WO2016172957A1 - 一种双频共口径阵列天线及通信设备 - Google Patents

一种双频共口径阵列天线及通信设备 Download PDF

Info

Publication number
WO2016172957A1
WO2016172957A1 PCT/CN2015/078083 CN2015078083W WO2016172957A1 WO 2016172957 A1 WO2016172957 A1 WO 2016172957A1 CN 2015078083 W CN2015078083 W CN 2015078083W WO 2016172957 A1 WO2016172957 A1 WO 2016172957A1
Authority
WO
WIPO (PCT)
Prior art keywords
band antenna
frequency band
frequency
dual
antenna unit
Prior art date
Application number
PCT/CN2015/078083
Other languages
English (en)
French (fr)
Inventor
邹克利
欧阳骏
田泽阳
Original Assignee
华为技术有限公司
电子科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司, 电子科技大学 filed Critical 华为技术有限公司
Priority to PCT/CN2015/078083 priority Critical patent/WO2016172957A1/zh
Publication of WO2016172957A1 publication Critical patent/WO2016172957A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a dual-frequency common aperture array antenna and a communication device.
  • the dual-frequency common-caliber antenna is an antenna that can work simultaneously in two frequency bands, and the two frequency bands working at the same time share the physical aperture of the antenna.
  • an X-band and Ka-band dual-frequency common-caliber antenna both the X-band and the Ka-band are waveguide slot antennas, and the X-band antenna 01 with a lower frequency and a longer wavelength is placed in the lower layer, the antenna
  • the unit is placed at the gap between the waveguides in the Ka-band antenna 02, and the signal is radiated through the gap; the Ka-band antenna 02 having a shorter frequency and a shorter wavelength is placed on the upper layer, and the signal is directly radiated outward, and the antenna can improve the communication bandwidth of the antenna.
  • the radiation gap of the low-band antenna needs to be located at the gap between the waveguides of the high-band antenna, and the frequency ratio of the high-band antenna and the low-band antenna is limited, and the ratio of the frequency bands of the two is required to be an integer multiple or close to Integer multiples, which limits the applicability of the scheme.
  • the invention provides a dual-frequency common-caliber array antenna and a communication device.
  • the dual-frequency common-caliber array antenna has flexible arrangement and weak dependence on the frequency band of the two working frequency bands, so that the applicability is high.
  • a dual-frequency common-caliber array antenna includes: a first-band antenna module, and a second-band antenna module whose operating frequency is smaller than the first-band antenna module; and the first-band antenna module includes multiple first a band antenna unit, the second band antenna module comprising at least one second band antenna unit, wherein:
  • Each of the first frequency band antenna units is a planar antenna unit, and each of the first frequency band antenna units is arranged in a linear array manner, and the radiation surfaces are coplanar, and the array formed by each of the first frequency band antenna units is an edge array. And the main lobe radiation direction is perpendicular to the flat plate of the first frequency band antenna unit; each of the first frequency band antenna elements has an array formed therein One-to-one insertion gap of the second frequency band antenna unit;
  • Each of the second frequency band antenna units is a planar end-fire antenna unit, and a flat plate of each of the second frequency band antenna units is perpendicular to a flat plate of the first frequency band antenna unit, and each of the second frequency band antenna units is in a linear array manner.
  • the main lobe radiation direction is perpendicular to the flat plate of the first frequency band antenna unit;
  • the arrangement direction of each of the second frequency band antenna units is parallel to the arrangement direction of each of the first frequency band antenna elements, And each of the second frequency band antenna units is inserted into a corresponding insertion gap.
  • the first frequency band antenna unit is a substrate integrated waveguide slot antenna unit
  • the second frequency band antenna unit is a planar dipole antenna unit.
  • the first frequency band antenna module includes a first radiating portion and a first signal transmitting portion, and has a substrate integrated waveguide slot antenna
  • Each of the first frequency band antenna units of the structure is formed on the first radiation portion, and one end of the first signal transmission portion is connected to the first radiation portion and the other end is fed through the microstrip line and the first signal.
  • the entrance signal is connected.
  • the first signal transmission portion has a substrate integrated waveguide power divider structure.
  • the first signal transmission unit is a constant-amplitude in-phase power divider.
  • each of the first frequency band antenna units at least one radiation gap is formed on a metal layer on a radiation side of the substrate integrated waveguide .
  • the first frequency band antenna module includes eight the first frequency band antenna units, and the second frequency band antenna module includes four The second frequency band antenna unit has two first frequency band antenna units between each adjacent two second frequency band antenna units.
  • the second frequency band antenna module includes a plurality of second radiating portions, and each of the second radiating portions is formed with a pair of dipoles to form one of the second frequency band antenna units.
  • the dipole is located on a side of the first radiating portion forming a radiation slit, and each of the second radiating portions is connected to the second signal feeding inlet signal through the second signal transmitting portion.
  • the second signal transmission portion between each of the second radiating portion and the second signal feeding inlet has an integrated structure .
  • the second signal transmission portion has a substrate integrated waveguide power divider structure.
  • the second signal transmission unit is a constant-amplitude in-phase power divider.
  • a flat plate of the first radiating portion and a flat plate of the first signal transmitting portion are perpendicular to each other; and two of the first radiating portion and the first signal transmitting portion corresponding to the same first frequency band antenna unit
  • the radiation waveguides are coupled and coupled by a gap coupling manner;
  • each of the two radiating portions and a flat plate of the first radiating portion are perpendicular to each other; and each of the two rows of metalized via holes forming the radiating waveguide provided in the second radiating portion
  • the inner vias are arranged in a direction perpendicular to the first radiating portion;
  • the second signal transmitting portion has a radiating waveguide in one-to-one correspondence with the second radiating portion, and in each of the two rows of metalized vias of the radiating waveguide, An arrangement direction between the via holes in each row of via holes is perpendicular to a flat plate of the first signal transmission portion; between the radiation waveguides in each of the second radiation portions and the corresponding radiation waveguides in the second signal transmission portion
  • the connections are coupled by slot coupling.
  • the substrate integrated waveguide corresponding to each of the first frequency band antenna units is formed in the first radiating portion Two rows of metalized vias of the radiation waveguide, wherein the arrangement direction of each of the via holes in each row of vias is at an angle of 45 degrees with the flat plate of the first signal transmission portion; in the first signal transmission portion, The substrate integrated waveguide corresponding to each of the first frequency band antenna units has two rows of metalized via holes forming a radiation waveguide, and the arrangement direction of each of the via holes in each row of via holes and the first radiation portion
  • the flat plate is perpendicular; each of the flat plates of the second radiating portion and the flat plate of the first signal transmitting portion are at an angle of 45 degrees.
  • a communication device including any of the dual frequency common aperture array antennas provided by the first aspect.
  • the operating frequency of the first-band antenna module is greater than the operating frequency of the second-band antenna module;
  • the first frequency band antenna unit of the frequency band antenna module is a flat antenna unit; the first frequency band antenna units of the first frequency band antenna module are arranged in a linear array manner, and the radiation surfaces are coplanar, and the array formed by the first frequency band antenna units is The edge array and the main lobe radiation direction are perpendicular to the flat panel of the first frequency band antenna unit; each second frequency band antenna unit is a planar end antenna unit, and the flat panel of each second frequency band antenna unit is perpendicular to the flat panel of the first frequency band antenna unit Each second frequency band antenna unit is arranged in a linear array and the array is an edge array, the main lobe radiation direction is perpendicular to the flat plate of the first frequency band antenna unit, and the arrangement direction of each second frequency band antenna unit and
