WO2016171381A1 - 터치센서 - Google Patents

터치센서 Download PDF

Info

Publication number
WO2016171381A1
WO2016171381A1 PCT/KR2016/001568 KR2016001568W WO2016171381A1 WO 2016171381 A1 WO2016171381 A1 WO 2016171381A1 KR 2016001568 W KR2016001568 W KR 2016001568W WO 2016171381 A1 WO2016171381 A1 WO 2016171381A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
resonance
resonance pattern
touch sensor
frequency
Prior art date
Application number
PCT/KR2016/001568
Other languages
English (en)
French (fr)
Inventor
임성준
최성진
Original Assignee
중앙대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 중앙대학교 산학협력단 filed Critical 중앙대학교 산학협력단
Priority to US15/550,521 priority Critical patent/US10545618B2/en
Publication of WO2016171381A1 publication Critical patent/WO2016171381A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes

Definitions

  • An embodiment relates to a touch sensor.
  • the display device to which the touch sensor is applied has recently developed into a flexible device, and in order to apply the touch sensor to the flexible device, a touch sensor is formed on glass or plastic to sense a touch.
  • the touch sensor is implemented as a metal electrode, and thus, the metal electrode is damaged when bending, thereby causing the touch sensor to be damaged. There was a problem of rising, low yield.
  • the embodiment provides a touch sensor that can sense a touch input using a resonance frequency.
  • Touch sensor the base layer; And at least one resonant pattern formed on the base layer, wherein the resonant frequency of the spiral pattern is changed by contact of an external structure.
  • the touch sensor according to the embodiment can detect a touch input using a resonant frequency, thereby providing a touch recognition means having a simple structure.
  • the touch sensor according to the embodiment has the effect of reducing the manufacturing cost by providing a pattern on the paper in the inkjet method, providing a touch recognition means with improved yield.
  • FIG. 1 is a diagram illustrating a touch sensor according to a first embodiment.
  • FIG. 2 is a cross-sectional view illustrating a resonance pattern according to a first embodiment.
  • FIG 3 is a diagram illustrating a resonance frequency of a resonance pattern according to the first embodiment.
  • FIG. 4 is a cross-sectional view illustrating a state in which an external structure contacts a resonance pattern according to the first embodiment.
  • FIG. 5 is a view showing a change in the resonance frequency that appears when the external structure is in contact.
  • FIG. 6 is a diagram illustrating a touch sensor according to a second embodiment.
  • FIG. 7 is a diagram illustrating a resonance frequency of a resonance pattern according to the second embodiment.
  • FIG 8 is a diagram illustrating a change in frequency when an external structure contacts the first resonance pattern.
  • FIG. 9 is a diagram illustrating a change in frequency when an external structure contacts the second resonance pattern.
  • FIG. 10 is a diagram illustrating a touch sensor according to a third embodiment.
  • Touch sensor the base layer; And at least one resonant pattern formed on the base layer, wherein the resonant frequency of the spiral pattern is changed by contact of an external structure.
  • the resonance pattern includes a first resonance pattern and a second resonance pattern
  • the first resonance pattern and the second resonance pattern may have different resonance frequencies.
  • the first resonance pattern and the second resonance pattern may have different lengths.
  • the resonance pattern may have a spiral structure.
  • the resonance pattern may have a meander structure.
  • the external structure may be a structure having a dielectric constant.
  • the at least one resonance pattern may be connected to one conductive pattern.
  • the base layer may be paper.
  • the cover layer may be paper.
  • the resonance pattern may be formed by an inkjet printing method.
  • the resonance pattern may include silver nano particles.
  • the resonance pattern may be formed of a transparent conductive material.
  • 1 is a diagram illustrating a touch sensor according to a first embodiment.
  • 2 is a cross-sectional view illustrating a resonance pattern according to a first embodiment.
  • the touch sensor 1 may be electrically connected to the transmitter 10 and the receiver 20.
  • the transmitter 10 and the receiver 20 may be electrically connected to the controller 50.
  • the transmitter 10 may apply a voltage to the touch sensor 1.
  • the transmitter 10 may apply an AC voltage to the touch sensor 1.
  • the transmitter 10 may apply an RF signal to the touch sensor 1.
  • the receiver 20 may receive a voltage output through the touch sensor 1.
  • the receiver 20 may receive an RF signal output through the touch sensor 1.
  • the controller 50 may detect a resonance frequency of the RF signal received from the receiver 20.
  • the controller 50 may detect whether the touch sensor 1 is touched by detecting a resonance frequency of the RF signal received from the receiver 20.
  • the touch sensor 1 may include a conductive pattern 30 and a resonance pattern 40.
  • the conductive pattern 30 may be electrically connected to the transmitter 10 and the receiver 20.
  • the resonance pattern 40 may be electrically connected to the conductive pattern 30.
  • the conductive pattern 30 and the resonance pattern 40 may be integrally formed.
  • the resonance pattern 40 may have a spiral structure. One end of the resonance pattern 40 may be connected to the conductive pattern 30, and the other end of the resonance pattern 40 may be bent several times toward a rectangular central region.
  • the resonance pattern 40 may have a rectangular spiral structure. Since the resonance pattern 40 has a spiral structure, inductance may be defined by the length of the resonance pattern 40, and capacitance may be defined by an adjacent conductive layer of the resonance pattern 40.
  • the resonance frequency of the resonance pattern 40 may be defined by the inductance and capacitance of the resonance pattern 40.
  • the conductive pattern 30 may have a first width d1.
  • the conductive pattern 30 may have a width of 1 mm to 1.5 mm.
  • the conductive pattern 30 may preferably have a width of 1.2 mm.
  • the resonance pattern 40 may be formed to have a smaller width than the conductive pattern 30.
  • the resonance pattern 40 may have a second width d2.
  • the resonance pattern 40 may have a width of 0.3 mm to 0.7 mm.
  • the resonance pattern 40 may preferably have a width of 0.5 mm.
  • a gap between adjacent conductive layers of the resonance pattern 40 may have a third width d3.
  • the gap between the conductive layers of the resonance pattern 40 and the width of the resonance pattern 40 may have the same size. That is, the second width d2 and the third width d3 may have the same value.
  • the third width d3 may have a value of 0.3 mm to 0.7 mm.
  • the gap between the conductive layers of the resonance pattern 40 may be 0.5 mm.
  • the resonance pattern 40 may include a base layer 41, a conductive layer 43, a cover layer 45, and a ground layer 47.
  • the conductive layer 43 may be formed on the base layer 41, and the cover layer 45 may be formed on the base layer 41 to which the conductive layer 43 is applied.
  • the ground layer 47 may be formed under the base layer 41.
  • the base layer 41 may be paper.
  • the conductive layer 43 may include metal particles.
  • the conductive layer 43 may include silver nano particles.
  • the conductive layer 43 may be coated on the base layer 41 by an inkjet printing method.
  • the conductive layer 43 may be formed by applying ink containing silver nanoparticles onto the base layer 41 by an inkjet method.
  • the conductive layer 43 may be formed at a simple method at room temperature without a separate vacuum, high temperature, or high pressure process, thereby forming the conductive layer 43 without any additional equipment. By reducing the manufacturing cost, there is an effect that can improve the yield.
  • the conductive layer 43 may include a transparent conductive material.
  • the area of use may be extended because it is not visible from the outside.
  • the resonance pattern 40 may have a first capacitance C1.
  • the resonance pattern 40 may have a resonance frequency due to capacitance and inductance of the resonance pattern 40.
  • the cover layer 45 may serve to protect the conductive layer 43.
  • the change amount of the resonance frequency may be increased by the cover layer 45.
  • the ground layer 47 may serve as a ground of a signal flowing through the resonance pattern 40.
  • the ground layer 47 may be formed over the entire area under the base layer 41, and the ground layer 47 may be electrically connected to the transmitter 10 and the receiver 20.
  • the ground layer 47 may be electrically connected to the ground structures of the transmitter 10 and the receiver 20.
  • the resonance pattern 40 may have a resonance frequency.
  • the resonance pattern 40 may have a resonance frequency by the inductance and capacitance of the resonance pattern itself.
  • the resonance frequency of the resonance pattern 40 may be, for example, 0.92 GHz.
  • FIG. 4 is a cross-sectional view illustrating a state in which an external structure contacts a resonance pattern according to a first embodiment
