KR20170006162A - Exhaust gas post-processing device and method - Google Patents

Exhaust gas post-processing device and method Download PDF

Info

Publication number
KR20170006162A
KR20170006162A KR1020150096678A KR20150096678A KR20170006162A KR 20170006162 A KR20170006162 A KR 20170006162A KR 1020150096678 A KR1020150096678 A KR 1020150096678A KR 20150096678 A KR20150096678 A KR 20150096678A KR 20170006162 A KR20170006162 A KR 20170006162A
Authority
KR
South Korea
Prior art keywords
exhaust gas
hydrocarbon
selective reduction
reduction catalyst
scr
Prior art date
Application number
KR1020150096678A
Other languages
Korean (ko)
Inventor
이대훈
송영훈
김관태
변성현
조성권
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to KR1020150096678A priority Critical patent/KR20170006162A/en
Priority to PCT/KR2015/013472 priority patent/WO2016171366A1/en
Publication of KR20170006162A publication Critical patent/KR20170006162A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2250/00Combinations of different methods of purification
    • F01N2250/12Combinations of different methods of purification absorption or adsorption, and catalytic conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/04Adding substances to exhaust gases the substance being hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • Y02T10/24

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

An objective of the present invention is to provide an exhaust gas post-treatment device which reduces mileage degradation of an engine and a burden of the engine, secures a high a denitrification rate, and has denitrification performance in a low temperature condition. According to an embodiment of the present invention, the exhaust gas post-treatment device comprises: an exhaust pipe to distribute exhaust gas of an engine; a hydrocarbon selective catalytic reduction (HC-SCR) disposed on the exhaust pipe to remove nitrogen oxide contained in exhaust gas; a lean nitrogen oxide trap (LNT) to remove nitrogen oxide remained in exhaust gas passing through the hydrocarbon selective catalytic reduction; and a reformer connected to the exhaust pipe in front of the hydrocarbon selective catalytic reduction to reform fuel to produce and supply a reducing agent of hydrogen and a hydrocarbon (HC) species.

Description

배기가스 후처리 장치 및 그 방법 {EXHAUST GAS POST-PROCESSING DEVICE AND METHOD}[0001] EXHAUST GAS POST-PROCESSING DEVICE AND METHOD [0002]

본 발명은 배기가스의 후처리 시스템을 단순하게 하는 배기가스 후처리 장치 및 그 방법에 관한 것이다.The present invention relates to an exhaust gas post-treatment apparatus and a method for simplifying a post-treatment system of an exhaust gas.

환경규제가 강화되면서 다양한 배기가스 후처리 장치들이 제안되고 있다. 중, 소형 차량은 엔진의 배기가스에 포함된 질소산화물(NOx)을 제거하는 데, 질소산화물 흡장촉매(LNT, lean NOx trap)를 채택하거나, 요소수 선택적환원촉매(Urea SCR, selective catalytic reduction)를 채택하고 있다.As environmental regulations have been strengthened, various exhaust gas aftertreatment devices have been proposed. The small and medium sized vehicles are equipped with a nitrogen oxide trap (LNT) or a selective catalytic reduction (Urea SCR) to remove nitrogen oxides (NOx) contained in the exhaust gas of the engine. .

그러나 유로(EURO) VI 또는 그 이후의 배기가스 제어, 특히 실제 구동 배출(RDE, real driving emission)과 같은 더 강화되는 규제에 대응하기 위하여, 기존 기술에 NOx를 추가로 제거할 수 있는 시스템을 구성할 필요가 있다.However, in order to cope with more stringent regulations such as EURO VI or later exhaust gas control, especially real driving emissions (RDE), it is necessary to construct a system capable of additionally removing NOx from existing technologies Needs to be.

예를 들면, 중, 대형 차량에서도 요소수 선택적환원촉매(Urea SCR) 만큼의 NOx 제거율을 가지면서 보다 낮은 가격과 단순한 구조로 시스템을 구성할 필요가 있다.For example, it is necessary to construct a system with low NOx removal rate as low as urea selective reduction catalyst (Urea SCR) and a simple structure even in medium and large vehicles.

질소산화물 흡장촉매(LNT)는 엔진의 희박 연소(lean burn) 조건 중에 엔진의 특성 상 NOx를 흡장하고 있다가, 주기적으로 엔진에서 과농 연소(rich burn) 조건을 형성하여 탈착되는 NOx를 환원시킨다.The nitrogen oxide storage catalyst (LNT) occludes NOx in the lean burn condition of the engine, and periodically forms a rich burn condition in the engine to reduce desorbed NOx.

과농 연소 조건시, 엔진에서 당량비 연소 후 연료를 추가적으로 분사하여 LNT에 환원제를 조성하거나, 배기관에 별도의 연료 인젝터를 설치하여 환원제로써 연료를 LNT의 전방에 분사하여 형성될 수 있다. 질소산화물 흡장촉매(LNT)를 적용하는 경우, 엔진의 빈번한 과농 연소 조건에 의하여, 연비가 저하되고 엔진 부담이 발생될 수 있다.In the super-rich combustion condition, the fuel may be additionally injected into the LNT by injecting the fuel after the equivalence ratio combustion in the engine, or a separate fuel injector may be installed in the exhaust pipe and the fuel may be injected as a reducing agent in front of the LNT. In the case of applying the nitrogen oxide storage catalyst (LNT), the fuel consumption may be lowered and the engine burden may be caused by the frequent super-rich combustion condition of the engine.

