane, alicyclic hydrocarbons such as cyclopentane and cyclohexane, 1-butene, olefinic hydrocarbons such as cis-2-butene and trans-2-butene, mineral spirits, hydrocarbon solvents such as solvent naphtha and kerosene, halogenated hydrocarbon solvents such as methylene chloride, and the like. Also, 1,3-butadiene itself may be used as a polymerization solvent.
용매로서 바람직하게는, 비방향족 탄화수소이며, 특히 시클로헥산이 바람직하다. The solvent is preferably a non-aromatic hydrocarbon, and cyclohexane is particularly preferred.
(C) 물(C) water
본 발명에 있어서, 물을 넣는 타이밍은, (A) 디엔계 모노머를 (B) 유기 용매에 녹인 후이며, 또한 그 후 투입하는 (D1) 유기 알루미늄 조촉매와의 몰비의 밸런스가 중요해진다.In the present invention, the timing for adding water is after dissolving the diene monomer (A) in the organic solvent (B), and the balance of the molar ratio with the organic aluminum cocatalyst (D1) added thereafter becomes important.
(D1) 유기 알루미늄 조촉매와 물의 몰비(Al/H2O)는, 1~2.5이면 양호하지만, 1.05~2.4이면 보다 바람직하고, 1.1~2.3이면 특히 바람직하다. (D1) 유기 알루미늄 조촉매와 물의 몰비(Al/H2O)가, 1~2.5의 범위이면, 발색(황갈색의 변화)을 방지하는 것이 가능할 뿐만이 아니라, 중합 활성의 현저한 저하를 방지하는 것이 가능하기 때문에, 생산성의 면에서도 상기 몰비는 중요하다. (D1) The molar ratio of the organic aluminum cocatalyst to water (Al/H 2 O) is preferably 1 to 2.5, more preferably 1.05 to 2.4, and particularly preferably 1.1 to 2.3. (D1) When the molar ratio of the organoaluminum cocatalyst to water (Al/H 2 O) is in the range of 1 to 2.5, it is possible to prevent not only color development (change in yellowish brown color), but also a significant decrease in polymerization activity. Therefore, the molar ratio is important also in terms of productivity.
(D1) 유기 알루미늄 조촉매와 물의 몰비(Al/H2O)가, 1보다 작거나 혹은 2.5보다 크면, 중합하는 고무의 생산성이 떨어지고, 또한 발색(황갈색의 변화)이 발생하기 쉬워지기 때문에 바람직하지 않다. (D1) When the molar ratio of the organoaluminum cocatalyst to water (Al/H 2 O) is less than 1 or greater than 2.5, the productivity of the rubber to be polymerized decreases and color development (change in yellowish brown) tends to occur, which is preferable. don't
(D1) 유기 알루미늄 조촉매(D1) organic aluminum promoter
본 발명에 있어서, 사용할 수 있는 유기 알루미늄 조촉매로서는, 트리알킬알루미늄, 디알킬알루미늄클로라이드, 디알킬알루미늄브로마이드, 알킬알루미늄세스퀴클로라이드, 알킬알루미늄세스퀴브로마이드, 알킬알루미늄디클로라이드 등을 들 수 있다.Examples of the organic aluminum cocatalyst usable in the present invention include trialkyl aluminum, dialkyl aluminum chloride, dialkyl aluminum bromide, alkyl aluminum sesquichloride, alkyl aluminum sesqui bromide, and alkyl aluminum dichloride.
이들 유기 알루미늄 조촉매는, 1종류를 이용해도 좋고, 2종류 이상을 병용할 수도 있다. 그 중에서도 특히, 트리알킬알루미늄, 디알킬알루미늄클로라이드가 바람직하고, 양자를 병용한 경우에, 특히 본원의 효과를 발휘할 수 있기 때문에, 트리알킬알루미늄, 디알킬알루미늄클로라이드를 병용하여 이용하는 것이 보다 바람직하다.One type of these organoaluminum cocatalysts may be used, or two or more types may be used together. Among them, trialkyl aluminum and dialkyl aluminum chloride are particularly preferable, and when both are used in combination, the effect of the present application can be exhibited, so it is more preferable to use trialkyl aluminum and dialkyl aluminum chloride in combination.
구체적인 화합물로서는, 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리헥실알루미늄, 트리옥틸알루미늄, 트리데실알루미늄 등의 트리알킬알루미늄; 디메틸알루미늄클로라이드, 디에틸알루미늄클로라이드 등의 디알킬알루미늄클로라이드를 들 수 있다. Specific examples of the compound include trialkyl aluminum such as trimethyl aluminum, triethyl aluminum, triisobutyl aluminum, trihexyl aluminum, trioctyl aluminum, and tridecyl aluminum; and dialkyl aluminum chlorides such as dimethyl aluminum chloride and diethyl aluminum chloride.
또한, 세스퀴에틸알루미늄클로라이드, 에틸알루미늄디클로라이드 등과 같은 유기 알루미늄할로겐 화합물; 디에틸알루미늄하이드라이드, 디이소부틸알루미늄하이드라이드, 세스퀴에틸알루미늄하이드라이드와 같은 수소화 유기 알루미늄 화합물도 포함된다. In addition, organic aluminum halide compounds such as sesquiethyl aluminum chloride and ethyl aluminum dichloride; Hydrogenated organoaluminum compounds such as diethylaluminum hydride, diisobutylaluminum hydride and sesquiethylaluminum hydride are also included.
(D2) 물과 유기 알루미늄의 숙성 온도(D2) aging temperature of water and organic aluminum
물과 유기 알루미늄의 숙성 온도는, -30~17℃이지만, -15~15℃가 보다 바람직하고, -10~10℃가 특히 바람직하다. 숙성 온도가 17℃를 초과하면 유기 알루미늄과 불순물의 반응을 진행시켜 버려 경시 착색의 원인 물질을 생성해 버린다. 또한, 본래의 숙성의 목적인 유기 알루미늄과 물의 숙성 반응 생성물인 알룸옥산량이 감소하여 활성을 저하시켜 버린다. 한편, 온도가 -30℃보다 낮아도 유기 알루미늄과 불순물의 부반응을 억제하여, 경시 착색의 저감은 가능하지만, 그 온도까지 냉매를 이용하여 낮추는 것은 공업적으로 바람직하지 않다.The aging temperature of water and organic aluminum is -30 to 17°C, more preferably -15 to 15°C, and particularly preferably -10 to 10°C. When the aging temperature exceeds 17° C., the reaction between organoaluminum and impurities proceeds, and substances that cause coloration with time are generated. In addition, the amount of alumoxane, which is a aging reaction product of organoaluminum and water, which is the original purpose of aging, decreases, thereby lowering the activity. On the other hand, even if the temperature is lower than -30 ° C., it is possible to suppress side reactions between organic aluminum and impurities and reduce coloration with time, but it is industrially undesirable to lower the temperature to that temperature using a refrigerant.
일반적으로, 물과 유기 알루미늄의 숙성은, 발열 반응이며, 예컨대 10℃에서 숙성을 개시해도, 10℃를 유지하여 숙성이 종료되는 일은 없다. 또한, 숙성 온도는, 외기온에 의한 온도 상승 등의 영향도 받기 쉽다. 그러나, 통상은, 냉각을 위한 에너지를 필요로 하기 때문에, 숙성 온도를 숙성 개시로부터 종료까지, 저온으로 계속 컨트롤하는 것은 행해지고 있지 않다.In general, aging of water and organic aluminum is an exothermic reaction, and even if aging is initiated at, for example, 10°C, aging does not end while maintaining 10°C. In addition, the aging temperature is also easily affected by a temperature increase or the like due to outside air temperature. However, since energy for cooling is usually required, continuous control of the aging temperature at a low temperature from the start of aging to the end is not performed.
한편, 본 발명에 있어서는, 물과 유기 알루미늄의 숙성 온도를, 냉매를 이용하여, 숙성 개시로부터 숙성 종료까지 저온으로 계속 컨트롤하는 것이 중요하다.On the other hand, in the present invention, it is important to continuously control the aging temperature of water and organoaluminum at a low temperature from the start of aging to the end of aging using a refrigerant.
본 발명에 있어서, 숙성 개시 온도는, -30~17℃가 바람직하고, -20~15℃가 보다 바람직하며, -15~10℃가 특히 바람직하다. 또한, 숙성 종료 온도는, -30~17℃가 바람직하고, -20~15℃가 보다 바람직하며, -15~10℃가 특히 바람직하다. 숙성 개시 온도와 숙성 종료 온도는 동일할 필요는 없고, -30~17℃의 온도 범위에서 숙성이 개시되고, -30~17℃의 온도 범위를 유지한 채로 숙성하며, -30~17℃의 온도 범위에서 숙성이 종료되는 것이 중요하다. 상기와 같은 온도 범위에서 조촉매를 숙성하면, 경시 착색이 저하되고, 리니어리티값도 높은 고기능 고무를 제조하는 것이 가능하다. In the present invention, the aging start temperature is preferably -30 to 17°C, more preferably -20 to 15°C, and particularly preferably -15 to 10°C. The aging end temperature is preferably -30 to 17°C, more preferably -20 to 15°C, and particularly preferably -15 to 10°C. The aging start temperature and the aging end temperature do not have to be the same, and the aging starts in the temperature range of -30 to 17 ° C, the aging is performed while maintaining the temperature range of -30 to 17 ° C, and the temperature is -30 to 17 ° C. It is important that aging ends in the range. When the cocatalyst is aged in the above temperature range, it is possible to produce a highly functional rubber having a low coloration with time and a high linearity value.
본 발명에 있어서, 숙성의 개시란, (C) 물을 용해시킨 유기 용매에 (D1) 유기 알루미늄을 첨가한 시점이고, 숙성의 종료란, (E) 전이 금속 촉매를 첨가한 시점을 가리킨다.In the present invention, the start of aging refers to the time when (D1) organic aluminum is added to the organic solvent in which water is dissolved (C), and the end of aging refers to the time when (E) the transition metal catalyst is added.
본 발명의 디엔계 고무의 제조 방법에 있어서는, (A) 디엔계 모노머를 (B) 유기 용매에 녹이고, 그 안에 (C) 물을 용해하며, 계속해서, (D1) 유기 알루미늄 조촉매를 물과의 몰비(Al/H2O)가, 1~2.5의 범위가 되도록 하여 투입하고, (D2) 숙성 개시로부터 숙성 종료까지 -30~17℃의 온도 범위를 유지하며, (D3) 1~60분간 숙성한 후에, (E) 전이 금속 촉매를 넣어 중합을 시키면, 경시 착색되지 않는 디엔계 고무를 제조하는 데 보다 효과적이다. In the method for producing a diene rubber of the present invention, (A) a diene monomer is dissolved in (B) an organic solvent, (C) water is dissolved therein, and then (D1) an organic aluminum cocatalyst is dissolved in water and The molar ratio (Al/H 2 O) is added so that it is in the range of 1 to 2.5, (D2) maintaining the temperature range of -30 to 17 ℃ from the start of aging to the end of aging, (D3) 1 to 60 minutes After aging, polymerization by adding (E) a transition metal catalyst is more effective in producing a diene-based rubber that is not colored over time.
즉, (D1) 유기 알루미늄 조촉매와 물의 몰비(Al/H2O)의 범위를 한정하는 조건을 병용함으로써, 한층 더 경시 착색 방지 효과와 고기능성을 창출한다.That is, (D1) By using together the conditions limiting the range of the molar ratio of the organoaluminum cocatalyst and water (Al/H 2 O), a further discoloration prevention effect and high functionality are created.
(D3) 물과 유기 알루미늄의 숙성 시간(D3) aging time of water and organic aluminum
또한, 물과 (D3) 유기 알루미늄의 숙성 시간은, 1~60분이 특히 바람직하고, 3~50분이 보다 바람직하며, 5~45분이 가장 바람직하다. 숙성 시간이 1분보다 짧으면, 숙성 반응 생성물인 알룸옥산을 충분히 형성할 수 없고, 미반응의 유기 알루미늄과 불순물의 반응을 진행시켜 버리며, 숙성 시간이 60분보다 길면, 불안정한 알룸옥산을 계속 유지할 수 없고, 중합 반응에서 작용할 수 없어, 촉매당 생성 폴리머가 감소하여, 착색 원인이 되어 버리는 경향에 있다.The aging time between water and (D3) organoaluminum is particularly preferably 1 to 60 minutes, more preferably 3 to 50 minutes, and most preferably 5 to 45 minutes. If the aging time is shorter than 1 minute, alumoxane, the aging reaction product, cannot be sufficiently formed, and the reaction between unreacted organoaluminum and impurities proceeds. If the aging time is longer than 60 minutes, unstable alumoxane can be maintained continuously. It does not work in the polymerization reaction, and the polymer produced per catalyst decreases, which tends to cause coloration.
(E) 전이 금속 촉매(E) transition metal catalyst
본 발명에 있어서, 사용할 수 있는 전이 금속 촉매로서는, 코발트계 촉매를 들 수 있다. In the present invention, as a transition metal catalyst that can be used, a cobalt-based catalyst is exemplified.
코발트계 촉매로서는, 코발트의 염이나 착체가 바람직하게 이용된다. 특히 바람직한 것은, 염화코발트, 브롬화코발트, 질산코발트, 옥틸산(에틸헥산산)코발트, 나프텐산코발트, 아세트산코발트, 말론산코발트 등의 코발트염; 코발트의 비스아세틸아세토네이트나 트리스아세틸아세토네이트, 아세토아세트산에틸에스테르코발트, 코발트염의 피리딘 착체나 피콜린 착체 등의 유기 염기 착체, 혹은 에틸 알코올 착체 등을 들 수 있다. As the cobalt-based catalyst, salts and complexes of cobalt are preferably used. Particularly preferred are cobalt salts such as cobalt chloride, cobalt bromide, cobalt nitrate, cobalt octylate (ethylhexanoate), cobalt naphthenate, cobalt acetate, and cobalt malonate; organic base complexes such as bisacetylacetonate and trisacetylacetonate of cobalt, ethyl acetoacetate ester cobalt, and pyridine complexes and picoline complexes of cobalt salts; and ethyl alcohol complexes.
이 중에서도 특히 옥틸산코발트가 바람직하다.Among these, cobalt octylate is particularly preferable.
또한, 본 발명의 디엔계 고무는, 코발트계 이외의 촉매에 의해 제조할 수 있다. In addition, the diene rubber of the present invention can be produced with a catalyst other than cobalt.
코발트계 이외의 촉매로서는, 니켈계 혹은 네오디뮴계 등의 촉매를 들 수 있다.Catalysts other than cobalt-based catalysts include nickel-based catalysts and neodymium-based catalysts.
니켈계 촉매로서는, 니켈 화합물-유기 알루미늄 화합물로 이루어지는 촉매계 등을 들 수 있다. Examples of the nickel-based catalyst include a catalyst system composed of a nickel compound and an organoaluminum compound.
또한, 니켈 화합물로서는, 나프텐산니켈, 포름산니켈, 옥틸산니켈, 스테아르산니켈, 시트르산니켈, 벤조산니켈, 톨루일산니켈 등의 유기산염; 니켈아세틸아세토네이트 등의 유기 착체 화합물; 알킬벤젠술폰산니켈; 니켈옥시보레이트 등을 들 수 있다.Examples of the nickel compound include organic acid salts such as nickel naphthenate, nickel formate, nickel octylate, nickel stearate, nickel citrate, nickel benzoate, and nickel toluate; organic complex compounds such as nickel acetylacetonate; nickel benzene sulfonate; Nickel oxyborate etc. are mentioned.
이 중에서도, 옥틸산니켈이 바람직하다. Among these, nickel octylate is preferable.
또한, 금속 촉매의 종류에 따른 디엔계 폴리머의 형태로서, 리튬 촉매 중합-폴리부타디엔(Li-BR), 코발트 촉매 중합-폴리부타디엔(Co-BR), 네오디뮴 촉매 중합-폴리부타디엔(Nd-BR), 니켈 촉매 중합-폴리부타디엔(Ni-BR), 티탄 촉매 중합-폴리부타디엔(Ti-BR), 스티렌-부타디엔-블록 코폴리머(SB, SBS, SEBS), 랜덤 스티렌-부타디엔-코폴리머(L-SBR), 부타디엔-이소프렌-코폴리머(BI), 스티렌-부타디엔-이소프렌-터폴리머(SIB) 등을 들 수 있다. In addition, as a form of diene-based polymer according to the type of metal catalyst, lithium catalyst polymerization-polybutadiene (Li-BR), cobalt catalyst polymerization-polybutadiene (Co-BR), neodymium catalyst polymerization-polybutadiene (Nd-BR) , nickel-catalyzed polymerization-polybutadiene (Ni-BR), titanium-catalyzed polymerization-polybutadiene (Ti-BR), styrene-butadiene-block copolymers (SB, SBS, SEBS), random styrene-butadiene-copolymers (L- SBR), butadiene-isoprene-copolymer (BI), styrene-butadiene-isoprene-terpolymer (SIB), and the like.
그 중에서도 특히, 코발트 촉매 중합-폴리부타디엔(Co-BR)이 본원 발명의 방법에서는 최적이다. Among them, cobalt-catalyzed polymerization-polybutadiene (Co-BR) is optimal in the method of the present invention.
또한, 본 발명에 있어서는, 중합 시에 공지된 분자량 조절제, 예컨대, 시클로옥타디엔, 알렌 등의 비공역 디엔류, 또는 에틸렌, 프로필렌, 부텐-1 등의 α-올레핀류를 첨가할 수 있다. Further, in the present invention, a known molecular weight modifier, for example, non-conjugated dienes such as cyclooctadiene and allene, or α-olefins such as ethylene, propylene and butene-1 may be added during polymerization.
본 발명에 있어서, 중합 온도는 -30~100℃의 범위가 바람직하고, 30~80℃의 범위가 특히 바람직하다. 중합 시간은 5분~12시간의 범위가 바람직하고, 10분~6시간이 특히 바람직하다. 또한, 중합압은, 상압 또는 10기압(게이지압) 정도까지의 가압하에 행해진다.In the present invention, the polymerization temperature is preferably in the range of -30 to 100°C, particularly preferably in the range of 30 to 80°C. The polymerization time is preferably in the range of 5 minutes to 12 hours, and particularly preferably in the range of 10 minutes to 6 hours. In addition, the polymerization pressure is performed under normal pressure or a pressure up to about 10 atm (gauge pressure).
(F) 중합 정지제(F) polymerization terminator
디엔계 고무의 중합의 중단은, 통상의 방법으로, 물, 알코올, 유기산 또는 무기산 및/또는 페놀의 첨가에 의해 행해진다. 본 발명에 의한 중합은, 물로 중단시키는 것이 비용의 면에서 유리하다. The polymerization of diene rubber is stopped in a conventional manner by adding water, alcohol, organic or inorganic acid and/or phenol. The polymerization according to the present invention is advantageous from the point of view of cost to be stopped with water.
이 중에서도, 분산성이 좋고, 바람직한 중합 정지제로서는, 물이나 저급 알코올 등을 들 수 있고, 물의 사용량으로서는, 토탈의 원료 혼합 용액에 대한 비율이 1.38×10-8~9.9 vol%인 것이 바람직하며, 2.76×10-8~5 vol%인 것이 보다 바람직하고, 4.14×10-8~3 vol%인 것이 보다 더 바람직하다. 토탈의 원료 혼합 용액이란, 반응기에 넣는 원료인 디엔계 모노머, 용매의 총합량이다. Among these, water and lower alcohols are preferred as polymerization terminator with good dispersibility . , more preferably 2.76×10 -8 to 5 vol%, and still more preferably 4.14×10 -8 to 3 vol%. The total raw material mixed solution is the total amount of the diene-based monomer and the solvent as raw materials put into the reactor.
저급 알코올로서는, 탄소수가 5 이하인 것이 좋고, 구체적으로는 메탄올, 에탄올, 프로판올, 이소프로판올, 부탄올, tert-부틸알코올, 펜탄올과 이들의 이성체를 들 수 있다. 이들은, 단독으로 이용해도, 혼합하여 이용해도 좋다. The lower alcohol preferably has 5 or less carbon atoms, and specifically includes methanol, ethanol, propanol, isopropanol, butanol, tert-butyl alcohol, pentanol and isomers thereof. These may be used independently or may be mixed and used.
또한, 본 발명에 있어서는, (F) 중합 정지제 후, 필요에 따라 (G) 산화 방지제를 첨가해도 좋으나, (G) 산화 방지제와 (F) 중합 정지제를 첨가하는 순서가 반대로 되어도 좋다. In the present invention, after the polymerization terminator (F), the antioxidant (G) may be added as necessary, but the order of adding the antioxidant (G) and the polymerization terminator (F) may be reversed.
(G) 산화 방지제(G) antioxidants
산화 방지제로서는, 4,6-비스(옥틸메틸)-o-크레졸, 제3급 부틸하이드로퀴논, 디니트로클로로벤젠, 하이드로퀴논과 물, 디메틸디티오카르바민산염, 다황화나트륨, 폴리에틸렌폴리아민, 디에틸히드록실아민, 히드록실아민 등의 아민계 화합물, 벤조퀴논 등의 퀴논계 화합물, 질산나트륨, 소듐디티오카바메이트, 페노티아진, 2,6-t-부틸-4-메틸페놀 등을 들 수 있다.As antioxidants, 4,6-bis (octylmethyl) -o-cresol, tertiary butyl hydroquinone, dinitrochlorobenzene, hydroquinone and water, dimethyl dithiocarbamate, sodium polysulfide, polyethylene polyamine, di amine compounds such as ethylhydroxylamine and hydroxylamine, quinone compounds such as benzoquinone, sodium nitrate, sodium dithiocarbamate, phenothiazine, 2,6-t-butyl-4-methylphenol, etc. can
이 중에서도, 4,6-비스(옥틸메틸)-o-크레졸이 바람직하다.Among these, 4,6-bis (octylmethyl) -o-cresol is preferable.
산화 방지제의 첨가량은, 디엔계 모노머 1 몰에 대해 8.256×10-6~3.754×10-4 몰의 첨가량이 바람직하다. 산화 방지제도 원료 중에 포함되는 불순물과 마찬가지로 유기 알루미늄과 반응하기 때문에, 산화 방지제의 첨가량이 3.754×10-4보다 많아서는, 경시 착색이 나쁘고, 또한, 반대로 8.256×10-6보다 지나치게 적어서는, 열화가 진행되어, 착색이 악화되는 것으로 이어진다.The added amount of the antioxidant is preferably 8.256×10 -6 to 3.754×10 -4 moles per 1 mole of the diene monomer. Since antioxidants also react with organoaluminum in the same way as impurities contained in raw materials, when the amount of antioxidants added is greater than 3.754 × 10 -4 , coloration over time is poor, and conversely, when the amount is too less than 8.256 × 10 -6 , deterioration occurs. progresses, leading to deterioration of coloring.
본 발명에 의해 제조되는 디엔계 고무는, 경시 착색이 낮고, 리니어리티가 높은 것을 특징으로 한다. 구체적으로는, ΔYI(YI(2개월)-YI(1주일))의 값이, 15 이하인 것이 바람직하다. 리니어리티값의 지표로서는, Tcp/ML의 값으로 나타나지만, 일반적으로 리니어리티값이 높을수록, 내마모성, 고탄성률, 저손실 등의 고기능성을 발현할 수 있어 바람직하다. The diene-based rubber produced by the present invention is characterized by low discoloration over time and high linearity. Specifically, it is preferable that the value of ΔYI (YI (2 months) - YI (1 week)) is 15 or less. As an index of the linearity value, it is represented by a value of Tcp/ML, but in general, the higher the linearity value, the higher the functionality such as abrasion resistance, high modulus of elasticity, and low loss can be expressed, so it is preferable.
본 발명에 의해 제조되는 경시 착색되지 않는 디엔계 고무는, 모든 종류의 가황물을 제조하기 위해서, 예컨대, 타이어, 호스, 신발 부재, 공업용 벨트, 의료용 고무, 스포츠 용품, 크롤러 또는 패킹을 제조하기 위해서, 및 비닐 방향족 화합물, 예컨대, 폴리스티렌 및 괴상법(塊狀法)에 의해 제조된 ABS-폴리머를 기초로 하는 폴리머의 내충격성 변성을 위해서 사용할 수도 있다. The diene-based rubber produced by the present invention, which is not colored over time, is used for producing all kinds of vulcanizates, such as tires, hoses, shoe parts, industrial belts, medical rubbers, sporting goods, crawlers or packings. , and for modifying the impact resistance of polymers based on vinyl aromatic compounds, such as polystyrene and ABS-polymers prepared by the bulk method.
실시예Example
이하, 본 발명을 실시예에 기초하여 구체적으로 설명하지만, 이들은 본 발명의 목적을 한정하는 것이 아니다. 먼저, 이하에, 실시예에서 이용한 분석 방법을 나타낸다. Hereinafter, the present invention will be specifically described based on examples, but these do not limit the purpose of the present invention. First, the analysis method used in the examples is shown below.
(착색 측정)(coloration measurement)
착색의 판단은, 육안 외에, 닛폰 덴쇼쿠 고교(주) 제조 NDJ-300A에 의해 옐로우 인덱스(YI값)로 정량적으로 측정을 행하였다.Coloration was judged quantitatively by yellow index (YI value) by NDJ-300A manufactured by Nippon Denshoku Kogyo Co., Ltd. in addition to visual observation.
(전화율(轉化率)의 계산)(Calculation of Conversion Rate)
원료 혼합 용액(시클로헥산 20 wt%, 부타디엔 40 wt%, 부텐 40 wt%) 1 L의 경우, 비중 0.65이기 때문에 중량은 650 g이 된다. 중량 650 g 중 부타디엔 모노머는 40 wt%이기 때문에, 650×0.4=260 g이라고 계산할 수 있다. In the case of 1 L of the raw material mixed solution (cyclohexane 20 wt%, butadiene 40 wt%, butene 40 wt%), the weight is 650 g because the specific gravity is 0.65. Since the butadiene monomer is 40 wt% in the weight of 650 g, it can be calculated as 650 × 0.4 = 260 g.
중합 반응 후, 예컨대 폴리부타디엔을 120 g 얻을 수 있었던 경우, 120 g/260 g≒0.46이 되어 전화율 46%가 된다. After the polymerization reaction, for example, when 120 g of polybutadiene is obtained, the conversion rate is 46% as 120 g/260 g ≈ 0.46.
(무니 점도(ML1+4, 100℃)) (Mooney viscosity (ML 1+4 , 100℃))
JIS K 6300에 준거하여 측정하였다. It was measured based on JIS K 6300.
(톨루엔 용액 점도(Tcp))(Toluene solution viscosity (Tcp))
폴리머 2.28 g을 톨루엔 50 ㎖에 용해한 후, 표준액으로서 점도계 교정용 표준액(JIS Z 8809)을 이용하고, 캐논 펜스케 점도계 No.400을 사용하여, 25℃에서 측정하였다. After dissolving 2.28 g of the polymer in 50 ml of toluene, measurement was performed at 25°C using a standard solution for calibrating a viscometer (JIS Z 8809) as a standard solution and using a Canon Penske viscometer No.400.
(톨루엔 용액 점도/무니 점도(Tcp/ML1+4, 100℃))(Toluene solution viscosity/Mooney viscosity (Tcp/ML 1+4 , 100°C))
리니어리티의 지표이다. 리니어리티란, 폴리머의 분자쇄의 확대 방식의 지표.It is an indicator of linearity. Linearity is an index of how the molecular chain of a polymer expands.
리니어리티값이 높을수록 직쇄의 폴리머를 의미하고, 리니어리티값이 높은 고무는 일반적으로 내마모성, 고탄성률, 저손실성이 우수하다고 말해지고 있다.A higher linearity value means a linear polymer, and rubber with a higher linearity value is generally said to be superior in abrasion resistance, high modulus of elasticity, and low loss.
(실시예 1)(Example 1)
내용량 1.5 L의 중합용 오토클레이브의 내부를 질소 치환하고, 원료 혼합 용액(시클로헥산 20 wt%, 부타디엔 40 wt%, 부텐 40 wt%)을, 1 L를 넣어 교반하였다. 계속해서, 물 3.64 mmol을 첨가하여 실온에서 30분간 교반을 계속하였다. 그 후, 10℃(숙성 개시 온도)까지 저하시킨 후, 디에틸알루미늄클로라이드(DEAC) 3 mmol, 트리에틸알루미늄(TEA) 1 mmol 첨가하고, 10℃를 얼음물과 뜨거운 물로 온도를 일정하게 컨트롤하여 15분간 교반시켜 숙성시켰다. 전체 유기 알루미늄 촉매(4 mmol/l)와 물의 몰비(Al/H2O)는 1.10이다. 그 후, 분자량 조절제로서 1,5-시클로옥타디엔(COD) 11 mmol 첨가하고, 용액의 온도를 50℃로 하며, 옥틸산코발트(Co(Oct)2) 7.8 μmol을 첨가하고, 중합을 개시하며, 30분간 중합을 행하였다. 반응 후, 산화 방지제로서 4,6-비스(옥틸메틸)-o-크레졸(cas-넘버 110553-27-0)을 0.2355 mmol을 에탄올 용액으로 첨가하고, 1분간 교반하였다. The interior of an autoclave for polymerization with a net weight of 1.5 L was purged with nitrogen, and 1 L of a mixed solution of raw materials (cyclohexane 20 wt%, butadiene 40 wt%, butene 40 wt%) was put thereinto and stirred. Subsequently, 3.64 mmol of water was added, and stirring was continued for 30 minutes at room temperature. Then, after lowering to 10 ° C (aging start temperature), 3 mmol of diethyl aluminum chloride (DEAC) and 1 mmol of triethyl aluminum (TEA) were added, and the temperature was constantly controlled at 10 ° C with ice water and hot water to 15 It was aged by stirring for a minute. The molar ratio of the total organic aluminum catalyst (4 mmol/l) to water (Al/H 2 O) is 1.10. After that, 11 mmol of 1,5-cyclooctadiene (COD) was added as a molecular weight modifier, the temperature of the solution was set to 50° C., 7.8 μmol of cobalt octylate (Co(Oct) 2 ) was added, and polymerization was initiated. , polymerization was carried out for 30 minutes. After the reaction, 0.2355 mmol of 4,6-bis(octylmethyl)-o-cresol (cas-number 110553-27-0) was added as an ethanol solution as an antioxidant, and the mixture was stirred for 1 minute.
그 후, 회수한 폴리부타디엔 용액으로부터, 용매를 100℃, 1시간 진공 건조시킴으로써, 폴리부타디엔을 얻었다. 결과를 표 1에 나타낸다. 한편, 착색 측정은, 제조 1주일 후, 2주일 후, 1개월 후, 2개월 후에 행하였다. Then, polybutadiene was obtained by vacuum-drying the solvent from the collect|recovered polybutadiene solution at 100 degreeC for 1 hour. The results are shown in Table 1. On the other hand, coloration measurement was performed after 1 week, 2 weeks, 1 month, and 2 months after production.
(실시예 2)(Example 2)
물 용해 후, 10℃까지 저하시킨 후, 디에틸알루미늄클로라이드(DEAC) 3 mmol, 트리에틸알루미늄(TEA) 1 mmol 첨가하고, 15℃로 얼음물과 뜨거운 물로 온도를 일정하게 컨트롤하여 15분간 교반시켜 숙성시킨 것 이외에는 실시예 1과 동일하게 하여 행하였다. 결과를 표 1에 나타낸다. After dissolving in water, lowering the temperature to 10 ° C, adding 3 mmol of diethyl aluminum chloride (DEAC) and 1 mmol of triethyl aluminum (TEA), controlling the temperature with ice water and hot water at 15 ° C, and stirring for 15 minutes to mature It was carried out in the same manner as in Example 1 except that it was made. The results are shown in Table 1.
(실시예 3)(Example 3)
물 용해 후, 10℃까지 저하시킨 후, 디에틸알루미늄클로라이드(DEAC) 3 mmol, 트리에틸알루미늄(TEA) 1 mmol 첨가하고, 17℃로 얼음물과 뜨거운 물로 온도를 일정하게 컨트롤하여 15분간 교반시켜 숙성시킨 것 이외에는 실시예 1과 동일하게 하여 행하였다. 결과를 표 1에 나타낸다. After dissolving in water, lowering the temperature to 10 ° C, adding 3 mmol of diethyl aluminum chloride (DEAC) and 1 mmol of triethyl aluminum (TEA), controlling the temperature with ice water and hot water at 17 ° C, and stirring for 15 minutes to mature It was carried out in the same manner as in Example 1 except that it was made. The results are shown in Table 1.
(비교예 1)(Comparative Example 1)
물 용해 후, 20℃까지 저하시키고, 디에틸알루미늄클로라이드(DEAC) 3 mmol, 트리에틸알루미늄(TEA) 1 mmol 첨가하며, 20℃로 얼음물과 뜨거운 물로 온도를 일정하게 컨트롤하여 15분간 교반시켜 숙성시킨 것 이외에는 실시예 1과 동일하게 하여 행하였다. 결과를 표 1에 나타낸다. After dissolving in water, the temperature was lowered to 20 ° C, 3 mmol of diethyl aluminum chloride (DEAC) and 1 mmol of triethyl aluminum (TEA) were added, and the temperature was constantly controlled with ice water and hot water at 20 ° C and stirred for 15 minutes to mature Except for that, it was carried out in the same manner as in Example 1. The results are shown in Table 1.
(비교예 2)(Comparative Example 2)
물 용해 후, 10℃까지 저하시킨 후, 디에틸알루미늄클로라이드(DEAC) 3 mmol, 트리에틸알루미늄(TEA) 1 mmol 첨가하고, 20℃로 얼음물과 뜨거운 물로 온도를 일정하게 컨트롤하여 15분간 교반시켜 숙성시킨 것 이외에는 실시예 1과 동일하게 하여 행하였다. 결과를 표 1에 나타낸다. After dissolving in water, lowering the temperature to 10 ° C, adding 3 mmol of diethyl aluminum chloride (DEAC) and 1 mmol of triethyl aluminum (TEA), controlling the temperature with ice water and hot water at 20 ° C, and stirring for 15 minutes to mature It was carried out in the same manner as in Example 1 except that it was made. The results are shown in Table 1.
(실시예 4)(Example 4)
물 용해 후, 5℃까지 저하시키고, 디에틸알루미늄클로라이드(DEAC) 3 mmol, 트리에틸알루미늄(TEA) 1 mmol 첨가하며, 5℃로 얼음물과 뜨거운 물로 온도를 일정하게 컨트롤하여 15분간 교반시켜 숙성시킨 것 이외에는 실시예 1과 동일하게 하여 행하였다. 결과를 표 1에 나타낸다. After dissolving in water, the temperature was lowered to 5 ° C, 3 mmol of diethyl aluminum chloride (DEAC) and 1 mmol of triethyl aluminum (TEA) were added, the temperature was constantly controlled with ice water and hot water at 5 ° C, and the mixture was stirred for 15 minutes to mature Except for that, it was carried out in the same manner as in Example 1. The results are shown in Table 1.
(실시예 5)(Example 5)
물 용해 후, 5℃까지 저하시키고, 디에틸알루미늄클로라이드(DEAC) 3 mmol, 트리에틸알루미늄(TEA) 1 mmol 첨가하며, 15℃로 얼음물과 뜨거운 물로 온도를 일정하게 컨트롤하여 15분간 교반시켜 숙성시킨 것 이외에는 실시예 1과 동일하게 하여 행하였다. 결과를 표 1에 나타낸다. After dissolving in water, the temperature was lowered to 5 ° C, 3 mmol of diethyl aluminum chloride (DEAC) and 1 mmol of triethyl aluminum (TEA) were added, and the temperature was constantly controlled with ice water and hot water at 15 ° C and stirred for 15 minutes to mature Except for that, it was carried out in the same manner as in Example 1. The results are shown in Table 1.
(실시예 6)(Example 6)
물 용해 후, 5℃까지 저하시키고, 디에틸알루미늄클로라이드(DEAC) 3 mmol, 트리에틸알루미늄(TEA) 1 mmol 첨가하며, 17℃로 얼음물과 뜨거운 물로 온도를 일정하게 컨트롤하여 15분간 교반시켜 숙성시킨 것 이외에는 실시예 1과 동일하게 하여 행하였다. 결과를 표 1에 나타낸다. After dissolving in water, the temperature was lowered to 5 ° C, 3 mmol of diethyl aluminum chloride (DEAC) and 1 mmol of triethyl aluminum (TEA) were added, and the temperature was constantly controlled with ice water and hot water at 17 ° C and stirred for 15 minutes to mature Except for that, it was carried out in the same manner as in Example 1. The results are shown in Table 1.
(실시예 7)(Example 7)
물 용해 후, 5℃까지 저하시킨 후, 디에틸알루미늄클로라이드(DEAC) 3 mmol, 트리에틸알루미늄(TEA) 1 mmol 첨가하고, 냉각한 메탄올수(水)와 뜨거운 물로 온도를 -20℃로 컨트롤하여 15분간 교반시켜 숙성시킨 것 이외에는 실시예 1과 동일하게 하여 행하였다. 결과를 표 1에 나타낸다. After dissolving in water, lowering the temperature to 5°C, adding 3 mmol of diethylaluminum chloride (DEAC) and 1 mmol of triethylaluminum (TEA), controlling the temperature to -20°C with cooled methanol water and hot water It was carried out in the same manner as in Example 1 except that the mixture was aged by stirring for 15 minutes. The results are shown in Table 1.
(비교예 3)(Comparative Example 3)
물 용해 후, 5℃까지 저하시키고, 디에틸알루미늄클로라이드(DEAC) 3 mmol, 트리에틸알루미늄(TEA) 1 mmol 첨가하며, 20℃로 얼음물과 뜨거운 물로 온도를 일정하게 컨트롤하여 15분간 교반시켜 숙성시킨 것 이외에는 실시예 1과 동일하게 하여 행하였다. 결과를 표 1에 나타낸다. After dissolving in water, the temperature was lowered to 5 ° C, 3 mmol of diethyl aluminum chloride (DEAC) and 1 mmol of triethyl aluminum (TEA) were added, and the temperature was constantly controlled with ice water and hot water at 20 ° C and stirred for 15 minutes to mature Except for that, it was carried out in the same manner as in Example 1. The results are shown in Table 1.
(실시예 8)(Example 8)
원료 혼합 용액(시클로헥산 20 wt%, 부타디엔 40 wt%, 부텐 40 wt%)을, 반량의 500 mL를 넣어 교반하였다. 계속해서, 물 3.64 mmol을 첨가하여 실온에서 30분간 교반을 계속하였다. 그 후, 10℃(숙성 개시 온도)까지 저하시킨 후, 디에틸알루미늄클로라이드(DEAC) 3 mmol, 트리에틸알루미늄(TEA) 1 mmol 첨가하고, 15℃로 얼음물과 뜨거운 물로 온도를 일정하게 컨트롤하여 15분간 교반시켜 숙성시켰다. 그 후, 나머지 원료 혼합 용액 500 mL를 투입하였다. 그 이외에는 실시예 1과 동일하게 하여 행하였다. 결과를 표 1에 나타낸다. A half amount of 500 mL of the raw material mixture solution (20 wt% of cyclohexane, 40 wt% of butadiene, and 40 wt% of butene) was added and stirred. Subsequently, 3.64 mmol of water was added, and stirring was continued for 30 minutes at room temperature. Thereafter, after lowering the temperature to 10°C (aging start temperature), 3 mmol of diethylaluminum chloride (DEAC) and 1 mmol of triethylaluminum (TEA) were added, and the temperature was constantly controlled at 15°C with ice water and hot water to 15°C. It was aged by stirring for a minute. After that, 500 mL of the remaining raw material mixture solution was introduced. Other than that, it carried out by carrying out similarly to Example 1. The results are shown in Table 1.
토탈 Al/H(*): 전체 유기 알루미늄 촉매와 물의 몰비를 의미한다.Total Al/H (*) : means the molar ratio of the total organoaluminum catalyst and water.
ΔYI(**): YI(2개월)-YI(1주일)의 값이다.ΔYI (**) : YI (2 months) - YI (1 week) value.
표 1의 결과로부터, 실시예 1~3은 비교예 1, 2와 비교하여, 경시 착색(경과 일수당 YI의 변화량)이 낮고, 또한 전화율도 높은 것을 알 수 있다. 또한, 실시예 4~7은 비교예 3과 비교하면 리니어리티가 높은 것을 알 수 있다. From the results in Table 1, it can be seen that Examples 1 to 3 have lower discoloration (change in YI per number of elapsed days) and higher conversion rates than Comparative Examples 1 and 2. Moreover, it turns out that Examples 4-7 have high linearity compared with Comparative Example 3.
또한, 실시예 4~7은 비교예 3과 비교하여, 경시 착색(경과 일수당 YI의 변화량)이 낮고, 또한 전화율도 높은 것을 알 수 있다.In addition, it can be seen that Examples 4 to 7 are lower in coloration with time (change in YI per number of elapsed days) than Comparative Example 3, and also have high conversion rates.
또한, 실시예 8과 같이, 숙성 농도를 200%로 한 경우에도, 경시 착색(경과 일수당 YI의 변화량)이 낮기 때문에, 숙성 농도는 100%로 행해도 좋고, 200%로 행해도 좋은 것을 알 수 있었다. 또한, 숙성 온도를 컨트롤함으로써 리니어리티(Tcp/ML)가 높은 고기능 고무를 제조할 수 있다. 실시예 1~3은 비교예 1, 2에 비해 리니어리티가 높고, 실시예 4~7은 비교예 3과 비교하면 리니어리티가 높다. Further, as in Example 8, even when the aging concentration was set to 200%, it was found that the aging concentration may be set to 100% or 200% because the coloration over time (change in YI per number of elapsed days) is low. could In addition, high-performance rubber with high linearity (Tcp/ML) can be produced by controlling the aging temperature. Examples 1 to 3 have higher linearity than Comparative Examples 1 and 2, and Examples 4 to 7 have higher linearity than Comparative Example 3.
(실시예 9)(Example 9)
내용량 1.5 L의 중합용 오토클레이브의 내부를 질소 치환하고, 원료 혼합 용액(시클로헥산 20 wt%, 부타디엔 40 wt%, 부텐 40 wt%)을, 1 L를 넣어 교반하였다. 계속해서, 물 2.67 mmol을 첨가하여 실온에서 30분간 교반을 계속하였다. 그 후, 10℃(숙성 개시 온도)까지 저하시킨 후, 디에틸알루미늄클로라이드(DEAC) 3 mmol, 트리에틸알루미늄(TEA) 1 mmol 첨가하고, 10℃를 얼음물과 뜨거운 물로 온도를 일정하게 컨트롤하여 15분간 교반시켜 숙성시켰다. 전체 유기 알루미늄 촉매(4 mmol/l)와 물의 몰비(Al/H2O)는 1.5이다. 그 후, 분자량 조절제로서 1,5-시클로옥타디엔(COD) 11 mmol 첨가하고, 용액의 온도를 50℃로 하며, 옥틸산코발트(Co(Oct)2) 7.8 μmol을 첨가하고, 중합을 개시하며, 30분간 중합을 행하였다. 반응 후, 산화 방지제로서 4,6-비스(옥틸메틸)-o-크레졸(cas-넘버 110553-27-0)을 0.2355 mmol을 에탄올 용액으로 첨가하고, 1분간 교반하였다. 결과를 표 2에 나타낸다.The interior of an autoclave for polymerization with a net weight of 1.5 L was purged with nitrogen, and 1 L of a mixed solution of raw materials (cyclohexane 20 wt%, butadiene 40 wt%, butene 40 wt%) was put thereinto and stirred. Subsequently, 2.67 mmol of water was added, and stirring was continued for 30 minutes at room temperature. Then, after lowering to 10 ° C (aging start temperature), 3 mmol of diethyl aluminum chloride (DEAC) and 1 mmol of triethyl aluminum (TEA) were added, and the temperature was constantly controlled at 10 ° C with ice water and hot water to 15 It was aged by stirring for a minute. The molar ratio of the total organic aluminum catalyst (4 mmol/l) to water (Al/H 2 O) is 1.5. After that, 11 mmol of 1,5-cyclooctadiene (COD) was added as a molecular weight modifier, the temperature of the solution was set to 50° C., 7.8 μmol of cobalt octylate (Co(Oct) 2 ) was added, and polymerization was initiated. , polymerization was carried out for 30 minutes. After the reaction, 0.2355 mmol of 4,6-bis(octylmethyl)-o-cresol (cas-number 110553-27-0) was added as an ethanol solution as an antioxidant, and the mixture was stirred for 1 minute. The results are shown in Table 2.
(실시예 10)(Example 10)
내용량 1.5 L의 중합용 오토클레이브의 내부를 질소 치환하고, 원료 혼합 용액(시클로헥산 25 wt%, 부타디엔 38 wt%, 부텐 37 wt%)을, 1 L를 넣어 교반하였다. 계속해서, 물 1.50 mmol을 첨가하여 실온에서 30분간 교반을 계속하였다. 그 후, 10℃(숙성 개시 온도)까지 저하시킨 후, 디에틸알루미늄클로라이드(DEAC) 2.7 mmol, 트리에틸알루미늄(TEA) 0.3 mmol 첨가하고, 10℃를 얼음물과 뜨거운 물로 온도를 일정하게 컨트롤하여 15분간 교반시켜 숙성시켰다. 전체 유기 알루미늄 촉매(3 mmol/l)와 물의 몰비(Al/H2O)는 2.0이다. 그 후, 분자량 조절제로서 1,5-시클로옥타디엔(COD) 10.5 mmol 첨가하고, 용액의 온도를 50℃로 하며, 옥틸산코발트(Co(Oct)2) 11.7 μmol을 첨가하고, 중합을 개시하며, 30분간 중합을 행하였다. 반응 후, 산화 방지제로서 4,6-비스(옥틸메틸)-o-크레졸(cas-넘버 110553-27-0)을 0.2355 mmol을 에탄올 용액으로 첨가하고, 1분간 교반하였다. 결과를 표 2에 나타낸다.The interior of an autoclave for polymerization with a net weight of 1.5 L was purged with nitrogen, and 1 L of a mixed solution of raw materials (cyclohexane 25 wt%, butadiene 38 wt%, butene 37 wt%) was added and stirred. Subsequently, 1.50 mmol of water was added, and stirring was continued for 30 minutes at room temperature. Then, after lowering to 10 ° C. (aging start temperature), 2.7 mmol of diethyl aluminum chloride (DEAC) and 0.3 mmol of triethyl aluminum (TEA) were added, and the temperature was constantly controlled at 10 ° C. with ice water and hot water to reach 15 It was aged by stirring for a minute. The molar ratio of the total organic aluminum catalyst (3 mmol/l) to water (Al/H 2 O) is 2.0. Then, 10.5 mmol of 1,5-cyclooctadiene (COD) was added as a molecular weight modifier, the temperature of the solution was set to 50° C., 11.7 μmol of cobalt octylate (Co(Oct) 2 ) was added, and polymerization was initiated. , polymerization was carried out for 30 minutes. After the reaction, 0.2355 mmol of 4,6-bis(octylmethyl)-o-cresol (cas-number 110553-27-0) was added as an ethanol solution as an antioxidant, and the mixture was stirred for 1 minute. The results are shown in Table 2.
(실시예 11)(Example 11)
내용량 1.5 L의 중합용 오토클레이브의 내부를 질소 치환하고, 원료 혼합 용액(시클로헥산 30 wt%, 부타디엔 35 wt%, 부텐 35 wt%)을, 1 L를 넣어 교반하였다. 계속해서, 물 1.20 mmol을 첨가하여 실온에서 30분간 교반을 계속하였다. 그 후, 10℃(숙성 개시 온도)까지 저하시킨 후, 디에틸알루미늄클로라이드(DEAC) 2.7 mmol, 트리에틸알루미늄(TEA) 0.3 mmol 첨가하고, 10℃를 얼음물과 뜨거운 물로 온도를 일정하게 컨트롤하여 15분간 교반시켜 숙성시켰다. 전체 유기 알루미늄 촉매(3 mmol/l)와 물의 몰비(Al/H2O)는 2.5이다. 그 후, 분자량 조절제로서 1,5-시클로옥타디엔(COD) 10 mmol 첨가하고, 용액의 온도를 50℃로 하며, 옥틸산코발트(Co(Oct)2) 23.4 μmol을 첨가하고, 중합을 개시하며, 30분간 중합을 행하였다. 반응 후, 산화 방지제로서 4,6-비스(옥틸메틸)-o-크레졸(cas-넘버 110553-27-0)을 0.2355 mmol을 에탄올 용액으로 첨가하고, 1분간 교반하였다. 결과를 표 2에 나타낸다. The inside of an autoclave for polymerization having a net weight of 1.5 L was purged with nitrogen, and 1 L of a mixed solution of raw materials (cyclohexane 30 wt%, butadiene 35 wt%, butene 35 wt%) was put thereinto and stirred. Subsequently, 1.20 mmol of water was added, and stirring was continued for 30 minutes at room temperature. Then, after lowering to 10 ° C. (aging start temperature), 2.7 mmol of diethyl aluminum chloride (DEAC) and 0.3 mmol of triethyl aluminum (TEA) were added, and the temperature was constantly controlled at 10 ° C. with ice water and hot water to reach 15 It was aged by stirring for a minute. The molar ratio of the total organic aluminum catalyst (3 mmol/l) to water (Al/H 2 O) is 2.5. Thereafter, 10 mmol of 1,5-cyclooctadiene (COD) was added as a molecular weight modifier, the temperature of the solution was set to 50° C., 23.4 μmol of cobalt octylate (Co(Oct) 2 ) was added, and polymerization was initiated. , polymerization was carried out for 30 minutes. After the reaction, 0.2355 mmol of 4,6-bis(octylmethyl)-o-cresol (cas-number 110553-27-0) was added as an ethanol solution as an antioxidant, and the mixture was stirred for 1 minute. The results are shown in Table 2.
표 1 및 표 2의 결과로부터, 실시예 1 및 실시예 9~11은 비교예 2와 비교하면, 경시 착색(ΔYI)이 낮고, 전화율도 높은 것을 알 수 있다.From the results of Table 1 and Table 2, it can be seen that Example 1 and Examples 9 to 11 have a low coloration over time (ΔYI) and a high conversion rate as compared with Comparative Example 2.
이상으로부터, 표 1은 트리알킬알루미늄, 디알킬알루미늄클로라이드의 병용계에 있어서 Al/H가 1.1에서의 비교이고, 표 2는 디알킬알루미늄클로라이드 단독계에 있어서 Al/H가 2.2에서의 비교이다. 어느 조건하에 있어서도, 숙성 온도를 숙성 개시로부터 종료까지 17℃ 이하로 유지함으로써, ΔYI와 전화율과 리니어리티 업에 있어서 놀라운 개선 효과를 얻을 수 있었다. From the above, Table 1 is a comparison of Al/H at 1.1 in the combined use system of trialkyl aluminum and dialkyl aluminum chloride, and Table 2 is a comparison at Al / H of 2.2 in the dialkyl aluminum chloride single system. Under any conditions, by maintaining the aging temperature at 17° C. or less from the start of aging to the end, surprising effects of improvement in ΔYI, conversion, and linearity were obtained.
한편, 17℃ 이하로 한 경우의 ΔYI의 개선값은 트리알킬알루미늄, 디알킬알루미늄클로라이드의 병용계 쪽이 크다. 병용계의 경우에는, 비교예 2의 ΔYI=18.4에 대해, 실시예 1의 ΔYI=11.7로, 개선값은 6.7이다.On the other hand, the improved value of ΔYI at 17°C or lower is greater for the combined use system of trialkyl aluminum and dialkyl aluminum chloride. In the case of the combination system, ΔYI = 11.7 in Example 1 compared to ΔYI = 18.4 in Comparative Example 2, and the improvement value is 6.7.
이상과 같이, ΔYI의 개선값으로서는, 트리알킬알루미늄, 디알킬알루미늄클로라이드의 병용계 쪽이 효과가 크고, 또한, 트리알킬알루미늄, 디알킬알루미늄클로라이드의 병용계 쪽이, 착색도의 절대값이 크기 때문에, 본원에서의 개선 메리트가 크다.As described above, as the improvement value of ΔYI, the combined use system of trialkyl aluminum and dialkyl aluminum chloride has a greater effect, and the combined use system of trialkyl aluminum and dialkyl aluminum chloride has a larger absolute value of coloration. , the improvement merit in this application is great.
Claims (5)
디엔계 모노머를 중합시키기 전에, 물과 디에틸알루미늄클로라이드 및 트리에틸알루미늄을 5~60분 숙성시키는 공정을 갖고,
숙성 개시로부터 숙성 종료까지 -30~17℃의 온도 범위를 유지하도록 냉각시키는 것에 의해 디에틸알루미늄클로라이드 및 트리에틸알루미늄과 불순물의 부반응을 억제하고,
디에틸알루미늄클로라이드 및 트리에틸알루미늄과 물의 몰비(Al/H2O)가 1~2.5인 것을 특징으로 하는 디엔계 고무의 제조 방법.In the method for producing a diene rubber,
Before polymerizing the diene monomer, it has a step of aging water, diethyl aluminum chloride and triethyl aluminum for 5 to 60 minutes,
By cooling to maintain the temperature range of -30 to 17 ° C. from the start of aging to the end of aging, side reactions between diethyl aluminum chloride and triethyl aluminum and impurities are suppressed,
A method for producing a diene-based rubber, characterized in that the molar ratio of diethyl aluminum chloride and triethyl aluminum to water (Al / H 2 O) is 1 to 2.5.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPJP-P-2015-091018 | 2015-04-28 | ||
JP2015091018A JP5939333B1 (en) | 2015-04-28 | 2015-04-28 | Method for producing diene rubber |
PCT/JP2016/061830 WO2016175026A1 (en) | 2015-04-28 | 2016-04-12 | Process for producing diene-based rubber that suffers no coloring over time, and diene-based rubber obtained thereby |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20170141229A KR20170141229A (en) | 2017-12-22 |
KR102562930B1 true KR102562930B1 (en) | 2023-08-02 |
Family
ID=56184787
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020177034090A KR102562930B1 (en) | 2015-04-28 | 2016-04-12 | Method for producing diene-based rubber that is not colored over time and diene-based rubber obtained thereby |
Country Status (6)
Country | Link |
---|---|
JP (1) | JP5939333B1 (en) |
KR (1) | KR102562930B1 (en) |
CN (1) | CN107614545B (en) |
MY (1) | MY182436A (en) |
TW (1) | TWI580697B (en) |
WO (1) | WO2016175026A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011102518A1 (en) | 2010-02-19 | 2011-08-25 | 宇部興産株式会社 | Polybutadiene, modified polybutadiene, preparation methods for both, and rubber-reinforced styrene resin composition using same |
JP2011201972A (en) * | 2010-03-24 | 2011-10-13 | Ube Industries Ltd | Diene rubber free of time-dependent discoloration and production method thereof |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3457319A (en) * | 1966-06-13 | 1969-07-22 | Columbian Carbon | Oligomerization process and catalyst for use in same |
US3753959A (en) * | 1969-09-17 | 1973-08-21 | Synthetic Rubber Co Ltd | Alternating copolymers |
JPS5247112A (en) * | 1975-10-13 | 1977-04-14 | Hitachi Ltd | Automatic flusher of gas turbine |
CA1223396A (en) * | 1981-06-29 | 1987-06-23 | Tooru Shibata | Process for producing conjugated diene polymer |
JPS58101105A (en) * | 1981-12-10 | 1983-06-16 | Ube Ind Ltd | Manufacture of cis-1,4-polybutadiene |
JPH04122711A (en) * | 1990-09-14 | 1992-04-23 | Ube Ind Ltd | Production of polybutadiene |
JPH04122709A (en) * | 1990-09-14 | 1992-04-23 | Ube Ind Ltd | Production of cis-1,4-polybutadiene |
JPH05247112A (en) * | 1992-03-03 | 1993-09-24 | Ube Ind Ltd | Improved method for polymerizing polybutadiene |
JP3392181B2 (en) | 1993-06-03 | 2003-03-31 | 電気化学工業株式会社 | Method for producing chloroprene graft copolymer |
JP2000017012A (en) * | 1998-07-03 | 2000-01-18 | Ube Ind Ltd | Preparation of conjugated diene polymer |
DE10027891A1 (en) | 2000-06-06 | 2001-12-13 | Bayer Ag | Production of stable colorless diene rubber useful for toughening of vinyl aromatic polymers, comprises mixing with phenolic stabilizers in water at specified pH and oxygen content |
JP2004285175A (en) * | 2003-03-20 | 2004-10-14 | Ube Ind Ltd | Stable molecular weight controlling method |
US9879129B2 (en) * | 2007-03-06 | 2018-01-30 | Bridgestone Corporation | Rubber compostion and pneumatic tire using the same |
ITMI20080570A1 (en) * | 2008-04-02 | 2009-10-03 | Polimeri Europa Spa | PROCEDURE FOR THE PREPARATION OF POLYBUTADIENE BRANCHED HIGH CONTENT IN UNIT 1.4-CIS |
JP5162306B2 (en) | 2008-04-03 | 2013-03-13 | 精工化学株式会社 | Anti-coloring agent |
JP2011184510A (en) * | 2010-03-05 | 2011-09-22 | Ube Industries Ltd | Method for manufacturing color-suppressed butadiene rubber |
CN101798405B (en) * | 2010-03-12 | 2012-07-04 | 江苏工业学院 | Nickel-system polybutadiene rubber composite anti-aging agent with anti-yellowing efficiency |
JP2011195632A (en) * | 2010-03-17 | 2011-10-06 | Ube Industries Ltd | Diene rubber suffering from no discoloration with time and method of manufacturing the same |
CN105121478A (en) * | 2013-03-08 | 2015-12-02 | 宇部兴产株式会社 | Modified conjugated diene polymer, method for producing same, and rubber composition using same |
JP5561410B2 (en) * | 2013-06-25 | 2014-07-30 | 日本ゼオン株式会社 | Conjugated diene rubber composition |
CN104449419B (en) * | 2014-12-05 | 2016-08-24 | 烟台泰盛精化科技有限公司 | A kind of ultraviolet-heat dual cure optical adhesive containing POLYBUTADIENE EPOXY RESIN |
-
2015
- 2015-04-28 JP JP2015091018A patent/JP5939333B1/en active Active
-
2016
- 2016-04-12 CN CN201680025348.3A patent/CN107614545B/en active Active
- 2016-04-12 MY MYPI2017703795A patent/MY182436A/en unknown
- 2016-04-12 KR KR1020177034090A patent/KR102562930B1/en active IP Right Grant
- 2016-04-12 WO PCT/JP2016/061830 patent/WO2016175026A1/en active Application Filing
- 2016-04-15 TW TW105111802A patent/TWI580697B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011102518A1 (en) | 2010-02-19 | 2011-08-25 | 宇部興産株式会社 | Polybutadiene, modified polybutadiene, preparation methods for both, and rubber-reinforced styrene resin composition using same |
JP2011201972A (en) * | 2010-03-24 | 2011-10-13 | Ube Industries Ltd | Diene rubber free of time-dependent discoloration and production method thereof |
Also Published As
Publication number | Publication date |
---|---|
TWI580697B (en) | 2017-05-01 |
JP2016204580A (en) | 2016-12-08 |
MY182436A (en) | 2021-01-25 |
CN107614545B (en) | 2020-05-05 |
WO2016175026A1 (en) | 2016-11-03 |
CN107614545A (en) | 2018-01-19 |
KR20170141229A (en) | 2017-12-22 |
TW201700503A (en) | 2017-01-01 |
JP5939333B1 (en) | 2016-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5548045A (en) | Process for producing polybutadiene | |
EP0698623B1 (en) | Synthesis of trans-1,4-polybutadiene having controlled molecular weight | |
US8304503B2 (en) | Process for producing conjugated diene polymer | |
JP4131625B2 (en) | Elastomeric, high trans-1,4-polybutadiene | |
US6617406B2 (en) | Synthesis of elastomeric high trans-1,4-polybutadiene | |
EP0879833A1 (en) | Synthesis of trans-1,4-polybutadiene | |
JP2019535887A (en) | High cis-1,4 block copolymer of polybutadiene and polyisoprene | |
JPH0565525B2 (en) | ||
EP0936242A1 (en) | Metal deactivator for cobalt catalyzed polymers | |
JPH0873515A (en) | Process for polymerizing conjugated diolefin | |
KR102562930B1 (en) | Method for producing diene-based rubber that is not colored over time and diene-based rubber obtained thereby | |
US5733835A (en) | Cobalt containing catalyst system | |
CN108368322A (en) | Polybutadiene polymers and for its rubber composition of the incorporation of cryogenic applications | |
JP5703575B2 (en) | Diene rubber that does not discolor over time and method for producing the same | |
JP2011184510A (en) | Method for manufacturing color-suppressed butadiene rubber | |
JP2011195632A (en) | Diene rubber suffering from no discoloration with time and method of manufacturing the same | |
JPH0225365B2 (en) | ||
US6013736A (en) | Metal deactivator for cobalt catalyzed polymers | |
US20220289950A1 (en) | Rubber composition and tire | |
JP5482935B1 (en) | Method for producing conjugated diene polymer, conjugated diene polymer obtained thereby, and method for preventing coloration of conjugated diene polymer | |
CA1337886C (en) | Inverse phase polymerization | |
KR101174454B1 (en) | Molecular weight controllable, high 1,4-trans Polybutadiene catalyst system | |
KR20120072987A (en) | Method for control of the degree of branch of polybutadiene with high 1,4-cis content | |
JP3928246B2 (en) | Process for producing conjugated diene polymer | |
JP2017132957A (en) | Rubber composition and tire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AMND | Amendment | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant |