WO2016170993A1 - 移植装置、移植システム、移植方法及びコンピュータプログラム - Google Patents

移植装置、移植システム、移植方法及びコンピュータプログラム Download PDF

Info

Publication number
WO2016170993A1
WO2016170993A1 PCT/JP2016/061415 JP2016061415W WO2016170993A1 WO 2016170993 A1 WO2016170993 A1 WO 2016170993A1 JP 2016061415 W JP2016061415 W JP 2016061415W WO 2016170993 A1 WO2016170993 A1 WO 2016170993A1
Authority
WO
WIPO (PCT)
Prior art keywords
transplant
cultivation panel
medium
unit
culture medium
Prior art date
Application number
PCT/JP2016/061415
Other languages
English (en)
French (fr)
Inventor
豪 伊藤
裕二 木下
平井 達也
祐貴 松田
Original Assignee
株式会社椿本チエイン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社椿本チエイン filed Critical 株式会社椿本チエイン
Priority to JP2017514059A priority Critical patent/JP6468349B2/ja
Priority to US15/567,426 priority patent/US20180084713A1/en
Priority to EP16783014.0A priority patent/EP3287004A4/en
Priority to CN201680022949.9A priority patent/CN107529728A/zh
Publication of WO2016170993A1 publication Critical patent/WO2016170993A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C11/00Transplanting machines
    • A01C11/02Transplanting machines for seedlings
    • A01C11/025Transplanting machines using seedling trays; Devices for removing the seedlings from the trays
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/02Receptacles, e.g. flower-pots or boxes; Glasses for cultivating flowers
    • A01G9/029Receptacles for seedlings
    • A01G9/0299Handling or transporting of soil blocks or seedlings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/08Devices for filling-up flower-pots or pots for seedlings; Devices for setting plants or seeds in pots
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/08Devices for filling-up flower-pots or pots for seedlings; Devices for setting plants or seeds in pots
    • A01G9/083Devices for setting plants in pots
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/08Devices for filling-up flower-pots or pots for seedlings; Devices for setting plants or seeds in pots
    • A01G9/086Devices for repotting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • G06F3/04842Selection of displayed objects or displayed text elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source

