WO2016173033A1 - 一种纯电动车的全过程能量动态回收增程系统及增程方法 - Google Patents

一种纯电动车的全过程能量动态回收增程系统及增程方法 Download PDF

Info

Publication number
WO2016173033A1
WO2016173033A1 PCT/CN2015/080007 CN2015080007W WO2016173033A1 WO 2016173033 A1 WO2016173033 A1 WO 2016173033A1 CN 2015080007 W CN2015080007 W CN 2015080007W WO 2016173033 A1 WO2016173033 A1 WO 2016173033A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
extended range
power battery
energy
power
Prior art date
Application number
PCT/CN2015/080007
Other languages
English (en)
French (fr)
Inventor
戴旭展
Original Assignee
上海津元节能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201520272408.4U external-priority patent/CN204547821U/zh
Priority claimed from CN201510215396.6A external-priority patent/CN104760513B/zh
Application filed by 上海津元节能科技有限公司 filed Critical 上海津元节能科技有限公司
Publication of WO2016173033A1 publication Critical patent/WO2016173033A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K11/00Motorcycles, engine-assisted cycles or motor scooters with one or two wheels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to the technical field of extended-range electric vehicles, in particular to a full-process energy dynamic recovery extended range system and a range extending method of a pure electric vehicle.
  • the existing electric bicycles have been improved in various aspects, such as: improving the energy density of the battery itself; reducing the weight of the whole vehicle; using a high-efficiency motor; or improving the conversion efficiency from the control mode.
  • people are also exploring the possible energy conversion and recovery during the riding process, such as: during the operation of the battery-driven motor, using the reversible conversion of the motor and the generator, the brakes are coasting and the downhill potential energy is riding.
  • the kinetic energy is converted into electrical energy, and the battery is recharged to achieve the purpose of energy recovery and extended range. Since this energy recovery depends on riding conditions and riding techniques, the range extension has uncertainties and limitations.
  • the present invention is directed to the above problems in the prior art, and proposes a full-process energy dynamic recovery and extended range system and an extended range method for a pure electric vehicle, which can feed back battery energy while riding during riding, maximizing The energy is recovered and the range extension effect is stable.
  • the invention provides a full-process energy dynamic recovery and extended range method for a pure electric vehicle, which comprises the following steps:
  • the power battery pack turns on the power supply, supplies power to the hub motor on the driving wheel, drives the driving wheel to rotate, and drives the pure electric vehicle to advance with a certain acceleration;
  • the extended range controller outputs the power transmitted by the hub generator to the power battery pack to charge the power battery pack;
  • the step S13 further includes:
  • the hub motor on the drive wheel is reversible as a generator that converts the kinetic energy of the drive wheel into electrical energy and transmits it to the range controller.
  • the step S14 is further: the range controller outputs the power transmitted by the hub generator and the hub motor to the power battery pack to charge the power battery pack.
  • the method further includes the following steps:
  • the extended range controller uses the electric energy transmitted by the hub generator to supply power to itself and/or accumulate energy, and then outputs the power to the power battery pack to charge the power battery pack. These steps are performed simultaneously with steps S11, S12, S13, S14, and S15.
  • the invention also provides a full-process energy dynamic recovery and extended range method for a pure electric vehicle, which comprises the following steps:
  • the extended range controller uses the electric energy transmitted by the hub generator to supply power to itself and/or accumulate energy, and then outputs the power to the power battery pack to charge the power battery pack.
  • the method further includes the following steps:
  • the power battery pack turns on the power supply, supplies power to the hub motor on the driving wheel, drives the driving wheel to rotate, and drives the pure electric vehicle to advance with a certain acceleration;
  • the step S62 and the step S63 further include:
  • the hub motor on the drive wheel is reversible as a generator, converting the kinetic energy of the drive wheel into electrical energy and transmitting it to the extended range controller.
  • the method further includes:
  • S81 The extended range controller outputs the power transmitted by the hub motor to the power battery pack to charge the power battery pack.
  • the invention also provides a full-process energy dynamic recovery and extended range method for a pure electric vehicle, which comprises the following steps:
  • the power battery pack turns on the power supply, supplies power to the hub motor on the driving wheel, drives the driving wheel to rotate, and drives the pure electric vehicle to advance with a certain acceleration;
  • the invention also provides a full-process energy dynamic recovery and extended range system for a pure electric vehicle, comprising: a driving wheel, a passive wheel, a system controller, a power battery pack and an extended range controller; wherein:
  • An axle motor is mounted on the driving wheel, a hub generator is mounted on the driven wheel, and the driving wheel is connected to the driven wheel through a mechanical bracket;
  • the system controller is coupled to the drive wheel
  • the power battery pack is connected to the driving wheel
  • One end of the range controller is connected to the hub generator, and the other end of the range controller is connected to the power battery pack.
  • the hub motor is coaxial with the drive wheel; the hub generator is coaxial with the driven wheel.
  • the hub motor is a reversible motor.
  • the hub motor is coupled to the range controller.
  • the power battery pack is further connected to the system controller to supply power to the system controller.
  • the present invention also provides another full process energy dynamic recovery extended range system, comprising: a drive wheel, a passive wheel, a system controller and a power battery pack; wherein:
  • the driving wheel and the passive wheel are connected by a mechanical bracket
  • An axle motor is mounted on the driving wheel, and the hub motor is a reversible motor;
  • the power battery pack is bidirectionally coupled to the hub motor
  • the system controller is coupled to the hub motor and the power battery pack, respectively.
  • the hub motor is coaxial with the drive wheel.
  • the present invention has the following advantages:
  • the extended range controller of the present invention is designed as an independent additional control system, and does not need to change the original self-control system, has a simple structure and low conversion cost;
  • the whole process energy dynamic recovery and extended range system and the extended range method of the invention have obvious range extending effect.
  • the power supply of the power battery pack is disconnected, and when the vehicle speed is decelerated to a predetermined lower speed, the power is turned on again.
  • the power supply of the battery pack can make the average speed of the electric vehicle change less, and the driving is relatively stable;
  • the hub motor on the drive wheel is reversible as a generator, and the kinetic energy of the drive wheel is converted into electric energy to charge the power battery pack.
  • FIG. 1 is a schematic structural view of a full-process energy dynamic recovery and extension system of a pure electric vehicle according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic structural view of a full-process energy dynamic recovery and extension system of a pure electric vehicle according to Embodiment 2 of the present invention