  • the number between the first-band antenna unit and the second-band antenna unit may be selected according to actual needs, and the first-band antenna unit and the second-band antenna module in the first-band antenna module
  • the second frequency band antenna unit is flexible in layout; and the main lobe radiation directions of the first frequency band antenna unit and the second frequency band antenna unit are perpendicular to the flat plate of the first frequency band antenna unit, and therefore, the dual frequency common aperture array antenna
  • the frequency ratio dependence between the first band antenna module and the second band antenna module is weak.
  • the above-mentioned dual-frequency common-caliber array antenna is flexible in arrangement, and has a weak dependence on frequency bands of the two working frequency bands, and has high applicability.
  • 1a is a schematic diagram showing a radiation side structure of an X-band and Ka-band dual-frequency common-caliber antenna in the prior art
  • FIG. 1b is a schematic diagram of a mating structure between two frequency band units of the antenna of the structure shown in FIG. 1a;
  • FIG. 2 is a schematic structural diagram of a dual-frequency common aperture array antenna according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of an array formed by antenna units of first frequency bands in a first frequency band antenna module in a dual frequency common aperture array antenna according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a first frequency band antenna unit in a dual frequency common aperture array antenna according to an embodiment of the present disclosure
  • FIG. 5 is a simulation diagram of return loss of the antenna unit of the first frequency band shown in FIG. 4;
  • FIG. 6 is a schematic diagram of the direction of the antenna unit of the first frequency band shown in FIG. 4;
  • FIG. 7 is a schematic structural diagram of a second frequency band antenna unit in a dual frequency common aperture array antenna according to an embodiment of the present disclosure
  • FIG. 8 is a simulation diagram of return loss of the antenna unit of the first frequency band shown in FIG. 7;
  • FIG. 9 is a schematic diagram of the direction of the antenna unit of the first frequency band shown in FIG. 7;
  • FIG. 10 is a schematic diagram of a principle in which a first signal transmission part of a dual-frequency common-caliber array antenna is a substrate integrated waveguide power divider according to an embodiment of the present disclosure
  • FIG. 11 is a schematic diagram of a S-parameter of a power division network of the substrate integrated waveguide power divider shown in FIG. 10;
  • FIG. 12 is a schematic diagram of a principle in which a second signal transmission part of a dual-frequency common-caliber array antenna is a substrate integrated waveguide power divider according to an embodiment of the present disclosure
  • FIG. 13 is a schematic diagram of a S-parameter of a power division network of the substrate integrated waveguide power divider shown in FIG. 12;
  • Figure 14 is a schematic diagram of the coupling connection between the radiating waveguide in the substrate integrated waveguide splitter and the radiating waveguide in the antenna unit.
  • the embodiment of the present invention provides a dual-frequency common-caliber array antenna and a communication device having the same; wherein, as shown in FIG. 2, the dual-frequency common-caliber array antenna provided by the embodiment of the present invention includes a first-band antenna module 1.
  • the working frequency is smaller than the second frequency band antenna module 2 of the first frequency band antenna module 1;
  • the first frequency band antenna module 1 includes a plurality of first frequency band antenna units 111, and
  • the second frequency band antenna module 2 includes at least one second frequency band antenna unit 21, wherein :
  • each of the first frequency band antenna units 111 is a planar antenna unit, and each of the first frequency band antenna units 111 is arranged in a linear array manner, and the radiation surfaces are coplanar, and the first frequency band antenna units 111 are configured.
  • the array is an edge array, and the main lobe radiation direction is perpendicular to the flat plate of the first frequency band antenna unit 111; the array formed by each of the first frequency band antenna units 111 has a one-to-one correspondence with the second frequency band antenna unit 21 for inserting the first The insertion gap 112 of the two-band antenna unit 21;
  • Each of the second-band antenna elements 21 is a planar end-emission antenna unit, and the flat plates of the second-band antenna elements 21 are perpendicular to the flat plate of the first-band antenna unit 111, and the second-band antenna elements 21 are arranged in a linear array and arrayed.
  • the edge array and the main lobe radiation direction are perpendicular to the flat plate of the second band antenna unit 21; the arrangement direction of each second band antenna unit 21 is parallel to the arrangement direction of each first band antenna unit 111, and each second band antenna unit 21 is inserted into the corresponding insertion gap 112.
  • the operating frequency of the first-band antenna module 1 is greater than the operating frequency of the second-band antenna module 2.
  • Each of the first frequency band antenna units 111 of the first frequency band antenna module 1 is a flat antenna unit; each of the first frequency band antenna units 111 of the first frequency band antenna module 1 is arranged in a linear array manner, and each of the first frequency band antenna units 111 The radiating surfaces of the first frequency band are coplanar, and the array formed by the first frequency band antenna units 111 is an edge array, and the main lobe radiation direction is perpendicular to the flat plate of the first frequency band antenna unit 111; and each second frequency band antenna unit 21 is a planar end antenna.
  • the unit and the flat plate are perpendicular to the flat plate of the first frequency band antenna unit 111, and the second frequency band antenna units 21 are arranged in a linear array and the array is an edge array, and the main lobe radiation direction is perpendicular to the flat plate of the first frequency band antenna unit 21,
  • the arrangement direction of each of the second band antenna elements 21 is parallel to the arrangement direction of the antenna elements 11 of the first frequency bands. Therefore, the dependence of the first frequency band antenna module 1 and the second frequency band antenna module 2 on the frequency band ratio is weak.
  • the number between the first frequency band antenna unit and the second frequency band antenna unit can be set according to actual needs, so that the first frequency band antenna module 1
  • the arrangement between the first band antenna unit 11 and the second band antenna unit 21 of the second band antenna module 2 is flexible.
  • the first-band antenna module 1 includes eight first-band antenna units 111
  • the second-band antenna module 2 includes four.
  • the second frequency band antenna unit 21 has two first frequency band antenna units 111 between each adjacent two second frequency band antenna units 21.
  • the above-mentioned dual-frequency common-caliber array antenna is flexible in arrangement, and has a weak dependence on frequency bands of the two working frequency bands, and has high applicability.
  • the first frequency band antenna unit 111 may be a substrate integrated waveguide slot antenna unit
  • the second frequency band antenna unit 21 may be a planar dipole antenna unit.
  • each of the first frequency band antenna units 111 at least one radiation gap is formed on the metal layer on the radiation side of the substrate integrated waveguide. As shown in FIG. 3 and FIG. 4, four antenna elements 111 are formed in one first frequency band. Radiation gap 1112.
  • the first frequency band antenna unit 111 is an E-band antenna unit, which is formed by short-circuiting the end of the substrate integrated waveguide SIW and opening a plurality of radiation gaps 1112 on the metal layer on the radiation side of the SIW.
  • the substrate integrated waveguide of the one-band antenna unit 111 two rows of metallized vias 1111 forming the radiation waveguide are disposed on the flat plate. As shown in FIG.
  • the right side of the substrate integrated waveguide is provided with a gradual microstrip structure for matching the impedance of the transition between the first signal feed inlet 1113 (microstrip line feed port) and the SIW, and SIW
  • the center-to-center spacing Dc between each adjacent two radiation gaps 1112 is approximately 0.5 SIW operating wavelength, and the gaps are sequentially shifted to the two-side via-hole offset d_offset.