또한 요소수 선택적환원촉매(Urea SCR)는 높은 탈질(De-NOx) 성능을 가지지만 220~230도씨 이상의 고온 조건에서 탈질 성능을 가지므로 저온 조건에서 낮은 NOx 처리 효율을 가진다.Urea SCR has high denitrification (De-NOx) performance but it has low NOx treatment efficiency at low temperature because it has denitrification performance at high temperature of 220 ~ 230 ° C.

별도의 요소수 탱크(Urea tank)와 요소수 인젝터(urea injector)가 필요하고, 경우에 따라서 요소수에서 암모니아(NH3)를 분리하기 위한 가수분해(hydrolysis) 반응기가 필요할 수도 있다. 요소수 선택적환원촉매(Urea SCR)를 적용하는 경우, 시스템의 복잡성에 의하여, 장치의 가격이 높아지고, 차량에서 장치의 설치 공간이 커질 수 있다.Separate Urea tanks and urea injectors are required and hydrolysis reactors may be required to separate ammonia (NH 3 ) from the urea water, as the case may be. When the urea number selective reduction catalyst (Urea SCR) is applied, the complexity of the system can increase the price of the apparatus and increase the installation space of the apparatus in the vehicle.

본 발명의 목적은 엔진의 연비 악화 및 엔진의 부담을 줄이고, 높은 탈질율을 확보하며, 낮은 온도 조건에서도 탈질 성능을 가지는 배기가스 후처리 장치를 제공하는 것이다.It is an object of the present invention to provide an exhaust gas aftertreatment apparatus having a reduction in fuel consumption of an engine, a burden on an engine, securing a high denitration rate, and denitrating performance even under low temperature conditions.

또한 본 발명의 다른 목적은 상기 배기가스 후처리 장치를 이용하여 배기가스에 포함된 질소산화물을 처리하는 배기가스 후처리 방법을 제공하는 것이다.It is another object of the present invention to provide an exhaust gas post-treatment method for treating nitrogen oxide contained in exhaust gas by using the exhaust gas post-treatment apparatus.

본 발명의 일 실시예에 따른 배기가스 후처리 장치는, 엔진의 배기가스를 유통시키는 배기관, 상기 배기관에 구비되어 배기가스에 포함된 질소산화물을 제거하는 탄화수소 선택적환원촉매(HC SCR), 상기 탄화수소 선택적환원촉매를 경유한 배기가스에 잔류하는 질소산화물을 제거하는 질소산화물 흡장촉매(LNT), 및 상기 탄화수소 선택적환원촉매 전방의 상기 배기관에 연결되어 연료를 개질하여 수소 및 탄화수소(HC) 종(species)의 환원제를 생산하여 공급하는 리포머를 포함한다.An exhaust gas after-treatment apparatus according to an embodiment of the present invention includes an exhaust pipe for circulating exhaust gas of an engine, a hydrocarbon selective reduction catalyst (HC SCR) provided in the exhaust pipe to remove nitrogen oxides contained in the exhaust gas, A nitrogen oxide storage catalyst (LNT) for removing nitrogen oxide remaining in the exhaust gas via the selective reduction catalyst, and a reforming catalyst connected to the exhaust pipe in front of the hydrocarbon selective reduction catalyst to reform the fuel to produce hydrogen and hydrocarbon (HC) species ) ≪ / RTI > reducing agent.

상기 탄화수소는 C1 내지 C5의 탄소 수를 가질 수 있다.The hydrocarbons may have a carbon number of C1 to C5.

본 발명의 일 실시예에 따른 배기가스 후처리 방법은, 희박 연소 조건에서 리포머에 연료와 공기를 공급하여 연료를 개질하여 탄화수소(HC) 종(species)과 수소를 다량 생산하는 제1단계, 생산된 수소와 탄화수소 종들을 배기가스를 유통시키는 탄화수소 선택적환원촉매(HC SCR, selective catalytic reduction) 상에 공급하는 제2단계, 탄화수소 선택적환원촉매(HC SCR) 후방에 배치되는 질소산화물 흡장촉매(LNT)에서 상기 탄화수소 선택적환원촉매를 경유한 배기가스를 유통시키는 제3단계, 및 희박 연소 조건에서 설정된 시간 경과시 농후 연소 조건으로 전환되어 엔진 운전 후, 희박 연소 조건으로 전환하는 제4단계를 포함한다.A method for post-treatment of an exhaust gas according to an embodiment of the present invention includes a first step of producing a large amount of hydrocarbon (HC) species and hydrogen by reforming a fuel by supplying fuel and air to a reformer under lean- A second step of supplying hydrogen and hydrocarbon species onto a hydrocarbon selective reduction catalyst (HC SCR) for circulating exhaust gas, a nitrogen oxide storage catalyst (LNT) disposed behind a hydrocarbon selective reduction catalyst (HC SCR) A third step of passing exhaust gas via the hydrocarbon selective reduction catalyst, and a fourth step of switching to a rich combustion condition after a lapse of a predetermined period of time under lean burn conditions and then switching to a lean burn condition after engine operation.