  • FIG. 5 illustrates a change in resonant frequency that appears when the external structure contacts.
  • the external structure 60 contacts the resonance pattern 40.
  • the outer structure 60 may contact the cover layer 45.
  • the outer structure 60 may be a structure having a dielectric constant.
  • the outer structure 60 may be part of a user's body.
  • the external structure 60 may be a user's finger.
  • the outer structure 60 may be a stylus pen.
  • the resonance frequency of the resonance pattern 40 changes. Since the external structure 60 serves as a dielectric, the dielectric constant between the first conductive layer 43a and the second conductive layer 43b is changed, so that the first conductive layer 43a and the second conductive layer ( The capacitance between 43b) changes.
  • the resonance pattern 40 may have a second capacitance C2. Since the resonance frequency is inversely proportional to the capacitance, the capacitance between the first conductive layer 43a and the second conductive layer 43b changes, and the resonance frequency of the resonance pattern 40 changes due to the change in the capacitance.
  • the resonance frequency changes.
  • the resonance frequency changes to 0.83 GHz.
  • the controller 50 may detect whether the external structure 60 contacts the resonance pattern 40 by detecting a change in the resonance frequency.
  • the control unit 50 stores the resonance frequency before the external structure 60 contacts, and the control unit 50 compares the resonance frequency received from the receiver 20 with the stored resonance frequency to the external structure 60. ) Can be detected.
  • the controller 50 may compare the received resonant frequency with the stored resonant frequency and determine that the external structure 60 is in contact when there is a change in the resonant frequency.
  • FIG. 6 is a diagram illustrating a touch sensor according to a second embodiment.
  • the touch sensor 101 may include a conductive pattern 130, a first resonance pattern 148, and a second resonance pattern 149.
  • the first resonance pattern 148 and the second resonance pattern 149 may have different resonance frequencies.
  • the first resonance pattern 148 may have a first resonance frequency f1
  • the second resonance pattern 149 may have a second resonance frequency f2.
  • the first resonant frequency f1 and the second resonant frequency f2 may have different values. Referring to FIG. 7, the first resonant frequency f1 may be 0.92 GHz, and the second resonant frequency f2 may be 1.77 GHz.
  • the first resonant pattern 148 may have a harmonic frequency of the first resonant frequency f1 as well as the first resonant frequency f1.
  • the second resonance pattern 149 may also have a harmonic frequency of the second resonance frequency f2, which is omitted in the drawing.
  • the harmonic frequency of the first resonant frequency f1 may be 2.76 GHz.
  • the first resonance pattern 148 and the second resonance pattern 149 may have different lengths.
  • the first resonance pattern 148 and the second resonance pattern 149 are each bent several times, and an inductance value is determined by the lengths of the first resonance pattern 148 and the second resonance pattern 149. Since the first resonance pattern 148 and the second resonance pattern 149 have different lengths and have different inductances, and the resonance frequency is inversely proportional to the inductance, the first resonance pattern 148 and the second resonance pattern 148 are different from each other.
  • the difference in the lengths of (149) causes a difference in the resonance frequency.
  • the first resonance pattern 148 may have a longer length than the second resonance pattern 149. Since the first resonance pattern 148 and the second resonance pattern 149 have a shape bent several times toward each center region, the first resonance pattern 148 may be formed on the second resonance pattern 149. In comparison, it can have many bending areas. That is, in FIG. 6, the first resonance pattern 148 may be formed in a bent shape twelve times, and the second resonance pattern 149 may have a shape bent in eight times.
  • the first resonance pattern 148 and the second resonance pattern 149 may be electrically connected to one conductive pattern 130.
  • the conductive pattern 130 may be connected to a transmitter and a receiver, an RF signal transmitted from the transmitter may be received through the receiver, and the controller may detect a resonance frequency through the RF signal.
  • FIG. 8 is a diagram illustrating a change in frequency when the external structure is in contact with the first resonance pattern
  • FIG. 9 is a diagram showing a change in frequency when the external structure is in contact with the second resonance pattern.
  • FIG. 8 is a diagram illustrating a change in frequency when the external structure 60 contacts the first resonance pattern 148.
  • the first resonant frequency f1 of the first resonant pattern 148 is 0.92 GHz before the external structure 60 contacts, and resonates when the external structure 60 contacts the first resonant pattern 148. Frequency changes When the external structure 60 contacts the first resonance pattern 148, the first resonance frequency f1 changes to 0.83 GHz. The harmonic frequency of the first resonance frequency f1 also changes. At this time, the second resonance frequency f2 of the second resonance pattern 149 is maintained at 1.77 GHz.
  • FIG. 9 illustrates a change in frequency when the external structure 60 contacts the second resonance pattern 149.
  • the second resonance frequency f2 of the second resonance pattern 149 has a resonance frequency of 1.77 GHz before the external structure 60 contacts.
  • the resonance frequency changes.
  • the second resonance frequency f2 changes to 1.55 GHz.
  • the harmonic frequency of the second resonance frequency f2 also changes.
  • the first resonance frequency f1 of the first resonance pattern 148 is maintained at 0.92 GHz
  • the harmonic frequency of the first resonance frequency f1 is also maintained at 2.76 GHz.
  • the controller may measure a change in the resonance frequency to detect in which region the external structure is touched.
  • the first resonant frequency f1 is measured to be changed, it may be determined that the external structure is in contact with the first resonant pattern 148, and when the second resonant frequency f2 is measured to be changed, the external structure is determined. May be determined to be in contact with the second resonance pattern 149.
  • two resonance patterns connected to one conductive pattern have been described as an example.
  • a plurality of regions may be formed by connecting two or more resonance patterns to the one conductive pattern and setting different resonance frequencies of the respective resonance patterns. It is possible to detect the contact of the external structure at.
  • a touch sensor for detecting a touch input on a surface may be implemented by using a plurality of conductive patterns and a plurality of resonance patterns having different resonance frequencies.
  • FIG. 10 is a diagram illustrating a touch sensor according to a third embodiment.
  • the touch sensor according to the third embodiment has a shape different from that of the resonance pattern, and the rest of the configuration is the same. Therefore, in the description of the third embodiment, the same reference numerals are given to the components common to the first and second embodiments, and detailed description thereof will be omitted.
  • the touch sensor 201 may include a conductive pattern 230, a first resonance pattern 248, and a second resonance pattern 249.
  • the first resonance pattern 248 and the second resonance pattern 249 may be electrically connected to the conductive pattern 230.
  • the first resonance pattern 248 and the second resonance pattern 249 may have a meander structure.
  • the first resonance pattern 248 and the second resonance pattern 249 may have different lengths.
  • the first resonance pattern 248 and the second resonance pattern 249 may have different resonance frequencies.
  • the first resonance pattern 248 may have a longer length than the second resonance pattern 249.
  • the first resonance pattern 248 may be formed with a greater number of bending times than the second resonance pattern 249.
  • the first resonance pattern 248 may have more bent regions than the second resonance pattern 249.
  • One side of the first resonance pattern 248 and the second resonance pattern 249 may contact the conductive pattern 230, and may be formed to alternately extend in a vertical direction and a horizontal direction of the conductive pattern 230. .
  • an area bent in the vertical direction of the conductive pattern 230 or in the horizontal direction in the first resonance pattern 248 and the second resonance pattern 249 may be defined as a bending area. have.
  • the first resonance pattern 248 and the second resonance pattern 249 have different lengths and thus different inductance values. Consequently, the first resonance pattern 248 and the second resonance pattern 249 are different. Are designed to have different resonant frequencies.
  • the contact region of the external structure can be detected through different resonant frequencies, and can operate as a touch sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)