  • FIG. 3 is a schematic structural view of a full-process energy dynamic recovery and extended range system of a pure electric vehicle according to Embodiment 3 of the present invention.
  • Embodiment 5 is a flowchart of a full-process energy dynamic recovery and extended range method according to Embodiment 5 of the present invention.
  • FIG. 6 is a flowchart of a full-process energy dynamic recovery and extended range method according to Embodiment 6 of the present invention.
  • FIG. 7 is a flowchart of a method for dynamic recovery of an entire process energy according to Embodiment 7 of the present invention.
  • This embodiment describes in detail the full-process energy dynamic recovery and extended range system of the pure electric vehicle of the present invention.
  • the schematic structural diagram thereof is as shown in FIG. 1 , and includes: a system controller 11 , a driving wheel 12 , a passive wheel 13 , a power battery pack 14 , Hub generator 21 and range controller 22.
  • the driving wheel 12 is mounted with a hub motor
  • the hub motor is coaxial with the driving wheel 12
  • the system controller 11 is connected with the hub motor of the driving wheel 12, thereby controlling the rotation speed, rotation, etc.
  • the driving wheel 12 is connected by a mechanical bracket;
  • the hub generator 21 is mounted on the driven wheel 14 coaxial with the driven wheel 13;
  • the hub generator 21 is connected to one end of the range controller 22, and the hub generator 21 converts the kinetic energy of the driven wheel 13 into The power is transmitted to the range controller 22, and the other end of the range controller 22 is connected to the power battery pack 14.
  • the range controller 22 outputs power to the power battery pack 14 for charging; the power battery pack 14 and the drive wheel 12
  • the hub motor is connected to power the hub motor to provide power;
  • the range controller 22 is also used to control the on and off of the power battery pack 14.
  • the power battery pack 14 is also connected to the system controller 11 to supply power to the system controller 11.
  • the system controller 11, the drive wheel 12, the driven wheel 13, and the power battery pack 14 are the existing control systems 1 of the existing pure electric vehicle, and the hub generator 21 and the range controller 22 are additional range-up systems 2.
  • the extended range system of the embodiment can recycle all the recoverable energy of the passive wheel to charge the power battery pack, and realize the side riding charging by the additional extended range system 2, and the extended range effect is stable; It is an improvement made on the basis of its own control system 1. It does not need to change its own control system 1, and has a simple structure and low cost.
  • the hub motor 13 on the drive wheel 12 is set as a reversible motor, which can be converted into a generator; and the hub motor 13 is connected to the range controller 22, and the hub motor 13 is reversible.
  • the kinetic energy of the drive wheel 12 is converted into electrical energy for transmission to the range controller 22, and the range controller 22 outputs the transmitted electrical energy to the power battery pack 15 to charge the power battery pack 15.
  • the hub motor converts the kinetic energy of the drive wheel 12 into electrical energy for transmission to the range controller 22, while the hub generator 21 transmits the kinetic energy of the driven wheel 13 to the range controller 22 as well.
  • the range controller 22 outputs the electric energy to the power battery pack 14 to charge the power battery pack 14, that is, simultaneously recovers the kinetic energy of the driven wheel 13 and the kinetic energy of the driving wheel 12 to charge the power battery pack 14; (2) the hub motor will The kinetic energy of the drive wheel 12 is converted into electrical energy for transmission to the range controller 22, while the hub generator 21 transmits the kinetic energy of the driven wheel 13 to the range controller 22, and the range controller 22 outputs the power transmitted by the hub motor to The power battery pack 14 supplies power to the power battery pack. At this time, the kinetic energy of the recovery drive wheel 12 is used to charge the power battery pack 14. The kinetic energy of the driven wheel 13 is not recovered and/or accumulated energy, and then output to the power battery pack. The power battery pack is charged.
  • This embodiment can not only recover the kinetic energy of the passive wheel 13, but also supply power to the range controller 22 or charge the power battery pack 14 through the range controller 22, and can also recover the kinetic energy of the drive wheel 12 for use.
  • the controller 22 charges the power battery pack 14 to fully utilize all of the recyclable energy, and the extended range effect is more obvious, and the continuation time is longer.
  • FIG. 3 The schematic diagram of the structure is as shown in FIG. 3, which includes: a system controller 11, a driving wheel 12, a driven wheel 13, and a power battery pack 14, which are mounted on the driving wheel 12.
  • a hub motor the hub motor is coaxial with the drive wheel 12, and the hub motor is a reversible motor; the drive wheel 12 and the passive wheel 13 are connected by a mechanical bracket; the power battery pack 14 is bidirectionally connected with the hub motor, and the power battery pack 14 can supply power to the hub motor.
  • the hub motor can also charge the power battery pack 14; the system controller 11 is coupled to the hub motor; the power battery pack 14 is coupled to the system controller 11, and the system controller 11 controls the on and off of the power battery pack 14.
  • the power battery pack 14 When the pure electric vehicle is in an accelerating state, the power battery pack 14 is energized to supply power to the hub motor, and the driving drive wheel 12 is rotated to drive the pure electric vehicle to accelerate forward. When the predetermined upper vehicle speed is reached, the power battery pack 14 is disconnected as the hub motor. At this time, the hub motor is reversible as a generator, and the kinetic energy of the driving wheel is converted into electric energy, which is output to the power battery pack 14 to charge the power battery pack 14.
  • Embodiment 1 and Embodiment 2 do not need to change the original control system 1, and an additional extended range system 2 is added on the basis of the self-control system 1.
  • the self-control system 1 is modified to make the system
  • the controller 11 has a function of controlling the on/off power of the power battery pack 14, and the hub motor that controls the drive wheels 12 is converted into a generator to recover the kinetic energy of the drive wheels 12.
  • FIG. 4 This embodiment describes in detail the full-process energy dynamic recovery and extended range method of the pure electric vehicle of the present invention.
  • the flow chart is shown in FIG. 4, which includes the following steps:
  • the power battery pack turns on the power supply, supplies power to the hub motor on the driving wheel, drives the driving wheel to rotate, and drives the pure electric vehicle to advance with a certain acceleration;
  • the extended range controller outputs the power transmitted by the hub generator to the power battery pack to charge the power battery pack;
  • the existing energy recovery range-increasing system of pure electric vehicles is basically implemented in two states: inertial kinetic energy and downhill kinetic energy during braking, and the electric motor brake switch is used to reversibly generate the driving motor in the electric brake and the brake combination switch. Recycling energy to dynamically charge the battery, this technical solution has matured and is used in vehicles. Since this energy recovery depends on the road conditions and driving skills and habits, the range-enhancing effect has uncertainties and limitations, and the range-enhancing effect is limited.