상기 제1단계는 경유를 부분 산화 또는 분해하여 환원제 기능을 하는 수소와 C1~C5의 탄소 개수를 가지는 탄화수소(HC) 종과 수소를 생산할 수 있다.In the first step, the partial oxidation or decomposition of light oil may produce hydrogen which functions as a reducing agent, hydrocarbons (HC) of C1 to C5, and hydrogen.

상기 제2단계는 상기 탄화수소 선택적환원촉매(HC SCR)가 활성화 된 후, 생산된 수소와 탄화수소 종들이 상기 탄화수소 선택적환원촉매(HC SCR) 상에서 환원제로 작용하여, 배기가스에 포함된 질소산화물(NOx)을 질소(N2)로 환원시킬 수 있다.In the second step, after the hydrocarbon selective reduction catalyst (HC SCR) is activated, the produced hydrogen and hydrocarbon species act as a reducing agent on the hydrocarbon selective reduction catalyst (HC SCR), and nitrogen oxides ) Can be reduced to nitrogen (N 2 ).

상기 제3단계는 상기 탄화수소 선택적환원촉매(HC SCR)가 활성화 되기 전, 상기 질소산화물 흡장촉매(LNT)에서 배기가스에 포함된 질소산화물을 흡장할 수 있다.In the third step, the nitrogen oxide contained in the exhaust gas may be occluded in the nitrogen oxide storage catalyst (LNT) before the hydrocarbon selective reduction catalyst (HC SCR) is activated.

이와 같이 본 발명의 일 실시예는, 배기관에 탄화수소 선택적환원촉매(HC SCR)와 질소산화물 흡장촉매(LNT)를 순차적으로 구비하고, 리포머에서 개질된 수소와 탄화수소 종의 환원제를 탄화수소 선택적환원촉매(HC SCR)에 공급하여 질소화물을 제거하므로 엔진의 연비 악화 및 엔진의 부담을 줄일 수 있다.As described above, an embodiment of the present invention is characterized in that a hydrocarbon selective reduction catalyst (HC SCR) and a nitrogen oxide storage catalyst (LNT) are sequentially provided in an exhaust pipe and a reducing agent of hydrogen and hydrocarbon species reformed in the reformer is introduced into a hydrocarbon selective reduction catalyst HC SCR) to remove nitrogen oxide, which can reduce the fuel consumption of the engine and reduce the burden on the engine.

즉 일 실시예는 일상 운전시, 탄화수소 선택적환원촉매(HC SCR)가 활성화 되어 엔진에서 배출되는 질소산화물을 환원처리 하고, 탄화수소 선택적환원촉매(HC SCR)에서 환원되지 못한 잔류 질소산화물만을 질소산화물 흡장촉매(LNT)에서 흡장하여 질소산화물 흡장촉매의 환원 운전 주기를 획기적으로 늘릴 수 있고, 또한 냉시동 조건과 같이 탄화수소 선택적환원촉매(HC SCR)가 활성화 되지 않은 저온 조건에서는 질소산화물 흡장촉매를 통하여 질소산화물을 흡장하여 어떤 조건에서도 배기가스 내 질소산화물을 제거할 수 있는 수단을 확보하게 된다. 즉, 낮은 온도 조건에서도 탈질 성능이 확보될 수 있다.That is, in one embodiment, the hydrocarbon selective reduction catalyst (HC SCR) is activated during the normal operation to reduce the nitrogen oxide discharged from the engine, and only the residual nitrogen oxide that is not reduced in the hydrocarbon selective reduction catalyst (HC SCR) (HC SCR) is not activated as in the case of the cold start condition, the nitrogen oxide storage catalyst can be decomposed into nitrogen It is possible to provide a means capable of absorbing oxides and removing nitrogen oxides in the exhaust gas under any conditions. That is, the denitration performance can be ensured even under a low temperature condition.

이러한 과정을 통해 기존 산화물 제거 장치에 비해 엔진의 연비가 개선되고, 엔진의 부담이 경감된다.Through this process, the fuel efficiency of the engine is improved and the burden on the engine is reduced as compared with the existing oxide removal apparatus.

도 1은 본 발명의 일 실시예에 따른 배기가스 후처리 장치의 구성도이다.
도 2는 도 1에 적용되는 리포머의 단면도이다.
도 3은 본 발명의 일 실시예에 따른 배기가스 후처리 방법의 순서도이다.
도 4는 종래기술과 본 발명의 일 실시예에 따른 희박, 과농 연소 조건을 비교한 그래프이다.
도 5는 종래기술과 본 발명의 일 실시예에 따른 탈질 성능을 비교한 그래프이다.
1 is a configuration diagram of an exhaust gas post-treatment apparatus according to an embodiment of the present invention.
2 is a cross-sectional view of the reformer applied to Fig.
3 is a flowchart of an exhaust gas after-treatment method according to an embodiment of the present invention.
4 is a graph comparing the lean and hyper-rich combustion conditions according to the prior art and one embodiment of the present invention.
FIG. 5 is a graph comparing the denitration performance according to the prior art and one embodiment of the present invention.

