WO2016173312A1 - 一种基于电压量的断路器非全相判别方法及装置 - Google Patents

一种基于电压量的断路器非全相判别方法及装置 Download PDF

Info

Publication number
WO2016173312A1
WO2016173312A1 PCT/CN2016/074077 CN2016074077W WO2016173312A1 WO 2016173312 A1 WO2016173312 A1 WO 2016173312A1 CN 2016074077 W CN2016074077 W CN 2016074077W WO 2016173312 A1 WO2016173312 A1 WO 2016173312A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
phase
circuit breaker
sides
full
Prior art date
Application number
PCT/CN2016/074077
Other languages
English (en)
French (fr)
Inventor
陈俊
王凯
钟守平
王光
张琦雪
陈佳胜
郭自刚
李华忠
季遥遥
Original Assignee
南京南瑞继保电气有限公司
南京南瑞继保工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京南瑞继保电气有限公司, 南京南瑞继保工程技术有限公司 filed Critical 南京南瑞继保电气有限公司
Priority to JP2017568462A priority Critical patent/JP6500129B2/ja
Priority to BR112017023323-1A priority patent/BR112017023323B1/pt
Priority to KR1020177033081A priority patent/KR20170131705A/ko
Priority to EP16785743.2A priority patent/EP3291401B1/en
Priority to AU2016254275A priority patent/AU2016254275B2/en
Priority to US15/570,358 priority patent/US10267859B2/en
Priority to CA2984326A priority patent/CA2984326A1/en
Publication of WO2016173312A1 publication Critical patent/WO2016173312A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3271Testing of circuit interrupters, switches or circuit-breakers of high voltage or medium voltage devices
    • G01R31/3275Fault detection or status indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3271Testing of circuit interrupters, switches or circuit-breakers of high voltage or medium voltage devices
    • G01R31/3272Apparatus, systems or circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/10Measuring sum, difference or ratio
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2506Arrangements for conditioning or analysing measured signals, e.g. for indicating peak values ; Details concerning sampling, digitizing or waveform capturing
    • G01R19/2509Details concerning sampling, digitizing or waveform capturing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R25/00Arrangements for measuring phase angle between a voltage and a current or between voltages or currents
    • G01R25/04Arrangements for measuring phase angle between a voltage and a current or between voltages or currents involving adjustment of a phase shifter to produce a predetermined phase difference, e.g. zero difference
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0092Details of emergency protective circuit arrangements concerning the data processing means, e.g. expert systems, neural networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/027Details with automatic disconnection after a predetermined time
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/04Details with warning or supervision in addition to disconnection, e.g. for indicating that protective apparatus has functioned
    • H02H3/044Checking correct functioning of protective arrangements, e.g. by simulating a fault
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/12Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to underload or no-load
    • H02H3/13Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to underload or no-load for multiphase applications, e.g. phase interruption
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/265Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents responsive to phase angle between voltages or between currents
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H5/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection
    • H02H5/10Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to mechanical injury, e.g. rupture of line, breakage of earth connection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/22Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for distribution gear, e.g. bus-bar systems; for switching devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/04Details with warning or supervision in addition to disconnection, e.g. for indicating that protective apparatus has functioned