  • the geometric parameters of the first band antenna unit 111 as shown in FIG. 4 can be as shown in Table 1 below:
  • the second frequency band antenna unit 21 is a Ka band antenna unit, and the principle of each second frequency band antenna unit 21 can be as shown in FIG. 7, and the second frequency band antenna unit 21 uses a substrate integrated waveguide.
  • the SIW-fed dipole antenna unit, the middle part of the dipole antenna unit is a standard substrate integrated waveguide SIW, one side of the SIW is a gradual microstrip line connection feed port 212, and the other side is a dipole.
  • the gradient microstrip structure between the SIW and the dipole, the gradual microstrip structure in the dipole antenna unit is used to match the impedance of the microstrip line with the SIW, and the dipole length is approximately 0.5 microstrip. Line working wavelength.
  • the geometric parameters of the second band antenna unit 21 as shown in FIG. 7 can be as shown in Table 2 below:
  • the first frequency band antenna module 1 includes a first radiating portion 11 and a first signal transmitting portion 12, and each of the first frequency band antenna units 111 having a substrate integrated waveguide slot antenna structure is formed.
  • the first radiating portion 11 one end of the first signal transmitting portion 12 is signal-connected to the first radiating portion 11, and the other end is connected to the first signal feeding port signal through a microstrip line.
  • the first signal transmission portion 12 has a substrate integrated waveguide power divider structure.
  • the first signal transmission section 12 is a constant amplitude in-phase power divider.
  • the first band antenna module may include 2 n first band antenna units 111, where n is an integer greater than zero.
  • n is an integer greater than zero.
  • the number of the first frequency band antenna units in the first frequency band antenna module may be 2, 4, 8, 16, 32, and so on.
  • the first signal transmission unit 12 is a one-eighth equal-amplitude in-phase.
  • the power splitter, and the S-parameter of the one-eighth equal-amplitude in-phase power splitter is as shown in Fig. 11.
  • One-eighth equal-amplitude in-phase power splitter can achieve equal-amplitude power split in the E-wave frequency band. effect.
  • the second band antenna module 2 includes a plurality of second radiating portions, and each of the second radiating portions is formed with a pair of dipoles 211 to form a second The band antenna unit 21, the dipole 211 is located on a side where the first radiating portion 11 forms a radiation slit, and each of the second radiating portions is signal-connected to the second signal feeding port 212 through the second signal transmitting portion 22.
  • the second signal transmission portion 22 between each of the second radiating portions and the second signal feeding port 212 has an integral structure.
  • the second signal transmission portion 22 has a substrate integrated waveguide power divider structure.
  • the second signal transmission unit 22 is an equal-amplitude non-phase power divider.
  • the second signal transmission unit 22 is divided into four.
  • Equal-amplitude in-phase power splitter, and the S-parameter of the one-fourth equal-amplitude in-phase power splitter is shown in Figure 13.
  • One-four-four equal-amplitude in-phase splitter can achieve equal amplitude in the Ka-wave band. The effect of the power points.
  • the flat plate of the first radiating portion 11 and the flat plate of the first signal transmitting portion 12 are perpendicular to each other; in the first radiating portion 11, the substrate integrated waveguide corresponding to each of the first frequency band antenna units 111 has two rows of metallized forming radiation waveguides The through hole 1111, the arrangement direction of each of the via holes in each row of the via holes 1111 is at an angle of 45 degrees with the flat plate of the first signal transmission portion 12; in the first signal transmission portion 12, and each of the first frequency band antenna units
  • the corresponding substrate integrated waveguide has two rows of metalized via holes forming the radiation waveguide, and the arrangement direction of each of the via holes in each row of via holes is perpendicular to the flat plate of the first radiating portion 11; the first radiating portion 11 and the first In a signal transmission portion 12, two radiation waveguides corresponding to the same first frequency band antenna unit 111 are coupled and coupled by a slot coupling manner, as shown in FIG.
  • each of the two rows of metallized via holes in the radiation waveguide A The angle ⁇ between the arrangement direction of each of the via holes in a row of via holes and the plate of the radiation waveguide B is 45 degrees, and the coupling gap provided on the radiation waveguide A extends along the junction of the plate of the radiation waveguide B and the radiation waveguide A, Further capable of better radiation a signal in waveguide A is coupled into radiation waveguide B;
  • the flat plate of each of the second radiating portions 21 is perpendicular to the flat plate of the first radiating portion 11 and at an angle of 45 degrees to the flat plate of the first signal transmitting portion 12; the radiating waveguide is formed in the second radiating portion 21 In the two rows of metalized vias, the arrangement of the vias in each row of vias is perpendicular to the first radiating portion 11; the second signal transmitting portion 22 has a radiating waveguide that corresponds one-to-one with the second radiating portion 21, In the two rows of metalized vias of each of the radiating waveguides, the arrangement direction between the vias in each row of vias is perpendicular to the flat plate of the first signal transmitting portion 12; the radiating waveguide in each of the second radiating portions 21
  • the coupling with the corresponding radiation waveguides in the second signal transmission portion 22 is coupled by a slot coupling method. Specifically, the coupling connection between the two radiation waveguides is also as shown in FIG.
  • the first-band antenna module 1 and the second-band antenna module 2 are respectively fed by different substrate integrated waveguide power splitters, and the first-band antenna units 111 can be simultaneously completed.
  • the array and the feeding of the array of the second frequency band antenna units 21 reduce the mutual interference between the first frequency band antenna module 1 and the second frequency band antenna module 2, thereby realizing the indirect electrical connection of the two frequency band antennas.
  • the mutual coupling of the two band arrays is reduced.
  • the first frequency band antenna module 1 includes eight first frequency band antenna units 111, and each of the first frequency band antenna units 111 is an E-band antenna unit and a second frequency band.
  • the antenna module 2 includes four second-band antenna units 21 and the second-band antenna unit 21 is a Ka-band antenna unit:
  • the spacing d between the center lines of each adjacent two first band antenna units 111 is 0.75 wavelengths of the E-band, specifically 3mm; and a coupling slot of the substrate integrated waveguide of each first-band antenna unit 111 is used to implement a 3D feed structure;
  • the spacing between each adjacent two second-band antenna elements 21 is 0.56 wavelengths in the Ka-band, as specifically as 6 mm, which can be inserted into the first-band antenna module 1 In the insertion gap 112, and each second band antenna unit 21 is inserted in its corresponding insertion gap 112, the dipole 211 on each second band antenna unit 21 is away from the first band antenna unit 111.
  • the distance between the plates is 2.15 mm.
  • the arrangement of the first frequency band antenna module 1 and the second frequency band antenna module 2 can achieve a common aperture between the first frequency band antenna module 1 and the second frequency band antenna module 2, and can also enable the array of the first frequency band antenna unit 111.
  • the mutual interference between the array of the second frequency band antenna unit 21 is relatively small, and the first frequency band antenna module 1 and the second frequency band antenna module 2 are indirectly electrically connected, and the array of the first frequency band antenna unit 111 and the second are reduced.
  • the mutual coupling phenomenon between the arrays of the band antenna elements 21 can achieve a common aperture between the first frequency band antenna module 1 and the second frequency band antenna module 2, and can also enable the array of the first frequency band antenna unit 111.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明涉及通讯技术领域,公开一种双频共口径阵列天线及通信设备,该天线包括第一频段天线模块、第二频段天线模块;第一频段天线模块包括多个第一频段天线单元,第二频段天线模块包括至少一个第二频段天线单元,第一频段天线单元为平板天线单元,各第一频段天线单元按直线阵方式排布、主瓣辐射方向与平板垂直;各第一频段天线单元形成阵列中具有插装间隙;第二频段天线单元为平面端射天线单元,各第二频段天线单元的平板与第一频段天线单元的平板垂直、且插装于对应的插装间隙中;第二频段天线单元按直线阵方式排布、主瓣辐射方向与第一频段天线单元的平板垂直。上述双频共口径阵列天线布置灵活、且对两个工作频段的频段比依赖性低,适用性高。