  • the energy dynamic recovery in the whole range is obtained by changing the operation mode, and is fed back to the power battery group to achieve the purpose of the extended range.
  • the operating principle is as follows: a hub generator is installed on the passive wheel, and the power battery pack outputs energy to the hub motor of the driving wheel, and the speed adjustment device of the system controller drives the vehicle to advance with a certain acceleration, so that the driving wheel and the passive wheel are both Get kinetic energy, when the vehicle speed reaches the set upper speed, disconnect the power supply of the power battery pack, the vehicle must move forward at a deceleration speed, convert the kinetic energy of the drive wheel and the passive wheel (the hub motor is reversible into a generator) into electric energy and pass
  • the output of the extended range controller is used to recharge the power battery pack.
  • the power supply is used to accelerate the drive wheel.
  • the range controller is switched to work.
  • the power is decelerated to the lower speed, and then the power supply of the power battery pack is switched.
  • the inertia kinetic energy between the upper vehicle speed and the lower vehicle speed is converted into electric energy to be recharged to the power battery pack, and the calculation formula is:
  • the extended range method of this embodiment disconnects the power supply of the power battery pack when the pure electric vehicle accelerates to the predetermined upper vehicle speed, recycles the inertia kinetic energy of the passive wheel, and charges the power battery pack, thereby saving battery energy and making it The continuation time increases; when decelerating to the predetermined lower speed, the power supply of the power battery pack is turned on again to ensure that the average speed of the pure electric vehicle changes little.
  • step S13 the hub motor on the driving wheel is reversible as a generator, and The kinetic energy of the driving wheel is converted into electric energy and transmitted to the extended range controller; step S14 is further: the extended range controller outputs the electric energy transmitted from the hub generator and the hub motor to the power battery pack for charging.
  • the inertia kinetic energy of the driving wheel can also be recycled, the recycling effect is more effective, the extended range effect is more stable, and the continuation time is longer.
  • the kinetic energy of the passive wheel is converted into electric energy by using a hub generator, and is transmitted to the extended range controller.
  • the flow chart is shown in FIG. 4, and includes the following steps:
  • the extended range controller uses the electric energy transmitted by the hub generator to supply power to itself and/or accumulate energy, and then outputs the power to the power battery pack to charge the power battery pack.
  • the kinetic energy of the passive wheel is converted into electric energy by the hub generator and transmitted to the extended range controller, and when the energy is relatively small, the energy is used to supply the extended range controller;
  • the range controller When accumulating a certain amount, the range controller outputs excess energy to the power battery pack to supply power to the power battery pack.
  • the energy recovery method is the same as in the fourth embodiment.
  • the existing electric bicycles use the power battery as the energy source, and the motor is driven by the control system, and the motor is directly combined with the hub (or coupled through the coupling and the hub) as the power source of the driving wheel, and the driving wheel passes through the bracket and the passive
  • the wheel one or more is coupled so that the driving wheel drives the vehicle forward, and the energy conversion relationship is:
  • Electric energy power battery
  • kinetic energy 1 drive wheel
  • kinetic energy 2 passive wheel
  • the energy consumption relationship has been determined, so the energy in the energy conversion relationship has been conserved, and it is impossible to have energy recovery, so it is generally considered that during the riding process. It is impossible to feed energy back to the power battery while riding in the middle.
  • the kinetic energy 4 in the above formula can be used as energy recovery and can be converted into electrical energy for feedback to the power battery.
  • the implied excess energy here is caused by the fact that the drive wheel and the driven wheel are different axes, and they are connected by a mechanical bracket.
  • the controller and the sensor are mainly for the drive wheel, so there is an induction sensitivity on the passive wheel, that is, The passive wheel has a response threshold due to an increase in load (weight increase or generator as a passive wheel output load), and energy for the threshold (non-response) can be recycled. This is called Implicit excess energy, when this threshold is exceeded, the load of the passive wheel will synchronously cause the energy of the power battery to increase, and the energy conservation state, it is impossible to recover energy.
  • the extended range method of the present embodiment makes full use of the hidden excess energy of the passive wheel, converts it into electric energy through the hub generator, supplies power to the extended range controller and/or accumulates energy, and then outputs the power to the power battery pack. Charge the power battery pack. It realizes energy recovery and dynamic recharging in the whole running process, that is, charging while running, recycling all the hidden excess energy and inertial kinetic energy of the passive wheel, accumulating The effect of the extended range is more obvious, and the average speed of the electric vehicle can be changed less.
  • the kinetic energy of the passive wheel is also converted into electric energy by the hub generator, and transmitted to the extended range controller.
  • the energy is relatively small, only the kinetic energy of the drive wheel is recovered to supply power to the power battery pack.
  • the power converted by the kinetic energy of the passive wheel is only used to power the extended range controller and/or accumulate energy and then output to the power battery pack to charge the power battery pack.
  • Step S13 in Embodiment 4 is changed to: the hub generator on the passive wheel converts the kinetic energy of the passive wheel into electric energy, and transmits it to the extended range controller to supply power to the extended range controller; and the driving wheel
  • the upper hub motor is reversible as a generator, converting the kinetic energy of the driving wheel into electric energy and transmitting it to the extended range controller;
  • step S14 is changed to: the extended range controller outputs the electric energy transmitted by the hub motor to the power battery pack , charging the power battery pack.
  • This embodiment is directed to the extended range method of the extended range system of Embodiment 3.
  • the flowchart of FIG. 7 includes the following steps:
  • the power battery pack turns on the power supply, supplies power to the hub motor on the driving wheel, drives the driving wheel to rotate, and drives the pure electric vehicle to advance with a certain acceleration;
  • the pure electric vehicle type of the invention may be (1) pure electric vehicle non-motor vehicle: including two-wheel, three-wheel, four-wheel, multi-wheel vehicle, etc.; (2) pure electric vehicle: including domestic passenger car, bus, etc. (3) Pure electric special vehicle, suitable for all electric vehicles with rechargeable battery and energy source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种纯电动车的全过程能量动态回收增程方法,包括:动力电池组(14)为轮毂电机供电,带动电动车加速前进;加速至上车速时,断开供电,轮毂发电机(21)将被动轮(13)动能转换为电能,为动力电池组(14)充电;当减速至下车速时,开启供电,如此循环;另一增程方法包括:在骑行过程中,轮毂发电机(21)将被动轮的动能转换为电能,并传输给增程控制器(22);增程控制器(22)利用轮毂发电机(21)传输来的电能为其自身供电和/或输出给动力电池组(14),为动力电池组充电。该增程系统包括:驱动轮(12)、被动轮(13)、系统控制器(11)、动力电池组(14)以及增程控制器(22),驱动轮(12)上安装有轮毂电机,被动轮(13)上安装有轮毂发电机(21);该增程方法及增程系统实现了边骑行边充电,增程效果稳定。