Definitions

  • the invention belongs to the field of power system relay protection, and particularly relates to a voltage-based circuit breaker non-full phase discrimination method and a corresponding relay protection device or monitoring device.
  • the non-full-phase protection of circuit breakers widely used in the field is generally composed of three-phase inconsistent contact, phase current, zero-sequence current and negative-sequence current criterion.
  • the circuit breaker is small due to the phase current.
  • the negative sequence current is small, it is difficult to exceed the negative sequence current setting, and the circuit breaker non-full phase protection cannot operate.
  • the generator-side circuit breaker is generally three-phase linkage, does not provide three-phase inconsistent contact, can not use traditional non-full-phase protection, and there have been many occurrences of non-full-phase accidents caused by the breakage of the one-phase tie rod of the machine-side circuit breaker.
  • the main object of the present invention is to provide a non-full phase discriminating method for a circuit breaker based on a voltage quantity, which does not depend on the current magnitude, and solves the problem that the circuit breaker is not fully phased at the time of light load, and the current current criterion cannot be recognized, and The three-phase inconsistent contact of the circuit breaker is required, which also solves the problem of non-full phase discrimination of the three-phase interlocking circuit breaker.
  • the technical scheme adopted by the invention is: theoretical analysis shows that when the circuit breaker is not full phase, a certain vector difference will be generated between the voltages on both sides of the fracture, so that the vector difference between the phase voltages on both sides of the circuit breaker can be judged. Judging non-all-phase.
  • the protection device measures the three-phase voltage on both sides of the circuit breaker; separately calculates the voltage on both sides of the circuit breaker Vector difference and RMS value, when the voltage of both sides is greater than 80% ⁇ 90% of the rated voltage, and the voltage vector difference between the two sides of the circuit breaker of one phase or two phases is greater than the set value, it is judged that the circuit breaker is not full phase After a short delay t action to alarm or trip.
  • the invention also provides a non-full phase protection device for a circuit breaker based on a voltage quantity, comprising a sampling module, a Fu calculation module, a compensation module, a judgment and an action module, wherein:
  • the sampling module is configured to sample a voltage on both sides of the circuit breaker by a non-full phase protection device
  • the Fourier calculation module is configured to calculate a real part and an imaginary part of the fundamental voltage vector of the two sides according to the result of the sampling module, and a fundamental wave amplitude;
  • the compensation module is configured to compensate for the transmission error of the TVs on both sides according to the result of the F function calculation module, so that the TV voltage vector difference between the two sides of the port is 0 during normal operation;
  • the determining and action module determines, according to the results of the calculation module and the compensation module, that when the vector difference of the voltages on both sides of the circuit breaker exceeds the preset upper limit range, the alarm signal or the trip signal is delayed and the output relay relay is connected.
  • the fundamental amplitude of the three-phase voltage on both sides of the circuit breaker adopts a full-circle Fourier algorithm.
  • N is the number of sampling points of each power frequency cycle of the protection device
  • U ⁇ .Re , U ⁇ .Im are the real and imaginary parts of the fundamental phasor of the phase voltage, respectively
  • U ⁇ .AM is the fundamental wave of the phase voltage Amplitude.
  • the compensation module two compensation coefficients are introduced for compensating the TV on both sides of the circuit breaker. Transfer error.
  • the compensation coefficient is used to compensate the transmission error of the TVs on both sides, so that the TV voltage vector difference between the two sides of the port is 0 during normal operation.
  • the full-circle Fourier algorithm using the cosine model calculates the adjustment factor from the voltage waveform under normal conditions according to the condition that the phasor difference between the two sides is zero:
  • the determination and operation module if any of the criteria (1) to (3) is satisfied, it is determined to be non-all-phase, and the short-delay t-protection operation is performed on an alarm or a trip.
  • the non-full phase criterion for circuit breaker A is:
  • U a.AM and U A.AM are the amplitudes of the A-phase voltages on the M side and the N side, respectively, and U ⁇ N is the rated phase voltage.
  • ⁇ U set is the value of the voltage difference between the two sides, ⁇ is generally taken from 80 to 90, and min is the minimum value of the two values.
  • the non-full phase criterion for circuit breaker B is:
  • the C-phase non-full phase criterion of the circuit breaker is:
  • the vector difference fixed value ⁇ U set may take a value in the range of 0.1 to 10.0V.
  • the protection is operated by an alarm or trip after a short delay t, and the delay setting may take a value within a range of 0.1 to 10 s.
  • the invention has the beneficial effects that the current is not required to be judged, and the non-full phase of the circuit breaker occurs at light load, and the conventional negative sequence current criterion cannot identify the non-full phase; since it is not necessary to judge the three-phase inconsistent contact, the same Applicable to three-phase interlocking circuit breakers, and the previous non-full-phase protection principle cannot judge the non-full phase of the three-phase interlocking circuit breaker.
  • FIG. 1 is a schematic diagram of three-phase voltage measurement on both sides of a port when the circuit breaker is not full-phase in the present invention, in which G is a generator, T is a transformer connected by a generator, L is a line, B is a three-phase circuit breaker, m and n
  • G is a generator
  • T is a transformer connected by a generator
  • L is a line
  • B is a three-phase circuit breaker
  • m and n For the circuit breaker port, TV M is the voltage transformer on the M side of the circuit breaker, TV N is the voltage transformer on the N side of the circuit breaker, U a , U b and U c are the three-phase voltage on the M side, U A , U B And U C is the three-phase voltage on the N side.
  • FIG. 2 is a block diagram of the apparatus of the apparatus of the present invention.
  • N is the number of sampling points of each power frequency cycle of the protection device
  • U ⁇ .Re , U ⁇ .Im are the real and imaginary parts of the fundamental phasor of the phase voltage, respectively
  • U ⁇ .AM is the fundamental wave of the phase voltage Amplitude.
  • the compensation coefficient is used to compensate the transmission error of the TVs on both sides, so that the TV voltage vector difference between the two sides of the port is 0 during normal operation.
  • the full-circle Fourier algorithm using the cosine model calculates the adjustment factor from the voltage waveform under normal conditions according to the condition that the phasor difference between the two sides is zero:
  • the non-full phase criterion for circuit breaker A is:
  • U a.AM and U A.AM are the amplitudes of the A-phase voltages on the M side and the N side, respectively, and U ⁇ N is the rated phase voltage.
  • ⁇ U set is the vector difference fixed value, generally takes 0.1 ⁇ 10V, ⁇ generally takes 80 ⁇ 90, and min means take the minimum value of two values.
  • the non-full phase criterion for circuit breaker B is:
  • the C-phase non-full phase criterion of the circuit breaker is:
  • the short delay t protection acts on the alarm or trip, and the delay setting is generally in the range of 0.1 to 10 s.
  • the present invention also provides a voltage-based circuit breaker non-full phase protection device, as shown in FIG. 2, comprising a sampling module, a Fu-type calculation module, a compensation module, a judgment and an action module, wherein:
  • the sampling module is configured to sample a voltage on both sides of the circuit breaker by a non-full phase protection device
  • the Fourier calculation module is configured to calculate a real part and an imaginary part of the fundamental voltage vector of the two sides according to the result of the sampling module, and a fundamental wave amplitude;
  • the compensation module is configured to compensate for the transmission error of the TVs on both sides according to the result of the F function calculation module, so that the TV voltage vector difference between the two sides of the port is 0 during normal operation;
  • the determining and action module determines, according to the results of the calculation module and the compensation module, that when the vector difference of the voltages on both sides of the circuit breaker exceeds the preset upper limit range, the alarm signal or the trip signal is delayed and the output relay relay is connected.

