WO2016171366A1 - Exhaust gas post-processing device and method therefor - Google Patents

Exhaust gas post-processing device and method therefor Download PDF

Info

Publication number
WO2016171366A1
WO2016171366A1 PCT/KR2015/013472 KR2015013472W WO2016171366A1 WO 2016171366 A1 WO2016171366 A1 WO 2016171366A1 KR 2015013472 W KR2015013472 W KR 2015013472W WO 2016171366 A1 WO2016171366 A1 WO 2016171366A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
hydrocarbon
selective reduction
reduction catalyst
scr
Prior art date
Application number
PCT/KR2015/013472
Other languages
French (fr)
Korean (ko)
Inventor
이대훈
송영훈
김관태
변성현
조성권
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150096678A external-priority patent/KR20170006162A/en
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Publication of WO2016171366A1 publication Critical patent/WO2016171366A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust gas aftertreatment apparatus and a method for simplifying the exhaust gas aftertreatment system.
  • the configuration of the exhaust gas aftertreatment device is complicated and bulky.
  • the exhaust gas aftertreatment device may include a urea water selective catalytic reduction (SCR) for supplying ammonia to remove NOx.
  • SCR urea water selective catalytic reduction
  • the urea water storage device, the urea water decomposition device and An additional urea water injection device is needed.
  • DOC diesel exhaust catalyst
  • DPF diesel particulate filter
  • SCR selective catalytic reduction
  • AOC ammonia oxidation catalyst
  • the exhaust gas aftertreatment device increases the manufacturing cost by additional devices connected to the urea water SCR to remove NOx, and requires a large installation space.
  • small and medium-sized vehicles remove nitrogen oxides (NOx) contained in the exhaust gas of the engine, adopt a nitrogen oxide occlusion catalyst (LNT, lean NOx trap), or urea water selective catalytic catalyst (Urea SCR, selective catalytic) reduction is adopted.
  • LNT nitrogen oxide occlusion catalyst
  • Urea SCR urea water selective catalytic catalyst
  • the nitrogen oxide storage catalyst occupies NOx due to the characteristics of the engine during lean burn conditions of the engine, and periodically forms a rich burn condition in the engine to reduce NOx that is desorbed.
  • the fuel may be additionally injected after combustion of the equivalence ratio in the engine to form a reducing agent in the LNT, or by installing a separate fuel injector in the exhaust pipe and injecting the fuel in front of the LNT as the reducing agent.
  • LNT nitrogen oxide storage catalyst
  • urea water selective reduction catalyst Urea SCR
  • Urea SCR urea water selective reduction catalyst
  • a separate urea tank and a urea injector are required, and in some cases, a hydrolysis reactor for separating ammonia (NH 3 ) from urea water may be required.
  • a hydrolysis reactor for separating ammonia (NH 3 ) from urea water may be required.
  • the urea selective reduction catalyst Urea SCR
  • the price of the device may be increased and the installation space of the device may be increased in a vehicle.
  • One aspect of the present invention is to provide an exhaust gas after-treatment apparatus that simplifies the exhaust gas after-treatment system to reduce manufacturing costs and reduce installation space.
  • an exhaust gas after-treatment apparatus that reduces the fuel economy of the engine and the burden on the engine, secures a high denitrification rate, and has a denitrification performance even at low temperature conditions.
  • Another aspect of the present invention to provide an exhaust gas after-treatment method for the post-treatment of the exhaust gas of the engine using the exhaust gas after-treatment device.
  • Exhaust gas after-treatment apparatus an exhaust pipe for circulating the exhaust gas of the engine, a hydrocarbon selective reduction catalyst (HC SCR) provided in the exhaust pipe to remove nitrogen oxides contained in the exhaust gas, and the And a plasma reactor connected to the exhaust pipe between the engine and the hydrocarbon selective reduction catalyst to reform fuel to produce a reductant of hydrogen and hydrocarbon (HC) species or to combust the fuel.
  • HC SCR hydrocarbon selective reduction catalyst
  • the exhaust pipe further includes a particulate particulate filter (DPF, diesel particulate filter) for trapping and burning particulate matter (PM, particulate matter) contained in the exhaust gas, the particulate filter is the hydrocarbon selective reduction catalyst It is built.
  • DPF particulate particulate filter
  • PM particulate matter
  • the hydrocarbon may have a carbon number of C1 to C11.
  • the soot filtration filter includes a case connected to the exhaust pipe, a ceramic carrier embedded in the case and forming an exhaust gas passage, and a plug alternately closing both ends of the ceramic carrier, and the hydrocarbon selective reduction catalyst (HC).
  • SCR hydrocarbon selective reduction catalyst
  • Exhaust gas after-treatment apparatus may further include a selective reduction catalyst (SCR) provided in the exhaust pipe at the rear of the smoke filter.
  • SCR selective reduction catalyst
  • Exhaust gas after-treatment apparatus is provided in the exhaust pipe behind the hydrocarbon selective reduction catalyst, the nitrogen oxide storage catalyst for removing the nitrogen oxide remaining in the exhaust gas via the hydrocarbon selective reduction catalyst It may further include (LNT).
  • the hydrocarbon may have a carbon number of C1 to C5.
  • Exhaust gas after-treatment method by supplying fuel and air to the plasma reactor in the normal operation mode to reform the fuel to the first calorific value (partial oxidation conditions) selectively hydrocarbon (HC) species (species) ) And a first step of producing a large amount of hydrogen, a second step of supplying the produced hydrogen and hydrocarbon species on a hydrocarbon selective reduction catalyst (HC SCR) provided in the soot filtration filter (DPF), the normal operation
  • HC SCR hydrocarbon selective reduction catalyst
  • DPF soot filtration filter
  • the first step may produce hydrocarbon (HC) species having a carbon number of C 1 to C 11 and hydrogen to partially oxidize or decompose light oil to function as a reducing agent.
  • HC hydrocarbon
  • the produced hydrogen and hydrocarbon species may act as a reducing agent on the hydrocarbon selective reduction catalyst (HC SCR) to reduce nitrogen oxide (NOx) included in exhaust gas to nitrogen (N 2 ).
  • HC SCR hydrocarbon selective reduction catalyst
  • the particulate matter accumulated on the hydrocarbon selective reduction catalyst (HC SCR) of the particulate filter (DPF) by a combustion reaction by increasing the ratio of fuel to air in the plasma reactor compared to the normal operation mode ( PM) can be removed by burning.
  • the first step of producing a large amount of hydrocarbon (HC) species and hydrogen by reforming the fuel by supplying fuel and air to the reformer in lean combustion conditions The second step of supplying the produced hydrogen and hydrocarbon species to the selective catalytic reduction (HC SCR) for circulating the exhaust gas, the nitrogen oxide storage catalyst disposed behind the hydrocarbon selective reduction catalyst (HC SCR) ( LNT) circulating the exhaust gas via the hydrocarbon selective reduction catalyst in step 3 ′, and the fourth step of switching to lean combustion conditions after the engine operation is switched to rich combustion conditions after a predetermined time in lean combustion conditions. It includes.
  • the hydrogen and the hydrocarbon (HC) species having a carbon number of C1 to C5 and hydrogen acting as a reducing agent may be produced by partially oxidizing or cracking the diesel oil.
  • the produced hydrogen and hydrocarbon species act as a reducing agent on the hydrocarbon selective reduction catalyst (HC SCR), so that the nitrogen oxide contained in the exhaust gas ( NOx) can be reduced to nitrogen (N 2 ).
  • the nitrogen oxide contained in the exhaust gas may be occluded in the nitrogen oxide storage catalyst LNT.
  • one embodiment of the present invention includes a hydrocarbon selective reduction catalyst in a soot filtration filter, and reforms the fuel in a plasma reactor to selectively produce hydrogen and hydrocarbon species (repeating agents) or produce a high temperature. It is possible to remove nitrogen oxides (NOx) from the hydrocarbon selective reduction catalyst with a reforming agent modified at, and to oxidatively remove particulate matter of the soot filtration filter at high temperature in the particulate matter removal mode.
  • NOx nitrogen oxides
  • one embodiment of the present invention can remove additional devices of the prior art for removing NOx contained in exhaust gas. That is, the manufacturing cost of the exhaust gas aftertreatment device is lowered and the installation space may be reduced when applied to a vehicle.
  • the exhaust pipe is equipped with a hydrocarbon selective reduction catalyst (HC SCR) and nitrogen oxide storage catalyst (LNT) in sequence, and the reducing agent of the hydrogen and hydrocarbon species modified in the reformer is a hydrocarbon selective reduction catalyst (HC SCR) to remove nitrogen oxides, thereby reducing the fuel economy and engine burden.
  • HC SCR hydrocarbon selective reduction catalyst
  • LNT nitrogen oxide storage catalyst
  • the hydrocarbon selective reduction catalyst (HC SCR) is activated during daily operation to reduce nitrogen oxide discharged from the engine, and only nitrogen oxide that is not reduced in the hydrocarbon selective reduction catalyst (HC SCR) is occluded. It is possible to significantly increase the reduction operation cycle of the nitrogen oxide storage catalyst by occluding in the catalyst (LNT), and also through nitrogen oxide storage catalyst in low temperature conditions where the hydrocarbon selective reduction catalyst (HC SCR) is not activated, such as cold startup. By occluding the oxide, it is possible to secure a means for removing nitrogen oxides in the exhaust gas under any conditions. That is, the denitrification performance can be ensured even at low temperature conditions.
  • the fuel efficiency of the engine can be improved and the burden on the engine can be reduced compared to the existing oxide removing device.
  • FIG. 1 is a block diagram of an exhaust gas aftertreatment apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the plasma reactor applied to FIG.
  • FIG. 3 is a cross-sectional view of a diesel particulate filter (DPF) applied to FIG. 1.
  • DPF diesel particulate filter
  • FIG. 4 is a block diagram of an exhaust gas aftertreatment apparatus according to a second embodiment of the present invention.
  • FIG. 5 is a configuration diagram of an exhaust gas aftertreatment apparatus according to a third exemplary embodiment of the present invention.
  • FIG. 6 is a flowchart illustrating an exhaust gas post-treatment method according to an embodiment of the present invention.
  • FIG. 7 is a flow chart of the exhaust gas after-treatment method according to another embodiment of the present invention.
  • Figure 9 is a graph comparing the denitrification performance according to another embodiment of the present invention and the prior art.
  • Plug 37 Hydrocarbon selective reduction catalyst (HC SCR)
  • the exhaust gas aftertreatment apparatus 1 includes an exhaust pipe 20 through which exhaust gas from the engine 10 flows, and a soot filtration filter (DPF, diesel) provided in the exhaust pipe 20. particulate filter 30 and plasma reactor 40.
  • DPF soot filtration filter
  • the soot filtration filter 30 is installed in the exhaust pipe 20 to collect particulate matter (PM) contained in the exhaust gas while circulating the exhaust gas.
  • the soot filtration filter 30 removes nitrogen oxides with a reducing agent of hydrogen and hydrocarbon (HC) species supplied from the plasma reactor 40, and burns particulate matter at a high temperature supplied from the plasma reactor 40. It is configured to be removable.
  • the plasma reactor 40 is connected to the exhaust pipe 20 between the engine 10 and the soot filtration filter 30 to reform the fuel to produce a reducing agent of hydrogen and hydrocarbon species, or to burn the fuel. It is configured to produce high temperatures.
  • the hydrocarbon species may have a carbon number of C1 to C11.
  • the plasma reactor 40 produces a reducing agent under the first calorific value corresponding to the partial oxidation condition by supplying an air amount smaller than the combustion condition, or generates combustion heat generated by supplying excess air than the reducing agent producing condition as the second calorific value condition. It is supplied to the soot filtration filter 30 to burn particulate matter.
  • FIG. 2 is a cross-sectional view of the plasma reactor applied to FIG. Referring to FIG. 2, the plasma reactor 40 generates a plasma to produce a reducing agent from the fuel and supplies it to the soot filtration filter 30, thereby removing the NOx contained in the exhaust gas from the soot filtration filter 30. .