Description

一种纯电动车的全过程能量动态回收增程系统及增程方法 技术领域
本发明涉及增程式电动车技术领域,特别涉及一种纯电动车的全过程能量动态回收增程系统及增程方法。
背景技术
电动助行车作为一种代步骑行工具,符合人们的出行要求。但是目前的电动助行车由于受到动力电池组的容量、成本、重量、环保等方面的限制,对骑行者来说,有两个实际使用问题需要改进,即:(1)一次充电后的续行里程数能够增加,不会出现有去难回,中间还需充电的尴尬现象;(2)充电后的间隔时间能够长一些。上述两个问题的本质问题为:如何在一定电池容量下,减少系统无功损耗,将电池能量最大程度地转换成有功能量。
针对上述问题,现有的电动助行车从各个方面作了改进,如:提高电池本身的能量密度;减轻整车重量;采用高效电机;或从控制方式上提高转换效率。同时人们也在探索在骑行过程中可能的能量转换回收,如:在电池驱动电机运行过程中,利用电动机与发电机的可逆转换性,将刹车惯性滑行、下坡势能的这一段骑行的动能转换为电能,并回充电池,达到能量回收增程的目的。由于这一能量回收取决于骑行路面状况和骑行技术,增程作用具有不确定性和局限性。
因此,能找到一种具有稳定增程效果的增程系统,最大化的将能量回收利用的方法与技术是人们一直研究的课题。
发明内容
本发明针对上述现有技术中存在的问题,提出一种纯电动车的全过程能量动态回收增程系统及增程方法,能够在骑行过程中边骑行边回馈给电池能量,最大化的将能量回收起来,增程效果稳定。
为解决上述技术问题,本发明是通过如下技术方案实现的:
本发明提供一种纯电动车的全过程能量动态回收增程方法,其包括以下步骤:
S11:动力电池组开启供电,为驱动轮上的轮毂电机供电,驱动驱动轮转动,带动纯电动车以一定的加速度前行;
S12:当纯电动车的速度增速至预定上车速时,在增程控制器的作用下,动力电池组断开供电,纯电动车开始减速;
S13:被动轮上的轮毂发电机将被动轮的动能转换成电能,并将其传输给增程控制器;
S14:增程控制器将轮毂发电机传输来的电能输出给动力电池组,为动力电池组充电;
S15:当纯电动车的速度减速至预定下车速时,在增程控制器的作用下,动力电池组开启供电,返回步骤S11。
较佳地,所述步骤S13还包括:
驱动轮上的轮毂电机可逆为发电机,将驱动轮的动能转换为电能,并将其传输给增程控制器。
较佳地,所述步骤S14进一步为:增程控制器将轮毂发电机以及轮毂电机传输来的电能输出给动力电池组,为动力电池组充电。
较佳地,同时还包括以下步骤:
S41:在纯电动车骑行过程中,轮毂发电机将被动轮的动能转换为电能,并将其传输给增程控制器;
S42:增程控制器利用轮毂发电机传输来的电能为其自身供电和/或累积能量后再输出给动力电池组,为动力电池组充电。该些步骤与步骤S11、S12、S13、S14、S15同时进行。
本发明还提供另外一种纯电动车的全过程能量动态回收增程方法,其包括以下步骤:
S51:在纯电动车骑行过程中,轮毂发电机将被动轮的动能转换为电能,并传输给增程控制器;
S52:增程控制器利用轮毂发电机传输来的电能为其自身供电和/或累积能量后再输出给动力电池组,为动力电池组充电。
较佳地,同时还包括以下步骤:
S61:动力电池组开启供电,为驱动轮上的轮毂电机供电,驱动驱动轮转动,带动纯电动车以一定的加速度前行;
S62:当纯电动车的速度增速至预定上车速时,在增程控制器的作用下,动力电池组断开供电,纯电动车开始减速;
S63:当纯电动车的速度减速至预定下车速时,在增程控制器的作用下,动力电池组开启供电,返回步骤S61。该些步骤与步骤S51、S52同时进行。
较佳地,所述步骤S62与所述步骤S63之间还包括:
S71:驱动轮上的轮毂电机可逆为发电机,将驱动轮的动能转换为电能,并传输给增程控制器。
较佳地,所述步骤S71之后还包括:
S81:增程控制器将轮毂电机传输来的电能输出给动力电池组,为动力电池组充电。
本发明还提供另外一种纯电动车的全过程能量动态回收增程方法,其包括以下步骤:
S91:动力电池组开启供电,为驱动轮上的轮毂电机供电,驱动驱动轮转动,带动纯电动车以一定的加速度前行;
S92:当纯电动车的速度增速至预定上车速时,在系统控制器的作用下,动力电池组断开供电,纯电动车开始减速;
S93:驱动轮上的轮毂电机可逆为发电机,将驱动轮的动能转换成电能;
S94:在系统控制器的作用下,轮毂电机将电能输出给动力电池组,为动力电池组充电;
S95:当纯电动车的速度减速至预定下车速时,在系统控制器的作用下,动力电池组开启供电,返回步骤S91。
本发明还提供一种纯电动车的全过程能量动态回收增程系统,其包括:驱动轮、被动轮、系统控制器、动力电池组以及增程控制器;其中:
所述驱动轮上安装有轮毂电机,所述被动轮上安装有轮毂发电机,所述驱动轮与所述被动轮通过机械支架相连;
所述系统控制器与所述驱动轮相连;
所述动力电池组与所述驱动轮相连;
所述增程控制器的一端与所述轮毂发电机相连,所述增程控制器的另一端与所述动力电池组相连。
较佳地,所述轮毂电机与所述驱动轮同轴;所述轮毂发电机与所述被动轮同轴。
较佳地,所述轮毂电机为可逆电机。
较佳地,所述轮毂电机与所述增程控制器相连。
较佳地,所述动力电池组还与所述系统控制器相连,为所述系统控制器供电。
本发明还提供另外一种全过程能量动态回收增程系统,其包括:驱动轮、被动轮、系统控制器以及动力电池组;其中:
所述驱动轮与所述被动轮通过机械支架相连;
所述驱动轮上安装有轮毂电机,所述轮毂电机为可逆电机;
所述动力电池组与所述轮毂电机双向连接;
所述系统控制器分别与所述轮毂电机以及所述动力电池组相连。
较佳地,所述轮毂电机与所述驱动轮同轴。
相较于现有技术,本发明具有以下优点:
(1)本发明提供的纯电动车的全过程能量动态回收增程系统及增程方法,在被动轮上安装轮毂发电机,设计专用的增程控制器,将纯电动车骑行过程中的动能有效利用起来,转换为电能为动力电池组充电,在整个运行过程中,充分回收和利用惯性动能,实现了边骑行边充电,达到了稳定的增程效果;
(2)本发明的增程控制器是作为独立的附加控制系统来设计的,无需对原有的自身控制系统进行改变,结构简单,改装成本低;