Abstract

一种基于电压量的断路器非全相判别方法及装置,保护装置测量断路器(B)两侧(M,N)的三相电压(U a,U b,U c,U A,U B,U C);分别计算断路器两侧电压的向量差及有效值,当两侧相电压均大于80%~90%额定电压,并且某一相或两相的断路器两侧电压向量差大于设定电压时,判为断路器非全相,经过短延时t动作于报警或跳闸。该方法及相应的装置能够解决轻载情况下断路器非全相时,传统负序电流判据无法识别非全相的问题,并且不需要三相不一致接点,也适用于三相联动的断路器。

Description

一种基于电压量的断路器非全相判别方法及装置 技术领域
本发明属于电力系统继电保护领域,特别涉及基于电压量的断路器非全相判别方法和相应的继电保护装置或监测装置。
背景技术
目前,现场广泛应用的断路器非全相保护一般由三相不一致接点、相电流、零序电流和负序电流判据共同构成,当轻载运行工况时,由于相电流很小,断路器非全相时负序电流很小,难以超过负序电流定值,断路器非全相保护无法动作。发电机机端断路器一般为三相联动,不提供三相不一致接点,无法采用传统非全相保护,现场已多次出现机端断路器一相拉杆断裂导致非全相的事故,由于没有非全相保护,导致机组长期承受负序电流,对发电机的安全构成威胁,需要一种不依赖于三相不一致接点的非全相保护。鉴于传统断路器非全相保护存在的以上不足,有必要研究一种不依赖电流大小和三相不一致接点的断路器非全相判别方法及装置。
发明内容
本发明的主要目的:提供一种基于电压量的断路器非全相判别方法,不依赖电流大小,解决轻载时断路器发生非全相,以往电流判据无法识别的问题,此外,由于不需要断路器三相不一致接点,也解决于三相联动断路器的非全相判别问题。
本发明所采用的技术方案是:理论分析表明,断路器非全相时,断口两侧的电压之间会产生一定的向量差,因此,判断断路器两侧相电压之间的向量差即可判断非全相。保护装置测量断路器两侧的三相电压;分别计算断路器两侧电压的 向量差及有效值,当两侧相电压均大于80%~90%额定电压,并且某一相或两相的断路器两侧电压向量差大于设定定值时,判为断路器非全相,经过短延时t动作于报警或跳闸。
本发明还提供一种基于电压量的断路器非全相保护装置,包括采样模块、傅式计算模块、补偿模块、判断及动作模块,其中:
所述采样模块用于非全相保护装置对断路器两侧电压进行采样;
所述傅式计算模块用于根据采样模块的结果,计算两侧相电压基波向量的实部与虚部,以及基波幅值;
所述补偿模块用于根据傅式计算模块的结果,补偿两侧TV的传变误差,使得正常运行时,端口两侧TV电压向量差为0;
所述判断及动作模块根据计算模块和补偿模块的结果,判断当断路器两侧电压的向量差超出预先整定的上限范围,经延时发出报警信号或跳闸信号及输出跳闸继电器空接点。
进一步地,所述傅式计算模块中,断路器两侧三相电压的基波幅值均采用全周傅立叶算法。
两侧TV相电压的基波幅值计算公式如下:
Figure PCTCN2016074077-appb-000001
      式(4)
其中,N为保护装置每个工频周期的采样点数,Uφ.Re,Uφ.Im分别为相电压的基波相量的实部和虚部,Uφ.AM为相电压的基波幅值。
进一步地,所述补偿模块中,引入两个补偿系数用于补偿断路器两侧TV的 传变误差。
断路器两侧的电压向量差:
Figure PCTCN2016074077-appb-000002
      式(5)
其中,
Figure PCTCN2016074077-appb-000003
分别为M、N两侧相电压向量,
Figure PCTCN2016074077-appb-000004
Figure PCTCN2016074077-appb-000005
Figure PCTCN2016074077-appb-000006
为补偿系数,用于补偿两侧TV的传变误差,使得正常运行时,端口两侧TV电压向量差为0。
采用余弦模型的全周傅立叶算法,由正常情况下的电压波形,根据两侧相量差为0的条件计算调整系数:
Figure PCTCN2016074077-appb-000007
      式(6)
Figure PCTCN2016074077-appb-000008
      式(7)
Figure PCTCN2016074077-appb-000009
       式(8)
当发生断路器非全相时,故障相的端口两侧TV电压差将具有一定的数值,基于以上特征构成开关非全相判据。
进一步地,所述判断及动作模块中,如果满足式(1)~式(3)中的任一判据,则判为非全相,经过短延时t保护动作于报警或跳闸。
断路器A相非全相判据为:
Figure PCTCN2016074077-appb-000010
       式(1)