Abstract

실시 예에 따른 터치센서는, 베이스 층; 및 상기 베이스 층 상에 형성된 적어도 하나 이상의 공진패턴을 포함하고, 상기 스파이럴 패턴은 외부구조의 접촉에 의해 공진 주파수가 변화한다.

Description

터치센서
실시 예는 터치센서에 관한 것이다.
최근 다양한 전자 제품에서 디스플레이 장치에 표시된 화상에 손가락 또는 스타일러스(stylus) 등의 입력 장치를 접촉하는 방식으로 입력을 하는 터치 센서가 적용되고 있다.
상기 터치 센서가 적용되는 디스플레이 장치는 최근에 플렉서블 장치로 발전하고 있고, 플렉서블 장치에 터치 센서가 적용되기 위해서 유리 또는 플라스틱 등에 터치 센서를 형성하여 터치를 감지하고 있다.
종래에는 상기 터치 센서를 금속전극 등으로 구현하여 벤딩시 금속 전극이 손상되어 터치 센서가 손상되는 문제가 있었고, 상기 금속 전극으로 터치 센서 구현시 고온, 고압 및 진공 등의 조건이 필요하여 제조 단가가 상승하고, 수율이 낮은 문제점이 있었다.
실시 예는 공진 주파수를 이용하여 터치 입력을 감지할 수 있는 터치센서를 제공한다.
실시 예에 따른 터치센서는, 베이스 층; 및 상기 베이스 층 상에 형성된 적어도 하나 이상의 공진패턴을 포함하고, 상기 스파이럴 패턴은 외부구조의 접촉에 의해 공진 주파수가 변화한다.
실시 예에 따른 터치센서는 공진 주파수를 이용하여 터치 입력을 감지할 수 있어 간이한 구조의 터치 인식 수단을 제공하는 효과가 있다.
실시 예에 따른 터치센서는 종이에 잉크젯 방식으로 패턴을 형성함으로써 제조단가를 절감하고, 수율이 향상된 터치 인식 수단을 제공하는 효과가 있다.
도 1은 제1 실시 예에 따른 터치 센서를 나타내는 도면이다.
도 2는 제1 실시 예에 따른 공진패턴을 나타내는 단면도이다.
도 3은 제1 실시 예에 따른 공진패턴의 공진주파수를 나타내는 도면이다.
도 4는 제1 실시 예에 따른 공진패턴에 외부구조가 접촉한 상태를 나타내는 단면도이다.
도 5는 외부구조가 접촉하였을 때 나타나는 공진 주파수의 변화를 나타내는 도면이다.
도 6은 제2 실시 예에 따른 터치센서를 나타내는 도면이다.
도 7은 제2 실시 예에 따른 공진패턴의 공진주파수를 나타내는 도면이다.
도 8은 제1 공진패턴에 외부구조가 접촉하였을 때의 주파수의 변화를 나타내는 도면이다.
도 9는 제2 공진패턴에 외부구조가 접촉하였을 때의 주파수의 변화를 나타내는 도면이다.
도 10은 제3 실시 예에 따른 터치센서를 나타내는 도면이다.
이하에서는 도면을 참조하여 본 발명의 구체적인 실시예를 상세하게 설명한다. 다만, 본 발명의 사상은 제시되는 실시예에 제한되지 아니하고, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서 다른 구성요소를 추가, 변경, 삭제 등을 통하여, 퇴보적인 다른 발명이나 본 발명 사상의 범위 내에 포함되는 다른 실시예를 용이하게 제안할 수 있을 것이나, 이 또한 본원 발명 사상 범위 내에 포함된다고 할 것이다.
또한, 각 실시예의 도면에 나타나는 동일한 사상의 범위 내의 기능이 동일한 구성요소는 동일한 참조부호를 사용하여 설명한다.
실시 예에 따른 터치센서는, 베이스 층; 및 상기 베이스 층 상에 형성된 적어도 하나 이상의 공진패턴을 포함하고, 상기 스파이럴 패턴은 외부구조의 접촉에 의해 공진 주파수가 변화한다.
상기 공진패턴은 제1 공진패턴 및 제2 공진패턴을 포함하고,
상기 제1 공진패턴과 제2 공진패턴은 공진주파수가 상이할 수 있다.
상기 제1 공진패턴 및 제2 공진패턴은 서로 다른 길이를 가질 수 있다.
상기 공진패턴은 스파이럴 구조를 가질 수 있다.
상기 공진패턴은 미앤더 구조를 가질 수 있다.
상기 외부구조는 유전율을 가지는 구조일 수 있다.
상기 적어도 하나이상의 공진패턴은 하나의 도전패턴과 연결될 수 있다.
상기 베이스 층은 종이일 수 있다.
상기 베이스 층 하부에 형성되는 접지층을 더 포함할 수 있다.
상기 스파이럴 패턴 상에 형성되는 커버층을 더 포함할 수 있다.
상기 커버층은 종이일 수 있다.
상기 공진패턴은 잉크젯 프린팅 방식으로 형성될 수 있다.
상기 공진패턴은 은나노 입자를 포함할 수 있다.
*28상기 공진패턴은 투명 도전물질로 형성될 수 있다.
이하 도면을 참조하여 실시 예에 따른 터치센서를 설명한다.
도 1은 제1 실시 예에 따른 터치 센서를 나타내는 도면이다. 도 2는 제1 실시 예에 따른 공진패턴을 나타내는 단면도이다.
도 1 및 도 2를 참조하면, 제1 실시 예에 따른 터치 센서(1)는 송신부(10) 및 수신부(20)와 전기적으로 연결될 수 있다.
상기 송신부(10) 및 수신부(20)는 제어부(50)와 전기적으로 연결될 수 있다. 상기 송신부(10)는 상기 터치 센서(1)로 전압을 인가할 수 있다. 상기 송신부(10)는 교류전압을 상기 터치 센서(1)로 인가할 수 있다. 상기 송신부(10)는 RF 신호를 상기 터치 센서(1)로 인가할 수 있다.
상기 수신부(20)는 상기 터치 센서(1)를 통해 출력되는 전압을 수신할 수 있다. 상기 수신부(20)는 상기 터치 센서(1)를 통해 출력되는 RF 신호를 수신할 수 있다.
