WO2016170898A1 - Plate glass processing device - Google Patents

Plate glass processing device Download PDF

Info

Publication number
WO2016170898A1
WO2016170898A1 PCT/JP2016/059191 JP2016059191W WO2016170898A1 WO 2016170898 A1 WO2016170898 A1 WO 2016170898A1 JP 2016059191 W JP2016059191 W JP 2016059191W WO 2016170898 A1 WO2016170898 A1 WO 2016170898A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing tool
plate glass
processing
cam
end surface
Prior art date
Application number
PCT/JP2016/059191
Other languages
French (fr)
Japanese (ja)
Inventor
真澄 伊吹
耕二 市川
安宏 澤村
賢二 三品
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN201680005489.9A priority Critical patent/CN107107294B/en
Priority to KR1020177016634A priority patent/KR102421573B1/en
Publication of WO2016170898A1 publication Critical patent/WO2016170898A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/20Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground
    • B24B7/22Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain
    • B24B7/24Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain for grinding or polishing glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/04Headstocks; Working-spindles; Features relating thereto
    • B24B41/047Grinding heads for working on plane surfaces
    • B24B41/053Grinding heads for working on plane surfaces for grinding or polishing glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B47/00Drives or gearings; Equipment therefor
    • B24B47/10Drives or gearings; Equipment therefor for rotating or reciprocating working-spindles carrying grinding wheels or workpieces
    • B24B47/14Drives or gearings; Equipment therefor for rotating or reciprocating working-spindles carrying grinding wheels or workpieces by liquid or gas pressure

Definitions

  • the present invention relates to a sheet glass processing apparatus for processing an end face of a sheet glass with a processing tool.
  • the size of the plate glass used for this tends to increase. If the size of the plate glass is increased, the number of glass substrates that can be taken from a single plate glass increases, so that it is possible to efficiently manufacture a glass substrate corresponding to a large liquid crystal display.
  • the edge of the plate glass is chamfered to prevent this. Further, in order to increase the processing quantity per hour and lower the manufacturing cost, increasing the conveyance speed (processing speed) of the plate glass is being studied.
  • the end surface of the chamfered plate glass is observed with a microscope, the undulation due to fine irregularities can be confirmed on the end surface of the plate glass.
  • a plate glass may cause chipping or cracks due to the undulations in the subsequent process (assembly process), and must be polished so that the end surface of the plate glass is uniform.
  • the polishing allowance of the plate glass must be set larger, so that the polishing time becomes longer and the conveyance speed (processing speed) of the plate glass can be further increased. Have difficulty.
  • Patent Document 1 discloses a rotatable arm member that supports the processing tool, and the plate glass from the processing tool via the arm member.
  • a sheet glass processing apparatus including a pressing force generating element that generates a pressing force that acts on the end surface of the sheet glass, and a buffer element that buffers an impact force that acts on the processing tool from the end surface of the sheet glass.
  • This plate glass processing apparatus can absorb the impact force acting on the processing tool from the end surface of the plate glass by the buffer element, thereby preventing the processing tool from bouncing and polishing the end surface while conveying the plate glass at a high speed. it can.
  • the plate glass processing apparatus described above processes (polishs) the end surface of the plate glass while rotating the processing tool by a motor.
  • a motor suitable for the processing tool In order to realize the optimum processing for the end face of the plate glass, it is necessary to select a motor suitable for the processing tool.
  • the present inventor has made a detailed study on the motor conditions that enable favorable processing on the end face of the plate glass. As a result, it has been found that the following phenomenon occurs when a specific motor is used, particularly at the start of machining. Details will be described below.
  • FIG. 8 shows the behavior of the processing tool at the start of processing.
  • the plate glass A to be processed is conveyed along the feed direction C. Further, the plate glass A has an end surface in the entire range from an end portion (hereinafter referred to as “starting end portion”) A1 at which processing is started to an end portion (hereinafter referred to as “terminal end portion”) A2 at which processing is completed. It is processed by B.
  • start end portion an end portion
  • terminal end portion end portion
  • It is processed by B.
  • the processing tool B contacted the start end part A1 of the plate glass A, it bounced without maintaining the state of contact with the end face of the plate glass A, and a phenomenon that this bounce was repeated was observed. For this reason, it turned out that in the end surface of the plate glass A, a part by the side of the start end part A1 is not processed.
  • the present inventor was able to identify the cause as a result of observing the bouncing of the processing tool B in detail at the start of the processing. That is, the present inventor has been able to specify that this bounce occurs when a servo motor is employed as the motor for driving the processing tool B. Hereinafter, the reason why this bounce occurs will be described.
  • the servo motor adopts speed feedback control (closed loop control).
  • the servo motor includes a detection device (encoder) capable of detecting the rotation speed and a comparison device that compares the rotation speed value detected by the detection device with a target value.
  • the output torque of the servo motor is controlled by the comparison by the comparison device so that the rotation speed can maintain the target value.
  • the processing tool B is brought into contact with the starting end A1 of the plate glass A to reduce its rotational speed.
  • the servo motor abruptly increases its output torque in order to compensate for this decrease in rotational speed. Due to the increase in the output torque, the force applied by the processing tool B to the end surface of the plate glass A increases in a short time, and the reaction force from the plate glass A increases accordingly. Then, a moment around the rotation axis is generated in the arm member that supports the processing tool B, and the processing tool B is separated from the end surface of the plate glass A by the action.
  • the processing tool B comes into contact with the end surface of the plate glass A by the pressing force generated by the pressing force generating element.
  • the servo motor increases the output torque again, and thus the above bounce is repeated.
  • a plurality of bounces occurred at the start of processing, and as a result, portions that were not processed remained in a plurality of locations on the end surface in the vicinity of the starting end portion A1 of the plate glass A.
  • the bouncing of the processing tool B at the start of processing as described above is forcibly generated by torque fluctuations caused by the servo motor. Therefore, this bounce is much larger than the conventional bounce that occurs due to undulations caused by minute irregularities on the end face of the plate glass A. For this reason, in the buffer element in the conventional plate glass processing apparatus, the bouncing of the processing tool B generated at the start of processing cannot be prevented, and another means has to be taken.
  • This invention is made
  • the present invention is to solve the above-described problems, and is a plate glass processing apparatus that processes an end surface of a plate glass with a processing tool, and a synchronous motor that rotationally drives the processing tool, and the processing tool can be rotated.
  • a pressure generating unit A pressure generating unit.
  • a processing tool while supporting an arm member rotatably by a support shaft member, by making the pressing force by a pressing force generation part act on a processing tool via this arm member, a processing tool makes the end surface of a plate glass. It can always be processed at a constant pressure.
  • a synchronous motor is employed as a motor for rotationally driving the processing tool.
  • the processing tool can be rotationally driven without using a servo motor. Therefore, the bouncing of the processing tool at the start of processing can be prevented by preventing fluctuation (increase) in the torque of the motor at the start of processing.
  • the plate glass processing apparatus further includes a position control unit that controls a position of the processing tool with respect to the end surface of the plate glass, and the position control unit is configured so that the processing tool comes into contact with a starting end portion of the plate glass and The stroke of the processing tool may be limited to a predetermined value so that the processing tool does not leave the end surface of the plate glass until the predetermined distance on the end surface moves relatively.
  • the stroke of the processing tool is preferably limited to 0.03 mm or more and 0.05 mm or less.
  • the predetermined distance by which the processing tool moves relative to the plate glass is preferably 5 mm or more and 40 mm or less.
  • it is desirable that the processing allowance while the processing tool moves relative to the plate glass relative to the predetermined distance is 0.03 mm or more and 0.05 mm or less.
  • the processing tool when processing the end face of the plate glass, it is possible to prevent the processing tool from bouncing at the start of processing.
  • FIG. 1 is a schematic top view showing an embodiment of a sheet glass processing apparatus according to the present invention.
  • FIG. 2 is a side view of the position control unit taken along line II-II in FIG.
  • FIG. 3 is a diagram illustrating the position of the cam follower with respect to the rotational phase of the cam member.
  • FIG. 4a shows a state in which the cam member is rotated to the first rotation phase.
  • FIG. 4b shows the cam member rotated to the second rotational phase.
  • FIG. 4c shows the cam member rotated to the third rotational phase.
  • FIG. 4d shows a state where the cam member is rotated to the fourth rotational phase.
  • FIG. 5a shows the processing tool in the standby position.
  • FIG. 5b shows the processing tool in the first polishing position.
  • FIG. 5a shows the processing tool in the standby position.
  • FIG. 5b shows the processing tool in the first polishing position.
  • FIG. 5c shows the processing tool in the second polishing position.
  • FIG. 5d shows the processing tool in the retracted position.
  • FIG. 6 is a schematic top view showing the behavior of the processing tool at the first polishing position.
  • FIG. 7 is a schematic top view showing a state where the end face of the plate glass is inclined with respect to the feeding direction and the end face is polished by the processing tool.
  • FIG. 8 is a schematic top view showing the behavior at the start of machining of the machining tool rotated by the servo motor.
  • FIG. 1 to 7 show an embodiment of a sheet glass processing apparatus according to the present invention.
  • the plate glass A to be processed by the plate glass processing apparatus 1 has a rectangular plate shape.
  • the plate thickness of the plate glass A is, for example, 0.05 mm to 10 mm.
  • the present invention is not limited to this.
  • the present invention can also be applied to processing of a glass sheet A having a shape other than a rectangle (for example, a polygon), and processing of a glass sheet A having a thickness other than 0.05 mm to 10 mm.
  • the end surface of the plate glass A is processed by the processing tool B.
  • the end face processing of the plate glass A by the processing tool B may be a polishing process for making the unevenness of the end face after the chamfering process uniform. Further, the end surface processing of the plate glass A may be a chamfering processing (grinding process) of the end surface of the plate glass A.
  • the plate glass A moves relative to the processing tool B.
  • the processing is performed in a state where the processing tool B is fixed to the plate glass A moving along the plate glass feeding direction C. Moreover, it can process with respect to the fixed plate glass A, the processing tool B moving along the feed direction C.
  • the processing tool B is a grindstone that is rotationally driven, for example, and polishes the end surface of the plate glass A while the grindstone rotates.
  • the processing tool B for example, a grindstone having a diameter of 150 mm may be used.
  • a plate glass processing apparatus 1 includes a synchronous motor 2 that rotationally drives a processing tool B, an arm member 3 that rotatably supports the processing tool B, and a support shaft member 4 that supports the arm member 3.
  • a pressing force generator 5 that generates a pressing force acting on the end surface of the glass sheet A from the processing tool B, a buffer unit 6 that absorbs an impact applied to the processing tool B, and a position for controlling the position of the processing tool B.
  • the control part 7 is mainly provided.
  • the synchronous motor 2 rotates in synchronization with the rotational speed difference between the rotating magnetic field generated by the alternating current and the magnetic field generated by the armature current.
  • the synchronous motor 2 rotationally drives the processing tool B by open loop control without using closed loop control (feedback control).
  • the synchronous motor 2 is supported at the tip of the arm member 3.
  • the drive shaft of the synchronous motor 2 is connected to the processing tool B.
  • the arm member 3 is rotatably supported by the support shaft member 4.
  • the arm member 3 includes a first arm portion 3a and a second arm portion 3b connected to the first arm portion 3a.
  • the first arm portion 3 a supports the synchronous motor 2 at one end thereof, and supports the processing tool B via the synchronous motor 2.
  • the other end of the first arm portion 3a is connected to the second arm portion 3b.
  • the depression angle ⁇ (see FIG. 1) formed by the feeding direction C of the glass sheet A and the first arm portion 3a of the arm member 3 is preferably 25 ° to 35 °.
  • One end portion of the second arm portion 3 b is connected (fixed) to the other end portion of the first arm portion 3 a via the support shaft member 4.
  • the position control unit 7 is connected to the second arm unit 3b.
  • the processing tool B moves in the direction of pressing against the end surface of the plate glass A (K1 direction shown in FIG. 1: the pressing direction) or escapes from the end surface of the plate glass A (see FIG. 1 in the K2 direction: the escape direction).
  • the support shaft member 4 connects the other end of the first arm portion 3a and one end of the second arm portion 3b. Thereby, the 1st arm part 3a and the 2nd arm part 3b are connected with a fixed depression angle.
  • the support shaft member 4 is configured to rotate following the rotation of the arm member 3 when the arm member 3 is rotated by the pressing force of the pressing force generator 5 and the control of the position controller 7.
  • the pressing force generator 5 generates a pressing force that acts on the end surface of the plate glass A from the processing tool B by applying a couple to the first arm 3 a of the arm member 3.
  • the pressing force generator 5 can be a low sliding resistance air cylinder.
  • a diaphragm cylinder can be used as a low sliding resistance air cylinder in consideration of high response due to low slidability and long life due to pistonless.
  • the plate glass processing apparatus 1 is further provided with a glass state measuring unit (not shown).
  • the glass state measuring unit measures the glass state of the plate glass A flowing into the plate glass processing apparatus 1.
  • the glass state measuring unit can detect the state of the plate glass A by bringing a roller into contact with the end surface of the plate glass A flowing into the plate glass processing apparatus 1.
  • the pressing force generator 5 generates a pressing force on the processing tool B according to the state of the plate glass A measured by the glass state measuring unit.
  • the buffer section 6 buffers the impact force acting on the processing tool B from the end surface of the plate glass A.
  • the impact force acting on the processing tool B from the end surface of the plate glass A is generated due to, for example, undulation caused by microscopic unevenness existing on the end surface of the plate glass A.
  • the buffer unit 6 functions as a damper element and can be, for example, a dashpot.
  • the buffer unit 6 is a non-sealed water dashpot, and can utilize the resistance when water passes through the gap between the piston and the tube as a buffer function.
  • the buffer unit 6 includes a check valve, the buffer unit 6 acts on the end surface of the plate glass A from the first tool that acts on the processing tool B from the end surface of the plate glass A.
  • the first force acts in the direction of arrow E and the second force acts in the direction of arrow F).
  • the buffer unit 6 may include a link mechanism (not shown) that transmits the force acting on the arm member 3 to the dashpot.
  • a link mechanism for example, a Scott Russell link mechanism is employed.
  • the buffer unit 6 includes the Scott Russell link mechanism, the movement along the horizontal direction by the arm member 3 can be converted into the vertical movement by the piston along the vertical direction. As a result, a vertical water dashpot can be used as the buffer section 6.
  • the position control unit 7 controls the position of the arm member 3 so that the processing tool B sequentially moves to the standby position, the first polishing position, the second polishing position, and the retracted position.
  • the standby position refers to a position where the processing tool B waits for contact with the end surface of the plate glass A.
  • the first polishing position refers to the time from when the processing tool B comes into contact with the starting end A1 of the plate glass A when processing is started until the predetermined distance on the end surface of the plate glass A is relatively moved.
  • the second polishing position refers to the position of the processing tool B where the processing tool B continuously polishes to the end portion A2 of the glass sheet A after the predetermined distance is moved at the first polishing position.
  • the retracted position refers to a position where the processing tool B is retracted in the escape direction from the standby position.
  • the position control unit 7 includes a cam member 8 (cylindrical pinching cam) and a cam follower 9 (arm control member) in order to control the position of the processing tool B as described above.
  • the cam member 8 is rotationally driven by a cam member rotation motor 10.
  • the cam member rotation motor 10 is a servo motor, for example.
  • the cam member 8 is rotationally driven by a cam member rotation motor 10 at a designated speed (designated phase).
  • the servo motor can be equipped with a speed reducer.