Definitions

  • the present invention relates to a system for transplanting plant seedlings, realizes space saving of the device, and further performs efficient sorting and transplantation with a simple configuration when performing screening and screening,
  • the present invention relates to a transplant system using a transplant device, a transplant method, and a computer program.
  • Plant factories that grow plants by controlling the growth environment are increasing regardless of their size. Plants cultivated in such facilities are used not only for edible vegetables but also for various purposes such as food processing, medicine or ornamental use. Since plant factories can grow under controlled environments, they can be stably supplied without being affected by natural conditions such as climate change and bad weather, and so are expected to spread in the future.
  • the cultivation process in the plant factory includes sowing, budding, greening, seedling raising, seedling transplanting, growth, and harvesting. It has been proposed to improve the efficiency of seedling transplanting work by using an automatic transplanting device that automatically transplants at the timing of seedling transplanting during each process. Even in small and medium-sized facilities that have been increasing recently, cost reduction is required, and it is desired to improve work efficiency by using a transplant device that automatically transplants.
  • Patent Document 1 discloses an automatic planting device that separates a plurality of nursery beds containing seedlings one by one in order from the end of an elastic foam synthetic resin mat such as a plate-like urethane, and sets them on a planting panel.
  • an elastic foam synthetic resin mat such as a plate-like urethane
  • seedling selection is performed at the timing of seedling transplantation, for example, to remove seedlings with poor growth due to environmental influences or diseases.
  • the cost is high, and there are causes that make it difficult to maintain and homogenize the quality, such as different criteria for selection.
  • Patent Literature 2 discloses a hydroponic cultivation apparatus including a selection mechanism for transferring pallets containing seedlings one by one with a robot arm and performing inspection, and collecting seedlings with poor growth according to inspection results. Proposed. In the inspection disclosed in Patent Document 1, a seedling is photographed to determine whether or not the size of the leaf and the length of the stem or root are equal to or greater than a predetermined value.
  • Non-Patent Document 1 also simultaneously examines a large number of seedlings transported using an automatic transport system in a large-scale plant factory that realizes mass production of high-quality and homogeneous plants. A cultivation system having a selection function for transplanting only excellent strains according to the test results is disclosed. In Non-Patent Document 1, a change in activity within 24 hours is simultaneously evaluated for 600 seedlings, and selection is performed so that seedlings that do not satisfy the evaluation criteria are defective.
  • Patent Document 1 a method of separating the seedbed pieces in order from the end of the seedbed mat and transplanting to each hole in order from the hole in the end of the transplant destination panel has been adopted.
  • the size of the device increases only by moving the end of the nursery mat in accordance with the end of the transplant destination panel.
  • the length of the planting panel conveying conveyor for moving the planting panel with respect to the raising / lowering bed of the seedbed piece provided at the fixed position is at least the planting panel Is twice as long as the length in the transport direction.
  • the automatic planting device disclosed in Patent Document 1 a plurality of planting panels are sequentially conveyed, so that the length of the device is several times the length of the planting panel.
  • nursery beds or panels for growing seedlings can be stacked and grown in the vertical direction, so there is an advantage that production can be realized in a much smaller site area than alley cultivation.
  • the transplantation device also has a compact configuration.
  • the automatic inspection disclosed in Patent Document 2 is inefficient because the seedlings are transferred and inspected one by one. Furthermore, the selection of seedlings is performed in order to remove the relatively poor growth in the overall growth situation, so a relative evaluation is necessary. For each seedling, the leaf size etc. is a predetermined value or more. In the configuration for determining whether or not, the absolute evaluation is performed. In the cultivation system disclosed in Non-Patent Document 1, a plurality of seedlings can be inspected at once by automatic inspection, but a lot of introduction cost is required. In small and medium-sized facilities, which have been increasing recently, there is a need for an automatic transplantation device that can be tested with a simple configuration that can reduce the introduction cost.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a transplantation device, a computer program, and a transplantation method for realizing space saving of the device.
  • the transplant device includes a first holding unit that holds a plate-like medium in which a plurality of plants are planted in the row direction and the column direction, and a plurality of holes that hold the plants in the row direction and the column direction.
  • a second holding unit that holds the flat plate-shaped cultivation panel so as to be parallel to the culture medium, and a transplanting device for transplanting the plant from the culture medium to the hole of the cultivation panel.
  • the plant of the medium corresponding to the transplanting procedure determined by the procedure determining unit Based on the procedure determining unit that determines the transplanting procedure from the culture medium to the hole of the cultivation panel, and the first holding unit or the second holding unit, the plant of the medium corresponding to the transplanting procedure determined by the procedure determining unit And a moving part that moves so that the hole of the cultivation panel is positioned up and down, and a transplant arm that moves up and down in a direction perpendicular to the culture medium and the cultivation panel after the movement by the moving part, pulls the plant into the hole. Characterized in that it comprises a grafted portion to be implanted by free or pushed.
  • the moving unit includes a first region within a range in which corresponding regions are opposed to each other among a plurality of regions in which the row direction or the column direction of the cultivation panel and the culture medium are divided into the same number.
  • the holding unit or the second holding unit is moved in the surface direction.
  • the moving unit separates the same direction in the row direction and the column direction of the cultivation panel and the culture medium, and the longitudinal direction of the cultivation panel or the culture medium.
  • the regions corresponding to each other are moved within a range in which the regions correspond to each other.
  • the moving unit moves within a range in which corresponding regions are opposed to each other among a plurality of regions in which both the row direction and the column direction of the cultivation panel and the culture medium are separated into the same number. It is characterized by that.
  • the same number is the greatest common divisor between the number of rows or columns in the direction that is the longitudinal direction of the culture medium and the number of rows or columns in the direction corresponding to the direction of the cultivation panel. It is characterized by being.
  • the moving unit is divided into two, the first direction which is the short direction of the cultivation panel or the medium, in the row direction and the column direction of the cultivation panel and the medium, respectively. It is characterized by moving between corresponding areas of a plurality of areas.
  • the procedure determining unit is an area corresponding to the one area in order from an end-side hole in the first direction of one area of the cultivation panel among the plurality of areas.
  • the plants are sequentially associated from the end side in the first direction of the culture medium toward the center side, or the center in the first direction of the cultivation panel in one region of the cultivation panel among the plurality of regions.
  • the plants on the center side in the first direction of the culture medium in the region corresponding to the one region are sequentially associated in order from the side hole toward the end side.
  • the transplant device according to the present invention is further characterized by further comprising a storage unit that stores in advance the correspondence between the corresponding regions.
  • a plurality of the transplant sections are arranged in parallel at an interval corresponding to a common multiple of an interval of the medium in one direction of the medium and an interval between the holes in the one direction of the cultivation panel. And a plurality of plants planted in the culture medium at intervals corresponding to the common multiple are simultaneously transplanted to the cultivation panel in a predetermined order by the plurality of transplant arms.
  • the transplant device further includes an operation availability determination unit that determines whether each of the plurality of transplant arms can be operated based on selection information for the plant when transplanting the plant in the medium. It is characterized by providing.
  • the transplant device is a flat cultivation in which a plurality of holes for holding the plants are provided in the row direction and the column direction from a flat medium in which a plurality of plants are planted in the row direction and the column direction.
  • an imaging unit that images the culture medium
  • a transmission unit that transmits an image captured by the imaging unit, and a plant selected based on the image transmitted by the transmission unit
  • a receiving unit that receives sorting information, a transplanted plant determining unit that determines a plurality of plants to be transplanted based on the sorting information received by the receiving unit, and a plant that has been determined by the transplanted plant determining unit is transplanted to the cultivation panel And a transplant part to be provided.
  • a plurality of the transplant sections are arranged in parallel at an interval corresponding to a common multiple of an interval of the medium in one direction of the medium and an interval between the holes in the one direction of the cultivation panel.
  • the plants determined by the transplanted plant determining unit are simultaneously cultivated by the plurality of transplant arms. It is characterized by being transplanted to a panel.
  • the transplant system according to the present invention is a flat cultivation in which a plurality of holes for holding the plants are provided in the row direction and the column direction from a flat medium in which a plurality of plants are planted in the row direction and the column direction.
  • a transplant system including a transplant device for transplanting the plant to a panel and a communication device having a display unit and communicating with the transplant device, wherein the transplant device captures an image of the culture medium, A transmitting unit that transmits an image captured by the imaging unit to the communication device, and the transplanting device further receives, from the communication device, plant selection information selected based on the image transmitted by the transmitting unit.
  • a receiving unit a transplanted plant determining unit that determines a plurality of plants to be transplanted based on the selection information received by the receiving unit, and a transplanting unit that transplants the plant determined by the transplanted plant determining unit to the cultivation panel; Characterized in that it comprises.
  • a plurality of the transplant devices are juxtaposed at intervals corresponding to a common multiple of a medium interval in one direction of the medium and an interval between the holes in the one direction of the cultivation panel.
  • the transplanted plant determining unit is configured to determine whether or not the plurality of transplanted arms can be operated based on the received selection information.
  • the transplanting method according to the present invention is a flat cultivation in which a plurality of holes for holding the plants are provided in the row direction and the column direction from a flat medium in which a plurality of plants are planted in the row direction and the column direction.
  • the row direction or the column direction of the cultivation panel and the culture medium are sorted into the same number, and within a plurality of sorted regions, the corresponding regions face each other, It is transplanted by drawing or pushing a plant from the medium into the hole in a direction orthogonal to the medium after moving the medium or the cultivation panel in a plane direction.
  • the transplanting method according to the present invention is a flat cultivation in which a plurality of holes for holding the plants are provided in the row direction and the column direction from a flat medium in which a plurality of plants are planted in the row direction and the column direction.
  • a plurality of the media are arranged in parallel at an interval corresponding to a common multiple of an interval between the medium in one direction of the medium and an interval between the holes in the one direction of the cultivation panel.
  • a plurality of plants planted in the medium at the intervals using a transplant arm are simultaneously transplanted to the cultivation panel by the plurality of transplant arms, and the plants remaining in the medium are transferred to the plurality of transplant arms. It is made to transplant to the said cultivation panel using any one of them.
  • the transplant method according to the present invention is a flat plate in which a plurality of holes for further growth of the plant are provided in the row direction and the column direction from a flat medium in which a plurality of plants are planted in the row direction and the column direction.
  • the captured image is transmitted to the communication device, and the communication device displays the received captured image on the display unit, accepts the selection of plants in the culture medium on the captured image, and includes the selected plant information.
  • the information is transmitted to the transplant device, the transplant device receives the selection information from the communication device, determines a plurality of plants to be transplanted based on the received selection information, and transplants the determined plants to the cultivation panel Let The features.
  • the computer program according to the present invention includes a first holding unit that holds a plate-shaped medium in which a plurality of plants are planted in a row direction and a column direction, and a plurality of holes that hold the plants in the row direction and the column direction.
  • a computer that moves the first holding unit or the second holding unit in a plane direction in a processor of a transplanting device that includes a second holding unit that holds a flat plate-shaped cultivation panel that is parallel to the medium.
  • the first holding unit or the second holding unit is within a range in which the corresponding regions are opposed to each other among a plurality of regions in which the row direction or the column direction of the cultivation panel and the culture medium are equally divided. It is characterized by executing a process of moving the part in the surface direction.
  • a computer program according to the present invention is a flat plate in which a plurality of holes for holding the plants are provided in a row direction and a column direction from a flat medium in which a plurality of plants are planted in a row direction and a column direction.
  • the computer program for executing transplantation to the cultivated panel the computer is arranged at intervals corresponding to a common multiple of the medium interval in one direction of the medium and the interval between the holes in the one direction of the culture panel.
  • a process of determining a plurality of plants to be transplanted simultaneously by a plurality of transplanted arms, a process of simultaneously transplanting the determined plurality of plants to the cultivation panel by the plurality of transplanting arms, and the medium The plant that remains in the plant is transplanted to the cultivation panel using any one of the plurality of transplant arms.
  • a computer program according to the present invention is a computer program that causes a computer having a display unit to accept selection from a plate-shaped medium in which a plurality of plants are planted in a row direction and a column direction. Processing for acquiring a captured image of a medium, processing for displaying the acquired captured image on the display unit, processing for receiving selection of plants in the medium on the captured image, and selection information including information on the selected plants A process of transmitting to an external device is executed.
  • the cultivation panel or the culture medium is moved in the plane direction within a range in which a plurality of regions obtained by dividing the row direction or the column direction of the cultivation panel and the culture medium in the same number are opposed to each other.
  • the region at one end of the sorted regions of the cultivation panel does not face the region other than the region on the one end side corresponding to the position in the culture medium.
  • the region on the other end side in the sorted region of the cultivation panel does not face the region other than the region on the other end side in the culture medium.
  • the cultivation panel and the culture medium is separated, and the cultivation panel or the culture medium is moved in the plane direction within a range in which the corresponding areas of the separated areas face each other.
  • the opposing areas of the cultivation panel and the culture medium can be increased as much as possible, and the size of the panel and the culture medium can be reduced.
  • the cultivation panel and the culture medium are moved within a range in which regions obtained by separating the cultivation panel and the culture medium in both the row direction and the column direction face each other.
  • the moving range of the culture medium or the cultivation panel does not greatly deviate from each other in both the row direction and the column direction.
  • the number of separation can be made as small as possible, and the moving range can be efficiently separated.
  • the cultivation panel and the culture medium are divided into two in the first direction, which is the short direction of the cultivation panel or the culture medium, and are moved within a range in which the two divided areas face each other. Furthermore, in this case, the plants on the end side in the first direction of the culture medium are transplanted into the holes on the end side in the first direction of the cultivation panel between the corresponding regions, and the center side in the first direction of the cultivation panel is transplanted. A plant on the center side in the first direction of the medium is transplanted into the hole. It becomes possible not to be separated from each other in the first direction.
  • the correspondence relationship between the regions stored in advance can be read out in any order, so that the position between the plant on the medium and the hole of the cultivation panel can be opposed in any order. become.
  • the plants planted in the culture medium are simultaneously cultivated by a plurality of transplant arms provided at intervals corresponding to the common multiple of the culture medium spacing in the predetermined direction of the culture medium and the spacing between the holes in the cultivation panel. Ported to the panel. Thereby, it is possible to transplant to a cultivation panel simultaneously by the number of transplant arms as much as possible.
  • transplant execution when a plurality of transplant arms are operated simultaneously, whether or not each transplant arm can be operated (transplant execution) is determined based on the selection information. Since it is possible to determine that only the transplant arm corresponding to the plant with poor growth does not operate, efficient selection and transplantation can be realized.
  • the selection information used at the time of transplantation is received by an information processing apparatus having a display unit that displays a picked-up image using a picked-up image of a medium in which a plurality of plants are planted at once. It is done. Accordingly, it is possible to realize selection by relative evaluation with a simpler configuration than inspecting each individual plant individual or performing a specific test multiple times for each individual.
  • the movement range of the culture medium or the cultivation panel is not greatly deviated from each other, so that the space occupied by the entire apparatus can be made as small as possible.
  • the present invention since it is possible to simultaneously transplant to the cultivation panel by the number of transplant arms as much as possible, efficient transplantation can be realized.
  • efficient transplantation can be realized.
  • FIG. 3 is a schematic perspective view of the transplant device in the first embodiment. It is a perspective view which shows an example of the culture medium of the plant transplant origin. It is a perspective view which shows the culture medium, holder, cultivation panel, and transplant arm in Embodiment 1.
  • FIG. 3 is a block diagram showing an internal configuration of the transplantation device in the first embodiment.
  • 5 is a flowchart showing an example of a transplant processing procedure in the first embodiment. It is explanatory drawing which shows the transplant order i allocated to the hole of a cultivation panel. It is explanatory drawing which shows the area
  • FIG. 10 is an explanatory diagram illustrating an example of region sorting in the row direction in the second embodiment.
  • FIG. 10 is an explanatory diagram showing an example of area separation in the second embodiment. It is explanatory drawing which shows the example of matching with the hole of the cultivation panel in Embodiment 2, and the seedbed part of a culture medium. It is explanatory drawing which shows the transplant order i to the cultivation panel in the culture medium of Embodiment 2.
  • FIG. It is explanatory drawing which shows the transplant order i to the cultivation panel in the culture medium of Embodiment 2.
  • FIG. It is explanatory drawing which shows the transplant order i allocated to the hole of the cultivation panel in Embodiment 3.
  • FIG. 10 is an explanatory diagram illustrating an example of area sorting in the row direction in the third embodiment.
  • FIG. 10 is an explanatory diagram illustrating an example of area separation in the third embodiment.
  • FIG. 10 is an explanatory diagram illustrating another example of area classification in the third embodiment. It is explanatory drawing which shows the example of matching with the hole of the cultivation panel in Embodiment 3, and the seedbed part of a culture medium. It is explanatory drawing which shows the transplant order i to the cultivation panel in the culture medium of Embodiment 3. FIG. It is explanatory drawing which shows the transplant order i to the cultivation panel in the culture medium of Embodiment 3.
  • FIG. 10 is an explanatory diagram illustrating another example of area classification in the third embodiment.
  • FIG. 10 is a flowchart illustrating an example of a transplant processing procedure in a fourth embodiment.
  • FIG. 10 is an explanatory diagram showing a transplantation order i assigned to a seedbed portion of a medium in a fifth embodiment. It is a flowchart which shows an example of the determination procedure of a response
  • FIG. 10 is a schematic perspective view of a transplant device in a sixth embodiment.
  • FIG. 20 is a block diagram showing internal configurations of a transplant device and an information processing device in a sixth embodiment.
  • FIG. 20 is a block diagram showing internal configurations of a transplant device and an information processing device in a sixth embodiment.
  • 22 is a flowchart illustrating an example of a transplant processing procedure according to the sixth embodiment.
  • FIG. 25 is an explanatory diagram of a transplant order determined by a transplant algorithm in the sixth embodiment.
  • FIG. 25 is an explanatory diagram of a transplant order determined by a transplant algorithm in the sixth embodiment.
  • FIG. 25 is an explanatory diagram of a transplant order determined by a transplant algorithm in the sixth embodiment.
  • FIG. 25 is an explanatory diagram of a transplant order determined by a transplant algorithm in the sixth embodiment.
  • FIG. 25 is an explanatory diagram of a transplant order determined by a transplant algorithm in the sixth embodiment.
  • FIG. 25 is an explanatory diagram of a transplant order determined by a transplant algorithm in the sixth embodiment.
  • FIG. 25 is an explanatory diagram of a transplant order determined by a transplant algorithm in the sixth embodiment.
  • FIG. 25 is an explanatory diagram of a transplant order determined by a transplant algorithm in the sixth embodiment.
  • 18 is a flowchart illustrating an example of details of a transplanting procedure in the sixth embodiment.
  • 18 is a flowchart illustrating an example of details of a transplanting procedure in the sixth embodiment.
  • FIG. 20 is an explanatory diagram illustrating an example of an operation screen displayed on the information processing apparatus according to the sixth embodiment. It is explanatory drawing which shows the example of selection information.
  • FIG. 20 is an explanatory diagram which shows the example of selection information.
  • FIG. 59 is an explanatory diagram showing a transplantation example based on the selection information of FIG. 58.
  • FIG. 10 is an explanatory diagram illustrating an example of an operation screen according to Modification 1.
  • FIG. 10 is a schematic perspective view of a transplantation device 10 in a seventh embodiment.
  • 25 is a flowchart illustrating an example of a transplant processing procedure according to the seventh embodiment.
  • 27 is a flowchart illustrating an example of a processing procedure when a still image is used in the seventh embodiment.
  • FIG. 1 is a perspective view showing a transplant device 1 according to Embodiment 1.
  • FIG. 1 In the following description, upper and lower, front and rear, and left and right indicated by arrows in FIG. 1 are used.
  • the transplant device 1 includes a frame 25 that holds the cultivation panel T, a holder transfer unit 4 that transfers the culture medium holder 40, a transplant arm drive unit 5 that drives the transplant arm 50, a transfer of the holder 40, and a drive of the transplant arm 50, respectively.
  • a transplantation control unit 20 (showing an outer box in FIG. 1) for instructing the holder transfer unit 4 and the transplantation arm drive 5 is provided.
  • the frame 25 is composed of a plurality of columns and a plurality of horizontal members that connect the columns at the top and bottom.
  • a guide frame is installed in the center of the frame 25 in the front-rear and left-right directions, and a support plate 26 is horizontally attached to the guide frame.
  • the cultivation panel T is fixed on the support plate 26 so that two adjacent sides follow the guide frame.
  • the cultivation panel T can be manually attached to and detached from a predetermined position on the support plate 26. Details of the cultivation panel T will be described later.
  • the transplant arm drive unit 5 is below the cultivation panel T and includes a transplant arm 50, a support base 51, a drive unit 52, a travel guide 53, and a left-right direction guide 54.
  • the traveling guide 53 is installed in the lower part of the frame 25 in the front-rear direction. The installation position of the traveling guide 53 is below the cultivation panel T.
  • a support base 51 is attached to the travel guide 53 so as to travel.
  • the support base 51 is provided with a drive unit 52, and the transplant arm 50 is attached to the drive unit 52.
  • the length of the traveling guide 53 is substantially equal to the length in the longitudinal direction of the cultivation panel T, and the transplant arm 50 can move a distance corresponding to the longitudinal direction of the cultivation panel T.
  • the travel guide 53 is configured to be movable in the left-right direction along the left-right direction guide 54.
  • the transplant arm 50 can move to the lower part of all the holes T1 of the cultivation panel T within a range corresponding to the size of the cultivation panel T below the cultivation panel T.
  • the transplant arm 50 can be raised with respect to the support base 51 by the operation of the drive unit 52, and the transplant hand (see FIG. 3) provided at the tip of the transplant arm 50 is from the cultivation panel T. It is possible to move up and down between a low initial position and a rising position higher than the cultivation panel T through a plurality of holes T1 provided in the cultivation panel T.
  • the holder transfer unit 4 is located above the cultivation panel T and includes a holder 40, a left-right direction guide 41, and a front-rear direction guide 42.
  • the front-rear direction guide 42 is installed in the front-rear direction at a position on the rear side of the upper center of the cultivation panel T.
  • a left-right direction guide 41 extending in the left-right direction is attached to the front-rear direction guide 42.
  • a long side of the rectangular frame-shaped holder 40 is attached to the front surface of the left-right direction guide 41.
  • the holder 40 can move in the left-right direction along the left-right direction guide 41, and can move in the front-rear direction along the front-rear direction guide 42 together with the left-right direction guide 41.
  • the length of the front-rear direction guide 42 is slightly longer than the length of the cultivation panel T in the front-rear direction, and the length of the left-right direction guide 41 is also slightly longer than the width of the cultivation panel T (length in the left-right direction).
  • the holder 40 can be moved above the cultivation panel T within a range that does not greatly deviate from the range corresponding to the cultivation panel T. Details of the holder 40 and its movement range will be described later.
  • FIG. 2 is a perspective view illustrating an example of a plant transplant source culture medium
  • FIG. 3 is a perspective view illustrating the medium B, the holder 40, the cultivation panel T, and the transplant arm 50 according to the first embodiment.
  • the medium B is made of urethane, for example, and has a rectangular flat plate shape as shown in FIG.
  • the culture medium B is divided into a plurality of nursery beds arranged in rows and columns. On one side of the medium B, one hole B1 for raising the plant P is provided in each of the nursery beds. The other side of the culture medium B is cut so as not to reach the one side.
  • the rectangular frame-shaped holder 40 has a bottom plate provided with holes arranged in a plurality of rows in the vertical and horizontal directions.
  • the inner periphery of the rectangular frame of the holder 40 is substantially equal to the outer periphery of the culture medium B so that the culture medium B can be accommodated in the holder 40.
  • the size and number of the holes provided in the bottom plate of the holder 40 correspond to the size and the number of divisions of the seed bed part of the culture medium B.
  • the cultivation panel T is made of, for example, polystyrene foam and has a rectangular flat plate shape.
  • the cultivation panel T is provided with a plurality of holes T1 arranged vertically and horizontally.
  • Each hole T1 has a circular shape and is reduced in a taper shape from one side of the panel to about half the depth.
  • the diameter on the one surface side of the hole T1 is substantially equal to the length of the diagonal line of one seed bed portion of the medium B, and the diameter on the reduced diameter side is substantially equal to or slightly shorter than the length of one side of the seed bed portion.
  • the number of holes T1 of the cultivation panel T is not limited to this, and the interval between the holes T1 is designed to be an interval suitable for growth depending on the type of the plant P.
  • the process by which the plant P is transplanted from the culture medium B to the cultivation panel T by the transplant device 1 will be described with reference to FIG.
  • the holder 40 holding the culture medium B installed by the operator is moved forward, backward, left and right above the cultivation panel T under the control of the transplant control unit 20.
  • the support stand 51 of the transplant arm 50 moves under the cultivation panel T to the front, back, left and right under the control of the transplant control unit 20.
  • the transplantation control unit 20 moves the support base 51 so that the transplantation arm 50 is positioned directly below the transplantation arm 50.
  • the transplantation control unit 20 operates the driving unit 52 so that the transplantation hand at the distal end portion of the transplantation arm 50 is raised to the ascending position.
  • the transplanting arm 50 passes through the vacant hole T1 and the hole in the bottom plate of the holder 40 together with the transplanting hand and moves up to the ascending position where the transplanting hand reaches the seedbed part, the transplanting hand grips the seedbed part.
  • the transplant control unit 20 lowers the transplant arm 50.
  • the seedbed held by the transplanting hand is lowered along with the transplanting arm 50 to be broken at the hole opened in the bottom plate of the holder 40, and further lowered to enter the hole T1 of the cultivation panel T. It is held at the reduced diameter part.
  • the transplant control unit 20 releases the grip by each transplant hand when the seedbed is held in the hole T1, and the transplant arm is further lowered to return the transplant hand to the initial position.
  • the holder 40, the support base 51, and the transplant arm 50 are moved back and forth, right and left, and up and down in accordance with an instruction from the transplant control unit 20, so that the transplantation of the seed bed portion of the medium B to the cultivation panel T is realized.
  • FIG. 4 is a block diagram showing an internal configuration of the transplantation device 1 in the first embodiment.
  • the transplant device 1 includes the holder transfer unit 4 and the transplant arm drive unit 5 and the transplant control unit 20 that controls them.
  • the transplantation control unit 20 is a programmable logic controller (Programmable Logic Controller).
  • the transplantation control unit 20 is connected to a control unit 21 that is a microprocessor, a storage unit 22 that uses a flash memory, an operation unit 23 that is a man-machine interface, a holder transfer unit 4, and a transplantation arm drive unit 5. And an input / output interface 24.
  • the control unit 21 instructs the holder transfer unit 4 to move and stop the holder 40 according to the operation received by the operation unit 23 based on the transplant program 2P stored in advance in the storage unit 22. Further, the control unit 21 instructs the transplant arm drive unit 5 to move the support base 51 of the transplant arm 50 back and forth, right and left and stop, and to drive the transplant arm 50 up and down.
  • the storage unit 22 stores the transplant program 2P described above.
  • the transplanting program 2P incorporates the correspondence of transplantation according to the number and size of the holes T1 of the cultivation panel T placed on the transplanting device 1 and the number of divisions of the seedbed part of the medium B accommodated in the holder 40. ing.
  • the correspondence of transplantation is, for example, the positional information of the seedbed part of the culture medium B of the transplant source associated with the positional information of the hole T1 in the cultivation panel T of the transplant destination.
  • the position information of the hole T1 and the position information of the nursery bed portion of the culture medium B may be associated with a number indicating the order of transplantation (transplant order) and stored.
  • This correspondence is a correspondence from one culture medium B to each of the three cultivation panels T. Details of the correspondence between the culture medium B and the cultivation panel T will be described later.
  • the transplant correspondence may be stored in the storage unit 22 separately from the transplant program 2P and referred to by the control unit 21.
  • the transplant program 2P is a program for executing control by the control unit 21 described above.
  • the transplant program 2P is stored in the storage unit 21 in advance or is incorporated in the control unit 21. Further, the transplant program 2P may be recorded in a computer-readable recording medium 27.
  • the storage unit 21 stores a transplant program 28 read from the recording medium 27 by a reading device (not shown).
  • the recording medium 27 is an optical disc such as CD (Compact Disc) -ROM, DVD (Digital Versatile Disc) -ROM, BD (Blu-ray (registered trademark) Disc), a flexible disc, a magnetic disc such as a hard disc, a magnetic optical disc, and a semiconductor memory. Etc.
  • the transplant program 28 according to the first embodiment may be downloaded from an external computer (not shown) connected to a communication network (not shown) and stored in the storage unit 21.
  • the operation unit 23 uses switches and buttons provided on the upper surface of the outer box of the control unit 21.
  • the switch and button include a start button for instructing the start of transplantation.
  • the operation unit 23 may include a liquid crystal panel and display operation details, error messages, and the like.
  • the control unit 21 detects an operation in the operation unit 23 and executes each control related to transplantation as described later according to the operation content.
  • FIG. 5 is a flowchart showing an example of a transplant processing procedure in the first embodiment.
  • the operator places the cultivation panel T in which all the holes T1 are vacant on the support plate 26, and fits the culture medium B of the plant P that has undergone the seedling raising process into the holder 40,
  • the start button of the operation unit 23 is pressed, the control unit 21 that detects the pressing starts.
  • the control unit 21 starts the processing on the assumption that both the transplantation cultivation panel T and the culture medium B are new (the cultivation panel T is empty and the culture medium B is full).
  • FIG. 6 is an explanatory diagram showing the transplantation order i assigned to the hole T1 of the cultivation panel T. The numbers in the circles in FIG. 6 indicate the transplantation order i. And the control part 21 initializes the transplant order i (step S3).
  • the position information of the first hole T1 in the transplantation order is (1, 1)
  • the position information of the second hole T1 in the transplantation order is (2, 1)
  • the position information of the tenth hole T1 in the transplantation order is ( 10, 1).
  • the positional information on the 11th hole T1 in the transplantation order is (10, 2)
  • the positional information on the 11th hole T1 in the transplantation order is (9, 2).
  • the control unit 21 obtains the position information (m, n) of the seed bed part of the medium B of the transplant source that is associated with the position information (x, y) of the hole T1 in the transplant order i in the k-th cultivation panel T. Specify (step S4).
  • the correspondence between the position information (x, y) of the hole T1 of the k-th cultivation panel T and the position information (m, n) of the nursery part is incorporated in the transplant program 2P of the storage unit 22 as described above. Or stored in the storage unit 22.
  • the control unit 21 instructs the holder transfer unit 4 to move the holder 40 so that the identified seedbed portion is positioned above the transplant destination hole T1 specified by the position information (x, y) (step S5). . At the same time, the control unit 21 instructs the transplantation arm driving unit 5 to move the support base 51 so that the transplantation arm 50 comes under the transplantation destination hole T1 specified by the position information (x, y). (Step S6).
  • the control unit 21 executes the extraction of the seed bed portion of the medium B by the transplant arm 50 and transplantation into the hole T1 with respect to the hole T1 of the transplant destination in the transplant order i (step S7).
  • step S9 When it is determined in step S9 that the maximum value I has been reached (S9: YES), the control unit 21 outputs an instruction to replace the cultivation panel T by voice or output to the liquid crystal panel or the like of the operation unit 23 (step S9). S10).
  • the control unit 21 adds 1 to the number k of the cultivation panels T (step S11), and determines whether k has reached the maximum value “3” (step S12). When it is determined that k has not reached the maximum value “3” (S12: NO), the control unit 21 returns the process to step S2 and continues the transplanting process to the next cultivation panel T.
  • control unit 21 ends one transplantation process.
  • the drawing shows the correspondence between the position information (x, y) of the hole T1 of the k-th cultivation panel T specified in step S4 and the position information (m, n) of the seedbed part.
  • These correspondences are determined in advance by a predetermined algorithm based on the size of the cultivation panel T, the number of holes T1, and the arrangement, the size of the culture medium B, and the number of divisions of the nursery.
  • the predetermined algorithm is an algorithm for keeping the moving range of the culture medium B within the range corresponding to the cultivation panel T as much as possible.
  • the correspondence between the hole T1 of the transplanting cultivation panel T and the seedbed part of the transplanting medium B is determined by the following procedures (1) to (3).
  • Region separation in the row direction Correspondence between the position information (x, y) of the hole T1 of the cultivation panel T and the position information (m, n) of the seed bed part of the culture medium B is as follows. Divide the row direction by the same number. Here, the same number may be a common divisor of the number of rows “10” of the cultivation panel T and the number of rows “25” of the culture medium B. When the number of columns of the cultivation panel T and the number of columns of the culture medium B are relatively prime and the common divisor does not exist other than “1”, the same number is the smaller number of the respective columns. In the first embodiment, it is divided by “5”.
  • FIG. 7 is an explanatory diagram illustrating an example of area sorting in the row direction. A bold line in FIG. 7 shows an example of sorting the first to fifth regions in which the row direction is divided.
  • FIG. 8 is an explanatory diagram showing an example of area classification.
  • the separation boundary in the row direction in the cultivation panel T is indicated by a broken line, and the separation boundary in the row direction in the culture medium B is indicated by division by hatching.
  • the areas divided in the column direction are indicated as areas A to J.
  • the first to fifth regions of the cultivation panel T each include 20 holes T1.
  • each is divided into regions each having two holes T1.
  • the first to fifth regions in which the row direction of the culture medium B is divided into “5” include 60 (12 rows and 5 columns) nursery beds, respectively. Therefore, by further separating the row direction into “10”, one region of the medium B is separated into a region having six nursery beds.
  • associating in order from the end in each region that is, the number of rows m and the number of columns n is smaller. .
  • the hole T1 and the nursery bed part are sequentially arranged from the end in the area. Associate. At this time, from the end in each region, x, y, m, and n are associated in ascending order. In addition, at this time, when the transplantation order on the cultivation panel T proceeds in a zigzag shape so as to follow the hole T1 in the row direction (see FIG. 6), the second and fourth regions of the seedbed portion are in the cultivation panel T. Similarly to the order, each row may be associated in ascending order of the column number n in order from the largest row number m.
  • FIG. 9 is an explanatory diagram showing an example of correspondence between the hole T1 of the cultivation panel T and the seedbed part of the medium B.
  • the alphabetical characters in each circle corresponding to the hole T1 in the cultivation panel T in FIG. 9 indicate the regions A to J divided in the row direction, and the numbers indicate the numbers from the end of each region.
  • one culture medium B is transplanted to three cultivation panels T. Therefore, as shown in FIG. 9, the six nursery beds in each of the regions A to J of the medium B are associated with each region of the three cultivation panels T.
  • the correspondence of (3) is specifically shown with reference to FIG.
  • Such association between position information is incorporated in the transplantation program 2P or stored in the storage unit 22.
  • FIG. 10 is an explanatory diagram showing the order of transplantation i to the first cultivation panel in medium B.
  • the control unit 21 specifies the position information of the seedbed part of the culture medium B corresponding to the hole T1 to which the transplant order i is assigned.
  • FIG. 10 shows the transplantation order i assigned to the hole T1 of the transplant destination of each seedbed part at a location corresponding to the identified seedbed part.
  • the transplantation order i on the medium B to the first cultivation panel T is as shown in FIG.
  • the area of the culture medium B and the cultivation panel T is separated, and the area between the nursery bed and the hole T1 is associated with each other.
  • the transplantation into the first and second holes T1 of the cultivation panel T is performed from the first to fifth rows of nursery beds in the medium B. Therefore, the portion of the 6th to 25th rows of the culture medium B is not located above the holes T1 of the 1st row and the 2nd row of the cultivation panel T.
  • transplantation into the 9th and 10th row holes T1 of the cultivation panel T is carried out from the seed bed portions of the 21st to 25th rows in the medium B. Therefore, the portion of the 1st to 20th rows of the culture medium B is not positioned above the holes T1 of the 9th and 10th rows of the cultivation panel T. Therefore, the culture medium B does not greatly deviate in the row direction from the range corresponding to the cultivation panel T above the cultivation panel T.
  • transplantation to the hole T1 of the 1st line of the cultivation panel T is performed from the seedbed part of the 1st line in the culture medium B. Therefore, the portion of the 2nd to 12th rows of the culture medium B is not located above the hole T1 of the 1st row of the cultivation panel T.
  • transplantation of the cultivation panel T into the hole T1 in the 10th row is performed from the nursery part in the 11th or 12th row in the medium B. Therefore, the portion of the 1st to 10th rows of the culture medium B is not located above the hole T1 of the 1st row of the cultivation panel T. Therefore, the culture medium B does not greatly deviate in the row direction from the range corresponding to the cultivation panel T above the cultivation panel T.
  • FIGS. 11 to 15 are explanatory views showing the positional relationship between the culture medium B and the cultivation panel T when transplanted from the culture medium B to the first cultivation panel T.
  • the culture medium B is closest to the other end side (10th column side) in the row direction.
  • the medium B only deviates from the range corresponding to the cultivation panel T by about three nursery beds.
  • the medium B does not deviate from the range corresponding to the cultivation panel T in the row direction.
  • FIG. 16 is an explanatory diagram showing the order of transplantation i from the culture medium B to the second and third cultivation panels T.
  • FIG. 16 corresponds to FIG. 10 and shows the transplantation order i assigned to the transplant destination hole T1 of each seedbed part at a location corresponding to the seedbed part specified in the process of step S4.
  • the second and third cultivation panels T are also shown in FIGS.
  • the medium B does not deviate significantly from the range corresponding to the cultivation panel T.
  • the transplant apparatus 1 demonstrated in Embodiment 1, it is the method of moving within the range in which the culture medium B does not remove
  • the transplantation to all the holes T1 of the cultivation panel T from a seedbed part is realizable. Thereby, it is possible to make small the space which the transplant device 1 occupies.
  • the transplant order i is assigned so as to progress in a zigzag manner along the column direction, but first, it may be assigned in a zigzag manner along the row direction. Good.
  • the transplant order i assigned to the transplant destination hole T1 of each seedbed is as shown in FIG.
  • the reason why the transplant order is assigned to the holes T1 of the cultivation panel T in a zigzag manner is to minimize the movement of the transplant arm 50 with respect to the fixed cultivation panel T. Therefore, the transplantation order may be transplanted into the hole T1 of the cultivation panel T in order from the first row to the tenth row for each column. Similarly, each row may be transplanted in order from the first column to the tenth column.
  • the size and the number of divisions of the medium B are the same as those in the first embodiment. Therefore, in Embodiment 2, transplantation from one medium B to two cultivation panels T2 is performed as one process.
  • the processing procedure by the transplant device 1 in the second embodiment is the same as the processing procedure shown in the flowchart of FIG. 5 in the first embodiment.
  • the transplantation order incorporated in the transplantation program 2P in advance according to the number and size of the holes in the cultivation panel T2 is different from that in the first embodiment.
  • FIG. 18 is an explanatory diagram showing the transplant order i assigned to the holes of the cultivation panel T2 in the second embodiment.
  • the numbers in the circles in FIG. 18 indicate the transplantation order i.
  • the position information of the first hole in the transplantation order is (1, 1)
  • the position information of the second hole in the transplantation order is (2, 1)
  • the position information of the 16th hole in the transplantation order is (15, 2), and the position information of the 17th hole in the transplantation order is (14, 2).
  • the position information is indicated according to the transplantation order, (1, 1), (2, 1),..., (15, 1), (15, 2), (14, 2),. , 3), (2, 3),..., (15, 3), (15, 4), (14, 4),.
  • FIG. 19 is an explanatory diagram showing an example of row direction area separation in the second embodiment. Also in the second embodiment, sorting is performed in the row direction by “5” which is a common divisor of the column number “10” of the cultivation panel T2 and the column number “25” of the culture medium B.
  • FIG. 20 is an explanatory diagram showing an example of area separation in the second embodiment.
  • the cultivation panel T2 and the culture medium B are each sorted by the number of rows of holes “15” in the cultivation panel T2.
  • the separation boundary in the row direction in the cultivation panel T2 is indicated by a broken line, and the separation boundary in the row direction in the culture medium B is indicated by the division by hatching.
  • the areas divided in the column direction are indicated as areas A to O.
  • the first to fifth regions of the cultivation panel T2 each include 30 holes. Therefore, by further dividing the row direction into “15” pieces, each is divided into regions each having two holes.
  • first to fifth regions in which the row direction of the culture medium B is divided into “5” include 60 (12 rows and 5 columns) nursery beds, respectively. By further separating these regions into “15” in the row direction, one region of the medium B is separated into a region having four nursery beds.
  • FIG. 21 is an explanatory diagram showing an example of correspondence between the holes of the cultivation panel T2 and the seedbed portion of the medium B in the second embodiment.
  • the alphabetical characters in each circle corresponding to the holes in the cultivation panel T2 in FIG. 21 indicate the regions A to O divided in the row direction, and the numbers indicate the numbers from the end of each region.
  • a single medium B is transplanted to two cultivation panels T2. Therefore, as shown in FIG. 21, the four nursery beds included in each region A to O of the culture medium B are associated with each region of the two cultivation panels T2.
  • FIG. 22 and FIG. 23 are explanatory diagrams showing the order of transplantation i to the cultivation panel T2 in the culture medium B of the second embodiment.
  • the control unit 21 specifies position information (m, n) of the seed bed part of the culture medium B corresponding to the hole to which the transplant order i is assigned.
  • 22 and 23 show the transplantation order i assigned to the holes of the transplant destinations of the respective nursery beds at the locations corresponding to the identified nursery beds.
  • the transplantation order i on the medium B to the first cultivation panel T2 is as shown in FIG.
  • the transplantation order i on the medium B to the second cultivation panel T2 is as shown in FIG.
  • the transplantation into the holes in the first row and the second row of the cultivation panel T2 is performed from the first to fifth rows of nursery beds in the medium B. Therefore, the portions of the 6th to 25th rows of the culture medium B are not positioned above the holes of the 1st row and the 2nd row of the cultivation panel T2.
  • transplantation into the holes of the ninth row and the tenth row of the cultivation panel T2 is performed from the seed bed portions of the 21st to 25th rows in the medium B. Therefore, the portions of the 1st to 20th rows of the culture medium B are not located above the holes of the 9th and 10th rows of the cultivation panel T2. Therefore, the culture medium B does not greatly deviate in the row direction from the range corresponding to the cultivation panel T2 above the cultivation panel T2.
  • transplantation into the first row of holes in the cultivation panel T2 is performed from the nursery bed portion of the first row in the medium B. Therefore, the portion of the 2nd to 12th rows of the culture medium B is not located above the hole of the 1st row of the cultivation panel T2.
  • transplantation of the cultivation panel T2 into the hole in the 15th row is performed from the seed bed portion in the 12th row in the medium B. Therefore, the portion of the 1st to 11th rows of the culture medium B is not located above the hole of the 15th row of the cultivation panel T2. Therefore, the medium B does not greatly deviate in the row direction from the range corresponding to the cultivation panel T2 above the cultivation panel T2.
  • the size and the number of divisions of the medium B are the same as those in the first embodiment.
  • transplantation from one medium B to three cultivation panels T3 as one treatment is the same as in the first embodiment. Done.
  • the surplus may be used for another cultivation panel T3 or may be used in place of a seedling with poor growth.
  • the processing procedure by the transplant device 1 in the third embodiment is the same as the processing procedure shown in the flowchart of FIG. 5 in the first embodiment.
  • the correspondence incorporated in the transplant program 2P in advance according to the number and size of the holes of the cultivation panel T3 is different from the first embodiment.
  • FIG. 24 is an explanatory diagram showing the transplant order i assigned to the holes of the cultivation panel T3 in the third embodiment.
  • the numbers in the circles in FIG. 24 indicate the transplantation order i.
  • the transplantation order i 1 to 98 is assigned to the transplant destination holes so that the holes progress in a zigzag pattern along the row direction.
  • the position information of the first hole in the transplantation order is (1,1)
  • the position information of the second hole in the transplantation order is (2,1)
  • the position information of the 14th hole in the transplantation order Is (14, 1).
  • the position information of the 15th hole in the transplantation order is (14, 2).
  • FIG. 25 is an explanatory diagram showing an example of row direction area separation in the third embodiment.
  • the row number “7” of the cultivation panel T3 which is the smaller number, is used. Sorted by direction. Since the number of rows “25” of the culture medium B cannot be divided by the fractionation number “7”, the nursery beds in the same row are divided between two adjacent regions. At this time, the number of nursery beds included in the first to seventh regions is “42”.
  • FIG. 26 is an explanatory diagram showing an example of area separation in the third embodiment.
  • the cultivation panel T3 and the culture medium B are each sorted by the number of rows of holes “14” in the cultivation panel T3.
  • the separation boundary in the row direction in the cultivation panel T3 is indicated by a broken line, and the separation boundary in the row direction in the culture medium B is indicated by the division by hatching.
  • the areas divided in the column direction are indicated as areas A to N.
  • the holes of the cultivation panel T3 are 14 rows. Therefore, by further separating the row direction into “14”, the first to seventh regions are separated into regions each having one hole.
  • first to seventh regions in which the row direction of the culture medium B is divided into “7” include “42” nursery beds, respectively. By further separating these regions into “14” in the row direction, one region of the medium B is separated into a region having three seedbed parts.
  • FIG. 27 is an explanatory diagram illustrating another example of area classification according to the third embodiment.
  • FIG. 27 shows an example in which each row is sorted from the side with the smallest column number n in order from the number with the largest row number m.
  • FIG. 28 is an explanatory diagram showing an example of correspondence between the holes of the cultivation panel T3 and the seedbed portion of the culture medium B in the third embodiment.
  • the alphabetical characters in the circles corresponding to the holes in the cultivation panel T3 in FIG. 28 indicate the regions A to N in which the row direction is divided, and the numbers are the numbers from the end of each region (here, “1” only). Show.
  • transplantation is performed from one medium B to three cultivation panels T3. Therefore, as shown in FIG. 28, the three nursery beds included in each region A to N of the culture medium B are associated with each region of the three cultivation panels T3.
  • FIGS. 29 and 30 are explanatory diagrams showing the order of transplantation i to the cultivation panel T3 in the medium B of the third embodiment.
  • the control unit 21 specifies position information (m, n) of the seed bed part of the culture medium B corresponding to the hole to which the transplant order i is assigned.
  • FIG. 29 and FIG. 30 show the transplant order i assigned to the hole of the transplant destination of each seedbed part at a location corresponding to the specified seedbed part.
  • the transplantation order i on the medium B to the first cultivation panel T3 is as shown in FIG.
  • the transplantation order i on the medium B to the second and third cultivation panels T3 is as shown in FIG.
  • transplantation to the holes in the first row of the cultivation panel T3 is performed from the seed bed portions in the first to fourth rows in the medium B. Therefore, the portions of the 5th to 25th rows of the culture medium B are not positioned above the holes in the 1st row of the cultivation panel T3.
  • transplantation of the cultivation panel T3 into the 7th row of holes is performed from the 22th to 25th row nurseries in the medium B. Therefore, the portion of the 1st to 21st rows of the culture medium B is not positioned above the hole of the 7th row of the cultivation panel T3. Therefore, the culture medium B does not greatly deviate in the row direction from the range corresponding to the cultivation panel T3 above the cultivation panel T3.
  • transplantation into the first row of holes of the cultivation panel T3 is performed from the seed bed portion of the first row in the medium B. Therefore, the portion of the 2nd to 12th rows of the culture medium B is not located above the hole of the 1st row of the cultivation panel T3.
  • transplantation of the cultivation panel T3 into the hole in the 14th row is performed from the nursery part in the 12th row in the medium B. Therefore, the portion of the 1st to 11th rows of the culture medium B is not positioned above the hole of the 14th row of the cultivation panel T3. Therefore, the medium B does not greatly deviate in the row direction from the range corresponding to the cultivation panel T3 above the cultivation panel T3.
  • FIG. 31 is an explanatory diagram showing another example of area classification in the third embodiment. As shown in FIG. 31, in the modification, the culture medium B is sorted in the row direction by the number of columns “7” of the cultivation panel T3. In FIG. 31, the separated areas overlap only for one column.
  • the overlapping columns may be separated from each other in adjacent areas.
  • 1 to 7 rows of the medium B are used to separate the 175 nursery beds in 7 rows and 25 columns into regions of equal area each having 25 pieces.