Description

一种双频共口径阵列天线及通信设备 技术领域
本发明涉及通讯技术领域,特别涉及一种双频共口径阵列天线及通信设备。
背景技术
随着新兴应用的发展,人们对信息业务的需求越来越高,如以前的语音通信到高清视频通信、以及万联网的概念提出,使得人们对通信系统容量的需求呈爆炸式增长。
在通信系统中,天线单元的数目、发射功率、射频失真、更高阶调制、以及通信带宽等因素都会对通信系统的容量产生决定性影响。其中,由于通信系统的通信容量与通信带宽呈线性关系,因此,扩展通信带宽是一种扩大通信容量的重要途径,并且通信带宽也是限制通信容量因素中的一个关键因素。
其中,双频共口径的天线是一种可以在两个频段同时工作的天线,同时工作的两个频段共享天线的物理口径。
如图1a和图1b所示的一种X频段和Ka频段双频共口径的天线,X波段及Ka波段均为波导缝隙天线,频率更低波长更长的X频段天线01置于下层,天线单元置于Ka频段天线02中波导之间的缝隙处,通过此缝隙辐射信号;频率更高波长更短的Ka频段天线02置于上层,信号直接向外辐射,该天线能够提高天线的通信带宽。
但是,上述天线中需要使低频段天线的辐射缝隙位于高频段天线的波导之间的缝隙处,高频段天线和低频段天线的频带比有限制,需要两者的频段比为整数倍、或者接近整数倍,从而限制了该方案的适用性。
发明内容
本发明提供了一种双频共口径阵列天线及通信设备,该双频共口径阵列天线布置灵活、且对两个工作频段的频段比依赖性弱,从而适用性高。
第一方面,提供一种双频共口径阵列天线,包括第一频段天线模块、工作频率小于所述第一频段天线模块的第二频段天线模块;所述第一频段天线模块包括多个第一频段天线单元,所述第二频段天线模块包括至少一个第二频段天线单元,其中:
每一个所述第一频段天线单元为平板天线单元,各所述第一频段天线单元按直线阵方式排布、且辐射面共面,各所述第一频段天线单元构成的阵列为边射阵、且主瓣辐射方向与所述第一频段天线单元的平板垂直;各所述第一频段天线单元形成的阵列中具有与所述 第二频段天线单元一一对应的插装间隙;
每一个所述第二频段天线单元为平面端射天线单元,各所述第二频段天线单元的平板与所述第一频段天线单元的平板垂直,各所述第二频段天线单元按直线阵方式排布且阵列为边射阵、主瓣辐射方向与所述第一频段天线单元的平板垂直;各所述第二频段天线单元的排列方向与各所述第一频段天线单元的排列方向平行,且每一个所述第二频段天线单元插装于对应的插装间隙中。
结合上述第一方面,在第一种可能的实现方式中,所述第一频段天线单元为基片集成波导缝隙天线单元,且所述第二频段天线单元为平面偶极子天线单元。
结合上述第一方面的第一种可能的实现方式,在第二种可能的实现方式中,所述第一频段天线模块包括第一辐射部和第一信号传输部,具有基片集成波导缝隙天线结构的各所述第一频段天线单元形成于所述第一辐射部上,所述第一信号传输部一端与所述第一辐射部信号连接、且另一端通过微带线与第一信号馈入口信号连接。
结合上述第一方面的第二种可能的实现方式,在第三种可能的实现方式中,所述第一信号传输部具有基片集成波导功分器结构。
结合第一方面的第三种可能的实现方式,在第四种可能的实现方式中,所述第一信号传输部为等幅同相功分器。
结合第一方面的第二种可能的实现方式,在第五种可能的实现方式中,每一个所述第一频段天线单元中,基片集成波导辐射侧的金属层上开设有至少一个辐射间隙。
结合第一方面的第一种可能的实现方式,在第六种可能的实现方式中,所述第一频段天线模块包括八个所述第一频段天线单元,所述第二频段天线模块包括四个第二频段天线单元,每相邻的两个第二频段天线单元之间具有两个第一频段天线单元。
结合第一方面的第一种可能的实现方式、第二种可能的实现方式、第三种可能的实现方式、第四种可能的实现方式、第五种可能的实现方式、第六种可能的实现方式,在第七种可能的实现方式中,所述第二频段天线模块包括多个第二辐射部,每一个第二辐射部上形成有一对偶极子以形成一个所述第二频段天线单元,所述偶极子位于所述第一辐射部形成辐射缝隙的一侧,每一个所述第二辐射部通过第二信号传输部与第二信号馈入口信号连接。
结合第一方面的第七种可能的实现方式,在第八种可能的实现方式中,各所述第二辐射部与所述第二信号馈入口之间的第二信号传输部具有一体式结构。
结合第一方面的第八种可能的实现方式,在第九种可能的实现方式中,所述第二信号传输部具有基片集成波导功分器结构。
结合第一方面的第九种可能的实现方式,在第十种可能的实现方式中,所述第二信号传输部为等幅同相功分器。
结合第一方面的第九种可能的实现方式,在第十一种可能的实现方式中,当所述第一频段天线模块中的第一信号传输部具有基片集成波导功分器结构时:
所述第一辐射部的平板与所述第一信号传输部的平板相互垂直;所述第一辐射部与所述第一信号传输部中,与同一个所述第一频段天线单元对应的两个辐射波导之间通过缝隙耦合方式耦合连接;
每一个所述第二辐射部的平板与所述第一辐射部的平板相互垂直;所述第二辐射部内设有的形成辐射波导的两排金属化的过孔中,每一排过孔内各过孔的排列方向与所述第一辐射部垂直;所述第二信号传输部具有与第二辐射部一一对应的辐射波导,每一个辐射波导的两排金属化的过孔中,每一排过孔内各过孔之间的排列方向与所述第一信号传输部的平板垂直;每一个第二辐射部内的辐射波导与所述第二信号传输部中对应的辐射波导之间通过缝隙耦合方式耦合连接。
结合第一方面的第十一种可能的实现方式,在第十二种可能的实现方式中,所述第一辐射部中,每一个所述第一频段天线单元对应的基片集成波导具有形成辐射波导的两排金属化的过孔,每一排过孔内各过孔的排列方向与所述第一信号传输部的平板之间呈45度夹角;所述第一信号传输部中,与每一个所述第一频段天线单元对应的基片集成波导中具有形成辐射波导的两排金属化的过孔,每一排过孔内各过孔的排列方向与所述第一辐射部的平板垂直;每一个所述第二辐射部的平板与所述第一信号传输部的平板之间呈45度夹角。
第二方面,提供一种通信设备,包括第一方面提供的任意一种双频共口径阵列天线。
根据第一方面提供的双频共口径阵列天线以及第二方面提供的通信设备,上述双频共口径阵列天线中,第一频段天线模块的工作频率大于第二频段天线模块的工作频率;第一频段天线模块的第一频段天线单元为平板天线单元;第一频段天线模块中的各第一频段天线单元按直线阵方式排布、且辐射面共面,各第一频段天线单元构成的阵列为边射阵、且主瓣辐射方向与第一频段天线单元的平板垂直;每一个第二频段天线单元为平面端射天线单元,各第二频段天线单元的平板与第一频段天线单元的平板垂直;各第二频段天线单元按直线阵方式排布且阵列为边射阵、主瓣辐射方向与第一频段天线单元的平板垂直,各第二频段天线单元的排列方向与各第一频段天线单元的排列方向平行,每一个第二频段天线单元插装于对应的插装间隙中。