상기 제어부(50)는 상기 수신부(20)로부터 수신한 RF 신호의 공진 주파수를 검출할 수 있다. 상기 제어부(50)는 상기 수신부(20)로부터 수신한 RF 신호의 공진 주파수를 검출하여 상기 터치 센서(1)의 터치여부를 검출할 수 있다.
상기 터치 센서(1)는 도전패턴(30) 및 공진패턴(40)을 포함할 수 있다.
상기 도전패턴(30)은 상기 송신부(10) 및 수신부(20)와 전기적으로 연결될 수 있다. 상기 상기 공진패턴(40)은 상기 도전패턴(30)에 전기적으로 연결될 수 있다. 상기 도전패턴(30)과 공진패턴(40)은 일체로 형성될 수 있다.
상기 공진패턴(40)은 스파이럴 구조를 가질 수 있다. 상기 공진패턴(40)의 일단은 상기 도전패턴(30)과 연결되고, 상기 공진패턴(40)의 타단은 사각형상의 중앙영역을 향해 수회 절곡되어 형성될 수 있다. 상기 공진패턴(40)은 사각형상의 스파이럴 구조를 가질 수 있다. 상기 공진패턴(40)이 스파이럴 구조를 가짐으로써 상기 공진패턴(40)의 길이에 의해 인덕턴스가 정의되고, 공진패턴(40)의 인접하는 도전층에 의해 커패시턴스가 정의될 수 있다. 상기 공진패턴(40)의 인덕턴스 및 커패시턴스에 의해 상기 공진패턴(40)의 공진 주파수가 정의될 수 있다.
상기 도전패턴(30)은 제1 폭(d1)을 가질 수 있다. 상기 도전패턴(30)은 1mm 내지 1.5mm의 폭을 가질 수 있다. 상기 도전패턴(30)은 바람직하게는 1.2mm의 폭을 가질 수 있다.
상기 공진패턴(40)은 상기 도전패턴(30)에 비해 작은 폭으로 형성될 수 있다.
상기 공진패턴(40)은 제2 폭(d2)을 가질 수 있다. 상기 공진패턴(40)은 0.3mm 내지 0.7mm의 폭을 가질 수 있다. 상기 공진패턴(40)은 바람직하게는 0.5mm의 폭을 가질 수 있다.
상기 공진패턴(40)의 인접하는 도전층 간의 간극은 제3 폭(d3)을 가질 수 있다. 상기 공진패턴(40)의 도전층 간의 간극과 공진패턴(40)의 폭은 동일한 크기로 형성될 수 있다. 즉, 상기 제2 폭(d2)과 제3 폭(d3)은 동일한 값을 가질 수 있다. 상기 제3 폭(d3)은 0.3mm 내지 0.7mm의 값을 가질 수 있다. 바람직하게는 상기 공진패턴(40)의 도전층 간의 간극은 0.5mm일 수 있다.
상기 공진패턴(40)은 베이스층(41), 도전층(43), 커버층(45) 및 접지층(47)을 포함할 수 있다.
상기 도전층(43)은 상기 베이스층(41) 상에 형성되고, 상기 커버층(45)은 상기 도전층(43)이 도포된 상기 베이스층(41) 상에 형성될 수 있다. 또한, 상기 접지층(47)은 상기 베이스층(41)의 하부에 형성될 수 있다.
상기 베이스층(41)은 종이일 수 있다.
상기 도전층(43)은 금속입자를 포함할 수 있다. 상기 도전층(43)은 은나노 입자를 포함할 수 있다. 상기 도전층(43)은 상기 베이스층(41) 상에 잉크젯 프린트 방식으로 도포될 수 있다. 상기 도전층(43)은 은나노 입자를 포함하는 잉크를 잉크젯 방식으로 상기 베이스층(41) 상에 도포함으로써 형성될 수 있다. 상기 도전층(43)을 잉크젯 방식으로 형성함으로써 별도의 진공, 고온 또는 고압 공정없이 상온에서 간이한 방법으로 상기 도전층(43)을 형성할 수 있어 별도의 장비 없이 상기 도전층(43)을 형성하여 제조 단가를 절감시킬 수 있고, 수율을 향상시킬 수 있는 효과가 있다.
또한, 상기 도전층(43)은 투명 도전물질을 포함할 수 있다. 상기 도전층(43)이 투명 도전물질을 포함하는 경우 외부로부터 시인되지 않아 사용영역이 확장될 수 있다.
상기 공진패턴(40)의 인접하는 도전층(43) 사이에는 간극을 가질 수 있다. 즉, 인접하는 상기 도전층(43)을 제1 도전층(43a) 및 제2 도전층(43b)으로 정의하면, 상기 제1 도전층(43a) 및 제2 도전층(43b)은 간극을 가지며 형성될 수 있다. 상기 제1 도전층(43a) 및 제2 도전층(43b) 사이의 간극에는 유전율을 가지는 물질이 위치할 수 있다. 상기 제1 도전층(43a) 및 제2 도전층(43b)은 공기를 사이에 두고 형성되어, 상기 제1 도전층(43a) 및 제2 도전층(43b)은 커패시턴스를 가질 수 있다. 상기 공진패턴(40)은 제1 커패시턴스(C1)를 가질 수 있다.
상기 공진패턴(40)의 커패시턴스와 인덕턴스에 의해 상기 공진패턴(40)은 공진 주파수를 가질 수 있다.
상기 커버층(45)은 상기 도전층(43)을 보호하는 역할을 할 수 있다. 또한, 상기 커버층(45)에 의해 공진주파수의 변화량이 커질 수 있다.
상기 접지층(47)은 상기 공진패턴(40)을 통해 흐르는 신호의 접지역할을 할 수 있다. 상기 접지층(47)은 상기 베이스층(41) 하부의 전영역에 걸쳐 형성될 수 있으며, 상기 접지층(47)은 상기 송신부(10) 및 수신부(20)와 전기적으로 연결될 수 있다. 상기 접지층(47)은 상기 송신부(10) 및 수신부(20)의 접지구조와 전기적으로 연결될 수 있다.
도 3을 참조하면, 상기 공진패턴(40)은 공진주파수를 가질 수 있다. 상기 공진패턴(40)은 공진패턴 자체의 인덕턴스 및 커패시턴스에 의해 공진주파수를 가질 수 있다. 상기 공진패턴(40)의 공진주파수는 예를 들어, 0.92 GHz일 수 있다.
도 4는 제1 실시 예에 따른 공진패턴에 외부구조가 접촉한 상태를 나타내는 단면도이고, 도 5는 외부구조가 접촉하였을 때 나타나는 공진 주파수의 변화를 나타낸다.
도 4 및 도 5를 참조하면, 상기 공진패턴(40)에 외부구조(60)가 접촉한다. 상기 외부구조(60)는 상기 커버층(45) 상에 접촉할 수 있다.
상기 외부구조(60)는 유전율을 가지는 구조일 수 있다. 상기 외부구조(60)는 사용자의 신체의 일부일 수 있다. 상기 외부구조(60)는 사용자의 손가락일 수 있다. 또는, 상기 외부구조(60)는 스타일러스 펜일 수 있다.
상기 외부구조(60)가 상기 공진패턴(40)에 접촉하는 경우 상기 공진패턴(40)의 공진주파수가 변화한다. 상기 외부구조(60)는 유전체로써의 역할을 하므로, 상기 제1 도전층(43a) 및 제2 도전층(43b) 사이의 유전율이 변화하여 상기 제1 도전층(43a) 및 제2 도전층(43b) 간의 커패시턴스가 변화한다. 상기 외부구조(60)가 접촉하면, 상기 공진패턴(40)은 제2 커패시턴스(C2)를 가질 수 있다. 상기 공진주파수는 커패시턴스에 반비례 하므로, 상기 제1 도전층(43a) 및 제2 도전층(43b) 간의 커패시턴스가 변화하여 상기 커패시턴스의 변화에 의해 상기 공진패턴(40)의 공진주파수가 변화한다.
도 5와 같이 상기 외부구조(60)가 상기 공진패턴(40)에 접촉하면 공진주파수가 변화한다. 예를 들어, 상기 외부구조(60)가 상기 공진패턴(40)에 접촉하면 공진주파수가 0.83GHz로 변화한다.
상기 제어부(50)는 상기 공진주파수의 변화를 감지하여 상기 공진패턴(40)에 외부구조(60)가 접촉하였는지 여부를 감지할 수 있다. 상기 제어부(50)에는 상기 외부구조(60)가 접촉하기 전의 공진주파수가 저장되어 있고, 상기 제어부(50)는 상기 수신부(20)로부터 전달받은 공진주파수와 저장된 공진주파수를 비교하여 외부구조(60)의 접촉여부를 감지할 수 있다. 상기 제어부(50)는 전달받은 공진주파수와 저장된 공진주파수를 비교하여 공진주파수에 변화가 있는 경우 외부구조(60)가 접촉하였다고 판단할 수 있다.
도 6은 제2 실시 예에 따른 터치센서를 나타내는 도면이다.
도 6을 참조하면, 제2 실시 예에 따른 터치센서(101)는 도전패턴(130), 제1 공진패턴(148) 및 제2 공진패턴(149)을 포함할 수 있다.
상기 제1 공진패턴(148)과 제2 공진패턴(149)은 서로 다른 공진 주파수를 가질 수 있다. 상기 제1 공진패턴(148)은 제1 공진주파수(f1)를 가질 수 있고, 상기 제2 공진패턴(149)은 제2 공진주파수(f2)를 가질 수 있다.
상기 제1 공진주파수(f1)와 제2 공진주파수(f2)는 서로 다른 값일 수 있다. 도 7을 참조하면, 상기 제1 공진주파수(f1)는 0.92GHz일 수 있고, 상기 제2 공진주파수(f2)는 1.77GHz일 수 있다. 상기 제1 공진패턴(148)은 상기 제1 공진주파수(f1)뿐만 아니라, 상기 제1 공진주파수(f1)의 고조파 주파수(Harmonic of f1)를 가질 수 있다. 상기 제2 공진패턴(149) 또한 제2 공진주파수(f2)의 고조파 주파수를 가질 수 있으나, 도면에서는 이를 생략하였다.
상기 제1 공진주파수(f1)의 고조파 주파수는 2.76GHz일 수 있다.
상기 제1 공진패턴(148)과 제2 공진패턴(149)은 서로 다른 길이를 가질 수 있다. 상기 제1 공진패턴(148) 및 제2 공진패턴(149)는 각각 수회 절곡되며 형성되며, 상기 제1 공진패턴(148) 및 제2 공진패턴(149)의 길이에 의해 인덕턴스 값이 결정된다. 상기 제1 공진패턴(148) 및 제2 공진패턴(149)은 서로 다른 길이를 가짐으로써 서로 다른 인덕턴스를 가지고, 공진주파수는 인덕턴스에 반비례하므로, 상기 제1 공진패턴(148)과 제2 공진패턴(149)의 길이의 차이에 의해 공진주파수의 차이가 발생한다.
상기 제1 공진패턴(148)은 상기 제2 공진패턴(149)에 비해 긴 길이를 가질 수 있다. 상기 제1 공진패턴(148)과 상기 제2 공진패턴(149)은 각각의 중앙영역을 향해 수회 절곡된 형상을 가지므로, 상기 제1 공진패턴(148)은 상기 제2 공진패턴(149)에 비해 많은 절곡영역을 가질 수 있다. 즉, 도 6에서 상기 제1 공진패턴(148)은 12회 절곡된 형상으로 형성될 수 있고, 상기 제2 공진패턴(149)은 8회 절곡된 형상을 가질 수 있다.
상기 제1 공진패턴(148) 및 제2 공진패턴(149)은 하나의 도전패턴(130)과 전기적으로 연결될 수 있다. 상기 도전패턴(130)은 송신부 및 수신부와 연결되고, 상기 송신부로부터 전송된 RF 신호가 수신부를 통해 수신되고, 제어부는 상기 RF신호를 통해 공진주파수를 검출할 수 있다.
도 8은 제1 공진패턴에 외부구조가 접촉하였을 때의 주파수의 변화를 나타내는 도면이고, 도 9는 제2 공진패턴에 외부구조가 접촉하였을 때의 주파수의 변화를 나타내는 도면이다.
도 8 은 제1 공진패턴(148)에 외부구조(60)가 접촉하였을 때의 주파수의 변화를 나타내는 도면이다. 상기 제1 공진패턴(148)의 제1 공진주파수(f1)는 상기 외부구조(60)가 접촉하기 전에 0.92GHz이며, 상기 외부구조(60)가 상기 제1 공진패턴(148)에 접촉하면 공진주파수가 변화한다. 상기 외부구조(60)가 상기 제1 공진패턴(148)에 접촉하면 제1 공진주파수(f1)는 0.83GHz로 변화한다. 상기 제1 공진주파수(f1)의 고조파 주파수 또한 변화한다. 이 때, 상기 제2 공진패턴(149)의 제2 공진주파수(f2)는 1.77GHz를 유지한다.
도 9는 제2 공진패턴(149)에 외부구조(60)가 접촉하였을 때의 주파수의 변화를 나타내는 도면이다. 상기 제2 공진패턴(149)의 제2 공진주파수(f2)는 상기 외부구조(60)가 접촉하기 전에 1.77GHz의 공진주파수를 가진다. 상기 외부구조(60)가 상기 제2 공진패턴(149)에 접촉하면 공진주파수가 변화한다. 상기 외부구조(60)가 상기 제2 공진패턴(149)에 접촉하면 제2 공진주파수(f2)는 1.55GHz로 변화한다. 도시하지 않았지만, 상기 제2 공진주파수(f2)의 고조파 주파수 또한 변화한다. 이 때, 상기 제1 공진패턴(148)의 제1 공진주파수(f1)는 0.92GHz를 유지하고, 상기 제1 공진주파수(f1)의 고조파 주파수 또한 2.76GHz를 유지한다.
상기 제어부는 상기 공진주파수의 변화를 측정하여 외부구조가 어느 영역에 터치되었는지를 검출할 수 있다. 상기 제1 공진주파수(f1)가 변화된 것으로 측정된 경우 외부구조가 상기 제1 공진패턴(148)에 접촉된 것으로 판단할 수 있고, 상기 제2 공진주파수(f2)가 변화된 것으로 측정된 경우 외부구조가 상기 제2 공진패턴(149)에 접촉된 것으로 판단할 수 있다.
실시 예에서는 1개의 도전패턴에 연결된 2개의 공진패턴을 예로 들어 설명하였으나, 상기 1개의 도전패턴에 2개 이상의 다수개의 공진패턴을 연결하고, 각각의 공진패턴의 공진주파수를 다르게 설정함으로써 다수개의 영역에서의 외부구조의 접촉을 감지할 수 있다.
또한, 다수의 도전패턴을 평행하도록 형성하고, 다수의 도전패턴의 각각에 연결된 공진패턴을 형성한 후 각각의 공진패턴의 공진주파수를 다르게 설정함으로써 2차원 면 상의 외부구조의 접촉을 감지할 수 있다. 즉, 다수의 도전패턴 및 공진주파수가 다른 다수의 공진패턴을 이용하여 면상의 터치입력을 감지하는 터치센서를 구현할 수 있다.
도 10은 제3 실시 예에 따른 터치센서를 나타내는 도면이다.
제3 실시 예에 따른 터치 센서는 제1 및 제2 실시 예와 비교하여 공진패턴의 형상이 상이하고 나머지 구성은 동일하다. 따라서, 제3 실시 예를 설명함에 있어서, 제1 및 제2 실시 예와 공통되는 구성에 대해서는 동일한 도면번호를 부여하고 상세한 설명을 생략한다.
도 10을 참조하면, 제3 실시 예에 따른 터치 센서(201)는 도전패턴(230), 제1 공진패턴(248) 및 제2 공진패턴(249)을 포함할 수 있다.
상기 제1 공진패턴(248) 및 제2 공진패턴(249)은 상기 도전패턴(230)에 전기적으로 연결될 수 있다.
상기 제1 공진패턴(248) 및 제2 공진패턴(249)은 미앤더(meander) 구조를 가질 수 있다. 상기 제1 공진패턴(248) 및 제2 공진패턴(249)은 서로 다른 길이를 가질 수 있다. 상기 제1 공진패턴(248) 및 제2 공진패턴(249)은 서로 다른 공진주파수를 가질 수 있다.
상기 제1 공진패턴(248)은 상기 제2 공진패턴(249) 보다 긴 길이를 가질 수 있다. 상기 제1 공진패턴(248)은 상기 제2 공진패턴(249)에 비해 더 많은 절곡 회수를 가지고 형성될 수 있다. 상기 제1 공진패턴(248)은 상기 제2 공진패턴(249)에 비해 많은 절곡영역을 가질 수 있다.
상기 제1 공진패턴(248) 및 제2 공진패턴(249)의 일측은 상기 도전패턴(230)에 접촉하고, 상기 도전패턴(230)의 수직방향, 수평방향으로 교번하여 연장되어 형성될 수 있다. 이 때, 상기 제1 공진패턴(248) 및 제2 공진패턴(249)에서 상기 도전패턴(230)의 수직방향에서 수평방향으로 또는 수평방향에서 수직방향으로 절곡되는 영역을 절곡영역으로 정의할 수 있다.
상기 제1 공진패턴(248) 및 제2 공진패턴(249)이 서로 다른 길이를 가지고, 이를 통해 서로 다른 인덕턴스 값을 가지며, 결론적으로 상기 제1 공진패턴(248) 및 제2 공진패턴(249)의 공진주파수가 다르도록 설계된다. 서로 다른 공진주파수를 통해 외부구조의 접촉영역을 검출할 수 있고, 터치 센서로 동작할 수 있다.
상기에서는 본 발명에 따른 실시예를 기준으로 본 발명의 구성과 특징을 설명하였으나 본 발명은 이에 한정되지 않으며, 본 발명의 사상과 범위 내에서 다양하게 변경 또는 변형할 수 있음은 본 발명이 속하는 기술분야의 당업자에게 명백한 것이며, 따라서 이와 같은 변경 또는 변형은 첨부된 특허청구범위에 속함을 밝혀둔다.

Claims (14)

  1. 베이스 층; 및
    상기 베이스 층 상에 형성된 적어도 하나 이상의 공진패턴을 포함하고,
    상기 스파이럴 패턴은 외부구조의 접촉에 의해 공진 주파수가 변화하는 터치센서.
  2. 제1항에 있어서,
    상기 공진패턴은 제1 공진패턴 및 제2 공진패턴을 포함하고,
    상기 제1 공진패턴과 제2 공진패턴은 공진주파수가 상이한 터치센서.
  3. 제2항에 있어서,
    상기 제1 공진패턴 및 제2 공진패턴은 서로 다른 길이를 가지는 터치센서.
  4. 제1항에 있어서,
    상기 공진패턴은 스파이럴 구조를 가지는 터치센서.
  5. 제1항에 있어서,
    상기 공진패턴은 미앤더 구조를 가지는 터치센서.
  6. 제1항에 있어서,
    상기 외부구조는 유전율을 가지는 구조인 터치센서.
  7. 제1항에 있어서,
    상기 적어도 하나이상의 공진패턴은 하나의 도전패턴과 연결되는 터치센서.
  8. 제1항에 있어서,
    상기 베이스 층은 종이인 터치센서.
  9. 제1항에 있어서,
    상기 베이스 층 하부에 형성되는 접지층을 더 포함하는 터치센서.
  10. 제1항에 있어서,
    상기 스파이럴 패턴 상에 형성되는 커버층을 더 포함하는 터치센서.
  11. 제10항에 있어서,
    상기 커버층은 종이인 터치센서.
  12. 제1항에 있어서,
    상기 공진패턴은 잉크젯 프린팅 방식으로 형성되는 터치센서.
  13. 제1항에 있어서,
    상기 공진패턴은 은나노 입자를 포함하는 터치센서.
  14. 제1항에 있어서,
    상기 공진패턴은 투명 도전물질로 형성된 터치센서.
PCT/KR2016/001568 2015-04-24 2016-02-16 터치센서 WO2016171381A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/550,521 US10545618B2 (en) 2015-04-24 2016-02-16 Touch sensor including a resonance pattern having resonant frequency

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0057855 2015-04-24
KR1020150057855A KR101684779B1 (ko) 2015-04-24 2015-04-24 터치센서

Publications (1)

Publication Number Publication Date
WO2016171381A1 true WO2016171381A1 (ko) 2016-10-27

Family

ID=57143241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/001568 WO2016171381A1 (ko) 2015-04-24 2016-02-16 터치센서

Country Status (3)

Country Link
US (1) US10545618B2 (ko)
KR (1) KR101684779B1 (ko)
WO (1) WO2016171381A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050005542A (ko) * 2002-06-07 2005-01-13 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 사용자 입력 시스템, 사용자 휴대가능한 디바이스 및사용자 입력 감지 방법
KR20120134843A (ko) * 2011-06-03 2012-12-12 삼성전자주식회사 소수 채널을 이용하는 전자기 공진 센싱 장치
KR20120134850A (ko) * 2011-06-03 2012-12-12 삼성전자주식회사 채널을 공유하는 전자기 공진 센싱 장치
JP2013025448A (ja) * 2011-07-19 2013-02-04 Toppan Printing Co Ltd タッチセンサー基板及びその製造方法並びに画像表示装置
KR20140145530A (ko) * 2014-01-16 2014-12-23 (주)삼원에스티 터치패널센서의 제조방법 및 터치패널센서

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7884804B2 (en) * 2003-04-30 2011-02-08 Microsoft Corporation Keyboard with input-sensitive display device
WO2013063445A2 (en) * 2011-10-28 2013-05-02 President And Fellows Of Harvard College Capacitive, paper-based accelerometers and touch sensors
US9024910B2 (en) * 2012-04-23 2015-05-05 Qualcomm Mems Technologies, Inc. Touchscreen with bridged force-sensitive resistors
US20160054853A1 (en) * 2013-05-07 2016-02-25 Yingzhe Hu System and method for 3d position and gesture sensing of human hand

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050005542A (ko) * 2002-06-07 2005-01-13 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 사용자 입력 시스템, 사용자 휴대가능한 디바이스 및사용자 입력 감지 방법
KR20120134843A (ko) * 2011-06-03 2012-12-12 삼성전자주식회사 소수 채널을 이용하는 전자기 공진 센싱 장치
KR20120134850A (ko) * 2011-06-03 2012-12-12 삼성전자주식회사 채널을 공유하는 전자기 공진 센싱 장치
JP2013025448A (ja) * 2011-07-19 2013-02-04 Toppan Printing Co Ltd タッチセンサー基板及びその製造方法並びに画像表示装置
KR20140145530A (ko) * 2014-01-16 2014-12-23 (주)삼원에스티 터치패널센서의 제조방법 및 터치패널센서

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHOI, SUNG JIN: "Metamaterial-inspired Electromagnetic Sensors", MASTER'S THESIS, February 2015 (2015-02-01), Graduate School of Chung Ang University, School of Electrical and Electronic Engineering, pages 1 - 46, XP011433750 *

Also Published As

Publication number Publication date
KR101684779B1 (ko) 2016-12-09
KR20160127241A (ko) 2016-11-03
US20180052543A1 (en) 2018-02-22
US10545618B2 (en) 2020-01-28

Similar Documents

Publication Publication Date Title
WO2016018126A1 (ko) 스마트폰
WO2012057409A1 (en) Touch panel sensor
WO2017023108A1 (ko) 터치 검출기, 터치 검출 칩 및 터치 입력 장치
WO2016129827A1 (ko) 터치 입력 장치 및 전극 시트
WO2016182347A1 (ko) 압력 센싱 장치, 압력 검출기 및 이들을 포함하는 장치
WO2016064237A2 (ko) 터치 입력 장치
WO2011002175A2 (ko) 정전용량식 터치 패널
WO2015016562A1 (ko) 터치 센서 패널, 터치 검출 장치 및 이들을 포함하는 터치 입력 장치
WO2017061749A1 (ko) 터치 압력 감지 장치
WO2010114206A1 (ko) 접촉센서 장치
US10592055B2 (en) Touch sensing apparatus, touch panel, and display apparatus including the same
WO2011025294A2 (ko) 멀티 터치 패널
WO2019045345A1 (ko) 3d 터치 구현을 위한 뮤추얼 인덕티브 포스 센서 모듈
WO2014208897A1 (ko) 터치 검출 장치 및 방법
WO2015026071A1 (ko) 터치 감지 전극 및 이를 구비하는 터치 스크린 패널
WO2013180438A1 (ko) 개선된 원 레이어 정전식 터치 패널
CN104239893A (zh) 指纹识别检测组件及具有指纹识别检测功能的终端设备
WO2015030404A1 (ko) 터치 감지 전극 및 이를 구비하는 터치 스크린 패널
WO2015130013A1 (ko) 필압의 감지가 가능한 터치 펜
WO2014115957A1 (en) Transparent fingerprint recognizing sensor array
WO2010002202A2 (ko) 고감도 디지탈방식의 정전용량터치패널장치
WO2013125847A1 (ko) 유연하고 투명한 감지 영역을 갖는 타블렛
WO2021141395A1 (ko) 전도사 압력센서
WO2016171381A1 (ko) 터치센서
WO2013070027A1 (ko) 개선된 안테나 패턴 구조를 갖는 타블렛

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16783316

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15550521

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16783316

Country of ref document: EP

Kind code of ref document: A1