  • the first and second rows of the following medium B are combined into areas of equal area having 25 seed beds, and the 3rd to 9th rows of the next medium B are separated.
  • the area is divided into equal areas.
  • the nursery part in the 10th to 12th lines of the next medium B may be further divided into equal area regions together with the nursery part in the 1st to 4th lines of the next medium B, and this may be continued.
  • the transplantation to the first row of holes in the cultivation panel T3 is performed from the first to fourth row nurseries in the culture medium B, and to the second row of holes. Transplantation is limited to being carried out from the 4th to 8th row nurseries in the medium B. Transplantation into the hole in the third row is carried out from the seed bed part in the 8th to 11th rows in the medium B, and transplantation to the hole in the fourth row is carried out in the seed bed part in the 11th to 15th rows in the medium B.
  • the transplantation into the holes in the fifth row is limited to be carried out from the 15th to 18th row nurseries in the medium B.
  • Transplantation into the sixth row of holes is carried out from the seedlings in the 18th to 22nd rows in the medium B, and transplantation to the seventh row of holes is performed in the seedlings at the 22th to 25th rows in the medium B. It is limited to be performed from. Therefore, at least in the row direction, the medium B does not greatly deviate from the range corresponding to the cultivation panel T3.
  • the longitudinal direction (row direction) of the culture medium B is sorted, but the short direction may be sorted.
  • the size out of the range corresponding to the cultivation panel T3 can be reduced as much as possible, and the space saving of the transplant device 1 can be effectively realized.
  • the transplanting apparatus 1 may be configured to simultaneously select seedlings.
  • the transplant device 1 in Embodiment 4 receives seeds of poorly grown seedlings in the seedbed part contained in the culture medium B by reception via a communication medium or storage medium from another device, or by accepting an operation in its own operation unit 23. Selection information for specifying position information is acquired, and seedling selection is performed based on the selection information.
  • the configuration of the transplant device 1 is the same as that of the first embodiment except for the hardware necessary for reception from another device via a communication medium or storage medium, and the processing procedure shown below. The detailed description is omitted.
  • FIG. 32 is a flowchart illustrating an example of a transplant processing procedure according to the fourth embodiment.
  • the same processing steps as those shown in the flowchart of FIG. 5 of the first embodiment are denoted by the same step numbers, and detailed description thereof is omitted.
  • the control unit 21 when the culture medium B is accommodated in the holder 40 and the cultivation panel T is placed and the process is started, the control unit 21 first acquires selection information (step S1001).
  • the selection information is information indicating superiority / defectiveness associated with each position information (m, n) of the seedbed portion of the culture medium B.
  • the sorting information may be represented by binary values or numerical values indicating indices.
  • step S4 the control unit 21 determines the position information (m, m) of the seedbed part of the medium B to be transplanted that is associated with the position information (x, y) of the hole T1 in the transplant order i in the k-th cultivation panel T.
  • n the selection information corresponding to the position information of the specified nursery is referred.
  • the control unit 21 grows on the nursery at the position of the position information specified based on the selected selection information before giving the instruction to move the medium B (S5) and the instruction to move the transplant arm 50 (S6). It is determined whether or not the seedling of the existing plant P is poorly grown (step S1002).
  • step S1002 When it is determined in step S1002 that the growth is not poor (S1002: NO), the control unit 21 instructs the movement of the culture medium B (S5) and the movement instruction of the transplanting arm 50 (S6) to execute the transplantation. (S7), the process proceeds to step S8.
  • step S1002 If it is determined that the growth is poor in step S1002 (S1002: YES), the control unit 21 omits S5 to S7 and proceeds to step S8. In addition, after a process is complete
  • the transplantation order i is assigned to the cultivation panels T, T2, T3 in order so as to progress through the holes T1 in a zigzag manner (FIGS. 6, 17, 18, and 24).
  • the transplantation order i is assigned to the culture medium B so as to proceed in a zigzag manner, and the nursery bed part and the transplant destination hole are prevented so that the culture medium B does not deviate as much as possible from the range corresponding to the transplantation panel.
  • a correspondence relationship with T1 is assigned.
  • the cultivation panel used in Embodiment 5 is shown with the code
  • the hardware configuration of the transplantation device 1 in the fifth embodiment is the same as the configuration in the first embodiment.
  • the common components are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the transplanting procedure in the fifth embodiment is the same as the processing procedure shown in the flowchart of FIG. 5 in the first embodiment.
  • the fifth embodiment is different from the first to fourth embodiments in the method for determining the correspondence between the hole T1 of the cultivation panel T4 and the seedbed portion of the culture medium B, and the method of assigning the transplant order i.
  • FIG. 33 is an explanatory diagram showing the transplant order i assigned to the nursery part of the medium B in the fifth embodiment.
  • the position information of the first nursery part in the transplantation order is (1, 1)
  • the position information of the second nursery part in the transplantation order is (2, 1)
  • the position information of the 12th nursery part in the transplantation order is (12, 1).
  • the positional information of the 13th nursery part in the transplantation order is (12, 2)
  • the positional information of the 14th nursery part in the transplantation order is (11, 2).
  • FIG. 34 is a flowchart showing an example of a procedure for determining the correspondence between the seedbed portion of the medium B and the hole T1 of the cultivation panel T4 in the fifth embodiment.
  • the control unit 21 of the transplantation control unit 20 inputs information on the arrangement of the seedbed part of the culture medium B to be used, information on the arrangement of the holes in the cultivation panel T4, and information on the seedbed part remaining untransplanted and the empty hole T1.
  • the input of information in step S301 may be realized by the operator inputting a numerical value with the operation unit 23, or may be realized by image analysis from the captured images of the cultivation panel T4 and the culture medium B.
  • the control unit 21 May input information on the nursery and remaining holes T1 remaining from the storage unit 22.
  • the control unit 21 sorts the culture medium B and the cultivation panel T4 so as to divide the row direction of the culture medium B into two, and the number of seedlings and vacant holes for each of the divided culture medium B regions.
  • the number of information is defined (step 302).
  • One region where the culture medium B is separated in step S302 is defined as a region ⁇ , and the other region is defined as a region ⁇ .
  • One region obtained by sorting the cultivation panel T4 is defined as ⁇ ′ corresponding to the region ⁇ of the medium B, and the other region is defined as a region ⁇ ′ corresponding to the region ⁇ of the medium B.
  • the sorting direction in step S302 may be the row direction.
  • the direction which sorts the cultivation panel T4 is made to follow the direction which divides the culture medium B.
  • control unit 21 first initializes the number of rows p of the seedbed portion to be transplanted and the number of rows u of the holes T1 of the cultivation panel T4 to be transplanted (step S303).
  • Step S304 Whether or not there is an untransplanted seedbed portion in the p-th row of the medium B, whether or not the number Np of untransplanted seedbed portions in the p-th row defined in step S302 is 1 or more.
  • the control unit 21 has a vacant hole T1 in the u-th column of the cultivation panel T4 that is a transplant destination. It is determined whether or not the number Su of vacant holes T1 in the u-th column defined in step S302 is 1 or more (step S305).
  • step S305 When it is determined in step S305 that there is a vacant hole T1 in the u-th row of the transplanting cultivation panel T4 (S305: YES), the control unit 21 performs the p-th row (region ⁇ p) in the region ⁇ of the medium B. ) And the number of non-transplanted nursery beds Np ⁇ and the number Su ⁇ ′ of vacant holes T1 in the u-th (region ⁇ ′u) row in the region ⁇ ′ of the cultivation panel T4. the number Np alpha is equal to or less than the number Su [alpha] 'of free holes T1 in (step S306).
  • Step S306 by the number Np alpha nurseries portion of non-grafted is determined to be less than or equal to the number Su [alpha] 'of free holes T1 (S306: YES)
  • the control unit 21 the Medium B region alpha p th of In order from the end side of the culture medium B, nursery beds in the row are associated with the number Np ⁇ of nursery beds in order from the end of the cultivation panel T4 to the empty holes T1 in the u-th row of the region ⁇ ′ of the cultivation panel T4.
  • Step S307 the control part 21 advances a process to step S309.
  • Step S306 by the number Np alpha nurseries portion of non-grafted is determined to be larger than the number Su [alpha] 'of free holes T1 (S306: NO)
  • the control unit 21, the Medium B region alpha p th of The nursery beds in the row are sequentially associated from the center side of the cultivation panel T4 to the vacant holes T1 in the u-th row of the region ⁇ ′ of the cultivation panel T4 by the number Su ⁇ ′ of the vacant holes T1 in order from the center side of the medium B.
  • store step S308.
  • the control part 21 advances a process to step S309.
  • control unit 21 counts the number Np ⁇ of the non-transplanted nurseries in the p-th row (region ⁇ p) in the region ⁇ of the culture medium B and the u-th row (region ⁇ ′u in the region ⁇ ′ of the cultivation panel T4. comparing the number Su .beta. 'of free holes T1) of the number Np beta nurseries portion of non-grafted is equal to or less than the number Su .beta.' of free holes T1 (step S309).
  • Step S309 by the number Np beta nurseries portion of non-grafted is determined to be less than or equal to the number Su .beta. 'Of free holes T1 (S309: YES)
  • the control unit 21 the Medium B region beta p th of In order from the end side of the culture medium B, nursery beds in the row are sequentially associated with the number Np ⁇ of the nursery beds in order from the end of the cultivation panel T4 to the vacant holes T1 in the region ⁇ ′ of the cultivation panel T4.
  • Step S310 the control part 21 advances a process to step S312.
  • Step S306 by the number Np beta nurseries portion of non-grafted is determined to be larger than the number Su .beta. 'Of free holes T1 (S309: NO)
  • the control unit 21, the Medium B region beta p th of The nursery beds in the row are sequentially assigned from the center side of the cultivation panel T4 to the vacant holes T1 in the u-th row of the region ⁇ ′ of the cultivation panel T4 by the number Su ⁇ ′ of the vacant holes T1 in order from the center side of the medium B.
  • Step S311 the control part 21 advances a process to step S312.
  • control unit 21 determines whether or not the number Np of untransplanted seedbed parts in the p-th row of the culture medium B has become zero (step S312).
  • the control unit 21 determines that the p-th row of the medium B is the maximum row number p max. It is determined whether or not (step S313).
  • step S313 When it is determined in step S313 that the p-th column of the medium B is the maximum number p max (S313: YES), the control unit 21 associates the seed bed part of the medium B with the hole T1 of the cultivation panel T4. Exit.
  • step S312 When it is determined in step S312 that the number Np of untransplanted nurseries in the pth row is not zero (S312: NO), the control unit 21 increases the row number u of the cultivation panel T4 by one. (Step S314), the process returns to Step S305. Even when it is determined in step S305 that Su is 0 (zero) (S305: NO), the control unit 21 increases the number of columns u by 1 (S314), and the process returns to step S305.
  • step S313 When it is determined in step S313 that the p-th column of the medium B is not the maximum column number p max (S313: NO), the control unit 21 increases the column number p of the medium B by one (step S315), and the process Is returned to step S304.
  • step S304 When it is determined in step S304 that Np is 0 (zero) (S304: NO), the control unit 21 increases the number of columns p by 1 (S315), and the process returns to step S304.
  • the correspondence between the seedbed portion of the medium B and the hole T1 of the cultivation panel T4 in the fifth embodiment is determined.
  • control part 21 ends the nursery bed part of the culture medium B based on the correspondence between the nursery part of the culture medium B and the hole T1 of the cultivation panel T4 stored in the procedure shown in the flowchart of FIG.
  • the process of transplanting to the cultivation panel T4 from the eye) is started.
  • the transplantation order i is such that the culture medium B advances in a zigzag manner in the row direction.
  • FIG. 35 and FIG. 36 are explanatory diagrams showing examples of area separation of the culture medium B and the cultivation panel T4.
  • the control unit 21 firstly has information on the arrangement of the seedbed part of the culture medium B (n rows and p columns) and information on the arrangement of the holes T1 of the cultivation panel T4 (s rows u columns). Input (S301). Furthermore, the control part 21 inputs the information of the seedbed part which has not been transplanted and the information of the empty hole T1 of the cultivation panel T4. In the examples of FIGS. 34 and 35, all the seedbed portions of the medium B remain untransplanted, and the holes T1 of the cultivation panel T4 are all vacant.
  • the control unit 21 sorts the cultivation panel T4 into two according to the sorting direction of the medium B. Since the cultivation panel T4 has an odd number of rows, the 1st to 6th rows of the cultivation panel T4 are basically classified as the region ⁇ ′ and the 8th to 13th rows as the region ⁇ ′. Furthermore, the control unit 21 allocates the hole T1 in the seventh row to the region ⁇ ′ and the region ⁇ ′ depending on the even number of columns. That is, the control unit 21 assigns the odd-numbered columns of holes T1 in the seventh row of holes T1 to the odd-numbered regions of the region ⁇ ′ and the even-numbered holes T1 to the even-numbered regions of the region ⁇ ′. Thereby, as shown in FIG.
  • FIG. 37 is an explanatory diagram showing the correspondence between the regions ⁇ p, ⁇ p, ⁇ ′u, ⁇ ′u of the culture medium B and the cultivation panel T4.
  • the numbers in the medium B and the numbers in the holes 1 of the cultivation panel T4 in FIG. 37 indicate the order in which the association is performed, and are different from the transplant order i.
  • each seedbed portion of the medium B and the hole T1 of the cultivation panel T4 are associated with each other.
  • FIG. 38 is an explanatory diagram showing the transplantation order i in the medium B and the cultivation panel T4.
  • the range of the hole T1 into which the seedbed part of the same row of the culture medium B is transplanted in the cultivation panel T4 is distinguished and shown according to the type of hatching.
  • the transplantation of the region ⁇ ′ of the cultivation panel T4 into the hole T1 is performed from the seedbed portion of the region ⁇ in the medium B. Accordingly, the region ⁇ of the medium B is not positioned on the region ⁇ ′ of the cultivation panel T4. The reverse is also true, and the region ⁇ of the medium B is not positioned on the region ⁇ ′ of the cultivation panel T4.
  • the seed bed portion transplanted to the end in the column direction of the cultivation panel T4 that is, the hole T1 in the first row is always in the first row in the medium B, and to the hole T1 in the 13th row of the cultivation panel T4.
  • the seedbed part to be transplanted is always in the 12th row in the medium B.
  • the seedbed portion transplanted into the hole T1 in the second row of the cultivation panel T4 is the second row or the first row in the medium B, and the seedbed portion transplanted into the hole T1 in the twelfth row of the cultivation panel T4. Is the 11th or 12th line in the medium B. Therefore, the culture medium B does not come off from the cultivation panel T4 in the row direction.
  • the transplantation order i from the medium B is continued in a zigzag shape in order from the first row of the medium B (Comparative Example: FIGS. 10 and 16 of the first embodiment). Therefore, when one of the seedbed portions into which the incision has been made is grasped by the transplanting hand of the transplanting arm 50 and pulled out, the seedbed portion around the seedbed portion to be pulled out is in the row direction or until one remains. There is always an adjacent nursery in at least one of the rows. Therefore, when one seedbed part is pulled out, the possibility that the surrounding nursery part is pulled and inclined is reduced. Below, the transplanting process to cultivation panel T4 is demonstrated concretely with reference to drawings.
  • FIG. 39 to 41 are explanatory views showing the positional relationship between the culture medium B and the cultivation panel T4 when transplanted from the culture medium B to the cultivation panel T4.
  • the medium B is only deviated by about two nursery beds in the row direction from the range corresponding to the cultivation panel T4, and is not deviated in the column direction.
  • the positional relationship shown in FIG.39 and FIG.40 has shown the example in case the culture medium B approaches the most end (1st line or 13th line side) of the cultivation panel T4 in a column direction.
  • the medium B does not deviate from the cultivation panel T4 in the row direction.
  • the seed bed portion at the end in the column direction of the culture medium B (the first row or the 12th row) is transplanted into the hole T1 at the end in the column direction in the cultivation panel T4. Therefore, the culture medium B does not come off in the row direction from the cultivation panel T4.
  • the nursery on the center side of the medium B is transplanted.
  • the row direction of the culture medium B deviates from the range of the cultivation panel T4 by about 10 nursery beds, but does not deviate in the column direction.
  • the size of the row direction (front-rear direction in FIG. 1) in the cultivation panel T4 of the transplant device 1 can be reduced in space to the size of the cultivation panel used.
  • the transplantation order i in the culture medium B is sequentially zigzag-like, the possibility that the surrounding other nursery beds are pulled and tilted when one nursery bed is pulled out is reduced. Since the remaining seedbeds are then firmly held by the transplantation hand when transplanted, the possibility of transplantation failure is reduced. That is, it becomes possible to prevent transplantation of the plant P in a posture that leads to poor growth.
  • FIG. 42 is an explanatory diagram showing the transplantation order i in the culture medium B2 and the cultivation panel T4.
  • the number of seed beds “5” in the region ⁇ p and the region ⁇ p of the medium B is the number of empty holes T1 in the regions ⁇ ′u and ⁇ ′u. Less than “6” or “7”. Even in this case, as shown in FIG. 42, in the hole T1 at the end in the column direction in the cultivation panel T, the seed bed at the end in the column direction of the culture medium B (1, 2nd row or 11, 12th row). The part is transplanted. Therefore, the culture medium B does not come off in the row direction from the cultivation panel T4.
  • the culture medium B and the cultivation panel T4 were separated so as to be divided into two in the short direction and controlled so as to be associated with each region. Moreover, the culture medium B and the cultivation panel T4 are sorted so that the number of rows in the sorted area is approximately equal as a result of sorting. This is because transplantation proceeds substantially evenly in the row direction.
  • the number to be sorted is not limited to two, and it may be controlled to sort into three or more.
  • selection information for specifying position information of poorly grown seedlings in the seedbed part included in the culture medium B is acquired, and seedling selection is performed based on the selection information.
  • a plurality of nurseries are transplanted at once using a plurality of arms.
  • FIG. 43 is a schematic perspective view of the transplanting apparatus in the sixth embodiment
  • FIG. 44 is a perspective view showing an example of a cultivation panel of a plant transplant destination in the sixth embodiment.
  • symbol 10 in FIG. 43 has shown the transplant apparatus. Since the culture medium B in the sixth embodiment uses the same medium as described in the first embodiment, detailed description thereof is omitted.
  • the transplanting device 10 is a device that automatically transplants the plant P grown in the medium indicated by the symbol B in FIG. 2 to the cultivation panel indicated by the symbol T5 in FIG.
  • the size of the medium B is, for example, 280 mm ⁇ 580 mm
  • the pitch (medium interval) in the longitudinal direction between adjacent nurseries is, for example, 23.2 mm.
  • the size and the number of divisions of the medium B are not limited thereto.
  • the cultivation panel T5 used in Embodiment 6 is made of, for example, styrene foam and has a rectangular flat plate shape.
  • the cultivation panel T5 is provided with a plurality of holes T1 arranged vertically and horizontally.
  • Each hole T1 has a circular shape and is reduced in a taper shape from one side of the panel to about half the depth.
  • the diameter on the one surface side of the hole T1 is substantially equal to the length of the diagonal line of one seed bed portion of the medium B, and the diameter on the reduced diameter side is substantially equal to or slightly shorter than the length of one side of the seed bed portion.
  • the pitch in the width direction (short direction) between the holes T1 is 58.0 mm.
  • the size of the cultivation panel T5 and the number of holes T1 are not limited thereto, and the cultivation panel T5 is designed to have an interval suitable for the growth of each type of plant P.
  • the transplanting device 10 for transplanting the plant P from the medium B to the cultivation panel T5 will be described. In the following description, upper and lower, front and rear, and left and right indicated by arrows in FIG. 43 are used.
  • the transplanting device 10 includes a transplanting unit 7 and an imaging unit 3, and when transplanting a plant P from the culture medium B to the cultivation panel T, the transplanting device 10 is performed as described below based on an image obtained by imaging the culture medium B by the imaging unit 3. From the sorting result, it has a sorting function for transplanting the excellent plant P in the transplanting section 7.
  • the transplant unit 7 includes a frame 75 that holds the cultivation panel T, a holder transfer unit 8 that transfers the holder 80 of the culture medium B, a transplant arm drive unit 9 that drives the transplant arm 90, the transfer of the holder 80, and the driving of the transplant arm 90.
  • a transplant control unit 70 (indicated by an outer box in FIG. 43) for instructing the holder transfer unit 8 and the transplant arm drive unit 9.
  • the frame 75 is composed of a plurality of columns and a plurality of horizontal members that connect the columns at the top and bottom.
  • a pair of left and right rails 76 are installed in the center of the frame 75 in the front-rear direction.
  • the cultivation panel T5 is attached horizontally to the center portion of the frame 75 with both edges in the longitudinal direction indicated to the rails 76 and 76. Moreover, the cultivation panel T can be manually attached to and detached from the predetermined position along the rails 76 and 76.
  • the transplant arm drive unit 9 is below the cultivation panel T and includes a transplant arm 90, a support base 91, a drive unit 92, and a travel guide 93.
  • the travel guide 93 is installed in the front-rear direction below the frame 75.
  • the installation position of the traveling guide 93 is below the cultivation panel T5.
  • a support 91 is attached to the travel guide 93 so as to travel.
  • the support base 91 is long in the left-right direction, and a plurality of drive units 92 are arranged in parallel in the longitudinal direction on the support base 91, and a transplant arm 90 is attached to each drive unit 92.
  • the length of the traveling guide 93 is slightly longer than the longitudinal direction of the cultivation panel T5, and the plurality of transplant arms 90 can move in parallel in the longitudinal range of the cultivation panel T5.
  • interval of the transplant arm 90 is the least common multiple of the pitch between the seedbed parts in the culture medium B mentioned above and the pitch between the holes T1 in the cultivation panel T5.
  • the juxtaposition interval is 116.0 mm, which is 5 times the pitch 23.2 mm in the longitudinal direction between the seed bed portions of the culture medium B, and the width direction (short direction) between the holes T1 of the cultivation panel T5. ) Is twice the interval 58.0 mm. It is not limited to the least common multiple, and it only needs to correspond to the common multiple.
  • the plurality of transplant arms 90 are configured so as to be movable in the left-right direction integrally. Thereby, the some transplant arm 90 can move to the position corresponding to the hole T1 of the cultivation panel T5 within the range corresponding to the magnitude
  • the holder transfer unit 8 is located above the cultivation panel T5 and includes a holder 80, a left-right direction guide 81, and a front-rear direction guide 82.
  • the front-rear direction guide 82 is installed in the front-rear direction at the upper right position of the cultivation panel T5.
  • One end of a left-right direction guide 81 extending in the left-right direction is attached to the front-rear direction guide 82.
  • One long side of the rectangular frame-shaped holder 80 is attached to the front surface of the left-right direction guide 81. Accordingly, the holder 80 can move in the left-right direction along the left-right direction guide 81, and can move in the front-rear direction along the front-rear direction guide 82 together with the left-right direction guide 81.
  • the length of the front-back direction guide 82 is longer than the length of the front-back direction of the cultivation panel T5
  • the length of the left-right direction guide 81 is the width (length in the left-right direction) of the cultivation panel T5 and the longitudinal direction of the holder 80. A little longer than the combined length.
  • the holder 80 moves from the transplant position on the cultivation panel T5 to the left side of the cultivation panel T5 in the left-right direction to a position deviated by an amount corresponding to the width of the cultivation panel T5. It is possible to move to a position deviated by the length of 80 in the short direction.
  • the holder 80 holds the culture medium B installed by the operator at the left front delivery position.
  • the holder 80 holding the medium B installed by the operator moves from the delivery position to the transplant start position on the right front according to the instruction from the transplant control section 70,
  • the upper part of the cultivation panel T5 is moved in the left-right direction and rearward with respect to the transplant start position.
  • the support stand 91 moves below the cultivation panel T5 backward from the front start position according to the instruction
  • the transplant control unit 70 moves the support base 91 so that the transplant arm 90 is positioned directly below the transplant arm 90.
  • the transplantation control unit 70 operates the drive unit 92 so that the transplantation hand at the tip of the transplantation arm 70 is raised to the ascending position.
  • the transplanting arm 90 penetrates the vacant hole T1 together with the transplanting hand and the transplanting hand rises to the ascending position reaching the seedling part directly above the hole T1, the transplanting arm 90 is lowered as it is.
  • the seedbed held by the transplant hand is broken by the lattice provided in the holder 80, descends together with the transplant arm 90, enters the hole T1 of the cultivation panel T5, and shrinks. It is held in the diameter part.
  • the holding by each transplantation hand is released, and the transplantation arm 90 is further lowered to return the transplantation hand to the initial position.
  • the holder 80, the support base 91, and the transplant arm 90 are moved back and forth, right and left, and up and down in accordance with an instruction from the transplant control unit 70, thereby realizing transplantation of the seedbed portion to the cultivation panel T5.
  • the imaging unit 3 is a mechanism that images the medium B before being installed in the transplant unit 7.
  • the imaging unit 3 includes a camera 30, a mounting table 32, a guide 33, and a frame 34.
  • the frame 34 is juxtaposed on the left side of the frame 75 of the transplant portion 7 in FIG.
  • the mounting table 32 is provided on the upper surface of the frame 34 and is larger than the medium B.
  • the camera 30 is installed on the frame 34 above the mounting table 32 so that the entire mounting table 32 is in the imaging range.
  • the guide 33 is provided in an L shape along the edge of the mounting table 32, and when the operator places the culture medium B on the mounting table 32, the culture medium B is mounted at an appropriate position within the imaging range of the camera 30. It is provided to be placed.
  • reference numeral 6 in FIG. 43 indicates an information processing apparatus which is a tablet PC (Personal Computer) operated by an operator.
  • the information processing apparatus 6 includes a display with a built-in touch panel that also serves as the display unit 63 and the operation unit 64, and is capable of wireless communication with the imaging unit 3 and the transplant unit 7 of the transplant device 10.
  • the transplant device 10 and the information processing device 6 in Embodiment 1 are used as follows in order to transplant the plant P from the culture medium B to the cultivation panel T5.
  • the operator places the culture medium B in which the plant P to be transplanted is placed on the mounting table 32 of the imaging unit 3 and then performs imaging by the camera 30 of the imaging unit.
  • the imaging unit 3 transmits image data of an image obtained by imaging with the camera 30 to the information processing device 6.
  • an image of the culture medium B is displayed on the display unit 63 based on the image data transmitted from the imaging unit 3, and each individual plant P can be selected on the image by a configuration as described later.
  • Information on the position of the selected individual in the culture medium B is transmitted as selection information to the transplantation unit 7, and the transplantation unit 7 performs selection based on the selection information except for the poorly grown plants P, according to instructions from the transplantation control unit 70. Transplantation is performed by the operation described above.
  • the transplanting unit 7 constituting the transplanting device 10 includes the holder transfer unit 8 and the transplanting arm driving unit 9 and the transplanting control unit 70 for controlling them.
  • the transplant control unit 70 is a programmable logic controller (Programmable Logic Controller).
  • the transplantation control unit 70 includes a control unit 71 that is a microprocessor, a storage unit 72 that uses a flash memory, a communication unit 73 that realizes communication with other devices wirelessly or by wire, a holder transfer unit 8 and a transplantation arm.
  • An input / output interface 74 connected to the drive unit 9 is provided.
  • the control unit 71 instructs the holder transfer unit 8 to move and stop the holder 80 while referring to the information of the selected seedlings received from the communication unit 73 based on the transplant program 7P stored in advance in the storage unit 72.
  • the transplant arm drive unit 9 is instructed to drive the transplant arm 90 up and down, move the transplant arm 90 in the juxtaposition direction, run along the guide rails 76, and stop each.
  • Information received from the communication unit 73 may be temporarily stored in the storage unit 22.
  • the transplant program 7P is a program for executing control by the control unit 71 described above.
  • the transplantation program 7P is stored in advance in the storage unit 71 or incorporated in the control unit 71. Further, the transplant program 7P may be recorded in a computer-readable recording medium 77.
  • the storage unit 71 stores a transplant program 78 read from the recording medium 77 by a reading device (not shown).
  • the recording medium 77 is an optical disk such as a CD-ROM, DVD-ROM, or BD, a magnetic disk such as a flexible disk or a hard disk, a magnetic optical disk, or a semiconductor memory.
  • the porting program 78 according to the sixth embodiment may be downloaded from an external computer (not shown) connected to a communication network (not shown) and stored in the storage unit 71.
  • the communication unit 73 implements wireless communication using Bluetooth (registered trademark) or Wi-Fi (Wireless Fidelity).
  • the communication unit 73 is not limited to wireless communication, and may be one that implements communication by wire using a LAN or the like.
  • the control unit 71 can receive information on the selected seedlings transmitted from the information processing device 6 through the communication unit 73.
  • the imaging unit 3 includes a communication unit 31 that transmits image data of an image captured by the camera 30 to the information processing device 6 wirelessly or by wire.
  • the communication unit 31 implements communication wirelessly using Bluetooth (registered trademark) or Wi-Fi®. Note that the communication unit 31 may realize communication by wire using a LAN (Local Area Network) or a USB (Universal Serial Bus).
  • the information processing apparatus 6 is a tablet PC as described above, and includes a control unit 60, a recording unit 61, a temporary storage unit 62, a display unit 63, an operation unit 64, and a communication unit 65.
  • the information processing apparatus 6 may be configured to include an imaging unit.
  • the information processing apparatus 6 is not limited to a tablet PC, but may be a portable terminal device such as a so-called smartphone, or may be a stationary desktop PC.
  • the control unit 60 of the information processing apparatus 6 uses a CPU (Central Processing Unit).
  • the control unit 60 reads and executes each computer program including the transplant application program 6P stored in the recording unit 61.
  • the recording unit 61 uses a flash memory.
  • the recording unit 61 stores a computer program including the transplant application program 6P read by the control unit 60 in advance.
  • information for identifying the culture medium B and the cultivation panel T5 used for transplantation is recorded in advance.
  • the number (number of rows and columns) of the nursery beds (holes B1) and the dimensions of the pitch are recorded in association with each other.
  • the number of holes T1 (the number of rows and the number of columns) and the pitch dimension are recorded in association with each other.
  • each identification information and the number and pitch dimensions are recorded in association with each identification information.
  • the recording unit 61 is also used as a recording area for the image data 6I transmitted from the imaging unit 3 of the transplant device 10.
  • the recording unit 61 may use a storage device other than the flash memory.
  • the temporary storage unit 62 uses a RAM such as a DRAM (Dynamic Random Access Memory). The temporary storage unit 62 temporarily stores information generated by the processing of the control unit 60.
  • the display unit 63 uses a liquid crystal display with a built-in touch panel.
  • the control unit 60 causes the display unit 63 to display various operation screens including images such as text and icons.
  • the display part 63 may use things other than a liquid crystal display, and does not need to be a touch-panel built-in type.
  • the operation unit 64 uses a touch panel built in the display of the display unit 63 and a button group provided on the housing of the information processing apparatus 6.
  • the operation unit 64 notifies the control unit 60 of the contact by the user and the position information of the contact location on the touch panel.
  • the operation unit 64 notifies the control unit 60 of information such as button presses and press times.
  • the communication unit 65 realizes wireless communication using Bluetooth (registered trademark) or Wi-Fi.
  • the control unit 60 can communicate with the transplantation control unit 20 and the imaging unit 3 of the transplantation apparatus 10 via Wi-Fi via an access point (not shown) by the communication unit 65, for example.
  • the communication unit 65 is not limited to wireless, and may be one that implements wired communication using USB.
  • the communication unit 65 may use a network card that realizes wired communication using a LAN.
  • FIG. 47 is a flowchart illustrating an example of a transplant processing procedure according to the sixth embodiment.
  • the processing procedure shown in the flowchart of FIG. 47 is started by the transplanting apparatus 10 when the culture medium B containing the plant P that has undergone the seedling raising process is placed on the placement table 32 of the imaging unit 3 and imaging by the camera 30 is performed.
  • the information processing apparatus 6 starts when a transplant application based on the transplant application program 6P is activated.
  • step S101 image data of an image captured by the camera 30 is transmitted from the communication unit 31 (step S101).
  • the control unit 71 of the transplantation control unit 70 determines whether or not the selection information corresponding to the image data transmitted from the imaging unit 3 has been received (step S102), and does not receive the selection information. If it is determined (S102: NO), the control unit 71 returns the process to step S102, and shifts to a standby state in which it waits until it is determined that it is received.
  • control unit 60 receives the image data through the communication unit 65 (step S201), and displays an operation screen including a captured image of the culture medium B based on the received image data on the display unit 63 (step S202). .
  • the control unit 60 accepts selection of the nursery on the captured image on the operation screen (step S203).
  • the control unit 60 stores the identification information of the seedbed part corresponding to the selected seedling in the temporary storage unit 62 (step S204).
  • the identification information of the seedbed part is specified by the position (row number and column number) in the captured image on the culture medium B of the seedbed part selected in step S203.
  • the control unit 60 determines whether or not the OK button 641 (see FIG. 15) has been tapped (step S205). If it is determined that the OK button 641 has not been tapped (S205: NO), the process is performed. The process returns to step S205 and waits until it is determined that the OK button 641 has been tapped. During this time, when the CANCEL button 642 is tapped, the control unit 60 erases the identification information stored in the temporary storage unit 62.
  • the control unit 60 records the identification information stored in the temporary storage unit 62 in association with the acquired image data of the captured image in the recording unit 61. (Step S206). Then, the control unit 60 transmits the identification information stored in the temporary storage unit 62 as selection information from the communication unit 65 to the transplantation control unit 20 of the transplantation device 10 (step S207). Specifically, the selection information is digital information (excellent is “1” and defective is “0”) that expresses the superiority and failure of the growth in each of the 12 ⁇ 25 nursery beds in binary information, for example. . At this time, the control unit 60 may display a message on the display unit 63 instructing to install the culture medium B in the holder 80 of the transplant device 10. The process for one culture medium B in the information processing apparatus 6 ends.
  • the control unit 71 of the transplant control unit 70 determines whether or not the selection information has been received from the communication unit 73 and is on standby (S102). If it is determined in step S102 that the selection information transmitted from the information processing device 6 has been received (S102: YES), the control unit 71 places the culture medium B in the holder 80, and the cultivation panel T5 is also the transplanting device 10. It is confirmed whether it is installed in the frame 75 (step S103). The processing in step S103 may be confirmed by pressing a transplant start button or the like provided on the transplant device 10 side, or the control unit 71 may detect whether or not a sensor is provided. May be.
  • the control unit 71 When it is confirmed that the selection information has been received and the setting of the culture medium B as the transplant source and the cultivation panel T5 as the transplant destination has been completed, the control unit 71 performs the transplant procedure determined by a predetermined transplant algorithm, and the selection information. The transplantation based on is started (step S104). Details of the transplantation procedure in step S104 will be described later.
  • the control unit 71 completes the transplantation of seedlings other than the seedlings with poor growth selected by the selection information among the seedlings cultivated in one medium B (step S105), and ends the transplantation process for the medium B. .
  • the predetermined transplant algorithm is an algorithm for reducing the number of operations of the transplant arm 90 as much as possible, and the control unit 71 of the transplant control unit 70 can perform as much as possible with the plurality of transplant arms 90.
  • the seedbed part is pulled out from the medium B at a time and transplanted to the cultivation panel T5.
  • the transplant procedure based on the predetermined transplant algorithm is calculated based on the number N A of the transplant arms 90, the arrangement of the holes T1 in the cultivation panel T5 (matrix number), and the arrangement of the nursery beds in the culture medium B (matrix number) as follows.
  • the matrix numbers in the cultivation panel T5 are identified by x rows and y columns with the right front side in FIG. 43 as the first row and the right side in FIG. 43 as the first column. Accordingly, the seedbed portion in the medium B is also identified by m rows and n columns with the right front side in FIG. 43 as the first row and the right side in FIG. .
  • the position (row number m and column number n) of the seed bed part of the transplant source to be transplanted i-th is determined. Specifically, with respect to the column number n, the transplanting seedbed portions are determined at intervals of p based on the spacing in the juxtaposition direction between the transplanting arms 90 and the spacing in the row direction between the seedling portions of the medium B.
  • m plus 1 exceeds the maximum value M of the number of rows, 1 is added to the number i in the transplant order, and (2) to (5) are repeated.
  • (1) to (5) are the first processing procedure.
  • 48 to 54 are explanatory diagrams of the transplantation order determined by the transplantation algorithm in the sixth embodiment.
  • 48 to 54 show the transplantation order by assigning numbers of transplantation order to the hole T1 of the cultivation panel T5 and the seedbed part of the medium B, respectively.
  • the number of transplanted arm 90 in the sixth embodiment is N A
  • the transplant destination in the first transplantation is the row number x and column number y of the first hole T1 of the transplant destination in the first transplantation, and the row number m and the seedbed portion of the transplant source in accordance with the above (1).
  • transplantation is performed together with the selection information received from the information processing device 6. Therefore, a detailed transplantation procedure performed by referring to the selection information in addition to the transplantation order determined by the above (1) to (6) will be described below with reference to a flowchart.
  • the number k of the plurality of transplant destination holes T1 and the interval P that can be determined in (2) are stored in the storage unit 72 in the transplant destination hole T1.
  • the number of transplanted arms 50 when the column number y is 1 to P is preferably stored as a set of k.
  • the transplant order for the transplant source that can be determined by (1) to (6) is stored in the storage unit 72 in association with the number i.
  • FIGS. 55 and 56 are flowcharts showing an example of details of the transplantation procedure in the sixth embodiment.
  • the processing procedure shown in the flowcharts of FIGS. 55 and 56 corresponds to the procedure of step S104 shown in the flowchart of FIG.
  • the control unit 71 determines one of the row number x and the column number y.
  • the control unit 71 determines the i-th transplanting nursery (step S405).
  • the transplantation order i is 61 to 90, the nursery parts corresponding to the excellent plants P remaining in the medium B in the corresponding nursery parts are sequentially determined one by one.
  • the control unit 71 instructs the holder transfer unit 8 to move the holder 80 so that the nursery portion determined in step S405 is positioned above the hole T1 at the position determined in step S404 (step S406).
  • the control unit 71 instructs the transplantation arm drive unit 9 to move the support base 91 so that the transplantation arm 90 comes below the hole T1 at the position determined in step S404 (step S407).
  • the control unit 71 For the hole T1 of the transplant destination row number x and column number y, the control unit 71 has “0” for the empty information of the hole T1 and, based on the selection information, the row number m and the column corresponding to the hole T1. The one that satisfies the condition that the growth of the seedbed part of the transplant source number n is good and indicates “1” is specified (step S408). The control unit 71 executes extraction of the seedbed portion of the medium B and transplantation into the hole T1 by the transplant arm 90 corresponding to the hole T1 specified when the condition is satisfied in step S408 (step S409).
  • the control unit 71 updates the selection information of the culture medium B as the transplant source and the vacancy information of the cultivation panel T5 as the transplant destination (Step S410). Specifically, the control unit 71 updates the vacant information of the cultivation panel T5 so that the information corresponding to the hole T1 filled by the execution of the transplantation in step S409 indicates the filled state “1”, and the medium B The information corresponding to the seedbed part extracted by the execution of transplantation is updated to “0”.
  • the control unit 71 adds 1 to the column number y of the transplant destination hole T1 (step S411), and determines whether or not the transplantation to the hole T1 of all columns in the x row is completed (step S412).
  • the control unit 71 can determine whether or not the column number y is larger than the interval P. Is between 61 and 90 corresponding to the second processing procedure, it can be determined by whether or not y is larger than Y.
  • step S412 determines whether or not the transplantation from the culture medium B is completed. Judgment is made based on whether or not the sorting information of B is all “0” (step S413).
  • step S413 determines whether or not the transplantation from the culture medium B has not been completed.
  • step S416 when it is determined that the line number x is larger than the maximum value X (S416: YES), the control unit 71 determines whether or not the transplantation to the cultivated panel T that has been installed has been completed, as vacant information. Judgment is made based on whether or not “0” is included (step S417).
  • step S417 that transplantation has not been completed (S417: NO)
  • the control unit 71 identifies the position of the vacant hole T1 (step S418). Specifically, in step S418, the control unit 71 specifies the row number x and the column number y corresponding to the empty information “0” in ascending order.
  • a good stock is searched for in order in the direction (step S419).
  • the control unit 71 transplants the excellent strain searched in step S419 into the identified hole T1 (step S420), and returns the process to step S417.
  • step S417 When it is determined in step S417 that the transplant has been completed (S417: YES), the control unit 71 outputs a cultivation panel replacement instruction by voice or the like (step S421), and adds 1 to the number i in the transplant order. (Step S422), the process returns to step S402.
  • step S413 If it is determined in step S413 that the transplantation from the culture medium B has been completed (S413: YES), the control unit 71 ends the transplantation process for the culture medium B, and returns the process to step S105 in the flowchart of FIG.
  • the transplant order of the seedbed part of the transplant source based on the transplant algorithm shown in the above (1) to (6) is stored in the storage unit 72.
  • the procedure for determining the transplantation order of (1) to (6) may be performed in the procedure shown in the flowcharts of FIGS.
  • FIG. 57 is an explanatory diagram showing an example of an operation screen displayed on the information processing apparatus 6 according to the sixth embodiment.
  • FIG. 57 shows an example of an operation screen displayed by the control unit 60 in step S202 in the processing procedure shown in the flowchart of FIG.
  • the captured image of the entire medium B is displayed in accordance with a predetermined frame, and an OK button 641 for starting transplantation and a CANCEL button for canceling seedling selection 642 is displayed.
  • an OK button 641 for starting transplantation and a CANCEL button for canceling seedling selection 642 is displayed.
  • the operator can select a plurality of seedlings simultaneously and relatively.
  • the captured image of the culture medium B in the operation screen may be displayed in an enlarged manner. As a result, the operator can enlarge and visually check the seedlings.
  • the range within a predetermined frame (thick line frame in FIG. 57) in which the image of the culture medium B is displayed on the operation screen is divided so that each nursery can be selected.
  • a location corresponding to an arbitrary seedbed portion is tapped, the tapped location is displayed so as to be identifiable as a selected location, as indicated by hatching in FIG.
  • the display mode is displayed so as to be superimposed by a symbol such as color, hatching, or. Color, hatching information, and symbol information are recorded in the recording unit 61.
  • the control unit 60 Based on the information on the number of nursery beds recorded in the recording unit 61, the control unit 60 identifies the divided range on the image of the culture medium B by the row number m and the column number n of 12 rows and 25 columns, and taps.
  • the seedbed part selected by (1) is stored in the temporary storage unit 62 with the row number and the column number.
  • the nursery part at the 5th row and 11th column and the 6th row and 11th column is selected, and therefore the control unit 60 stores (05, 11) and (06, 11).
  • the identification information of the seedbed portion may identify the divided range in order from the upper left in FIG. 15 in the row direction, for example, with serial numbers (1, 2, 3,).
  • FIG. 58 is an explanatory diagram of an example of selection information.
  • the selection information is represented in correspondence with the diagram showing the transplantation order of the medium B in the explanatory diagrams of FIGS.
  • FIG. 59 is an explanatory diagram showing a transplantation example based on the selection information of FIG.
  • the transplanted seedlings are indicated by hatching in the culture medium B as the transplant source and the cultivation panel T as the transplant destination.
  • a total of nine holes T1 corresponding to the nursery beds shown in a thick frame on the medium B become a plurality of empty holes as shown in the lower part of FIG.
  • control unit 71 performs the seedbed part to be the target of the second processing procedure because there is no superior seedling part left without being transplanted in the culture medium B at the 34th transplantation order or lower. Search in order in the direction.
  • the transplantation device 10 shown in the sixth embodiment it is possible to realize the transplantation with the growth information removed as few times as possible together with the information of the selection information selected by the selection operation based on the image. It becomes possible. Since the information processing device 6 can communicate with the transplantation device 10 wirelessly, the information processing device 6 can be operated by a worker working in a place away from the place where the transplantation device 10 is installed.
  • FIG. 60 is an explanatory diagram illustrating an example of an operation screen according to the first modification.
  • the operation screen in the first modification includes a graded sample image 643 displayed next to the captured image of the culture medium B and is displayed on the display unit 63.
  • the grade sample image 643 is recorded in the recording unit 61 of the information processing apparatus 6.
  • the control unit 60 reads the graded sample image 643 together with the captured image from the recording unit 61 and displays it on the display unit 63.
  • the grade sample image 643 may be stored in the storage unit 22 of the transplantation control unit 20 and transmitted to the information processing apparatus 6 by the control unit 21.
  • the operator can select the plants P that are not to be transplanted while comparing the state of the plants P in the medium B and the grade sample, so that the judgment criteria by the operator can be unified to the same level. It is possible to homogenize the quality of the plant P.
  • step S101 is also executed on the information processing apparatus 6 side in the processing procedure shown in the flowchart of FIG. That is, it starts when the transplant application based on the transplant application program 6P is activated in the information processing apparatus 6 and imaging by the camera 30 is performed by the camera function activated by the transplant application. At this time, if there is a problem in imaging such as a focus shift, the imaging is resumed by pressing the CANCEL button 642. Then, on the transplantation device 10 side, the processing is started from step S102 in which it is determined whether the transplantation control unit 70 has received selection information.
  • FIG. 61 is a schematic perspective view of the transplantation device 10 according to the seventh embodiment.
  • the camera 30 of the imaging unit 3 in the sixth embodiment is installed at a position overlooking the holder 80 and moves together.
  • the camera 30 captures a moving image, and the image data of the moving image is transmitted from the communication unit 31 of the imaging unit 3 to the information processing device 6.
  • the configurations of the transplant device 10 and the information processing device 6 in the seventh embodiment are the same as those in the seventh embodiment except for the camera 30 and the processing procedure described below. The detailed description is omitted.
  • FIG. 62 is a flowchart showing an example of the transplant processing procedure in the seventh embodiment.
  • the processing procedure shown in the flowchart of FIG. 62 is started when the transplant application based on the transplant application program 6P is activated in the information processing apparatus 6.
  • control unit 60 connects to the transplant device 10 in order to connect communication for transmission / reception of moving image data (step S ⁇ b> 211), and the transplant device 10 starts processing.
  • the transplanting device 10 establishes a communication connection with the information processing device 6 and starts shooting a moving image by the camera 30 and starts transmission from the image data communication unit 31 (step S111).
  • the control unit 60 starts receiving image data (step S212), and causes the display unit 63 to display an operation screen including the moving image of the medium B in the frame based on the received image data (step S213). .
  • the control unit 60 determines whether or not the seed bed portion of the medium B displayed in the operation screen has been selected (tapped) (step S214). When it is determined that the selection has been made (S214: YES), the control unit 60 identifies a selection location (row number p and column number q) in the moving image of the culture medium B in the operation screen (step S215).
  • the control unit 60 transmits selection information indicating that the nursery part up to the row number p and the column number q-1 at the selected location is an excellent strain and the nursery part of the row number p and the column number q is a growth failure (step S216). Therefore, the operator visually selects in order from the first row and the first column in the captured image of the culture medium B.
  • the control unit 71 of the transplantation control unit 70 receives the selection information up to the selected seedbed portion at every selection operation (step S112), and confirms that the culture medium B and the cultivation panel T are installed. Then (step S113), on the basis of the received selection information, transplantation to the nursery corresponding to the selected location is started (step S114).
  • the transplantation procedure is the same as the procedure shown in the flowcharts of FIGS. 55 and 56 described in the first embodiment.
  • the control unit 60 executes the processes of steps S214 to S216 every time a seedling part of a seedling with poor growth is selected.
  • step S214: NO the control unit 60 determines whether or not the selection is completed by tapping the OK button 641 (step S217).
  • step S217: NO the control unit 60 returns the process to step S214.
  • step S217: YES the control unit 60 transmits selection information in which all the seedlings of the row number and column number after the most recently selected location are excellent stocks (step S218). ).
  • control unit 60 stops receiving the image data (step S219), disconnects the communication connection for moving image data reception (step S220), and selects the selection information and the image data as necessary. Is recorded in the recording unit 61 (step S221), and the process of the transplant application for one medium B is terminated.
  • control unit 71 determines whether or not all the selection information has been received up to the last column of the last row of the culture medium B (step S115). When it is determined that not all have been received (S115: NO), the control unit 71 returns the process to step S112 and receives the next selection information.
  • step S115 If it is determined in step S115 that all have been received (S115: YES), the control unit 71 starts transplantation to the last column of the last row of the medium B in the same manner as in step S114 (step S116), and the camera in the imaging unit 3 The imaging by 30 and transmission of image data are stopped (step S117).
  • the control unit 21 determines whether or not transplantation up to the final location that has been started has been completed (step S118). If it is determined that the transplant has not been completed (S118: NO), the process returns to step S118. Wait until it is determined that it is complete. If it is determined in step S118 that the process has been completed (S118: YES), the transplant process for one medium B is terminated.
  • the camera 30 is configured to capture a moving image, but may be configured to capture and output a still image. For example, every time the selection information transmitted from the information processing device 6 is received on the transplantation control unit 70 side (S112), the image is captured by the camera 30 and the image data is transmitted to the information processing device 6. Further, for example, transplantation can be started in parallel with only the first image taken.
  • FIG. 63 is a flowchart illustrating an example of a processing procedure when a still image according to the seventh embodiment is used. The processing procedures in FIG.
  • Embodiments 1 to 7 and modifications thereof in particular, transplantation based on the transplantation order shown in Embodiments 1 to 5 and sorting procedures based on the sorting information shown in Embodiments 6 and 7 are appropriately selected. It is possible to combine them.
  • a transplant procedure is determined in the same manner as the determination method of the correspondence between the transplant bed nursery and the transplant destination hole T1 shown in the first to fifth embodiments. It is also possible to execute the transplantation simultaneously with the transplantation arms.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Soil Sciences (AREA)
  • Hydroponics (AREA)
  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)
  • Pretreatment Of Seeds And Plants (AREA)