(3)本发明在纯电动车达到上车速时,动力电池组断电,回收利用驱动轮和被动轮的惯性动能,为动力电池组充电,节省动力电池组的能量;
(4)本发明的全过程能量动态回收增程系统及增程方法增程效果明显,在车速达到上车速时,断开动力电池组的供电,在车速减速至预定下车速时,再开启动力电池组的供电,可以使电动车的平均速度变化较小,行驶比较稳定;
(5)本发明在动力电池组断电过程中,驱动轮上的轮毂电机可逆为发电机,将驱动轮的动能转换为电能为动力电池组充电。
当然,实施本发明的任一产品并不一定需要同时达到以上所述的所有优点。
附图说明
下面结合附图对本发明的实施方式作进一步说明:
图1为本发明的实施例1的纯电动车的全过程能量动态回收增程系统的结构示意图;
图2为本发明的实施例2的纯电动车的全过程能量动态回收增程系统的结构示意图;
图3为本发明的实施例3的纯电动车的全过程能量动态回收增程系统的结构示意图;
图4为本发明的实施例4的全过程能量动态回收增程方法的流程图;
图5为本发明的实施例5的全过程能量动态回收增程方法的流程图;
图6为本发明的实施例6的全过程能量动态回收增程方法的流程图;
图7为本发明的实施例7的全过程能量动态回收增程方法的流程图。
标号说明:1-自身控制系统,2-附加增程系统;
11-系统控制器,12-驱动轮,13-被动轮;14-动力电池组;
21-轮毂发电机,22-增程控制器。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1:
本实施例详细描述本发明的纯电动车的全过程能量动态回收增程系统,其结构示意图如图1所示,包括:系统控制器11、驱动轮12、被动轮13、动力电池组14、轮毂发电机21以及增程控制器22。其中:驱动轮12上安装有轮毂电机,轮毂电机与驱动轮12同轴,系统控制器11与驱动轮12的轮毂电机相连,从而控制驱动轮12的转速、转动等;驱动轮12与被动轮14通过机械支架相连;轮毂发电机21安装在被动轮14上,与被动轮13同轴;轮毂发电机21与增程控制器22的一端相连,轮毂发电机21将被动轮13的动能转换成电能传输给增程控制器22,增程控制器22的另一端与动力电池组14相连,增程控制器22将电能输出给动力电池组14,为其充电;动力电池组14与驱动轮12的轮毂电机相连,为轮毂电机供电,为其提供动力;增程控制器 22还用于控制动力电池组14的通断。本实施例中,动力电池组14还与系统控制器11相连,为系统控制器11供电。系统控制器11、驱动轮12、被动轮13以及动力电池组14为现有的纯电动车的自身控制系统1,轮毂发电机21以及增程控制器22为附加增程系统2。
本实施例的增程系统能够将被动轮的所有可回收的能量回收利用起来,为动力电池组进行充电,通过附加增程系统2实现了边骑行边充电,增程效果稳定;本实施例是在自身控制系统1的基础上做的改进,不需对自身控制系统1进行改变,结构简单,成本低。
实施例2:
本实施例是在实施例1的基础上,将驱动轮12上的轮毂电机13设置为可逆电机,其可以转变为发电机;且轮毂电机13与增程控制器22相连,轮毂电机13可逆为发电机时,将驱动轮12的动能转换为电能传输给增程控制器22,增程控制器22将其传输来的电能输出给动力电池组15,为动力电池组15充电。此时可以有两种工作过程:(1)轮毂电机将驱动轮12的动能转换为电能传输给增程控制器22,同时轮毂发电机21将被动轮13的动能也传输给增程控制器22,增程控制器22将电能输出给动力电池组14,为动力电池组14充电,即同时将被动轮13的动能及驱动轮12的动能回收为动力电池组14充电;(2)轮毂电机将驱动轮12的动能转换为电能传输给增程控制器22,同时轮毂发电机21将被动轮13的动能也传输给增程控制器22,增程控制器22将轮毂电机传输来的电能输出给动力电池组14,为动力电池组供电,此时以回收驱动轮12的动能为动力电池组14充电为主,被动轮13的动能不回收和/或累积能量后再输出给动力电池组,为动力电池组充电。
本实施例不仅能将被动轮13的动能回收,用来为增程控制器22供电或通过增程控制器22为动力电池组14充电,还能将驱动轮12的动能回收,用来通过增程控制器22为动力电池组14充电,将所有可回收的能量都充分利用起来,增程效果更加明显,续行时间更长。
实施例3:
本实施例详细描述本发明的另一种增程系统,其结构示意图如图3所示,其包括:系统控制器11、驱动轮12、被动轮13以及动力电池组14,驱动轮12上安装有轮毂电机,轮毂电机与驱动轮12同轴,轮毂电机为可逆电机;驱动轮12与被动轮13通过机械支架相连;动力电池组14与轮毂电机双向连接,动力电池组14可以为轮毂电机供电,轮毂电机也可以为动力电池组14充电;系统控制器11与轮毂电机相连;动力电池组14与系统控制器11相连,系统控制器11控制动力电池组14的通断。当纯电动车处于加速状态时,动力电池组14通电,为轮毂电机供电,驱动驱动轮12转动,从而带动纯电动车加速前进,当达到预定上车速时,断开动力电池组14为轮毂电机的供电,此时轮毂电机可逆为发电机,将驱动轮的动能转换为电能,输出给动力电池组14,为动力电池组14充电。
实施例1和实施例2不需对原有控制系统1进行改变,是在自身控制系统1的基础上增加了附加增程系统2;实施例3是对自身控制系统1进行了改装,使系统控制器11具有控制动力电池组14的通断电的功能,控制驱动轮12的轮毂电机转换为发电机,回收驱动轮12的动能。
实施例4:
本实施例详细描述本发明的纯电动车的全过程能量动态回收增程方法,其流程图如图4所示,其包括以下步骤:
S11:动力电池组开启供电,为驱动轮上的轮毂电机供电,驱动驱动轮转动,带动纯电动车以一定的加速度前行;
S12:当纯电动车的速度增速至预定上车速时,在增程控制器的作用下,动力电池组断开供电,纯电动车开始减速;
S13:被动轮上的轮毂发电机将被动轮的动能转换成电能,并将其传输给增程控制器;
S14:增程控制器将轮毂发电机传输来的电能输出给动力电池组,为动力电池组充电;
S15:当纯电动车的速度减速至预定下车速时,在增程控制器的作用下,动力电池组开启供电,返回步骤S11。