上述结构的双频共口径阵列天线中,可以根据实际需要选择第一频段天线单元与第二频段天线单元之间的数量,第一频段天线模块中的第一频段天线单元和第二频段天线模块的第二频段天线单元之间布阵灵活;并且,第一频段天线单元和第二频段天线单元的主瓣辐射方向均与第一频段天线单元的平板垂直,因此,上述双频共口径阵列天线中对第一频段天线模块和第二频段天线模块之间的频段比依赖性较弱。
所以,上述双频共口径阵列天线布置灵活、且对两个工作频段的频段比依赖性弱,适用性高。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1a为现有技术中一种X频段和Ka频段双频共口径的天线的辐射面侧结构示意图;
图1b为图1a所示结构的天线的两个频段单元之间配合结构示意图;
图2为本发明实施例提供的双频共口径阵列天线的结构示意图;
图3为本发明实施例提供的双频共口径阵列天线中第一频段天线模块中各第一频段天线单元形成的阵列的结构示意图;
图4为本发明实施例提供的双频共口径阵列天线中第一频段天线单元的原理结构示意图;
图5为图4所示第一频段天线单元的回波损耗仿真图;
图6为图4所示第一频段天线单元的方向仿真图;
图7为本发明实施例提供的双频共口径阵列天线中第二频段天线单元的原理结构示意图;
图8为图7所示第一频段天线单元的回波损耗仿真图;
图9为图7所示第一频段天线单元的方向仿真图;
图10为本发明实施例提供的双频共口径阵列天线中第一信号传输部为基片集成波导功分器时的原理示意图;
图11为图10所示基片集成波导功分器的功分网络S参数示意图;
图12为本发明实施例提供的双频共口径阵列天线中第二信号传输部为基片集成波导功分器时的原理示意图;
图13为图12所示基片集成波导功分器的功分网络S参数示意图;
图14为基片集成波导功分器中的辐射波导与天线单元内的辐射波导之间耦合连接原理图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地 描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供了一种双频共口径阵列天线及具有该天线的通信设备;其中,如图2所示,本发明实施例提供的双频共口径阵列天线包括第一频段天线模块1、工作频率小于第一频段天线模块1的第二频段天线模块2;第一频段天线模块1包括多个第一频段天线单元111,第二频段天线模块2包括至少一个第二频段天线单元21,其中:
如图2和图3所示,每一个第一频段天线单元111为平板天线单元,各第一频段天线单元111按直线阵方式排布、且辐射面共面,各第一频段天线单元111构成的阵列为边射阵、且主瓣辐射方向与第一频段天线单元111的平板垂直;各第一频段天线单元111构成的阵列具有与第二频段天线单元21一一对应以用于插装第二频段天线单元21的插装间隙112;
每一个第二频段天线单元21为平面端射天线单元,各第二频段天线单元21的平板与第一频段天线单元111的平板垂直,各第二频段天线单元21按直线阵方式排布且阵列为边射阵、主瓣辐射方向与第二频段天线单元21的平板垂直;各第二频段天线单元21的排列方向与各第一频段天线单元111的排列方向平行,每一个第二频段天线单元21插装于对应的插装间隙112中。
上述双频共口径阵列天线中,第一频段天线模块1的工作频率大于第二频段天线模块2的工作频率。
第一频段天线模块1的每一个第一频段天线单元111为平板天线单元;第一频段天线模块1中的各第一频段天线单元111按直线阵方式排布、且各第一频段天线单元111的辐射面共面,各第一频段天线单元111构成的阵列为边射阵、且主瓣辐射方向与第一频段天线单元111的平板垂直;且各第二频段天线单元21为平面端射天线单元、且平板与第一频段天线单元111的平板垂直,各第二频段天线单元21按直线阵方式排布且阵列为边射阵、主瓣辐射方向与第一频段天线单元21的平板垂直,各第二频段天线单元21的排列方向与各第一频段天线单元11的排列方向平行。因此,第一频段天线模块1和第二频段天线模块2之间对频段比的依赖性较弱。
同时,由于每一个第二天线单元21插装于对应的插装间隙112中,可以根据实际需要设定第一频段天线单元与第二频段天线单元之间的数量,使第一频段天线模块1中的第一频段天线单元11和第二频段天线模块2的第二频段天线单元21之间布阵灵活。优选地,一种优选实施方式中,如图2所示,上述双频共口径阵列天线中,第一频段天线模块1包括八个第一频段天线单元111,第二频段天线模块2包括四个第二频段天线单元21,每相邻的两个第二频段天线单元21之间具有两个第一频段天线单元111。
所以,上述双频共口径阵列天线布置灵活、且对两个工作频段的频段比依赖性弱,适用性高。
一种实施方式中,如图2所示,第一频段天线单元111可以为基片集成波导缝隙天线单元,第二频段天线单元21可以为平面偶极子天线单元。
具体地,每一个第一频段天线单元111中,基片集成波导辐射侧的金属层上开设有至少一个辐射间隙,如图3和图4所示,一个第一频段天线单元111中形成四个辐射间隙1112。
更具体地,如图4所示,第一频段天线单元111为E波段天线单元,由基片集成波导SIW的末端短路、且在SIW的辐射侧的金属层上开多辐射间隙1112形成,第一频段天线单元111的基片集成波导中,平板上设有形成辐射波导的两排金属化过孔1111。如图4所示方位,基片集成波导的右侧设置有渐变微带结构,用于使第一信号馈入口1113(微带线馈口)与SIW之间的转接的阻抗匹配,且SIW辐射侧设置的多个辐射间隙1112中,每相邻的两个辐射间隙1112之间中心间距Dc大致为0.5个SIW工作波长,缝隙依次轮流向两侧过孔偏移d_offset。
具体地,如图4所示的第一频段天线单元111的几何参数可以如下述表1所示:
表1:E波段单元几何参数(mm)
符号 符号
L 10 W_slot 0.1932
W 1.7 d_offset 0.0597
b 0.2 L_tapper 3
D 0.1 W_tapper 1.5
L_slot 1.7897 W_50 0.8
当第一频段天线单元的几何参数如上述表1所示时,其回波损耗如图5所示,且方向图如图6所示。