其中,Ua.AM、UA.AM分别为M侧和N侧A相电压幅值,UφN为额定相电压,
Figure PCTCN2016074077-appb-000011
为两侧A相电压向量差幅值,ΔUset为两侧电压差定值,η一般取80~90,min表示取两个数值的最小值。
断路器B相非全相判据为:
Figure PCTCN2016074077-appb-000012
     式(2)
断路器C相非全相判据为:
Figure PCTCN2016074077-appb-000013
        式(3)
进一步地:向量差定值ΔUset可在0.1~10.0V范围内取值。
进一步地:保护经过短延时t动作于报警或跳闸,该延时定值可在0.1~10s范围内取值。
本发明的有益效果是:不需要判断电流的大小,解决了轻载时断路器发生非全相,传统负序电流判据无法识别非全相的问题;由于不需要判断三相不一致接点,同样适用于三相联动的断路器,而以往的非全相保护原理无法判断三相联动断路器非全相。
附图说明
图1是本发明中断路器非全相时端口两侧三相电压测量示意图,图中G为发电机,T为发电机连接的变压器,L为线路,B为三相断路器,m和n为断路器端口,TVM为断路器M侧的电压互感器,TVN为断路器N侧的电压互感器,Ua、Ub和Uc为M侧的三相电压,UA、UB和UC为N侧的三相电压。
图2是本发明提供装置的装置结构图。
具体实施方式
以下将结合附图对本发明的技术方案进行详细说明。
在图1中,从断路器端口两侧的TV分别测量两侧三相电压,采用全周傅立叶算法计算两侧电压的基波幅值。
两侧TV相电压的基波幅值计算公式如下:
Figure PCTCN2016074077-appb-000014
      式(1)
其中,N为保护装置每个工频周期的采样点数,Uφ.Re,Uφ.Im分别为相电压的基波相量的实部和虚部,Uφ.AM为相电压的基波幅值。
开关端口两侧的电压向量差:
Figure PCTCN2016074077-appb-000015
       式(2)
其中,
Figure PCTCN2016074077-appb-000016
分别为M、N两侧相电压向量,
Figure PCTCN2016074077-appb-000017
Figure PCTCN2016074077-appb-000018
Figure PCTCN2016074077-appb-000019
为补偿系数,用于补偿两侧TV的传变误差,使得正常运行时,端口两侧TV电压向量差为0。
采用余弦模型的全周傅立叶算法,由正常情况下的电压波形,根据两侧相量差为0的条件计算调整系数:
Figure PCTCN2016074077-appb-000020
      式(3)
Figure PCTCN2016074077-appb-000021
      式(4)
Figure PCTCN2016074077-appb-000022
         式(5)
当发生断路器非全相时,故障相的端口两侧TV电压差将具有一定的数值,基于以上特征构成开关非全相判据。
断路器A相非全相判据为:
Figure PCTCN2016074077-appb-000023
        式(6)
其中,Ua.AM、UA.AM分别为M侧和N侧A相电压幅值,UφN为额定相电压,
Figure PCTCN2016074077-appb-000024
为两侧A相电压向量差幅值,ΔUset为向量差定值,一般取0.1~10V,η一般取80~90,min表示取两个数值的最小值。
断路器B相非全相判据为:
Figure PCTCN2016074077-appb-000025
        式(7)
断路器C相非全相判据为:
Figure PCTCN2016074077-appb-000026
          式(8)
如果满足式(6)~式(8)的任一条件,经短延时t保护动作于报警或跳闸,延时定值一般在0.1~10s范围内取值。
另外,本发明还提供一种基于电压量的断路器非全相保护装置,如图2所示,包括采样模块、傅式计算模块、补偿模块、判断及动作模块,其中:
所述采样模块用于非全相保护装置对断路器两侧电压进行采样;
所述傅式计算模块用于根据采样模块的结果,计算两侧相电压基波向量的实部与虚部,以及基波幅值;
所述补偿模块用于根据傅式计算模块的结果,补偿两侧TV的传变误差,使得正常运行时,端口两侧TV电压向量差为0;
所述判断及动作模块根据计算模块和补偿模块的结果,判断当断路器两侧电压的向量差超出预先整定的上限范围,经延时发出报警信号或跳闸信号及输出跳闸继电器空接点。
以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本 发明保护范围之内。

Claims (15)