现有的纯电动车的能量回收增程系统基本在两种状态下实施:刹车时的惯性动能和下坡动能,在电刹、机刹组合开关中利用电刹开关将驱动电机可逆成发电机,回收能量给电池动态充电,这套技术方案已经成熟并在车辆上使用。由于这一能量回收取决于路面状况和驾驶技术和习惯,增程作用具有不确定性和局限性,增程效果有限。
本实施例是在现有技术思路和方案的基础上,通过改变运行方式而获取全程范围内的能量动态回收,反馈给动力电池组,以达到增程的目的。其运行原理为:在被动轮上安装轮毂发电机,动力电池组输出能量给驱动轮的轮毂电机,由系统控制器的速度调节装置带动车辆以一定的加速度前行,使驱动轮和被动轮都获得动能,当车速达到设定的上车速时,断开动力电池组的供电,车辆必定以减速度前行,将驱动轮和被动轮的动能(轮毂电机可逆为发电机)转换成电能并通过增程控制器输出能量给动力电池组回充,当车速减速至设定的下车速时,再转由动力电池供电使驱动轮加速前进,到上车速时,又转为增程控制器工作,断电减速至下车速,再转换动力电池组供电,如此循环,利用上车速和下车速之间的惯性动能转换为电能回充给动力电池组,其计算公式为:
Figure PCTCN2015080007-appb-000001
其中:ΔΕ为回收能量;E1对应于上车速状态下的动能;V1为上车速;E2对应于下车速状态下的动能;V2为下车速。
本实施例的增程方法在纯电动车加速至预定上车速时,断开动力电池组的供电,将被动轮的惯性动能回收利用起来,为动力电池组进行充电,节约了电池能量,使其续行时间增长;在减速至预定下车速时,再开启动力电池组的供电,保证了纯电动车的平均速度变化较小。
实施例4:
本实施例是在实施例3的基础上,增加了对驱动轮的动能的回收,其流程图如图5所示,在步骤S13中增加了:驱动轮上的轮毂电机可逆为发电机,将驱动轮的动能转换为电能,并将其传输给增程控制器;步骤S14进一步为:增程控制器将轮毂发电机以及轮毂电机传输来的电能输出给动力电池组,为其充电。这样能够将驱动轮的惯性动能也能回收利用起来,回收效果更加有效,增程效果更加稳定,续行时间更长。
实施例5:
本实施例是利用轮毂发电机将被动轮的动能转换为电能,并传输给增程控制器,其流程图如图4所示,其包括以下步骤:
S51:在纯电动车骑行过程中,轮毂发电机将被动轮的动能转换为电能,并传输给增程控制器;
S52:增程控制器利用轮毂发电机传输来的电能为其自身供电和/或累积能量后再输出给动力电池组,为动力电池组充电。
在纯电动车启动阶段,即加速阶段,利用轮毂发电机将被动轮的动能转换为电能,并传输给增程控制器,当能量比较小时,利用该些能量为增程控制器供电;当能量积累到一定量时,增程控制器将多余能量输出给动力电池组,为动力电池组供电。当纯电动车达到预定上车速时,能量回收方法与实施例4中相同。
现有的电动助行车都以动力电池为能源,经过控制系统驱动电机运行,而电机通过与轮毂直接组合(或经过联轴与轮毂联接)一起作为驱动轮的动力源,驱动轮通过支架与被动轮(一个或多个)联接,从而由驱动轮带动车辆前行,其能量转换关系为:
电能(动力电池)→动能1(驱动轮)+动能2(被动轮)+耗能。
按照常规思维模式,根据能量守恒定律,作为一辆以合格出厂的整车,其能耗关系已确定,所以能量转换关系中的能量已守恒,不可能有能量回收,所以一般认为在骑行过程中边骑行边回馈能量给动力电池是不可能的。
但是经过研究发现,动能2(被动轮)可以再被分解,即:
动能2(被动轮)=动能3(与驱动轮匹配的转动能)+动能4(隐含的多余能量);
上式中的动能4可以作为能量回收,能够转换成电能反馈给动力电池。这里的隐含的多余能量产生原因为:驱动轮与被动轮不同轴,它们之间通过机械支架连接,而控制器与感应器主要针对驱动轮,所以被动轮上存在一个感应灵敏度,即对于被动轮由于载荷增加(重量增加或用发电机作为被动轮带输出负载)而引起的摩擦阻力增加会有一个响应阈值,对于阈值内(不响应值)的能量可被回收利用,这就是所谓的隐含的多余能量,当超过这个阈值时,被动轮的载荷作用会同步引起动力电池能量增加,处在能量守恒状态,此时不可能回收能量。
本实施例的增程方法充分利用了被动轮的这部分隐含的多余能量,将其通过轮毂发电机转换成电能,为增程控制器供电和/或累积能量后再输出给动力电池组,为动力电池组充电。实现了在全运行过程中的能量回收及动态回充,即边运行边充电,将被动轮的隐含的多余能量以及惯性动能全部回收利用起来,累计 的增程效果更明显,而且可以使电动车的平均速度变化较小。
在纯电动车启动阶段,即加速阶段,也利用轮毂发电机将被动轮的动能转换为电能,并传输给增程控制器,当能量比较小时,只回收驱动轮的动能为动力电池组供电,被动轮的动能转换成的电能只用来为增程控制器供电和/或累积能量后再输出给动力电池组,为动力电池组充电。具体实现过程为:将实施例4中的步骤S13改为:被动轮上的轮毂发电机将被动轮的动能转换为电能,并传输给增程控制器,为增程控制器供电;且驱动轮上的轮毂电机可逆为发电机,将驱动轮的动能转换为电能,并传输给增程控制器;相应地,步骤S14改为:增程控制器将轮毂电机传输来的电能输出给动力电池组,为动力电池组充电。当被动轮的能量积累到一定量时,可以同时回收驱动轮的动能以及被动轮的动能为动力电池组充电,此时与实施例4相同。
实施例6:
本实施例是针对实施例3的增程系统的增程方法,其流程图如图7所示,其包括以下步骤:
S91:动力电池组开启供电,为驱动轮上的轮毂电机供电,驱动驱动轮转动,带动纯电动车以一定的加速度前行;
S92:当纯电动车的速度增速至预定上车速时,在系统控制器的作用下,动力电池组断开供电,纯电动车开始减速;
S93:驱动轮上的轮毂电机可逆为发电机,将驱动轮的动能转换成电能;
S94:在系统控制器的作用下,轮毂电机将电能输出给动力电池组,为动力电池组充电;
S95:当纯电动车的速度减速至预定下车速时,在系统控制器的作用下,动力电池组开启供电,返回步骤S91。
本发明的纯电动车种类可以为(1)纯电动车非机动车:包括两轮、三轮、四轮、多轮车等;(2)纯电动机动车:包括家用乘用车、公交客车等;(3)纯电动专用车,适用于所有可充电式、以动力电池为能源的电动车。
此处公开的仅为本发明的优选实施例,本说明书选取并具体描述这些实施例,是为了更好地解释本发明的原理和实际应用,并不是对本发明的限定。任何本领域技术人员在说明书范围内所做的修改和变化,均应落在本发明所保护的范围内。

Claims (15)

  1. 一种纯电动车的全过程能量动态回收增程方法,其特征在于,包括以下步骤:
    S11:动力电池组开启供电,为驱动轮上的轮毂电机供电,驱动驱动轮转动,带动纯电动车以一定的加速度前行;
    S12:当纯电动车的速度增速至预定上车速时,在增程控制器的作用下,动力电池组断开供电,纯电动车开始减速;
    S13:被动轮上的轮毂发电机将被动轮的动能转换成电能,并将其传输给增程控制器;
    S14:增程控制器将轮毂发电机传输来的电能输出给动力电池组,为动力电池组充电;
    S15:当纯电动车的速度减速至预定下车速时,在增程控制器的作用下,动力电池组开启供电,返回步骤S11。
  2. 根据权利要求1所述的增程方法,其特征在于,所述步骤S13还包括:
    驱动轮上的轮毂电机可逆为发电机,将驱动轮的动能转换为电能,并将其传输给增程控制器。
  3. 根据权利要求2所述的增程方法,其特征在于,所述步骤S14进一步为:
    增程控制器将轮毂发电机以及轮毂电机传输来的电能输出给动力电池组,为动力电池组充电。
  4. 根据权利要求1或3所述的增程方法,其特征在于,同时还包括以下步骤:
    S41:在纯电动车骑行过程中,轮毂发电机将被动轮的动能转换为电能,并将其传输给增程控制器;
    S42:增程控制器利用轮毂发电机传输来的电能为其自身供电和/或累积能量后再输出给动力电池组,为动力电池组充电。
  5. 一种纯电动车的全过程能量动态回收增程方法,其特征在于,包括以下步骤:
    S51:在纯电动车骑行过程中,轮毂发电机将被动轮的动能转换为电能,并传输给增程控制器;
    S52:增程控制器利用轮毂发电机传输来的电能为其自身供电和/或累积能量后再输出给动力电池组,为动力电池组充电。
  6. 根据权利要求5所述的增程方法,其特征在于,同时还包括以下步骤:
    S61:动力电池组开启供电,为驱动轮上的轮毂电机供电,驱动驱动轮转动,带动纯电动车以一定的加速度前行;
    S62:当纯电动车的速度增速至预定上车速时,在增程控制器的作用下,动力电池组断开供电,纯电动车开始减速;
    S63:当纯电动车的速度减速至预定下车速时,在增程控制器的作用下,动力电池组开启供电,返回步骤S61。
  7. 根据权利要求6所述的增程方法,其特征在于,所述步骤S62与所述步骤S63之间还包括:
    S71:驱动轮上的轮毂电机可逆为发电机,将驱动轮的动能转换为电能,并传输给增程控制器。
  8. 根据权利要求7所述的增程方法,其特征在于,所述步骤S71之后还包括:
    S81:增程控制器将轮毂电机传输来的电能输出给动力电池组,为动力电池组充电。
  9. 一种纯电动车的全过程能量动态回收增程方法,其特征在于,包括以下步骤:
    S91:动力电池组开启供电,为驱动轮上的轮毂电机供电,驱动驱动轮转动,带动纯电动车以一定的加速度前行;
    S92:当纯电动车的速度增速至预定上车速时,在系统控制器的作用下,动力电池组断开供电,纯电动车开始减速;
    S93:驱动轮上的轮毂电机可逆为发电机,将驱动轮的动能转换成电能;
    S94:在系统控制器的作用下,轮毂电机将电能输出给动力电池组,为动力电池组充电;
    S95:当纯电动车的速度减速至预定下车速时,在系统控制器的作用下,动力电池组开启供电,返回步骤S91。
  10. 一种纯电动车的全过程能量动态回收增程系统,其特征在于,包括:驱动轮、被动轮、系统控制器、动力电池组以及增程控制器;其中:
    所述驱动轮上安装有轮毂电机,所述被动轮上安装有轮毂发电机,所述驱动轮与所述被动轮由机械支架相连;
    所述系统控制器与所述驱动轮相连;
    所述动力电池组与所述驱动轮相连;
    所述增程控制器的一端与所述轮毂发电机相连,所述增程控制器的另一端与所述动力电池组相连。
  11. 根据权利要求10所述的增程系统,其特征在于,所述轮毂电机与所述驱动轮同轴;所述轮毂发电机与所述被动轮同轴。
  12. 根据权利要求10所述的增程系统,其特征在于,所述轮毂电机为可逆电机。
  13. 根据权利要求12所述的增程系统,其特征在于,所述轮毂电机与所述增程控制器相连。
  14. 一种纯电动车的全过程能量动态回收增程系统,其特征在于,包括:驱动轮、被动轮、系统控制器以及动力电池组;其中:
    所述驱动轮与所述被动轮通过机械支架相连;
    所述驱动轮上安装有轮毂电机,所述轮毂电机为可逆电机;
    所述动力电池组与所述轮毂电机双向连接;
    所述系统控制器分别与所述轮毂电机以及动力电池组相连。
  15. 根据权利要求14所述的增程系统,其特征在于,所述轮毂电机与所述驱动轮同轴。
PCT/CN2015/080007 2015-04-30 2015-05-28 一种纯电动车的全过程能量动态回收增程系统及增程方法 WO2016173033A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201520272408.4U CN204547821U (zh) 2015-04-30 2015-04-30 一种纯电动车的全过程能量动态回收增程系统
CN201510215396.6 2015-04-30
CN201510215396.6A CN104760513B (zh) 2015-04-30 2015-04-30 一种纯电动车的全过程能量动态回收增程系统及增程方法
CN201520272408.4 2015-04-30

Publications (1)

Publication Number Publication Date
WO2016173033A1 true WO2016173033A1 (zh) 2016-11-03

Family

ID=57198921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/080007 WO2016173033A1 (zh) 2015-04-30 2015-05-28 一种纯电动车的全过程能量动态回收增程系统及增程方法

Country Status (1)

Country Link
WO (1) WO2016173033A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114454707A (zh) * 2022-01-14 2022-05-10 艾德斯汽车电机无锡有限公司 一种双动力电池驱动轮毂电机分布式驱动底盘

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0884237A1 (en) * 1997-06-10 1998-12-16 Industrial Technology Research Institute Bicycle generator
CN2480272Y (zh) * 2000-09-26 2002-03-06 王金东 双轮驱动式发电节能电动自行车
CN2728900Y (zh) * 2004-10-18 2005-09-28 朱奇 具有轮箍发电机的电动自行车
CN201056265Y (zh) * 2007-04-18 2008-05-07 杨国俊 轮毂带循环充电装置的电动车
CN101525024A (zh) * 2009-03-16 2009-09-09 黄灿荣 前轮发电电力循环电动摩托车
JP2012178954A (ja) * 2011-02-28 2012-09-13 Sanyo Electric Co Ltd 自転車用ハブダイナモ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0884237A1 (en) * 1997-06-10 1998-12-16 Industrial Technology Research Institute Bicycle generator
CN2480272Y (zh) * 2000-09-26 2002-03-06 王金东 双轮驱动式发电节能电动自行车
CN2728900Y (zh) * 2004-10-18 2005-09-28 朱奇 具有轮箍发电机的电动自行车
CN201056265Y (zh) * 2007-04-18 2008-05-07 杨国俊 轮毂带循环充电装置的电动车
CN101525024A (zh) * 2009-03-16 2009-09-09 黄灿荣 前轮发电电力循环电动摩托车
JP2012178954A (ja) * 2011-02-28 2012-09-13 Sanyo Electric Co Ltd 自転車用ハブダイナモ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114454707A (zh) * 2022-01-14 2022-05-10 艾德斯汽车电机无锡有限公司 一种双动力电池驱动轮毂电机分布式驱动底盘

Similar Documents

Publication Publication Date Title
CN102358283B (zh) 一种混合动力车驱动轴扭矩解析控制方法
CN102529717B (zh) 一种机动车节能装置及装有该节能装置的机动车
CN103895641B (zh) 一种气电混合动力客车整车控制系统及其控制方法
WO2010111881A1 (zh) 混合动力汽车的动力系统及其控制方法
CN102897029B (zh) 一种增程式四轮纯电驱动汽车动力系统
CN102529679B (zh) 一种汽车三离合混合动力驱动装置及其控制方法
CN202243044U (zh) 一种电动车驱动与能量回收系统
CN102336148A (zh) 电动车动能回收控制系统、方法及电动车
CN104760513B (zh) 一种纯电动车的全过程能量动态回收增程系统及增程方法
CN103318046A (zh) 一种纯电动轻型客车动力总成
CN108297676A (zh) 一种带轮毂电机的混合动力汽车驱动系统
CN106240381B (zh) 电驱动制动能量回收矿用车
CN205931056U (zh) 一种限制下压角度的电动独轮滑板车
WO2016173033A1 (zh) 一种纯电动车的全过程能量动态回收增程系统及增程方法
CN203995741U (zh) 一种蓄能式自发电电动车
CN207510200U (zh) 一种电动车辆及其双电机转速与转矩耦合动力装置
CN207225127U (zh) 新能源汽车用驱动系统
CN204547821U (zh) 一种纯电动车的全过程能量动态回收增程系统
CN201932322U (zh) 一种可回收非用电行驶状态下能量的电动车
CN201808462U (zh) 一种新型的动力前驱动和太阳能后驱动的电动小车
CN201761374U (zh) 一种新型自动双供清洁能源电动汽车
CN203766545U (zh) 一种纯电动客车整车控制系统
CN105947039A (zh) 一种自行车的新型动力驱动系统
CN202400227U (zh) 一种电动车
CN205769810U (zh) 一种自行车的新型动力驱动系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15890412

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15890412

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07.05.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15890412

Country of ref document: EP

Kind code of ref document: A1