当然,第二频段天线模块2中,第二频段天线单元21为Ka波段天线单元,每一个第二频段天线单元21的原理可以如图7所示,第二频段天线单元21采用基片集成波导SIW馈电的偶极子天线单元,偶极子天线单元的中间部位为标准的基片集成波导SIW,SIW的一侧为渐变微带线连接馈电口212,另一侧为偶极子,且SIW与偶极子之间为渐变微带结构,偶极子天线单元中的渐变微带结构用于使微带线与SIW转接的阻抗匹配,且偶极子长度大致为0.5个微带线工作波长。
具体地,如图7所示的第二频段天线单元21的几何参数可以如下述表2所示:
表2Ka波段单元几何参数(mm)
符号 符号
L1 4.8 W_50 0.8
W1 5.2 L_s 4.1018
b1 0.4 W_s 1.6499
D1 0.2 W2 0.8
L1_tapper 2.2024 L_arm 2.7291
W1_tapper 1.818 W_arm 0.2147
当第二频段天线单元21的几何参数如上述表2所示时,其回波损耗如图8所示,且方向图如图9所示。
一种优选实施方式中,如图2所示,第一频段天线模块1包括第一辐射部11和第一信号传输部12,具有基片集成波导缝隙天线结构的各第一频段天线单元111形成于第一辐射部11上,第一信号传输部12一端与第一辐射部11信号连接、且另一端通过微带线与第一信号馈入口信号连接。
具体地,上述第一信号传输部12具有基片集成波导功分器结构。
更具体地,第一信号传输部12为等幅同相功分器。
第一频段天线模块可以包括2n个第一频段天线单元111,其中,n为大于0的整数。如,第一频段天线模块中第一频段天线单元的数量可以为2、4、8、16、32......等。
如图10所示,当第一频段天线模块1的阵列为八元阵、且第一频段天线模块1的频段为E波频段时,上述第一信号传输部12为一分八的等幅同相功分器,且该一分八的等幅同相功分器的S参数如图11所示,一分八的等幅同相功分器能够在E波频段内较好地实现等幅功分的效果。
另外,如图2和图7所示,一种优选实施方式中,第二频段天线模块2包括多个第二辐射部,每一个第二辐射部上形成有一对偶极子211以形成一个第二频段天线单元21,偶极子211位于第一辐射部11形成辐射缝隙的一侧,每一个第二辐射部通过第二信号传输部22与第二信号馈入口212信号连接。
优选地,为简化第二频段天线模块2的结构,各第二辐射部与第二信号馈入口212之间的第二信号传输部22具有一体式结构。
如图2所示,第二信号传输部22具有基片集成波导功分器结构。
且优选地,上述第二信号传输部22为等幅同相功分器。
如图2和图12所示,当第二频段天线模块2的阵列为四元阵、且第二频段天线模块2的频段为Ka波频段时,上述第二信号传输部22为一分四的等幅同相功分器,且该一分四的等幅同相功分器的S参数如图13所示,一分四的等幅同相功分器能够在Ka波频段内较好地实现等幅功分的效果。
一种优选实施方式中,如图2所示,当第一频段天线模块1中的第一信号传输部12具有基片集成波导功分器结构、且第二频段天线模块2中第二信号传输部22具有基片集成波导功分器结构时:
第一辐射部11的平板与第一信号传输部12的平板相互垂直;第一辐射部11中,每一个第一频段天线单元111对应的基片集成波导具有形成辐射波导的两排金属化的过孔1111,每一排过孔1111内各过孔的排列方向与第一信号传输部12的平板之间呈45度夹角;第一信号传输部12中,与每一个第一频段天线单元111对应的基片集成波导中具有形成辐射波导的两排金属化的过孔,每一排过孔内各过孔的排列方向与第一辐射部11的平板垂直;第一辐射部11与第一信号传输部12中,与同一个第一频段天线单元111对应的两个辐射波导之间通过缝隙耦合方式耦合连接,如图14中所示,辐射波导A中两排金属化过孔中每一排过孔中各过孔的排列方向与辐射波导B的平板之间的夹角α为45度,辐射波导A上设置的耦合缝隙沿辐射波导B的平板与辐射波导A的连接处延伸,进而能够较好地将辐射波导A中的信号耦合到辐射波导B中;
每一个第二辐射部21的平板与第一辐射部11的平板相互垂直、且与第一信号传输部12的平板之间呈45度夹角;第二辐射部21内设有的形成辐射波导的两排金属化的过孔中,每一排过孔内各过孔的排列方向与第一辐射部11垂直;第二信号传输部22具有与第二辐射部21一一对应的辐射波导,每一个辐射波导的两排金属化的过孔中,每一排过孔内各过孔之间的排列方向与第一信号传输部12的平板垂直;每一个第二辐射部21内的辐射波导与第二信号传输部22中对应的辐射波导之间通过缝隙耦合方式耦合连接,具体地,两个辐射波导之间的耦合连接方式也如图14中所示原理。
上述双频共口径阵列天线中,第一频段天线模块1和第二频段天线模块2之间分别采用不同的基片集成波导功分器进行馈电,能够同时完成对各第一频段天线单元111的阵列和各第二频段天线单元21的阵列的馈电,且减小第一频段天线模块1和第二频段天线模块2之间的相互干扰,实现了两个频段天线的非直接电连接,降低了两个频段阵列的互耦合。
一种具体实施方式中,请继续参考图2、图3,当第一频段天线模块1包括八个第一频段天线单元111且每一个第一频段天线单元111为E波段天线单元、第二频段天线模块2包括四个第二频段天线单元21且第二频段天线单元21为Ka波段天线单元时:
第一频段天线模块1中,每相邻两个第一频段天线单元111的中心线之间的间距d为 E波段的0.75个波长,具体可以为3mm;并且,每一个第一频段天线单元111的基片集成波导的输入端还设有一条耦合缝隙用来实现3D馈电结构;
第二频段天线模块2中,每相邻的两个第二频段天线单元21之间的间距为Ka波段的0.56个波长,如具体可以为6mm,刚好能插入第一频段天线模块1上设置的插装间隙112中,且,每一个第二频段天线单元21插装在其对应的插装间隙112中时,每一个第二频段天线单元21上的偶极子211距离第一频段天线单元111的平板之间的距离为2.15mm。
第一频段天线模块1和第二频段天线模块2的这种设置方式既能实现第一频段天线模块1和第二频段天线模块2之间共口径,又能让第一频段天线单元111的阵列与第二频段天线单元21的阵列之间的相互干扰比较小,实现了第一频段天线模块1和第二频段天线模块2非直接电连接,降低了第一频段天线单元111的阵列与第二频段天线单元21的阵列之间互耦合现象。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (14)