  1. 一种基于电压量的断路器非全相判别方法,其特征是:保护装置测量断路器两侧的三相电压;分别计算断路器两侧电压的基波向量差及有效值,当两侧相电压均大于设定的阈值时,并且某一相或两相的断路器两侧电压向量差大于设定电压时,判为断路器非全相,经过短延时t动作于报警或跳闸。
  2. 如权利要求1所述的基于电压量的断路器非全相判别方法,其特征在于:所述设定的阈值为80%-90%的额定电压。
  3. 如权利要求1所述的基于电压量的断路器非全相判别方法,其特征在于:两侧三相电压的数值取自断路器两侧的三相电压互感器。
  4. 如权利要求1所述的基于电压量的断路器非全相判别方法,其特征在于:如果满足下述式(1)~式(3)中的任一判据,则判为非全相,经过短延时t保护动作于报警或跳闸;
    断路器A相非全相判据为:
    Figure PCTCN2016074077-appb-100001
      式(1);
    断路器B相非全相判据为:
    Figure PCTCN2016074077-appb-100002
      式(2);
    断路器C相非全相判据为:
    Figure PCTCN2016074077-appb-100003
      式(3);
    其中,Ua.AM、UA.AM分别为M侧和N侧A相电压幅值,Ub.AM、UB.AM分别为M侧和N侧B相电压幅值,Uc.AM、UC.AM分别为M侧和N侧C相电压幅值,
    Figure PCTCN2016074077-appb-100004
    为两侧A相电压向量差幅值,
    Figure PCTCN2016074077-appb-100005
    为两侧B相电压向量差幅值,
    Figure PCTCN2016074077-appb-100006
    为 两侧C相电压向量差幅值,UφN为额定相电压,ΔUset为两侧电压差定值,η为比例系数,min表示取两个数值的最小值。
  5. 如权利要求1所述的基于电压量的断路器非全相判别方法,其特征在于:断路器两侧三相电压的基波幅值均采用全周傅立叶算法计算,
    两侧TV相电压的基波幅值计算公式如下:
    Figure PCTCN2016074077-appb-100007
      式(4);
    其中,k为采样序列号,N为保护装置每个工频周期的采样点数,φ为三相电压的相别,Uφ.Re,Uφ.Im分别为相电压的基波相量的实部和虚部,Uφ.AM为相电压的基波幅值。
  6. 如权利要求1所述的基于电压量的断路器非全相判别方法,其特征在于:引入两个补偿系数用于补偿断路器两侧电压互感器的传变误差,
    断路器两侧的电压向量差:
    Figure PCTCN2016074077-appb-100008
      式(5);
    其中,
    Figure PCTCN2016074077-appb-100009
    分别为M、N两侧相电压向量,
    Figure PCTCN2016074077-appb-100010
    Figure PCTCN2016074077-appb-100011
    Figure PCTCN2016074077-appb-100012
    Figure PCTCN2016074077-appb-100013
    为补偿系数,用于补偿两侧电压互感器的传变误差,使得正常运行时,端口两侧电压互感器电压向量差为0,UφN.Re、UφM.Im为M侧相电压的基波向量的实部和虚部,
    Figure PCTCN2016074077-appb-100014
    为N侧相电压的基波向量的实部和虚部;
    采用余弦模型的全周傅立叶算法,由正常情况下的电压波形,根据两侧相量差为0的条件计算调整系数:
    Figure PCTCN2016074077-appb-100015
      式(6);
    Figure PCTCN2016074077-appb-100016
      式(7);
    Figure PCTCN2016074077-appb-100017
      式(8);
    当发生断路器非全相时,故障相的端口两侧电压互感器电压差将大于设定的阈值,基于以上特征构成开关非全相判据。
  7. 如权利要求4所述的基于电压量的断路器非全相判别方法,其特征在于:向量差定值ΔUset的取值范围是0.1~10.0V。
  8. 如权利要求1所述的基于电压量的断路器非全相判别方法,其特征在于:保护经过短延时t动作于报警或跳闸,所述延时定值t的取值范围是0.1~10s。
  9. 一种基于电压量的断路器非全相保护装置,其特征在于:包括采样模块、傅式计算模块、补偿模块、判断及动作模块,其中:
    所述采样模块用于非全相保护装置对断路器两侧电压进行采样;
    所述傅式计算模块用于根据采样模块的结果,计算两侧相电压基波向量的实部与虚部,以及基波幅值;
    所述补偿模块用于根据傅式计算模块的结果,补偿两侧电压互感器的传变误差,使得正常运行时,端口两侧电压互感器电压向量差为0;
    所述判断及动作模块根据计算模块和补偿模块的结果,判断当断路器两侧电压的向量差超出预先整定的上限范围,经延时发出报警信号或跳闸信号及输出跳闸继电器空接点。
  10. 如权利要求9所述的基于电压量的断路器非全相保护装置,其特征在于:两侧三相电压的数值取自断路器两侧的三相电压互感器。
  11. 如权利要求9所述的基于电压量的断路器非全相保护装置,其特征在于:
    如果满足下述公式(1)至(3)中的任一判据,则判为非全相,经过短延时t保护动作于报警或跳闸;
    断路器A相非全相判据为:
    Figure PCTCN2016074077-appb-100018
      式(1);
    断路器B相非全相判据为:
    Figure PCTCN2016074077-appb-100019
      式(2);
    断路器C相非全相判据为:
    Figure PCTCN2016074077-appb-100020