  • the cam follower 9 includes a first cam follower 9a and a second cam follower 9b that are spaced apart at a constant interval.
  • the cam followers 9 a and 9 b are connected to the second arm portion 3 b of the arm member 3.
  • each cam follower 9a, 9b is comprised so that interlocking with the arm member 3 is possible.
  • Each cam follower 9a, 9b is displaced along the rotation axis direction (arrow J1 direction or arrow J2 direction) of the cam member 8 following the rotating cam member 8.
  • the processing tool B moves in the pressing direction (arrow K1 direction).
  • the arm member 3 rotates in conjunction with the cam followers 9a and 9b displaced in the arrow J2 direction
  • the processing tool B moves in the escape direction (arrow K2 direction).
  • the cam member 8 is a cylindrical end face cam, and has a first cam surface 8a and a second cam surface 8b opposed to the first cam surface 8a.
  • the first cam surface 8 a is a surface on one side of the cam member 8 in the rotation axis direction.
  • the first cam surface 8a can contact the first cam follower 9a while the cam member 8 rotates.
  • the second cam surface 8b is the other side surface of the cam member 8 in the rotation axis direction.
  • the second cam surface 8b can contact the second cam follower 9b while the cam member 8 rotates.
  • the contact position and contact state between the first cam surface 8a and the first cam follower 9a and the contact position and contact state between the second cam surface 8b and the second cam follower 9b change.
  • the processing tool B sequentially moves to the standby position, the first polishing position, the second polishing position, and the retracted position.
  • the cam member 8 is driven by the cam member rotation motor 10 to generate a first rotation phase (0 °), a second rotation phase (45 °), a third rotation phase (120 °), and a first rotation phase. Rotate sequentially to 4 rotation phases (240 °).
  • the processing tool B moves to the standby position. Further, when the cam member 8 rotates to the second rotation phase, the processing tool B moves to the first polishing position. Further, when the cam member 8 rotates to the third rotation phase, the processing tool B moves to the second polishing position. Then, when the cam member 8 rotates to the fourth rotation phase, the processing tool B moves to the retracted position.
  • the processing tool B is disposed at a predetermined position (the standby position in the present embodiment) and does not move.
  • the depression angle ⁇ constituted by the feed direction C and the longitudinal direction of the first arm portion 3a of the arm member 3 is, for example, 30 °.
  • the arm member 3 is unlocked at the first polishing position, and the arm member 3 is arm free (unlocked).
  • the pressing force generator 5 applies a couple to the arm member 3 to generate a pressing force on the processing tool B.
  • the portion of the cam member 8 interposed between the first cam follower 9a and the second cam follower 9b As shown in FIGS. 3 and 4b, at the second rotational phase (45 °) corresponding to the first polishing position, the portion of the cam member 8 interposed between the first cam follower 9a and the second cam follower 9b.
  • the width (hereinafter sometimes referred to as “cam width at the second rotational phase”) is smaller than the distance between the first cam follower 9a and the second cam follower 9b. Therefore, the first cam follower 9a and the second cam follower 9b are within a certain distance (the distance obtained by subtracting the cam width at the second rotational phase from the interval between the cam followers 9a and 9b), and in the direction of the arrow J1 or the arrow J2
  • the arm member 3 is free to rotate.
  • the stroke of the arm member 3 is limited when the first cam follower 9a contacts the first cam surface 8a or the second cam follower 9b contacts the second cam surface 8b.
  • the processing tool B moves in the pressing direction from the standby position.
  • the position at which the processing tool B has moved to the maximum in the pressing direction (the position of the solid line in FIG. 5b), that is, the state where the first cam follower 9a is in contact with the first cam surface 8a (the solid line in the second rotational phase of FIG. 3).
  • the depression angle formed by the feed direction C and the longitudinal direction of the first arm portion 3a of the arm member 3 is ⁇ + ⁇ 1.
  • the processing tool B moves in the escape direction from the standby position.
  • the position at which the processing tool B has moved to the maximum in the escape direction (the position indicated by the two-dot chain line in FIG. 5b), that is, the state where the second cam follower 9b is in contact with the second cam surface 8b (the second rotational phase in FIG. 3).
  • the depression angle formed by the feed direction C and the longitudinal direction of the first arm portion 3a of the arm member 3 is ⁇ - ⁇ 1.
  • This ⁇ 1 is, for example, less than 1 °. ⁇ 1 can be adjusted by changing the distance obtained by subtracting the cam width in the second rotational phase from the interval between the cam followers 9a and 9b.
  • the stroke of the arm member 3 is limited by the above ⁇ 1.
  • the movable distance (hereinafter referred to as “stroke”) S of the processing tool B is also limited (see FIG. 6).
  • the limit of the stroke S of the processing tool B is that the processing tool B comes into contact with the starting end A1 of the plate glass A, and the processing tool B has a predetermined distance (hereinafter referred to as “initial polishing distance”) L along the end surface of the plate glass A.
  • the stroke S of the processing tool B at the first polishing position can be limited to 0.03 mm or more and 0.05 mm or less.
  • the initial polishing distance L in the processing tool B can be set to 5 mm or more and 40 mm or less.
  • the machining allowance D (see FIG. 6) of the processing tool B can be 0.03 mm or more and 0.05 mm or less.
  • the width of the portion of the cam member 8 interposed between the first cam follower 9a and the second cam follower 9b (hereinafter referred to as “third”).
  • the cam width in the rotational phase ” may be smaller than the distance between the first cam follower 9a and the second cam follower 9b.
  • the cam width in the third rotational phase is set smaller than the cam width in the second rotational phase.
  • the first cam follower 9a and the second cam follower 9b are displaced in the direction of the arrow J1 or the arrow J2 within a certain distance (the distance obtained by subtracting the cam width in the third rotational phase from the interval between the cam followers 9a and 9b). It is free and the arm member 3 is in a rotatable free state.
  • the stroke of the arm member 3 is limited when the first cam follower 9a contacts the first cam surface 8a or the second cam follower 9b contacts the second cam surface 8b.
  • the processing tool B moves in the pressing direction from the standby position due to the displacement of the cam followers 9a and 9b in the direction of the arrow J1.
  • the position at which the processing tool B has moved to the maximum in the pressing direction (the position indicated by the solid line in FIG. 5c), that is, the state where the first cam follower 9a is in contact with the first cam surface 8a (the solid line in the third rotation phase in FIG. 3).
  • the depression angle formed by the feeding direction C and the longitudinal direction of the first arm portion 3a of the arm member 3 is ⁇ + ⁇ 2. Further, due to the displacement of each cam follower 9a, 9b in the direction of arrow J2, the processing tool B moves in the escape direction from the standby position.
  • the position at which the processing tool B has moved to the maximum in the escape direction (the position of the two-dot chain line in FIG. 5c), that is, the state where the second cam follower 9b is in contact with the second cam surface 8b (in the third rotational phase of FIG.
  • the depression angle formed by the feeding direction C and the longitudinal direction of the first arm portion 3a of the arm member 3 is ⁇ 2.
  • ⁇ 2 is larger than ⁇ 1 ( ⁇ 2> ⁇ 1), for example, 1 °.
  • ⁇ 2 can be adjusted by changing the distance obtained by subtracting the cam width in the third rotational phase from the interval between the cam followers 9a and 9b.
  • the stroke of the arm member 3 is limited by the above ⁇ 2. Accordingly, the stroke of the processing tool B is also limited.
  • the restriction of the stroke of the processing tool B is continuously executed until the processing tool B reaches the terminal end A2 of the plate glass A after changing to the third rotational phase.
  • the stroke of the processing tool B at the second polishing position is limited to 3 mm or less.
  • the processing allowance (polishing allowance) of the processing tool B is set to 0.03 mm or more and 0.05 mm or less similarly to the case of the first polishing position.
  • FIG. 1 Referring to FIG. 1, FIG. 3, FIG. 4d, FIG. 5d, and FIG. 7, the relationship between the fourth rotational phase and the retracted position and the operation thereof will be described below.
  • the plate glass processing apparatus 1 normally causes the processing tool B to polish the end surface in a posture in which the end surface of the plate glass A is parallel to the feed direction C, as shown in FIG.
  • polishing with the processing tool B may be performed in a posture in which the end surface of the plate glass A is inclined with respect to the feeding direction C.
  • FIG. 7 This state is shown in FIG. As shown in FIG. 7, the terminal end portion A2 of the end surface of the plate glass A deviates from the track R at the time of parallel conveyance to the side closer to the processing tool B.
  • the processing tool B removes the end surface of the sheet glass A. By scratching, the end face or the processing tool B may be damaged. For this reason, when polishing is completed, it is necessary to temporarily retract the processing tool B in the escape direction with respect to the end surface of the plate glass A and then return to the standby position. For this reason, the processing tool B can move to the retracted position.
  • the width of the portion of the cam member 8 interposed between the first cam follower 9a and the second cam follower 9b is the first cam follower 9a.
  • the distance between the second cam follower 9b is the first cam follower 9a.
  • the first cam follower 9a contacts the first cam surface 8a
  • the second cam follower 9b contacts the second cam surface 8b, whereby the first cam follower 9a and the second cam follower 9b are displaced in the directions of arrows J1 and J2. Is restricted, and the arm member 3 enters a locked state in which it cannot rotate.
  • the first cam surface 8a (or the first cam surface 8a in the fourth rotational phase) with respect to the position of the first cam surface 8a (or the second cam surface 8b) in the first rotational phase.
  • the position of the two cam surfaces 8b) is offset by a predetermined distance in the direction of the arrow J2. Therefore, following the cam member 8 rotated to the fourth rotation phase, the first cam follower 9a and the second cam follower 9b are displaced in the direction of the arrow J2, and the processing tool B is moved in the escape direction from the standby position.
  • the included angle formed by the feed direction C and the longitudinal direction of the first arm portion 3a of the arm member 3 is ⁇ - ⁇ .
  • is the same angle as ⁇ 2. That is, the position ( ⁇ 2) at which the processing tool B has moved to the maximum in the escape direction at the second polishing position and the retracted position ( ⁇ ) of the processing tool B are the same position.
  • is an offset of the first cam surface 8a (or second cam surface 8b) in the fourth rotational phase with respect to the position of the first cam surface 8a (or second cam surface 8b) in the first rotational phase. It can be adjusted by changing the distance.
  • This plate glass manufacturing method includes a step of controlling the processing tool B to sequentially move to the standby position, the first polishing position, the second polishing position, and the retracted position.
  • the plate glass processing apparatus 1 moves the processing tool B to the standby position.
  • the cam member 8 is rotated to the first rotation phase by driving the cam member rotation motor 10.
  • the processing tool B moves to the standby position.
  • the arm member 3 is in a locked state, and the processing tool B does not move freely.
  • the plate glass processing apparatus 1 moves the processing tool B to the first polishing position.
  • the plate glass processing apparatus 1 rotates the cam member rotation motor 10 in accordance with the timing at which the processing tool B comes into contact with the starting end A1 of the plate glass A.
  • the cam member rotation motor 10 is driven, the cam member 8 rotates to the second rotation phase.
  • the processing tool B is disposed at the first polishing position. By moving to a 1st grinding
  • the plate glass processing apparatus 1 drives the synchronous motor 2 to rotate the processing tool B.
  • FIG. 6 shows the behavior of the processing tool B in the first polishing position.
  • the processing tool B arranged at the first polishing position comes into contact with the starting end A1 of the plate glass A conveyed along the feeding direction C.
  • the processing tool B tends to leave the starting end A1 by this contact.
  • the second cam follower 9 b connected to the second arm portion 3 b of the arm member 3 contacts the second cam surface 8 b of the cam member 8. Accordingly, the movement of the second arm portion 3b in the escape direction is restricted, and the processing tool B is also regulated so as not to be separated from the end surface of the plate glass A according to this.
  • the processing tool B can maintain the contact with respect to the end surface of the plate glass A, and can further continue processing the end surface with a processing allowance D (polishing allowance).
  • a processing allowance D polishing allowance
  • the pressing force generator 5 generates a pressing force immediately before the processing tool B comes into contact with the starting end A1 of the plate glass A, and thereafter continues to apply the pressing force until the processing tool B reaches the terminal end A2. .
  • the plate glass processing apparatus 1 changes the processing tool B to the second polishing position. Specifically, the plate glass processing apparatus 1 rotates the cam member rotation motor 10 while maintaining the contact of the processing tool B with the plate glass A. As the cam member rotation motor 10 is driven, the cam member 8 rotates to the third rotation phase. The processing tool B moves to the second polishing position in conjunction with the cam member 8 rotated to the third rotational phase. At the second polishing position, the processing tool B continues to polish while being in contact with the end face of the plate glass A.
  • the pressing force generator 5 is moved from the processing tool B to the plate glass A. While generating a pressing force that acts on the end face of the shock absorber 6, the shock absorber 6 buffers this impact force.
  • the plate glass processing apparatus 1 moves the processing tool B to the retracted position, and finishes the polishing.
  • the cam member 8 is rotated to the fourth rotation phase by driving of the cam member rotation motor 10.
  • the processing tool B moves to the retreat position in the escape direction.
  • the arm member 3 is in a locked state, and the processing tool B does not move freely.
  • the sheet glass processing apparatus 1 can polish a plurality of sheet glasses A conveyed at a predetermined interval by repeating the above steps. it can.
  • an open-loop control type synchronous motor 2 is employed as a motor for driving the processing tool B, and the processing tool B is rotationally driven by the control, thereby processing the processing tool B.
  • the bouncing of the processing tool B at the start can be prevented. That is, since the synchronous motor 2 is not a feedback control type like the servo motor, even if the processing tool B comes into contact with the starting end A1 of the plate glass A, the output torque is rapidly increased like the servo motor. Control is not performed. Thereby, when the processing tool B is driven by the servo motor, it is possible to prevent the bouncing of the processing tool B that has occurred at the start of processing.
  • the stroke S of the processing tool B is limited by the position control unit 7 so as not to leave the end surface of the glass sheet A while polishing at an initial polishing distance L (a distance of 5 mm to 40 mm from the start end A1). (0.03 mm to 0.05 mm).
  • an initial polishing distance L a distance of 5 mm to 40 mm from the start end A1.
  • this invention is not limited to the structure of the said embodiment, It is not limited to the above-mentioned effect.
  • the present invention can be variously modified without departing from the gist of the present invention.
  • the first rotation phase is 0 °
  • the second rotation phase is 45 °
  • the third rotation phase is 120 °
  • the fourth rotation phase is 240 °.
  • the first rotation phase to the fourth rotation phase can be appropriately set according to the demand for controlling the operation of the processing tool B.
  • ⁇ 2 is 1 °, but it may be other than 1 °. Moreover, although ⁇ 1 was less than 1 °, it may be 1 ° or more as long as it is smaller than ⁇ 2. ⁇ is the same angle as ⁇ 2, but ⁇ may be an angle different from ⁇ 2.
  • a grindstone is exemplified as the processing tool B, and the processing tool B performs polishing on the end surface of the plate glass A, but the present invention is not limited to this. As long as the end surface of the plate glass A can be processed, a processing tool B other than a grindstone can be applied.

Abstract

This plate glass processing device (1) is provided with: a synchronous motor (2) that drives and rotates a processing tool (B); an arm member (3) that supports the processing tool (B) so as to be rotatable; a support shaft member (4) that supports the arm member (3) so as to be rotatable; and a pressing force generation part (5) that applies force couple to the arm member (3) to generate a pressing force acting from the processing tool (B) on an end face of a plate glass (A).

Description

板ガラス加工装置Sheet glass processing equipment
 本発明は、板ガラスの端面を加工具で加工する板ガラス加工装置に関する。 The present invention relates to a sheet glass processing apparatus for processing an end face of a sheet glass with a processing tool.
 近年、液晶ディスプレイ等の製造効率の向上や大型化の要請に応じるべく、これに使用される板ガラスのサイズは大型化する傾向にある。板ガラスのサイズを大きくすれば、1枚の板ガラスから取れるガラス基板の枚数が多くなるため、大型液晶ディスプレイに対応したガラス基板を効率良く製作することが可能になる。 In recent years, in order to meet demands for improving the production efficiency and increasing the size of liquid crystal displays and the like, the size of the plate glass used for this tends to increase. If the size of the plate glass is increased, the number of glass substrates that can be taken from a single plate glass increases, so that it is possible to efficiently manufacture a glass substrate corresponding to a large liquid crystal display.
 板ガラスの端部に傷が有ると、その傷から割れ等が発生するため、これを防止するために板ガラスの端部に対して面取り加工が施される。また、時間当たりの処理数量を増やし製造コストを下げるために、板ガラスの搬送速度(加工速度)の高速化が検討されている。 If there is a scratch on the edge of the plate glass, cracks or the like are generated from the scratch. Therefore, the edge of the plate glass is chamfered to prevent this. Further, in order to increase the processing quantity per hour and lower the manufacturing cost, increasing the conveyance speed (processing speed) of the plate glass is being studied.
 面取り加工された板ガラスの端面を顕微鏡で観察すれば、板ガラスの端面に微細な凹凸による起伏を確認できる。このような板ガラスは、その後の工程(組立工程)で、この起伏に起因する欠けやクラックを生じるおそれがあり、板ガラスの端面が均一になるように研磨加工する必要がある。しかしながら、板ガラスの端面が均一になるように研磨加工するには、板ガラスの研磨代を大きめに設定しなければならないため、研磨時間が長くなり、板ガラスの搬送速度(加工速度)を更に上げることが困難である。 If the end surface of the chamfered plate glass is observed with a microscope, the undulation due to fine irregularities can be confirmed on the end surface of the plate glass. Such a plate glass may cause chipping or cracks due to the undulations in the subsequent process (assembly process), and must be polished so that the end surface of the plate glass is uniform. However, in order to perform polishing so that the end surface of the plate glass is uniform, the polishing allowance of the plate glass must be set larger, so that the polishing time becomes longer and the conveyance speed (processing speed) of the plate glass can be further increased. Have difficulty.
 このように、板ガラスの搬送速度(加工速度)を高速にするには限界があり、無理に速度を増加させようとすると、例えば、板ガラスの端面に存在する微視的な凹凸による起伏が原因で発生する衝撃力(板ガラスの端面から加工具に作用する衝撃力)によって加工具が弾かれ、板ガラスの端面から加工具が離れ(以下、この事象を「バウンド」という)、板ガラスの端面に研磨されない部分が残存してしまう。 As described above, there is a limit to increasing the conveyance speed (processing speed) of the plate glass, and forcibly increasing the speed is caused by, for example, undulations caused by microscopic unevenness existing on the end surface of the plate glass. The processing tool is repelled by the generated impact force (impact force acting on the processing tool from the end face of the plate glass), the processing tool is separated from the end face of the plate glass (hereinafter, this phenomenon is called “bound”), and is not polished on the end face of the plate glass. The part remains.
 上記のような加工具のバウンドを防ぎ、高速で板ガラスの端面を加工する技術として、特許文献1には、加工具を支持する回転可能なアーム部材と、このアーム部材を介して加工具から板ガラスの端面に作用する押圧力を発生する押圧力発生要素と、板ガラスの端面から加工具に対して作用する衝撃力を緩衝する緩衝要素とを備えた板ガラス加工装置が開示されている。この板ガラス加工装置は、板ガラスの端面から加工具に対して作用する衝撃力を緩衝要素により緩衝することで、加工具のバウンドを防止し、板ガラスを高速搬送しつつその端面の研磨を行うことができる。 As a technique for preventing the bouncing of the processing tool as described above and processing the end face of the plate glass at high speed, Patent Document 1 discloses a rotatable arm member that supports the processing tool, and the plate glass from the processing tool via the arm member. There is disclosed a sheet glass processing apparatus including a pressing force generating element that generates a pressing force that acts on the end surface of the sheet glass, and a buffer element that buffers an impact force that acts on the processing tool from the end surface of the sheet glass. This plate glass processing apparatus can absorb the impact force acting on the processing tool from the end surface of the plate glass by the buffer element, thereby preventing the processing tool from bouncing and polishing the end surface while conveying the plate glass at a high speed. it can.
国際公開WO2013/187400号International Publication WO2013 / 187400
 ところで、上記の板ガラス加工装置は、モータにより加工具を回転させながら板ガラスの端面を加工(研磨)する。板ガラスの端面に対する最適な加工を実現するには、加工具に適したモータを選定する必要がある。このことに鑑み、本発明者は、板ガラスの端面に対して良好な加工が可能となるモータの条件について詳細な検討を行った。その結果、特定のモータを使用した場合、特に加工開始時において以下のような現象が発生することが判明した。以下にその詳細を説明する。 By the way, the plate glass processing apparatus described above processes (polishs) the end surface of the plate glass while rotating the processing tool by a motor. In order to realize the optimum processing for the end face of the plate glass, it is necessary to select a motor suitable for the processing tool. In view of this, the present inventor has made a detailed study on the motor conditions that enable favorable processing on the end face of the plate glass. As a result, it has been found that the following phenomenon occurs when a specific motor is used, particularly at the start of machining. Details will be described below.
 図8は、加工開始時における加工具の挙動を示すものである。この図8に示すように、加工対象たる板ガラスAは、送り方向Cに沿って搬送される。また、板ガラスAは、加工が開始される端部(以下「始端部」という)A1から、加工が終了する端部(以下「終端部」という)A2までの全範囲で、その端面が加工具Bにより加工されるものである。この場合において、加工具Bは、板ガラスAの始端部A1に接触した後、板ガラスAの端面に接触した状態を維持できずにバウンドし、さらにはこのバウンドが繰り返されるという現象が見受けられた。このため、板ガラスAの端面において、始端部A1側の一部が加工されないということが判った。 FIG. 8 shows the behavior of the processing tool at the start of processing. As shown in FIG. 8, the plate glass A to be processed is conveyed along the feed direction C. Further, the plate glass A has an end surface in the entire range from an end portion (hereinafter referred to as “starting end portion”) A1 at which processing is started to an end portion (hereinafter referred to as “terminal end portion”) A2 at which processing is completed. It is processed by B. In this case, after the processing tool B contacted the start end part A1 of the plate glass A, it bounced without maintaining the state of contact with the end face of the plate glass A, and a phenomenon that this bounce was repeated was observed. For this reason, it turned out that in the end surface of the plate glass A, a part by the side of the start end part A1 is not processed.
 本発明者は、この加工開始時における加工具Bのバウンドを詳細に観察した結果、その原因を特定することができた。すなわち、本発明者は、加工具Bを駆動するモータにサーボモータが採用される場合に、このバウンドが生じることを特定できたのである。以下、このバウンドが生じる理由について説明する。 The present inventor was able to identify the cause as a result of observing the bouncing of the processing tool B in detail at the start of the processing. That is, the present inventor has been able to specify that this bounce occurs when a servo motor is employed as the motor for driving the processing tool B. Hereinafter, the reason why this bounce occurs will be described.
 サーボモータは、速度フィードバック制御(クローズドループ制御)を採用している。具体的には、サーボモータは、その回転速度を検出可能な検出装置(エンコーダ)と、検出装置によって検出された回転速度値を、目標値と比較する比較装置とを備える。このサーボモータは、比較装置による比較によって、その回転速度が目標値を維持できるように、その出力トルクが制御されるものである。 Servo motor adopts speed feedback control (closed loop control). Specifically, the servo motor includes a detection device (encoder) capable of detecting the rotation speed and a comparison device that compares the rotation speed value detected by the detection device with a target value. The output torque of the servo motor is controlled by the comparison by the comparison device so that the rotation speed can maintain the target value.
 加工開始時においては、加工具Bは、板ガラスAの始端部A1に当接することで、その回転速度を低下させる。サーボモータは、この回転速度の低下を補償するために、その出力トルクを急激に増加させる。この出力トルクの増加により、加工具Bが板ガラスAの端面に加える力が短時間で増加し、これに応じて板ガラスAからの反力も増加する。そうすると、加工具Bを支持するアーム部材に、その回転軸まわりのモーメントが生じ、その作用によって加工具Bが板ガラスAの端面から離れてしまっていた。 At the start of processing, the processing tool B is brought into contact with the starting end A1 of the plate glass A to reduce its rotational speed. The servo motor abruptly increases its output torque in order to compensate for this decrease in rotational speed. Due to the increase in the output torque, the force applied by the processing tool B to the end surface of the plate glass A increases in a short time, and the reaction force from the plate glass A increases accordingly. Then, a moment around the rotation axis is generated in the arm member that supports the processing tool B, and the processing tool B is separated from the end surface of the plate glass A by the action.
 その後、加工具Bは、押圧力発生要素による押圧力により、板ガラスAの端面に接触する。この接触により、加工具Bの回転速度が再び低下すると、サーボモータは再び出力トルクを増加させ、これによって上記のバウンドが繰り返されてしまっていた。このように、加工開始時に複数回のバウンドが生じることにより、板ガラスAの始端部A1の近傍における端面の複数箇所に、加工が行われない部分が残存してしまうという結果となった。 Thereafter, the processing tool B comes into contact with the end surface of the plate glass A by the pressing force generated by the pressing force generating element. When the rotation speed of the processing tool B decreases again due to this contact, the servo motor increases the output torque again, and thus the above bounce is repeated. As described above, a plurality of bounces occurred at the start of processing, and as a result, portions that were not processed remained in a plurality of locations on the end surface in the vicinity of the starting end portion A1 of the plate glass A.
 以上のような加工開始時における加工具Bのバウンドは、サーボモータによるトルクの変動によって強制的に発生するものである。したがって、このバウンドは、板ガラスAの端面における微小な凹凸による起伏から発生する従来のバウンドと比べて格段に大きなものとなる。このため、従来の板ガラス加工装置における緩衝要素では、加工開始時に生じる加工具Bのバウンドを防止することができず、別の手段を講じる必要があった。 The bouncing of the processing tool B at the start of processing as described above is forcibly generated by torque fluctuations caused by the servo motor. Therefore, this bounce is much larger than the conventional bounce that occurs due to undulations caused by minute irregularities on the end face of the plate glass A. For this reason, in the buffer element in the conventional plate glass processing apparatus, the bouncing of the processing tool B generated at the start of processing cannot be prevented, and another means has to be taken.
 本発明は上記の事情に鑑みてなされたものであり、板ガラスの端面を加工する場合において、加工開始時における加工具のバウンドを防止することを課題とする。 This invention is made | formed in view of said situation, and makes it a subject to prevent the bouncing of the processing tool at the time of a process start, when processing the end surface of a plate glass.
 本発明は、上記の課題を解決するためのものであり、板ガラスの端面を加工具で加工する板ガラス加工装置であって、前記加工具を回転駆動する同期モータと、前記加工具を回転可能に支持するアーム部材と、前記アーム部材を回転可能に支持する支持軸部材と、前記アーム部材に偶力を与えることにより、前記加工具から前記板ガラスの端面に対して作用する押圧力を発生する押圧力発生部とを備えるものである。 The present invention is to solve the above-described problems, and is a plate glass processing apparatus that processes an end surface of a plate glass with a processing tool, and a synchronous motor that rotationally drives the processing tool, and the processing tool can be rotated. An arm member to be supported, a support shaft member that rotatably supports the arm member, and a couple force applied to the arm member to generate a pressing force that acts on the end surface of the plate glass from the processing tool. A pressure generating unit.
 かかる構成によれば、支持軸部材によってアーム部材を回転可能に支持するとともに、このアーム部材を介して押圧力発生部による押圧力を加工具に作用させることで、加工具は、板ガラスの端面を常時定圧で加工することができる。また、本発明では、この加工具を回転駆動するモータとして同期モータを採用した。オープンループ制御式の同期モータを使用することにより、サーボモータを使用することなく加工具を回転駆動することができる。したがって、加工開始時におけるモータのトルクの変動(増加)を防止することで、加工開始時における加工具のバウンドを防止することができる。 According to this structure, while supporting an arm member rotatably by a support shaft member, by making the pressing force by a pressing force generation part act on a processing tool via this arm member, a processing tool makes the end surface of a plate glass. It can always be processed at a constant pressure. In the present invention, a synchronous motor is employed as a motor for rotationally driving the processing tool. By using an open loop control type synchronous motor, the processing tool can be rotationally driven without using a servo motor. Therefore, the bouncing of the processing tool at the start of processing can be prevented by preventing fluctuation (increase) in the torque of the motor at the start of processing.
 また、板ガラス加工装置は、前記板ガラスの前記端面に対する前記加工具の位置を制御する位置制御部を更に備え、前記位置制御部は、前記加工具が前記板ガラスの始端部に接触して前記板ガラスの端面上の所定の距離を相対的に移動するまでの間、前記加工具が前記板ガラスの端面から離れないように、前記加工具のストロークを所定の値に制限するように構成され得る。 The plate glass processing apparatus further includes a position control unit that controls a position of the processing tool with respect to the end surface of the plate glass, and the position control unit is configured so that the processing tool comes into contact with a starting end portion of the plate glass and The stroke of the processing tool may be limited to a predetermined value so that the processing tool does not leave the end surface of the plate glass until the predetermined distance on the end surface moves relatively.
 このように、位置制御部によって加工開始時における加工具のストロークを制限することにより、加工具が始端部に接触した後に板ガラスの端面から離れることを確実に防止できる。 Thus, by restricting the stroke of the processing tool at the start of processing by the position control unit, it is possible to reliably prevent the processing tool from coming off the end surface of the plate glass after contacting the start end.
 この場合において、前記加工具のストロークは、0.03mm以上0.05mm以下に制限されることが望ましい。また、前記加工具が前記板ガラスに対して相対的に移動する前記所定の距離は、5mm以上40mm以下であることが望ましい。また、前記加工具が前記板ガラスに対して前記所定の距離を相対的に移動する間の加工代は、0.03mm以上0.05mm以下であることが望ましい。 In this case, the stroke of the processing tool is preferably limited to 0.03 mm or more and 0.05 mm or less. The predetermined distance by which the processing tool moves relative to the plate glass is preferably 5 mm or more and 40 mm or less. Moreover, it is desirable that the processing allowance while the processing tool moves relative to the plate glass relative to the predetermined distance is 0.03 mm or more and 0.05 mm or less.
 本発明によれば、板ガラスの端面を加工する場合において、加工開始時における加工具のバウンドを防止することができる。 According to the present invention, when processing the end face of the plate glass, it is possible to prevent the processing tool from bouncing at the start of processing.
図1は、本発明に係る板ガラス加工装置の一実施形態を示す上面模式図である。FIG. 1 is a schematic top view showing an embodiment of a sheet glass processing apparatus according to the present invention. 図2は、図1のII-II線からみた位置制御部の側面図である。FIG. 2 is a side view of the position control unit taken along line II-II in FIG. 図3は、カム部材の回転位相に対するカムフォロアの位置を示す図である。FIG. 3 is a diagram illustrating the position of the cam follower with respect to the rotational phase of the cam member. 図4aは、カム部材が第1の回転位相に回転した状態を示す。FIG. 4a shows a state in which the cam member is rotated to the first rotation phase. 図4bは、カム部材が第2の回転位相に回転した状態を示す。FIG. 4b shows the cam member rotated to the second rotational phase. 図4cは、カム部材が第3の回転位相に回転した状態を示す。FIG. 4c shows the cam member rotated to the third rotational phase. 図4dは、カム部材が第4の回転位相に回転した状態を示す。FIG. 4d shows a state where the cam member is rotated to the fourth rotational phase. 図5aは、待機位置にある加工具を示す。FIG. 5a shows the processing tool in the standby position. 図5bは、第1研磨位置にある加工具を示す。FIG. 5b shows the processing tool in the first polishing position. 図5cは、第2研磨位置にある加工具を示す。FIG. 5c shows the processing tool in the second polishing position. 図5dは、退避位置にある加工具を示す。FIG. 5d shows the processing tool in the retracted position. 図6は、第1研磨位置における加工具の挙動を示す上面模式図である。FIG. 6 is a schematic top view showing the behavior of the processing tool at the first polishing position. 図7は、板ガラスの端面が送り方向に対して傾斜した姿勢で、この端面を加工具により研磨する様子を示す上面模式図である。FIG. 7 is a schematic top view showing a state where the end face of the plate glass is inclined with respect to the feeding direction and the end face is polished by the processing tool. 図8は、サーボモータにより回転駆動される加工具の加工開始時における挙動を示す上面模式図である。FIG. 8 is a schematic top view showing the behavior at the start of machining of the machining tool rotated by the servo motor.
 以下、本発明を実施するための形態について図面を参照しながら説明する。図1乃至図7は、本発明に係る板ガラス加工装置の一実施形態を示す。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. 1 to 7 show an embodiment of a sheet glass processing apparatus according to the present invention.
 板ガラス加工装置1の加工対象となる板ガラスAは、矩形の板形状を有している。板ガラスAの板厚は例えば0.05mm~10mmである。しかしながら、本発明はこれに限定されない。本発明は、矩形以外の形状(例えば多角形)を有する板ガラスAの加工や、板厚が0.05mm~10mm以外である板ガラスAの加工にも適用し得る。 The plate glass A to be processed by the plate glass processing apparatus 1 has a rectangular plate shape. The plate thickness of the plate glass A is, for example, 0.05 mm to 10 mm. However, the present invention is not limited to this. The present invention can also be applied to processing of a glass sheet A having a shape other than a rectangle (for example, a polygon), and processing of a glass sheet A having a thickness other than 0.05 mm to 10 mm.
 板ガラスAの端面は、加工具Bによって加工される。加工具Bによる板ガラスAの端面加工は、面取り加工後の端面の凹凸を均一にする研磨処理であり得る。また、板ガラスAの端面加工は、板ガラスAの端面の面取り加工(研削処理)でもあり得る。 The end surface of the plate glass A is processed by the processing tool B. The end face processing of the plate glass A by the processing tool B may be a polishing process for making the unevenness of the end face after the chamfering process uniform. Further, the end surface processing of the plate glass A may be a chamfering processing (grinding process) of the end surface of the plate glass A.
 板ガラスAは加工具Bに対して相対的に移動する。例えば、板ガラス送り方向Cに沿って移動する板ガラスAに対して、加工具Bが固定された状態で加工を行う。また、固定された板ガラスAに対して、加工具Bが送り方向Cに沿って移動しながら加工を行い得る。加工具Bは、例えば回転駆動される砥石であり、砥石が回転しながら板ガラスAの端面を研磨加工する。 The plate glass A moves relative to the processing tool B. For example, the processing is performed in a state where the processing tool B is fixed to the plate glass A moving along the plate glass feeding direction C. Moreover, it can process with respect to the fixed plate glass A, the processing tool B moving along the feed direction C. FIG. The processing tool B is a grindstone that is rotationally driven, for example, and polishes the end surface of the plate glass A while the grindstone rotates.
 砥石の径が小さい程、板ガラスAと砥石との接触面積が小さくなるため、砥石が板ガラスAから受ける研磨抵抗は小さくなり、砥石は板ガラスAの端面を追従し易くなる。砥石との接触面積を小さくすることによって研磨抵抗を低減し得る。本実施形態において、加工具Bには、例えば直径150mmの砥石が使用され得る。 The smaller the diameter of the grindstone, the smaller the contact area between the plate glass A and the grindstone. Therefore, the grinding resistance received by the grindstone from the plate glass A becomes smaller, and the grindstone easily follows the end surface of the plate glass A. The polishing resistance can be reduced by reducing the contact area with the grindstone. In the present embodiment, for the processing tool B, for example, a grindstone having a diameter of 150 mm may be used.
 図1に示すように、板ガラス加工装置1は、加工具Bを回転駆動する同期モータ2と、加工具Bを回転可能に支持するアーム部材3と、このアーム部材3を支持する支持軸部材4と、加工具Bから板ガラスAの端面に対して作用する押圧力を発生させる押圧力発生部5と、加工具Bに加わる衝撃を吸収する緩衝部6と、加工具Bの位置を制御する位置制御部7とを主に備える。 As shown in FIG. 1, a plate glass processing apparatus 1 includes a synchronous motor 2 that rotationally drives a processing tool B, an arm member 3 that rotatably supports the processing tool B, and a support shaft member 4 that supports the arm member 3. A pressing force generator 5 that generates a pressing force acting on the end surface of the glass sheet A from the processing tool B, a buffer unit 6 that absorbs an impact applied to the processing tool B, and a position for controlling the position of the processing tool B. The control part 7 is mainly provided.
 同期モータ2は、交流電流により生じる回転磁界と電機子電流により生じる磁界との回転速度差に同期して回転するものある。この同期モータ2は、クローズドループ制御(フィードバック制御)を使用することなく、オープンループ制御により加工具Bを回転駆動する。同期モータ2は、アーム部材3の先端部に支持されている。同期モータ2の駆動軸は、加工具Bに連結されている。 The synchronous motor 2 rotates in synchronization with the rotational speed difference between the rotating magnetic field generated by the alternating current and the magnetic field generated by the armature current. The synchronous motor 2 rotationally drives the processing tool B by open loop control without using closed loop control (feedback control). The synchronous motor 2 is supported at the tip of the arm member 3. The drive shaft of the synchronous motor 2 is connected to the processing tool B.
 アーム部材3は、支持軸部材4によって回転可能に支持されている。アーム部材3は、第1アーム部3aと、この第1アーム部3aに連結される第2アーム部3bとを有する。第1アーム部3aはその一方の端部にて同期モータ2を支持しており、この同期モータ2を介して加工具Bを支持している。第1アーム部3aの他方の端部は、第2アーム部3bに連結されている。板ガラスAの送り方向Cとアーム部材3の第1アーム部3aとによって構成される夾角θ(図1参照)は25°~35°であることが好ましい。第2アーム部3bの一方の端部は、支持軸部材4を介して第1アーム部3aの他方の端部に連結(固定)されている。また、この第2アーム部3bには、位置制御部7が連結されている。 The arm member 3 is rotatably supported by the support shaft member 4. The arm member 3 includes a first arm portion 3a and a second arm portion 3b connected to the first arm portion 3a. The first arm portion 3 a supports the synchronous motor 2 at one end thereof, and supports the processing tool B via the synchronous motor 2. The other end of the first arm portion 3a is connected to the second arm portion 3b. The depression angle θ (see FIG. 1) formed by the feeding direction C of the glass sheet A and the first arm portion 3a of the arm member 3 is preferably 25 ° to 35 °. One end portion of the second arm portion 3 b is connected (fixed) to the other end portion of the first arm portion 3 a via the support shaft member 4. The position control unit 7 is connected to the second arm unit 3b.
 アーム部材3の回転により、加工具Bは、板ガラスAの端面に対して押し当てる方向(図1に示すK1方向:押し当て方向)に移動し、又は板ガラスAの端面に対して逃げる方向(図1に示すK2方向:逃げ方向)に移動する。 As the arm member 3 rotates, the processing tool B moves in the direction of pressing against the end surface of the plate glass A (K1 direction shown in FIG. 1: the pressing direction) or escapes from the end surface of the plate glass A (see FIG. 1 in the K2 direction: the escape direction).
 支持軸部材4は、第1アーム部3aの他方の端部と第2アーム部3bの一方の端部を連結している。これにより第1アーム部3aと第2アーム部3bとは一定の夾角をもって連結される。支持軸部材4は、押圧力発生部5による押圧力及び位置制御部7による制御によってアーム部材3が回転する際、この回転に追従して回転するように構成される。 The support shaft member 4 connects the other end of the first arm portion 3a and one end of the second arm portion 3b. Thereby, the 1st arm part 3a and the 2nd arm part 3b are connected with a fixed depression angle. The support shaft member 4 is configured to rotate following the rotation of the arm member 3 when the arm member 3 is rotated by the pressing force of the pressing force generator 5 and the control of the position controller 7.
 押圧力発生部5は、アーム部材3の第1アーム部3aに偶力を与えることにより、加工具Bから板ガラスAの端面に対して作用する押圧力を発生させる。例えば、押圧力発生部5は低摺動抵抗エアシリンダであり得る。本実施形態においては、低摺動性による高応答及びピストンレスによる長寿命等を考慮して、低摺動抵抗エアシリンダとしてダイヤフラムシリンダを使用し得る。 The pressing force generator 5 generates a pressing force that acts on the end surface of the plate glass A from the processing tool B by applying a couple to the first arm 3 a of the arm member 3. For example, the pressing force generator 5 can be a low sliding resistance air cylinder. In the present embodiment, a diaphragm cylinder can be used as a low sliding resistance air cylinder in consideration of high response due to low slidability and long life due to pistonless.
 なお、板ガラス加工装置1は、ガラス状態測定部(図示せず)を更に備える。ガラス状態測定部は、板ガラス加工装置1に流入する板ガラスAのガラス状態を測定する。例えば、このガラス状態測定部は、板ガラス加工装置1に流入する板ガラスAの端面にローラを接触させることにより、板ガラスAの状態を検出し得る。押圧力発生部5は、このガラス状態測定部によって測定された板ガラスAの状態に応じて、加工具Bに対する押圧力を発生させる。 In addition, the plate glass processing apparatus 1 is further provided with a glass state measuring unit (not shown). The glass state measuring unit measures the glass state of the plate glass A flowing into the plate glass processing apparatus 1. For example, the glass state measuring unit can detect the state of the plate glass A by bringing a roller into contact with the end surface of the plate glass A flowing into the plate glass processing apparatus 1. The pressing force generator 5 generates a pressing force on the processing tool B according to the state of the plate glass A measured by the glass state measuring unit.
 緩衝部6は、板ガラスAの端面から加工具Bに対して作用する衝撃力を緩衝する。板ガラスAの端面から加工具Bに対して作用する衝撃力は、例えば、板ガラスAの端面に存在する微視的な凹凸による起伏が原因で発生する。 The buffer section 6 buffers the impact force acting on the processing tool B from the end surface of the plate glass A. The impact force acting on the processing tool B from the end surface of the plate glass A is generated due to, for example, undulation caused by microscopic unevenness existing on the end surface of the plate glass A.
 緩衝部6は、ダンパー要素として機能し、例えばダッシュポットであり得る。本実施形態において、緩衝部6は、非密閉式ウォーターダッシュポットであり、水がピストンとチューブの隙間をすり抜ける際の抵抗を緩衝機能として利用し得る。例えば、緩衝部6が逆止弁を備えることによって、緩衝部6は、板ガラスAの端面から加工具Bに対して作用する第1の力と加工具Bから板ガラスAの端面に対して作用する第2の力とのうち、第1の力のみを緩衝する(ここで、第1の力は矢印Eの方向に作用し、第2の力は矢印Fの方向に作用する)。 The buffer unit 6 functions as a damper element and can be, for example, a dashpot. In the present embodiment, the buffer unit 6 is a non-sealed water dashpot, and can utilize the resistance when water passes through the gap between the piston and the tube as a buffer function. For example, when the buffer unit 6 includes a check valve, the buffer unit 6 acts on the end surface of the plate glass A from the first tool that acts on the processing tool B from the end surface of the plate glass A. Of the second force, only the first force is buffered (here, the first force acts in the direction of arrow E and the second force acts in the direction of arrow F).
 緩衝部6は、アーム部材3に作用する力をダッシュポットに伝達するリンク機構(図示せず)を備え得る。リンク機構としては、例えばスコットラッセルリンク機構が採用される。緩衝部6がスコットラッセルリンク機構を備える場合には、アーム部材3による水平方向に沿った動きをピストンによる鉛直方向に沿った上下移動に変換することができる。その結果、緩衝部6として縦型水ダッシュポットを利用することが可能になる。 The buffer unit 6 may include a link mechanism (not shown) that transmits the force acting on the arm member 3 to the dashpot. As the link mechanism, for example, a Scott Russell link mechanism is employed. When the buffer unit 6 includes the Scott Russell link mechanism, the movement along the horizontal direction by the arm member 3 can be converted into the vertical movement by the piston along the vertical direction. As a result, a vertical water dashpot can be used as the buffer section 6.
 位置制御部7は、加工具Bが待機位置、第1研磨位置、第2研磨位置、そして退避位置へと順次移動するようにアーム部材3の位置を制御する。ここで、待機位置とは、加工具Bが板ガラスAの端面との接触を待機する位置をいう。第1研磨位置とは、加工が開始される際に、板ガラスAの始端部A1に加工具Bが接触してから、この板ガラスAの端面上の所定の距離を相対的に移動するまでの間、研磨を継続して行う、加工具Bの位置をいう。第2研磨位置とは、加工具Bが第1研磨位置において上記の所定の距離を移動した後に、板ガラスAの終端部A2まで研磨を継続して行う、加工具Bの位置をいう。また、退避位置とは、加工具Bが待機位置よりも逃げ方向に退避した位置をいう。 The position control unit 7 controls the position of the arm member 3 so that the processing tool B sequentially moves to the standby position, the first polishing position, the second polishing position, and the retracted position. Here, the standby position refers to a position where the processing tool B waits for contact with the end surface of the plate glass A. The first polishing position refers to the time from when the processing tool B comes into contact with the starting end A1 of the plate glass A when processing is started until the predetermined distance on the end surface of the plate glass A is relatively moved. The position of the processing tool B where polishing is continued. The second polishing position refers to the position of the processing tool B where the processing tool B continuously polishes to the end portion A2 of the glass sheet A after the predetermined distance is moved at the first polishing position. Further, the retracted position refers to a position where the processing tool B is retracted in the escape direction from the standby position.
 図2に示すように、位置制御部7は、上記のような加工具Bの位置を制御すべく、カム部材8(円筒挟込みカム)とカムフォロア9(アーム制御部材)とを備える。 As shown in FIG. 2, the position control unit 7 includes a cam member 8 (cylindrical pinching cam) and a cam follower 9 (arm control member) in order to control the position of the processing tool B as described above.
 カム部材8は、カム部材回転モータ10によって回転駆動される。本実施形態において、カム部材回転モータ10は、例えばサーボモータである。カム部材8は、カム部材回転モータ10により、指定された速度で指定された位相(角度)に回転駆動される。なお、サーボモータは減速機付であり得る。 The cam member 8 is rotationally driven by a cam member rotation motor 10. In the present embodiment, the cam member rotation motor 10 is a servo motor, for example. The cam member 8 is rotationally driven by a cam member rotation motor 10 at a designated speed (designated phase). The servo motor can be equipped with a speed reducer.
 カムフォロア9は、一定の間隔で離間する第1カムフォロア9aと第2カムフォロア9bとを含む。各カムフォロア9a,9bは、アーム部材3の第2アーム部3bに連結されている。これにより、各カムフォロア9a,9bは、アーム部材3に連動可能に構成される。各カムフォロア9a,9bは、回転するカム部材8に従動して、カム部材8の回転軸方向(矢印J1方向又は矢印J2方向)に沿って変位する。矢印J1方向に変位するカムフォロア9a,9bに連動してアーム部材3(第2アーム部3b)が回転すると、加工具Bは押し当て方向(矢印K1方向)に移動する。一方、矢印J2方向に変位するカムフォロア9a,9bに連動してアーム部材3が回転すると、加工具Bは逃げ方向(矢印K2方向)に移動する。 The cam follower 9 includes a first cam follower 9a and a second cam follower 9b that are spaced apart at a constant interval. The cam followers 9 a and 9 b are connected to the second arm portion 3 b of the arm member 3. Thereby, each cam follower 9a, 9b is comprised so that interlocking with the arm member 3 is possible. Each cam follower 9a, 9b is displaced along the rotation axis direction (arrow J1 direction or arrow J2 direction) of the cam member 8 following the rotating cam member 8. When the arm member 3 (second arm portion 3b) rotates in conjunction with the cam followers 9a and 9b displaced in the arrow J1 direction, the processing tool B moves in the pressing direction (arrow K1 direction). On the other hand, when the arm member 3 rotates in conjunction with the cam followers 9a and 9b displaced in the arrow J2 direction, the processing tool B moves in the escape direction (arrow K2 direction).
 カム部材8は、円筒端面カムであり、第1カム面8aと、この第1カム面8aと相対する第2カム面8bとを有する。第1カム面8aは、カム部材8の回転軸方向における一方側の面である。第1カム面8aは、カム部材8が回転する間に、第1カムフォロア9aに接触し得る。第2カム面8bは、カム部材8の回転軸方向における他方側の面である。第2カム面8bは、カム部材8が回転する間に、第2カムフォロア9bに接触し得る。 The cam member 8 is a cylindrical end face cam, and has a first cam surface 8a and a second cam surface 8b opposed to the first cam surface 8a. The first cam surface 8 a is a surface on one side of the cam member 8 in the rotation axis direction. The first cam surface 8a can contact the first cam follower 9a while the cam member 8 rotates. The second cam surface 8b is the other side surface of the cam member 8 in the rotation axis direction. The second cam surface 8b can contact the second cam follower 9b while the cam member 8 rotates.
 カム部材8の回転に連動して、第1カム面8aと第1カムフォロア9aとの接触位置及び接触状態、並びに第2カム面8bと第2カムフォロア9bとの接触位置及び接触状態が変化する。これにより、加工具Bは、待機位置、第1研磨位置、第2研磨位置、及び退避位置に順次移動する。具体的には、カム部材8は、カム部材回転モータ10の駆動で、第1の回転位相(0°)、第2の回転位相(45°)、第3の回転位相(120°)及び第4の回転位相(240°)に順次回転する。 In conjunction with the rotation of the cam member 8, the contact position and contact state between the first cam surface 8a and the first cam follower 9a and the contact position and contact state between the second cam surface 8b and the second cam follower 9b change. As a result, the processing tool B sequentially moves to the standby position, the first polishing position, the second polishing position, and the retracted position. Specifically, the cam member 8 is driven by the cam member rotation motor 10 to generate a first rotation phase (0 °), a second rotation phase (45 °), a third rotation phase (120 °), and a first rotation phase. Rotate sequentially to 4 rotation phases (240 °).
 カム部材8が第1の回転位相まで回転することにより、加工具Bは待機位置に移動する。また、カム部材8が第2の回転位相まで回転することにより、加工具Bは第1研磨位置に移動する。また、カム部材8が第3の回転位相まで回転することにより、加工具Bは第2研磨位置に移動する。そして、カム部材8が第4の回転位相まで回転することにより、加工具Bは退避位置に移動する。 When the cam member 8 rotates to the first rotation phase, the processing tool B moves to the standby position. Further, when the cam member 8 rotates to the second rotation phase, the processing tool B moves to the first polishing position. Further, when the cam member 8 rotates to the third rotation phase, the processing tool B moves to the second polishing position. Then, when the cam member 8 rotates to the fourth rotation phase, the processing tool B moves to the retracted position.
 図3、図4a及び図5aを参照して、第1の回転位相と待機位置との関係及びその作用について以下に説明する。 Referring to FIGS. 3, 4a and 5a, the relationship between the first rotation phase and the standby position and the operation thereof will be described below.
 図3及び図4aに示すように、第1の回転位相(0°)では、カム部材8のうち第1カムフォロア9aと第2カムフォロア9bとの間に介在する部位の幅は、第1カムフォロア9aと第2カムフォロア9bとの間隔に等しい。このため、第1カムフォロア9aが第1カム面8aに接触し、第2カムフォロア9bが第2カム面8bに接触することで、第1カムフォロア9a及び第2カムフォロア9bの矢印J1方向(加工具Bを押し当て方向に移動させるようにカムフォロア9a,9bが変位する方向)又は矢印J2方向(加工具Bを逃げ方向に移動させるようにカムフォロア9a,9bが変位する方向)への変位が規制され、アーム部材3は回転不能なロック状態となる。このため、第1の回転位相では、加工具Bは所定の位置(本実施形態では待機位置)に配置されて移動しない。図5aに示すように、待機位置では、送り方向Cとアーム部材3の第1アーム部3aの長手方向とによって構成される夾角ωは、例えば30°である。 As shown in FIGS. 3 and 4a, in the first rotational phase (0 °), the width of the portion of the cam member 8 interposed between the first cam follower 9a and the second cam follower 9b is the first cam follower 9a. And the distance between the second cam follower 9b. For this reason, the first cam follower 9a contacts the first cam surface 8a, and the second cam follower 9b contacts the second cam surface 8b, whereby the first cam follower 9a and the second cam follower 9b are in the direction of arrow J1 (processing tool B). Is displaced in the direction in which the cam followers 9a, 9b are displaced so as to move in the pressing direction) or in the direction of the arrow J2 (the direction in which the cam followers 9a, 9b are displaced so as to move the processing tool B in the escape direction), The arm member 3 is locked so that it cannot rotate. For this reason, in the first rotation phase, the processing tool B is disposed at a predetermined position (the standby position in the present embodiment) and does not move. As shown in FIG. 5a, at the standby position, the depression angle ω constituted by the feed direction C and the longitudinal direction of the first arm portion 3a of the arm member 3 is, for example, 30 °.
 図3、図4b、図5b及び図6を参照して、第2の回転位相と第1研磨位置との関係及びその作用について以下に説明する。 Referring to FIGS. 3, 4b, 5b and 6, the relationship between the second rotational phase and the first polishing position and the operation thereof will be described below.
 第1研磨位置ではアーム部材3のロックが外れており、アーム部材3はアームフリー(アンロック状態)になっている。アームフリー状態で、押圧力発生部5がアーム部材3に偶力を与えることにより、加工具Bに対する押圧力が発生する。 The arm member 3 is unlocked at the first polishing position, and the arm member 3 is arm free (unlocked). In the arm free state, the pressing force generator 5 applies a couple to the arm member 3 to generate a pressing force on the processing tool B.
 図3及び図4bに示すように、第1研磨位置に対応する第2の回転位相(45°)では、カム部材8のうち第1カムフォロア9aと第2カムフォロア9bとの間に介在する部位の幅(以下「第2の回転位相でのカム幅」と記載することがある)は、第1カムフォロア9aと第2カムフォロア9bとの間の間隔より小さい。このため、第1カムフォロア9aと第2カムフォロア9bは、一定の距離内(カムフォロア9a,9b間の間隔から第2の回転位相でのカム幅を引いた距離)で、矢印J1方向又は矢印J2方向に変位自由であり、アーム部材3は回転可能なフリー状態となる。 As shown in FIGS. 3 and 4b, at the second rotational phase (45 °) corresponding to the first polishing position, the portion of the cam member 8 interposed between the first cam follower 9a and the second cam follower 9b. The width (hereinafter sometimes referred to as “cam width at the second rotational phase”) is smaller than the distance between the first cam follower 9a and the second cam follower 9b. Therefore, the first cam follower 9a and the second cam follower 9b are within a certain distance (the distance obtained by subtracting the cam width at the second rotational phase from the interval between the cam followers 9a and 9b), and in the direction of the arrow J1 or the arrow J2 The arm member 3 is free to rotate.
 アーム部材3は、第1カムフォロア9aが第1カム面8aに接触し、または、第2カムフォロア9bが第2カム面8bに接触することにより、そのストロークが制限される。具体的には、カムフォロア9a,9bの矢印J1方向への変位により、加工具Bは、待機位置よりも押し当て方向に移動する。加工具Bが押し当て方向に最大限に移動した位置(図5bにおける実線の位置)、すなわち、第1カムフォロア9aが第1カム面8aに接触した状態(図3の第2の回転位相において実線で示す状態)では、送り方向Cとアーム部材3の第1アーム部3aの長手方向とによって構成される夾角は、ω+α1である。また、カムフォロア9a,9bの矢印J2方向への変位により、加工具Bは、待機位置よりも逃げ方向に移動する。加工具Bが逃げ方向に最大限に移動した位置(図5bにおいて2点鎖線で示す位置)、すなわち、第2カムフォロア9bが第2カム面8bに接触した状態(図3の第2の回転位相において2点鎖線で示す状態)では、送り方向Cとアーム部材3の第1アーム部3aの長手方向とによって構成される夾角は、ω-α1である。このα1は、例えば1°未満である。なお、α1は、カムフォロア9a,9b間の間隔から第2の回転位相でのカム幅を引いた距離を変更することによって調整できる。 The stroke of the arm member 3 is limited when the first cam follower 9a contacts the first cam surface 8a or the second cam follower 9b contacts the second cam surface 8b. Specifically, due to the displacement of the cam followers 9a and 9b in the direction of arrow J1, the processing tool B moves in the pressing direction from the standby position. The position at which the processing tool B has moved to the maximum in the pressing direction (the position of the solid line in FIG. 5b), that is, the state where the first cam follower 9a is in contact with the first cam surface 8a (the solid line in the second rotational phase of FIG. 3). In the state indicated by), the depression angle formed by the feed direction C and the longitudinal direction of the first arm portion 3a of the arm member 3 is ω + α1. Further, due to the displacement of the cam followers 9a and 9b in the direction of the arrow J2, the processing tool B moves in the escape direction from the standby position. The position at which the processing tool B has moved to the maximum in the escape direction (the position indicated by the two-dot chain line in FIG. 5b), that is, the state where the second cam follower 9b is in contact with the second cam surface 8b (the second rotational phase in FIG. 3). In a state indicated by a two-dot chain line in FIG. 2), the depression angle formed by the feed direction C and the longitudinal direction of the first arm portion 3a of the arm member 3 is ω-α1. This α1 is, for example, less than 1 °. Α1 can be adjusted by changing the distance obtained by subtracting the cam width in the second rotational phase from the interval between the cam followers 9a and 9b.
 このように、アーム部材3のストロークは、上記のα1により制限される。これに対応して、加工具Bの移動可能な距離(以下「ストローク」という)Sも制限されることになる(図6参照)。この加工具BのストロークSの制限は、板ガラスAの始端部A1に加工具Bが接触し、板ガラスAの端面に沿ってこの加工具Bが所定の距離(以下「初期研磨距離」という)Lを相対的に移動するまでの間(図6参照)、継続して行われる。具体的には、第1研磨位置における加工具BのストロークSは、0.03mm以上0.05mm以下に制限され得る。また、加工具Bにおける初期研磨距離Lは、5mm以上40mm以下に設定され得る。なお、この第1研磨位置では、加工具Bの加工代D(図6参照)は、0.03mm以上0.05mm以下とされ得る。 Thus, the stroke of the arm member 3 is limited by the above α1. Correspondingly, the movable distance (hereinafter referred to as “stroke”) S of the processing tool B is also limited (see FIG. 6). The limit of the stroke S of the processing tool B is that the processing tool B comes into contact with the starting end A1 of the plate glass A, and the processing tool B has a predetermined distance (hereinafter referred to as “initial polishing distance”) L along the end surface of the plate glass A. Until the relative movement (see FIG. 6). Specifically, the stroke S of the processing tool B at the first polishing position can be limited to 0.03 mm or more and 0.05 mm or less. Further, the initial polishing distance L in the processing tool B can be set to 5 mm or more and 40 mm or less. In this first polishing position, the machining allowance D (see FIG. 6) of the processing tool B can be 0.03 mm or more and 0.05 mm or less.
 図3、図4c及び図5cを参照して、第3の回転位相と第2研磨位置との関係及びその作用について以下に説明する。 The relationship between the third rotational phase and the second polishing position and the operation thereof will be described below with reference to FIGS.
 図3及び図4cに示すように、第3の回転位相(120°)では、カム部材8のうち第1カムフォロア9aと第2カムフォロア9bとの間に介在する部位の幅(以下「第3の回転位相でのカム幅」と記載することがある)は、第1カムフォロア9aと第2カムフォロア9bとの間の間隔より小さい。ただし、この第3の回転位相でのカム幅は、第2の回転位相でのカム幅よりも小さく設定されている。第1カムフォロア9aと第2カムフォロア9bは、一定の距離内(各カムフォロア9a,9b間の間隔から第3の回転位相でのカム幅を引いた距離)で、矢印J1方向又は矢印J2方向に変位自由であり、アーム部材3は回転可能なフリー状態となる。 As shown in FIGS. 3 and 4c, in the third rotational phase (120 °), the width of the portion of the cam member 8 interposed between the first cam follower 9a and the second cam follower 9b (hereinafter referred to as “third”). The cam width in the rotational phase ”may be smaller than the distance between the first cam follower 9a and the second cam follower 9b. However, the cam width in the third rotational phase is set smaller than the cam width in the second rotational phase. The first cam follower 9a and the second cam follower 9b are displaced in the direction of the arrow J1 or the arrow J2 within a certain distance (the distance obtained by subtracting the cam width in the third rotational phase from the interval between the cam followers 9a and 9b). It is free and the arm member 3 is in a rotatable free state.
 アーム部材3は、第1カムフォロア9aが第1カム面8aに接触し、または、第2カムフォロア9bが第2カム面8bに接触することにより、そのストロークが制限される。具体的には、図5cに示すように、第3の回転位相では、各カムフォロア9a,9bの矢印J1方向への変位により、加工具Bは、待機位置よりも押し当て方向に移動する。加工具Bが押し当て方向に最大限に移動した位置(図5cにおける実線の位置)、すなわち、第1カムフォロア9aが第1カム面8aに接触した状態(図3の第3の回転位相において実線で示す状態)では、送り方向Cとアーム部材3の第1アーム部3aの長手方向とによって構成される夾角は、ω+α2である。また、各カムフォロア9a,9bの矢印J2方向への変位により、加工具Bは、待機位置よりも逃げ方向に移動する。加工具Bが逃げ方向に最大限に移動した位置(図5cにおける2点鎖線の位置)、すなわち、第2カムフォロア9bが第2カム面8bに接触した状態(図3の第3の回転位相において2点鎖線で示す状態)では、送り方向Cとアーム部材3の第1アーム部3aの長手方向とによって構成される夾角は、ω-α2である。α2は、上記のα1よりも大きく(α2>α1)、例えば1°である。なお、α2は、カムフォロア9a,9b間の間隔から第3の回転位相でのカム幅を引いた距離を変更することによって調整できる。 The stroke of the arm member 3 is limited when the first cam follower 9a contacts the first cam surface 8a or the second cam follower 9b contacts the second cam surface 8b. Specifically, as shown in FIG. 5c, in the third rotational phase, the processing tool B moves in the pressing direction from the standby position due to the displacement of the cam followers 9a and 9b in the direction of the arrow J1. The position at which the processing tool B has moved to the maximum in the pressing direction (the position indicated by the solid line in FIG. 5c), that is, the state where the first cam follower 9a is in contact with the first cam surface 8a (the solid line in the third rotation phase in FIG. 3). In the state indicated by), the depression angle formed by the feeding direction C and the longitudinal direction of the first arm portion 3a of the arm member 3 is ω + α2. Further, due to the displacement of each cam follower 9a, 9b in the direction of arrow J2, the processing tool B moves in the escape direction from the standby position. The position at which the processing tool B has moved to the maximum in the escape direction (the position of the two-dot chain line in FIG. 5c), that is, the state where the second cam follower 9b is in contact with the second cam surface 8b (in the third rotational phase of FIG. In a state indicated by a two-dot chain line), the depression angle formed by the feeding direction C and the longitudinal direction of the first arm portion 3a of the arm member 3 is ω−α2. α2 is larger than α1 (α2> α1), for example, 1 °. Α2 can be adjusted by changing the distance obtained by subtracting the cam width in the third rotational phase from the interval between the cam followers 9a and 9b.
 このように、アーム部材3のストロークは、上記のα2により制限される。これに応じて、加工具Bのストロークも制限されることになる。この加工具Bのストロークの制限は、第3の回転位相に変更後、加工具Bが板ガラスAの終端部A2に達するまでの間、継続して実行される。具体的には、第2研磨位置における加工具Bのストロークは、3mm以下に制限される。なお、この第2研磨位置では、加工具Bの加工代(研磨代)は、第1研磨位置の場合と同様に、0.03mm以上0.05mm以下とされている。 Thus, the stroke of the arm member 3 is limited by the above α2. Accordingly, the stroke of the processing tool B is also limited. The restriction of the stroke of the processing tool B is continuously executed until the processing tool B reaches the terminal end A2 of the plate glass A after changing to the third rotational phase. Specifically, the stroke of the processing tool B at the second polishing position is limited to 3 mm or less. Note that at the second polishing position, the processing allowance (polishing allowance) of the processing tool B is set to 0.03 mm or more and 0.05 mm or less similarly to the case of the first polishing position.
 図1、図3、図4d、図5d、及び図7を参照して、第4の回転位相と退避位置との関係及びその作用について以下に説明する。 Referring to FIG. 1, FIG. 3, FIG. 4d, FIG. 5d, and FIG. 7, the relationship between the fourth rotational phase and the retracted position and the operation thereof will be described below.
 板ガラス加工装置1は、通常、図1に示すように、板ガラスAの端面が送り方向Cに平行となる姿勢で、加工具Bにこの端面を研磨させる。しかしながら、板ガラスAの端面が送り方向Cに対して傾斜した姿勢で、加工具Bによる研磨を行うことがある。 The plate glass processing apparatus 1 normally causes the processing tool B to polish the end surface in a posture in which the end surface of the plate glass A is parallel to the feed direction C, as shown in FIG. However, polishing with the processing tool B may be performed in a posture in which the end surface of the plate glass A is inclined with respect to the feeding direction C.
 この状態を図7に示す。図7に示すように、板ガラスAの端面の終端部A2は、平行搬送時の軌道Rから加工具Bに近寄る側に逸脱している。このような姿勢で板ガラスAの端面を研磨する場合、加工具Bを研磨終了位置(実線の位置)から、待機位置(2点鎖線の位置)に戻すと、加工具Bが板ガラスAの端面を引っ掻くことにより、この端面又は加工具Bが傷つくことがある。このため、研磨が終了すると、加工具Bを板ガラスAの端面に対して逃げ方向に一旦退避させてから待機位置に戻す必要がある。加工具Bは、このような理由により、退避位置へと移動し得る。 This state is shown in FIG. As shown in FIG. 7, the terminal end portion A2 of the end surface of the plate glass A deviates from the track R at the time of parallel conveyance to the side closer to the processing tool B. When polishing the end surface of the sheet glass A in such a posture, when the processing tool B is returned from the polishing end position (solid line position) to the standby position (two-dot chain line position), the processing tool B removes the end surface of the sheet glass A. By scratching, the end face or the processing tool B may be damaged. For this reason, when polishing is completed, it is necessary to temporarily retract the processing tool B in the escape direction with respect to the end surface of the plate glass A and then return to the standby position. For this reason, the processing tool B can move to the retracted position.
 図3及び図4dに示すように、第4の回転位相(240°)において、カム部材8のうち第1カムフォロア9aと第2カムフォロア9bとの間に介在する部位の幅は、第1カムフォロア9aと第2カムフォロア9bとの間の間隔に等しい。第1カムフォロア9aが第1カム面8aに接触し、第2カムフォロア9bが第2カム面8bに接触することで、第1カムフォロア9a及び第2カムフォロア9bの矢印J1方向及び矢印J2方向での変位が規制され、アーム部材3は回転不能なロック状態となる。 As shown in FIGS. 3 and 4d, in the fourth rotational phase (240 °), the width of the portion of the cam member 8 interposed between the first cam follower 9a and the second cam follower 9b is the first cam follower 9a. And the distance between the second cam follower 9b. The first cam follower 9a contacts the first cam surface 8a, and the second cam follower 9b contacts the second cam surface 8b, whereby the first cam follower 9a and the second cam follower 9b are displaced in the directions of arrows J1 and J2. Is restricted, and the arm member 3 enters a locked state in which it cannot rotate.
 また、図3に示すように、第1の回転位相での第1カム面8a(又は第2カム面8b)の位置に対して、第4の回転位相での第1カム面8a(又は第2カム面8b)の位置は、矢印J2方向に向けて所定の距離オフセットしている。このため、第4の回転位相まで回転したカム部材8に従動して、第1カムフォロア9aと第2カムフォロア9bは矢印J2方向に向けて変位し、加工具Bを待機位置よりも逃げ方向に移動させる。図5dに示すように、加工具Bが逃げ方向に移動した退避位置では、送り方向Cとアーム部材3の第1アーム部3aの長手方向とによって構成される夾角は、ω-βである。 Further, as shown in FIG. 3, the first cam surface 8a (or the first cam surface 8a in the fourth rotational phase) with respect to the position of the first cam surface 8a (or the second cam surface 8b) in the first rotational phase. The position of the two cam surfaces 8b) is offset by a predetermined distance in the direction of the arrow J2. Therefore, following the cam member 8 rotated to the fourth rotation phase, the first cam follower 9a and the second cam follower 9b are displaced in the direction of the arrow J2, and the processing tool B is moved in the escape direction from the standby position. Let As shown in FIG. 5d, at the retracted position where the processing tool B has moved in the escape direction, the included angle formed by the feed direction C and the longitudinal direction of the first arm portion 3a of the arm member 3 is ω-β.
 本実施形態において、βはα2と同じ角度である。即ち、第2研磨位置において加工具Bが逃げ方向に最大限に移動した位置(ω-α2)と、加工具Bの退避位置(ω-β)とは同じ位置である。なお、βは、第1の回転位相での第1カム面8a(又は第2カム面8b)の位置に対する第4の回転位相での第1カム面8a(又は第2カム面8b)のオフセット距離を変更することによって調整できる。 In this embodiment, β is the same angle as α2. That is, the position (ω−α2) at which the processing tool B has moved to the maximum in the escape direction at the second polishing position and the retracted position (ω−β) of the processing tool B are the same position. Β is an offset of the first cam surface 8a (or second cam surface 8b) in the fourth rotational phase with respect to the position of the first cam surface 8a (or second cam surface 8b) in the first rotational phase. It can be adjusted by changing the distance.
 以下、上記構成の板ガラス加工装置1により実行される板ガラス製造方法について説明する。 Hereinafter, a plate glass manufacturing method executed by the plate glass processing apparatus 1 having the above configuration will be described.
 この板ガラス製造方法は、加工具Bを待機位置、第1研磨位置、第2研磨位置及び退避位置に順次移動するように制御する工程を包含する。まず、板ガラス加工装置1は、加工具Bを待機位置に移動させる。具体的には、カム部材回転モータ10の駆動により、カム部材8を第1の回転位相まで回転させる。第1の回転位相まで回転したカム部材8に連動して、加工具Bが待機位置に移動する。待機位置では、アーム部材3はロック状態であり、加工具Bは自由に動かない。 This plate glass manufacturing method includes a step of controlling the processing tool B to sequentially move to the standby position, the first polishing position, the second polishing position, and the retracted position. First, the plate glass processing apparatus 1 moves the processing tool B to the standby position. Specifically, the cam member 8 is rotated to the first rotation phase by driving the cam member rotation motor 10. In conjunction with the cam member 8 rotated to the first rotation phase, the processing tool B moves to the standby position. In the standby position, the arm member 3 is in a locked state, and the processing tool B does not move freely.
 送り方向Cに沿って搬送される板ガラスAが加工具Bに近づくと、板ガラス加工装置1は、この加工具Bを第1研磨位置に移動させる。板ガラス加工装置1は、加工具Bが板ガラスAの始端部A1に接触するタイミングに合わせて、カム部材回転モータ10を回転させる。カム部材回転モータ10の駆動により、カム部材8は、第2の回転位相まで回転する。第2の回転位相まで回転したカム部材8に連動して加工具Bが移動し、板ガラスAと接触する直前に、加工具Bは第1研磨位置に配置される。第1研磨位置に移動することで、加工具Bは、板ガラスAの始端部A1と接触可能な状態となる。さらに、板ガラス加工装置1は、同期モータ2を駆動して加工具Bを回転させる。 When the plate glass A conveyed along the feeding direction C approaches the processing tool B, the plate glass processing apparatus 1 moves the processing tool B to the first polishing position. The plate glass processing apparatus 1 rotates the cam member rotation motor 10 in accordance with the timing at which the processing tool B comes into contact with the starting end A1 of the plate glass A. As the cam member rotation motor 10 is driven, the cam member 8 rotates to the second rotation phase. Immediately before the processing tool B moves in conjunction with the cam member 8 rotated to the second rotational phase and comes into contact with the glass sheet A, the processing tool B is disposed at the first polishing position. By moving to a 1st grinding | polishing position, the processing tool B will be in the state which can contact the starting end part A1 of the plate glass A. FIG. Furthermore, the plate glass processing apparatus 1 drives the synchronous motor 2 to rotate the processing tool B.
 図6は、第1研磨位置にある加工具Bの挙動を示す。第1研磨位置に配置された加工具Bは、送り方向Cに沿って搬送される板ガラスAの始端部A1に接触する。加工具Bは、この接触によって始端部A1から離れようとする。このとき、アーム部材3の第2アーム部3bに連結される第2カムフォロア9bがカム部材8の第2カム面8bに接触する。これによって第2アーム部3bの逃げ方向への移動が規制され、これに応じて加工具Bも板ガラスAの端面から離れないように規制される。これにより、加工具Bは、板ガラスAの端面に対する接触を維持し、さらに加工代D(研磨代)を伴ってこの端面の加工を継続できる。 FIG. 6 shows the behavior of the processing tool B in the first polishing position. The processing tool B arranged at the first polishing position comes into contact with the starting end A1 of the plate glass A conveyed along the feeding direction C. The processing tool B tends to leave the starting end A1 by this contact. At this time, the second cam follower 9 b connected to the second arm portion 3 b of the arm member 3 contacts the second cam surface 8 b of the cam member 8. Accordingly, the movement of the second arm portion 3b in the escape direction is restricted, and the processing tool B is also regulated so as not to be separated from the end surface of the plate glass A according to this. Thereby, the processing tool B can maintain the contact with respect to the end surface of the plate glass A, and can further continue processing the end surface with a processing allowance D (polishing allowance).
 なお、押圧力発生部5は、加工具Bが板ガラスAの始端部A1に接触する直前から押圧力を発生させ、以後、加工具Bが終端部A2に至るまでこの押圧力の付与を継続する。 The pressing force generator 5 generates a pressing force immediately before the processing tool B comes into contact with the starting end A1 of the plate glass A, and thereafter continues to apply the pressing force until the processing tool B reaches the terminal end A2. .
 第1研磨位置における研磨が終了(加工具Bが初期研磨距離Lを移動)すると、板ガラス加工装置1は、加工具Bを第2研磨位置に変更する。具体的には、板ガラス加工装置1は、板ガラスAに対する加工具Bの接触を維持したままで、カム部材回転モータ10を回転させる。カム部材回転モータ10の駆動により、カム部材8は、第3の回転位相まで回転する。加工具Bは、第3の回転位相まで回転したカム部材8に連動して第2研磨位置へと移動する。第2研磨位置において、加工具Bは、板ガラスAの端面に接触したままで、引き続き研磨を行う。 When the polishing at the first polishing position is completed (the processing tool B moves the initial polishing distance L), the plate glass processing apparatus 1 changes the processing tool B to the second polishing position. Specifically, the plate glass processing apparatus 1 rotates the cam member rotation motor 10 while maintaining the contact of the processing tool B with the plate glass A. As the cam member rotation motor 10 is driven, the cam member 8 rotates to the third rotation phase. The processing tool B moves to the second polishing position in conjunction with the cam member 8 rotated to the third rotational phase. At the second polishing position, the processing tool B continues to polish while being in contact with the end face of the plate glass A.
 この研磨中に、板ガラスAの端面に存在する微細な凹凸による起伏が原因で板ガラスAの端面から加工具Bに対して衝撃力が作用した場合、押圧力発生部5が加工具Bから板ガラスAの端面に対して作用する押圧力を発生させながら、緩衝部6がこの衝撃力を緩衝する。 During this polishing, when an impact force acts on the processing tool B from the end surface of the plate glass A due to undulations due to fine irregularities present on the end surface of the plate glass A, the pressing force generator 5 is moved from the processing tool B to the plate glass A. While generating a pressing force that acts on the end face of the shock absorber 6, the shock absorber 6 buffers this impact force.
 最後に、加工具Bが板ガラスAの終端部A2に到着すると、板ガラス加工装置1は、加工具Bを退避位置に移動させ、研磨を終了する。具体的には、加工具Bが板ガラスAの終端部A2に到着すると、カム部材回転モータ10の駆動により、カム部材8が第4の回転位相まで回転する。第4の回転位相まで回転したカム部材8に連動して、加工具Bは逃げ方向に向かって退避位置まで移動する。退避位置では、アーム部材3はロック状態であり、加工具Bは自由に動かない。 Finally, when the processing tool B arrives at the terminal end A2 of the plate glass A, the plate glass processing apparatus 1 moves the processing tool B to the retracted position, and finishes the polishing. Specifically, when the processing tool B arrives at the terminal end portion A2 of the plate glass A, the cam member 8 is rotated to the fourth rotation phase by driving of the cam member rotation motor 10. In conjunction with the cam member 8 rotated to the fourth rotational phase, the processing tool B moves to the retreat position in the escape direction. In the retracted position, the arm member 3 is in a locked state, and the processing tool B does not move freely.
 以上により、1枚の板ガラスAの研磨が実行されることになるが、板ガラス加工装置1は、上記の工程を繰り返すことにより、所定の間隔で搬送される複数枚の板ガラスAを研磨することができる。 As described above, polishing of one sheet glass A is performed, but the sheet glass processing apparatus 1 can polish a plurality of sheet glasses A conveyed at a predetermined interval by repeating the above steps. it can.
 以上説明した本実施形態に係る板ガラス加工装置1によれば、加工具Bを駆動するモータとしてオープンループ制御式の同期モータ2を採用し、その制御により加工具Bを回転駆動することにより、加工開始時における加工具Bのバウンドを防止することができる。すなわち、同期モータ2は、サーボモータのようにフィードバック制御式のものではないため、加工具Bが板ガラスAの始端部A1に接触したとしても、サーボモータのように出力トルクを急激に増加させるような制御を行わない。これにより、サーボモータによって加工具Bを駆動した場合に、加工開始時に生じていた加工具Bのバウンドの繰り返しを防止することができる。 According to the plate glass processing apparatus 1 according to the present embodiment described above, an open-loop control type synchronous motor 2 is employed as a motor for driving the processing tool B, and the processing tool B is rotationally driven by the control, thereby processing the processing tool B. The bouncing of the processing tool B at the start can be prevented. That is, since the synchronous motor 2 is not a feedback control type like the servo motor, even if the processing tool B comes into contact with the starting end A1 of the plate glass A, the output torque is rapidly increased like the servo motor. Control is not performed. Thereby, when the processing tool B is driven by the servo motor, it is possible to prevent the bouncing of the processing tool B that has occurred at the start of processing.
 しかも、加工具Bは、初期研磨距離L(始端部A1から5mm以上40mm以下の距離)の研磨を行う間、板ガラスAの端面から離れないように、そのストロークSが位置制御部7によって制限される(0.03mm以上0.05mm以下)。これにより、板ガラス加工装置1は、加工開始時の加工具Bのバウンドをより効果的に防止することができる。 In addition, the stroke S of the processing tool B is limited by the position control unit 7 so as not to leave the end surface of the glass sheet A while polishing at an initial polishing distance L (a distance of 5 mm to 40 mm from the start end A1). (0.03 mm to 0.05 mm). Thereby, the plate glass processing apparatus 1 can prevent more effectively the bouncing of the processing tool B at the time of a process start.
 なお、本発明は、上記実施形態の構成に限定されるものではなく、上記した作用効果に限定されるものでもない。本発明は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。 In addition, this invention is not limited to the structure of the said embodiment, It is not limited to the above-mentioned effect. The present invention can be variously modified without departing from the gist of the present invention.
 上記の実施形態において、第1の回転位相が0°であり、第2の回転位相が45°であり、第3の回転位相が120°であり、第4の回転位相が240°であったが、本発明はこれに限定されない。第1の回転位相乃至第4の回転位相は、加工具Bの動作の制御上の需要に応じて適宜設定できる。 In the above embodiment, the first rotation phase is 0 °, the second rotation phase is 45 °, the third rotation phase is 120 °, and the fourth rotation phase is 240 °. However, the present invention is not limited to this. The first rotation phase to the fourth rotation phase can be appropriately set according to the demand for controlling the operation of the processing tool B.
 上記の実施形態において、α2は1°であったが、1°以外であってもよい。また、α1は、1°未満であったが、α2よりも小さければ1°以上であってもよい。また、βは、α2と同じ角度であったが、βはα2と異なる角度であってもよい。 In the above embodiment, α2 is 1 °, but it may be other than 1 °. Moreover, although α1 was less than 1 °, it may be 1 ° or more as long as it is smaller than α2. Β is the same angle as α2, but β may be an angle different from α2.
 なお、上記の実施形態では、加工具Bとして砥石が例示され、加工具Bは板ガラスAの端面に対して研磨加工を行ったが、本発明はこれに限定されない。板ガラスAの端面を加工し得る限りは砥石以外の加工具Bをも適用することができる。 In the above embodiment, a grindstone is exemplified as the processing tool B, and the processing tool B performs polishing on the end surface of the plate glass A, but the present invention is not limited to this. As long as the end surface of the plate glass A can be processed, a processing tool B other than a grindstone can be applied.
1     板ガラス加工装置
2     同期モータ
3     アーム部材
4     支持軸部材
5     押圧力発生部
7     位置制御部
A     板ガラス
B     加工具
 
DESCRIPTION OF SYMBOLS 1 Sheet glass processing apparatus 2 Synchronous motor 3 Arm member 4 Support shaft member 5 Pressing force generation part 7 Position control part A Sheet glass B Processing tool

Claims (5)

  1.  板ガラスの端面を加工具で加工する板ガラス加工装置であって、
     前記加工具を回転駆動する同期モータと、
     前記加工具を回転可能に支持するアーム部材と、
     前記アーム部材を回転可能に支持する支持軸部材と、
     前記アーム部材に偶力を与えることにより、前記加工具から前記板ガラスの端面に対して作用する押圧力を発生する押圧力発生部と
    を備える板ガラス加工装置。
    A plate glass processing apparatus for processing an end face of a plate glass with a processing tool,
    A synchronous motor for rotationally driving the processing tool;
    An arm member that rotatably supports the processing tool;
    A support shaft member that rotatably supports the arm member;
    A sheet glass processing apparatus comprising: a pressing force generation unit that generates a pressing force that acts on an end surface of the sheet glass from the processing tool by applying a couple to the arm member.
  2.  前記板ガラスの前記端面に対する前記加工具の位置を制御する位置制御部を更に備え、 前記位置制御部は、前記加工具が前記板ガラスの始端部に接触して前記板ガラスの端面上の所定の距離を相対的に移動するまでの間、前記加工具が前記板ガラスの端面から離れないように、前記加工具のストロークを所定の値に制限する請求項1に記載の板ガラス加工装置。 A position control unit for controlling the position of the processing tool with respect to the end surface of the plate glass; and the position control unit is configured to set a predetermined distance on the end surface of the plate glass when the processing tool comes into contact with the start end portion of the plate glass. The plate glass processing apparatus according to claim 1, wherein a stroke of the processing tool is limited to a predetermined value so that the processing tool is not separated from an end surface of the plate glass until it relatively moves.
  3.  前記加工具のストロークは、0.03mm以上0.05mm以下に制限される請求項2に記載の板ガラス加工装置。 The plate glass processing apparatus according to claim 2, wherein a stroke of the processing tool is limited to 0.03 mm or more and 0.05 mm or less.
  4.  前記加工具が前記板ガラスに対して相対的に移動する前記所定の距離は、5mm以上40mm以下である請求項2又は3に記載の板ガラス加工装置。  The plate glass processing apparatus according to claim 2 or 3, wherein the predetermined distance that the processing tool moves relative to the plate glass is 5 mm or more and 40 mm or less. *
  5.  前記加工具が前記板ガラスに対して前記所定の距離を相対的に移動する間の加工代は、0.03mm以上0.05mm以下である請求項2から4のいずれか1項に記載の板ガラス加工装置。
     
     
    5. The plate glass processing according to claim 2, wherein a machining allowance while the processing tool moves relative to the plate glass relative to the predetermined distance is 0.03 mm or more and 0.05 mm or less. apparatus.

PCT/JP2016/059191 2015-04-22 2016-03-23 Plate glass processing device WO2016170898A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680005489.9A CN107107294B (en) 2015-04-22 2016-03-23 Plate glass processing device
KR1020177016634A KR102421573B1 (en) 2015-04-22 2016-03-23 Plate glass processing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015087539A JP6504352B2 (en) 2015-04-22 2015-04-22 Flat glass processing equipment
JP2015-087539 2015-04-22

Publications (1)

Publication Number Publication Date
WO2016170898A1 true WO2016170898A1 (en) 2016-10-27

Family

ID=57142988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059191 WO2016170898A1 (en) 2015-04-22 2016-03-23 Plate glass processing device

Country Status (5)

Country Link
JP (1) JP6504352B2 (en)
KR (1) KR102421573B1 (en)
CN (1) CN107107294B (en)
TW (1) TWI687281B (en)
WO (1) WO2016170898A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07208474A (en) * 1994-01-14 1995-08-11 Disco Abrasive Syst Ltd Air spindle and device mounted therewith
JP2009160671A (en) * 2007-12-28 2009-07-23 Disco Abrasive Syst Ltd Spindle assembly
WO2013187400A1 (en) * 2012-06-13 2013-12-19 日本電気硝子株式会社 Sheet glass processing device and sheet glass manufacturing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7018272B2 (en) * 2003-07-29 2006-03-28 Corning Incorporated Pressure feed grinding of AMLCD substrate edges
CN2702813Y (en) * 2003-09-04 2005-06-01 中山市富山玻璃机械有限公司 Pneumatic polishing grinding head damping device for glass edge finishing machine
JP2012051076A (en) * 2010-09-01 2012-03-15 Asahi Glass Co Ltd Apparatus and method for manufacturing plate-like object, and device and method for grinding end surface of the plate-like object
JP2014213419A (en) * 2013-04-26 2014-11-17 AvanStrate株式会社 Method of processing end face of glass plate, and device of processing end face of glass plate
TWM481892U (en) * 2013-11-21 2014-07-11 yao-zhang Lin Recyclable and moisture prevention packaging bag

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07208474A (en) * 1994-01-14 1995-08-11 Disco Abrasive Syst Ltd Air spindle and device mounted therewith
JP2009160671A (en) * 2007-12-28 2009-07-23 Disco Abrasive Syst Ltd Spindle assembly
WO2013187400A1 (en) * 2012-06-13 2013-12-19 日本電気硝子株式会社 Sheet glass processing device and sheet glass manufacturing method

Also Published As

Publication number Publication date
CN107107294B (en) 2020-01-03
KR20170141186A (en) 2017-12-22
TWI687281B (en) 2020-03-11
KR102421573B1 (en) 2022-07-15
JP2016203307A (en) 2016-12-08
JP6504352B2 (en) 2019-04-24
CN107107294A (en) 2017-08-29
TW201641212A (en) 2016-12-01

Similar Documents

Publication Publication Date Title
JP6070704B2 (en) Sheet glass processing apparatus and sheet glass manufacturing method
TWI695766B (en) Plate glass processing device
WO2014048043A1 (en) Plate material cutting device and working method thereof
CN113508009B (en) Apparatus for manufacturing glass plate and method for manufacturing glass plate
JP5527622B2 (en) Method for polishing plate
WO2016170898A1 (en) Plate glass processing device
JP5686291B2 (en) Rectangular plate-like material cutting device and manufacturing method
JP5674145B2 (en) Single-side polishing equipment
CN111093897B (en) Method for producing plate-shaped glass
JP2001009685A (en) Back surface grindining device for belt sleeve
JP7337327B2 (en) Glass plate edge processing device and glass plate manufacturing method
TWI827818B (en) End-face processing device of glass plate and manufacturing method of glass plate
JP2017087305A (en) Polishing method and polishing device for disk-shaped work-piece
JP7167816B2 (en) Glass plate edge processing device and glass plate manufacturing method
JP2011240419A (en) Surface treatment device
JP2004243438A (en) Lapping apparatus and lapping method
JP2002292558A (en) Leaf system lapping machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16782920

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177016634

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16782920

Country of ref document: EP

Kind code of ref document: A1