  1. 一种双频共口径阵列天线,包括第一频段天线模块、工作频率小于所述第一频段天线模块的第二频段天线模块;其特征在于,所述第一频段天线模块包括多个第一频段天线单元,所述第二频段天线模块包括至少一个第二频段天线单元,其中:
    每一个所述第一频段天线单元为平板天线单元,各所述第一频段天线单元按直线阵方式排布、且辐射面共面,各所述第一频段天线单元构成的阵列为边射阵、且主瓣辐射方向与所述第一频段天线单元的平板垂直;各所述第一频段天线单元形成的阵列中具有与所述第二频段天线单元一一对应的插装间隙;
    每一个所述第二频段天线单元为平面端射天线单元,各所述第二频段天线单元的平板与所述第一频段天线单元的平板垂直,各所述第二频段天线单元按直线阵方式排布且阵列为边射阵、主瓣辐射方向与所述第一频段天线单元的平板垂直;各所述第二频段天线单元的排列方向与各所述第一频段天线单元的排列方向平行,且每一个所述第二频段天线单元插装于对应的插装间隙中。
  2. 根据权利要求1所述的双频共口径阵列天线,其特征在于,所述第一频段天线单元为基片集成波导缝隙天线单元,且所述第二频段天线单元为平面偶极子天线单元。
  3. 根据权利要求2所述的双频共口径阵列天线,其特征在于,所述第一频段天线模块包括第一辐射部和第一信号传输部,具有基片集成波导缝隙天线结构的各所述第一频段天线单元形成于所述第一辐射部上,所述第一信号传输部一端与所述第一辐射部信号连接、且另一端通过微带线与第一信号馈入口信号连接。
  4. 根据权利要求3所述的双频共口径阵列天线,其特征在于,所述第一信号传输部具有基片集成波导功分器结构。
  5. 根据权利要求4所述的双频共口径阵列天线,其特征在于,所述第一信号传输部为等幅同相功分器。
  6. 根据权利要求3所述的双频共口径阵列天线,其特征在于,每一个所述第一频段天线单元中,基片集成波导辐射侧的金属层上开设有至少一个辐射间隙。
  7. 根据权利要求2所述的双频共口径阵列天线,其特征在于,所述第一频段天线模块包括八个所述第一频段天线单元,所述第二频段天线模块包括四个第二频段天线单元,每相邻的两个第二频段天线单元之间具有两个第一频段天线单元。
  8. 根据权利要求2-7任一项所述的双频共口径阵列天线,其特征在于,所述第二频段天线模块包括多个第二辐射部,每一个第二辐射部上形成有一对偶极子以形成一个所述第二频段天线单元,所述偶极子位于所述第一辐射部形成辐射缝隙的一侧,每一个所述第二辐射部通过第二信号传输部与第二信号馈入口信号连接。
  9. 根据权利要求8所述的双频共口径阵列天线,其特征在于,各所述第二辐射部与所述第二信号馈入口之间的第二信号传输部具有一体式结构。
  10. 根据权利要求9所述的双频共口径阵列天线,其特征在于,所述第二信号传输部具有基片集成波导功分器结构。
  11. 根据权利要求10所述的双频共口径阵列天线,其特征在于,所述第二信号传输部为等幅同相功分器。
  12. 根据权利要求10所述的双频共口径阵列天线,其特征在于,当所述第一频段天线模块中的第一信号传输部具有基片集成波导功分器结构时:
    所述第一辐射部的平板与所述第一信号传输部的平板相互垂直;所述第一辐射部与所述第一信号传输部中,与同一个所述第一频段天线单元对应的两个辐射波导之间通过缝隙耦合方式耦合连接;
    每一个所述第二辐射部的平板与所述第一辐射部的平板相互垂直;所述第二辐射部内设有的形成辐射波导的两排金属化的过孔中,每一排过孔内各过孔的排列方向与所述第一辐射部垂直;所述第二信号传输部具有与第二辐射部一一对应的辐射波导,每一个辐射波导的两排金属化的过孔中,每一排过孔内各过孔之间的排列方向与所述第一信号传输部的平板垂直;每一个第二辐射部内的辐射波导与所述第二信号传输部中对应的辐射波导之间通过缝隙耦合方式耦合连接。
  13. 根据权利要求12所述的双频共口径阵列天线,其特征在于,所述第一辐射部中,每一个所述第一频段天线单元对应的基片集成波导具有形成辐射波导的两排金属化的过孔,每一排过孔内各过孔的排列方向与所述第一信号传输部的平板之间呈45度夹角;所述第一信号传输部中,与每一个所述第一频段天线单元对应的基片集成波导中具有形成辐射波导的两排金属化的过孔,每一排过孔内各过孔的排列方向与所述第一辐射部的平板垂直;每一个所述第二辐射部的平板与所述第一信号传输部的平板之间呈45度夹角。
  14. 一种通信设备,其特征在于,包括如权利要求1-13任一项所述的双频共口径阵列天线。
PCT/CN2015/078083 2015-04-30 2015-04-30 一种双频共口径阵列天线及通信设备 WO2016172957A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/078083 WO2016172957A1 (zh) 2015-04-30 2015-04-30 一种双频共口径阵列天线及通信设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/078083 WO2016172957A1 (zh) 2015-04-30 2015-04-30 一种双频共口径阵列天线及通信设备