      式(3);
    其中,Ua.AM、UA.AM分别为M侧和N侧A相电压幅值,Ub.AM、UB.AM分别为M侧和N侧B相电压幅值,Uc.AM、UC.AM分别为M侧和N侧C相电压幅值,
    Figure PCTCN2016074077-appb-100021
    为两侧A相电压向量差幅值,
    Figure PCTCN2016074077-appb-100022
    为两侧B相电压向量差幅值,
    Figure PCTCN2016074077-appb-100023
    为两侧C相电压向量差幅值,UφN为额定相电压,ΔUset为两侧电压差定值,η为比例系数,min表示取两个数值的最小值。
  12. 如权利要求9所述的基于电压量的断路器非全相保护装置,其特征在于:
    断路器两侧三相电压的基波幅值均采用全周傅立叶算法计算,
    两侧TV相电压的基波幅值计算公式如下:
    Figure PCTCN2016074077-appb-100024
     式(4);
    其中,k为采样序列号,N为保护装置每个工频周期的采样点数,φ为三相电压的相别,Uφ.Re,Uφ.Im分别为相电压的基波相量的实部和虚部,Uφ.AM为相电压的基波幅值。
  13. 如权利要求9所述的基于电压量的断路器非全相保护装置,其特征在于:
    引入两个补偿系数用于补偿断路器两侧电压互感器的传变误差,
    断路器两侧的电压向量差:
    Figure PCTCN2016074077-appb-100025
      式(5);
    其中,
    Figure PCTCN2016074077-appb-100026
    分别为M、N两侧相电压向量,
    Figure PCTCN2016074077-appb-100027
    Figure PCTCN2016074077-appb-100028
    Figure PCTCN2016074077-appb-100029
    Figure PCTCN2016074077-appb-100030
    为补偿系数,用于补偿两侧电压互感器的传变误差,使得正常运行时,端口两侧电压互感器电压向量差为0,UφN.Re、UφM.Im为M侧相电压的基波向量的实部和虚部,
    Figure PCTCN2016074077-appb-100031
    为N侧相电压的基波向量的实部和虚部;
    采用余弦模型的全周傅立叶算法,由正常情况下的电压波形,根据两侧相量差为0的条件计算调整系数:
    Figure PCTCN2016074077-appb-100032
      式(6);
    Figure PCTCN2016074077-appb-100033
      式(7);
    Figure PCTCN2016074077-appb-100034
      式(8);
    当发生断路器非全相时,故障相的端口两侧电压互感器电压差将大于设定的阈值,基于以上特征构成开关非全相判据。
  14. 如权利要求11所述的基于电压量的断路器非全相保护装置,其特征在于:向量差定值ΔUset可在0.1~10.0V范围内取值。
  15. 如权利要求9所述的基于电压量的断路器非全相保护装置,其特征在于:保护经过短延时t动作于报警或跳闸,该延时定值可在0.1~10s范围内取值。
PCT/CN2016/074077 2015-04-29 2016-02-19 一种基于电压量的断路器非全相判别方法及装置 WO2016173312A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2017568462A JP6500129B2 (ja) 2015-04-29 2016-02-19 電圧に基づいて回路ブレーカーの欠相を識別するための方法および装置
BR112017023323-1A BR112017023323B1 (pt) 2015-04-29 2016-02-19 Método e aparelho para identificação da fase aberta do disjuntor em base de tensão
KR1020177033081A KR20170131705A (ko) 2015-04-29 2016-02-19 전압을 기초로 회로 차단기의 결상을 식별하기 위한 방법 및 장치
EP16785743.2A EP3291401B1 (en) 2015-04-29 2016-02-19 Method and apparatus for identifying open phase of circuit breaker on basis of voltage
AU2016254275A AU2016254275B2 (en) 2015-04-29 2016-02-19 Method and apparatus for identifying open phase of circuit breaker on basis of voltage
US15/570,358 US10267859B2 (en) 2015-04-29 2016-02-19 Method and apparatus for identifying open phase of circuit breaker on basis of voltage
CA2984326A CA2984326A1 (en) 2015-04-29 2016-02-19 Method and apparatus for identifying open phase of circuit breaker on basis of voltage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510213191.4A CN104795801B (zh) 2015-04-29 2015-04-29 一种基于电压量的断路器非全相判别方法及装置
CN201510213191.4 2015-04-29