이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 붙였다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art can easily carry out the present invention. The present invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. In order to clearly illustrate the present invention, parts not related to the description are omitted, and the same or similar components are denoted by the same reference numerals throughout the specification.

도 1은 본 발명의 일 실시예에 따른 배기가스 후처리 장치의 구성도이다. 도 1을 참조하면, 일 실시예에 따른 배기가스 후처리 장치는 엔진(10)의 배기가스를 유통시키는 배기관(20), 배기관(20)에 구비되는 탄화수소 선택적환원촉매(HC SCR)(30), 질소산화물 흡장촉매(LNT)(40), 및 리포머(50)를 포함한다.1 is a configuration diagram of an exhaust gas post-treatment apparatus according to an embodiment of the present invention. 1, an exhaust gas post-treatment apparatus according to an embodiment includes an exhaust pipe 20 for circulating exhaust gas of an engine 10, a hydrocarbon selective reduction catalyst (HC SCR) 30 provided in an exhaust pipe 20, , A nitrogen oxide storage catalyst (LNT) 40, and a reformer 50.

탄화수소 선택적환원촉매(HC SCR)(30)는 배기관(20)에 설치되어 배기가스에 포함된 질소산화물을 제거하도록 구성된다. 질소산화물 흡장촉매(LNT)(40)는 탄화수소 선택적환원촉매(HC SCR)(30)의 후방에서 배기관(20)에 설치되어, 탄화수소 선택적환원촉매(30)를 경유한 배기가스에 잔류하는 질소산화물을 제거한다.A hydrocarbon selective reduction catalyst (HC SCR) 30 is installed in the exhaust pipe 20 and is configured to remove nitrogen oxides contained in the exhaust gas. The nitrogen oxide storage catalyst (LNT) 40 is disposed in the exhaust pipe 20 behind the hydrocarbon selective reduction catalyst (HC SCR) 30, and is made of nitrogen oxide (NOx) remaining in the exhaust gas via the hydrocarbon selective reduction catalyst 30. [ .

질소산화물 흡장촉매(LNT)(40)는 탄화수소 선택적환원촉매(HC SCR)(30)의 탈질율을 더 높이고, 배기가스 후처리 장치 전체에서의 탈질 가능한 온도 범위를 확장한다.The nitrogen oxide storage catalyst (LNT) 40 further increases the denitration rate of the hydrocarbon selective reduction catalyst (HC SCR) 30 and expands the denitable temperature range in the exhaust gas aftertreatment apparatus as a whole.

리포머(50)는 연료를 개질하여 수소 및 탄화수소(HC) 종(species)의 환원제를 생산하도록 구성되어, 탄화수소 선택적환원촉매(30)의 전방에서 배기관(20)에 연결된다. 따라서 리포머(50)에서 생산된 수소 및 탄화수소(HC) 종(species)의 환원제는 배기가스와 함께 탄화수소 선택적환원촉매(HC SCR)(30)로 공급된다. 예를 들면, 리포머(50)에서 생산된 탄화수소는 C1 내지 C5의 탄소 수를 가질 수 있다.The reformer 50 is configured to reform the fuel to produce a reducing agent of hydrogen and hydrocarbon (HC) species and is connected to the exhaust pipe 20 in front of the hydrocarbon selective reduction catalyst 30. Therefore, the reducing agent of the hydrogen and hydrocarbon (HC) species produced in the reformer 50 is supplied to the hydrocarbon selective reduction catalyst (HC SCR) 30 together with the exhaust gas. For example, hydrocarbons produced in the reformer 50 may have a carbon number of C1 to C5.

도 2는 도 1에 적용되는 리포머의 단면도이다. 도 2를 참조하면, 리포머(50)는 플라즈마를 발생시켜 연료로 환원제를 생산하여 배기관(20) 및 탄화수소 선택적환원촉매(30)에 공급하므로 탄화수소 선택적환원촉매(30)에서 배기가스에 포함된 NOx를 제거할 수 있게 한다. 즉 리포머(50)는 플라즈마 장치로 형성될 수 있다.2 is a cross-sectional view of the reformer applied to Fig. Referring to FIG. 2, the reformer 50 generates plasma to generate a reducing agent as a fuel and supplies it to the exhaust pipe 20 and the hydrocarbon selective reduction catalyst 30, so that the NOx contained in the exhaust gas . ≪ / RTI > That is, the reformer 50 may be formed of a plasma device.

리포머(50)는 회전 유동 아크로 플라즈마를 발생시키도록 구성될 수 있다. 일례를 들면, 리포머(50)는 배기관(20)에 연결되는 하우징(41)과, 하우징(41)에 내장되고 하우징(41) 내면과의 사이에 방전갭(G)을 형성하는 전극(42)을 포함한다.The reformer 50 may be configured to generate a rotating flow arc plasma. For example, the reformer 50 includes a housing 41 connected to the exhaust pipe 20, an electrode 42 embedded in the housing 41 and forming a discharge gap G between the inner surface of the housing 41, .

하우징(41)이 전기적으로 접지되고, 전극(42)에 전압(HV)이 인가되면, 방전갭(G)에서 산화제를 방전기체로 하여 회전 유동 아크가 발생된다. 이 회전 유동 아크에 연료를 공급함으로써 연료가 수소 및 탄화수소(HC) 종(species)의 환원제로 개질되어 하우징(41) 밖으로 분출된다.When the housing 41 is electrically grounded and a voltage HV is applied to the electrode 42, a rotating fluid arc is generated by using the oxidant as a discharger at the discharge gap G. By supplying fuel to the rotating flow arc, the fuel is reformed with a reducing agent of hydrogen and hydrocarbon (HC) species and is ejected out of the housing 41.

하우징(41)의 일측은 절연부재(43)를 개재하여 밀폐되며, 절연부재(43)에 전극(42)이 설치된다. 따라서 절연부재(43)는 하우징(41)과 전극(42)을 전기적으로 절연시키므로 방전갭(G)에서 아크의 발생을 가능하게 한다.One side of the housing 41 is closed through an insulating member 43, and an electrode 42 is provided on the insulating member 43. Therefore, the insulating member 43 electrically insulates the housing 41 from the electrode 42, thereby enabling generation of an arc in the discharge gap G.

하우징(41)은 절연부재(43)와 방전갭(G) 사이에서 산화제를 공급하는 산화제 공급구(44)를 구비하고, 산화제 공급구(44)에 연결되는 서지 챔버(45)를 산화제 공급구(44)의 외곽에 구비한다.The housing 41 has an oxidant supply port 44 for supplying an oxidant between the insulating member 43 and the discharge gap G and a surge chamber 45 connected to the oxidant supply port 44, (44).

산화제 공급구(44)는 하우징(41)에서 전극(42)을 향하여 접선 방향으로 형성되어(미도시) 하우징(41) 내부로 공급되는 산화제의 회전 유동을 유도한다. 서지 챔버(45)는 공급되는 산화제를 일시적으로 저류시켜, 복수의 산화제 공급구(44)로 회전 공급되는 산화제량을 균일하게 한다.The oxidant supply port 44 is formed in a tangential direction from the housing 41 toward the electrode 42 to induce a rotational flow of the oxidant supplied into the housing 41 (not shown). The surge chamber 45 temporarily stores the supplied oxidizing agent so that the amount of the oxidizing agent supplied to the plurality of oxidizing agent supply openings 44 is uniform.

또한 하우징(41)은 전극(42)의 끝 부분에 대응하는 원통에 연료 공급구(46)를 구비한다. 연료 공급구(46)는 엔진(10)에 공급되는 연료의 일부를 공급할 수도 있다.The housing 41 also has a fuel supply port 46 in a cylinder corresponding to the end portion of the electrode 42. The fuel supply port 46 may supply a part of the fuel supplied to the engine 10. [

리포머(50)는 산화제 공급구(44)로 공급되는 산화제의 회전 유동 아크에 의하여 플라즈마 반응으로 연료 공급구(46)로 공급되는 연료를 개질하여 수소 및 탄화수소(HC) 종의 환원제를 생산한다.The reformer 50 reforms the fuel supplied to the fuel supply port 46 by the plasma reaction by the rotational flow arc of the oxidizing agent supplied to the oxidizing agent supply port 44 to produce a reducing agent of hydrogen and hydrocarbon (HC) species.

리포머(50)의 하우징(41)이 배기관(20)에 연결되므로 생성된 수소 및 탄화수소(HC) 종의 환원제는 배기관(20)을 통하여 탄화수소 선택적환원촉매(30)로 공급되어, NOx를 환원시키게 된다.Since the housing 41 of the reformer 50 is connected to the exhaust pipe 20, the generated reducing agent of hydrogen and hydrocarbon (HC) species is supplied to the hydrocarbon selective reduction catalyst 30 through the exhaust pipe 20 to reduce NOx do.

도 3은 본 발명의 일 실시예에 따른 배기가스 후처리 방법의 순서도이다. 도 3을 참조하면, 일 실시예의 배기가스 후처리 방법은 제1단계(ST1) 내지 제4단계(ST4)를 포함한다.3 is a flowchart of an exhaust gas after-treatment method according to an embodiment of the present invention. Referring to FIG. 3, the exhaust gas after-treatment method of one embodiment includes a first step (ST1) to a fourth step (ST4).

제1단계(ST1)는 희박 연소 조건에서 리포머(50)에 연료와 공기를 공급하여 연료를 개질하여 탄화수소(HC) 종(species)과 수소를 다량 생산한다. 제1단계(ST1)는 경유를 부분 산화 또는 분해하여(cracking) 환원제 기능을 하는 C1~C5의 탄소 개수를 가지는 탄화수소(HC) 종과 수소를 생산할 수 있다.In the first step ST1, fuel and air are supplied to the reformer 50 under lean-burn conditions to reform the fuel to produce a large amount of hydrocarbons (HC) species and hydrogen. The first step (ST1) can produce hydrocarbons (HC) of C1 to C5 carbon atoms and hydrogen which function as a reducing agent by partially oxidizing or cracking light oil.

제2단계(ST2)는 생산된 수소와 탄화수소 종들을 배기가스를 유통시키는 탄화수소 선택적환원촉매(HC SCR, selective catalytic reduction) 상에 공급한다.The second step (ST2) supplies the produced hydrogen and hydrocarbon species onto a hydrocarbon selective reduction catalyst (HC SCR) for circulating the exhaust gas.

개질된 탄화수소(HC) 종(species)과 수소는 배기관(20)을 통하여 탄화수소 선택적환원촉매(30)로 공급되어, 탄화수소 선택적환원촉매(30)에서 탈질 작용한다.The reformed hydrocarbon species and hydrogen are supplied to the hydrocarbon selective reduction catalyst 30 through the exhaust pipe 20 and denitrified at the hydrocarbon selective reduction catalyst 30. [

즉 제2단계(ST2)는 탄화수소 선택적환원촉매(HC SCR)(30)가 활성화 된 후, 생산된 수소와 탄화수소 종들이 탄화수소 선택적환원촉매(30) 상에서 환원제로 작용하여, 배기가스에 포함된 질소산화물(NOx)을 질소(N2)로 환원시킨다.That is, in the second step ST2, after the hydrocarbon selective reduction catalyst (HC SCR) 30 is activated, the produced hydrogen and hydrocarbon species act as a reducing agent on the hydrocarbon selective reduction catalyst 30, Reduce oxides (NOx) to nitrogen (N 2 ).

제3단계(ST3)는 탄화수소 선택적환원촉매(HC SCR)(30)의 후방에 배치되는 질소산화물 흡장촉매(LNT)(40)에서 탄화수소 선택적환원촉매(30)를 경유한 배기가스를 유통시킨다.The third step ST3 allows the exhaust gas passing through the hydrocarbon selective reduction catalyst 30 to flow from the nitrogen oxide storage catalyst (LNT) 40 disposed behind the hydrocarbon selective reduction catalyst (HC SCR)

즉 제3단계(ST3)는 탄화수소 선택적환원촉매(HC SCR)(30)가 활성화 되기 전에 질소산화물 흡장촉매(LNT)(40)에서 배기가스에 포함된 질소산화물을 흡장한다. 질소산화물 흡장촉매(40)는 탄화수소 선택적환원촉매(HC SCR)(30)가 탈질 작용하지 않은 동안 NOx를 흡장하거나, 탄화수소 선택적환원촉매(HC SCR)(30)에서 미처 환원 처리되지 못한 잔류 질소산화물을 흡장, 환원 처리하여 탄화수소 선택적환원촉매(HC SCR)(30)의 탈질 성능을 보완한다.That is, the third step ST3 stores the nitrogen oxide contained in the exhaust gas in the nitrogen oxide storage catalyst (LNT) 40 before the hydrocarbon selective reduction catalyst (HC SCR) 30 is activated. The nitrogen oxide storage catalyst 40 stores NOx while the hydrocarbon selective reduction catalyst (HC SCR) 30 is not denitrified or the residual nitrogen oxide (NOx) that has not been subjected to the fresh reduction in the hydrocarbon selective reduction catalyst Thereby reducing the denitrification performance of the hydrocarbon selective reduction catalyst (HC SCR) 30.

따라서 질소산화물 흡장촉매(40)에 흡장된 질소산화물을 고온으로 제거하기 위하여 농후 연소 조건을 구현하는 질소산화물 흡장촉매(40)에 대한 농후 연소 조건의 주기가 획기적으로 길어질 수 있다. 즉 엔진에서 농후 연소 조건으로 구동되는 시간이 단축되고, 희박 연소 조건으로 구동되는 시간이 길어진다.Therefore, in order to remove the nitrogen oxide stored in the nitrogen oxide storage catalyst 40 at a high temperature, the cycle of the rich combustion condition for the nitrogen oxide storage catalyst 40 implementing the rich combustion condition can be remarkably prolonged. That is, the time for driving the engine in the rich combustion condition is shortened, and the time for driving in the lean-burn condition becomes long.

제4단계(ST4)는 희박 연소 조건에서 설정된 시간 경과시 농후 연소 조건으로 전환되어 엔진 운전 후, 희박 연소 조건으로 전환한다.The fourth step (ST4) is switched to the rich combustion condition at the lapse of the set time in the lean burn condition, and is switched to the lean burn condition after the engine operation.

도 4는 종래기술과 본 발명의 일 실시예에 따른 희박, 과농 연소 조건을 비교한 그래프이다. 도 4를 참조하면, 엔진(10)의 동일한 운전 시간 동안에, 좌측의 종래기술은 질소산화물 흡장촉매에서 질소산화물을 제거하는 농후 연소 주기가 짧게 나타난다.4 is a graph comparing the lean and hyper-rich combustion conditions according to the prior art and one embodiment of the present invention. Referring to FIG. 4, during the same operation time of the engine 10, the conventional art on the left side shows a shortened rich combustion period for removing nitrogen oxides from the nitrogen oxide storage catalyst.

이에 비하여, 우측의 일 실시예는 질소산화물 흡장촉매(40)에서 질소산화물을 제거하는 농후 연소 주기가 매우 길게 나타난다. 따라서 일 실시예에서 엔진(10)의 연비가 개선되고, 엔진(10)의 부담이 경감될 수 있다.On the other hand, in the embodiment on the right side, the rich combustion period for removing nitrogen oxide from the nitrogen oxide storage catalyst 40 is very long. Therefore, in one embodiment, the fuel consumption of the engine 10 can be improved, and the burden on the engine 10 can be alleviated.

도 5는 종래기술과 본 발명의 일 실시예에 따른 탈질 성능을 비교한 그래프이다. 도 5를 참조하면, 종래기술의 탄화수소 선택적환원촉매(HC SCR)와 요소수 선택적환원촉매(Urea SCR)는 비교적 고온에서 우수한 탈질 성능을 가지며 낮은 온도에서 낮은 탈질 성능을 가진다.FIG. 5 is a graph comparing the denitration performance according to the prior art and one embodiment of the present invention. Referring to FIG. 5, the hydrocarbon selective reduction catalyst (HC SCR) and the urea water selective reduction catalyst (Urea SCR) of the prior art have excellent denitrification performance at a relatively high temperature and low denitrification performance at a low temperature.

이에 비하여, 일 실시예는 고온에서 종래기술에 상응하는 우수한 탈질 성능을 가지면서, 동시에 낮은 온도에서도 우수한 탈질 성능을 가진다(L1). 즉 동일한 운전 온도 조건에서, 일 실시예는 종래기술에 비하여 더 많은 양의 질소산화물을 제거하게 된다.In contrast, one embodiment has excellent denitrification performance corresponding to the prior art at high temperature, and at the same time, excellent denitrification performance at low temperature (L1). That is, under the same operating temperature conditions, one embodiment removes a greater amount of nitrogen oxides than the prior art.

즉 일 실시예는 탄화수소 선택적환원촉매(HC SCR)(30)가 활성화 되기 전에 질소산화물 흡장촉매(LNT)(40)에서 질소산화물을 흡장하므로 전체적으로 높은 탈질 성능을 가질 수 있다.That is, one embodiment stores nitrogen oxides in the nitrogen oxide storage catalyst (LNT) 40 before activating the hydrocarbon selective reduction catalyst (HC SCR) 30, so that it can have a high denitration performance as a whole.

이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, And it goes without saying that the invention belongs to the scope of the invention.

10: 엔진 20: 배기관
30: 탄화수소 선택적환원촉매(HC SCR) 40: 질소산화물 흡장촉매(LNT)
41: 하우징 42: 전극
43: 절연부재 44: 산화제 공급구
45: 서지 챔버 46: 연료 공급구
50: 리포머 G: 방전갭
10: engine 20: exhaust pipe
30: Hydrocarbon selective reduction catalyst (HC SCR) 40: Nitrogen oxide storage catalyst (LNT)
41: housing 42: electrode
43: Insulation member 44:
45: Surge chamber 46: Fuel supply port
50: Reformer G: Discharge gap

Claims (6)

엔진의 배기가스를 유통시키는 배기관;
상기 배기관에 구비되어 배기가스에 포함된 질소산화물을 제거하는 탄화수소 선택적환원촉매(HC SCR);
상기 탄화수소 선택적환원촉매를 경유한 배기가스에 잔류하는 질소산화물을 제거하는 질소산화물 흡장촉매(LNT); 및
상기 탄화수소 선택적환원촉매 전방의 상기 배기관에 연결되어 연료를 개질하여 수소 및 탄화수소(HC) 종(species)의 환원제를 생산하여 공급하는 리포머
를 포함하는 배기가스 후처리 장치.
An exhaust pipe through which the exhaust gas of the engine flows;
A hydrocarbon selective reduction catalyst (HC SCR) provided in the exhaust pipe to remove nitrogen oxides contained in the exhaust gas;
A nitrogen oxide storage catalyst (LNT) for removing nitrogen oxide remaining in the exhaust gas via the hydrocarbon selective reduction catalyst; And
A reformer connected to the exhaust pipe in front of the hydrocarbon selective reduction catalyst to reform the fuel to produce and supply a reducing agent of hydrogen and hydrocarbon (HC) species;
And the exhaust gas after-treatment apparatus.
제1항에 있어서,
상기 탄화수소는
C1 내지 C5의 탄소 수를 가지는 배기가스 후처리 장치.
The method according to claim 1,
The hydrocarbon
And has a carbon number of C1 to C5.
희박 연소 조건에서 리포머에 연료와 공기를 공급하여 연료를 개질하여 탄화수소(HC) 종(species)과 수소를 다량 생산하는 제1단계;
생산된 수소와 탄화수소 종들을 배기가스를 유통시키는 탄화수소 선택적환원촉매(HC SCR, selective catalytic reduction) 상에 공급하는 제2단계;
탄화수소 선택적환원촉매(HC SCR) 후방에 배치되는 질소산화물 흡장촉매(LNT)에서 상기 탄화수소 선택적환원촉매를 경유한 배기가스를 유통시키는 제3단계; 및
희박 연소 조건에서 설정된 시간 경과시 농후 연소 조건으로 전환되어 엔진 운전 후, 희박 연소 조건으로 전환하는 제4단계
를 포함하는 배기가스 후처리 방법.
A first step of producing a large amount of hydrocarbon (HC) species and hydrogen by reforming the fuel by supplying fuel and air to the reformer under lean burn conditions;
A second step of supplying the produced hydrogen and hydrocarbon species onto a hydrocarbon selective reduction catalyst (HC SCR) for circulating exhaust gas;
A third step of flowing exhaust gas via the hydrocarbon selective reduction catalyst in a nitrogen oxide storage catalyst (LNT) disposed behind a hydrocarbon selective reduction catalyst (HC SCR); And
The fourth step of switching to the rich combustion condition at the lapse of the set time in the lean burn condition and switching to the lean burn condition after the engine operation
And the exhaust gas after treatment.
제3항에 있어서,
상기 제1단계는
경유를 부분 산화 또는 분해하여(cracking) 환원제 기능을 하는 수소와 C1~C5의 탄소 개수를 가지는 탄화수소(HC) 종과 수소를 생산하는 배기가스 후처리 방법.
The method of claim 3,
The first step
A method for post-treatment of an exhaust gas which produces partial hydrogenation or decomposition of light oil, hydrogen (HC) functioning as a reducing agent, hydrocarbons (HC) having a carbon number of C1 to C5, and hydrogen.
제4항에 있어서,
상기 제2단계는
상기 탄화수소 선택적환원촉매(HC SCR)가 활성화 된 후,
생산된 수소와 탄화수소 종들이 상기 탄화수소 선택적환원촉매(HC SCR) 상에서 환원제로 작용하여, 배기가스에 포함된 질소산화물(NOx)을 질소(N2)로 환원시키는 배기가스 후처리 방법.
5. The method of claim 4,
The second step
After the hydrocarbon selective reduction catalyst (HC SCR) is activated,
Wherein the produced hydrogen and hydrocarbon species act as a reducing agent on the hydrocarbon selective reduction catalyst (HC SCR) to reduce nitrogen oxides (NOx) contained in the exhaust gas to nitrogen (N 2 ).
제3항에 있어서,
상기 제3단계는,
상기 탄화수소 선택적환원촉매(HC SCR)가 활성화 되기 전,
상기 질소산화물 흡장촉매(LNT)에서 배기가스에 포함된 질소산화물을 흡장하는 배기가스 후처리 방법.
The method of claim 3,
In the third step,
Before the hydrocarbon selective reduction catalyst (HC SCR) is activated,
And the nitrogen oxide contained in the exhaust gas is occluded in the nitrogen oxide storage catalyst (LNT).
KR1020150096678A 2015-04-24 2015-07-07 Exhaust gas post-processing device and method KR20170006162A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020150096678A KR20170006162A (en) 2015-07-07 2015-07-07 Exhaust gas post-processing device and method
PCT/KR2015/013472 WO2016171366A1 (en) 2015-04-24 2015-12-09 Exhaust gas post-processing device and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150096678A KR20170006162A (en) 2015-07-07 2015-07-07 Exhaust gas post-processing device and method

Publications (1)

Publication Number Publication Date
KR20170006162A true KR20170006162A (en) 2017-01-17

Family

ID=57990581

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150096678A KR20170006162A (en) 2015-04-24 2015-07-07 Exhaust gas post-processing device and method

Country Status (1)

Country Link
KR (1) KR20170006162A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190102815A (en) * 2018-02-27 2019-09-04 한국기계연구원 Exhaust gas post-processing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190102815A (en) * 2018-02-27 2019-09-04 한국기계연구원 Exhaust gas post-processing device

Similar Documents

Publication Publication Date Title
EP2541012B1 (en) System for purifying exhaust gas and corresponding exhaust system
CN107787395B (en) Engine exhaust emission treatment system
US20160298514A1 (en) Method for depolluting exhaust gas, notably from internal-combustion engines, in particular for motor vehicles, and plant using same
US10480369B1 (en) Exhaust after-treatment system for diesel internal combustion engines
EP1212520A1 (en) Emission abatement system
US9435276B2 (en) Exhaust gas purification system for an internal combustion engine
US11867106B2 (en) Systems and methods for desulfation of catalysts included in aftertreatment systems
JP2017115887A (en) Dosing module
US20090165439A1 (en) Exhaust gas treatment system for an internal combustion engine
KR20170006162A (en) Exhaust gas post-processing device and method
CN106988843B (en) Method and device for exhaust gas aftertreatment of an internal combustion engine
KR101004751B1 (en) Plasma lnt system for exhaust gas and plasma reformer
US20170167336A1 (en) Apparatus for purifying exhaust gas
KR101048120B1 (en) Diesel Engine Exhaust Gas Reduction System
US20150176458A1 (en) METHOD AND SYSTEM FOR PURIFYING NOx IN INTERNAL COMBUSTION ENGINE
JP2013245606A (en) Exhaust gas purification system
KR20170055115A (en) Selective catalytic reduction system
US9084968B2 (en) After treatment device of engine
CN102758668B (en) Regeneration methods and systems for particulate filters
US20060283176A1 (en) Method and apparatus for regenerating a NOx trap and a particulate trap
KR102394563B1 (en) Injector cooling system of dosing module
JP2022054622A (en) Exhaust emission control system for internal combustion engine
KR100836338B1 (en) Method for detecting fault of dosing injector of urea scr system
KR20140076373A (en) Catalytic converter of engine for vehicle and apparatus of purifying exhaust gas provided with the same
WO2016171366A1 (en) Exhaust gas post-processing device and method therefor

Legal Events

Date Code Title Description
AMND Amendment
AMND Amendment
E801 Decision on dismissal of amendment
E601 Decision to refuse application
E601 Decision to refuse application
E801 Decision on dismissal of amendment