Publications (1)

Publication Number Publication Date
WO2016172957A1 true WO2016172957A1 (zh) 2016-11-03

Family

ID=57198001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/078083 WO2016172957A1 (zh) 2015-04-30 2015-04-30 一种双频共口径阵列天线及通信设备

Country Status (1)

Country Link
WO (1) WO2016172957A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109921819A (zh) * 2019-03-07 2019-06-21 成都天锐星通科技有限公司 一种相控阵多频段tr模块及信号传输方法
CN113224520A (zh) * 2021-04-19 2021-08-06 北京机电工程研究所 收发共口径宽角域扫描卫星通信天线阵及具有其的飞行器
CN113871889A (zh) * 2021-09-26 2021-12-31 中国电子科技集团公司第三十八研究所 双频段共口径天线系统
CN114156659A (zh) * 2021-11-30 2022-03-08 杭州电子科技大学 Sub-6GHz和毫米波频段的宽带共口径偶极子阵列
CN114171909A (zh) * 2021-12-09 2022-03-11 四川九洲电器集团有限责任公司 一种siw圆极化单脉冲天线
CN114243248A (zh) * 2021-12-28 2022-03-25 中国电子科技集团公司第三十六研究所 一种宽带功分器、电子设备和设计方法
CN115173046A (zh) * 2022-07-05 2022-10-11 西安电子科技大学 一种全金属的双频双层传输阵单元
CN115425387A (zh) * 2022-08-01 2022-12-02 中国电子科技集团公司第三十八研究所 可扩充高密度互连封装天线及其阵列
CN117913531A (zh) * 2024-03-20 2024-04-19 成都华兴大地科技有限公司 一种Ku和Ka频段同极化共口径一维扫描相控阵天线

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2734411A1 (fr) * 1984-05-02 1996-11-22 Dassault Electronique Antennes formees d'un reseau d'elements rayonnants
US20080074338A1 (en) * 2006-09-26 2008-03-27 Honeywell International Inc. Dual band antenna aperature for millimeter wave synthetic vision systems
CN102257675A (zh) * 2008-12-22 2011-11-23 Saab公司 双频天线孔径
CN102394379A (zh) * 2011-06-21 2012-03-28 中国兵器工业第二○六研究所 双波段共孔径平板阵列天线
CN102420352A (zh) * 2011-12-14 2012-04-18 佛山市健博通电讯实业有限公司 一种双极化天线
CN103337713A (zh) * 2013-06-04 2013-10-02 上海无线电设备研究所 一种异频微带阵列与印刷振子阵列共口径复合天线
CN104577347A (zh) * 2014-12-03 2015-04-29 中国电子科技集团公司第三十八研究所 一种双频段多极化共口径波导缝隙天线

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2734411A1 (fr) * 1984-05-02 1996-11-22 Dassault Electronique Antennes formees d'un reseau d'elements rayonnants
US20080074338A1 (en) * 2006-09-26 2008-03-27 Honeywell International Inc. Dual band antenna aperature for millimeter wave synthetic vision systems
CN102257675A (zh) * 2008-12-22 2011-11-23 Saab公司 双频天线孔径
CN102394379A (zh) * 2011-06-21 2012-03-28 中国兵器工业第二○六研究所 双波段共孔径平板阵列天线
CN102420352A (zh) * 2011-12-14 2012-04-18 佛山市健博通电讯实业有限公司 一种双极化天线
CN103337713A (zh) * 2013-06-04 2013-10-02 上海无线电设备研究所 一种异频微带阵列与印刷振子阵列共口径复合天线
CN104577347A (zh) * 2014-12-03 2015-04-29 中国电子科技集团公司第三十八研究所 一种双频段多极化共口径波导缝隙天线

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109921819B (zh) * 2019-03-07 2023-11-21 成都天锐星通科技有限公司 一种相控阵多频段tr模块及信号传输方法
CN109921819A (zh) * 2019-03-07 2019-06-21 成都天锐星通科技有限公司 一种相控阵多频段tr模块及信号传输方法
CN113224520A (zh) * 2021-04-19 2021-08-06 北京机电工程研究所 收发共口径宽角域扫描卫星通信天线阵及具有其的飞行器
CN113871889A (zh) * 2021-09-26 2021-12-31 中国电子科技集团公司第三十八研究所 双频段共口径天线系统
CN113871889B (zh) * 2021-09-26 2024-04-19 中国电子科技集团公司第三十八研究所 双频段共口径天线系统
CN114156659A (zh) * 2021-11-30 2022-03-08 杭州电子科技大学 Sub-6GHz和毫米波频段的宽带共口径偶极子阵列
CN114156659B (zh) * 2021-11-30 2024-02-02 杭州电子科技大学 Sub-6GHz和毫米波频段的宽带共口径偶极子阵列
CN114171909B (zh) * 2021-12-09 2023-02-03 四川九洲电器集团有限责任公司 一种siw圆极化单脉冲天线
CN114171909A (zh) * 2021-12-09 2022-03-11 四川九洲电器集团有限责任公司 一种siw圆极化单脉冲天线
CN114243248A (zh) * 2021-12-28 2022-03-25 中国电子科技集团公司第三十六研究所 一种宽带功分器、电子设备和设计方法
CN115173046A (zh) * 2022-07-05 2022-10-11 西安电子科技大学 一种全金属的双频双层传输阵单元
CN115425387A (zh) * 2022-08-01 2022-12-02 中国电子科技集团公司第三十八研究所 可扩充高密度互连封装天线及其阵列
CN115425387B (zh) * 2022-08-01 2024-04-19 中国电子科技集团公司第三十八研究所 可扩充高密度互连封装天线及其阵列
CN117913531A (zh) * 2024-03-20 2024-04-19 成都华兴大地科技有限公司 一种Ku和Ka频段同极化共口径一维扫描相控阵天线
CN117913531B (zh) * 2024-03-20 2024-05-17 成都华兴大地科技有限公司 一种Ku和Ka频段同极化共口径一维扫描相控阵天线

Similar Documents

Publication Publication Date Title
WO2016172957A1 (zh) 一种双频共口径阵列天线及通信设备
CN108987911B (zh) 一种基于siw的毫米波波束赋形微带阵列天线及设计方法
CN107565225B (zh) 一种阵列天线结构及多层过孔结构
US11670865B2 (en) Butler-based quasi-omni MIMO antenna
US11545761B2 (en) Dual-band cross-polarized 5G mm-wave phased array antenna
US7646344B2 (en) Wafer-scale phased array
US11205847B2 (en) 5-6 GHz wideband dual-polarized massive MIMO antenna arrays
US10522919B2 (en) Surface integrated waveguide antenna and a transceiver including a surface integrated waveguide antenna array
CN110649388A (zh) 低损耗馈电网络和高效率天线设备
CN109301473A (zh) 5g毫米波宽带差分天线
CN109004344B (zh) 应用于5g移动端的宽带天线
US20200328531A1 (en) Antenna array and antenna module
CN109830802B (zh) 一种毫米波双极化贴片天线
CN107645067A (zh) 一种微带阵列天线
US11165150B2 (en) Dual polarization antenna with high isolation
CN109980363B (zh) 基于基片集成波导的阵列天线
WO2022224650A1 (ja) アンテナモジュール
KR20190087270A (ko) 무선 통신 시스템에서 안테나 장치 및 이를 구비하는 전자기기
CN106558764B (zh) 一种馈电结构及双频共口径天线
WO2023138324A1 (zh) 一种天线结构、电子设备及无线网络系统
CN115207613B (zh) 一种宽带双极化天线单元及天线阵列
US11843176B2 (en) Array antenna
US20220085486A1 (en) Antenna device
US11588243B2 (en) Antenna module and communication apparatus equipped with the same
JP2004221877A (ja) 平面アレーアンテナ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15890337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15890337

Country of ref document: EP

Kind code of ref document: A1