  • the plasma reactor 40 may be configured to generate plasma with a rotating flow arc.
  • the plasma reactor 40 includes a housing 41 connected to the exhaust pipe 20, and an electrode 42 embedded in the housing 41 and forming a discharge gap G between the inner surface of the housing 41. ).
  • a rotating flow arc is generated in the discharge gap G using an oxidant (gas or gas containing oxygen) as the discharge gas.
  • an oxidant gas or gas containing oxygen
  • the fuel is reformed with a reducing agent of hydrogen and hydrocarbon (HC) species or burned to a high temperature and ejected out of the housing 41.
  • the insulating member 43 electrically insulates the housing 41 and the electrode 42, thereby enabling the generation of an arc in the discharge gap G.
  • the housing 41 includes an oxidant supply port 44 for supplying an oxidant between the insulating member 43 and the discharge gap G, and supplies a surge chamber 45 connected to the oxidant supply port 44 to the oxidant supply port. It is provided in the outskirts of (44).
  • the oxidant supply port 44 is formed in a tangential direction from the housing 41 toward the electrode 42 (not shown) to induce a rotational flow of the oxidant supplied into the housing 41.
  • the surge chamber 45 temporarily stores the supplied oxidant to make the amount of the oxidant rotated and supplied to the plurality of oxidant supply ports 44 uniform.
  • the housing 41 also includes a fuel supply port 46 in a cylinder corresponding to the end of the electrode 42.
  • the fuel supply port 46 may supply a part of the fuel supplied to the engine 10.
  • the plasma reactor 40 produces a reducing agent of hydrogen and hydrocarbon (HC) species in a plasma reaction by a rotary flow arc of the fuel supplied to the fuel supply port 46 and the oxidant supplied to the oxidant supply port 44, or the fuel By burning it to produce high temperature. Since the housing 41 of the plasma reactor 40 is connected to the exhaust pipe 20, the generated reducing agent or high temperature is supplied to the soot filtration filter 30 through the exhaust pipe 20.
  • HC hydrogen and hydrocarbon
  • FIG. 3 is a cross-sectional view of a diesel particulate filter (DPF) applied to FIG. 1.
  • DPF diesel particulate filter
  • a soot filtration filter (DPF) 30 incorporates a hydrocarbon selective reduction catalyst (HC SCR) 37 for circulating exhaust gas.
  • HC SCR hydrocarbon selective reduction catalyst
  • the soot filtration filter 30 includes a case 31 connected to the exhaust pipe 20, a ceramic carrier 32 embedded in the case 31 and forming an exhaust gas passage P, and both ends of the ceramic carrier 32. And a plug 33 which alternately closes.
  • the hydrocarbon selective reduction catalyst (HC SCR) 37 may be formed as a coating layer on the exhaust gas passage P wall of the ceramic carrier 32. Therefore, the hydrocarbon selective reduction catalyst 37 does not occupy a separate installation space and does not increase the volume of the soot filtration filter 30.
  • the hydrocarbon selective reduction catalyst (HC SCR) 37 may be formed of Ag / Al 2 O 3 or Cu / Zeolite.
  • a reducing agent of hydrogen and hydrocarbon (HC) species generated in the first calorific value in the plasma reactor 40 is supplied to the soot filtration filter 30 so that the hydrocarbon selective reduction catalyst (HC SCR) 37 is exhaust gas.
  • the NOx contained in the denitration acts to convert N 2.
  • the plasma reactor 40 and the hydrocarbon selective reduction catalyst 37 can reduce manufacturing costs and installation space by eliminating additional components for removing nitrogen oxides.
  • the high temperature generated by the second calorific value in the plasma reactor 40 is supplied to the soot filtration filter 30 to burn off particulate matter deposited in the exhaust gas passage P.
  • the exhaust gas aftertreatment apparatus 2 according to the second embodiment further includes a selective reduction catalyst (SCR) 60 in the exhaust gas aftertreatment apparatus 1 of the first embodiment.
  • SCR selective reduction catalyst
  • the selective reduction catalyst (SCR) 60 is installed in the exhaust pipe 20 at the rear of the soot filtration filter 30, and the denitrification action of the hydrocarbon selective reduction catalyst (HC SCR) 37 provided in the soot filtration filter 30 is provided. In addition, it is possible to give a denitrification ability to further remove residual nitrogen oxides.
  • the exhaust gas aftertreatment apparatus 3 includes a hydrocarbon selective reduction catalyst (HC SCR) provided in the exhaust pipe 20 through which the exhaust gas of the engine 10 flows, and the exhaust pipe 20. ) 37, nitrogen oxide storage catalyst (LNT) 50, and plasma reactor 40.
  • HC SCR hydrocarbon selective reduction catalyst
  • LNT nitrogen oxide storage catalyst
  • Hydrocarbon selective reduction catalyst (HC SCR) 37 is installed in the exhaust pipe 20 and is configured to remove nitrogen oxides contained in the exhaust gas.
  • the exhaust gas aftertreatment apparatus 1 according to the first embodiment is a type in which a hydrocarbon selective reduction catalyst (HC SCR) 37 is embedded in a soot filtration filter (DPF).
  • the aftertreatment device 3 does not include a soot filtration filter (DPF), and may be separately provided with a hydrocarbon selective reduction catalyst (HC SCR) 37.
  • the nitrogen oxide storage catalyst (LNT) 50 is installed in the exhaust pipe 20 behind the hydrocarbon selective reduction catalyst (HC SCR) 37, and the nitrogen oxide remaining in the exhaust gas via the hydrocarbon selective reduction catalyst 37 is provided. Remove it.
  • the nitrogen oxide storage catalyst (LNT) 50 further increases the denitrification rate of the hydrocarbon selective reduction catalyst (HC SCR) 37 and expands the denitrification temperature range throughout the exhaust aftertreatment apparatus.
  • the plasma reactor 40 is configured to reform the fuel to produce a reducing agent of hydrogen and hydrocarbon (HC) species, and is connected to the exhaust pipe 20 in front of the hydrocarbon selective reduction catalyst 37. Therefore, the reducing agent of hydrogen and hydrocarbon (HC) species produced in the plasma reactor 40 is supplied to the hydrocarbon selective reduction catalyst (HC SCR) 37 together with the exhaust gas.
  • the hydrocarbon produced in the plasma reactor 40 may have a carbon number of C1 to C5.
  • FIG. 6 is a flowchart illustrating an exhaust gas post-treatment method according to an embodiment of the present invention. 6 and the first embodiment, the exhaust gas post-treatment method of the embodiment includes the first step (ST1) to the fourth step (ST4).
  • step ST1 fuel and air are supplied to the plasma reactor 40 in the normal operation mode to reform the fuel at a first calorific value to produce a large amount of hydrocarbon (HC) species and hydrogen.
  • HC hydrocarbon
  • the first step ST1 may partially hydrogenate or decompose light oil to produce hydrocarbon (HC) species and hydrogen having a carbon number of C1 to C11 that functions as a reducing agent.
  • HC hydrocarbon
  • the produced hydrogen and hydrocarbon species are supplied onto a hydrocarbon selective reduction catalyst (HC SCR) 37 provided in the soot filtration filter (DPF) 30.
  • HC SCR hydrocarbon selective reduction catalyst
  • DPF soot filtration filter
  • the produced hydrogen and hydrocarbon species act as a reducing agent on a hydrocarbon selective reduction catalyst (HC SCR) 37 to convert nitrogen oxide (NOx) contained in exhaust gas to nitrogen (N 2). Reduction).
  • HC SCR hydrocarbon selective reduction catalyst
  • the particulate matter removing mode is switched.
  • the plasma reactor 40 produces a second calorific value at a temperature higher than the first calorific value of the normal operation mode.
  • the third step ST3 is a hydrocarbon selective reduction catalyst (HC SCR) of the particulate filter (DPF) 30 as a combustion reaction by increasing the ratio of fuel to air in the plasma reactor 40 compared to the normal operation mode.
  • the particulate matter (PM) accumulated on the (37) is burned and removed.
  • the combustion reaction may include a reaction close to the combustion reaction as a reaction capable of burning particulate matter.
  • the fourth step ST4 repeatedly switches between the normal operation mode and the particulate matter removal mode.
  • an engine control unit (not shown) controlling the engine 10 may switch the operation mode of the plasma reactor 40.
  • the exhaust gas post-treatment method according to another embodiment includes first step ST1 ′ to fourth step ST4 ′.
  • the first stage ST1 fuel and air are reformed by supplying fuel and air to the reformer 50 in lean combustion conditions to produce a large amount of hydrocarbon (HC) species and hydrogen.
  • the first stage ST1 may partially produce hydrogen (HC) species and hydrogen having a carbon number of C1 to C5 which functions as a reducing agent by partially oxidizing or cracking the diesel oil.
  • the second stage (ST2 ') feeds the produced hydrogen and hydrocarbon species onto a hydrocarbon selective reduction catalyst (HC SCR) which distributes the exhaust gas.
  • HC SCR hydrocarbon selective reduction catalyst
  • the modified hydrocarbon (HC) species and hydrogen are supplied to the hydrocarbon selective reduction catalyst 37 through the exhaust pipe 20 to denitrify the hydrocarbon selective reduction catalyst 37.
  • the hydrocarbon selective reduction catalyst (HC SCR) 37 is activated, the produced hydrogen and hydrocarbon species act as a reducing agent on the hydrocarbon selective reduction catalyst 37 to be included in the exhaust gas.
  • the third step ST3 is circulating exhaust gas via the hydrocarbon selective reduction catalyst 37 in a nitrogen oxide storage catalyst (LNT) 50 disposed behind the hydrocarbon selective reduction catalyst (HC SCR) 37. Let's do it.
  • LNT nitrogen oxide storage catalyst
  • HC SCR hydrocarbon selective reduction catalyst
  • the nitrogen oxide storage catalyst (LNT) 50 occludes the nitrogen oxide contained in the exhaust gas before the hydrocarbon selective reduction catalyst (HC SCR) 37 is activated.
  • the nitrogen oxide storage catalyst 50 absorbs NOx while the hydrocarbon selective reduction catalyst (HC SCR) 37 does not denitrify, or the residual nitrogen oxide which has not been reduced by the hydrocarbon selective reduction catalyst (HC SCR) 37. It is occluded and reduced to compensate for the denitrification performance of the hydrocarbon selective reduction catalyst (HC SCR) 37.
  • the period of the rich combustion conditions for the nitrogen oxide storage catalyst 50 which implements the rich combustion conditions may be significantly longer. That is, the time for driving in the rich combustion condition in the engine is shortened, and the time for driving in the lean burn condition becomes long.
  • the fourth step ST4 ' is switched to the rich combustion condition after the time set in the lean combustion condition, and then to the lean combustion condition after the engine operation.
  • FIG. 8 is a graph comparing the lean and excessive combustion conditions according to another embodiment of the present invention and the prior art. Referring to FIG. 8, during the same operation time of the engine 10, the prior art on the left shows a short period of rich combustion that removes nitrogen oxides from the nitrogen oxide storage catalyst.
  • the rich combustion cycle for removing nitrogen oxide from the nitrogen oxide storage catalyst 50 is very long. Therefore, in one embodiment, the fuel economy of the engine 10 may be improved, and the burden on the engine 10 may be reduced.
  • Figure 9 is a graph comparing the denitrification performance according to another embodiment of the present invention and the prior art.
  • the prior art hydrocarbon selective reduction catalyst (HC SCR) and urea water selective reduction catalyst (Urea SCR) have excellent denitrification performance at relatively high temperature and low denitrification performance at low temperature.
  • another embodiment of the present invention has excellent denitrification performance corresponding to the prior art at high temperature, and at the same time has excellent denitrification performance at low temperature (L1). That is, under the same operating temperature conditions, it will remove more nitrogen oxides than in the prior art.
  • another embodiment of the present invention may have a high denitrification performance since it occludes the nitrogen oxide in the nitrogen oxide storage catalyst (LNT) 50 before the hydrocarbon selective reduction catalyst (HC SCR) 37 is activated.
  • LNT nitrogen oxide storage catalyst
  • HC SCR hydrocarbon selective reduction catalyst
  • the manufacturing cost of the exhaust gas aftertreatment device is lowered, and the installation space may be reduced when applied to a vehicle.

Abstract

The objective of the present invention is to provide an exhaust gas post-processing device, which simplifies an exhaust gas post-processing system so as to lower manufacturing costs and reduce installation space. The exhaust gas post-processing device according to one embodiment of the present invention comprises: an exhaust pipe allowing the exhaust gas of an engine to flow therethrough; a hydrocarbon selective catalytic reduction (HC SCR) provided in the exhaust pipe so as to remove nitrogen oxides contained in the exhaust gas; and a plasma reactor connected to the exhaust pipe between the engine and the HC SCR so as to modify fuel, thereby generating a reducing agent of hydrogen and an HC species or combusting the fuel.

Description

배기가스 후처리 장치 및 그 방법 Exhaust gas aftertreatment device and method
본 발명은 배기가스의 후처리 시스템을 단순하게 하는 배기가스 후처리 장치 및 그 방법에 관한 것이다.The present invention relates to an exhaust gas aftertreatment apparatus and a method for simplifying the exhaust gas aftertreatment system.
환경규제가 강화되면서 다양한 배기가스 후처리 장치들이 제안되고 있다. 이 배기가스 후처리 장치들은 입자상물질(PM, particulate matter)과 질소산화물(NOx)을 각각 처리하는 장치들을 복합적으로 구비한다.As environmental regulations tighten, various exhaust gas aftertreatment devices have been proposed. These exhaust aftertreatment units have a combination of devices for treating particulate matter (PM) and nitrogen oxides (NOx), respectively.
이 경우 배기가스 후처리 장치의 구성이 복잡해지고 부피가 커지는 단점을 가진다. 예를 들면, 배기가스 후처리 장치는 암모니아를 공급하여 NOx를 제거하기 위하여 요소수 선택적환원촉매(SCR, selective catalytic reduction)를 구비할 수 있고, 이 경우, 요소수 저장 장치, 요소수 분해 장치 및 요소수 분사 장치를 추가적으로 필요로 한다.In this case, the configuration of the exhaust gas aftertreatment device is complicated and bulky. For example, the exhaust gas aftertreatment device may include a urea water selective catalytic reduction (SCR) for supplying ammonia to remove NOx. In this case, the urea water storage device, the urea water decomposition device and An additional urea water injection device is needed.
즉 엔진의 배기관에 디젤산화촉매(DOC, diesel oxidation catalyst), 매연여과필터(DPF, diesel particulate filter), 요소수 선택적환원촉매(SCR, selective catalytic reduction) 및 암모니아산화촉매(AOC, ammonia oxidation catalyst)가 순차적으로 설치되고, 요소수 저장 장치, 요소수 분해 장치 및 요소수 분사 장치가 순차적으로 설치되어 요소수 SCR에 연결된다.That is, diesel exhaust catalyst (DOC), diesel particulate filter (DPF), selective catalytic reduction (SCR) and ammonia oxidation catalyst (AOC) Are sequentially installed, and the urea water storage device, the urea water decomposition device and the urea water injection device are sequentially installed and connected to the urea water SCR.
따라서 배기가스 후처리 장치는 NOx를 제거하기 위하여 요소수 SCR에 연결되는 추가 장치들에 의하여 제작 비용을 상승시키고, 설치 공간을 크게 요구한다.Therefore, the exhaust gas aftertreatment device increases the manufacturing cost by additional devices connected to the urea water SCR to remove NOx, and requires a large installation space.
한편, 중, 소형 차량은 엔진의 배기가스에 포함된 질소산화물(NOx)을 제거하는 데, 질소산화물 흡장촉매(LNT, lean NOx trap)를 채택하거나, 요소수 선택적환원촉매(Urea SCR, selective catalytic reduction)를 채택하고 있다.On the other hand, small and medium-sized vehicles remove nitrogen oxides (NOx) contained in the exhaust gas of the engine, adopt a nitrogen oxide occlusion catalyst (LNT, lean NOx trap), or urea water selective catalytic catalyst (Urea SCR, selective catalytic) reduction is adopted.
그러나 유로(EURO) VI 또는 그 이후의 배기가스 제어, 특히 실제 구동 배출(RDE, real driving emission)과 같은 더 강화되는 규제에 대응하기 위하여, 기존 기술에 NOx를 추가로 제거할 수 있는 시스템을 구성할 필요가 있다.However, in order to respond to more stringent regulations such as EURO VI or later emissions control, especially real driving emissions (RDE), a system can be added that removes NOx from existing technology. Needs to be.
예를 들면, 중, 대형 차량에서도 요소수 선택적환원촉매(Urea SCR) 만큼의 NOx 제거율을 가지면서 보다 낮은 가격과 단순한 구조로 시스템을 구성할 필요가 있다.For example, even in medium and large vehicles, it is necessary to construct a system with a lower cost and simple structure while having a NOx removal rate equivalent to that of a urea water selective reduction catalyst (Urea SCR).
질소산화물 흡장촉매(LNT)는 엔진의 희박 연소(lean burn) 조건 중에 엔진의 특성 상 NOx를 흡장하고 있다가, 주기적으로 엔진에서 과농 연소(rich burn) 조건을 형성하여 탈착되는 NOx를 환원시킨다.The nitrogen oxide storage catalyst (LNT) occupies NOx due to the characteristics of the engine during lean burn conditions of the engine, and periodically forms a rich burn condition in the engine to reduce NOx that is desorbed.
과농 연소 조건시, 엔진에서 당량비 연소 후 연료를 추가적으로 분사하여 LNT에 환원제를 조성하거나, 배기관에 별도의 연료 인젝터를 설치하여 환원제로써 연료를 LNT의 전방에 분사하여 형성될 수 있다. 질소산화물 흡장촉매(LNT)를 적용하는 경우, 엔진의 빈번한 과농 연소 조건에 의하여, 연비가 저하되고 엔진 부담이 발생될 수 있다.In the case of over-combustion conditions, the fuel may be additionally injected after combustion of the equivalence ratio in the engine to form a reducing agent in the LNT, or by installing a separate fuel injector in the exhaust pipe and injecting the fuel in front of the LNT as the reducing agent. When the nitrogen oxide storage catalyst (LNT) is applied, fuel consumption may be lowered and engine burden may be generated due to frequent excessive combustion conditions of the engine.
또한 요소수 선택적환원촉매(Urea SCR)는 높은 탈질(De-NOx) 성능을 가지지만 220~230도씨 이상의 고온 조건에서 탈질 성능을 가지므로 저온 조건에서 낮은 NOx 처리 효율을 가진다.In addition, urea water selective reduction catalyst (Urea SCR) has high de-NOx performance but denitrification performance in high temperature condition of 220 ~ 230 ° C and lower NOx treatment efficiency in low temperature condition.
별도의 요소수 탱크(Urea tank)와 요소수 인젝터(urea injector)가 필요하고, 경우에 따라서 요소수에서 암모니아(NH3)를 분리하기 위한 가수분해(hydrolysis) 반응기가 필요할 수도 있다. 요소수 선택적환원촉매(Urea SCR)를 적용하는 경우, 시스템의 복잡성에 의하여, 장치의 가격이 높아지고, 차량에서 장치의 설치 공간이 커질 수 있다.A separate urea tank and a urea injector are required, and in some cases, a hydrolysis reactor for separating ammonia (NH 3 ) from urea water may be required. In the case of applying the urea selective reduction catalyst (Urea SCR), due to the complexity of the system, the price of the device may be increased and the installation space of the device may be increased in a vehicle.
본 발명의 일 측면은 배기가스의 후처리 시스템을 단순하게 하여 제작 비용을 낮추고 설치 공간을 줄이는 배기가스 후처리 장치를 제공하는 것이다. One aspect of the present invention is to provide an exhaust gas after-treatment apparatus that simplifies the exhaust gas after-treatment system to reduce manufacturing costs and reduce installation space.
또한, 엔진의 연비 악화 및 엔진의 부담을 줄이고, 높은 탈질율을 확보하며, 낮은 온도 조건에서도 탈질 성능을 가지는 배기가스 후처리 장치를 제공하는 것이다.In addition, it is to provide an exhaust gas after-treatment apparatus that reduces the fuel economy of the engine and the burden on the engine, secures a high denitrification rate, and has a denitrification performance even at low temperature conditions.
또한, 본 발명의 다른 측면은 상기 배기가스 후처리 장치를 이용하여 엔진의 배기가스를 후처리 하는 배기가스 후처리 방법을 제공하는 것이다.In addition, another aspect of the present invention to provide an exhaust gas after-treatment method for the post-treatment of the exhaust gas of the engine using the exhaust gas after-treatment device.
본 발명의 일 실시예에 따른 배기가스 후처리 장치는, 엔진의 배기가스를 유통시키는 배기관, 상기 배기관에 구비되어 배기가스에 포함된 질소산화물을 제거하는 탄화수소 선택적환원촉매(HC SCR), 및 상기 엔진과 상기 탄화수소 선택적환원촉매 사이의 상기 배기관에 연결되어, 연료를 개질하여 수소 및 탄화수소(HC) 종(species)의 환원제를 생산하거나 연료를 연소시키는 플라즈마 반응기를 포함한다.Exhaust gas after-treatment apparatus according to an embodiment of the present invention, an exhaust pipe for circulating the exhaust gas of the engine, a hydrocarbon selective reduction catalyst (HC SCR) provided in the exhaust pipe to remove nitrogen oxides contained in the exhaust gas, and the And a plasma reactor connected to the exhaust pipe between the engine and the hydrocarbon selective reduction catalyst to reform fuel to produce a reductant of hydrogen and hydrocarbon (HC) species or to combust the fuel.
상기 배기관에 구비되어 배기가스에 포합된 입자상물질(PM, particulate matter)을 포집하여 연소시켜 제거하는 매연여과필터(DPF, diesel particulate filter)를 더 포함하며, 상기 매연여과필터는 상기 탄화수소 선택적환원촉매를 내장한다.The exhaust pipe further includes a particulate particulate filter (DPF, diesel particulate filter) for trapping and burning particulate matter (PM, particulate matter) contained in the exhaust gas, the particulate filter is the hydrocarbon selective reduction catalyst It is built.
상기 탄화수소는 C1 내지 C11의 탄소 수를 가질 수 있다.The hydrocarbon may have a carbon number of C1 to C11.
상기 매연여과필터는 상기 배기관에 연결되는 케이스, 상기 케이스에 내장되고 배기가스 통로를 형성하는 세라믹 담체, 및 상기 세라믹 담체의 양단을 교호적으로 폐쇄하는 플러그를 포함하고, 상기 탄화수소 선택적환원촉매(HC SCR)는 상기 세라믹 담체의 배기가스 통로 벽에 코팅층으로 형성될 수 있다.The soot filtration filter includes a case connected to the exhaust pipe, a ceramic carrier embedded in the case and forming an exhaust gas passage, and a plug alternately closing both ends of the ceramic carrier, and the hydrocarbon selective reduction catalyst (HC). SCR) may be formed as a coating on the exhaust gas passage wall of the ceramic carrier.
본 발명의 일 실시예에 따른 배기가스 후처리 장치는 상기 매연여과필터의 후방에서 상기 배기관에 구비되는 선택적환원촉매(SCR)를 더 포함할 수 있다.Exhaust gas after-treatment apparatus according to an embodiment of the present invention may further include a selective reduction catalyst (SCR) provided in the exhaust pipe at the rear of the smoke filter.
본 발명의 다른 실시예에 따른 배기가스 후처리 장치는 상기 탄화수소 선택적환원촉매의 후방에서 상기 배기관에 구비되어, 상기 탄화수소 선택적환원촉매를 경유한 배기가스에 잔류하는 질소산화물을 제거하는 질소산화물 흡장촉매(LNT)를 더 포함할 수 있다.Exhaust gas after-treatment apparatus according to another embodiment of the present invention is provided in the exhaust pipe behind the hydrocarbon selective reduction catalyst, the nitrogen oxide storage catalyst for removing the nitrogen oxide remaining in the exhaust gas via the hydrocarbon selective reduction catalyst It may further include (LNT).
상기 탄화수소는 C1 내지 C5의 탄소 수를 가질 수 있다.The hydrocarbon may have a carbon number of C1 to C5.
본 발명의 일 실시예에 따른 배기가스 후처리 방법은, 평상 운전 모드에서 플라즈마 반응기에 연료와 공기를 공급하여 제1발열량(부분 산화 조건)으로 연료를 개질하여 선택적으로 탄화수소(HC) 종(species)과 수소를 다량 생산하는 제1단계, 생산된 수소와 탄화수소 종들을 매연여과필터(DPF)에 구비된 탄화수소 선택적환원촉매(HC SCR, selective catalytic reduction) 상에 공급하는 제2단계, 상기 평상 운전 모드에서 설정된 시간 경과 또는 상기 매연여과필터 상에 쌓인 입자상 물질에 의한 배기관 내의 차압이 설정압 이상으로 발생할 시 입자상물질(PM, particulate matter) 제거 모드로 전환되어, 상기 플라즈마 반응기에서 상기 평상 운전 모드의 상기 제1발열량보다 높은 제2발열량을 생산하는 제3단계, 및 상기 평상 운전 모드와 상기 입자상물질(PM) 제거 모드를 반복적으로 전환하는 제4단계를 포함한다.Exhaust gas after-treatment method according to an embodiment of the present invention, by supplying fuel and air to the plasma reactor in the normal operation mode to reform the fuel to the first calorific value (partial oxidation conditions) selectively hydrocarbon (HC) species (species) ) And a first step of producing a large amount of hydrogen, a second step of supplying the produced hydrogen and hydrocarbon species on a hydrocarbon selective reduction catalyst (HC SCR) provided in the soot filtration filter (DPF), the normal operation When the differential pressure in the exhaust pipe due to the elapsed time set in the mode or the particulate matter accumulated on the particulate filter exceeds a predetermined pressure, the particulate matter (PM) removal mode is switched to the particulate matter (PM) removal mode. A third step of producing a second calorific value higher than the first calorific value, and repeatedly the normal operation mode and the particulate matter (PM) removal mode And a fourth step of switching to.
상기 제1단계는 경유를 부분 산화 또는 분해하여 환원제 기능을 하는 C1~C11의 탄소 개수를 가지는 탄화수소(HC) 종과 수소를 생산할 수 있다.The first step may produce hydrocarbon (HC) species having a carbon number of C 1 to C 11 and hydrogen to partially oxidize or decompose light oil to function as a reducing agent.
상기 제2단계는 생산된 수소와 탄화수소 종들은 상기 탄화수소 선택적환원촉매(HC SCR) 상에서 환원제로 작용하여, 배기가스에 포함된 질소산화물(NOx)를 질소(N2)로 환원시킬 수 있다.In the second step, the produced hydrogen and hydrocarbon species may act as a reducing agent on the hydrocarbon selective reduction catalyst (HC SCR) to reduce nitrogen oxide (NOx) included in exhaust gas to nitrogen (N 2 ).
상기 제3단계는, 상기 평상 운전 모드에 비하여 상기 플라즈마 반응기에 공기에 대한 연료의 비율을 높여서 연소 반응으로 상기 매연여과필터(DPF)의 상기 탄화수소 선택적환원촉매(HC SCR) 상에 쌓인 입자상물질(PM)을 연소시켜 제거할 수 있다.In the third step, the particulate matter accumulated on the hydrocarbon selective reduction catalyst (HC SCR) of the particulate filter (DPF) by a combustion reaction by increasing the ratio of fuel to air in the plasma reactor compared to the normal operation mode ( PM) can be removed by burning.
본 발명의 다른 실시예에 따른 배기가스 후처리 방법은, 희박 연소 조건에서 리포머에 연료와 공기를 공급하여 연료를 개질하여 탄화수소(HC) 종(species)과 수소를 다량 생산하는 제1´단계, 생산된 수소와 탄화수소 종들을 배기가스를 유통시키는 탄화수소 선택적환원촉매(HC SCR, selective catalytic reduction) 상에 공급하는 제2´단계, 탄화수소 선택적환원촉매(HC SCR) 후방에 배치되는 질소산화물 흡장촉매(LNT)에서 상기 탄화수소 선택적환원촉매를 경유한 배기가스를 유통시키는 제3´단계, 및 희박 연소 조건에서 설정된 시간 경과시 농후 연소 조건으로 전환되어 엔진 운전 후, 희박 연소 조건으로 전환하는 제4´단계를 포함한다.Exhaust gas after-treatment method according to another embodiment of the present invention, the first step of producing a large amount of hydrocarbon (HC) species and hydrogen by reforming the fuel by supplying fuel and air to the reformer in lean combustion conditions, The second step of supplying the produced hydrogen and hydrocarbon species to the selective catalytic reduction (HC SCR) for circulating the exhaust gas, the nitrogen oxide storage catalyst disposed behind the hydrocarbon selective reduction catalyst (HC SCR) ( LNT) circulating the exhaust gas via the hydrocarbon selective reduction catalyst in step 3 ′, and the fourth step of switching to lean combustion conditions after the engine operation is switched to rich combustion conditions after a predetermined time in lean combustion conditions. It includes.
상기 제1´단계는 경유를 부분 산화 또는 분해하여(cracking) 환원제 기능을 하는 수소와 C1~C5의 탄소 개수를 가지는 탄화수소(HC) 종과 수소를 생산할 수 있다.In the first step, the hydrogen and the hydrocarbon (HC) species having a carbon number of C1 to C5 and hydrogen acting as a reducing agent may be produced by partially oxidizing or cracking the diesel oil.
상기 제2´단계는 상기 탄화수소 선택적환원촉매(HC SCR)가 활성화 된 후, 생산된 수소와 탄화수소 종들이 상기 탄화수소 선택적환원촉매(HC SCR) 상에서 환원제로 작용하여, 배기가스에 포함된 질소산화물(NOx)을 질소(N2)로 환원시킬 수 있다.In the second step, after the hydrocarbon selective reduction catalyst (HC SCR) is activated, the produced hydrogen and hydrocarbon species act as a reducing agent on the hydrocarbon selective reduction catalyst (HC SCR), so that the nitrogen oxide contained in the exhaust gas ( NOx) can be reduced to nitrogen (N 2 ).
상기 제3´단계는, 상기 탄화수소 선택적환원촉매(HC SCR)가 활성화 되기 전, 상기 질소산화물 흡장촉매(LNT)에서 배기가스에 포함된 질소산화물을 흡장할 수 있다.In the third step, before the hydrocarbon selective reduction catalyst HC SCR is activated, the nitrogen oxide contained in the exhaust gas may be occluded in the nitrogen oxide storage catalyst LNT.
이와 같이 본 발명의 일 실시예는, 매연여과필터에 탄화수소 선택적환원촉매를 구비하고, 플라즈마 반응기로 연료를 개질하여 선택적으로 수소 및 탄화수소 종(species)의 환원제를 생산하거나 고온을 생산하므로 평상 운전 모드에서 개질된 환원제로 탄화수소 선택적환원촉매에서 질소산화물(NOx)을 제거하고, 입자상물질 제거 모드에서 고온으로 매연여과필터의 입자상물질을 산화 제거할 수 있다.As such, one embodiment of the present invention includes a hydrocarbon selective reduction catalyst in a soot filtration filter, and reforms the fuel in a plasma reactor to selectively produce hydrogen and hydrocarbon species (repeating agents) or produce a high temperature. It is possible to remove nitrogen oxides (NOx) from the hydrocarbon selective reduction catalyst with a reforming agent modified at, and to oxidatively remove particulate matter of the soot filtration filter at high temperature in the particulate matter removal mode.
따라서 본 발명의 일 실시예는 배기가스에 포함된 질소산화물(NOx)을 제거하기 위한 종래 기술의 추가 장치들을 제거할 수 있다. 즉, 배기가스 후처리 장치의 제작 비용이 낮아지고, 차량에 적용시 설치 공간이 줄어들 수 있다.Thus, one embodiment of the present invention can remove additional devices of the prior art for removing NOx contained in exhaust gas. That is, the manufacturing cost of the exhaust gas aftertreatment device is lowered and the installation space may be reduced when applied to a vehicle.
또한, 본 발명의 일 실시예는, 배기관에 탄화수소 선택적환원촉매(HC SCR)와 질소산화물 흡장촉매(LNT)를 순차적으로 구비하고, 리포머에서 개질된 수소와 탄화수소 종의 환원제를 탄화수소 선택적환원촉매(HC SCR)에 공급하여 질소화물을 제거하므로 엔진의 연비 악화 및 엔진의 부담을 줄일 수 있다.In addition, an embodiment of the present invention, the exhaust pipe is equipped with a hydrocarbon selective reduction catalyst (HC SCR) and nitrogen oxide storage catalyst (LNT) in sequence, and the reducing agent of the hydrogen and hydrocarbon species modified in the reformer is a hydrocarbon selective reduction catalyst ( HC SCR) to remove nitrogen oxides, thereby reducing the fuel economy and engine burden.
즉 일 실시예는 일상 운전시, 탄화수소 선택적환원촉매(HC SCR)가 활성화 되어 엔진에서 배출되는 질소산화물을 환원처리 하고, 탄화수소 선택적환원촉매(HC SCR)에서 환원되지 못한 잔류 질소산화물만을 질소산화물 흡장촉매(LNT)에서 흡장하여 질소산화물 흡장촉매의 환원 운전 주기를 획기적으로 늘릴 수 있고, 또한 냉시동 조건과 같이 탄화수소 선택적환원촉매(HC SCR)가 활성화 되지 않은 저온 조건에서는 질소산화물 흡장촉매를 통하여 질소산화물을 흡장하여 어떤 조건에서도 배기가스 내 질소산화물을 제거할 수 있는 수단을 확보하게 된다. 즉, 낮은 온도 조건에서도 탈질 성능이 확보될 수 있다.That is, in one embodiment, the hydrocarbon selective reduction catalyst (HC SCR) is activated during daily operation to reduce nitrogen oxide discharged from the engine, and only nitrogen oxide that is not reduced in the hydrocarbon selective reduction catalyst (HC SCR) is occluded. It is possible to significantly increase the reduction operation cycle of the nitrogen oxide storage catalyst by occluding in the catalyst (LNT), and also through nitrogen oxide storage catalyst in low temperature conditions where the hydrocarbon selective reduction catalyst (HC SCR) is not activated, such as cold startup. By occluding the oxide, it is possible to secure a means for removing nitrogen oxides in the exhaust gas under any conditions. That is, the denitrification performance can be ensured even at low temperature conditions.
이러한 과정을 통해 기존 산화물 제거 장치에 비해 엔진의 연비가 개선되고, 엔진의 부담이 경감될 수 있다.Through this process, the fuel efficiency of the engine can be improved and the burden on the engine can be reduced compared to the existing oxide removing device.
도 1은 본 발명의 제1실시예에 따른 배기가스 후처리 장치의 구성도이다.1 is a block diagram of an exhaust gas aftertreatment apparatus according to a first embodiment of the present invention.
도 2는 도 1에 적용되는 플라즈마 반응기의 단면도이다.2 is a cross-sectional view of the plasma reactor applied to FIG.
도 3은 도 1에 적용되는 매연여과필터(DPF, diesel particulate filter)의 단면도이다.3 is a cross-sectional view of a diesel particulate filter (DPF) applied to FIG. 1.
도 4는 본 발명의 제2실시예에 따른 배기가스 후처리 장치의 구성도이다.4 is a block diagram of an exhaust gas aftertreatment apparatus according to a second embodiment of the present invention.
도 5는 본 발명의 제3실시예에 따른 배기가스 후처리 장치의 구성도이다.5 is a configuration diagram of an exhaust gas aftertreatment apparatus according to a third exemplary embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 배기가스 후처리 방법을 도시한 순서도이다.6 is a flowchart illustrating an exhaust gas post-treatment method according to an embodiment of the present invention.
도 7은 본 발명의 다른 일 실시예에 따른 배기가스 후처리 방법의 순서도이다.7 is a flow chart of the exhaust gas after-treatment method according to another embodiment of the present invention.
도 8은 종래기술과 본 발명의 다른 일 실시예에 따른 희박, 과농 연소 조건을 비교한 그래프이다.8 is a graph comparing the lean and excessive combustion conditions according to another embodiment of the present invention and the prior art.
도 9는 종래기술과 본 발명의 다른 일 실시예에 따른 탈질 성능을 비교한 그래프이다.Figure 9 is a graph comparing the denitrification performance according to another embodiment of the present invention and the prior art.
- 부호의 설명 -Description of the sign
1, 2, 3: 배기가스 후처리 장치 10: 엔진1, 2, 3: exhaust gas aftertreatment device 10: engine
20: 배기관 30: 매연여과필터(DPF)20: exhaust pipe 30: soot filtration filter (DPF)
31: 케이스 32: 세라믹 담체31: case 32: ceramic carrier
33: 플러그 37: 탄화수소 선택적환원촉매(HC SCR)33: Plug 37: Hydrocarbon selective reduction catalyst (HC SCR)
40: 플라즈마 반응기 41: 하우징40: plasma reactor 41: housing
42: 전극 43: 절연부재42: electrode 43: insulating member
44: 산화제 공급구 45: 서지 챔버44: oxidant supply port 45: surge chamber
46: 연료 공급구 50: 질소산화물 흡장촉매(LNT)46: fuel supply port 50: nitrogen oxide storage catalyst (LNT)
60: 선택적환원촉매(SCR)60: selective reduction catalyst (SCR)
G: 방전갭 P: 배기가스 통로G: discharge gap P: exhaust gas passage
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 붙였다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like elements throughout the specification.
도 1은 본 발명의 제1실시예에 따른 배기가스 후처리 장치의 구성도이다. 도 1을 참조하면, 제1실시예에 따른 배기가스 후처리 장치(1)는 엔진(10)의 배기가스를 유통시키는 배기관(20), 배기관(20)에 구비되는 매연여과필터(DPF, diesel particulate filter)(30) 및 플라즈마 반응기(40)를 포함한다.1 is a block diagram of an exhaust gas aftertreatment apparatus according to a first embodiment of the present invention. Referring to FIG. 1, the exhaust gas aftertreatment apparatus 1 according to the first embodiment includes an exhaust pipe 20 through which exhaust gas from the engine 10 flows, and a soot filtration filter (DPF, diesel) provided in the exhaust pipe 20. particulate filter 30 and plasma reactor 40.
매연여과필터(30)는 배기관(20)에 설치되어 배기가스를 유통시키면서 배기가스에 포합된 입자상물질(PM, particulate matter)을 포집한다. 또한 매연여과필터(30)는 플라즈마 반응기(40)에서 공급하는 수소 및 탄화수소(HC) 종(species)의 환원제로 질소산화물을 제거하고, 플라즈마 반응기(40)에서 공급하는 고온으로 입자상물질을 연소시켜 제거할 수 있도록 구성된다.The soot filtration filter 30 is installed in the exhaust pipe 20 to collect particulate matter (PM) contained in the exhaust gas while circulating the exhaust gas. In addition, the soot filtration filter 30 removes nitrogen oxides with a reducing agent of hydrogen and hydrocarbon (HC) species supplied from the plasma reactor 40, and burns particulate matter at a high temperature supplied from the plasma reactor 40. It is configured to be removable.
플라즈마 반응기(40)는 엔진(10)과 매연여과필터(30) 사이의 배기관(20)에 연결되어 연료를 개질하여 수소 및 탄화수소(HC) 종(species)의 환원제를 생산하거나, 연료를 연소시켜 고온을 생산할 수 있도록 구성된다. 예를 들면, 탄화수소 종은 C1 내지 C11의 탄소 수를 가질 수 있다. 플라즈마 반응기(40)는 연소 조건보다 작은 공기량을 공급하여 부분 산화 조건에 해당하는 제1발열량 조건으로 환원제를 생산하거나, 환원제 생산 조건보다 과량의 공기를 공급하여 발생한 연소열을 제2발열량 조건으로 생성하여 매연여과필터(30)에 공급하여 입자상물질을 연소시킨다.The plasma reactor 40 is connected to the exhaust pipe 20 between the engine 10 and the soot filtration filter 30 to reform the fuel to produce a reducing agent of hydrogen and hydrocarbon species, or to burn the fuel. It is configured to produce high temperatures. For example, the hydrocarbon species may have a carbon number of C1 to C11. The plasma reactor 40 produces a reducing agent under the first calorific value corresponding to the partial oxidation condition by supplying an air amount smaller than the combustion condition, or generates combustion heat generated by supplying excess air than the reducing agent producing condition as the second calorific value condition. It is supplied to the soot filtration filter 30 to burn particulate matter.
도 2는 도 1에 적용되는 플라즈마 반응기의 단면도이다. 도 2를 참조하면, 플라즈마 반응기(40)는 플라즈마를 발생시켜 연료로부터 환원제를 생산하여 매연여과필터(30)에 공급하므로 매연여과필터(30)에서 배기가스에 포함된 NOx를 제거할 수 있게 한다.2 is a cross-sectional view of the plasma reactor applied to FIG. Referring to FIG. 2, the plasma reactor 40 generates a plasma to produce a reducing agent from the fuel and supplies it to the soot filtration filter 30, thereby removing the NOx contained in the exhaust gas from the soot filtration filter 30. .
플라즈마 반응기(40)는 회전 유동 아크로 플라즈마를 발생시키도록 구성될 수 있다. 일례를 들면, 플라즈마 반응기(40)는 배기관(20)에 연결되는 하우징(41)과, 하우징(41)에 내장되고 하우징(41) 내면과의 사이에 방전갭(G)을 형성하는 전극(42)을 포함한다.The plasma reactor 40 may be configured to generate plasma with a rotating flow arc. For example, the plasma reactor 40 includes a housing 41 connected to the exhaust pipe 20, and an electrode 42 embedded in the housing 41 and forming a discharge gap G between the inner surface of the housing 41. ).
하우징(41)이 전기적으로 접지되고, 전극(42)에 전압(HV)이 인가되면, 방전갭(G)에서 산화제(공기 또는 산소를 포함하는 기체)를 방전기체로 하여 회전 유동 아크가 발생된다. 이 회전 유동 아크에 연료를 공급함으로써 연료가 수소 및 탄화수소(HC) 종(species)의 환원제로 개질되거나 고온으로 연소되어 하우징(41) 밖으로 분출된다. When the housing 41 is electrically grounded and a voltage HV is applied to the electrode 42, a rotating flow arc is generated in the discharge gap G using an oxidant (gas or gas containing oxygen) as the discharge gas. By supplying fuel to this rotating flow arc, the fuel is reformed with a reducing agent of hydrogen and hydrocarbon (HC) species or burned to a high temperature and ejected out of the housing 41.
하우징(41)의 일측은 절연부재(43)를 개재하여 밀폐되며, 절연부재(43)에 전극(42)이 설치된다. 따라서 절연부재(43)는 하우징(41)과 전극(42)을 전기적으로 절연시키므로 방전갭(G)에서 아크의 발생을 가능하게 한다.One side of the housing 41 is sealed through the insulating member 43, and the electrode 42 is installed in the insulating member 43. Therefore, the insulating member 43 electrically insulates the housing 41 and the electrode 42, thereby enabling the generation of an arc in the discharge gap G.
하우징(41)은 절연부재(43)와 방전갭(G) 사이에서 산화제를 공급하는 산화제 공급구(44)을 구비하고, 산화제 공급구(44)에 연결되는 서지 챔버(45)를 산화제 공급구(44)의 외곽에 구비한다.The housing 41 includes an oxidant supply port 44 for supplying an oxidant between the insulating member 43 and the discharge gap G, and supplies a surge chamber 45 connected to the oxidant supply port 44 to the oxidant supply port. It is provided in the outskirts of (44).
산화제 공급구(44)는 하우징(41)에서 전극(42)을 향하여 접선 방향으로 형성되어(미도시) 하우징(41) 내부로 공급되는 산화제의 회전 유동을 유도한다. 서지 챔버(45)는 공급되는 산화제를 일시적으로 저류시켜, 복수의 산화제 공급구(44)로 회전 공급되는 산화제량을 균일하게 한다.The oxidant supply port 44 is formed in a tangential direction from the housing 41 toward the electrode 42 (not shown) to induce a rotational flow of the oxidant supplied into the housing 41. The surge chamber 45 temporarily stores the supplied oxidant to make the amount of the oxidant rotated and supplied to the plurality of oxidant supply ports 44 uniform.
또한 하우징(41)은 전극(42)의 끝 부분에 대응하는 원통에 연료 공급구(46)를 구비한다. 연료 공급구(46)는 엔진(10)에 공급되는 연료의 일부를 공급할 수도 있다.The housing 41 also includes a fuel supply port 46 in a cylinder corresponding to the end of the electrode 42. The fuel supply port 46 may supply a part of the fuel supplied to the engine 10.
플라즈마 반응기(40)는 연료 공급구(46)로 공급되는 연료와 산화제 공급구(44)로 공급되는 산화제의 회전 유동 아크에 의하여 플라즈마 반응으로 수소 및 탄화수소(HC) 종의 환원제를 생산하거나, 연료를 연소하여 고온을 생산한다. 플라즈마 반응기(40)의 하우징(41)이 배기관(20)에 연결되므로 생성된 환원제 또는 고온은 배기관(20)을 통하여 매연여과필터(30)로 공급된다.The plasma reactor 40 produces a reducing agent of hydrogen and hydrocarbon (HC) species in a plasma reaction by a rotary flow arc of the fuel supplied to the fuel supply port 46 and the oxidant supplied to the oxidant supply port 44, or the fuel By burning it to produce high temperature. Since the housing 41 of the plasma reactor 40 is connected to the exhaust pipe 20, the generated reducing agent or high temperature is supplied to the soot filtration filter 30 through the exhaust pipe 20.
도 3은 도 1에 적용되는 매연여과필터(DPF, diesel particulate filter)의 단면도이다. 도 3을 참조하면, 매연여과필터(DPF)(30)는 배기가스를 유통시키는 탄화수소 선택적환원촉매(HC SCR, selective catalytic reduction)(37)를 내장한다.3 is a cross-sectional view of a diesel particulate filter (DPF) applied to FIG. 1. Referring to FIG. 3, a soot filtration filter (DPF) 30 incorporates a hydrocarbon selective reduction catalyst (HC SCR) 37 for circulating exhaust gas.
매연여과필터(30)는 배기관(20)에 연결되는 케이스(31), 케이스(31)에 내장되고 배기가스 통로(P)를 형성하는 세라믹 담체(32), 및 세라믹 담체(32)의 양단을 교호적으로 폐쇄하는 플러그(33)를 포함한다.The soot filtration filter 30 includes a case 31 connected to the exhaust pipe 20, a ceramic carrier 32 embedded in the case 31 and forming an exhaust gas passage P, and both ends of the ceramic carrier 32. And a plug 33 which alternately closes.
탄화수소 선택적환원촉매(HC SCR)(37)는 세라믹 담체(32)의 배기가스 통로(P) 벽에 코팅층으로 형성될 수 있다. 따라서 탄화수소 선택적환원촉매(37)는 별도의 설치 공간을 차지하지 않고, 또한 매연여과필터(30)의 부피를 증대시키지 않는다. 예를 들면, 탄화수소 선택적환원촉매(HC SCR)(37)는 Ag/Al2O3 또는 Cu/Zeolite로 형성될 수 있다.The hydrocarbon selective reduction catalyst (HC SCR) 37 may be formed as a coating layer on the exhaust gas passage P wall of the ceramic carrier 32. Therefore, the hydrocarbon selective reduction catalyst 37 does not occupy a separate installation space and does not increase the volume of the soot filtration filter 30. For example, the hydrocarbon selective reduction catalyst (HC SCR) 37 may be formed of Ag / Al 2 O 3 or Cu / Zeolite.
평상 운전 모드시, 플라즈마 반응기(40)에서 제1발열량으로 생성되는 수소 및 탄화수소(HC) 종의 환원제가 매연여과필터(30)로 공급되어 탄화수소 선택적환원촉매(HC SCR)(37)는 배기가스에 포함된 NOx를 N2로 변환시키는 탈질 작용한다. 플라즈마 반응기(40) 및 탄화수소 선택적환원촉매(37)는 질소산화물을 제거하기 위한 추가 구성들을 제거함으로써, 제조 가격 및 설치 공간을 줄일 수 있다.In the normal operation mode, a reducing agent of hydrogen and hydrocarbon (HC) species generated in the first calorific value in the plasma reactor 40 is supplied to the soot filtration filter 30 so that the hydrocarbon selective reduction catalyst (HC SCR) 37 is exhaust gas. the NOx contained in the denitration acts to convert N 2. The plasma reactor 40 and the hydrocarbon selective reduction catalyst 37 can reduce manufacturing costs and installation space by eliminating additional components for removing nitrogen oxides.
입자상물질 제거 모드시, 플라즈마 반응기(40)에서 제2발열량으로 생성되는 고온은 매연여과필터(30)로 공급되어 배기가스 통로(P)에 퇴적된 입자상물질을 연소시켜 제거한다.In the particulate matter removing mode, the high temperature generated by the second calorific value in the plasma reactor 40 is supplied to the soot filtration filter 30 to burn off particulate matter deposited in the exhaust gas passage P.
이하, 본 발명의 제2실시예에 대하여 설명한다. 제1실시예와 동일한 구성에 대하여 설명을 생략하고 서로 다른 구성에 대하여 설명한다.Hereinafter, a second embodiment of the present invention will be described. The same configuration as that of the first embodiment will be omitted, and different configurations will be described.
도 4는 본 발명의 제2실시예에 따른 배기가스 후처리 장치의 구성도이다. 도 4를 참조하면, 제2실시예에 따른 배기가스 후처리 장치(2)는 제1실시예의 배기가스 후처리 장치(1)에 선택적환원촉매(SCR)(60)를 더 포함한다.4 is a block diagram of an exhaust gas aftertreatment apparatus according to a second embodiment of the present invention. Referring to FIG. 4, the exhaust gas aftertreatment apparatus 2 according to the second embodiment further includes a selective reduction catalyst (SCR) 60 in the exhaust gas aftertreatment apparatus 1 of the first embodiment.
선택적환원촉매(SCR)(60)는 매연여과필터(30)의 후방에서 배기관(20)에 설치되어, 매연여과필터(30)에 구비된 탄화수소 선택적환원촉매(HC SCR)(37)의 탈질 작용에 더하여, 잔류하는 질소산화물을 추가적으로 제거하는 탈질 성능을 부여할 수 있다.The selective reduction catalyst (SCR) 60 is installed in the exhaust pipe 20 at the rear of the soot filtration filter 30, and the denitrification action of the hydrocarbon selective reduction catalyst (HC SCR) 37 provided in the soot filtration filter 30 is provided. In addition, it is possible to give a denitrification ability to further remove residual nitrogen oxides.
이하, 본 발명의 제3실시예에 대하여 설명한다. 제1실시예와 동일한 구성에 대하여 설명을 생략하고 서로 다른 구성에 대하여 설명한다.Hereinafter, a third embodiment of the present invention will be described. The same configuration as that of the first embodiment will be omitted, and different configurations will be described.
도 5는 본 발명의 제3실시예에 따른 배기가스 후처리 장치의 구성도이다. 도 5를 참조하면, 제3실시예에 따른 배기가스 후처리 장치(3)는 엔진(10)의 배기가스를 유통시키는 배기관(20), 배기관(20)에 구비되는 탄화수소 선택적환원촉매(HC SCR)(37), 질소산화물 흡장촉매(LNT)(50), 및 플라즈마 반응기(40)를 포함한다.5 is a configuration diagram of an exhaust gas aftertreatment apparatus according to a third exemplary embodiment of the present invention. Referring to FIG. 5, the exhaust gas aftertreatment apparatus 3 according to the third embodiment includes a hydrocarbon selective reduction catalyst (HC SCR) provided in the exhaust pipe 20 through which the exhaust gas of the engine 10 flows, and the exhaust pipe 20. ) 37, nitrogen oxide storage catalyst (LNT) 50, and plasma reactor 40.
탄화수소 선택적환원촉매(HC SCR)(37)는 배기관(20)에 설치되어 배기가스에 포함된 질소산화물을 제거하도록 구성된다. 전술한 제1실시예의 배기가스 후처리 장치(1)는 매연여과필터(DPF)에 탄화수소 선택적환원촉매(HC SCR)(37)가 내장된 형태이지만, 그와 달리 제3실시예에 따른 배기가스 후처리 장치(3)는 매연여과필터(DPF)가 포함되지 않고, 탄화수소 선택적환원촉매(HC SCR)(37)가 별도로 구비될 수 있다.Hydrocarbon selective reduction catalyst (HC SCR) 37 is installed in the exhaust pipe 20 and is configured to remove nitrogen oxides contained in the exhaust gas. The exhaust gas aftertreatment apparatus 1 according to the first embodiment is a type in which a hydrocarbon selective reduction catalyst (HC SCR) 37 is embedded in a soot filtration filter (DPF). The aftertreatment device 3 does not include a soot filtration filter (DPF), and may be separately provided with a hydrocarbon selective reduction catalyst (HC SCR) 37.
질소산화물 흡장촉매(LNT)(50)는 탄화수소 선택적환원촉매(HC SCR)(37)의 후방에서 배기관(20)에 설치되어, 탄화수소 선택적환원촉매(37)를 경유한 배기가스에 잔류하는 질소산화물을 제거한다.The nitrogen oxide storage catalyst (LNT) 50 is installed in the exhaust pipe 20 behind the hydrocarbon selective reduction catalyst (HC SCR) 37, and the nitrogen oxide remaining in the exhaust gas via the hydrocarbon selective reduction catalyst 37 is provided. Remove it.
질소산화물 흡장촉매(LNT)(50)는 탄화수소 선택적환원촉매(HC SCR)(37)의 탈질율을 더 높이고, 배기가스 후처리 장치 전체에서의 탈질 가능한 온도 범위를 확장한다.The nitrogen oxide storage catalyst (LNT) 50 further increases the denitrification rate of the hydrocarbon selective reduction catalyst (HC SCR) 37 and expands the denitrification temperature range throughout the exhaust aftertreatment apparatus.
플라즈마 반응기(40)는 연료를 개질하여 수소 및 탄화수소(HC) 종(species)의 환원제를 생산하도록 구성되어, 탄화수소 선택적환원촉매(37)의 전방에서 배기관(20)에 연결된다. 따라서 플라즈마 반응기(40)에서 생산된 수소 및 탄화수소(HC) 종(species)의 환원제는 배기가스와 함께 탄화수소 선택적환원촉매(HC SCR)(37)로 공급된다. 예를 들면, 플라즈마 반응기(40)에서 생산된 탄화수소는 C1 내지 C5의 탄소 수를 가질 수 있다.The plasma reactor 40 is configured to reform the fuel to produce a reducing agent of hydrogen and hydrocarbon (HC) species, and is connected to the exhaust pipe 20 in front of the hydrocarbon selective reduction catalyst 37. Therefore, the reducing agent of hydrogen and hydrocarbon (HC) species produced in the plasma reactor 40 is supplied to the hydrocarbon selective reduction catalyst (HC SCR) 37 together with the exhaust gas. For example, the hydrocarbon produced in the plasma reactor 40 may have a carbon number of C1 to C5.
도 6은 본 발명의 일 실시예에 따른 배기가스 후처리 방법을 도시한 순서도이다. 도 6 및 제1실시예를 참조하면, 일 실시예의 배기가스 후처리 방법은 제1단계(ST1) 내지 제4단계(ST4)를 포함한다.6 is a flowchart illustrating an exhaust gas post-treatment method according to an embodiment of the present invention. 6 and the first embodiment, the exhaust gas post-treatment method of the embodiment includes the first step (ST1) to the fourth step (ST4).
제1단계(ST1)는 평상 운전 모드에서 플라즈마 반응기(40)에 연료와 공기를 공급하여 제1발열량으로 연료를 개질하여 탄화수소(HC) 종(species)과 수소를 다량 생산한다.In the first step ST1, fuel and air are supplied to the plasma reactor 40 in the normal operation mode to reform the fuel at a first calorific value to produce a large amount of hydrocarbon (HC) species and hydrogen.
예를 들면, 제1단계(ST1)는 경유를 부분 산화 또는 분해하여 환원제 기능을 하는 C1~C11의 탄소 개수를 가지는 탄화수소(HC) 종과 수소를 생산할 수 있다.For example, the first step ST1 may partially hydrogenate or decompose light oil to produce hydrocarbon (HC) species and hydrogen having a carbon number of C1 to C11 that functions as a reducing agent.
제2단계(ST2)는 생산된 수소와 탄화수소 종들을 매연여과필터(DPF)(30)에 구비된 탄화수소 선택적환원촉매(HC SCR, selective catalytic reduction)(37) 상에 공급한다.In the second step ST2, the produced hydrogen and hydrocarbon species are supplied onto a hydrocarbon selective reduction catalyst (HC SCR) 37 provided in the soot filtration filter (DPF) 30.
예를 들면, 제2단계(ST2)는 생산된 수소와 탄화수소 종들은 탄화수소 선택적환원촉매(HC SCR)(37) 상에서 환원제로 작용하여, 배기가스에 포함된 질소산화물(NOx)을 질소(N2)로 환원시킨다.For example, in the second step (ST2), the produced hydrogen and hydrocarbon species act as a reducing agent on a hydrocarbon selective reduction catalyst (HC SCR) 37 to convert nitrogen oxide (NOx) contained in exhaust gas to nitrogen (N 2). Reduction).
제3단계(ST3)는 평상 운전 모드에서 설정된 시간 경과 또는 매연여과필터(30) 상에 쌓인 입자상 물질에 의한 배기관(20) 내 차압이 설정압 이상으로 발생할 시, 입자상물질 제거 모드로 전환되어, 플라즈마 반응기(40)에서 평상 운전 모드의 제1발열량보다 높은 온도의 제2발열량을 생산한다.In the third step ST3, when the differential pressure in the exhaust pipe 20 caused by the particulate matter accumulated on the smoke filtration filter 30 or the time set in the normal operation mode is higher than the set pressure, the particulate matter removing mode is switched. The plasma reactor 40 produces a second calorific value at a temperature higher than the first calorific value of the normal operation mode.
예를 들면, 제3단계(ST3)는 평상 운전 모드에 비하여 플라즈마 반응기(40)에 공기에 대한 연료의 비율을 높여서 연소 반응으로 매연여과필터(DPF)(30)의 탄화수소 선택적환원촉매(HC SCR)(37) 상에 쌓인 입자상물질(PM)을 연소시켜 제거한다. 연소 반응은 입자상물질을 연소시킬 수 있는 반응으로써 연소 반응에 근접하는 반응을 포함할 수 있다.For example, the third step ST3 is a hydrocarbon selective reduction catalyst (HC SCR) of the particulate filter (DPF) 30 as a combustion reaction by increasing the ratio of fuel to air in the plasma reactor 40 compared to the normal operation mode. The particulate matter (PM) accumulated on the (37) is burned and removed. The combustion reaction may include a reaction close to the combustion reaction as a reaction capable of burning particulate matter.
제4단계(ST4)는 평상 운전 모드와 입자상물질 제거 모드를 반복적으로 전환한다. 배기가스 후처리 방법에서 별도의 제어부를 도시하지 않고 있으나 엔진(10)을 제어하는 엔진 제어 유닛(미도시)이 플라즈마 반응기(40)의 운전 모드를 전환할 수 있다.The fourth step ST4 repeatedly switches between the normal operation mode and the particulate matter removal mode. Although a separate control unit is not illustrated in the exhaust gas post-treatment method, an engine control unit (not shown) controlling the engine 10 may switch the operation mode of the plasma reactor 40.
도 7은 본 발명의 다른 일 실시예에 따른 배기가스 후처리 방법의 순서도이다. 도 7을 참조하면, 다른 일 실시예의 배기가스 후처리 방법은 제1´단계(ST1´) 내지 제4´단계(ST4´)를 포함한다.7 is a flow chart of the exhaust gas after-treatment method according to another embodiment of the present invention. Referring to FIG. 7, the exhaust gas post-treatment method according to another embodiment includes first step ST1 ′ to fourth step ST4 ′.
제1´단계(ST1´)는 희박 연소 조건에서 리포머(50)에 연료와 공기를 공급하여 연료를 개질하여 탄화수소(HC) 종(species)과 수소를 다량 생산한다. 제1´단계(ST1´)는 경유를 부분 산화 또는 분해하여(cracking) 환원제 기능을 하는 C1~C5의 탄소 개수를 가지는 탄화수소(HC) 종과 수소를 생산할 수 있다.In the first stage ST1, fuel and air are reformed by supplying fuel and air to the reformer 50 in lean combustion conditions to produce a large amount of hydrocarbon (HC) species and hydrogen. The first stage ST1 may partially produce hydrogen (HC) species and hydrogen having a carbon number of C1 to C5 which functions as a reducing agent by partially oxidizing or cracking the diesel oil.
제2´단계(ST2´)는 생산된 수소와 탄화수소 종들을 배기가스를 유통시키는 탄화수소 선택적환원촉매(HC SCR, selective catalytic reduction) 상에 공급한다.The second stage (ST2 ') feeds the produced hydrogen and hydrocarbon species onto a hydrocarbon selective reduction catalyst (HC SCR) which distributes the exhaust gas.
개질된 탄화수소(HC) 종(species)과 수소는 배기관(20)을 통하여 탄화수소 선택적환원촉매(37)로 공급되어, 탄화수소 선택적환원촉매(37)에서 탈질 작용한다.The modified hydrocarbon (HC) species and hydrogen are supplied to the hydrocarbon selective reduction catalyst 37 through the exhaust pipe 20 to denitrify the hydrocarbon selective reduction catalyst 37.
즉 제2´단계(ST2´)는 탄화수소 선택적환원촉매(HC SCR)(37)가 활성화 된 후, 생산된 수소와 탄화수소 종들이 탄화수소 선택적환원촉매(37) 상에서 환원제로 작용하여, 배기가스에 포함된 질소산화물(NOx)을 질소(N2)로 환원시킨다.That is, in the second step ST2, after the hydrocarbon selective reduction catalyst (HC SCR) 37 is activated, the produced hydrogen and hydrocarbon species act as a reducing agent on the hydrocarbon selective reduction catalyst 37 to be included in the exhaust gas. Reduced nitrogen oxides (NOx) to nitrogen (N 2 ).
제3´단계(ST3´)는 탄화수소 선택적환원촉매(HC SCR)(37)의 후방에 배치되는 질소산화물 흡장촉매(LNT)(50)에서 탄화수소 선택적환원촉매(37)를 경유한 배기가스를 유통시킨다.The third step ST3 is circulating exhaust gas via the hydrocarbon selective reduction catalyst 37 in a nitrogen oxide storage catalyst (LNT) 50 disposed behind the hydrocarbon selective reduction catalyst (HC SCR) 37. Let's do it.
즉 제3´단계(ST3´)는 탄화수소 선택적환원촉매(HC SCR)(37)가 활성화 되기 전에 질소산화물 흡장촉매(LNT)(50)에서 배기가스에 포함된 질소산화물을 흡장한다. 질소산화물 흡장촉매(50)는 탄화수소 선택적환원촉매(HC SCR)(37)가 탈질 작용하지 않은 동안 NOx를 흡장하거나, 탄화수소 선택적환원촉매(HC SCR)(37)에서 미처 환원 처리되지 못한 잔류 질소산화물을 흡장, 환원 처리하여 탄화수소 선택적환원촉매(HC SCR)(37)의 탈질 성능을 보완한다.That is, in the third step ST3 ', the nitrogen oxide storage catalyst (LNT) 50 occludes the nitrogen oxide contained in the exhaust gas before the hydrocarbon selective reduction catalyst (HC SCR) 37 is activated. The nitrogen oxide storage catalyst 50 absorbs NOx while the hydrocarbon selective reduction catalyst (HC SCR) 37 does not denitrify, or the residual nitrogen oxide which has not been reduced by the hydrocarbon selective reduction catalyst (HC SCR) 37. It is occluded and reduced to compensate for the denitrification performance of the hydrocarbon selective reduction catalyst (HC SCR) 37.
따라서 질소산화물 흡장촉매(50)에 흡장된 질소산화물을 고온으로 제거하기 위하여 농후 연소 조건을 구현하는 질소산화물 흡장촉매(50)에 대한 농후 연소 조건의 주기가 획기적으로 길어질 수 있다. 즉 엔진에서 농후 연소 조건으로 구동되는 시간이 단축되고, 희박 연소 조건으로 구동되는 시간이 길어진다.Therefore, in order to remove nitrogen oxides stored in the nitrogen oxide storage catalyst 50 at a high temperature, the period of the rich combustion conditions for the nitrogen oxide storage catalyst 50 which implements the rich combustion conditions may be significantly longer. That is, the time for driving in the rich combustion condition in the engine is shortened, and the time for driving in the lean burn condition becomes long.
제4´단계(ST4´)는 희박 연소 조건에서 설정된 시간 경과시 농후 연소 조건으로 전환되어 엔진 운전 후, 희박 연소 조건으로 전환한다.The fourth step ST4 'is switched to the rich combustion condition after the time set in the lean combustion condition, and then to the lean combustion condition after the engine operation.
도 8은 종래기술과 본 발명의 다른 일 실시예에 따른 희박, 과농 연소 조건을 비교한 그래프이다. 도 8을 참조하면, 엔진(10)의 동일한 운전 시간 동안에, 좌측의 종래기술은 질소산화물 흡장촉매에서 질소산화물을 제거하는 농후 연소 주기가 짧게 나타난다.8 is a graph comparing the lean and excessive combustion conditions according to another embodiment of the present invention and the prior art. Referring to FIG. 8, during the same operation time of the engine 10, the prior art on the left shows a short period of rich combustion that removes nitrogen oxides from the nitrogen oxide storage catalyst.
이에 비하여, 우측의 일 실시예는 질소산화물 흡장촉매(50)에서 질소산화물을 제거하는 농후 연소 주기가 매우 길게 나타난다. 따라서 일 실시예에서 엔진(10)의 연비가 개선되고, 엔진(10)의 부담이 경감될 수 있다.In contrast, in the embodiment on the right, the rich combustion cycle for removing nitrogen oxide from the nitrogen oxide storage catalyst 50 is very long. Therefore, in one embodiment, the fuel economy of the engine 10 may be improved, and the burden on the engine 10 may be reduced.
도 9는 종래기술과 본 발명의 다른 일 실시예에 따른 탈질 성능을 비교한 그래프이다. 도 9를 참조하면, 종래기술의 탄화수소 선택적환원촉매(HC SCR)와 요소수 선택적환원촉매(Urea SCR)는 비교적 고온에서 우수한 탈질 성능을 가지며 낮은 온도에서 낮은 탈질 성능을 가진다.Figure 9 is a graph comparing the denitrification performance according to another embodiment of the present invention and the prior art. Referring to FIG. 9, the prior art hydrocarbon selective reduction catalyst (HC SCR) and urea water selective reduction catalyst (Urea SCR) have excellent denitrification performance at relatively high temperature and low denitrification performance at low temperature.
이에 비하여, 본 발명의 다른 일 실시예는 고온에서 종래기술에 상응하는 우수한 탈질 성능을 가지면서, 동시에 낮은 온도에서도 우수한 탈질 성능을 가진다(L1). 즉 동일한 운전 온도 조건에서, 종래기술에 비하여 더 많은 양의 질소산화물을 제거하게 된다.In contrast, another embodiment of the present invention has excellent denitrification performance corresponding to the prior art at high temperature, and at the same time has excellent denitrification performance at low temperature (L1). That is, under the same operating temperature conditions, it will remove more nitrogen oxides than in the prior art.
즉 본 발명의 다른 일 실시예는 탄화수소 선택적환원촉매(HC SCR)(37)가 활성화 되기 전에 질소산화물 흡장촉매(LNT)(50)에서 질소산화물을 흡장하므로 전체적으로 높은 탈질 성능을 가질 수 있다.That is, another embodiment of the present invention may have a high denitrification performance since it occludes the nitrogen oxide in the nitrogen oxide storage catalyst (LNT) 50 before the hydrocarbon selective reduction catalyst (HC SCR) 37 is activated.
이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.Although the preferred embodiments of the present invention have been described above, the present invention is not limited thereto, and various modifications and changes can be made within the scope of the claims and the detailed description of the invention and the accompanying drawings. Naturally, it belongs to the scope of the invention.
본 발명의 일 실시예에 따르면, 배기가스 후처리 장치의 제작 비용이 낮아지고, 차량에 적용시 설치 공간이 줄어들 수 있다.According to an embodiment of the present invention, the manufacturing cost of the exhaust gas aftertreatment device is lowered, and the installation space may be reduced when applied to a vehicle.

Claims (15)

  1. 엔진의 배기가스를 유통시키는 배기관;An exhaust pipe for circulating the exhaust gas of the engine;
    상기 배기관에 구비되어 배기가스에 포함된 질소산화물을 제거하는 탄화수소 선택적환원촉매(HC SCR); 및A hydrocarbon selective reduction catalyst (HC SCR) provided in the exhaust pipe to remove nitrogen oxides contained in the exhaust gas; And
    상기 엔진과 상기 탄화수소 선택적환원촉매 사이의 상기 배기관에 연결되어, 연료를 개질하여 수소 및 탄화수소(HC) 종(species)의 환원제를 생산하거나 연료를 연소시키는 플라즈마 반응기A plasma reactor connected to the exhaust pipe between the engine and the hydrocarbon selective reduction catalyst to reform fuel to produce a reductant of hydrogen and hydrocarbon (HC) species or to combust the fuel
    를 포함하는 배기가스 후처리 장치.Exhaust gas after-treatment device comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 배기관에 구비되어 배기가스에 포합된 입자상물질(PM, particulate matter)을 포집하여 연소시켜 제거하는 매연여과필터(DPF, diesel particulate filter)Diesel particulate filter (DPF), which is provided in the exhaust pipe and collects, burns and removes particulate matter (PM) contained in exhaust gas.
    를 더 포함하며,More,
    상기 매연여과필터는The soot filtration filter is
    상기 탄화수소 선택적환원촉매를 내장하는 배기가스 후처리 장치.Exhaust gas after-treatment device containing the hydrocarbon selective reduction catalyst.
  3. 제2항에 있어서,The method of claim 2,
    상기 탄화수소는The hydrocarbon is
    C1 내지 C11의 탄소 수를 가지는 배기가스 후처리 장치.Exhaust gas aftertreatment device having a carbon number of C1 to C11.
  4. 제2항에 있어서,The method of claim 2,
    상기 매연여과필터는The soot filtration filter is
    상기 배기관에 연결되는 케이스, A case connected to the exhaust pipe,
    상기 케이스에 내장되고 배기가스 통로를 형성하는 세라믹 담체, 및A ceramic carrier embedded in the case and forming an exhaust gas passage;
    상기 세라믹 담체의 양단을 교호적으로 폐쇄하는 플러그Plugs for alternately closing both ends of the ceramic carrier
    를 포함하고,Including,
    상기 탄화수소 선택적환원촉매(HC SCR)는The hydrocarbon selective reduction catalyst (HC SCR) is
    상기 세라믹 담체의 배기가스 통로 벽에 코팅층으로 형성되는 배기가스 후처리 장치.Exhaust gas after-treatment apparatus is formed as a coating layer on the exhaust gas passage wall of the ceramic carrier.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 매연여과필터의 후방에서 상기 배기관에 구비되는 선택적환원촉매(SCR)를 더 포함하는 배기가스 후처리 장치.Exhaust gas after-treatment apparatus further comprises a selective reduction catalyst (SCR) provided in the exhaust pipe at the rear of the soot filtration filter.
  6. 제1항에 있어서,The method of claim 1,
    상기 탄화수소 선택적환원촉매의 후방에서 상기 배기관에 구비되어, 상기 탄화수소 선택적환원촉매를 경유한 배기가스에 잔류하는 질소산화물을 제거하는 질소산화물 흡장촉매(LNT)A nitrogen oxide storage catalyst (LNT) provided in the exhaust pipe behind the hydrocarbon selective reduction catalyst to remove nitrogen oxide remaining in the exhaust gas via the hydrocarbon selective reduction catalyst (LNT).
    를 더 포함하는 배기가스 후처리 장치.Exhaust gas after-treatment device further comprising.
  7. 제6항에 있어서,The method of claim 6,
    상기 탄화수소는The hydrocarbon is
    C1 내지 C5의 탄소 수를 가지는 배기가스 후처리 장치.Exhaust gas aftertreatment device having a carbon number of C1 to C5.
  8. 평상 운전 모드에서 플라즈마 반응기에 연료와 공기를 공급하여 제1발열량으로 연료를 개질하여 선택적으로 탄화수소(HC) 종(species)과 수소를 다량 생산하는 제1단계;Supplying fuel and air to the plasma reactor in the normal operation mode to reform the fuel at a first calorific value to selectively produce a large amount of hydrocarbon (HC) species and hydrogen;
    생산된 수소와 탄화수소 종들을 매연여과필터(DPF)에 구비된 탄화수소 선택적환원촉매(HC SCR, selective catalytic reduction) 상에 공급하는 제2단계;Supplying the produced hydrogen and hydrocarbon species on a hydrocarbon selective reduction catalyst (HC SCR) provided in a soot filtration filter (DPF);
    상기 평상 운전 모드에서 설정된 시간 경과 또는 상기 매연여과필터 상에 쌓인 입자상 물질에 의한 배기관 내의 차압이 설정압 이상으로 발생할 시 입자상물질(PM, particulate matter) 제거 모드로 전환되어, 상기 플라즈마 반응기에서 상기 평상 운전 모드의 상기 제1발열량보다 높은 제2발열량을 생산하는 제3단계; 및When the differential pressure in the exhaust pipe due to the elapsed time set in the normal operation mode or the particulate matter accumulated on the particulate filter exceeds a predetermined pressure, the particulate matter (PM) removal mode is switched to the normal state in the plasma reactor. A third step of producing a second calorific value higher than the first calorific value in an operation mode; And
    상기 평상 운전 모드와 상기 입자상물질(PM) 제거 모드를 반복적으로 전환하는 제4단계A fourth step of repeatedly switching between the normal operation mode and the PM removal mode;
    를 포함하는 배기가스 후처리 방법.Exhaust gas after-treatment method comprising a.
  9. 제8항에 있어서,The method of claim 8,
    상기 제1단계는The first step is
    경유를 부분 산화 또는 분해하여 환원제 기능을 하는 C1~C11의 탄소 개수를 가지는 탄화수소(HC) 종과 수소를 생산하는 배기가스 후처리 방법.Exhaust gas after-treatment method of producing hydrogen and hydrocarbon (HC) species having a carbon number of C1 to C11 that acts as a reducing agent by partially oxidizing or decomposing light oil.
  10. 제9항에 있어서,The method of claim 9,
    상기 제2단계는The second step is
    생산된 수소와 탄화수소 종들은 상기 탄화수소 선택적환원촉매(HC SCR) 상에서 환원제로 작용하여, 배기가스에 포함된 질소산화물(NOx)을 질소(N2)로 환원시키는 배기가스 후처리 방법.The produced hydrogen and hydrocarbon species act as a reducing agent on the hydrocarbon selective reduction catalyst (HC SCR) to reduce nitrogen oxides (NOx) contained in the exhaust gas to nitrogen (N 2 ).
  11. 제8항에 있어서,The method of claim 8,
    상기 제3단계는,The third step,
    상기 평상 운전 모드에 비하여 상기 플라즈마 반응기에 공기에 대한 연료의 비율을 높여서 연소 반응으로 상기 매연여과필터(DPF)의 상기 탄화수소 선택적환원촉매(HC SCR) 상에 쌓인 입자상물질(PM)을 연소시켜 제거하는 배기가스 후처리 방법.Compared to the normal operation mode, the plasma reactor increases the ratio of fuel to air to burn and remove particulate matter (PM) accumulated on the hydrocarbon selective reduction catalyst (HC SCR) of the particulate filter (DPF) by a combustion reaction. Exhaust gas post-treatment method.
  12. 희박 연소 조건에서 리포머에 연료와 공기를 공급하여 연료를 개질하여 탄화수소(HC) 종(species)과 수소를 다량 생산하는 제1´단계;Supplying fuel and air to the reformer under lean combustion conditions to reform the fuel to produce a large amount of hydrocarbon (HC) species and hydrogen;
    생산된 수소와 탄화수소 종들을 배기가스를 유통시키는 탄화수소 선택적환원촉매(HC SCR, selective catalytic reduction) 상에 공급하는 제2´단계;Supplying the produced hydrogen and hydrocarbon species to a hydrocarbon selective reduction catalyst (HC SCR) for circulating exhaust gas;
    탄화수소 선택적환원촉매(HC SCR) 후방에 배치되는 질소산화물 흡장촉매(LNT)에서 상기 탄화수소 선택적환원촉매를 경유한 배기가스를 유통시키는 제3´단계; 및A third step of circulating the exhaust gas via the hydrocarbon selective reduction catalyst in a nitrogen oxide storage catalyst (LNT) disposed behind a hydrocarbon selective reduction catalyst (HC SCR); And
    희박 연소 조건에서 설정된 시간 경과시 농후 연소 조건으로 전환되어 엔진 운전 후, 희박 연소 조건으로 전환하는 제4´단계A fourth step of switching to the lean combustion condition after the engine operation is switched to the rich combustion condition when the time set in the lean combustion condition has elapsed.
    를 포함하는 배기가스 후처리 방법.Exhaust gas after-treatment method comprising a.
  13. 제12항에 있어서,The method of claim 12,
    상기 제1´단계는The first step is
    경유를 부분 산화 또는 분해하여(cracking) 환원제 기능을 하는 수소와 C1~C5의 탄소 개수를 가지는 탄화수소(HC) 종과 수소를 생산하는 배기가스 후처리 방법.A method for exhaust gas aftertreatment that produces hydrogen and C1 to C5 hydrocarbon species and hydrogen that act as a reducing agent by partially oxidizing or cracking light oil.
  14. 제13항에 있어서,The method of claim 13,
    상기 제2´단계는The second step is
    상기 탄화수소 선택적환원촉매(HC SCR)가 활성화 된 후,After the hydrocarbon selective reduction catalyst (HC SCR) is activated,
    생산된 수소와 탄화수소 종들이 상기 탄화수소 선택적환원촉매(HC SCR) 상에서 환원제로 작용하여, 배기가스에 포함된 질소산화물(NOx)을 질소(N2)로 환원시키는 배기가스 후처리 방법.The produced hydrogen and hydrocarbon species act as a reducing agent on the hydrocarbon selective reduction catalyst (HC SCR) to reduce nitrogen oxides (NOx) included in the exhaust gas to nitrogen (N 2 ).
  15. 제12항에 있어서,The method of claim 12,
    상기 제3´단계는,In the third step,
    상기 탄화수소 선택적환원촉매(HC SCR)가 활성화 되기 전,Before the hydrocarbon selective reduction catalyst (HC SCR) is activated,
    상기 질소산화물 흡장촉매(LNT)에서 배기가스에 포함된 질소산화물을 흡장하는 배기가스 후처리 방법.Exhaust gas after-treatment method for storing the nitrogen oxide contained in the exhaust gas in the nitrogen oxide storage catalyst (LNT).
PCT/KR2015/013472 2015-04-24 2015-12-09 Exhaust gas post-processing device and method therefor WO2016171366A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150058085 2015-04-24
KR10-2015-0058085 2015-04-24
KR1020150096678A KR20170006162A (en) 2015-07-07 2015-07-07 Exhaust gas post-processing device and method
KR10-2015-0096678 2015-07-07

Publications (1)

Publication Number Publication Date
WO2016171366A1 true WO2016171366A1 (en) 2016-10-27

Family

ID=57143987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/013472 WO2016171366A1 (en) 2015-04-24 2015-12-09 Exhaust gas post-processing device and method therefor

Country Status (1)

Country Link
WO (1) WO2016171366A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111852614A (en) * 2019-04-30 2020-10-30 上海必修福企业管理有限公司 Tail gas treatment system and treatment method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020017511A (en) * 2000-08-30 2002-03-07 이창식 an apparatus for purifying exhaust using the plasma
KR20080046357A (en) * 2006-11-22 2008-05-27 주식회사 유라코퍼레이션 Exhaust gas treatment device for regenerating a diesel particulate filter
KR101004751B1 (en) * 2008-12-12 2011-01-04 한국기계연구원 Plasma lnt system for exhaust gas and plasma reformer
KR20120036004A (en) * 2010-10-07 2012-04-17 한국기계연구원 Exhaust gas reducing device for vehicles with burner to improve purification performance
KR20140028730A (en) * 2012-08-30 2014-03-10 현대자동차주식회사 Scr diesel particulate filter and exhaust system having this

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020017511A (en) * 2000-08-30 2002-03-07 이창식 an apparatus for purifying exhaust using the plasma
KR20080046357A (en) * 2006-11-22 2008-05-27 주식회사 유라코퍼레이션 Exhaust gas treatment device for regenerating a diesel particulate filter
KR101004751B1 (en) * 2008-12-12 2011-01-04 한국기계연구원 Plasma lnt system for exhaust gas and plasma reformer
KR20120036004A (en) * 2010-10-07 2012-04-17 한국기계연구원 Exhaust gas reducing device for vehicles with burner to improve purification performance
KR20140028730A (en) * 2012-08-30 2014-03-10 현대자동차주식회사 Scr diesel particulate filter and exhaust system having this

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111852614A (en) * 2019-04-30 2020-10-30 上海必修福企业管理有限公司 Tail gas treatment system and treatment method

Similar Documents

Publication Publication Date Title
WO2013111989A1 (en) Post-processing system apparatus and control method
KR101361595B1 (en) Method for regenerating soot filters in the exhaust gas system of a lean mix engine, and exhaust gas system therefor
EP1669563B1 (en) Exhaust gas purifying device
KR20040093039A (en) Exhaust emission control device of internal combustion engine
KR20060012642A (en) Exhaust gas purifier
KR20130040268A (en) System and method for regenerating a gasoline particulate filter
WO2010076967A2 (en) Harmful emissions reduction apparatus for engine using reformer, reformer for the same, and harmful emissions reduction method for engine using the same
JP5474468B2 (en) Exhaust gas purification device using plasma discharge
WO2016171366A1 (en) Exhaust gas post-processing device and method therefor
JP5335315B2 (en) Exhaust purification device
US20050079112A1 (en) Surface discharge non-thermal plasma reactor and method
WO2018080179A1 (en) Exhaust gas post-processing system
JP2009092015A (en) Exhaust emission control device
KR20040068792A (en) Diesel exhaust gas aftertreatment device using electric heater
WO2012018186A2 (en) After treatment device of engine
KR100769571B1 (en) Harmfulness matter reduction system of diesel engine
JP2004353596A (en) Exhaust emission control device
WO2015147488A1 (en) Method for regenerating diesel particulate filter, and diesel particulate filter regenerated thereby
KR101459439B1 (en) Catalytic converter of engine for vehicle and apparatus of purifying exhaust gas provided with the same
JP2003222018A (en) Exhaust emissions purification apparatus for internal combustion engine
JP4735979B2 (en) Exhaust gas purification device and exhaust gas purification method
KR20170006162A (en) Exhaust gas post-processing device and method
KR100405676B1 (en) Device of reducing noxious substances for a diesel engine
JP2004190528A (en) Exhaust emission control device
WO2023048398A1 (en) Exhaust gas post-treatment system, for diesel engine, comprising denitrification catalyst-coated filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15890032

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15890032

Country of ref document: EP

Kind code of ref document: A1