Abstract

装置の省空間化を実現する移植装置、コンピュータプログラム及び移植方法、並びに、効率的な選別及び移植を簡易な構成で実現する移植装置、移植システム、移植方法及びコンピュータプログラムを提供する。 移植装置は、複数の植物が行方向及び列方向に植えられている平板状の培地を保持する第1保持部と、植物を保持する孔が行方向及び列方向に複数設けられている平板状の栽培パネルを前記培地に平行となるように保持する第2保持部と、所定の移植アルゴリズムに基づき、前記培地から前記栽培パネルの孔への移植手順を決定する決定部と、第1保持部又は第2保持部を、前記手順決定部が決定した移植手順に対応する培地の植物及び栽培パネルの孔が上下に位置するように移動させる移動部と、移動後に前記培地及び栽培パネルに直交する方向に昇降する移植アームを用い、植物を前記孔へ引き込む又は押し込むことで移植させる移植部とを備える。

Description

移植装置、移植システム、移植方法及びコンピュータプログラム
 本発明は、植物の苗を移植するシステムに関し、装置の省空間化を実現し、更に検査を行って選別を行なう場合には効率的な選別及び移植を簡易な構成で実現する移植装置、該移植装置を用いる移植システム、移植方法及びコンピュータプログラムに関する。
 生育環境を制御して植物を育てる植物工場が規模の大小を問わず増加している。このような施設で栽培される植物は食用の野菜のみならず、食品加工用、薬品用又は観賞用など多種の用途で利用される。植物工場では環境を制御して生育させることが可能であるから、気候の変化、悪天候などの自然条件に左右されることがなく安定的な供給が可能になるため、今後も普及が見込まれる。
 植物工場における栽培の工程は、播種、芽出し、緑化、育苗、苗移植、生長、及び収穫を含む。各行程中の苗移植のタイミングで自動的に移植を行なう自動移植装置を利用し、苗移植作業を効率化することが提案されている。昨今増加している中小規模の施設でもコスト削減が求められており、自動的に移植する移植装置を用いて作業を効率化することが望まれる。
 特許文献1には、板状のウレタン等の弾性発泡合成樹脂マットの端から順に、一株ずつ苗が含まれる苗床片を複数切離して定植パネルへ定植させる自動定植装置が開示されている。特許文献1に開示されている自動定植装置では、苗床であるマットから定植パネルへ移植させるに際し、マットの端から順に苗床片を切離し、マトリクス状に孔が開けられている栽培パネルの端の列の孔から順に移植する方法が採られている。
 更に、上述の各工程を経る中で、環境の影響又は病気等による生長不良の苗を取り除くべく、例えば苗移植のタイミングで苗の選別が行なわれる。苗の選別及び移植を人手で行なう場合はコスト高となり、また、選別の基準が作業者によって異なるなど、品質維持及び均質化を困難とする原因が生じる。
 苗の選別に関して特許文献2には、苗を収容するパレットを1つずつロボットアームで移送して検査を行ない、検査結果に応じて育成不良の苗を回収する選別機構を備える水耕栽培装置が提案されている。特許文献1に開示されている検査では、苗を撮影して葉の大きさ、茎又は根の長さが所定値以上であるか否かを判断するようにして行なわれている。
 苗の選別に関しては更に、非特許文献1には、高品質で且つ均質な植物の大量生産を実現する大規模な植物工場において、自動搬送システムを用いて搬送される多数の苗を同時に検査し、検査結果によって優良株のみを移植する選別機能を有した栽培システムが開示されている。非特許文献1では、24時間内の活性度の変化を600個の苗を対象として同時に評価し、評価基準を満たさない苗を不良とする選別が行なわれている。
特開2000-004699号公報 国際公開第2011/125965号
株式会社椿本チエイン、"(大阪府立大学と共同開発)世界初、植物工場の「優良苗選別自動化システム」を開発"、[online]、2014年11月10日、株式会社椿本チエイン、NEWS Release、インターネット〈URL:http://www.tsubakimoto.jp/fileadmin/ja/news/articles/141110/141110.pdf〉
 従来の移植装置では、特許文献1に開示されているように、苗床マットの端から順に苗床片を切り離し、移植先のパネルの端の孔から順に各孔へ移植する方法が採られていた。この場合、苗床マットの端を移植先のパネルの端に合わせて移動させるのみでは、装置の大きさが大型化する。
 例えば従来の移植装置では、端の列の孔へ順に移植するので、固定位置に設けられている苗床片の昇降台に対し、定植パネルを移動させる定植パネル搬送コンベアの長さは、少なくとも定植パネルの搬送方向の長さの2倍必要になる。特許文献1に開示されている自動定植装置では更に、複数の定植パネルを順に搬送するようにしているので、装置の長さは定植パネルの長さの数倍としてある。
 植物工場では苗床又は苗を生育させるパネルを夫々、上下方向に重ねて配置して育成することができるので、路地栽培よりも非常に小さな敷地面積で生産を実現できるという利点がある。特に昨今増加している中小規模の施設では、移植装置もコンパクトな構成とすることが望ましい。
 更に移植の際に苗の検査を行なう場合には、特許文献2で開示されている自動検査では1つずつ苗を移送して検査を行なうので非効率的である。更に、苗の選別は、全体的な生育状況の中で比較的生育が不良なものを取り除くべく行なうので相対評価が必要であるが、苗1つ毎に、葉の大きさ等が所定値以上であるか否かの判断を行なう構成では絶対評価となる。非特許文献1に開示されている栽培システムにおいては、自動検査によって複数の苗を一度に検査することができるが、多くの導入コストが必要となる。昨今増加している中小規模の施設では、導入コストを抑制できる簡易な構成で検査が可能な自動移植装置が求められている。
 本発明は斯かる事情に鑑みてなされたものであり、装置の省空間化を実現する移植装置、コンピュータプログラム及び移植方法を提供することを目的とする。
 また、効率的な選別及び移植を簡易な構成で実現する移植装置、移植システム、移植方法及びコンピュータプログラムを提供することを目的とする。
 本発明に係る移植装置は、複数の植物が行方向及び列方向に植えられている平板状の培地を保持する第1保持部と、前記植物を保持する孔が行方向及び列方向に複数設けられている平板状の栽培パネルを前記培地に平行となるように保持する第2保持部とを備え、前記培地から前記栽培パネルの孔へ前記植物を移植する移植装置において、所定の移植アルゴリズムに基づき、前記培地から前記栽培パネルの孔への移植手順を決定する手順決定部と、前記第1保持部又は第2保持部を、前記手順決定部が決定した移植手順に対応する前記培地の植物及び前記栽培パネルの孔が上下に位置するように移動させる移動部と、該移動部による移動後に、前記培地及び栽培パネルに直交する方向に昇降する移植アームを用い、前記植物を前記孔へ引き込む又は押し込むことで移植させる移植部とを備えることを特徴とする。
 本発明に係る移植装置は、前記移動部は、前記栽培パネル及び培地の行方向又は列方向を同数に分別させた複数の領域の内、対応する領域同士が対向する範囲内で、前記第1保持部又は第2保持部を面方向に移動させることを特徴とする。
 本発明に係る移植装置は、前記移動部は、前記栽培パネル及び培地夫々の行方向及び列方向の内、栽培パネル又は培地の長手方向である方向を同数に分別し、分別された複数の領域の対応する領域同士が対向する範囲内で移動させることを特徴とする。
 本発明に係る移植装置は、前記移動部は、前記栽培パネル及び培地の行方向及び列方向の両方を同数に分別させた複数の領域の内、対応する領域同士が対向する範囲内で移動させることを特徴とする。
 本発明に係る移植装置は、前記同数は、培地の長手方向である方向の行数又は列数と、前記栽培パネルの前記方向に対応する方向の行数又は列数との間の最大公約数であることを特徴とする。
 本発明に係る移植装置は、前記移動部は、前記栽培パネル及び培地夫々の行方向及び列方向の内、栽培パネル又は培地の短手方向である第1の方向を2分し、分別された複数の領域の対応する領域同士で移動させることを特徴とする。
 本発明に係る移植装置は、前記手順決定部は、前記複数の領域の内、前記栽培パネルの1つの領域の前記第1の方向における端側の孔から順に、前記1つの領域に対応する領域の前記培地の前記第1の方向における端側から植物を中央側へ向けて順に対応付け、又は前記複数の領域の内、前記栽培パネルの1つの領域の前記栽培パネルの第1の方向における中央側の孔から順に、前記1つの領域に対応する領域の前記培地の前記第1の方向における中央側の植物を端側へ向けて順に対応付けることを特徴とする。
 本発明に係る移植装置は、前記対応する領域同士の対応関係を予め記憶する記憶部を更に備えることを特徴とする。
 本発明に係る移植装置は、前記移植部は、前記培地の一方向における培地間隔と、前記栽培パネルの前記一方向における前記孔間の間隔との公倍数に対応する間隔で並設されてある複数の移植アームを備え、前記培地に前記公倍数に対応する間隔で植えられている複数の植物を同時的に、前記複数の移植アームにより前記栽培パネルへ所定の順序で移植させることを特徴とする。
 本発明に係る移植装置は、前記移植部は、前記培地中の植物を移植させるに際し、前記植物に対する選別情報に基づき、前記複数の移植アームの動作の可否を各決定する動作可否決定部を更に備えることを特徴とする。
 本発明に係る移植装置は、複数の植物が行方向及び列方向に植えられている平板状の培地から、前記植物を保持する孔が行方向及び列方向に複数設けられている平板状の栽培パネルへ、前記植物を移植する移植装置において、前記培地を撮像する撮像部と、該撮像部により撮像された画像を送信する送信部と、該送信部により送信した画像に基づき選別された植物の選別情報を受信する受信部と、該受信部により受信した選別情報に基づき、移植する複数の植物を決定する移植植物決定部と、該移植植物決定部により決定された植物を前記栽培パネルへ移植させる移植部とを備えることを特徴とする。
 本発明に係る移植装置は、前記移植部は、前記培地の一方向における培地間隔と、前記栽培パネルの前記一方向における前記孔間の間隔との公倍数に対応する間隔で並設されてある複数の移植アームを更に備え、前記培地に前記公倍数に対応する間隔で植えられている複数の植物の内、前記移植植物決定部により決定された植物を同時的に、前記複数の移植アームにより前記栽培パネルへ移植させるようにしてあることを特徴とする。
 本発明に係る移植システムは、複数の植物が行方向及び列方向に植えられている平板状の培地から、前記植物を保持する孔が行方向及び列方向に複数設けられている平板状の栽培パネルへ、前記植物を移植する移植装置と、表示部を有し、前記移植装置に通信接続する通信装置とを含む移植システムであって、前記移植装置は、前記培地を撮像する撮像部と、該撮像部により撮像された画像を前記通信装置へ送信する送信部とを備え、前記移植装置は更に、前記送信部により送信した画像に基づき選別された植物の選別情報を前記通信装置から受信する受信部と、該受信部により受信した選別情報に基づき、移植する複数の植物を決定する移植植物決定部と、該移植植物決定部により決定された植物を前記栽培パネルへ移植させる移植部とを備えることを特徴とする。
 本発明に係る移植システムは、前記移植装置は、前記培地の一方向における培地間隔と、前記栽培パネルの前記一方向における前記孔間の間隔との公倍数に対応する間隔で並設されてある複数の移植アームを更に備え、前記移植部は、前記培地に前記公倍数に対応する間隔で植えられている複数の植物を同時的に、前記複数の移植アームにより前記栽培パネルへ移植させるようにしてあり、前記移植植物決定部は、前記受信した選別情報に基づき、前記複数の移植アームによる動作の可否を各決定するようにしてあることを特徴とする。
 本発明に係る移植方法は、複数の植物が行方向及び列方向に植えられている平板状の培地から、前記植物を保持する孔が行方向及び列方向に複数設けられている平板状の栽培パネルへ、前記植物を移植する移植方法において、前記栽培パネル及び培地の行方向又は列方向を同数に分別しておき、分別された複数の領域の内、対応する領域同士が対向する範囲内で、前記培地又は栽培パネルを面方向に移動させる移動後に前記培地に直交する方向に前記培地から植物を前記孔へ引き込む又は押し込むことで移植することを特徴とする。
 本発明に係る移植方法は、複数の植物が行方向及び列方向に植えられている平板状の培地から、前記植物を保持する孔が行方向及び列方向に複数設けられている平板状の栽培パネルへ、前記植物を移植する移植方法において、前記培地の一方向における培地間隔と、前記栽培パネルの前記一方向における前記孔間の間隔との公倍数に対応する間隔で並設されてある複数の移植アームを用いて前記培地に前記間隔で植えられている複数の植物を同時的に、前記複数の移植アームにより前記栽培パネルへ移植させ、前記培地に残った植物を、前記複数の移植アームの内のいずれか1つを用いて前記栽培パネルへ移植させることを特徴とする。
 本発明に係る移植方法は、複数の植物が行方向及び列方向に植えられている平板状の培地から、前記植物を更に生長させるための孔が行方向及び列方向に複数設けられている平板状の栽培パネルへ、前記植物を移植させる移植装置、及び表示部を有し前記移植装置に通信接続する通信装置を用いて前記植物を移植する移植方法であって、前記移植装置は、前記培地の撮像画像を前記通信装置へ送信し、前記通信装置は、受信した撮像画像を前記表示部に表示させ、撮像画像上で培地中の植物の選別を受け付け、選別された植物の情報を含む選別情報を前記移植装置へ送信し、前記移植装置は、前記通信装置から選別情報を受信し、受信した選別情報に基づき、移植する複数の植物を決定し、決定された植物を前記栽培パネルへ移植させることを特徴とする。
 本発明に係るコンピュータプログラムは、複数の植物が行方向及び列方向に植えられている平板状の培地を保持する第1保持部と、前記植物を保持する孔が行方向及び列方向に複数設けられている平板状の栽培パネルを前記培地に平行となるように保持する第2保持部とを備える移植装置が有するプロセッサに、前記第1保持部又は第2保持部を面方向に移動させるコンピュータプログラムにおいて、前記プロセッサに、前記栽培パネル及び培地の行方向又は列方向を同数に分別させた複数の領域の内、対応する領域同士が対向する範囲内で、前記第1保持部又は第2保持部を面方向に移動させる処理を実行させることを特徴とする。
 本発明に係るコンピュータプログラムは、コンピュータに、複数の植物が行方向及び列方向に植えられている平板状の培地から、前記植物を保持する孔が行方向及び列方向に複数設けられている平板状の栽培パネルへの移植を実行させるコンピュータプログラムにおいて、前記コンピュータに、前記培地の一方向における培地間隔と、前記栽培パネルの前記一方向における前記孔間の間隔との公倍数に対応する間隔で並設されてある複数の移植アームが同時的に移植する複数の植物を決定させる処理、決定された複数の植物を同時的に、前記複数の移植アームにより前記栽培パネルへ移植させる処理、及び前記培地に残った植物を、前記複数の移植アームの内のいずれか1つを用いて前記栽培パネルへ移植させる処理を実行させることを特徴とする。
 本発明に係るコンピュータプログラムは、表示部を有するコンピュータに、複数の植物が行方向及び列方向に植えられている平板状の培地からの選別を受け付けさせるコンピュータプログラムであって、前記コンピュータに、前記培地の撮像画像を取得する処理、取得された前記撮像画像を前記表示部に表示させる処理、撮像画像上で培地中の植物の選別を受け付ける処理、及び選別された植物の情報を含む選別情報を外部装置へ送信する処理を実行させることを特徴とする。
 本発明では、略平行に栽培パネル及び培地の行方向又は列方向を同数に分別した複数の領域同士が対向する範囲内で、栽培パネル又は培地が面方向に移動される。栽培パネルの分別された領域の内の一端の領域は、培地の内の位置が対応する一端側の領域以外の領域とは対向しない。栽培パネルの分別された領域の内の他端側の領域は、培地の内の他端側の領域以外の領域とは対向しない。これにより、培地又は栽培パネルの移動範囲が、相互に大きく外れることがない。
 本発明では、栽培パネル及び培地の長手方向を少なくとも分別し、分別された領域の内の対応する領域同士が対向する範囲で、栽培パネル又は培地が面方向に移動される。長手方向を分別させた各領域同士が対向する場合、栽培パネル及び培地の対向面積を可及的に大きくし、パネルと培地とが相互に外れる大きさを小さくすることが可能になる。
 本発明では、栽培パネル及び培地を夫々、行方向及び列方向の両方で分別させた領域同士が対向する範囲内で移動される。培地又は栽培パネルの移動範囲が、行方向及び列方向の両方で相互に大きく外れることがない。
 本発明では、培地の長手方向である方向の行数又は列数と、前記栽培パネルの前記方向に対応する方向の行数又は列数との間の最大公約数を分別数として用いることにより、分別数を可及的に小さくし、移動範囲を効率的に分別することが可能になる。
 本発明では、栽培パネル及び培地は、栽培パネル又は培地の短手方向である第1の方向にて2分され、2つに分別された領域同士が対向する範囲内で移動される。更にこの場合、対応する領域どうしで、栽培パネルの第1の方向における端側の孔へは培地の第1の方向における端側の植物が移植され、栽培パネルの第1の方向における中央側の孔へは前記培地の前記第1の方向における中央側の植物が移植される。第1の方向にて相互に外れないようにすることが可能となる。
 本発明では、予め記憶されてある領域同士の対応関係を、任意の順で読み出すことができるから、培地上の植物と栽培パネルの孔との間の位置を任意の順で対向させることが可能になる。
 本発明では、培地の所定方向における培地間隔と、栽培パネルにおける孔間の間隔との公倍数に対応する間隔で設けられている複数の移植アームによって、培地に植えられている植物が同時的に栽培パネルへ移植される。これにより、可能な範囲で移植アームの本数分だけ同時的に栽培パネルへ移植することが可能である。
 本発明では、更に、複数の移植アームを同時的に動作させるに際し、選別情報に基づいて各移植アームの動作(移植実行)の可否が各決定される。生育不良の植物に対応する移植アームのみ動作しないように決定することが可能であるから、効率的な選別及び移植を実現することができる。
 本発明では、移植の際に用いられる選別情報は、複数の植物が植えられている培地を1度に撮像した撮像画像を用い、該撮像画像を表示する表示部を有する情報処理装置にて受け付けられる。これにより、植物の個体1つずつ検査を行なうよりも、また、個体1つに対して特殊な検査を複数回行なうよりも簡易な構成で相対的評価による選別を実現することができる。
 本発明による場合、培地又は栽培パネルの移動範囲が、相互に大きく外れることがないから、装置全体が占める空間を可及的に小さくすることができる。
 また本発明による場合、可能な範囲で移植アームの本数分だけ同時的に栽培パネルへ移植することが可能であるから、効率的な移植を実現することができる。また、選別される植物の情報を、複数の植物が植えられた培地を全体的に撮像した画像に基づいて入手し、これにより同時的に動作させる移植アームの動作の可否を各決定することにより、効率的な選別及び移植を簡易な構成で実現することが可能である。
実施の形態1における移植装置の模式的斜視図である。 植物の移植元の培地の一例を示す斜視図である。 実施の形態1における培地、ホルダ、栽培パネル、及び移植アームを示す斜視図である。 実施の形態1における移植装置の内部構成を示すブロック図である。 実施の形態1における移植の処理手順の一例を示すフローチャートである。 栽培パネルの孔に割り当てられる移植順iを示す説明図である。 行方向の領域分別例を示す説明図である。 領域分別例を示す説明図である。 栽培パネルの孔と培地の苗床部との対応付けの例を示す説明図である。 培地における1枚目の栽培パネルへの移植順iを示す説明図である。 培地から1枚目の栽培パネルへ移植される際の培地と栽培パネルとの位置関係を示す説明図である。 培地から1枚目の栽培パネルへ移植される際の培地と栽培パネルとの位置関係を示す説明図である。 培地から1枚目の栽培パネルへ移植される際の培地と栽培パネルとの位置関係を示す説明図である。 培地から1枚目の栽培パネルへ移植される際の培地と栽培パネルとの位置関係を示す説明図である。 培地から1枚目の栽培パネルへ移植される際の培地と栽培パネルとの位置関係を示す説明図である。 培地から2枚目、3枚目の栽培パネルへの移植順iを示す説明図である。 培地における1枚目の栽培パネルへの移植順iの他の例を示す説明図である。 実施の形態2における栽培パネルの孔に割り当てられる移植順iを示す説明図である。 実施の形態2における行方向の領域分別例を示す説明図である。 実施の形態2における領域分別例を示す説明図である。 実施の形態2における栽培パネルの孔と培地の苗床部との対応付けの例を示す説明図である。 実施の形態2の培地における栽培パネルへの移植順iを示す説明図である。 実施の形態2の培地における栽培パネルへの移植順iを示す説明図である。 実施の形態3における栽培パネルの孔に割り当てられる移植順iを示す説明図である。 実施の形態3における行方向の領域分別例を示す説明図である。 実施の形態3における領域分別例を示す説明図である。 実施の形態3における領域分別の他の例を示す説明図である。 実施の形態3における栽培パネルの孔と培地の苗床部との対応付けの例を示す説明図である。 実施の形態3の培地における栽培パネルへの移植順iを示す説明図である。 実施の形態3の培地における栽培パネルへの移植順iを示す説明図である。 実施の形態3における領域分別の他の例を示す説明図である。 実施の形態4における移植の処理手順の一例を示すフローチャートである。 実施の形態5にて培地の苗床部に割り当てられる移植順iを示す説明図である。 実施の形態5における培地の苗床部と栽培パネルの孔との対応の決定手順の一例を示すフローチャートである。 培地の及び栽培パネルの領域分別例を示す説明図である。 培地の及び栽培パネルの領域分別例を示す説明図である。 培地及び栽培パネルの各領域の対応を示す説明図である。 培地及び栽培パネルにおける移植順iを示す説明図である。 培地から栽培パネルへ移植される際の培地と栽培パネルとの位置関係を示す説明図である。 培地から栽培パネルへ移植される際の培地と栽培パネルとの位置関係を示す説明図である。 培地から栽培パネルへ移植される際の培地と栽培パネルとの位置関係を示す説明図である。 培地及び栽培パネルにおける移植順iを示す説明図である。 実施の形態6における移植装置の模式的斜視図である。 実施の形態6における植物の移植先の栽培パネルの一例を示す斜視図である。 実施の形態6における移植装置及び情報処理装置の内部構成を示すブロック図である。 実施の形態6における移植装置及び情報処理装置の内部構成を示すブロック図である。 実施の形態6における移植の処理手順の一例を示すフローチャートである。 実施の形態6における移植アルゴリズムにより定まる移植順序の説明図である。 実施の形態6における移植アルゴリズムにより定まる移植順序の説明図である。 実施の形態6における移植アルゴリズムにより定まる移植順序の説明図である。 実施の形態6における移植アルゴリズムにより定まる移植順序の説明図である。 実施の形態6における移植アルゴリズムにより定まる移植順序の説明図である。 実施の形態6における移植アルゴリズムにより定まる移植順序の説明図である。 実施の形態6における移植アルゴリズムにより定まる移植順序の説明図である。 実施の形態6における移植手順の詳細について一例を示すフローチャートである。 実施の形態6における移植手順の詳細について一例を示すフローチャートである。 実施の形態6における情報処理装置にて表示される操作画面の一例を示す説明図である。 選別情報の例を示す説明図である。 図58の選別情報に基づく移植例を示す説明図である。 変形例1における操作画面の一例を示す説明図である。 実施の形態7における移植装置10の模式的斜視図である。 実施の形態7における移植の処理手順の一例を示すフローチャートである。 実施の形態7における静止画を使用した場合の処理手順の一例を示すフローチャートである。
 本発明をその実施の形態を示す図面に基づいて具体的に説明する。
 なお、以下の実施の形態は例示であって、本発明は実施の形態に示した構成に限定されないことは勿論である。
 (実施の形態1)
 図1は、実施の形態1における移植装置1を示す斜視図である。以下の説明では、図1中の矢符により示す上下、前後、及び左右を使用する。
 移植装置1は、栽培パネルTを保持するフレーム25、培地のホルダ40を移送するホルダ移送部4、移植アーム50を駆動する移植アーム駆動部5、ホルダ40の移送及び移植アーム50の駆動を夫々ホルダ移送部4及び移植アーム駆動5へ指示する移植制御部20(図1中では外箱を示す)を備える。
 フレーム25は複数の支柱と、支柱間を上部及び下部で連結する複数の横架材とから構成される。フレーム25の中央部に前後及び左右方向にガイドフレームが架設されており、更にガイドフレームには支持板26が水平に取り付けられている。栽培パネルTは隣り合う2辺がガイドフレームに夫々沿うように、支持板26上に固定される。なお栽培パネルTは、支持板26上の所定位置への手動での取り付け及び取り外しが可能である。栽培パネルTについては詳細を後述する。
 移植アーム駆動部5は、栽培パネルTの下方にあって移植アーム50、支持台51、駆動部52、走行ガイド53及び左右方向ガイド54を備える。走行ガイド53はフレーム25の下部に前後方向に架設されている。走行ガイド53の架設位置は、栽培パネルTの下である。走行ガイド53には、支持台51が走行可能に取り付けられている。支持台51には駆動部52が設けられており、駆動部52には移植アーム50が取り付けられている。走行ガイド53の長さは栽培パネルTの長手方向の長さと略等しく、移植アーム50は、栽培パネルTの長手方向に対応する距離を移動することが可能である。更に走行ガイド53は、左右方向ガイド54に沿って左右方向に動くことが可能に構成されている。これにより移植アーム50は、栽培パネルTの下方における栽培パネルTの大きさに対応する範囲内で、栽培パネルTの全ての孔T1の下部へ移動することが可能である。更に移植アーム50は、駆動部52の動作によって支持台51に対して上昇することが可能であり、移植アーム50の先端部に設けられている移植ハンド(図3参照)は、栽培パネルTよりも低い初期位置と、栽培パネルTに設けられている複数の孔T1を貫通して栽培パネルTよりも高い上昇位置との間で昇降可能である。
 ホルダ移送部4は栽培パネルTの上方にあって、ホルダ40、左右方向ガイド41、及び前後方向ガイド42を備える。前後方向ガイド42は、栽培パネルTの上部中央後側の位置に、前後方向に架設されている。前後方向ガイド42には、左右方向に延びる左右方向ガイド41が取り付けられている。左右方向ガイド41の前面には、矩形枠状のホルダ40の一長辺側が取り付けられている。これによりホルダ40は、左右方向ガイド41に沿って左右方向に移動し、更に左右方向ガイド41と共に前後方向ガイド42に沿って前後方向に移動することが可能である。なお前後方向ガイド42の長さは、栽培パネルTの前後方向の長さよりも少し長く、左右方向ガイド41の長さも、栽培パネルTの幅(左右方向の長さ)よりも少し長い。ホルダ40は、栽培パネルTの上方で、栽培パネルTに対応する範囲から大きく外れない範囲内で移動することが可能である。ホルダ40とその移動範囲については詳細を後述する。
 移植装置1における培地Bから栽培パネルTへの植物Pの移植について、図2及び図3を参照して培地B及び栽培パネルTの詳細と共に概要を述べる。図2は、植物の移植元の培地の一例を示す斜視図であり、図3は、実施の形態1における培地B、ホルダ40、栽培パネルT、及び移植アーム50を示す斜視図である。
 培地Bは例えばウレタン製であって図2に示すように矩形平板状をなす。培地Bは縦横各複数列に並ぶ複数の苗床部に区分されている。培地Bの一面には、苗床部の夫々に、植物Pを育苗するための1つの孔B1が設けられている。培地Bの他面は、前記一面側に達しない程度に切り込まれている。図2に示す培地Bは、300(=12×25)個の苗床部に区分されている。苗床部の区分数についてはこれに限られないことは勿論である。
 矩形枠状のホルダ40は、縦横各複数列に並ぶ孔が設けられた底板を有している。ホルダ40の矩形枠の内周は培地Bの外周に略等しく、培地Bがホルダ40内に収まるようにしてある。ホルダ40の底板に設けられた孔の大きさ及び数は、培地Bの苗床部の大きさ及び分割数に対応している。
 栽培パネルTは例えば発泡スチロール製であって矩形平板状をなす。栽培パネルTには、複数の孔T1が縦横に並べて設けられている。各孔T1は円形であって、パネルの一面側から約半分の深さに至るまではテーパ状に縮径されている。孔T1の該一面側の直径は、培地Bの1つの苗床部の対角線の長さに略等しく、縮径された側の直径は、苗床部の一辺の長さと略等しいか少し短い。図3に示す栽培パネルTには例えば100(=10×10)個の孔T1が設けられている。栽培パネルTの孔T1の数についてはこれに限られないことは勿論であり、孔T1間の間隔は植物Pの種類に応じて生育に適した間隔となるように設計される。
 移植装置1により、培地Bから栽培パネルTへ植物Pが移植される工程について図3を参照して説明する。作業者によって設置された培地Bを保持したホルダ40は、移植制御部20の制御により栽培パネルTの上方を前後左右に移動する。そして移植アーム50の支持台51は、移植制御部20の制御により栽培パネルTの下方を前後左右に移動する。培地Bの苗床部が栽培パネルTにおける空き孔T1の真上の位置に存在するとき、移植制御部20は移植アーム50がその真下に位置するように支持台51を移動させる。続けて移植制御部20は、移植アーム50の先端部の移植ハンドが上昇位置へ上昇するように駆動部52を動作させる。移植アーム50が移植ハンドごと、空いている孔T1及びホルダ40の底板の孔を貫通し、移植ハンドが苗床部へ到達する上昇位置へ上昇すると、移植ハンドは苗床部を掴持する。このとき移植制御部20は移植アーム50を下降させる。移植ハンドに掴持された苗床部は、移植アーム50と共に下降することによってホルダ40の底板に開けられている孔にて破断され、更に下降して栽培パネルTの孔T1に入り、孔T1の縮径された部分で保持される。移植制御部20は、苗床部が孔T1に保持されたところで各移植ハンドによる掴持を解除し、更に移植アームは下降して移植ハンドは初期位置に戻る。このように、移植制御部20の指示によってホルダ40、支持台51及び移植アーム50が前後左右及び上下に移動することで、培地Bの苗床部の栽培パネルTへの移植が実現する。
 このような移植装置1の移植制御部20による植物Pの移植制御について詳細を説明する。図4は、実施の形態1における移植装置1の内部構成を示すブロック図である。移植装置1は、上述したようにホルダ移送部4及び移植アーム駆動部5と、これらを制御する移植制御部20とで構成されている。移植制御部20は、プログラマブルロジックコントローラ(Programmable Logic Controller )である。移植制御部20は、マイクロプロセッサである制御部21と、フラッシュメモリ等を用いた記憶部22と、マンマシンインタフェースである操作部23と、ホルダ移送部4及び移植アーム駆動部5と接続される入出力インタフェース24とを備える。
 制御部21は、記憶部22に予め記憶されてある移植プログラム2Pに基づき、操作部23にて受け付ける操作に従ってホルダ移送部4へホルダ40の移動及び停止を指示する。更に制御部21は、移植アーム駆動部5へ移植アーム50の支持台51の前後左右移動及び停止、及び移植アーム50の上下駆動を指示する。
 記憶部22には、上述の移植プログラム2Pが記憶されている。移植プログラム2Pには、移植装置1に載置される栽培パネルTの孔T1の数及び大きさ、並びにホルダ40に収容される培地Bの苗床部の分割数に応じた移植の対応が組み込まれている。移植の対応とは例えば、移植先の栽培パネルTにおける孔T1の位置情報と対応付けられた移植元の培地Bの苗床部の位置情報である。対応付けられた孔T1の位置情報と培地Bの苗床部の位置情報とに、移植順序を示す番号(移植順)を付して記憶してもよい。具体的に移植の対応は、実施の形態1においては100(=10×10)個の孔T1を含む栽培パネルT、及び300(=12×25)個の分割数の培地B用に、所定のアルゴリズムに従って予め決定されている。またこの対応は、1つの培地Bから3枚の栽培パネルT夫々への対応である。培地Bと栽培パネルTとの間の移植の対応については詳細を後述する。移植の対応は移植プログラム2Pとは別途記憶部22に記憶され、制御部21により参照できるようにしてもよい。
 移植プログラム2Pは、上述した制御部21による制御を実行させるプログラムである。移植プログラム2Pは記憶部21に予め記憶されているか、又は制御部21に組み込まれる。また移植プログラム2Pは、コンピュータが読み取り可能な記録媒体27に記録されている態様でもよい。記憶部21は、図示しない読出装置によって記録媒体27から読み出された移植プログラム28を記憶する。記録媒体27はCD(Compact Disc)-ROM、DVD(Digital Versatile Disc)-ROM、BD(Blu-ray (登録商標) Disc )等の光ディスク、フレキシブルディスク、ハードディスク等の磁気ディスク、磁気光ディスク、半導体メモリ等である。また、図示しない通信網に接続されている図示しない外部コンピュータから実施の形態1に係る移植プログラム28をダウンロードし、記憶部21に記憶させてもよい。