Publications (1)

Publication Number Publication Date
WO2016173312A1 true WO2016173312A1 (zh) 2016-11-03

Family

ID=53560419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/074077 WO2016173312A1 (zh) 2015-04-29 2016-02-19 一种基于电压量的断路器非全相判别方法及装置

Country Status (9)

Country Link
US (1) US10267859B2 (zh)
EP (1) EP3291401B1 (zh)
JP (1) JP6500129B2 (zh)
KR (1) KR20170131705A (zh)
CN (1) CN104795801B (zh)
AU (1) AU2016254275B2 (zh)
BR (1) BR112017023323B1 (zh)
CA (1) CA2984326A1 (zh)
WO (1) WO2016173312A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112345977A (zh) * 2020-10-21 2021-02-09 河南华润电力首阳山有限公司 电气设备及其pt二次回路断线判断方法、系统和装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104795801B (zh) * 2015-04-29 2018-02-16 南京南瑞继保电气有限公司 一种基于电压量的断路器非全相判别方法及装置
CN105762770B (zh) * 2015-12-17 2018-01-30 广东蓄能发电有限公司 基于两侧电压基波幅值变化率的断路器非全相判断方法
CN105762771B (zh) * 2015-12-17 2018-06-22 广东蓄能发电有限公司 基于两侧电压基波幅值比值的断路器非全相判断方法
CN106356814B (zh) * 2016-09-07 2018-10-16 南京南瑞继保电气有限公司 一种基于电压向量差的串联变压器绕组过电压保护方法
CN109375030A (zh) * 2018-09-06 2019-02-22 深圳供电局有限公司 高压架空线断线故障识别方法及装置
CN110687386B (zh) * 2019-11-05 2022-04-19 国网山西省电力公司阳泉供电公司 断路器本体三相不一致保护试验箱
CN110970868A (zh) * 2019-12-13 2020-04-07 深圳供电局有限公司 断路器电气量三相不一致保护动作逻辑实现方法及系统
CN112260605B (zh) * 2020-09-21 2022-05-17 西安理工大学 五相永磁同步电机缺一相故障直接转矩控制方法
CN112363085B (zh) * 2020-10-10 2024-04-16 许继电气股份有限公司 一种智慧变电站pt断线识别方法及装置
CN113655377B (zh) * 2021-06-28 2023-11-03 国网新源控股有限公司 抽水蓄能发电电动机的断路器失灵故障检测方法及装置
CN113866663B (zh) * 2021-09-28 2023-06-27 四川虹美智能科技有限公司 三相电源检测方法及装置
CN113985195B (zh) * 2021-10-13 2024-04-05 深圳供电局有限公司 一种基于电网故障时序性判断断路器偷跳的方法及系统
CN113970357B (zh) * 2021-11-30 2023-06-23 河南职业技术学院 一种基于物联网的电力开关柜检测电路
CN114659620B (zh) * 2022-03-28 2024-01-26 广东电网有限责任公司 一种断路器的声信号提取方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001054241A (ja) * 1999-08-05 2001-02-23 Takaoka Electric Mfg Co Ltd スポットネットワーク受電設備
CN104092201A (zh) * 2014-07-25 2014-10-08 国家电网公司 远距离特高压交流输电线路故障判别方法
CN104215897A (zh) * 2013-05-30 2014-12-17 南京南瑞继保电气有限公司 利用端口电压之间的相位差判断断路器非全相的方法
CN104795801A (zh) * 2015-04-29 2015-07-22 南京南瑞继保电气有限公司 一种基于电压量的断路器非全相判别方法及装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE375886B (zh) * 1973-08-22 1975-04-28 Asea Ab
JPS5858889B2 (ja) * 1976-10-16 1983-12-27 関西電力株式会社 三相配電線の断線検出装置
US4121111A (en) * 1976-10-18 1978-10-17 Gould Inc. Apparatus for detection of synchronism by means of vector difference measurement
JPS5547459A (en) * 1978-09-30 1980-04-03 Fanuc Ltd Dc motor driving reverse and missing phase detector circuit
JP2957187B2 (ja) * 1989-01-11 1999-10-04 日新電機株式会社 計器用変圧器の2次回路断線検出装置
JP3284589B2 (ja) * 1992-06-01 2002-05-20 株式会社日立製作所 送電線の保護方法及び保護継電装置
JPH0993791A (ja) * 1995-09-29 1997-04-04 Railway Technical Res Inst 交流δi形故障選択方法
JP2003070151A (ja) * 2001-08-27 2003-03-07 Toshiba Corp 保護継電装置
US8103467B2 (en) * 2009-01-14 2012-01-24 Accenture Global Services Limited Determination of distribution transformer voltages based on metered loads
CN102195273B (zh) * 2010-03-10 2014-04-23 南京南瑞继保电气有限公司 一种电压互感器回路中线断线判别方法
JP5504082B2 (ja) * 2010-07-15 2014-05-28 株式会社東芝 保護継電装置
WO2012061978A1 (en) * 2010-11-09 2012-05-18 Abb Research Ltd. Synchronization method for current differential protection
CN103503262B (zh) * 2010-12-31 2015-11-25 Abb技术有限公司 用于监控差动保护系统中电流互感器的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001054241A (ja) * 1999-08-05 2001-02-23 Takaoka Electric Mfg Co Ltd スポットネットワーク受電設備
CN104215897A (zh) * 2013-05-30 2014-12-17 南京南瑞继保电气有限公司 利用端口电压之间的相位差判断断路器非全相的方法
CN104092201A (zh) * 2014-07-25 2014-10-08 国家电网公司 远距离特高压交流输电线路故障判别方法
CN104795801A (zh) * 2015-04-29 2015-07-22 南京南瑞继保电气有限公司 一种基于电压量的断路器非全相判别方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3291401A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112345977A (zh) * 2020-10-21 2021-02-09 河南华润电力首阳山有限公司 电气设备及其pt二次回路断线判断方法、系统和装置
CN112345977B (zh) * 2020-10-21 2023-11-24 河南华润电力首阳山有限公司 电气设备及其pt二次回路断线判断方法、系统和装置

Also Published As

Publication number Publication date
US10267859B2 (en) 2019-04-23
JP2018518140A (ja) 2018-07-05
AU2016254275B2 (en) 2019-05-16
US20180149699A1 (en) 2018-05-31
AU2016254275A1 (en) 2017-11-30
EP3291401A1 (en) 2018-03-07
CN104795801A (zh) 2015-07-22
BR112017023323B1 (pt) 2022-12-06
JP6500129B2 (ja) 2019-04-10
EP3291401B1 (en) 2020-02-12
CA2984326A1 (en) 2016-11-03
EP3291401A4 (en) 2019-01-09
KR20170131705A (ko) 2017-11-29
CN104795801B (zh) 2018-02-16
BR112017023323A2 (pt) 2020-09-08

Similar Documents

Publication Publication Date Title
WO2016173312A1 (zh) 一种基于电压量的断路器非全相判别方法及装置
CN107064741B (zh) 一种配电网线路异名相两点相继接地故障选线方法
CN109742727B (zh) 一种低压400v漏电电流的判断方法
EP2859635B1 (en) Method for identifying fault by current differential protection and device thereof
CN109038489B (zh) 一种高压并联电抗器匝间故障保护方法
CN104215897B (zh) 利用端口电压之间的相位差判断断路器非全相的方法
WO2018023909A1 (zh) 基于电压量积分判别变压器铁芯饱和的方法
US20160370414A1 (en) Method and device for detecting a fault in an electrical network
CN106786385B (zh) 一种适合于变频电动机的差动保护方法
CN105866619B (zh) 基于分布参数零序阻抗幅值特性线路高阻接地故障检测方法
CN113466742B (zh) 基于变压器低压侧线电压的110kV线路自适应断线保护方法
Das et al. A novel method for turn to turn fault detection in shunt reactors
CN103779836A (zh) 基于环流突变特性变压器绕组故障继电保护方法
CN115144700A (zh) 一种基于注入信号幅值的新能源并网系统故障保护方法
CN103296657A (zh) 过负荷防误动和耐高阻的线路单相接地故障距离保护方法
CN103296651A (zh) 过负荷防误动和耐高阻的线路相间故障距离保护方法
CN103296646A (zh) 利用分布参数实现线路单相接地故障距离保护方法
CN103296645A (zh) 利用分布参数实现线路相间故障距离保护方法
Wang et al. Network-Integrated DSP-based adaptive high impedance ground fault feeder protection
WO2020093763A1 (zh) 断路器方向性过电流的保护方法
CN105762771B (zh) 基于两侧电压基波幅值比值的断路器非全相判断方法
CN103296656A (zh) 具有选相功能的输电线路复合序分量电压保护方法
Ma et al. Faulty phase recognition method for single-line-to-ground fault in resonant grounded distribution networks
US11852692B1 (en) Electric distribution line ground fault prevention systems using dual parameter monitoring with high sensitivity relay devices
US11271389B2 (en) Distance protection using supervised sequence currents and voltages for electric power delivery systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16785743

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017568462

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15570358

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2984326

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017023323

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20177033081

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016254275

Country of ref document: AU

Date of ref document: 20160219

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112017023323

Country of ref document: BR

Free format text: 1. APRESENTE, NO PRAZO DE 60 (SESSENTA) DIAS, NOVAS FOLHAS DE RELATORIO DESCRITIVO, REIVINDICACOES, RESUMO E DESENHOS ADAPTADOS A NORMA VIGENTE, CONFORME DETERMINA A INSTRUCAO NORMATIVA NO 31/2013.2. APRESENTE A TRADUCAO SIMPLES DA FOLHA DE ROSTO DA CERTIDAO DE DEPOSITO DA PRIORIDADE REIVINDICADA; OU DECLARACAO DE QUE OS DADOS DO PEDIDO INTERNACIONAL ESTAO FIELMENTE CONTIDOS NA PRIORIDADE REIVINDICADA, CONTENDO TODOS OS DADOS IDENTIFICADORES (NUMERO DA PRIORIDADE, DATA, DEPOSITANTE E INVENTORES), CONFORME O PARAGRAFO UNICO DO ART. 25 DA RESOLUCAO 77/2013. CABE SALIENTAR NAO FOI POSSIVEL INDIVIDUALIZAR OS TITULARES DA CITADA PRIORIDADE, INFORMACAO NECESSARIA PARA O EXAME DA CESSAO DO DOCUMENT

ENP Entry into the national phase

Ref document number: 112017023323

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171028