 操作部23は、制御部21の外箱上面に設けられているスイッチ及びボタンを用いる。スイッチ及びボタンには、移植開始を指示するスタートボタンが含まれる。操作部23には液晶パネルが含まれ、操作内容及びエラーメッセージ等が表示されるとよい。制御部21は、操作部23における操作を検知し、操作内容に従って後述するような移植に係る各制御を実行する。
 上述のように構成される移植装置1における移植の処理手順についてフローチャートを参照して詳細を説明する。図5は、実施の形態1における移植の処理手順の一例を示すフローチャートである。図5のフローチャートに示す処理手順は、作業者が、全ての孔T1が空き状態の栽培パネルTを支持板26上に載置し、育苗工程を経た植物Pの培地Bをホルダ40に嵌め込み、操作部23のスタートボタンを押下した場合、押下を検知した制御部21により開始される。
 制御部21は、移植先の栽培パネルTも培地Bも新しいもの(栽培パネルTは空、培地Bは満)であるとして処理を開始する。なお以下の説明においては、栽培パネルTにおける孔T1の位置情報は、図1における手前側の行を1行目とし、最も左側の列を1列目とするx行y列で識別する(x=1~10、y=1~10)。同様にして培地Bにおける苗床部も図1におけるホルダ40の手前側を1行目とし、左側を1列目とするm行n列で識別する(m=1~12、n=1~25)。
 実施の形態1における栽培パネルT及び培地Bの例では、1つの培地Bから3枚の栽培パネルTへの移植を1つの処理として実行する。したがってまず制御部21は、栽培パネルTが何枚目であるかを示す枚数k(=1~3)を初期化(k=1)する(ステップS1)。
 次に制御部21は、k枚目の栽培パネルTについての移植順i=1~100を、移植先の孔T1の位置情報に割り当てる(ステップS2)。具体的には、栽培パネルTにおける孔T1をジグザグ状に進むように、各孔T1の位置情報(x,y)に移植順i=1~100を割り当てる。図6は、栽培パネルTの孔T1に割り当てられる移植順iを示す説明図である。図6中の丸中の数字が移植順iを示している。そして制御部21は、移植順iを初期化する(ステップS3)。移植順1番目の孔T1の位置情報は(1,1)であり、移植順2番目の孔T1の位置情報は(2,1)であり、移植順10番目の孔T1の位置情報は(10,1)である。そして移植順11番目の孔T1の位置情報は(10,2)であり、移植順11番目の孔T1の位置情報は(9,2)である。移植順に従って位置情報を示すと(1,1),(2,1),…,(10,1),(10,2),(9,2),…,(1,2),(1,3),(2,3),…,(10,3),(10,4),(9,4),…となる。
 制御部21は、k枚目の栽培パネルTにおける移植順iの孔T1の位置情報(x,y)に対応付けられている移植元の培地Bの苗床部の位置情報(m,n)を特定する(ステップS4)。k枚目の栽培パネルTの孔T1の位置情報(x,y)と、苗床部の位置情報(m,n)との対応は上述したように、記憶部22の移植プログラム2Pに組み込まれているか、又は記憶部22に記憶されてある。
 制御部21は、特定した苗床部が、位置情報(x,y)で特定される移植先の孔T1の上へ来るようにホルダ40を移動させるべくホルダ移送部4へ指示する(ステップS5)。制御部21は同時的に、位置情報(x,y)で特定される移植先の孔T1の下へ、移植アーム50が来るように、支持台51を移動させるべく移植アーム駆動部5へ指示する(ステップS6)。
 制御部21は、移植順iの移植先の孔T1に対し、移植アーム50による培地Bの苗床部の引き抜き及び孔T1への移植を実行する(ステップS7)。
 次に制御部21は、移植順iに1を加え(ステップS8)、移植順iが移植順の最大値I(=100)に達したか否かを判断する(ステップS9)。最大値Iに達していないと判断された場合(S9:NO)、制御部21は処理をステップS4へ戻し、次の移植順iの移植先についての処理を続行する。
 ステップS9にて最大値Iに達したと判断された場合(S9:YES)、制御部21は、音声又は操作部23の液晶パネル等への出力によって栽培パネルTの交換指示を出力させる(ステップS10)。制御部21は栽培パネルTの枚数kに1を加え(ステップS11)、kが最大値「3」に達しているか否かを判断する(ステップS12)。kが最大値「3」に達していないと判断された場合(S12:NO)、制御部21は処理をステップS2へ戻し、次の栽培パネルTへの移植処理を続行する。
 kが最大値「3」へ達したと判断された場合(S12:YES)、制御部21は1回の移植の処理を終了する。
 上述の処理手順の内、ステップS4において特定されるk枚目の栽培パネルTの孔T1の位置情報(x,y)と、苗床部の位置情報(m,n)との対応について、図面を参照して具体的に説明する。これらの対応は、栽培パネルTの大きさ、孔T1の数、及び並び方、並びに培地Bの大きさ及び苗床部の分割数に基づいて、所定のアルゴリズムにより予め決定される。
 所定のアルゴリズムとは、端的に言えば、培地Bの移動範囲を可及的に、栽培パネルTに対応する範囲内に収めるためのアルゴリズムである。該アルゴリズムに従って、以下の(1)~(3)の手順により、移植先の栽培パネルTの孔T1と移植元の培地Bの苗床部との間の対応が定められる。
 (1)行方向の領域分別
 栽培パネルTの孔T1の位置情報(x,y)と、培地Bの苗床部の位置情報(m,n)との対応はまず、栽培パネルT及び培地Bを夫々、行方向を同数で分ける。ここで同数とは、栽培パネルTの列数「10」、及び培地Bの列数「25」の公約数であるとよい。栽培パネルTの列数と、培地Bの列数とが互いに素であって公約数が「1」以外に存在しない場合、同数は夫々の列数のより小さい方の数字とする。実施の形態1では「5」で分ける。図7は、行方向の領域分別例を示す説明図である。図7の太線により、行方向を分けた第1~第5領域の分別例を示している。
 (2)列方向の領域分別
 栽培パネルTと、培地Bとで夫々「5」つに分けられた領域毎に、更に列方向を((1)とは90°異なる方向で)同数で分ける。ここで同数とは、行数のより小さい方の数字とする。したがって列方向の分別数は「10」とする。図8は、領域分別例を示す説明図である。図8では、栽培パネルTにおける列方向の分別の境界は破線により示し、培地Bにおける列方向の分別の境界はハッチングによる区分けによって示している。そして列方向を分けた領域は領域A~Jとして示している。図8に示すように、栽培パネルTの第1~第5領域は夫々20個の孔T1を含む。したがって列方向を「10」個に更に分別することにより、各々孔T1を2つ有する領域へ分別される。また、培地Bの行方向を「5」つに分別した第1~第5領域は、各々60個(12行5列)の苗床部を含む。したがって、列方向を「10」個に更に分別することにより、培地Bの1つの領域は苗床部を6つ有する領域へ分別される。なお12行5列の苗床部を6つずつに分別する際には、図8に示すように各領域内の端から、即ち行数m及び列数nが夫々小さい数から順に対応付けることとする。
 (3)分別領域同士の対応付け
 栽培パネルTと培地Bとの間で、分別された第1~第5領域の領域A~J同士で、孔T1と苗床部とを領域内の端から順に対応付ける。このとき各領域内の端からとは、x,y,m,nが夫々小さい数から順に対応付けることとする。なおこのとき、栽培パネルT上での移植順序が孔T1を列方向に沿うようにしてジグザグ状に進む場合(図6参照)、苗床部の第2及び第4領域については、栽培パネルTにおける順序同様に、行番号mが大きい数から順に、各行では列番号nの小さい順に対応付けるようにしてもよい。
 図9は、栽培パネルTの孔T1と培地Bの苗床部との対応付けの例を示す説明図である。図9中の栽培パネルTにおける孔T1に対応する各丸印中の英字は列方向を分けた領域A~Jを示し、数字は各領域の端からの数を示している。なお実施の形態1では1つの培地Bから3枚の栽培パネルTへ移植する。したがって図9に示すように、培地Bの各領域A~Jの6つの苗床部は、3枚分の栽培パネルTの各領域に対応付けられている。
 (3)の対応付けを図9を参照して具体的に示す。
 1枚目の栽培パネルTの第1領域の「A1」の孔T1、即ち1行1列目の孔T1(k,x,y)=(1,1,1)には、培地Bにおける1行1列目の苗床部(m,n)=(1,1)が対応付けられる。
 1枚目の栽培パネルTの第1領域の「A2」の孔T1、即ち1行2列目の孔T1(k,x,y)=(1,1,2)には、培地Bにおける1行1列目の苗床部(m,n)=(1,2)が対応付けられる。
 1枚目の栽培パネルTの第1領域の「B1」の孔T1、即ち2行1列目の孔T1(k,x,y)=(1,2,1)には、培地Bにおけるハッチングで示される「B1」の苗床部、即ち2行2列目の苗床部(m,n)=(2,2)が対応付けられる。
 1枚目の栽培パネルTの第1領域の「B2」の孔T1、即ち2行2列目の孔T1(k,x,y)=(1,2,2)には、培地Bにおけるハッチングで示される「B2」の苗床部、即ち2行3列目の苗床部(m,n)=(2,3)が対応付けられる。
 同様にして1枚目の栽培パネルTの第1領域の「C1」の孔T1、即ち3行1列目の孔T1(k,x,y)=(1,3,1)には、培地Bにおけるハッチングで示される「C1」の苗床部、即ち3行3列目の苗床部(m,n)=(3,3)が対応付けられる。
 このような位置情報間の対応付けが、移植プログラム2Pに組み込まれているか、又は記憶部22に記憶されている。
 図10は、培地Bにおける1枚目の栽培パネルへの移植順iを示す説明図である。図5のフローチャート中、ステップS4の処理にて、制御部21は移植順iが割り当てられている孔T1に対応する培地Bの苗床部の位置情報を特定する。図10は、特定された苗床部に対応する箇所に、各苗床部の移植先の孔T1に割り当てられている移植順iを示したものである。1枚目の栽培パネルTへの培地B上での移植順iは図9に示したようになる。
 上述の(1)~(3)により、培地B及び栽培パネルTの領域の分別、及び領域同士で苗床部及び孔T1の間が対応付けられる。
 図10の移植順iの割り当てから分かるように、栽培パネルTの1列目、2列目の孔T1への移植は、培地Bにおける1~5列目の苗床部の中から行なわれる。したがって栽培パネルTの1列目及び2列目の孔T1の上に、培地Bの6~25列目の部分が位置することはない。同様にして栽培パネルTの9列目、10列目の孔T1への移植は、培地Bにおける21~25列目の苗床部の中から行なわれる。したがって栽培パネルTの9列目及び10列目の孔T1の上に、培地Bの1~20列目の部分が位置することはない。したがって、培地Bが栽培パネルTの上方で、栽培パネルTに対応する範囲を行方向に大きく外れることはない。
 また、栽培パネルTの1行目の孔T1への移植は、培地Bにおける1行目の苗床部の中から行なわれる。したがって栽培パネルTの1行目の孔T1の上に、培地Bの2~12行目の部分が位置することはない。同様にして栽培パネルTの10行目の孔T1への移植は、培地Bにおける11行目又は12行目の苗床部の中から行なわれる。したがって栽培パネルTの1行目の孔T1の上に、培地Bの1~10行目の部分が位置することはない。したがって、培地Bが栽培パネルTの上方で、栽培パネルTに対応する範囲を列方向に大きく外れることはない。
 以下に栽培パネルTへの移植過程を、図面を参照して具体的に説明する。
 図11~図15は、培地Bから1枚目の栽培パネルTへ移植される際の培地Bと栽培パネルTとの位置関係を示す説明図である。図11は、移植順i=1における位置関係を示している。図11に示すように、移植順i=1において、培地Bは栽培パネルTに対応する範囲から行方向に苗床部2つ分程度外れるのみである。図12は移植順i=5における位置関係を示している。同様にして図13は移植順i=10における位置関係を示している。図12及び図13に示す位置関係は、行方向において培地Bが最も一端側(1列目側)に寄る。しかしながら図12に示すように、培地Bは栽培パネルTに対応する範囲から苗床部3つ分程度外れるのみである。同様にして図14は、移植順i=91における位置関係を示し、図15は移植順i=100における位置関係を示している。図14に示す位置関係は、行方向において培地Bが最も他端側(10列目側)に寄る。しかしながら図14に示すように、培地Bは栽培パネルTに対応する範囲から苗床部3つ分程度外れるのみである。更に、図11~図15を参照すると列方向においては、培地Bは栽培パネルTに対応する範囲から外れない。
 図16は、培地Bから2枚目及び3枚目の栽培パネルTへの移植順iを示す説明図である。図16は図10に対応し、ステップS4の処理にて特定された苗床部に対応する箇所に、各苗床部の移植先の孔T1に割り当てられている移植順iを示したものである。図6に示す移植順iが割り振られた栽培パネルTへ、図16に示す各苗床部からの移植を実行する場合、2枚目、3枚目の栽培パネルTについても図11~図15に示したように、培地Bは栽培パネルTに対応する範囲から大きく外れることはない。
 このように、実施の形態1にて説明した移植装置1では、栽培パネルTの上方の栽培パネルTに対応する範囲から培地Bが大きく外れない範囲内で移動させる方法で、培地Bの全ての苗床部からの栽培パネルTの全ての孔T1への移植を実現できる。これにより、移植装置1が占める空間を小さくすることが可能である。
 実施の形態1に示した移植順では、図6に示したように、移植順iを列方向に沿ってジグザグ状に進むように割り当てたが、まず行方向に沿ってジグザグ状に割り当ててもよい。この場合、各苗床部の移植先の孔T1に割り当てられている移植順iは、図17のようになる。また栽培パネルTの孔T1にジグザグ状に移植順を割り当てたのは、固定された栽培パネルTに対する移植アーム50の移動を最小限とするためである。したがって移植順は、栽培パネルTの孔T1に、1列毎に、1行目から10行目の順に移植するようにしてもよい。同様に1行毎に、1列目から10列目の順に移植するようにしてもよい。
 (実施の形態2)
 実施の形態2では、150(=15×10)個の孔を含む栽培パネルT2を用いる。培地Bの大きさ及び分割数は、実施の形態1と同一とする。したがって実施の形態2では、1つの培地Bから2枚の栽培パネルT2への移植が1つの処理として行なわれる。
 実施の形態2における移植装置1による処理手順は、実施の形態1において図5のフローチャートに示した処理手順と同様である。実施の形態2では、栽培パネルT2が実施の形態1と異なるから、栽培パネルT2の孔の数及び大きさに応じて予め移植プログラム2Pに組み込まれている移植順序が実施の形態1と異なる。
 実施の形態2における移植順序について具体的に説明する。図18は、実施の形態2における栽培パネルT2の孔に割り当てられる移植順iを示す説明図である。図18中の丸中の数字が移植順iを示している。図18に示すように、栽培パネルT2においても移植先の孔への移植順i=1~150の割り当ては、孔をジグザグ状に進むように行なわれる。具体的には、移植順1番目の孔の位置情報は(1,1)であり、移植順2番目の孔の位置情報は(2,1)であり、移植順15番目の孔の位置情報は(15,1)である。そして移植順16番目の孔の位置情報は(15,2)であり、移植順17番目の孔の位置情報は(14,2)である。移植順に従って位置情報を示すと(1,1),(2,1),…,(15,1),(15,2),(14,2),…,(1,2),(1,3),(2,3),…,(15,3),(15,4),(14,4),…となる。
 k(k=1,2)枚目の栽培パネルT2の孔の位置情報(x,y)と、苗床部の位置情報(m,n)との対応は、栽培パネルT2の大きさ、孔の数、及び並び方、並びに培地Bの大きさ及び苗床部の分割数に基づいて、実施の形態1同様に所定のアルゴリズムに基づいて以下のように決定される。
 図19は、実施の形態2における行方向の領域分別例を示す説明図である。実施の形態2においても栽培パネルT2の列数「10」、及び培地Bの列数「25」の公約数である「5」で行方向に分別される。
 図20は、実施の形態2における領域分別例を示す説明図である。実施の形態2においては、栽培パネルT2、及び培地Bを夫々、栽培パネルT2の孔の行数「15」で分別する。図20では、栽培パネルT2における列方向の分別の境界は破線により示し、培地Bにおける列方向の分別の境界はハッチングによる区分けによって示している。そして列方向を分けた領域は領域A~Oとして示している。図20に示すように、栽培パネルT2の第1~第5領域は夫々30個の孔を含む。したがって列方向を「15」個に更に分別することにより、各々孔を2つ有する領域へ分別される。また、培地Bの行方向を「5」つに分別した第1~第5領域は、各々60個(12行5列)の苗床部を含む。これらの領域を夫々列方向を「15」個に更に分別することにより、培地Bの1つの領域は苗床部を4つ有する領域へ分別される。
 図21は、実施の形態2における栽培パネルT2の孔と培地Bの苗床部との対応付けの例を示す説明図である。図21中の栽培パネルT2における孔に対応する各丸印中の英字は列方向を分けた領域A~Oを示し、数字は各領域の端からの数を示している。実施の形態2では1つの培地Bから2枚の栽培パネルT2へ移植する。したがって図21に示すように、培地Bの各領域A~Oに含まれる4つの苗床部は、2枚の栽培パネルT2の各領域に対応付けられている。
 図22及び図23は、実施の形態2の培地Bにおける栽培パネルT2への移植順iを示す説明図である。上述のステップS4の処理にて、制御部21は移植順iが割り当てられている孔に対応する培地Bの苗床部の位置情報(m,n)を特定する。図22及び図23は、特定された苗床部に対応する箇所に、各苗床部の移植先の孔に割り当てられている移植順iを示したものである。1枚目の栽培パネルT2への培地B上での移植順iは図22に示したようになる。同様にして2枚目の栽培パネルT2への培地B上での移植順iは図23に示したようになる。
 実施の形態2においても、図22から分かるように栽培パネルT2の1列目、2列目の孔への移植は、培地Bにおける1~5列目の苗床部の中から行なわれる。したがって栽培パネルT2の1列目及び2列目の孔の上に、培地Bの6~25列目の部分が位置することはない。同様にして栽培パネルT2の9列目、10列目の孔への移植は、培地Bにおける21~25列目の苗床部の中から行なわれる。したがって栽培パネルT2の9列目及び10列目の孔の上に、培地Bの1~20列目の部分が位置することはない。したがって、培地Bが栽培パネルT2の上方で、栽培パネルT2に対応する範囲を行方向に大きく外れることはない。
 また、栽培パネルT2の1行目の孔への移植は、培地Bにおける1行目の苗床部の中から行なわれる。したがって栽培パネルT2の1行目の孔の上に、培地Bの2~12行目の部分が位置することはない。同様にして栽培パネルT2の15行目の孔への移植は、培地Bにおける12行目の苗床部の中から行なわれる。したがって栽培パネルT2の15行目の孔の上に、培地Bの1~11行目の部分が位置することはない。したがって、培地Bが栽培パネルT2の上方で、栽培パネルT2に対応する範囲を列方向に大きく外れることもない。
 (実施の形態3)
 実施の形態3では、98(=14×7)個の孔を含む栽培パネルT3を用いる。培地Bの大きさ及び分割数は、実施の形態1と同一とする。実施の形態3では、1つの培地Bで複数の栽培パネルT3における全ての孔への移植を満たすことはできない。しかしながら培地Bにおける苗床部の数は、栽培パネルT3の孔の数の約3倍であるから、実施の形態1同様に1つの培地Bから3枚の栽培パネルT3への移植が1つの処理として行なわれる。剰余分は他の栽培パネルT3へ利用するか、又は、生育不良の苗に代替して使用するとよい。
 実施の形態3における移植装置1による処理手順は、実施の形態1において図5のフローチャートに示した処理手順と同様である。実施の形態2では、栽培パネルT3が実施の形態1と異なるから、栽培パネルT3の孔の数及び大きさに応じて予め移植プログラム2Pに組み込まれている対応が実施の形態1と異なる。
 実施の形態3における移植順序について具体的に説明する。図24は、実施の形態3における栽培パネルT3の孔に割り当てられる移植順iを示す説明図である。図24中の丸中の数字が移植順iを示している。図24に示すように、栽培パネルT3においても移植先の孔への移植順i=1~98の割り当ては、孔を列方向に沿うようにしてジグザグ状に進むように行なわれる。具体的には、移植順1番目の孔の位置情報は(1,1)であり、移植順2番目の孔の位置情報は(2,1)であり、移植順14番目の孔の位置情報は(14,1)である。そして移植順15番目の孔の位置情報は(14,2)である。移植順に従って位置情報を示すと(1,1),(2,1),…,(14,1),(14,2),(13,2),…,(1,2),(1,3),(2,3),…,(14,3),(14,4),(13,4),…となる。
 k(k=1,2)枚目の栽培パネルT3の孔の位置情報(x,y)と、苗床部の位置情報(m,n)との対応は、栽培パネルT3の大きさ、孔の数、及び並び方、並びに培地Bの大きさ及び苗床部の分割数に基づいて、実施の形態1同様に所定のアルゴリズムに基づいて以下のように決定される。
 図25は、実施の形態3における行方向の領域分別例を示す説明図である。実施の形態2においては、栽培パネルT3の列数「7」、及び培地Bの列数「25」は互いに素であるから、小さい方の数字である栽培パネルT3の列数「7」で行方向に分別される。培地Bの列数「25」は、分別数「7」では割り切れないので、同一列の苗床部を2つの隣り合う領域同士で分け合うようにしてある。なおこのとき第1~第7領域に含まれる苗床部の数は「42」である。
 図26は、実施の形態3における領域分別例を示す説明図である。実施の形態3においては、栽培パネルT3、及び培地Bを夫々、栽培パネルT3の孔の行数「14」で分別する。図26では、栽培パネルT3における列方向の分別の境界は破線により示し、培地Bにおける列方向の分別の境界はハッチングによる区分けによって示している。そして列方向を分けた領域は領域A~Nとして示している。図26に示すように、栽培パネルT3の孔は14行である。したがって列方向を「14」個に更に分別することにより、第1~第7領域は各々孔を1つ有する領域へ分別される。また、培地Bの行方向を「7」つに分別した第1~第7領域は、各々「42」個の苗床部を含む。これらの領域を夫々列方向を「14」個に更に分別することにより、培地Bの1つの領域は苗床部を3つ有する領域へ分別される。
 列方向の分別は図26には限られない。図24に示すように栽培パネルT3上での移植順序は、孔を列方向に沿うようにしてジグザグ状に進むから、苗床部の第2、第4及び第6領域については、行番号mが大きい数側から順に、各行において列番号nの小さい側から分別するようにしてもよい。図27は、実施の形態3における領域分別の他の例を示す説明図である。図27は、行番号mが大きい数側から順に、各行において列番号nの小さい側から分別した場合の例を示している。
 図28は、実施の形態3における栽培パネルT3の孔と培地Bの苗床部との対応付けの例を示す説明図である。図28中の栽培パネルT3における孔に対応する各丸印中の英字は、列方向を分けた領域A~Nを示し、数字は各領域の端からの数字(ここでは「1」のみ)を示している。実施の形態3では1つの培地Bから3枚の栽培パネルT3へ移植する。したがって図28に示すように、培地Bの各領域A~Nに含まれる3つの苗床部は、3枚の栽培パネルT3の各領域に対応付けられている。
 図29及び図30は、実施の形態3の培地Bにおける栽培パネルT3への移植順iを示す説明図である。上述のステップS4の処理にて、制御部21は移植順iが割り当てられている孔に対応する培地Bの苗床部の位置情報(m,n)を特定する。図29及び図30は、特定された苗床部に対応する箇所に、各苗床部の移植先の孔に割り当てられている移植順iを示したものである。1枚目の栽培パネルT3への培地B上での移植順iは図29に示したようになる。同様にして2枚目、及び3枚目の栽培パネルT3への培地B上での移植順iは図30に示したようになる。
 実施の形態3においても、図29から分かるように栽培パネルT3の1列目の孔への移植は、培地Bにおける1~4列目の苗床部の中から行なわれる。したがって栽培パネルT3の一列目の孔の上に、培地Bの5~25列目の部分が位置することはない。同様にして栽培パネルT3の7列目の孔への移植は、培地Bにおける22~25列目の苗床部の中から行なわれる。したがって栽培パネルT3の7列目の孔の上に、培地Bの1~21列目の部分が位置することはない。したがって、培地Bが栽培パネルT3の上方で、栽培パネルT3に対応する範囲を行方向に大きく外れることはない。
 また、栽培パネルT3の1行目の孔への移植は、培地Bにおける1行目の苗床部の中から行なわれる。したがって栽培パネルT3の1行目の孔の上に、培地Bの2~12行目の部分が位置することはない。同様にして栽培パネルT3の14行目の孔への移植は、培地Bにおける12行目の苗床部の中から行なわれる。したがって栽培パネルT3の14行目の孔の上に、培地Bの1~11行目の部分が位置することはない。したがって、培地Bが栽培パネルT3の上方で、栽培パネルT3に対応する範囲を列方向に大きく外れることもない。
 (変形例)
 なお上述に説明した実施の形態3では、培地Bの300個の苗床部の内、偶数行25列目の6つの苗床部は使用せず、生育不良の苗に代替して使用するとよいとした。しかしながら全ての苗床部を用いるとしても、同様のアルゴリズムに従って領域を分別することによって、培地Bの栽培パネルT3の上方での移動範囲を栽培パネルT3に対応する範囲から大きく外れないようにすることが可能である。図31は、実施の形態3における領域分別の他の例を示す説明図である。図31に示すように、変形例では培地Bを行方向に、栽培パネルT3の列数「7」で分別する。図31では分別した領域同士は、1列分のみ重複している。この重複している列を隣り合う領域同士で相互に分け合って分別するとよい。なおこのとき、培地Bの1~7行を用いて7行25列の175個の苗床部を25個ずつ有する等面積の領域に分別するとよい。8~12行目の苗床部については、次の培地Bの1~2行目を合わせて苗床部を25個ずつ有する等面積の領域に分別し、次の培地Bの3~9行目を同様に等面積の領域に分別する。更に次の培地Bの10~12行目の苗床部は、更に次の培地Bの1~4行目の苗床部と合わせて同様に等面積の領域に分別し、これを継続させるとよい。
 図31に示す領域分別の場合であっても、栽培パネルT3の1列目の孔への移植は、培地Bにおける1~4列目の苗床部の中から行なわれ、2列目の孔への移植は、培地Bにおける4~8列目の苗床部の中から行なわれることに限定される。3列目の孔への移植は、培地Bにおける8~11列目の苗床部の中から行なわれ、4列目の孔への移植は、培地Bにおける11~15列目の苗床部の中から行なわれ、5列目の孔への移植は、培地Bにおける15~18列目の苗床部の中から行なわれるように限定される。6列目の孔への移植は、培地Bにおける18~22列目の苗床部の中から行なわれ、7列目の孔への移植は、培地Bにおける22~25列目の苗床部の中から行なわれるように限定される。したがって少なくとも行方向においては、培地Bが栽培パネルT3に対応する範囲を大きく外れることはない。
 図31に示した分別例は培地Bの長手方向(行方向)を分別することとしたが、短手方向を分別するようにしてもよい。ただし、長手方向を分別する方が、栽培パネルT3に対応する範囲を外れる大きさを可及的に小さくすることが可能になり、移植装置1の省空間化を効果的に実現できる。
 (実施の形態4)
 実施の形態1~3に示した移植手順により移植を行なうに際し、移植装置1は苗選別を同時的に行なう構成としてもよい。実施の形態4における移植装置1は、他装置からの通信媒体若しくは記憶媒体を介した受信、又は自身の操作部23での操作受付によって培地Bに含まれる苗床部の内の生育不良の苗の位置情報を特定する選別情報を取得し、選別情報に基づいて苗選別を行なう。移植装置1の構成は、他装置から通信媒体若しくは記憶媒体を介した受信を行なう場合に必要なハードウェア、及び以下に示す処理手順以外は、実施の形態1と同様であるから、同一の符号を付して詳細な説明を省略する。
 図32は、実施の形態4における移植の処理手順の一例を示すフローチャートである。図32のフローチャートに示す処理手順の内、実施の形態1の図5のフローチャートに示した処理手順と共通する処理手順には同一のステップ番号を付して詳細な説明を省略する。
 実施の形態4において制御部21は、培地Bがホルダ40に収容され、且つ栽培パネルTが載置されて処理を開始するに際し、まず選別情報を取得する(ステップS1001)。選別情報は、培地Bの苗床部の位置情報(m,n)夫々に対応付けられた、優良/不良を示す情報である。選別情報は二値で示されていてもよいし、指標を示す数値であってもよい。
 制御部21はステップS4において、k枚目の栽培パネルTにおける移植順iの孔T1の位置情報(x,y)に対応付けられている移植元の培地Bの苗床部の位置情報(m,n)を特定した場合(S4)、特定した苗床部の位置情報に対応する選別情報を参照する。制御部21は、培地Bの移動の指示(S5)、移植アーム50の移動の指示(S6)を行なう前に、参照した選別情報に基づいて特定した位置情報の位置の苗床部に生育している植物Pの苗が生育不良であるか否かを判断する(ステップS1002)。
 ステップS1002にて生育不良でないと判断された場合(S1002:NO)、制御部21は、培地Bの移動の指示(S5)、移植アーム50の移動の指示(S6)を行ない、移植を実行させ(S7)、処理をステップS8へ進める。
 ステップS1002にて生育不良であると判断された場合(S1002:YES)、制御部21は、S5~S7を省略して処理をステップS8へ進める。なお処理終了後、栽培パネルTの孔T1に空き孔がある場合には、バッファされている他の培地Bの苗床部から順に移植されるように制御するとよい。
 これにより、栽培パネルTの上方の栽培パネルTに対応する範囲から培地Bが大きく外れない範囲内で移動させる方法で、培地Bの苗床部からの栽培パネルTの孔T1への優良株の移植を実現することができる。
 (実施の形態5)
 実施の形態1から4では移植順iを、栽培パネルT,T2,T3に対して孔T1をジグザグ状に進むように順に割り当てた(図6、図17、図18、図24)。実施の形態5では、培地Bに対して苗床部をジグザグ状に進むように移植順iを割り当て、且つ培地Bが移植パネルに対応する範囲からできる限り外れないように苗床部と移植先の孔T1との対応関係を割り当てる。なお実施の形態5で使用する栽培パネルを符号T4で示す。
 実施の形態5における移植装置1のハードウェア的な構成は、実施の形態1における構成と同様である。共通する構成には同一の符号を付して詳細な説明を省略する。そして、実施の形態5における移植手順は、実施の形態1において図5のフローチャートに示した処理手順と同様である。ただし、実施の形態5では、予め決定される栽培パネルT4の孔T1と培地Bの苗床部との対応の決定の方法及び移植順iの割り当て方が実施の形態1から4と異なる。
 図33は、実施の形態5にて培地Bの苗床部に割り当てられる移植順iを示す説明図である。培地Bの位置情報は、図1におけるホルダ40の奥側の行を1行目とし、最も左側の列を一列目とするn行p列で識別する(n=1~12、p=1~25)。同様にして栽培パネルT4における位置情報は、図1における奥側の行を1行目とし、最も左側の列を1列目とするs行u列で識別する(s=1~13、u=1~14)。したがって移植順1番目の苗床部の位置情報は(1,1)であり、移植順2番目の苗床部の位置情報は(2,1)であり、移植順12番目の苗床部の位置情報は(12,1)である。そして移植順13番目の苗床部の位置情報は(12,2)であり、移植順14番目の苗床部の位置情報は(11,2)である。移植順に従って位置情報を示すと(1,1),(2,1),…,(12,1),(12,2),(11,2),…,(1,2),(1,3),(2,3),…,(12,3),(12,4),(11,4),…となる。
 図34は、実施の形態5における培地Bの苗床部と栽培パネルT4の孔T1との対応の決定手順の一例を示すフローチャートである。
 移植制御部20の制御部21は、使用する培地Bの苗床部の配列の情報、栽培パネルT4の孔の配列の情報、及び未移植で残っている苗床部、空き孔T1の情報を入力する(ステップS301)。ステップS301における情報の入力は、作業者が操作部23にて数値を入力して実現されるか、又は栽培パネルT4及び培地Bの撮像画像から画像解析により実現されてもよい。また、栽培パネルT4が空き孔T1を残しているか、又は培地Bが未移植の苗床部を残している場合、前回の移植時の制御情報が記憶部22に記憶されているときには、制御部21は記憶部22から残っている苗床部及び空き孔T1の情報を入力するようにしてもよい。
 制御部21は、入力した情報に基づいて培地B及び栽培パネルT4を夫々、培地Bの列方向を2つに分けるように分別し、2分された培地Bの領域毎の苗数、空き孔の数等の情報を定義する(ステップ302)。ステップS302において培地Bを分別した一方の領域を領域α、他方の領域を領域βとする。そして栽培パネルT4を分別した一方の領域を培地Bの領域αに対応するα´、他方の領域を培地Bの領域βに対応する領域β´とする。なおステップS302における分別の方向は行方向でもよい。なお栽培パネルT4を分別する方向は、培地Bを分ける方向に沿うようにする。
 定義された情報に基づき制御部21はまず、移植する苗床部の列数p及び移植先の栽培パネルT4の孔T1の列数uを初期化する(ステップS303)。
 培地Bのp番目の列に未移植の苗床部が存在するか否かを、ステップS302にて定義されているp番目の列の未移植の苗床部の数Npが1以上であるか否かにより判断する(ステップS304)。ステップS304にてp番目の列に未移植の苗床部が存在すると判断された場合(S304:YES)、制御部21は、移植先の栽培パネルT4のu番目の列に空き孔T1が存在するか否かを、ステップS302にて定義されているu番目の列における空き孔T1の数Suが1以上であるか否かを判断する(ステップS305)。
 ステップS305にて移植先の栽培パネルT4のu番目の列に空き孔T1が存在すると判断された場合(S305:YES)、制御部21は、培地Bの領域αにおけるp番目の列(領域αp)の未移植の苗床部の数Npαと、栽培パネルT4の領域α´におけるu番目(領域α´u)の列の空き孔T1の数Suα´とを比較し、未移植の苗床部の数Npαが空き孔T1の数Suα´以下であるか否かを判断する(ステップS306)。
 ステップS306にて未移植の苗床部の数Npαが空き孔T1の数Suα´以下であると判断された場合(S306:YES)、制御部21は、培地Bの領域αのp番目の列における苗床部を培地Bの端側から順に、栽培パネルT4の領域α´のu番目の列の空き孔T1へ栽培パネルT4の端側から順に苗床部の数Npα分だけ対応付け、記憶する(ステップS307)。次に制御部21は、処理をステップS309へ進める。
 ステップS306にて未移植の苗床部の数Npαが空き孔T1の数Suα´よりも大きいと判断された場合(S306:NO)、制御部21は、培地Bの領域αのp番目の列における苗床部を培地Bの中央側から順に空き孔T1の数Suα´分だけ、栽培パネルT4の領域α´のu番目の列の空き孔T1へ栽培パネルT4の中央側から順に対応付け、記憶する(ステップS308)。次に制御部21は、処理をステップS309へ進める。
 次に制御部21は、培地Bの領域βにおけるp番目の列(領域βp)の未移植の苗床部の数Npβと、栽培パネルT4の領域β´におけるu番目の列(領域β´u)の空き孔T1の数Suβ´とを比較し、未移植の苗床部の数Npβが空き孔T1の数Suβ´以下であるか否かを判断する(ステップS309)。
 ステップS309にて未移植の苗床部の数Npβが空き孔T1の数Suβ´以下であると判断された場合(S309:YES)、制御部21は、培地Bの領域βのp番目の列における苗床部を培地Bの端側から順に、栽培パネルT4の領域β´のu番目の列の空き孔T1へ栽培パネルT4の端側から順に苗床部の数Npβ分だけ対応付け、記憶する(ステップS310)。次に制御部21は、処理をステップS312へ進める。
 ステップS306にて未移植の苗床部の数Npβが空き孔T1の数Suβ´よりも大きいと判断された場合(S309:NO)、制御部21は、培地Bの領域βのp番目の列における苗床部を培地Bの中央側から順に空き孔T1の数Suβ´分だけ、栽培パネルT4の領域β´のu番目の列の空き孔T1へ栽培パネルT4の中央側から順に対応付け、記憶する(ステップS311)。次に制御部21は、処理をステップS312へ進める。
 次に制御部21は、培地Bのp番目の列の未移植の苗床部の数Npがゼロとなったか否かを判断する(ステップS312)。ステップS312にてp番目の列の未移植の苗床部の数Npがゼロとなったと判断された場合(S312:YES)、制御部21は、培地Bのp番目の列は最大列数pmax であるか否かを判断する(ステップS313)。
 ステップS313にて培地Bのp番目の列は最大列数pmax であると判断された場合(S313:YES)、制御部21は培地Bの苗床部の栽培パネルT4の孔T1への対応付けを終了する。
 ステップS312においてp番目の列の未移植の苗床部の数Npがゼロとなっていないと判断された場合(S312:NO)、制御部21は、栽培パネルT4の列数uを1つ増加させ(ステップS314)、処理をステップS305へ戻す。ステップS305にてSuが0(ゼロ)であると判断された場合も(S305:NO)、制御部21は列数uを1つ増加させ(S314)、処理をステップS305へ戻す。
 ステップS313にて培地Bのp番目の列は最大列数pmax でないと判断された場合(S313:NO)、制御部21は培地Bの列数pを1つ増加させ(ステップS315)、処理をステップS304へ戻す。またステップS304にてNpが0(ゼロ)であると判断された場合も(S304:NO)、制御部21は列数pを1つ増加させ(S315)、処理をステップS304へ戻す。
 以上の処理手順により、実施の形態5における培地Bの苗床部と栽培パネルT4の孔T1との対応が決定される。
 そして制御部21は、図34のフローチャートに示した手順にて記憶された培地Bの苗床部と栽培パネルT4の孔T1との対応に基づき、培地Bの苗床部を端(1列目1行目)から栽培パネルT4へ移植する処理を開始する。このとき移植順iは、培地Bを列方向にジグザグ状に順に進むようにする。
 次に、図34のフローチャートにて示した対応の決定手順について、具体例を挙げて説明する。図35及び図36は、培地Bの及び栽培パネルT4の領域分別例を示す説明図である。図35及び図36に示すように、制御部21はまず、培地Bの苗床部の配列の情報(n行p列)、及び栽培パネルT4の孔T1の配列の情報(s行u列)を入力する(S301)。更に制御部21は、未移植で残っている苗床部の情報及び、栽培パネルT4の空き孔T1の情報を入力する。図34及び図35の例では、培地Bの苗床部は全て未移植で残っており、栽培パネルT4の孔T1は全て空いている。
 そして制御部21はステップS302において、培地Bの短手方向を2分するように1~6行目の範囲を領域α、7~12行目の範囲を領域βとして分別する。また制御部21は、領域α及び領域βを夫々列毎に分別し領域αp(p=1~pmax 、培地Bではp=1~25)及び領域βp(p=1~pmax 、培地Bではp=1~25)として栽培パネルT4の孔T1と対応付けられる。なお各領域αp及び領域βp夫々における未移植の苗床数は、いずれも「6」である。同様にして制御部21は、栽培パネルT4を培地Bの分別方向に合わせて2つに分別する。栽培パネルT4は行数が奇数であるから、基本的に栽培パネルT4の1~6行目を領域α´、8~13行目を領域β´として分別する。更に制御部21は、7行目の孔T1を列数の偶奇によって領域α´及び領域β´へ割り振る。つまり制御部21は、7行目の孔T1の内の奇数列の孔T1は領域α´の奇数列の領域へ、偶数列の孔T1は領域β´の偶数列の領域へ割り振る。これにより図36のように奇数行の栽培パネルT4でも上下に2分される。そして制御部21は、培地Bと同様に、栽培パネルT4の領域α´、β´を夫々列毎に、破線で示すように分別し領域α´u(u=1~14)及び領域β´u(u=1~14)とする。なお各領域α´u及び領域β´u夫々における空き孔T1の数は、「7」又は「6」である。
 次にこのように分別された培地Bの領域αp、領域βpは、栽培パネルT4の領域α´u及び領域β´uへの対応付け、即ち図34のフローチャートにおける処理手順S303~313について、具体例を挙げて説明する。図37は、培地B及び栽培パネルT4の各領域αp,βp,α´u,β´uの対応を示す説明図である。図37中における培地B中の数字、及び栽培パネルT4の各孔1中の数字は、対応付けが行なわれる順番を示しており、移植順iとは異なる。
 制御部21は、ステップS303でまず、苗床部の列数p=1、孔T1の列数u=1とする。そして制御部21は、培地Bの1番目の列の未移植の苗床部の数Npは「12」であるから1以上であると判断し(S304:YES)、栽培パネルT4の1番目の列の空き孔T1の苗床部の数Suは「13」であるから1以上であると判断する(S305:YES)。
 制御部21は、培地Bの領域α1の未移植の苗床部の数N1α「6」と、栽培パネルT4の領域α´1の列の空き孔T1の数S1α´「7」とを比較し、N1α「6」がS1α´「7」以下と判断する(S306:YES)。したがって制御部21は、領域α1の培地Bの端側即ち1行目からN1α「6」分の(n,p)=(1,1)~(6,1)の苗床部を、領域α´1の栽培パネルT4の端側即ち1行目(s,u)=(1,1)~(6,1)の孔T1へ順に対応付ける(S307、図37中の番号1で示す)。このとき、培地Bの(n,p)=(1,1)~(6,1)には移植順i=1~6が割り当てられているから、栽培パネルT4において(s,u)=(1,1)~(6,1)には、移植順i=1~6が割り当てられる。
 制御部21は、培地Bの領域β1の未移植の苗床部の数N1β「6」と、栽培パネルT4の領域β´1の空き孔T1の数S1β´「6」とを比較し、N1β「6」がS1β´「6」以下と判断する(S309:YES)。したがって制御部21は、領域β1の培地Bの端側即ち12行目からN1β「6」分の(n,p)=(12,1)~(7,1)の苗床部を、領域β´1の栽培パネルT4の端側即ち13行目(s,u)=(13,1)~(8,1)の孔T1へ順に対応付ける(S310、図37中の番号2で示す)。このとき、培地Bの(n,p)=(12,1)~(7,1)には移植順i=12~7が割り当てられている(図33参照)。したがって栽培パネルT4において(s,u)=(13,1)~(8,1)には移植順i=12~7が割り当てられ、(i,s,u)=(7,8,1),(8,9,1),…,(12,13,1)となる。
 次の制御部21は、ステップS312にて培地Bの1列目の苗床部は全て対応付けたので1列目の未移植の苗床部数N1=0(ゼロ)であると判断し(S312:YES)、p=1は最大値でないと判断するから(S313:NO)、処理をステップS304へ戻す。p=1列目の苗床部は「12」個全て対応付けたので残っておらず(S304:NO)、したがって制御部21は、pをp=2(列目)とする(S315)。
 培地Bのp=2列目における未移植の苗床数N2は「12」であるから制御部21は、ステップS304にて1以上であると判断し(S304:YES)、栽培パネルT4のu=1列目の空き孔T1は(s,u)=(7,1)が「1」つ残っているから1以上であると判断する(S305:YES)。
 次に制御部21は、培地Bの領域α2の未移植の苗床部の数N2α「6」と、栽培パネルT4の領域α´1の列の空き孔T1の数S1α´「1」とを比較し、N2α「6」はS1α´「1」より多いと判断する(S306:NO)。したがってこの場合、制御部21は、領域α2の培地Bの中央側即ち6行目からS1α´「1」分の(n,p)=(6,2)の苗床部を、領域α´1の栽培パネルT4の中央側即ち7行目(s,u)=(7,1)の孔T1へ対応付ける(S307、図37中の番号3で示す)。このとき領域β´における空き孔T1の数S1β´はゼロであるから、ステップS311の処理は省略される。このとき、培地Bの(n,p)=(6,2)には移植順i=19が割り当てられている(図33)。したがって栽培パネルT4において(s,u)=(7,1)の孔T1には移植順i=19が割り当てられ、(i,s,u)=(19,7,1)となる。
 次に培地Bの2列目の未移植の苗床数N2は未だ「11」残っているのでステップS312においてN2はゼロでないと判断され(S312:NO)、制御部21は、p=2のまま、栽培パネルT4のu=1列目の空き孔T1の数S1は1以上であるか否かを判断する(S305)。制御部21は、この場合、S1は空いていないと判断するから(S305:NO)、栽培パネルT4における列数uをu=2(列目)とする(S314)。2列目の空き孔T1の数S2は「13」であって1以上であるから(S305:YES)、制御部21はステップS306へ処理を進める。
 ステップS306では制御部21は、培地Bの領域α2の未移植の苗床部の数N2α「5」と、栽培パネルT4の領域α´2の列の空き孔T1の数S2α´「6」とを比較し、N2α「5」はS2α´「6」以下と判断する(S306:YES)。したがって制御部21は、領域α2の培地Bの端側即ち1行目からN2α「5」つ分の(n,p)=(1,2)~(5,2)の苗床部を、領域α´2の栽培パネルT4の端側即ち1行目(s,u)=(1,2)~(5,2)へ順に対応付ける(S307、図37中の番号4で示す)。このとき、培地Bの(n,p)=(1,2)~(5,2)には移植順i=24~20が割り当てられている(図33参照)。したがって栽培パネルT4において(s,u)=(1,2)~(5,2)には移植順i=24~20が割り当てられ、(i,s,u)=(20,5,2),(21,4,2),…,(24,1,2)となる。
 同様にして制御部21は、培地Bの領域β2の未移植の苗床部の数N2β「6」と、栽培パネルT4の領域β´2の空き孔T1の数S2β´「6」とを比較し、N2β「6」がS2β´「6」以下と判断する(S309:YES)。したがって制御部21は、領域β2の培地Bの端側即ち12行目からN2β「6」分の(n,p)=(12,2)~(7,2)の苗床部を、領域β´2の栽培パネルT4の端側即ち13行目(s,u)=(13,2)~(8,2)へ順に中央側へ向けて対応付ける(S310、図37中の番号5で示す)。
 このような処理を繰り返すことにより、図37に示すように培地Bの各苗床部と栽培パネルT4の孔T1とが対応付けられる。なお図37に示すように、栽培パネルT4の第52番目及び第53番目の対応順序の孔T1には、本来であれば図33に示す移植順i=186,187の苗床部が対応付けられる。しかしながら、他の新しい栽培パネルT4への入れ替えが不要となるよう制御部21は、これらの苗床部の移植順iをi=182,183と変更する。
 図38は、培地B及び栽培パネルT4における移植順iを示す説明図である。図38では、栽培パネルT4の内、培地Bの同一の列の苗床部が移植される孔T1の範囲を、ハッチングの種別により区別して示している。図38に示すように、栽培パネルT4の領域α´の孔T1への移植は、培地Bにおける領域αの苗床部の中から行なわれる。したがって培地Bの領域αが栽培パネルT4の領域β´の上に位置することはない。逆も同様であって培地Bの領域βが栽培パネルT4の領域α´の上に位置することはない。更に注目すべきは、栽培パネルT4の列方向の端即ち1行目の孔T1へ移植される苗床部は、培地Bにおいて必ず1行目であり、栽培パネルT4の13行目の孔T1へ移植される苗床部は、培地Bにおいて必ず12行目である。同様にして栽培パネルT4の2行目の孔T1へ移植される苗床部は、培地Bにおいて2行目又は1行目であり、栽培パネルT4の12行目の孔T1へ移植される苗床部は、培地Bにおいて11行目又は12行目である。したがって、培地Bは列方向に栽培パネルT4から外れることがない。
 更に、培地Bからの移植順iは図34で示したように、培地Bの1列目から順にジグザグ状に連続している(比較例:実施の形態1の図10、図16)。したがって、切り込みが入れられた苗床部の内の1つを移植アーム50の移植ハンドで掴持して引き抜く際、引き抜かれる苗床部の周辺の苗床部には、残り1つになるまで行方向又は列方向の少なくとも一方には必ず隣り合う苗床部が存在する。したがって、1つの苗床部が引き抜かれる際に周辺の苗床部が引っ張られて傾斜する可能性が低減される。
 以下に栽培パネルT4への移植過程を、図面を参照して具体的に説明する。
 図39~図41は、培地Bから栽培パネルT4へ移植される際の培地Bと栽培パネルT4との位置関係を示す説明図である。図39は、移植順i=1における位置関係を示している。図39に示すように、移植順i=1において、培地Bは栽培パネルT4に対応する範囲から行方向に苗床部2つ分程度外れるのみであり、列方向には外れていない。図40は移植順i=12における位置関係を示している。図39及び図40に示した位置関係は、列方向において培地Bが栽培パネルT4の最も端(1行目又は13行目側)に寄る場合の例を示している。しかしながら図39及び図40に示すように、培地Bは栽培パネルT4から列方向には外れない。図38を見ても分かるように、栽培パネルT4における列方向の端の孔T1には、培地Bの列方向の端(1行目又は12行目)の苗床部が移植される。したがって培地Bは栽培パネルT4から列方向に外れることがない。
 図41は、栽培パネルT4における最終箇所に対応する移植順i=182における位置関係を示している。最終箇所i=182では培地Bの中央側の苗床部を移植する。このとき、培地Bの行方向は苗床部10個分程度栽培パネルT4の範囲から外れているが、列方向には外れていない。
 このようにして、少なくとも列方向には、培地Bが栽培パネルT4の範囲から外れないように苗床部と孔T1との対応を決定することが可能である。したがって、移植装置1の栽培パネルT4における列方向(図1中の前後方向)の大きさは、使用される栽培パネルの大きさ程度に省空間化することが可能となる。しかも実施の形態5においては、培地Bにおける移植順iはジグザグ状に順に連続しているから、1つの苗床部を引き抜く際に周辺の他の苗床部が引っ張られて傾斜する可能性が低減され、その後残ったこれらの苗床部が移植される際に移植ハンドにしっかりと掴持されるから移植失敗の可能性が低減される。即ち、生育不良へ繋がるような姿勢での植物Pの移植を防止することが可能となる。
 上述の例では、分別した場合に培地Bの領域α及び領域βの行数と、領域α´及び領域β´の行数とが概ね等しくなる栽培パネルT4(培地Bの行数「12」に対して行数が「13」)を使用する例を示した。しかしながら、他の培地又は栽培パネルを使用しても同様である。図42は、培地B2及び栽培パネルT4における移植順iを示す説明図である。培地B2は250(=10×25)個の苗床部に区分されている点以外は、培地Bの構成と同様である。10行25列を使用する場合、行数が「10」であるから培地Bの領域αp及び領域βpにおける苗床数「5」は、領域α´u及び領域β´uにおける空き孔T1の数「6」又は「7」よりも少ない。この場合であっても、図42に示すように、栽培パネルTにおける列方向の端の孔T1には、培地Bの列方向の端(1,2行目又は11,12行目)の苗床部が移植される。したがって培地Bは栽培パネルT4から列方向に外れることがない。
 実施の形態5では、培地B及び栽培パネルT4を短手方向に2分するように分別して領域毎に対応付けを行なうように制御した。しかも培地Bと栽培パネルT4とでは、分別した結果、分別後の領域の行数が概ね等しくなるように分別してある。これにより、行方向へ略均等に移植が進んでいくからである。分別する数は2つに限られず、3つ以上に分別するように制御してもよい。
 (実施の形態6)
 実施の形態6では、培地Bに含まれる苗床部の内の生育不良の苗の位置情報を特定する選別情報を取得し、選別情報に基づいて苗選別を行なう。また実施の形態6では、移植は複数のアームを用いて複数の苗床部を一度に移植する。
 図43は、実施の形態6における移植装置の模式的斜視図であり、図44は、実施の形態6における植物の移植先の栽培パネルの一例を示す斜視図である。図43中の符号10は移植装置を示している。実施の形態6における培地Bは、実施の形態1で説明したものと同一のものを使用するため、詳細な説明を省略する。移植装置10は、図2中の符号Bで示す培地にて育成された植物Pを図43中の符号T5で示す栽培パネルへ自動的に移植する装置である。
 実施の形態6で使用される培地Bは図2に示したように300(=12×25)個の苗床部に区分され、夫々が他面側に達しない程度に切り込まれている。そして実施の形態6において培地Bの大きさは例えば280mm×580mmであって、隣り合う苗床間の長手方向におけるピッチ(培地間隔)は例えば23.2mmである。培地Bの大きさ及び分割数についてはこれに限られないことは勿論である。
 実施の形態6で使用される栽培パネルT5は例えば発泡スチロール製であって矩形平板状をなす。栽培パネルT5には、複数の孔T1が縦横に並べて設けられている。各孔T1は円形であって、パネルの一面側から約半分の深さに至るまではテーパ状に縮径されている。孔T1の該一面側の直径は、培地Bの1つの苗床部の対角線の長さに略等しく、縮径された側の直径は、苗床部の一辺の長さと略等しいか少し短い。図44に示した栽培パネルT5の大きさは890mm×590mmであって、153(=17×9)個の孔T1が設けられている。孔T1間の幅方向(短手方向)におけるピッチは58.0mmである。栽培パネルT5の大きさ及び孔T1の数についてはこれに限られないことは勿論であり、植物Pの種別毎の生育に適した間隔となるように設計される。
 培地Bから栽培パネルT5へ植物Pを移植する移植装置10の構造について説明する。以下の説明では、図43中の矢符により示す上下、前後、及び左右を使用する。移植装置10は、移植部7及び撮像部3を備え、培地Bから栽培パネルTへ植物Pを移植するに際し、撮像部3にて培地Bを撮像して得られる画像に基づき後述の如く行なわれる選別結果から、優良な植物Pを移植部7にて移植する選別機能を有する。
 移植部7は、栽培パネルTを保持するフレーム75、培地Bのホルダ80を移送するホルダ移送部8、移植アーム90を駆動する移植アーム駆動部9、ホルダ80の移送及び移植アーム90の駆動を夫々ホルダ移送部8及び移植アーム駆動部9へ指示する移植制御部70(図43中では外箱を示す)を備える。
 フレーム75は複数の支柱と、支柱間を上部及び下部で連結する複数の横架材とから構成される。フレーム75の中央部には左右一対のレール76が前後方向に架設されている。栽培パネルT5は、長手方向の両縁辺をレール76,76に指示させ、フレーム75の中央部に水平に取り付けられる。また栽培パネルTは、レール76,76に沿って所定位置への手動での取り付け及び取り外しが可能である。
 移植アーム駆動部9は、栽培パネルTの下方にあって移植アーム90、支持台91、駆動部92、及び走行ガイド93を備える。走行ガイド93はフレーム75の下部に前後方向に架設されている。走行ガイド93の架設位置は、栽培パネルT5の下である。走行ガイド93には、支持台91が走行可能に取り付けられている。支持台91は左右方向に長く、該支持台91の上には長手方向に複数の駆動部92が並設され、各駆動部92に移植アーム90が取り付けられている。走行ガイド93の長さは、栽培パネルT5の長手方向よりも少し長く、栽培パネルT5の長手方向の範囲を複数の移植アーム90が平行移動することが可能である。
 図43に示す例では、駆動部92及び移植アーム90は5つ取り付けられている。また移植アーム90の並設間隔は、上述した培地Bにおける苗床部間のピッチ及び栽培パネルT5における孔T1間のピッチの最小公倍数である。具体的には、並設間隔は116.0mmであり、培地Bの苗床部間の長手方向におけるピッチ23.2mmの5倍であって、栽培パネルT5の孔T1間の幅方向(短手方向)における間隔58.0mmの2倍である。なお最小公倍数には限られず、公倍数に対応していればよい。
 更に複数の移植アーム90は一体的に、左右方向に動くことが可能に構成されている。これにより複数の移植アーム90は、栽培パネルT5の下方における栽培パネルT5の大きさに対応する範囲内で、栽培パネルT5の孔T1に対応する位置へ移動することが可能である。更に複数の移植アーム90は夫々、駆動部92の動作によって支持台91に対して上昇することが可能であり、移植アーム90の先端部に設けられている移植ハンド(図示せず)は、栽培パネルT5よりも低い初期位置と、栽培パネルT5に設けられている複数の孔T1を貫通して栽培パネルTよりも高い上昇位置との間で昇降可能である。
 ホルダ移送部8は栽培パネルT5の上方にあって、ホルダ80、左右方向ガイド81、及び前後方向ガイド82を備える。前後方向ガイド82は、栽培パネルT5の右上の位置に、前後方向に架設されている。前後方向ガイド82には、左右方向に延びる左右方向ガイド81の一端部が取り付けられている。左右方向ガイド81の前面には、矩形枠状のホルダ80の一長辺側が取り付けられている。これによりホルダ80は、左右方向ガイド81に沿って左右方向に移動し、更に左右方向ガイド81と共に前後方向ガイド82に沿って前後方向に移動することが可能である。なお前後方向ガイド82の長さは、栽培パネルT5の前後方向の長さよりも長く、左右方向ガイド81の長さは、栽培パネルT5の幅(左右方向の長さ)とホルダ80の長手方向の長さとを合わせた長さよりも少し長い。ホルダ80は、栽培パネルT5の上の移植位置から、左右方向には栽培パネルT5の左方に栽培パネルT5の幅相当分外れた位置まで移動し、前後方向には栽培パネルT5の前後にホルダ80の短手方向の長さ分外れた位置まで移動することが可能である。ホルダ80は、左前方の受け渡し位置において作業者によって設置される培地Bを保持する。
 このように構成される移植部7においては、作業者によって設置された培地Bを保持したホルダ80は、受け渡し位置から、移植制御部70からの指示に従って右前方の移植開始位置に移動し、該移植開始位置を基準として左右方向に及び後方に、栽培パネルT5の上方を移動する。また支持台91は、移植制御部70からの指示に従って前方のスタート位置から、後方へ栽培パネルT5の下方を移動する。培地Bの苗床部が栽培パネルT5における空き孔T1の真上の位置に存在するとき、移植制御部70は移植アーム90がその真下に位置するように支持台91を移動させる。続けて移植制御部70は、移植アーム70の先端部の移植ハンドが上昇位置へ上昇するように駆動部92を動作させる。移植アーム90が移植ハンドごと空き孔T1を貫通し、移植ハンドが孔T1の真上の苗床部へ到達する上昇位置へ上昇すると苗床部を掴持し、そのまま移植アーム90は下降する。各移植アーム90の下降により、移植ハンドに掴持された苗床部は、ホルダ80に設けられている格子にて破断されて移植アーム90と共に下降して、栽培パネルT5の孔T1に入り、縮径された部分で保持される。各移植ハンドによる掴持を解除し、更に移植アーム90は下降して移植ハンドは初期位置に戻る。このように、移植制御部70の指示によってホルダ80、支持台91及び移植アーム90が前後左右及び上下に移動することで、苗床部の栽培パネルT5への移植が実現する。
 撮像部3は、移植部7に設置される前の培地Bを撮像する機構である。撮像部3は、カメラ30、載置台32、ガイド33及びフレーム34を備える。フレーム34は、前記移植部7のフレーム75の図1中の左側に並設されている。載置台32はフレーム34の上面に設けられており、大きさは培地Bよりも大きい。載置台32全体を撮像範囲とするように、載置台32の上方にカメラ30がフレーム34に設置されている。ガイド33は載置台32の縁辺に沿ってL字状に設けられおり、作業者が培地Bを載置台32上に載置するに際し、培地Bがカメラ30の撮像範囲内の適切な位置に載置されるように設けられている。
 また、図43中の符号6は、作業者が操作するタブレット型PC(Personal Computer )である情報処理装置を示す。情報処理装置6は、表示部63及び操作部64を兼用するタッチパネル内蔵型のディスプレイを備え、更に、移植装置10の撮像部3及び移植部7と無線による通信が可能である。
 実施の形態1における移植装置10及び情報処理装置6は、培地Bから栽培パネルT5へ植物Pを移植するために、以下のように使用される。作業者は、移植すべき植物Pが植えられている培地Bを撮像部3の載置台32に載置した後、撮像部のカメラ30による撮像を実行させる。撮像部3では、カメラ30での撮像により得られる画像の画像データを情報処理装置6へ送信する。情報処理装置6では撮像部3から送信された画像データに基づき培地Bの画像が表示部63に表示され、後述するような構成によって画像上で植物Pの各個体の選択が可能である。選択された個体の培地Bにおける位置の情報が選別情報として移植部7へ送信され、移植部7において選別情報に基づいて生育不良の植物Pを除く選別を行ないながら、移植制御部70の指示による上述した動作によって移植が行なわれる。
 このような選別機能を実現する移植装置10及び情報処理装置6について夫々詳細を説明する。図45及び46は、実施の形態6における移植装置10及び情報処理装置6の内部構成を示すブロック図である。移植装置10を構成する移植部7は、上述したようにホルダ移送部8及び移植アーム駆動部9と、これらを制御する移植制御部70とで構成されている。移植制御部70は、プログラマブルロジックコントローラ(Programmable Logic Controller )である。移植制御部70は、マイクロプロセッサである制御部71と、フラッシュメモリ等を用いた記憶部72と、無線又は有線による他装置との通信を実現する通信部73と、ホルダ移送部8及び移植アーム駆動部9と接続される入出力インタフェース74とを備える。
 制御部71は、記憶部72に予め記憶されてある移植プログラム7Pに基づき、通信部73から受信した選別苗の情報を参照しながらホルダ移送部8へホルダ80の移動及び停止を指示すると共に、移植アーム駆動部9へ移植アーム90の上下駆動、移植アーム90の並設方向への移動、及びガイドレール76に沿った走行並びに夫々の停止を指示する。通信部73から受信した情報は一旦記憶部22に記憶されるようにしてもよい。
 移植プログラム7Pは、上述した制御部71による制御を実行させるプログラムである。移植プログラム7Pは記憶部71に予め記憶されているか、又は制御部71に組み込まれる。また移植プログラム7Pは、コンピュータが読み取り可能な記録媒体77に記録されている態様でもよい。記憶部71は、図示しない読出装置によって記録媒体77から読み出された移植プログラム78を記憶する。記録媒体77はCD-ROM、DVD-ROM、BD等の光ディスク、フレキシブルディスク、ハードディスク等の磁気ディスク、磁気光ディスク、半導体メモリ等である。また、図示しない通信網に接続されている図示しない外部コンピュータから実施の形態6に係る移植プログラム78をダウンロードし、記憶部71に記憶させてもよい。
 通信部73は、Bluetooth(登録商標)若しくはWi-Fi (Wireless Fidelity )等を用いて無線により通信を実現する。通信部73は無線に限らず、LAN等を用いた有線により通信を実現するものであってもよい。制御部71は通信部73により、情報処理装置6から送信される選別された苗の情報を受信することが可能である。
 撮像部3は、カメラ30にて撮影された画像の画像データを無線又は有線にて情報処理装置6へ送信する通信部31を備える。通信部31は、Bluetooth(登録商標)若しくはWi-Fi 等を用いて無線により通信を実現する。なお通信部31は、LAN(Local Area Network)若しくはUSB(Universal Serial Bus)等を用いた有線により通信を実現するものであってもよい。
 情報処理装置6は上述したようにタブレット型PCであり、制御部60、記録部61、一時記憶部62、表示部63、操作部64、通信部65を備える。情報処理装置6は撮像部を備える構成であってもよい。なお情報処理装置6はタブレット型PCに限らず、所謂スマートフォンなどの携帯型端末装置でもよく、更には据置型のデスクトップPCであってもよい。
 情報処理装置6の制御部60は、CPU(Central Processing Unit )を用いる。制御部60は、記録部61に記憶されている移植アプリプログラム6Pを含む各コンピュータプログラムを読み出して実行する。
 記録部61は、フラッシュメモリを用いる。記録部61は、制御部60が読み出す移植アプリプログラム6Pを含むコンピュータプログラムを予め記憶している。また記録部61には、移植に使用される培地B及び栽培パネルT5を識別する情報が予め記録されている。培地Bを識別する情報には、苗床部(孔B1)の数(行数及び列数)及びピッチの寸法が対応付けて記録されている。栽培パネルT5を識別する情報には、孔T1の数(行数及び列数)及びピッチの寸法が対応付けて記録されている。区分けが異なる複数種類の培地B又は栽培パネルT5を用いる場合には、夫々の識別情報と、各識別情報に対応付けて数及びピッチの寸法とが記録されている。更に記録部61は、移植装置10の撮像部3から送信される画像データ6Iの記録領域としても用いられる。なお、記録部61は、フラッシュメモリ以外の記憶装置を用いてもよい。一時記憶部62は、DRAM(Dynamic Random Access Memory)等のRAMを用いる。一時記憶部62は、制御部60の処理によって生成される情報を一時的に記憶する。
 表示部63は、タッチパネル内蔵型液晶ディスプレイを用いる。制御部60は、表示部63へテキスト及びアイコン等の画像を含む各種操作画面を表示させる。なお、表示部63は、液晶ディスプレイ以外のものを用いてもよいし、タッチパネル内蔵型でなくともよい。操作部64は、表示部63のディスプレイに内蔵されるタッチパネル及び情報処理装置6の筐体に設けられるボタン群を用いる。操作部64は、タッチパネルにてユーザによる接触及び接触箇所の位置情報を制御部60へ通知する。また、操作部64は、ボタンの押下及び押下時間等の情報を制御部60へ通知する。
 通信部65は、Bluetooth(登録商標)若しくはWi-Fiを用いた無線通信を実現する。制御部60は例えば通信部65により、アクセスポイント(図示せず)経由でWi-Fi により移植装置10の移植制御部20及び撮像部3と夫々通信することが可能である。通信部65は無線に限らず、USBを用いた有線通信を実現するものであってもよい。また情報処理装置6がデスクトップPCである場合、通信部65はLANを用いた有線通信を実現するネットワークカードを用いてもよい。
 上述のように構成される移植装置10及び情報処理装置6間における移植の処理手順についてフローチャートを参照して詳細を説明する。図47は、実施の形態6における移植の処理手順の一例を示すフローチャートである。図47のフローチャートに示す処理手順は、撮像部3の載置台32上に、育苗工程を経た植物Pを含む培地Bが載置され、カメラ30による撮像が行なわれると移植装置10にて開始され、情報処理装置6では、移植アプリプログラム6Pに基づく移植アプリが起動されると開始される。
 撮像部3において、カメラ30によって撮像された画像の画像データを通信部31から送信する(ステップS101)。その後移植装置10では、移植制御部70の制御部71が、撮像部3から送信された画像データに対応する選別情報を受信したか否かを判断し(ステップS102)、選別情報を受信しないと判断された場合(S102:NO)、制御部71は処理をステップS102へ戻し、受信したと判断されるまで待機する待機状態へ移行する。
 情報処理装置6では、制御部60が通信部65により画像データを受信し(ステップS201)、受信した画像データに基づく培地Bの撮像画像を含む操作画面を表示部63に表示する(ステップS202)。
 制御部60は、操作画面における撮像画像上にて苗床部の選別を受け付ける(ステップS203)。制御部60は、選別された苗に対応する苗床部の識別情報を一時記憶部62に記憶する(ステップS204)。苗床部の識別情報は、ステップS203において選別された苗床部の培地B上の撮像画像内における位置(行番号及び列番号)によって特定される。次に制御部60は、OKボタン641(図15参照)がタップされたか否かを判断し(ステップS205)、OKボタン641がタップされていないと判断された場合(S205:NO)、処理をステップS205へ戻してOKボタン641がタップされたと判断されるまで待機する。なおこの間に、CANCELボタン642がタップされた場合、制御部60は一時記憶部62に記憶している識別情報を消去する。
 OKボタン641がタップされたと判断された場合(S205:YES)、制御部60は、一時記憶部62に記憶されている識別情報を取得した撮像画像の画像データと対応付けて記録部61に記録する(ステップS206)。そして制御部60は、一時記憶部62に記憶されている識別情報を選別情報として通信部65から移植装置10の移植制御部20へ送信する(ステップS207)。なお選別情報は具体的には、例えば12行25列の苗床部夫々における成長の優良及び不良を2値情報で表したデジタル情報(優良を「1」、不良を「0」とする)である。またこのとき制御部60は、培地Bを移植装置10のホルダ80へ設置するように指示するメッセージを表示部63に表示させるとよい。情報処理装置6における1つの培地Bに対する処理は終了する。
 移植装置10では、移植制御部70の制御部71が通信部73から選別情報を受信したか否かを判断して待機している(S102)。ステップS102にて、情報処理装置6から送信された選別情報を受信したと判断された場合(S102:YES)、制御部71は、培地Bがホルダ80に設置され、栽培パネルT5も移植装置10のフレーム75内に設置されているか否かを確認する(ステップS103)。ステップS103の処理は、移植装置10側に設けられた移植開始ボタン等の押下によって確認するようにしてもよいし、センサ等を設けて収容されているか否かを制御部71が検知するようにしてもよい。
 選別情報を受信し、且つ移植元の培地B及び移植先の栽培パネルT5の設置が完了していることが確認されると、制御部71は、所定の移植アルゴリズムにより定まる移植手順、及び選別情報に基づく移植を開始する(ステップS104)。ステップS104における移植の手順については詳細を後述する。
 制御部71は、1つの培地Bに栽培されている苗の内、選別情報により選別された生育不良の苗以外の苗の移植を完了させ(ステップS105)、前記培地Bに対する移植処理を終了する。
 次にステップS104における所定の移植アルゴリズムについて説明する。所定の移植アルゴリズムとは、端的に言えば、移植アーム90の動作回数を可及的に少なくするためのアルゴリズムであり、移植制御部70の制御部71は、複数の移植アーム90で可能な限り培地Bから苗床部を一度に引き抜いて栽培パネルT5へ移植させる。所定の移植アルゴリズムに基づく移植手順は以下のように、移植アーム90の本数N、栽培パネルT5における孔T1の配列(行列番号)、培地Bにおける苗床部の配列(行列番号)に基づき算出される。
 なお以下に説明する移植手順において、栽培パネルT5における行列番号は、図43における右手前側を1行目とし、図43における右側を1列目とするx行y列で識別される。これに応じて培地Bにおける苗床部も、ホルダ80内に設置されている状態で図43における右手前側を1行目とし、図43における右側を1列目とするm行n列で識別される。
 (1)最初に移植する移植先の最初の孔T1の行番号x及び列番号y、並びに移植元の苗床部の行番号m及び列番号nを、x=y=m=n=1と初期化する。
 (2)第i番目(i=1,2,…)に移植する移植先の孔T1の数k及び位置(行番号x及び列番号y)を決定する。
 具体的には、列番号yに対し、移植アーム90間の並設方向の間隔と栽培パネルT5の孔T1間の行方向におけるピッチに基づき、移植先の複数の孔T1をP個間隔で決定する。稼働させる移植アーム90の数は、移植先の孔T1の最初の列番号y、間隔P、及びx行目における孔T1の数(yの最大値Y)に応じてk=[(Y-y)/P]+1([]はガウス記号)且つk≦Nを満たすように定まり、移植先の孔T1は、行番号x=x、列番号y=y+j×P(j=0~k-1)である。
 (3)第i番目に移植する移植元の苗床部の位置(行番号m及び列番号n)を決定する。
 具体的には、列番号nに対し、移植アーム90間の並設方向の間隔と培地Bの苗床部間の行方向における間隔に基づき、移植元の苗床部をp個間隔で決定される。移植元の苗床部の数は、移植先の孔T1の数kであって、移植元の苗床部は行番号m=m、列番号n=n+j×p(j=0~k-1)である。
 (4)移植先の孔T1の列番号yに1を加え、y=y+1とする。
 このとき、移植先の孔T1の最初の列番号yが間隔Pを超えた場合、移植先を次の行としなければならないから、xに1を加えx=x+1、列を最初の列とすべくy=1とする。1を加えたxが行数の最大値Xを超えた場合、移植先は埋まっているので、移植先を次の栽培パネルとすべくx=y=1と初期化する。
 (5)移植元の苗床部の列番号nに1を加え、n=n+1とする。
 このとき、移植元の苗床部の最初の列番号nが間隔pを超えた場合、移植元を次の行としなければならないから、mに1を加えm=m+1、列を最初の列とすべくn=1とする。1を加えたmが行数の最大値Mを超えるまでは、移植順の番号iに1を加えて(2)~(5)を繰り返す。(1)~(5)が第1の処理手順である。
 (6)(5)において、1を加えたmが行数の最大値Mを超えた場合、苗床部の行番号m及び列番号nの内、移植元として決定されていない行番号m及び列番号nの組に、1行目1列目側から行方向に順に、移植順の番号iを割り振る。そして移植先の孔T1については、空き状態の孔T1を行番号x及び列番号yの小さい順に、移植順の番号iを割り振る。(6)は第2の処理手順とする。
 培地B(図2参照)、及び図44に示した栽培パネルT5の例に対して、上述の(1)~(6)により定められる手順について、移植手順の決定の経過を示す図面を参照しつつ具体的に説明する。図48~54は、実施の形態6における移植アルゴリズムにより定まる移植順序の説明図である。図48~54では、栽培パネルT5の孔T1及び培地Bの苗床部夫々に移植順の番号を割り振って移植順序を示している。
 実施の形態6における移植アーム90の本数はNであり、栽培パネルTは17行9列であり(X=17、Y=9)、培地Bは上述したように12行25列である(M=12、N=25)。栽培パネルT5における行方向の間隔Pは、実施の形態6における移植アーム90間の並設方向の間隔が孔T1間の行方向におけるピッチの2倍であるから、P=2である。培地Bにおける行方向の間隔pは、実施の形態6における移植アーム90間の並設方向の間隔が苗床部の行方向における間隔の5倍であるから、p=5である。
 第1番目の移植における移植先はまず上述の(1)により、第1番目の移植における移植先の最初の孔T1の行番号x及び列番号y、並びに移植元の苗床部の行番号m及び列番号nを、x=y=m=n=1とする。そして(2)により、移植先の孔の数k=[(Y-y)/P]+1([]はガウス記号)且つk≦Nに、Y=9、y=1、P=2、NA =5を当てはめるとk=5となる。したがって5本の移植アーム90を用いて、x=1、y=1+j×2(j=0~4)であるから(x,y)=(1,1)、(1,3)、(1,5)、(1,7)、(1,9)の5箇所の孔T1、即ち第1行目の奇数列が移植先として図48に示すように定められる。
 第1番目の移植元の苗床部の行番号m及び列番号nは(3)により、m=1、列番号n=1+j×5(j=0~4)であるから(m,n)=(1,1)、(1,6)、(1,11)、(1,16)、(1,21)と5箇所が図48に示すように定められる。
 次に上述の(4)により、y=y+1、n=n+1がなされ、y=2、n=2でいずれも間隔P、pを超えないので(2)に戻り、第2番目の移植における移植先の孔の数k=[(9-2)/2]+1、且つk≦5によってk=4となる。そして移植先の孔T1は、x=1、y=2+j×2(j=0~3)であるから(x,y)=(1,2)、(1,4)、(1,6)、(1,8)の4箇所、即ち第1行目の偶数列として図49に示すように定められる。そして、第2番目の移植における移植元の苗床部の行番号m及び列番号nは(3)により、m=1、列番号n=2+j×5(j=0~3)であるから(m,n)=(1,2)、(1,7)、(1,12)、(1,17)と4箇所が図49に示すように定められる。
 同様にして(4)(5)により、y=y+1、n=n+1がなされ、y=3、n=3で列番号yは間隔Pを超えるので行番号xに1を加えてx=x+1=2、y=1とされる。苗床部の列番号nはpを超えないので(2)に戻り、第3番目の移植における移植先の孔の数k=[(9-1)/2]+1、且つk≦5によってk=5となる。そして移植先の孔T1は、x=2、y=1+j×2(j=0~4)であるから(x,y)=(2,1)、(2,3)、(2,5)、(2,7)、(2,9)の5箇所、即ち第2行目の奇数列として図50に示すように定められる。そして、第3番目の移植における移植元の苗床部の行番号m及び列番号nは(3)により、m=1、列番号n=3+j×5(j=0~4)であるから(m,n)=(1,3)、(1,8)、(1,13)、(1,18)、(1,23)と5箇所が図50に示すように定められる。
 (2)~(5)の繰り返しが第34番目の移植については図51に示すように定められる。このとき、(4)において移植先の孔T1の列番号yに1を加え、y=y+1とした際に列番号y=3となって間隔Pを超える。したがってx=17に1を加えx=18とするが行数の最大値X=17を超えるので、移植先を次の栽培パネルとする。そしてx=y=1と初期化する。このように34回の動作で1つの栽培パネルT5への移植を完了させることができる。(5)においては移植元の苗床部はn=n+1=5としても間隔p=5を超えないので(2)に戻る。培地Bからの第35番目の移植における移植先の孔の数k=[(9-1)/2]+1、且つk≦5によってk=5となる。移植先の孔T1は、x=1、y=1+j×2(j=0~4)であるから(x,y)=(1,1)、(1,3)、(1,5)、(1,7)、(1,9)の5箇所、即ち次のパネルの第1行目の奇数列に図52に示すように定められる。第35番目の移植における移植元の苗床部の行番号m及び列番号nは(3)により、m=7、列番号n=5+j×5(j=0~4)であるから(m,n)=(7,5)、(7,10)、(7,15)、(7,20)、(7,25)と5箇所が図52に示すように定められる。
 更に(2)~(5)を繰り返して第60番目の移植について、図53に示すように定められる。このとき(4)においては、移植先の孔T1の列番号yに1を加え、y=y+1とした際に列番号y=3となって間隔Pを超えるのでx=13に1を加えてx=14とするが、最大値X=17を超えないのでx=14、y=1として次に進む。(5)においては移植元の苗床部の列番号nは、n=n+1=6となって間隔p=5を超え、したがってm=12に1を加えx=13とするが、行数の最大値M=12を超える。この場合(6)によって図54に示すように、移植順序が定められる。
 1つの培地Bについては、上述のように説明した移植順序により全ての苗床部を栽培パネルT5へ移植することができる。図54に示すように移植先の栽培パネルT5には6つの孔T1が残るが、原則的には、新しい培地Bの行番号m及び列番号nとしていずれも初期化して同様に処理を行なう。これによって図54に示すように、次の培地Bにおける第1番目の移植元の(m,n)=(1,1)、(1,6)、(1,11)、(1,16)、(1,21)の5箇所の苗床部の内、埋まっている孔T1(x,y)=(17,1)、(17,3)を除く、(x,y)=(17,5)、(17,7)、(17,9)の3箇所に対応する(m,n)=(1,11)、(1,16)、(1,21)の5箇所が次の移植先として定められる。
 ただし、実施の形態6における移植装置10においては、情報処理装置6から受信した選別情報と併せて移植が行なわれる。そこで上述の(1)~(6)により定められる移植順序に加えて選別情報を参照して行なわれる詳細な移植手順について、フローチャートを参照して以下に説明する。
 まず、上述の(1)~(6)により定められる移植順序の内、(2)で決定できる移植先の複数の孔T1の数k及び間隔Pについては記憶部72に、移植先の孔T1の列番号yが1~Pのときの移植アーム50の数kの組として記憶しておくとよい。具体的には、実施の形態6の例では、P=2、k=4(y=1のとき)、k=5(y=2のとき)として記憶される。また、(1)~(6)により決定できる移植元に対する移植順について番号iに対応付けて記憶部72に記憶しておく。例えば、移植順を示す番号iに対応付けて、移植元の苗床部の行番号m及び列番号nにより、例えば(i,(m,n))=(1,((1,1),(1,6),(1,11),(1,16),(1,21))のように記憶される。培地B(図2参照)及び図44の栽培パネルT5の例では、図53及び図54に示したように、培地Bについてi=1~60までの第1の処理手順による移植元の苗床部を示す行番号m及び列番号nと、i=61~90までの第2の処理手順による移植元の苗床部を示す行番号m及び列番号nとが記憶される。
 図55及び図56は、実施の形態6における移植手順の詳細について一例を示すフローチャートである。図55及び図56のフローチャートに示す処理手順は、図47のフローチャートに示したステップS104の手順に対応する。
 制御部71はまず、移植先が新しい栽培パネルTか否かを判断する(ステップS401)。新しい栽培パネルTであると判断された場合(S401:NO)、移植先の位置情報をx=y=1と初期化し(ステップS402)、更に、栽培パネルT5における孔T1の空き情報を作成する(ステップS403)。ステップS403において具体的には、x行y列の孔T1夫々における空き状態を2値情報で表した(空き状態を「0」、埋まっている状態を「1」とする)デジタル情報であり、初期的にはx行y列全てが「0」である。
 制御部71は、第i番目の移植先の孔T1の位置を決定する(ステップS404)。具体的には制御部71は、移植順iが1~60(第1処理手順で移植できる順序)である場合は、行番号x及び列番号yからx=x、y=y+j×P(j=0~k-1)として決定する。記憶部72には、P=2、k=4(y=1のとき)、k=5(y=2のとき)として記憶されているから、x=y=1のときには、x=1、y=1,3,5,7,9として移植先の位置が決定される。移植順iが61~90である場合、制御部71は行番号x及び列番号yの1つに決定する。
 制御部71は、第i番目の移植元の苗床部を決定する(ステップS405)。ステップS405において制御部71は、移植順iが1~60(第1処理手順で移植できる順序)である場合、記憶部72に移植順iに対応付けて記憶されている苗床部の行番号m及び列番号nを参照して位置を決定する。第i番目の移植順には、(m,n)=(1,1)、(1,6)、(1,11)、(1,16)、(1,21)が対応付けられている。移植順iが61~90である場合、対応する苗床部の内の培地Bに残存している優良な植物Pに対応する苗床部を1つずつ順に決定する。
 制御部71は、ステップS405で決定した苗床部が夫々、ステップS404で決定した位置の孔T1の上へ来るようにホルダ80を移動させるべくホルダ移送部8へ指示する(ステップS406)。制御部71は、ステップS404で決定した位置の孔T1の下へ、移植アーム90が来るように、支持台91を移動させるべく移植アーム駆動部9へ指示する(ステップS407)。
 制御部71は、移植先の行番号x及び列番号yの孔T1について、孔T1の空き情報が「0」であり、且つ、選別情報に基づいて、孔T1に対応する行番号m及び列番号nの移植元の苗床部の生育が良好であって「1」を示しているという条件を満たすものを特定する(ステップS408)。制御部71は、ステップS408にて条件を満たすと特定された孔T1に対応する移植アーム90による培地Bの苗床部の引き抜き及び孔T1への移植を実行する(ステップS409)。
 次に制御部71は、移植元の培地Bの選別情報及び移植先の栽培パネルT5の空き情報を更新する(ステップS410)。具体的には制御部71は、ステップS409の移植の実行により埋められた孔T1に対応する情報が、埋まっている状態「1」を示すように栽培パネルT5の空き情報を更新し、培地Bの選別情報に対し、移植の実行により引き抜かれた苗床部に対応する情報を「0」に更新する。
 次に制御部71は、移植先の孔T1の列番号yに1を加え(ステップS411)、x行の全列の孔T1への移植が完了したか否かを判断する(ステップS412)。ステップS412において制御部71は、移植順iが第1の処理手順に対応する1~60の間である場合には、列番号yが間隔Pよりも大きいか否かにより判断でき、移植順iが第2の処理手順に対応する61~90の間である場合には、yがYよりも大きいか否かにより判断できる。
 ステップS412にて、x行の全列の孔T1への移植が完了していないと判断された場合(S412:NO)、制御部71は培地Bからの移植が完了したか否かを、培地Bの選別情報が全て「0」となったか否かにより判断する(ステップS413)。ステップS413にて、培地Bからの移植が完了していないと判断された場合(S413:NO)、制御部71は、移植順序の番号iに1を加えて(ステップS414)、ステップS404へ処理を戻す。
 ステップS412にて、x行の全列の孔T1への移植が完了したと判断された場合(S412:YES)、制御部71は、行番号xに1を加えてx=x+1とし、yを先頭列としてy=1とする(ステップS415)。次に制御部71は、行番号xが最大値Xよりも大きいか否かを判断する(ステップS416)。ステップS416において、行番号xが最大値X以下であると判断された場合(S416:NO)、制御部71は処理をステップS413へ戻し、次のx行についての移植を続行させる。
 ステップS416において、行番号xが最大値Xよりも大きいと判断された場合(S416:YES)、制御部71は、設置されている栽培パネルTへの移植が完了したか否か、空き情報に「0」が含まれているか否かによって判断する(ステップS417)。ステップS417において移植が完了していないと判断された場合(S417:NO)、制御部71は、空き孔T1の位置を特定し(ステップS418)する。ステップS418にて具体的には、制御部71は空き情報「0」に対応する行番号x及び列番号yを小さい順に特定する。そして制御部71は、第2の処理手順の対象となる苗床部(i=61~90)又は培地Bにおける移植順i以下で、移植されずに残されている苗床部を対象にして、行方向に順に優良株を探索する(ステップS419)。制御部71は、ステップS419において探索された優良株を特定した孔T1に移植し(ステップS420)、処理をステップS417へ戻す。
 ステップS417において、移植が完了したと判断された場合(S417:YES)、制御部71は、音声等によって栽培パネルの交換指示を出力させ(ステップS421)、移植順の番号iに1を加えてから(ステップS422)、処理をステップS402へ戻す。
 ステップS413にて、培地Bからの移植が完了したと判断された場合(S413:YES)、制御部71は培地Bに対する移植処理を終了し、図47のフローチャートにおけるステップS105へ処理を戻す。
 図55及び図56のフローチャートを参照した説明では、上述の(1)~(6)に示した移植アルゴリズムに基づく移植元の苗床部の移植順序については記憶部72に記憶しておくこととした。しかしながら、(1)~(6)の移植順の決定手順を図55及び図56のフローチャートに示した手順の中で行なうようにしてもよい。
 選別情報を考慮した移植順序で移植される過程について、具体的に説明する。図57は、実施の形態6における情報処理装置6にて表示される操作画面の一例を示す説明図である。図57は、図47のフローチャートにして示した処理手順の内、ステップS202において制御部60が表示させる操作画面の例を示している。図57に示すようにこのときの操作画面には、培地B全体の撮像画像が所定の枠に一致させて表示され、更に、移植をスタートさせるOKボタン641及び、苗の選別をキャンセルさせるCANCELボタン642が表示される。培地B全体の画像が一度に撮像された表示されることで、作業者は複数の苗を同時に、相対的に選別することが可能である。なお、操作画面中の培地Bの撮像画像は拡大表示が可能であるとよい。これにより、作業者は拡大して目視し、苗を選別することが可能になる。
 そして操作画面における培地Bの画像が表示される所定の枠(図57中の太線枠)内の範囲は、各苗床部を夫々選択できるように区分けされており、作業者が表示部63上の任意の苗床部に対応する箇所をタップすると、タップされた箇所が図57中のハッチングに示すように、選択箇所として識別可能に表示される。表示態様は色、ハッチング又は○×等の記号によって重畳して表示されるようにしてある。色、ハッチング情報及び記号情報は記録部61に記録されている。制御部60は、記録部61に記録されてある苗床部の数の情報に基づき、培地Bの画像上の区分けされた範囲を12行25列の行番号m及び列番号nで識別し、タップにより選択された苗床部を行番号及び列番号で一時記憶部62に記憶する。図57の説明図に示す例では、5行11列目及び6行11列目の苗床部が選択されており、したがって制御部60は、(05,11)及び(06,11)と記憶する。なお、苗床部の識別情報は、区分けされた範囲を図15における左上から行方向に順に、例えば通し番号(1,2,3,…)で識別するようにしてもよい。
 次に、図57の例で示したような操作画面にて生育不良の苗床部が選択された場合に、情報処理装置6から移植装置10へ送信される選別情報の具体例について説明する。図58は、選別情報の例を示す説明図である。図58に示す例では説明を容易にするために、選別情報を図48~54の説明図における培地Bの移植順序を示す図に対応させて表している。図58に示す例では、各4~7行目の11列目、6行目の12列目、7行目の5~9列目、8行目の10列目、9行目の10~11列目、10行目の10~11列目の苗床部が選別されたものとして選別情報が移植装置10へ送信される。選別情報は苗床部夫々における成長の優良及び不良を2値情報で表したデジタル情報であるから、図58のような行列情報とは限られないことは勿論であり、例えば300(=12×25)ビットのビット列で表すことができる。
 図59は、図58の選別情報に基づく移植例を示す説明図である。図59では、移植元の培地B及び移植先の栽培パネルTにおいて、移植済みの苗をハッチングで示している。図58の選別情報に基づき、新しい栽培パネルTへの最終行x=17までの移植が完了した時点では、図58の選別情報と、図51に示した移植手順の説明図とを照らし合わせると、培地B上で太枠内で示されている苗床部に対応する計9つの孔T1が、図59の下部に示すように複数の空き孔となる。例えば4行目11列の生育不良の苗床部の栽培パネルT5における8行目6列目の孔T1への移植が実行されず、該孔T1は空き孔となる。この場合制御部21は、図55及び図56のフローチャートにおけるステップS418にて、空き孔T1の行番号x及び列番号yを小さい順に特定し、第2の処理手順の対象となる苗床部(i=61~90)又は培地Bにおける第34番目の移植順以下で、移植されずに残されている苗床部を対象に、行方向に順に優良株を探索する(S419)。この場合制御部71は、培地Bにおける第34番目の移植順以下で、移植されずに残されている優良株の苗床部は存在しないので、第2の処理手順の対象となる苗床部を行方向に順に探索する。栽培パネルT5における空き孔T1には、i=61~69に対応する9つの苗床部が移植される。
 次に新しい栽培パネルT5に交換されたときには、培地Bの次の移植順序i=35に対応する苗床部からの移植を新しい栽培パネルT5のx=y=1から順次開始する。
 このようにして実施の形態6に示した移植装置10では、画像に基づく選択操作によって選択された選別情報の情報と併せ、できる限り少ない回数で生育不良の株を除いた移植を実現することが可能となる。情報処理装置6は無線により移植装置10と通信が可能であるから、移植装置10の設置場所から離れた場所で作業する作業者による操作が可能となる。
 (変形例1)
 生育不良であって移植から除外すべき植物Pを作業者が選択し易いように、図57に示した操作画面に、選択基準とする等級見本を共に表示するようにしてもよい。図60は、変形例1における操作画面の一例を示す説明図である。変形例1における操作画面には、培地Bの撮像画像のとなりに、等級見本の画像643が含まれて表示部63に表示されている。等級見本の画像643は、情報処理装置6の記録部61に記録されている。制御部60は、撮像部3から培地Bの撮像画像の画像データを受信した場合、撮像画像と共に等級見本の画像643を記録部61から読み出して表示部63へ表示させる。なお等級見本の画像643は移植制御部20の記憶部22に記憶されており、情報処理装置6へ制御部21によって送信される構成としてもよい。これにより作業者は、培地Bにおける植物Pの状態と等級見本とを見比べながら、移植させない植物Pを選別することが可能であるから、作業者による判断基準を同レベルへ統一化させることができ、植物Pの品質の均質化を図ることが可能である。
 (変形例2)
 また実施の形態6においては、タブレット型PCである情報処理装置6が備えるカメラを撮像部3のカメラ30として用いる構成としてもよい。この場合、図47のフローチャートに示した処理手順の内、ステップS101も情報処理装置6側で実行される。つまり情報処理装置6で移植アプリプログラム6Pに基づく移植アプリが起動され、移植アプリによって起動されたカメラ機能によってカメラ30による撮像が行なわれると開始される。このとき、ピントずれなど撮像に不具合があった場合にはCANCELボタン642の押下によって撮像から再開される。そして移植装置10側では、移植制御部70において選別情報を受信したか否かを判断するステップS102から処理が開始される。
 (実施の形態7)
 図61は、実施の形態7における移植装置10の模式的斜視図である。実施の形態7においては、実施の形態6における撮像部3のカメラ30がホルダ80を俯瞰する位置に設置されており、共に移動する。またカメラ30は動画を撮影して撮像部3の通信部31からは動画の画像データが情報処理装置6へ送信される。実施の形態7における移植装置10及び情報処理装置6における構成は、上述したカメラ30及び以下に示す処理手順以外は、実施の形態7における構成と同様であるから、共通する構成については同一の符号を付して詳細な説明を省略する。
 図62は、実施の形態7における移植の処理手順の一例を示すフローチャートである。図62のフローチャートに示す処理手順は、情報処理装置6において移植アプリプログラム6Pに基づく移植アプリが起動されると開始される。
 情報処理装置6において制御部60は、動画の画像データの送受信用の通信を接続すべく移植装置10へ接続し(ステップS211)、これにより移植装置10が処理を開始する。
 移植装置10は、情報処理装置6と通信接続を確立させてカメラ30による動画の撮影を開始すると共に画像データの通信部31から送信を開始する(ステップS111)。
 情報処理装置6において制御部60は、画像データの受信を開始し(ステップS212)、受信した画像データに基づき培地Bの動画を枠内に含む操作画面を表示部63に表示させる(ステップS213)。制御部60は、操作画面内に表示されている培地Bの苗床部が選択(タップ)されたか否かを判断する(ステップS214)。選択されたと判断された場合(S214:YES)、制御部60は、操作画面内の培地Bの動画像内における選択箇所(行番号p及び列番号q)を特定する(ステップS215)。制御部60は、選択箇所の行番号p列番号q-1までの苗床部を優良株とし、行番号p及び列番号qの苗床部を生育不良とする選別情報を送信する(ステップS216)。したがって作業者は、培地Bの撮像画像中の1行1列目から順に目視で選別する。
 移植装置10においては、移植制御部70の制御部71が選択された苗床部までの選別情報を選択操作の都度受信し(ステップS112)、培地B及び栽培パネルTが設置されていることを確認すると(ステップS113)、受信した選別情報に基づいて、選択された箇所に対応する苗床部までの移植を開始する(ステップS114)。移植の手順は実施の形態1にて説明した図55及び図56のフローチャートに示した手順と同一である。
 情報処理装置6において制御部60は、生育不良の苗の苗床部が選択される都度ステップS214~S216の処理を実行する。ステップS214にて苗床部の選択がされていないと判断された場合(S214:NO)、制御部60は、OKボタン641のタップによって選別が完了したか否かを判断する(ステップS217)。ステップS217において完了していないと判断された場合(S217:NO)、制御部60は、ステップS214へ処理を戻す。ステップS217にて完了したと判断された場合(S217:YES)、制御部60は、直近の選択箇所以降の行番号及び列番号の苗床部を全て優良株とする選別情報を送信する(ステップS218)。選別情報の送信を完了させると制御部60は、画像データの受信を停止して(ステップS219)、動画データ受信用の通信接続を切断させ(ステップS220)、必要に応じて選別情報と画像データを記録部61に記録して(ステップS221)、1つの培地Bに対する移植アプリの処理を終了する。
 移植装置10において制御部71は、選別情報を培地Bの最終行の最終列まで全て受信したか否か判断する(ステップS115)。全て受信していないと判断された場合(S115:NO)、制御部71は処理をステップS112へ戻して次の選別情報を受信する。
 ステップS115において全て受信したと判断された場合(S115:YES)、制御部71は培地Bの最終行の最終列までの移植をステップS114同様にして開始し(ステップS116)、撮像部3におけるカメラ30による撮像及び画像データの送信を停止する(ステップS117)。制御部21は、開始していた最終箇所までの移植が完了したか否かを判断し(ステップS118)、完了していないと判断された場合は(S118:NO)、処理をステップS118へ戻し、完了したと判断されるまで待機する。ステップS118において完了したと判断された場合(S118:YES)、1つの培地Bに対する移植処理を終了する。
 このように、情報処理装置6側で全ての植物Pについての選別の操作を終えなくとも、選別が完了した位置の苗床部までの移植を同時並行的に開始させることができ、より高速化及び効率化を図ることが可能となる。なお、実施の形態7ではカメラ30は動画を撮影する構成としたが、静止画を撮像して出力する構成でもよい。例えば、情報処理装置6から送信される選別情報を移植制御部70側で受信する都度(S112)、カメラ30にて撮像して画像データを情報処理装置6へ送信すればよい。更に例えば、最初に撮像した画像のみでも同時並行的に移植を開始可能である。図63は、実施の形態7における静止画を使用した場合の処理手順の一例を示すフローチャートである。図63中の処理手順については、図47に示した実施の形態6における処理手順及び図62のフローチャートに示した処理手順と同一のステップ番号を付して詳細な説明は省略する。図63のフローチャートに示すように、移植装置10側で、撮像部3にて撮像した静止画の画像データを送信した後(S101)、情報処理装置6側で選別操作を受け付ける都度(S214:YES)、選別情報を送信する(S216)。これにより、スタート時にカメラ30(又は情報処理装置6に備えられるカメラ)で培地Bを撮像した画像データが得られた後は、作業者がその場にいなくとも順次選別操作を進めつつ移植が可能である。なお情報処理装置6側では、送信された画像データに基づく培地Bの画像の内、それまでの処理で選択済みの苗床部に対応する箇所については色付けし、選択済みであることを示すようにしてもよい。
 実施の形態1から7及びそれらの変形例、特に、実施の形態1から5に示した移植順に基づく移植と、実施の形態6及び7にて示した選別情報に基づく選別の手順とは、適宜組み合わせることが可能である。複数の移植アームを用いる構成についても実施の形態1から5に示した移植元の苗床部と移植先の孔T1との間の対応の決定方法と同様の趣旨にて移植手順を決定し、複数の移植アームで同時的に移植を実行させるようにしてもよい。
 なお、上述のように開示された本実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上記した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1,10 移植装置
 2,7 移植部
 20,70 移植制御部
 21,71 制御部
 22,72 記憶部
 23 操作部
 25,75 フレーム
 26 支持板(第2保持部)
 4,8 ホルダ移送部(移動部)
 40,80 ホルダ(第1保持部)
 5,9 移植アーム駆動部
 50,90 移植アーム
 3 撮像部
 30 カメラ
 31 通信部
 6 情報処理装置
 60 制御部
 61 記録部
 73 通信部
 76,76 レール(第2保持部)
 B,B2 培地
 P 植物
 T,T2,T3,T4,T5 栽培パネル
 T1 孔

Claims (20)

  1.  複数の植物が行方向及び列方向に植えられている平板状の培地を保持する第1保持部と、前記植物を保持する孔が行方向及び列方向に複数設けられている平板状の栽培パネルを前記培地に平行となるように保持する第2保持部とを備え、前記培地から前記栽培パネルの孔へ前記植物を移植する移植装置において、
     所定の移植アルゴリズムに基づき、前記培地から前記栽培パネルの孔への移植手順を決定する手順決定部と、
     前記第1保持部又は第2保持部を、前記手順決定部が決定した移植手順に対応する前記培地の植物及び前記栽培パネルの孔が上下に位置するように移動させる移動部と、
     該移動部による移動後に、前記培地及び栽培パネルに直交する方向に昇降する移植アームを用い、前記植物を前記孔へ引き込む又は押し込むことで移植させる移植部と
     を備えることを特徴とする移植装置。
  2.  前記移動部は、前記栽培パネル及び培地の行方向又は列方向を同数に分別させた複数の領域の内、対応する領域同士が対向する範囲内で、前記第1保持部又は第2保持部を面方向に移動させる
     ことを特徴とする請求項1に記載の移植装置。
  3.  前記移動部は、前記栽培パネル及び培地夫々の行方向及び列方向の内、栽培パネル又は培地の長手方向である方向を同数に分別し、分別された複数の領域の対応する領域同士が対向する範囲内で移動させる
     ことを特徴とする請求項2に記載の移植装置。
  4.  前記移動部は、前記栽培パネル及び培地の行方向及び列方向の両方を同数に分別させた複数の領域の内、対応する領域同士が対向する範囲内で移動させる
     ことを特徴とする請求項2又は3に記載の移植装置。
  5.  前記同数は、培地の長手方向である方向の行数又は列数と、前記栽培パネルの前記方向に対応する方向の行数又は列数との間の最大公約数である
     ことを特徴とする請求項2から4のいずれか1つに記載の移植装置。
  6.  前記移動部は、前記栽培パネル及び培地夫々の行方向及び列方向の内、栽培パネル又は培地の短手方向である第1の方向を2分し、分別された複数の領域の対応する領域同士で移動させる
     ことを特徴とする請求項2に記載の移植装置。
  7.  前記手順決定部は、
     前記複数の領域の内、前記栽培パネルの1つの領域の前記第1の方向における端側の孔から順に、前記1つの領域に対応する領域の前記培地の前記第1の方向における端側から植物を中央側へ向けて順に対応付け、又は
     前記複数の領域の内、前記栽培パネルの1つの領域の前記栽培パネルの第1の方向における中央側の孔から順に、前記1つの領域に対応する領域の前記培地の前記第1の方向における中央側の植物を端側へ向けて順に対応付ける
     ことを特徴とする請求項6に記載の移植装置。
  8.  前記対応する領域同士の対応関係を予め記憶する記憶部
     を更に備えることを特徴とする請求項2から7のいずれか1つに記載の移植装置。
  9.  複数の植物が行方向及び列方向に植えられている平板状の培地から、前記植物を保持する孔が行方向及び列方向に複数設けられている平板状の栽培パネルへ、前記植物を移植する移植装置において、
     前記培地の一方向における培地間隔と、前記栽培パネルの前記一方向における前記孔間の間隔との公倍数に対応する間隔で並設されてある複数の移植アームと、
     前記培地に前記公倍数に対応する間隔で植えられている複数の植物を同時的に、前記複数の移植アームにより前記栽培パネルへ所定の順序で移植させる移植部と
     を備えることを特徴とする移植装置。
  10.  前記移植部は、前記培地中の植物を移植させるに際し、前記植物に対する選別情報に基づき、前記複数の移植アームの動作の可否を各決定する動作可否決定部
     を更に備えることを特徴とする請求項9に記載の移植装置。
  11.  複数の植物が行方向及び列方向に植えられている平板状の培地から、前記植物を保持する孔が行方向及び列方向に複数設けられている平板状の栽培パネルへ、前記植物を移植する移植装置において、
     前記培地を撮像する撮像部と、
     該撮像部により撮像された画像を送信する送信部と、
     該送信部により送信した画像に基づき選別された植物の選別情報を受信する受信部と、
     該受信部により受信した選別情報に基づき、移植する複数の植物を決定する移植植物決定部と、
     該移植植物決定部により決定された植物を前記栽培パネルへ移植させる移植部と
     を備えることを特徴とする移植装置。
  12.  前記移植部は、
     前記培地の一方向における培地間隔と、前記栽培パネルの前記一方向における前記孔間の間隔との公倍数に対応する間隔で並設されてある複数の移植アームを更に備え、
     前記培地に前記公倍数に対応する間隔で植えられている複数の植物の内、前記移植植物決定部により決定された植物を同時的に、前記複数の移植アームにより前記栽培パネルへ移植させるようにしてある
     ことを特徴とする請求項11に記載の移植装置。
  13.  複数の植物が行方向及び列方向に植えられている平板状の培地から、前記植物を保持する孔が行方向及び列方向に複数設けられている平板状の栽培パネルへ、前記植物を移植する移植装置と、表示部を有し、前記移植装置に通信接続する通信装置とを含む移植システムであって、
     前記移植装置は、
     前記培地を撮像する撮像部と、
     該撮像部により撮像された画像を前記通信装置へ送信する送信部と
     を備え、
     前記移植装置は更に、
     前記送信部により送信した画像に基づき選別された植物の選別情報を前記通信装置から受信する受信部と、
     該受信部により受信した選別情報に基づき、移植する複数の植物を決定する移植植物決定部と、
     該移植植物決定部により決定された植物を前記栽培パネルへ移植させる移植部と
     を備えることを特徴とする移植システム。
  14.  前記移植装置は、
     前記培地の一方向における培地間隔と、前記栽培パネルの前記一方向における前記孔間の間隔との公倍数に対応する間隔で並設されてある複数の移植アームを更に備え、
     前記移植部は、前記培地に前記公倍数に対応する間隔で植えられている複数の植物を同時的に、前記複数の移植アームにより前記栽培パネルへ移植させるようにしてあり、
     前記移植植物決定部は、前記受信した選別情報に基づき、前記複数の移植アームによる動作の可否を各決定するようにしてある
     ことを特徴とする請求項13に記載の移植システム。
  15.  複数の植物が行方向及び列方向に植えられている平板状の培地から、前記植物を保持する孔が行方向及び列方向に複数設けられている平板状の栽培パネルへ、前記植物を移植する移植方法において、
     前記栽培パネル及び培地の行方向又は列方向を同数に分別しておき、
     分別された複数の領域の内、対応する領域同士が対向する範囲内で、前記培地又は栽培パネルを面方向に移動させる
     移動後に前記培地に直交する方向に前記培地から植物を前記孔へ引き込む又は押し込むことで移植する
     ことを特徴とする移植方法。
  16.  複数の植物が行方向及び列方向に植えられている平板状の培地から、前記植物を保持する孔が行方向及び列方向に複数設けられている平板状の栽培パネルへ、前記植物を移植する移植方法において、
     前記培地の一方向における培地間隔と、前記栽培パネルの前記一方向における前記孔間の間隔との公倍数に対応する間隔で並設されてある複数の移植アームを用いて前記培地に前記間隔で植えられている複数の植物を同時的に、前記複数の移植アームにより前記栽培パネルへ移植させ、
     前記培地に残った植物を、前記複数の移植アームの内のいずれか1つを用いて前記栽培パネルへ移植させる
     ことを特徴とする移植方法。
  17.  複数の植物が行方向及び列方向に植えられている平板状の培地から、前記植物を更に生長させるための孔が行方向及び列方向に複数設けられている平板状の栽培パネルへ、前記植物を移植させる移植装置、及び表示部を有し前記移植装置に通信接続する通信装置を用いて前記植物を移植する移植方法であって、
     前記移植装置は、前記培地の撮像画像を前記通信装置へ送信し、
     前記通信装置は、
     受信した撮像画像を前記表示部に表示させ、
     撮像画像上で培地中の植物の選別を受け付け、
     選別された植物の情報を含む選別情報を前記移植装置へ送信し、
     前記移植装置は、
     前記通信装置から選別情報を受信し、
     受信した選別情報に基づき、移植する複数の植物を決定し、
     決定された植物を前記栽培パネルへ移植させる
     ことを特徴とする移植方法。
  18.  複数の植物が行方向及び列方向に植えられている平板状の培地を保持する第1保持部と、前記植物を保持する孔が行方向及び列方向に複数設けられている平板状の栽培パネルを前記培地に平行となるように保持する第2保持部とを備える移植装置が有するプロセッサに、前記第1保持部又は第2保持部を面方向に移動させるコンピュータプログラムにおいて、
     前記プロセッサに、
     前記栽培パネル及び培地の行方向又は列方向を同数に分別させた複数の領域の内、対応する領域同士が対向する範囲内で、前記第1保持部又は第2保持部を面方向に移動させる処理
     を実行させることを特徴とするコンピュータプログラム。
  19.  コンピュータに、複数の植物が行方向及び列方向に植えられている平板状の培地から、前記植物を保持する孔が行方向及び列方向に複数設けられている平板状の栽培パネルへの移植を実行させるコンピュータプログラムにおいて、
     前記コンピュータに、
     前記培地の一方向における培地間隔と、前記栽培パネルの前記一方向における前記孔間の間隔との公倍数に対応する間隔で並設されてある複数の移植アームが同時的に移植する複数の植物を決定させる処理、
     決定された複数の植物を同時的に、前記複数の移植アームにより前記栽培パネルへ移植させる処理、及び
     前記培地に残った植物を、前記複数の移植アームの内のいずれか1つを用いて前記栽培パネルへ移植させる処理
     を実行させることを特徴とするコンピュータプログラム。
  20.  表示部を有するコンピュータに、複数の植物が行方向及び列方向に植えられている平板状の培地からの選別を受け付けさせるコンピュータプログラムであって、
     前記コンピュータに、
     前記培地の撮像画像を取得する処理、
     取得された前記撮像画像を前記表示部に表示させる処理、
     撮像画像上で培地中の植物の選別を受け付ける処理、及び
     選別された植物の情報を含む選別情報を外部装置へ送信する処理
     を実行させることを特徴とするコンピュータプログラム。
PCT/JP2016/061415 2015-04-21 2016-04-07 移植装置、移植システム、移植方法及びコンピュータプログラム WO2016170993A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017514059A JP6468349B2 (ja) 2015-04-21 2016-04-07 移植装置、移植システム、移植方法及びコンピュータプログラム
US15/567,426 US20180084713A1 (en) 2015-04-21 2016-04-07 Transplant device, transplant system, transplant method and computer readable medium
EP16783014.0A EP3287004A4 (en) 2015-04-21 2016-04-07 TRANSPLANT DEVICE, SYSTEM, TRANSPLANT PROCESS AND COMPUTER PROGRAM
CN201680022949.9A CN107529728A (zh) 2015-04-21 2016-04-07 移植装置、移植系统、移植方法及计算机程序

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-087129 2015-04-21
JP2015087129 2015-04-21
JP2015-174104 2015-09-03
JP2015174104 2015-09-03

Publications (1)

Publication Number Publication Date
WO2016170993A1 true WO2016170993A1 (ja) 2016-10-27

Family

ID=57143908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061415 WO2016170993A1 (ja) 2015-04-21 2016-04-07 移植装置、移植システム、移植方法及びコンピュータプログラム

Country Status (5)

Country Link
US (1) US20180084713A1 (ja)
EP (1) EP3287004A4 (ja)
JP (2) JP6468349B2 (ja)
CN (1) CN107529728A (ja)
WO (1) WO2016170993A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021101633A (ja) * 2019-12-25 2021-07-15 株式会社椿本チエイン 苗床保持部材及び移植装置
US11399472B2 (en) * 2019-03-29 2022-08-02 Steve Bates Fodder machine

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107690904B (zh) * 2017-11-14 2022-12-30 钦州学院 竖盘式自动播秧机
KR20200140803A (ko) 2018-03-21 2020-12-16 엠제이엔엔 엘엘씨 통제된 환경 농업을 위한 수직 재배 타워 컨베이어 시스템
US11700804B2 (en) 2018-10-30 2023-07-18 Mjnn Llc Production facility layout for automated controlled environment agriculture
CN115443898B (zh) 2018-10-30 2024-09-27 Mjnn有限责任公司 受控环境农业系统的种植塔处理
CN109924032A (zh) * 2019-04-15 2019-06-25 贵州大学 用于苗木栽培的可拆装分体使用的栽培车
US11166407B2 (en) * 2019-05-29 2021-11-09 King City Nursery LLC Method and apparatus in transplanting seedlings
WO2021055235A1 (en) 2019-09-20 2021-03-25 Mjnn Llc A crop production system for controlled environment agriculture and associated method
US11856902B2 (en) 2019-09-20 2024-01-02 Mjnn Llc Production facility layouts for automated controlled environment agriculture
US11570958B2 (en) 2019-09-20 2023-02-07 Mjnn Llc Catch mechanism facilitating loading of vertical grow towers onto grow lines in a vertical farm system
US20220078985A1 (en) * 2020-09-11 2022-03-17 David Steven GARDELLA Pallet system for transporting plants
US12089545B1 (en) 2020-09-25 2024-09-17 Mjnn Llc Grow towers with overlapping funnels for automated agriculture production
CN115349379B (zh) * 2022-08-30 2023-09-15 杭州电子科技大学 一种多层自动化苗床控制系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003052251A (ja) * 2001-08-17 2003-02-25 Japan Science & Technology Corp 苗選別装置
US20050016425A1 (en) * 2003-07-21 2005-01-27 Huang Barney Kuoyen Air-pruning tray/container matrix transfer and transplanting system and methods
WO2011111744A1 (ja) * 2010-03-12 2011-09-15 株式会社椿本チエイン 植物栽培装置
WO2011125965A1 (ja) * 2010-04-06 2011-10-13 有限会社シマテック 水耕栽培装置
WO2015004932A1 (ja) * 2013-07-10 2015-01-15 株式会社椿本チエイン 植物移植装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3799078A (en) * 1972-04-19 1974-03-26 J Trachet Method for transplanting plants
JP3093486B2 (ja) * 1992-10-26 2000-10-03 株式会社テクノ・グラフティング研究所 植物良否判別制御装置およびその良否判別のための面積集計方法
JP3306841B2 (ja) * 1995-02-03 2002-07-24 株式会社 神崎高級工機製作所 仮植装置
CA2449718C (en) * 2001-06-08 2011-06-21 Tagawa Greenhouses, Inc. Operational system for transplanting growing plants
JP5441874B2 (ja) * 2010-12-06 2014-03-12 株式会社椿本チエイン 植物栽培装置
JP6076297B2 (ja) * 2014-06-26 2017-02-08 株式会社椿本チエイン 植物移植装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003052251A (ja) * 2001-08-17 2003-02-25 Japan Science & Technology Corp 苗選別装置
US20050016425A1 (en) * 2003-07-21 2005-01-27 Huang Barney Kuoyen Air-pruning tray/container matrix transfer and transplanting system and methods
WO2011111744A1 (ja) * 2010-03-12 2011-09-15 株式会社椿本チエイン 植物栽培装置
WO2011125965A1 (ja) * 2010-04-06 2011-10-13 有限会社シマテック 水耕栽培装置
WO2015004932A1 (ja) * 2013-07-10 2015-01-15 株式会社椿本チエイン 植物移植装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3287004A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11399472B2 (en) * 2019-03-29 2022-08-02 Steve Bates Fodder machine
JP2021101633A (ja) * 2019-12-25 2021-07-15 株式会社椿本チエイン 苗床保持部材及び移植装置

Also Published As

Publication number Publication date
JP2019033769A (ja) 2019-03-07
JP6468349B2 (ja) 2019-02-13
JPWO2016170993A1 (ja) 2018-02-15
US20180084713A1 (en) 2018-03-29
CN107529728A (zh) 2018-01-02
JP6711391B2 (ja) 2020-06-17
EP3287004A4 (en) 2019-07-10
EP3287004A1 (en) 2018-02-28

Similar Documents

Publication Publication Date Title
JP6468349B2 (ja) 移植装置、移植システム、移植方法及びコンピュータプログラム
EP1788859B1 (en) Root evaluation
JP4651743B1 (ja) 植物栽培装置
CA1164280A (en) Method and apparatus at the growing of seedlings
CN109688802A (zh) 栽培系统和方法
WO2016039010A1 (ja) 細胞培養評価システムおよび方法
JP5441874B2 (ja) 植物栽培装置
CN105075998B (zh) 基于方格蔟的快速鲜茧检测自动筛选采摘方法
CN104322187A (zh) 一种穴盘苗图像采集装置和方法
TWM491329U (zh) 立體層架式自動化生物培養進料與收穫作業系統
KR20180085749A (ko) 일 장치로부터 타 장치로의 선택적인 입자 전달
WO2016070196A1 (en) Nested plant grow tray
CN1011377B (zh) 用于分割植物材料的方法和装置
CA2449718A1 (en) Operational system for transplanting growing plants
JP2016021929A (ja) 接木元苗の選別装置
WO2018216520A1 (ja) 栽培システム及びコンピュータプログラム
CN105151750B (zh) 蚕茧品质自动分选采摘方法
CN105052846B (zh) 基于方格蔟的快速鲜茧检测自动分选采摘装置
JPH06138041A (ja) 植物良否判別制御装置およびその良否判別のための面積集計方法
JP2019216656A (ja) 検査装置、移植装置、検査方法及びコンピュータプログラム
CN103347381A (zh) 用于植物材料取样的转移站和示踪系统
CN105075999B (zh) 基于方格蔟的蚕茧品质自动分选采摘方法
CN113068527B (zh) 热处理与微芽嫁接脱除柑橘接穗中黄龙病与病毒病的装置
JPS621714B2 (ja)
CN108967365A (zh) 一种便于抓取的搁板及其放置方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16783014

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017514059

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15567426

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE