WO2016169304A1 - 信道信息的配置方法及装置、反馈方法及装置 - Google Patents

信道信息的配置方法及装置、反馈方法及装置 Download PDF

Info

Publication number
WO2016169304A1
WO2016169304A1 PCT/CN2016/070074 CN2016070074W WO2016169304A1 WO 2016169304 A1 WO2016169304 A1 WO 2016169304A1 CN 2016070074 W CN2016070074 W CN 2016070074W WO 2016169304 A1 WO2016169304 A1 WO 2016169304A1
Authority
WO
WIPO (PCT)
Prior art keywords
rank
layer
csi
measurement
layer group
Prior art date
Application number
PCT/CN2016/070074
Other languages
English (en)
French (fr)
Inventor
陈艺戬
李儒岳
肖华华
李剑
鲁照华
王瑜新
赵晶
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2017555337A priority Critical patent/JP2018514165A/ja
Priority to EP16782452.3A priority patent/EP3288205A4/en
Priority to US15/568,078 priority patent/US10673505B2/en
Publication of WO2016169304A1 publication Critical patent/WO2016169304A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0486Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking channel rank into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0658Feedback reduction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present invention relates to the field of communications, and in particular to a method and device for configuring channel information, and a feedback method and apparatus.
  • Multi-day communication precoding and feedback technology basic principle introduction In the wireless communication system, the transmitting end and the receiving end adopt spatial multiplexing to use a plurality of antennas to obtain a higher rate. Compared with the general spatial multiplexing method, an enhanced technology is that the receiving end feeds back the channel information of the transmitting end, and the transmitting end uses the transmitting precoding technology according to the obtained channel information, which can greatly improve the transmission performance.
  • SU-MIMO single-user multiple-input multiple-output
  • MIMO Multi-input Multi-output, multiple-input multiple-output
  • channel feature vector information is used for precoding directly; for multi-user MIMO (MU-MIMO) , need more accurate channel information.
  • LTE Long Term Evolution
  • the feedback of channel information is mainly a feedback method using a simple single codebook, and the performance of MIMO transmit precoding technology is more dependent on the codebook feedback. Accuracy.
  • the eigenvector space of the channel matrix is quantized to form the codebook space
  • the transmitting end and the receiving end jointly save or generate the codebook in real time. (The transmitting end is the same as the receiving end). For each channel implementation H, the receiving end is from the codebook space according to certain criteria. Select a codeword that best matches the channel implementation H And the code word
  • the serial number i (codeword serial number) is fed back to the transmitting end.
  • the codeword sequence number is referred to as a Precoding Matrix Indicator (PMI) in the codebook.
  • the transmitting end finds the corresponding precoding codeword according to the serial number i Thereby obtaining corresponding channel information,
  • the feature vector information of the channel is indicated.
  • the channel channel H is generally obtained by performing channel measurement based on the channel
  • the codebook corresponding to the plurality of Ranks may be further divided, and each of the Ranks corresponds to a plurality of codewords to quantize the precoding matrix formed by the channel feature vectors under the Rank. Since the number of Rank and non-zero feature vectors of the channel are equal, in general, when the Rank is N, the codeword will have N columns. Therefore, the codebook space It can be divided into multiple subcodebooks according to the difference of Rank. Table 1 shows that the codebook is divided into multiple subcodebooks according to Rank, as shown in Table 1.
  • the codewords to be stored when Rank>1 are in the form of a matrix, wherein the codebook in the LTE protocol is the feedback method of the codebook quantization used.
  • the precoding codebook and the channel information quantization codebook in LTE are used. The meaning is the same.
  • the vector can also be viewed as a matrix of dimension 1.
  • the content of the present invention is the Rank Indication (RI) information and the PMI information of the channel.
  • the channel quality indication (CQI) can be fed back together with the PMI.
  • the channel state information feedback includes: Channel Quality Indication (CQI), Precoding Matrix Indicator (PMI), and Rank Indicator RI.
  • CQI is an indicator to measure the quality of downlink channels.
  • CQI is represented by an integer value of 0 to 15, which respectively represent different CQI levels, and different CQIs correspond to respective modulation modes and coding rate (MCS).
  • MCS modulation modes and coding rate
  • the RI is used to describe the number of spatially independent channels, corresponding to the rank of the channel response matrix.
  • the UE needs to feed back RI information, and other modes do not need to feed back RI information.
  • the rank of the channel matrix corresponds to the number of layers.
  • the PMI feeds back the best precoding information, based on the index feedback, indicating the codeword of the agreed codebook that best matches the characteristics of the current channel.
  • 3GPP also introduces the concept of channel state information (CSI) process.
  • the base station can configure multiple CSI processes for the terminal.
  • Each CSI process is equivalent to a feedback process, and each CSI process is independent.
  • a CSI process includes a configuration of the channel measurement section and a configuration of the interference measurement section and a feedback mode.
  • the channel measurement section generally specifies a set of non-zero power CSI measurement pilots (Non Zero Power CSI-RS) for channel measurement, and interference measurement is generally used.
  • Non Zero Power CSI-RS Non Zero Power CSI-RS
  • the IMR resource can generally be a set of zero-power CSI-RS (Zero Power CSI-RS).
  • the pilot generally defaults to a full-dimensional pilot, that is, the physical antenna and the measurement pilot port are one-to-one mapping, and the channel measurement method is relatively simple, and the CSI based on the RI/PMI/CQI implicit feedback method is CSI.
  • the quantitative feedback technique is also relatively simple.
  • the main purpose of the embodiments of the present invention is to provide a method, a device, a feedback method, and a device for configuring channel information, so as to at least solve the problem that the measurement and feedback techniques of pilots in the related art are not flexible enough.
  • a method for configuring channel information including: a base station configuring Q CSI measurement threads for a channel state information CSI process, where the Q is an integer greater than or equal to 2;
  • the base station configures P1 channel measurement pilots and P2 interference measurement resources for the Q CSI measurement threads, where the P1 channel measurement pilots are used to perform channel measurement of the Q CSI measurement threads, P2 interference measurement resources are used to perform interference measurement of the Q CSI measurement threads, and P1 and P2 are integers greater than zero.
  • the channel measurement pilots corresponding to the Q CSI measurement threads are the same, and the interference measurement resources corresponding to at least two CSI measurement threads in the Q CSI measurement threads are different.
  • the interference resource measurement pilots corresponding to the Q CSI measurement threads are the same, and the interference measurement resources corresponding to at least two CSI measurement threads of the Q CSI measurement threads are different.
  • At least two different types of pilots exist in the channel measurement pilot corresponding to the Q CSI measurement threads.
  • the method includes: the base station configuring a quantization and/or feedback method of the CSI for the Q CSI measurement threads.
  • the method for the base station to configure the CSI for the Q CSI measurement thread to perform the quantization and/or feedback method includes: configuring, by the base station, a rank RANK or a transport layer number LAYER of the Q CSI measurement thread And a method for calculating a rank indicator RI for the Q CSI measurement threads; and/or a codebook quantization method used by the base station to configure the Q CSI measurement threads; And/or, the base station configures a feedback mode of CSI for the Q CSI measurement threads.
  • At least X CSI measurement threads are respectively used in the Q CSI measurement threads for X Channel information feedback for the RANK or LAYER group.
  • a method for configuring channel information including: a base station configuring P1 channel measurement pilots and P2 interference measurement resources for a channel state information CSI process, wherein the P1 channel measurement The pilot is configured to perform channel measurement of the Q CSI measurement threads, where the P2 interference measurement resources are used to perform interference measurement of the Q CSI measurement threads, where P1 and P2 are integers greater than zero, And at least one of the P1 and the P2 is greater than 1.
  • a method for feeding back channel information includes: acquiring, by a terminal, configuration information of Q CSI measurement threads corresponding to a CSI process, where the configuration information includes: P1 channels Measuring pilot and P2 interference measurement resources, wherein the P1 channel measurement pilots are used to perform channel measurement of the Q CSI measurement threads, and the P2 interference measurement resources are used to perform the Q CSI measurement Interference measurement of the thread, the P1 and the P2 are integers greater than zero; the terminal performs CSI measurement on the Q CSI measurement threads according to the P1 channel measurement pilot and the P2 interference measurement resources, and The CSI feedback operation and selects Y CSI measurement threads from the Q CSI measurement threads after performing the CSI measurement and the CSI feedback operation.
  • the configuration information includes: P1 channels Measuring pilot and P2 interference measurement resources, wherein the P1 channel measurement pilots are used to perform channel measurement of the Q CSI measurement threads, and the P2 interference measurement resources are used to perform the Q CSI measurement Interference measurement of the thread
  • the channel measurement pilots corresponding to the Q CSI measurement threads are the same, and the interference measurement resources corresponding to at least two CSI measurement threads in the Q CSI measurement threads are different.
  • the interference resource measurement pilots corresponding to the Q CSI measurement threads are the same, and the interference measurement resources corresponding to at least two CSI measurement threads of the Q CSI measurement threads are different.
  • At least two different types of pilots exist in the channel measurement pilot corresponding to the Q CSI measurement threads.
  • the configuration information is further used to indicate that the base station configures the CSI quantization and/or feedback method for the Q CSI measurement threads.
  • the method for quantizing and/or feeding the CSI includes at least one of: a rank RANK of a channel or a calculation method of a transport layer number LAYER; a calculation method of a rank indicator RI; a codebook quantization method used; CSI Feedback mode.
  • At least X CSI measurement threads in the Q CSI measurement threads are used for channel information feedback of X RANK or LAYER groups, respectively.
  • a channel information configuration apparatus configured to configure Q CSI measurement threads for a channel state information CSI process, where The Q is an integer greater than or equal to 2; the second configuration module is configured to configure P1 channel measurement pilots and P2 interference measurement resources for the Q CSI measurement threads, where the P1 channel measurement pilots are used. And performing P1 interference measurement resources for performing interference measurement of the Q CSI measurement threads, where P1 and P2 are integers greater than zero.
  • the channel measurement pilots corresponding to the Q CSI measurement threads are the same, and the interference measurement resources corresponding to at least two CSI measurement threads in the Q CSI measurement threads are different.
  • the interference resource measurement pilots corresponding to the Q CSI measurement threads are the same, and the interference measurement resources corresponding to at least two CSI measurement threads of the Q CSI measurement threads are different.
  • At least two different types of pilots exist in the channel measurement pilot corresponding to the Q CSI measurement threads.
  • the apparatus comprises: a third configuration module, configured to configure a quantization and/or feedback method of the CSI for the Q CSI measurement threads.
  • the third configuration module is further configured to calculate, by the base station, a rank RANK or a transport layer number LAYER of the Q CSI measurement thread configuration channel; and/or, for the Q CSI measurement a method of calculating a thread configuration rank indicator RI; and/or a codebook quantization method used for the Q CSI measurement thread configurations; and/or a feedback mode for configuring the CSI for the Q CSI measurement threads.
  • At least X CSI measurement threads in the Q CSI measurement threads are used for channel information feedback of X RANK or LAYER groups, respectively.
  • a channel information configuration apparatus located on a base station side, including: a fourth configuration module, configured to configure P1 channel measurement pilots and P2 interference measurements for one channel state information CSI process a resource, where the P1 channel measurement pilots are used to perform channel measurement of the Q CSI measurement threads, and the P2 interference measurement resources are used to perform interference measurement of the Q CSI measurement threads, where the P1 And said P2 is an integer greater than zero, and at least one of said P1 and said P2 is greater than one.
  • a channel information feedback device is provided on the terminal side, including: an obtaining module, configured to acquire configuration information of Q CSI measurement threads corresponding to one CSI process, where The configuration information includes: P1 channel measurement pilots and P2 interference measurement resources, where the P1 channel measurement pilots are used to perform channel measurement of the Q CSI measurement threads, and the P2 interference measurement resources are used.
  • Performing interference measurement of the Q CSI measurement threads where P1 and P2 are integers greater than zero; and selecting a module, configured to: the terminal according to the P1 channel measurement pilot and the P2 interference measurement
  • the resource performs CSI measurement and CSI feedback operations on the Q CSI measurement threads, and selects Y CSI measurement threads from the Q CSI measurement threads after performing CSI measurement and CSI feedback operations.
  • the channel measurement pilots corresponding to the Q CSI measurement threads are the same, and the interference measurement resources corresponding to at least two CSI measurement threads in the Q CSI measurement threads are different.
  • the interference resource measurement pilots corresponding to the Q CSI measurement threads are the same, and the interference measurement resources corresponding to at least two CSI measurement threads of the Q CSI measurement threads are different.
  • At least two different types of pilots exist in the channel measurement pilot corresponding to the Q CSI measurement threads.
  • the configuration information further includes: a quantization and/or feedback method of the CSI.
  • the method for quantizing and/or feeding the CSI includes at least one of: a calculation method of a rank RANK or LAYER of a channel; a calculation method of a rank indicator RI; a codebook quantization method used; a feedback mode of a CSI .
  • At least X CSI measurement threads in the Q CSI measurement threads are used for channel information feedback of X RANK or LAYER groups, respectively.
  • Q CSI measurement threads are configured for one channel state information CSI process
  • the base station also configures P1 channel measurement pilots and P2 interference measurement resources for Q CSI measurement threads, that is, by configuring Multiple threads and configuring channel measurement pilot and interference measurement resources for the multiple threads enable measurement of multiple channel information, which solves the problem that the measurement and feedback techniques of pilots in the related art are not flexible enough.
  • FIG. 1 is a flowchart of a method of configuring channel information according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for feeding back channel information according to an embodiment of the present invention
  • FIG. 3 is a structural block diagram of an apparatus for configuring channel information according to an embodiment of the present invention.
  • FIG. 4 is a structural block diagram of a feedback apparatus for channel information according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for configuring channel information according to an embodiment of the present invention. As shown in FIG. 1, the steps of the method include:
  • Step S102 The base station configures Q CSI measurement threads for a channel state information CSI process, where Q is an integer greater than or equal to 2;
  • Step S104 The base station configures P1 channel measurement pilots and P2 interference measurement resources for the Q CSI measurement threads, where P1 channel measurement pilots are used to perform channel measurement of Q CSI measurement threads, and P2 interference measurement resources are used.
  • P1 and P2 are integers greater than zero.
  • Q CSI measurement threads are configured for one channel state information CSI process, and the base station further configures P1 channel measurement pilots and P2 interference measurement resources for Q CSI measurement threads.
  • the method that is, by configuring multiple threads and configuring channel measurement pilot and interference measurement resources for the multiple threads, implements measurement of multiple channel information, and solves the problem that the measurement and feedback techniques of pilots in the related art are not flexible enough.
  • the Q CSI measurement threads have corresponding correspondences with the channel measurement pilot and the interference measurement resources. the way:
  • Manner 1 The channel measurement pilots corresponding to the Q CSI measurement threads are the same, and the interference measurement resources corresponding to at least two CSI measurement threads in the Q CSI measurement threads are different.
  • Manner 3 There are at least two different types of pilots for the channel measurement pilots corresponding to the Q CSI measurement threads.
  • the manner of this embodiment may further include the following method steps: the base station configures a CSI quantization and/or feedback method for the Q CSI measurement threads.
  • the method for quantifying and/or feeding the CSI for the C CSI measurement threads by the base station includes at least one of the following configuration operations:
  • the base station calculates a rank RANK or a transport layer number LAYER for the Q CSI measurement threads;
  • Configuration operation 2 a calculation method for the base station to configure a rank indicator RI for Q CSI measurement threads; and/or,
  • Configuration operation 3 a codebook quantization method used by the base station to configure Q CSI measurement threads
  • the base station configures a CSI feedback mode for Q CSI measurement threads.
  • At least X CSI measurement threads in the Q CSI measurement threads are used for channel information feedback of X RANK or LAYER groups, respectively.
  • the embodiment further provides a method for configuring channel information, where the method includes: the base station configures P1 channel measurement pilots and P2 interference measurement resources for a channel state information CSI process, where P1 channel measurement pilots are used.
  • P2 interference measurement resources are used to perform interference measurement of Q CSI measurement threads, P1 and P2 are integers greater than zero and at least one of P1 and P2 is greater than 1.
  • the base station can directly configure P1 channel measurement pilots and P2 interference measurement resources for one CSI process, that is, implement multiple channel information for one CSI process channel measurement pilot and interference measurement resources.
  • the measurement also solves the problem that the measurement and feedback techniques of the pilot in the related art are not flexible enough.
  • FIG. 2 is a flowchart of a method for feeding back channel information according to an embodiment of the present invention. As shown in FIG. 2, the steps of the method include:
  • Step S202 The terminal acquires configuration information of Q CSI measurement threads corresponding to one CSI process.
  • the configuration configuration information includes: the base station configures P1 channel measurement pilots and P2 interference measurement resources for the Q CSI measurement threads, where the P1 channel measurement pilots are used to perform channel measurement of the Q CSI measurement threads, P2 The interference measurement resource is used to perform interference measurement of Q CSI measurement threads, and P1 and P2 are integers greater than zero;
  • Step S202 The terminal performs CSI measurement and CSI feedback operation on the Q CSI measurement threads according to the P1 channel measurement pilot and the P2 interference measurement resources, and selects Y from the C CSI measurement threads after performing the CSI measurement and the CSI feedback operation.
  • CSI measurement threads The terminal performs CSI measurement and CSI feedback operation on the Q CSI measurement threads according to the P1 channel measurement pilot and the P2 interference measurement resources, and selects Y from the C CSI measurement threads after performing the CSI measurement and the CSI feedback operation.
  • the terminal side can have very good feedback flexibility, avoiding the problem of poor robustness and poor performance in single thread.
  • the Q CSI measurement threads and the channel measurement pilot and the interference measurement resources have the following corresponding manners. :
  • Manner 1 The channel measurement pilots corresponding to the Q CSI measurement threads are the same, and the interference measurement resources corresponding to at least two CSI measurement threads in the Q CSI measurement threads are different.
  • Manner 3 There are at least two different types of pilots for the channel measurement pilots corresponding to the Q CSI measurement threads.
  • the configuration operation related to the embodiment may further include: a base station configuring a CSI quantization and/or feedback method for the Q CSI measurement threads, where the CSI quantization and/or feedback method includes at least one of the following: : calculation method of RANK or LAYER; calculation method of rank indicator RI; codebook quantization method used; feedback mode of CSI.
  • At least X CSI measurement threads in the Q CSI measurement threads are used for channel information feedback of the X RANK or LAYER groups, respectively.
  • a device for configuring channel information and a feedback device are provided, which are used to implement the foregoing embodiments and optional implementations, and are not described again.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • the device includes: a first configuration module 32 configured to configure a channel state information CSI process.
  • Q CSI measurement threads wherein Q is an integer greater than or equal to 2;
  • the second configuration module 34 is coupled to the first configuration module, configured to configure P1 channel measurement pilots and P2 interferences for Q CSI measurement threads
  • the measurement resource wherein the P1 channel measurement pilots are used to perform channel measurement of the Q CSI measurement threads, and the P2 interference measurement resources are used to perform interference measurement of the Q CSI measurement threads, where P1 and P2 are integers greater than zero.
  • the first configuration module 32 may be further configured to configure P1 channel measurement pilots and P2 interference measurement resources for one channel state information CSI process, where P1 channel measurement pilots are used.
  • P2 interference measurement resources are used to perform interference measurement of Q CSI measurement threads, P1 and P2 are integers greater than zero and at least one of P1 and P2 is greater than 1.
  • the first configuration module 32 can directly configure P1 channel measurement pilots and P2 interference measurement resources for one channel state information CSI process, and the same can solve the problem that the measurement and feedback techniques of the pilots in the related art are not flexible enough.
  • the Q CSI measurement threads and the channel measurement pilot and the interference measurement resources have the following corresponding manners. :
  • Manner 1 The channel measurement pilots corresponding to the Q CSI measurement threads are the same, and the interference measurement resources corresponding to at least two CSI measurement threads in the Q CSI measurement threads are different.
  • Manner 3 There are at least two different types of pilots for the channel measurement pilots corresponding to the Q CSI measurement threads.
  • the apparatus in this embodiment may further include: a third configuration module, configured to configure a CSI quantization and/or feedback method for the Q CSI measurement threads.
  • a third configuration module configured to configure a CSI quantization and/or feedback method for the Q CSI measurement threads.
  • the third configuration module is further configured to calculate a RANK or LAYER calculation method for the Q CSI measurement threads by the base station; and/or a calculation method for configuring the rank indicator RI for the Q CSI measurement threads; and/or Q
  • the CSI measures the codebook quantization method used by the thread configuration; and/or configures the feedback mode of the CSI for the Q CSI measurement threads.
  • At least X CSI measurement threads are used for channel information feedback of X RANK or LAYER groups, respectively.
  • the apparatus includes: an obtaining module 42 that acquires Q CSI measurement threads corresponding to one CSI process.
  • Configuration information where the configuration information includes: P1 channel measurement pilots and P2 interference measurement resources, where P1 channel measurement pilots are used to perform channel measurement of Q CSI measurement threads, and P2 interference measurement resources are used for Performing interference measurement of the Q CSI measurement threads, P1 and P2 are integers greater than zero;
  • the selection module 44 is coupled to the receiving module 42 for measuring the C CSIs according to the P1 channel measurement pilots and the P2 interference measurement resources.
  • the thread performs CSI measurement and CSI feedback operations, and selects Y CSI measurement threads from the Q CSI measurement threads after performing the CSI measurement and the CSI feedback operation.
  • the Q CSI measurement threads and the channel measurement pilot and the interference measurement resources have the following corresponding manners. :
  • Manner 1 The channel measurement pilots corresponding to the Q CSI measurement threads are the same, and the interference measurement resources corresponding to at least two CSI measurement threads in the Q CSI measurement threads are different.
  • Manner 3 There are at least two different types of pilots for the channel measurement pilots corresponding to the Q CSI measurement threads.
  • the configuring operation further includes: the base station configuring a CSI quantization and/or feedback method for the Q CSI measurement threads, where the CSI quantization and/or feedback method includes at least one of the following: the RANK or LAYER calculation Method; calculation method of rank indicator RI; codebook quantization method used; feedback mode of CSI.
  • At least X CSI measurement threads are used for channel information feedback of X RANK or LAYER groups, respectively.
  • Step S304 The base station may further configure P1 channel measurement pilots for the Q threads, and the base station further configures P2 interference measurement resource configurations for the Q threads, where P1 and P2 are integers greater than 0.
  • the terminal selects Y threads from the Q threads, and performs CSI measurement and CSI feedback according to the configuration of the Y threads, where Y ⁇ Q;
  • the terminal feeds back selection information of Y threads to the base station, where the Y may be 1.
  • the base station in this alternative embodiment may also configure a CSI quantization and/or feedback method for Q threads
  • the method for configuring and configuring the CSI includes at least one of the following: a base station configuring a CQI calculation method for the Q threads; the base station configuring a RANK or LAYER calculation method for the Q threads; and the base station is configured for the Q threads. Codebook quantization method; the base station configures a CSI feedback mode for Q threads;
  • the correspondence between the Q CSI measurement threads and the channel measurement pilots and the interference measurement resources in the optional embodiment may be:
  • the channel measurement pilots corresponding to the Q CSI measurement threads are the same, and the interference measurement resources corresponding to at least two of the Q CSI measurement threads are different; or
  • the interfering resource measurement pilots corresponding to the Q CSI measurement threads are the same, and the interference measurement resources corresponding to at least two of the Q CSI measurement threads are different; or
  • pilots eg. precoded pilot/nonprecoded pilots
  • At least X threads are used for channel information feedback of X RANK or LAYER groups, respectively.
  • thread parameters corresponding to multiple CSI processes can be independently configured, and the number of threads corresponding to multiple CSI processes can be configured separately.
  • the present embodiment further provides a method for feedback of channel information CSI, which will be described from the terminal side, and the method includes:
  • the terminal obtains configuration information of Q CSI measurement threads corresponding to a CSI process.
  • Q> 2;
  • the Q CSI measurement thread configuration information includes at least: P1 channel measurement pilots, P2 interference measurement resource configurations, and P1 and P2 are integers greater than 0;
  • the terminal selects Y threads from the Q CSI measurement threads, and performs CSI measurement and CSI feedback according to the Y thread corresponding configuration, Y ⁇ Q;
  • the Q CSI measurement thread configuration information in the optional embodiment further includes a CSI quantization and/or feedback method
  • the CSI quantization method includes a CQI calculation method; the CSI quantization method includes a RANK or LAYER calculation method; the CSI quantization method includes a codebook quantization method used; and the CSI quantization method includes a CSI feedback mode;
  • the channel measurement pilots corresponding to the Q CSI measurement threads are the same, and the interference measurement resources corresponding to at least two threads of the Q CSI measurement threads are different;
  • the interference measurement indicators corresponding to the Q CSI measurement threads are the same, and the interference measurement resources corresponding to at least two of the Q CSI measurement threads are different;
  • pilots precoded pilot/non-precoded pilot for channel measurement pilots corresponding to Q CSI measurement threads
  • measurement of multiple channel information is implemented by multiple threads, which can make the terminal side have very good feedback flexibility, avoid the problem of poor robustness and poor performance in single thread, and at the same time, Effectively controls the overhead of feedback.
  • the configuration method of the channel information feedback is preferred, and the steps of the method include:
  • Step S301 The base station configures Q CSI measurement threads for a CSI feedback process.
  • a CSI measurement thread corresponds to a set of CSI measurement configurations required to complete CSI measurement, and at least includes configuration of a channel measurement part, configuration of a feedback measurement part, and other configurations such as a feedback mode.
  • the CSI process in the related art is defined as follows:
  • the CSI process (based on the process allocation feedback resource containing only one CSI measurement thread) includes: a channel measurement part, an interference measurement part, and other configurations.
  • the definition of the CSI process provided by this alternative embodiment is as follows:
  • the CSI process (based on process allocation feedback resources) includes: Q CSI measurement threads, each CSI measurement thread includes a channel measurement part, an interference measurement part, and other configurations.
  • the CSI process in the related art can understand that only one thread is included.
  • the CSI process provided in this optional embodiment includes multiple threads, and each thread needs to configure or appoint a corresponding channel measurement and interference measurement and feedback mode and other related configurations.
  • Step S302 The terminal selects Y threads from the Q CSI measurement threads, and performs CSI measurement and CSI feedback according to the Y thread corresponding configuration, where Y ⁇ Q;
  • each thread does not necessarily correspond to the feedback resource; the quantized result obtained by the CSI measurement of some threads needs feedback, but the CSI measurement result corresponding to some threads does not need feedback;
  • the base station configures Q CSI measurement threads for the terminal, where the Q CSI measurement threads generally correspond to Q different quantization and/or feedback methods.
  • Q is an integer greater than 1, so that dynamic selection between multiple CSI measurements and feedback can be supported, but in order to avoid excessive complexity, Q can be selected as 2, 3 or 4, and the value of Q can be passed through the base station.
  • the terminal pre-arranges or the base station configures to the base station through signaling.
  • the values of Q corresponding to different CSI processes can be independently configured.
  • the difference may be reflected in one of the following aspects: Q CSI measurement thread channel measurement difference; Q CSI measurement thread interference measurement difference; Q CSI measurement thread CSI quantization method difference; Q CSI measurement thread
  • the CSI feedback method is different; the Q CSI measurement threads correspond to different RANK or LAYER groups.
  • the configured measurement pilots are different.
  • the measurement pilots here include different pilot ports, different pilot powers, different pilot periods, different pilot densities, different pilot frequency domain locations, and different pilot pilots. Pilot type and more.
  • Thread 1 configures the number of ports to be N 1 and Thread 2 configures the number of ports to be N 2 ; where N 1 and N 2 are unequal positive integers.
  • Thread 1 configures the transmit power to be Power 1 and Thread 2 configures the transmit power to be Power 2 ; where Power 1 and Power 2 are unequal positive numbers.
  • Thread 1 configures the pilot period to be T 1 and Thread 2 configures the pilot period to be T 2 ; where T 1 and T 2 are unequal positive integers.
  • Thread 1 configures N 1 pilot RE numbers in one resource block, and thread 2 configures N 2 pilot REs in one resource block; where N 1 , N 2 are unequal positive integers .
  • the pilot type configured by thread 1 is a beam pilot
  • the pilot type configured by thread 2 is a non-beam pilot.
  • the beam half power width of the beam pilot configured by thread 1 is W 1
  • the beam half power width of the beam pilot configured by thread 2 is W 2 , where W 1 and W 2 are different positive numbers.
  • the set of antennas used by thread 1 to transmit pilots is W 1
  • the set of antennas used by thread 2 to transmit pilots is W 2 , wherein at least one of the sets of W 1 and W 2 is different.
  • the number of beams forming the beam pilots configured by the thread 1 is N 1
  • the number of beams forming the beam pilots configured by the thread 2 is N 2 , where N 1 , N 2 are unequal positive integers .
  • the base station can configure the Q CSI measurement threads as all independent channel measurements, that is, the Q CSI measurement threads configure the Q sets of channel measurement pilots. or,
  • the base station can configure the Q CSI measurement threads as partially independent channel measurements, that is, the Q CSI measurement threads are configured with less than Q sets of channel measurement pilots. That is, at least 2 processes are configured with the same channel measurement pilot.
  • the interference measurement resources involved in the optional embodiment 2 include: different interference measurement RE numbers: different interference measurement positions: periods of different interference measurement resources, and the like.
  • Thread 1 configures the number of ports to be N 1 and Thread 2 configures the number of ports to be N 2 ; where N 1 and N 2 are unequal positive integers.
  • Thread 1 configures the transmit power to be Power 1 and Thread 2 configures the transmit power to be Power 2 ; where Power 1 and Power 2 are unequal positive numbers.
  • Thread 1 configures the pilot period to be T 1 and Thread 2 configures the pilot period to be T 2 ; where T 1 and T 2 are unequal positive integers.
  • Thread 1 configures N 1 pilot RE numbers in one resource block, and thread 2 configures N 2 pilot REs in one resource block; where N 1 , N 2 are unequal positive integers .
  • the pilot type configured by thread 1 is a beam pilot
  • the pilot type configured by thread 2 is a non-beam pilot.
  • the beam half power width of the beam pilot configured by thread 1 is W 1
  • the beam half power width of the beam pilot configured by thread 2 is W 2 , where W 1 and W 2 are different positive numbers.
  • the set of antennas used by thread 1 to transmit pilots is W 1
  • the set of antennas used by thread 2 to transmit pilots is W 2 , wherein at least one of the sets of W 1 and W 2 is different.
  • the number of beams forming the beam pilots configured by the thread 1 is N 1
  • the number of beams forming the beam pilots configured by the thread 2 is N 2 , where N 1 , N 2 are unequal positive integers .
  • the base station may configure the Q CSI measurement threads as all independent interference measurements, that is, the Q CSI measurement threads configure the Q sets of interference measurement pilots; or
  • the base station can configure the Q CSI measurement threads as partially independent interference measurements, that is, the Q CSI measurement threads are configured with less than Q sets of interference measurement pilots. That is, at least 2 processes are configured with the same interference measurement pilot.
  • the base station configures different CQI calculation methods for the Q CSI measurement threads
  • the channel measurement pilot of thread i is a 4-port CSI-RS
  • the terminal based on the 4-port measurement pilot assumes that 4 ports are transmitted according to the transmission diversity technique, thereby obtaining a transmission diversity CQI of the thread i, the thread j
  • the channel measurement pilot is a 2-port CSI-RS
  • the terminal based on the measurement pilot of the two ports assumes that two ports are transmitted according to the 2-layer precoding technique, and then two CQIs corresponding thereto are obtained.
  • the channel measurement pilot of the thread i is a 4-port CSI-RS
  • the terminal based on the 4-port measurement pilot assumes that the four ports are transmitted according to the transmission diversity technique, thereby obtaining a transmission diversity CQI of the thread i, the thread.
  • the channel measurement pilot of j is a 4-port CSI-RS, and the terminal based on the measurement pilot of the four ports assumes that four ports are transmitted according to the 4-layer precoding technique, thereby obtaining two CQIs corresponding thereto.
  • the channel measurement pilot of the thread i is a 4-port CSI-RS
  • the terminal based on the 4-port measurement pilot assumes that the four ports are transmitted according to the transmission diversity technique, thereby obtaining a transmission diversity CQI of the thread i, the thread.
  • the channel measurement pilot of j is a 4-port CSI-RS, and the terminal selects the port based on the four ports, thereby obtaining the best port and reporting the CQI corresponding to the port.
  • the base station configures a different RANK or LAYER calculation method for the Q CSI measurement threads
  • the base station configures the RANK or LAYER of the thread i for the terminal to be determined by the number of ports in the corresponding CSI-RS pilot or the number of pilot ports of the DMRS (data-specific demodulation pilot), and the RANK or LAYER of the thread j It is determined by the base station according to the most suitable number of transmission layers of the current channel matrix H. Generally, it is assumed that the closed-loop precoding transmission is performed by the terminal traversing the assumptions of various layers, comparing the performances of different transmission layers, and selecting the optimal number of transmission layers.
  • the base station configures different codebook models for Q CSI measurement threads
  • the channel measurement pilot of thread i is a 16-port CSI-RS
  • the channel measurement pilot of thread j is also the same CSI-RS
  • the channel measurement pilot of thread k is also the same CSI-RS.
  • the base station configures the terminal for the threads i, j, k respectively using the following codeword models 1, 2, 3 for quantization feedback; wherein model 1 is thread i, model 2 is thread j, and model 3 is thread k.
  • the base station configures different codebook feedback methods for the Q CSI measurement threads
  • the channel measurement pilot of thread i is an 8-port CSI-RS
  • the channel measurement pilot of thread j is also the same CSI-RS
  • the channel measurement pilot of thread k is also the same CSI-RS.
  • the base station configures the terminal for the thread i, j, k respectively using the following codebook feedback method for quantitative feedback;
  • Thread i using the 8-antenna feedback method in the LTE-A Rel-10 version
  • Thread j feedback is based on two codebooks respectively feeding back two codeword matrices D and W, and the codeword matrix D is a diagonal matrix, which represents precoding amplitude information, and the codeword matrix W is a unitary matrix and is a constant modulus matrix. Characterizing precoding phase information;
  • Thread k feedback based on the following model 4, feedback each parameter information, including v0, v1, v2, v3, ⁇ 1 , ⁇ 2 , ⁇ 1 , ⁇ 2
  • the base station configures different codebook precisions for the Q CSI measurement threads
  • the channel measurement pilot of thread i is a 4-port CSI-RS, and the channel measurement pilot of thread j is also the same CSI-RS; the base station is configured for the terminal for threads i, j, respectively using two different precisions. Codebook.
  • Thread i 4 bit codebook, each RANK or LAYER codebook contains 16 code words;
  • Thread j 6 bit codebook, codebook under each RANK or LAYER contains 64 code words.
  • the channel measurement pilot of thread i is an 8-port CSI-RS, and the channel measurement pilot of thread j Also for the same CSI-RS; the base station configures the terminal for the thread i, j, respectively using two different precision codebooks;
  • Thread i 6-bit codebook, each RANK or LAYER codebook contains 64 code words;
  • Thread j 8 bit codebook, codebook under each RANK or LAYER contains 256 code words.
  • the base station configures different feedback parameters for the Q CSI measurement threads
  • the channel measurement pilot of thread i is a 16-port CSI-RS
  • the channel measurement pilot of thread j is also the same CSI-RS
  • the channel measurement pilot of thread k is also the same CSI-RS.
  • the base station configures the terminal for the thread i, j, k to use the following codeword model 5 for quantitative feedback;
  • Thread i base station configuration v0 ⁇ v3, terminal quantization feedback ⁇ 1 , ⁇ 2 , ⁇ 1 , ⁇ 2 ;
  • the base station is configured with ⁇ 1 , ⁇ 2 , ⁇ 1 , ⁇ 2 , terminal quantization feedback v0 to v3;
  • Thread k terminal quantization feedback v0 ⁇ v3 ⁇ 1 , ⁇ 2 , ⁇ 1 , ⁇ 2 .
  • the channel measurement pilot of thread i is an 8-port non-precoded CSI-RS, and the channel measurement pilot of thread j is configured as a 2-port precoding CSI-RS.
  • the base station configures the terminal for the thread i, j respectively, and needs the following feedback content;
  • Thread i report RANK or LAYER, PMI, CQI;
  • Thread j report RANK or LAYER and CQI
  • the channel measurement pilot of thread i is an 8-port non-precoded CSI-RS
  • the channel measurement pilot of thread j is configured as a 2-port precoding CSI-RS.
  • the base station configures the terminal for the thread i, j respectively, and needs the following feedback content;
  • Thread i report RANK or LAYER, PMI, CQI;
  • Thread j report CQI
  • the channel measurement pilot of thread i is a 4-port precoding CSI-RS, channel measurement of thread j
  • the pilot is configured as a 2-port precoding CSI-RS.
  • the base station configures the terminal for the thread i, j respectively, and needs the following feedback content;
  • Thread i report RANK or LAYER, CQI, port selection information
  • Thread j report CQI
  • the channel measurement pilot of thread i is a 4-port precoding CSI-RS
  • the channel measurement pilot of thread j is configured as a 2-port precoding CSI-RS.
  • the base station configures the terminal for the thread i, j respectively needs the following feedback content
  • Thread i report RANK or LAYER, CQI;
  • Thread j Report CQI.
  • At least X threads in the Q CSI measurement threads are used for channel information feedback of X RANK or LAYER groups respectively;
  • RANK or LAYER group 4 is ⁇ 7,8 ⁇ ;
  • the RANK or LAYER group 4 is ⁇ 5 to 8 ⁇ .
  • the terminal acquires Q CSI measurement threads configured by the base station;
  • the terminal receives the configuration signaling of the base station, and obtains the configuration of the Q CSI measurement threads, as shown in Table 2 and Table 3 below:
  • the terminal performs CSI measurement quantization according to the configuration of each thread, and obtains multiple CSI measurement quantization results.
  • the terminal may select one or more preferred results for feedback according to the maximum capacity criterion.
  • the terminal may select one or more preferred results for feedback according to the maximum capacity criterion.
  • the terminal may also select one or more preferred results for feedback according to the criterion of highest quantization efficiency.
  • the terminal may also feed back the CSI measurement thread corresponding to the foregoing result to the base station through the uplink channel.
  • the measurement of multiple channel information is implemented by using multiple threads, which can make the terminal side have very good feedback flexibility, solve the problem of poor robustness and poor performance in single thread, and then achieve The effect of effectively controlling the overhead of feedback.
  • a storage medium is further provided, wherein the software includes the above-mentioned software, including but not limited to: an optical disk, a floppy disk, a hard disk, an erasable memory, and the like.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device for execution by the computing device and, in some cases, may be performed in a different order than herein.
  • the steps shown or described are either made separately into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module. Thus, the invention is not limited to any specific combination of hardware and software.
  • a method for configuring a CSI measurement thread for a channel state information CSI process, and configuring a P1 channel measurement pilot and a P2 interference measurement resource for the Q CSI measurement threads is also adopted. That is, by configuring multiple threads and configuring channel measurement pilot and interference measurement resources for the multiple threads, multiple channel information measurements are implemented, which solves the problem that the measurement and feedback techniques of pilots in the related art are not flexible enough.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种信道信息的配置方法及装置、反馈方法及装置,其中,该配置方法包括:基站为一个信道状态信息CSI进程配置Q个CSI测量线程,其中,Q为大于或等于2的整数;基站为Q个CSI测量线程配置P1个信道测量导频和P2个干扰测量资源,其中,P1个信道测量导频用于执行Q个CSI测量线程的信道测量,P2个干扰测量资源用于执行Q个CSI测量线程的干扰测量,P1和P2为大于零的整数。通过本发明,解决了相关技术中导频的测量与反馈技术不够灵活的问题。

Description

信道信息的配置方法及装置、反馈方法及装置 技术领域
本发明涉及通信领域,具体而言,涉及一种信道信息的配置方法及装置、反馈方法及装置。
背景技术
多天通信预编码与反馈技术基础原理介绍:在无线通信系统中,发送端和接收端采取空间复用的方式使用多根天线来获取更高的速率。相对于一般的空间复用方法,一种增强的技术是接收端反馈给发送端信道信息,发送端根据获得的信道信息使用发射预编码技术,可以极大地提高传输性能。对于单用户多输入多输出(SU-MIMO,其中的MIMO表示Multi-input Multi-output,多输入多输出)中,直接使用信道特征矢量信息进行预编码;对于多用户MIMO(MU-MIMO)中,需要比较准确的信道信息。在3GPP长期演进(Long Term Evolution,简称为LTE)计划中,信道信息的反馈主要是利用较简单的单一码本的反馈方法,而MIMO的发射预编码技术的性能更依赖于其中码本反馈的准确度。
这里将基于码本的信道信息量化反馈的基本原理简要阐述如下:假设有限反馈信道容量为Bbps/Hz,那么可用的码字的个数为N=2B个。信道矩阵的特征矢量空间经过量化构成码本空间
Figure PCTCN2016070074-appb-000001
发射端与接收端共同保存或实时产生此码本
Figure PCTCN2016070074-appb-000002
(发射端和收收端相同)。对每次信道实现H,接收端根据一定准则从码本空间
Figure PCTCN2016070074-appb-000003
中选择一个与信道实现H最匹配的码字
Figure PCTCN2016070074-appb-000004
并将该码字
Figure PCTCN2016070074-appb-000005
的序号i(码字序号)反馈回发射端。这里,码字序号称为码本中的预编码矩阵指示符(Precoding Matrix Indicator,简称为PMI)。发射端根据此序号i找到相应的预编码码字
Figure PCTCN2016070074-appb-000006
从而也获得相应的信道信息,
Figure PCTCN2016070074-appb-000007
表示了信道的特征矢量信息。这里信道信道H一般是根据信道测量导频进行信道测量获得的。
一般来说码本空间
Figure PCTCN2016070074-appb-000008
可以进一步地被划分为多个Rank对应的码本,每个Rank下会对应多个码字来量化该Rank下信道特征矢量构成的预编码矩阵。由于信道的Rank和非零特征矢量个数是相等的,因此,一般来说Rank为N时码字都会有N列。所以,码本空间
Figure PCTCN2016070074-appb-000009
可按Rank的不同分为多个子码本,表1为码本按Rank分为多个子码本示意,如表1所示,
Figure PCTCN2016070074-appb-000010
Figure PCTCN2016070074-appb-000011
表1
其中,在Rank>1时需要存储的码字都为矩阵形式,其中LTE协议中的码本就是采用的这种码本量化的反馈方法,实际上LTE中预编码码本和信道信息量化码本含义是一样的。在下文中,为了统一起见,矢量也可以看成一个维度为1的矩阵。
3GPP协议关于信道状态信息的反馈内容介绍:以下是一些LTE中与信道信息反馈相关的内容,本发明较为关注的内容是信道的秩指示符(Rank Indication,简称为RI)信息和PMI信息,信道质量指示信息(Channel quality indication,简称为CQI)可以附带PMI一起反馈。信道状态信息反馈包括:信道质量指示信息(Channel quality indication,简称为CQI)、预编码矩阵指示符(Precoding Matrix Indicator,简称为PMI)和秩指示符RI。
CQI为衡量下行信道质量好坏的一个指标。在36-213协议中CQI用0~15的整数值来表示,分别代表了不同的CQI等级,不同CQI对应着各自的调制方式和编码码率(MCS)。RI用于描述空间独立信道的个数,对应信道响应矩阵的秩。在开环空间复用和闭环空间复用模式下,需要UE反馈RI信息,其他模式下不需要反馈RI信息。信道矩阵的秩和层数对应。PMI反馈的是最佳预编码信息,基于索引反馈,指示约定的码本中最匹配当前信道的特征的码字。
3GPP还引入了信道状态信息(Channel State Information,简称为CSI)process(进程)的概念,基站可以为终端配置多个CSI process,每个CSI process相当于一个反馈进程,各个CSI process之间是独立的,可以分别进行参数配置
一个CSI process包括信道测量部分的配置和干扰测量部分以及反馈模式的配置,信道测量部分一般指定一套非零功率的CSI测量导频(Non Zero Power CSI-RS)用于信道测量,干扰测量一般指定一套IMR资源配置用于干扰测量,IMR资源一般可以是一套零功率的CSI-RS(Zero Power CSI-RS)。
相关技术中,导频一般默认是全维导频,即物理天线与测量导频端口是一对一的映射,信道测量的方法比较简单,而基于RI/PMI/CQI的隐式反馈方法的CSI量化反馈技术也比较单一。
随着MIMO技术的发展,涌现出了大量的新的技术,例如基于预编码CSI-RS导频的测量技术,新的反馈技术如水平垂直分维反馈技术等。新的一些技术虽然在部分场景下具有很好的性能,但是在有些场景下会带来性能损失,因此能够非常灵活的进行各种测量和反馈就变得非常重要,才能保障很好的性能同时保障良好的测量和反馈鲁棒性。
针对相关技术中导频的测量与反馈技术不够灵活的问题,目前尚未提出有效的解决方案。
发明内容
本发明实施例的主要目的在于提供一种信道信息的配置方法及装置、反馈方法及装置,以至少解决相关技术中导频的测量与反馈技术不够灵活的问题。
根据本发明实施例的一个方面,提供了一种信道信息的配置方法,包括:基站为一个信道状态信息CSI进程配置Q个CSI测量线程,其中,所述Q为大于或等于2的整数;所述基站为所述Q个CSI测量线程配置P1个信道测量导频和P2个干扰测量资源,其中,所述P1个信道测量导频用于执行所述Q个CSI测量线程的信道测量,所述P2个干扰测量资源用于执行所述Q个CSI测量线程的干扰测量,所述P1和所述P2为大于零的整数。
可选地,所述Q个CSI测量线程对应的信道测量导频相同,所述Q个CSI测量线程中至少2个CSI测量线程对应的干扰测量资源不同。
可选地,所述Q个CSI测量线程对应的干扰资源测量导频相同,所述Q个CSI测量线程中至少2个CSI测量线程对应的干扰测量资源不同。
可选地,所述Q个CSI测量线程对应的信道测量导频至少存在两种不同类型的导频。
可选地,所述方法包括:所述基站为所述Q个CSI测量线程配置所述CSI的量化和/或反馈方法。
可选地,所述基站为所述Q个CSI测量线程配置所述CSI的量化和/或反馈方法包括:所述基站为所述Q个CSI测量线程配置信道的秩RANK或传输层数LAYER的计算方法;和/或,所述基站为所述Q个CSI测量线程配置秩指示符RI的计算方法;和/或,所述基站为所述Q个CSI测量线程配置使用的码本量化方法;和/或,所述基站为所述Q个CSI测量线程配置CSI的反馈模式。
可选地,所述Q个CSI测量线程中至少存在X个CSI测量线程分别用于X个 RANK或LAYER组的信道信息反馈。
可选地,在所述X为2时,RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={3,4};或,RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={1,2,3,4};或,RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={3~8};或,RANK或LAYER组1为RANK或LAYER={1~4},RANK或LAYER组2为RANK或LAYER={5~8};或,RANK或LAYER组1为RANK或LAYER={1~4},RANK或LAYER组2为RANK或LAYER={1~8};或,RANK或LAYER组1为RANK或LAYER={1},RANK或LAYER组2为RANK或LAYER={2}or RANK或LAYER={2~4}or{2~8}or{1~2}or{1~4}or{1~8};
在所述X为3时
RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={3,4},RANK或LAYER组3为RANK或LAYER={5~8};或,RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={1~4},RANK或LAYER组3为RANK或LAYER={1~8};或,RANK或LAYER组1为RANK或LAYER={1}RANK或LAYER组2为{2}RANK或LAYER组2为{3,4};或,RANK或LAYER组1为RANK或LAYER={1}RANK或LAYER组2为{2}RANK或LAYER组2为{3~8};或,RANK或LAYER组1为RANK或LAYER={1}RANK或LAYER组2为{2~4}RANK或LAYER组2为{5,8}。
根据本发明的另一个方面,提供了一种信道信息的配置方法,包括:基站为一个信道状态信息CSI进程配置P1个信道测量导频和P2个干扰测量资源,其中,所述P1个信道测量导频用于执行所述Q个CSI测量线程的信道测量,所述P2个干扰测量资源用于执行所述Q个CSI测量线程的干扰测量,所述P1和所述P2为大于零的整数,且所述P1和所述P2至少之一大于1。
根据本发明实施例的再一个方面,提供了一种信道信息的反馈方法,包括:终端获取与一个CSI进程对应的Q个CSI测量线程的配置信息,其中,所述配置信息包括:P1个信道测量导频和P2个干扰测量资源,其中,所述P1个信道测量导频用于执行所述Q个CSI测量线程的信道测量,所述P2个干扰测量资源用于执行所述Q个CSI测量线程的干扰测量,所述P1和所述P2为大于零的整数;所述终端依据所述P1个信道测量导频和所述P2个干扰测量资源对所述Q个CSI测量线程执行CSI测量及CSI反馈操作,并从执行CSI测量及CSI反馈操作后的所述Q个CSI测量线程中选择Y个CSI测量线程。
可选地,所述Q个CSI测量线程对应的信道测量导频相同,所述Q个CSI测量线程中至少2个CSI测量线程对应的干扰测量资源不同。
可选地,所述Q个CSI测量线程对应的干扰资源测量导频相同,所述Q个CSI测量线程中至少2个CSI测量线程对应的干扰测量资源不同。
可选地,所述Q个CSI测量线程对应的信道测量导频至少存在两种不同类型的导频。
可选地,所述配置信息还用于指示所述基站为所述Q个CSI测量线程配置所述CSI的量化和/或反馈方法。
可选地,所述CSI的量化和/或反馈方法至少包括以下之一包括:信道的秩RANK或传输层数LAYER的计算方法;秩指示符RI的计算方法;使用的码本量化方法;CSI的反馈模式。
可选地,所述Q个CSI测量线程中至少存在X个CSI测量线程分别用于X个RANK或LAYER组的信道信息反馈。
可选地,在所述X为2时,
RANK或LAYER组1为RANK={1,2}或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={3,4};或,RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={1,2,3,4};或,RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={3~8};或,RANK或LAYER组1为RANK或LAYER={1~4},RANK或LAYER组2为RANK或LAYER={5~8};或,RANK或LAYER组1为RANK或LAYER={1~4},RANK或LAYER组2为RANK或LAYER={1~8};或,RANK或LAYER组1为RANK或LAYER={1},RANK或LAYER组2为RANK或LAYER={2}or RANK或LAYER={2~4}or{2~8}or{1~2}or{1~4}or{1~8};
在所述X为3时,
RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={3,4},RANK或LAYER组3为RANK或LAYER={5~8};或,RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={1~4},RANK或LAYER组3为RANK或LAYER={1~8};或,RANK或LAYER组1为RANK或LAYER={1}RANK或LAYER组2为{2}RANK或LAYER组2为{3,4};或,RANK或LAYER组1为RANK或LAYER={1}RANK或LAYER组2为{2}RANK或LAYER组2为{3~8};或,RANK或LAYER组1为RANK或 LAYER={1}RANK或LAYER组2为{2~4}RANK或LAYER组2为{5,8}。
根据本发明实施例的再一个方面,提供了一种信道信息的配置装置,位于基站侧,包括:第一配置模块,设置为为一个信道状态信息CSI进程配置Q个CSI测量线程,其中,所述Q为大于或等于2的整数;第二配置模块,设置为为所述Q个CSI测量线程配置P1个信道测量导频和P2个干扰测量资源,其中,所述P1个信道测量导频用于执行所述Q个CSI测量线程的信道测量,所述P2个干扰测量资源用于执行所述Q个CSI测量线程的干扰测量,所述P1和所述P2为大于零的整数。
可选地,所述Q个CSI测量线程对应的信道测量导频相同,所述Q个CSI测量线程中至少2个CSI测量线程对应的干扰测量资源不同。
可选地,所述Q个CSI测量线程对应的干扰资源测量导频相同,所述Q个CSI测量线程中至少2个CSI测量线程对应的干扰测量资源不同。
可选地,所述Q个CSI测量线程对应的信道测量导频至少存在两种不同类型的导频。
可选地,所述装置包括:第三配置模块,设置为为所述Q个CSI测量线程配置所述CSI的量化和/或反馈方法。
可选地,所述第三配置模块,还设置为所述基站为所述Q个CSI测量线程配置信道的秩RANK或传输层数LAYER的计算方法;和/或,为所述Q个CSI测量线程配置秩指示符RI的计算方法;和/或,为所述Q个CSI测量线程配置使用的码本量化方法;和/或,为所述Q个CSI测量线程配置CSI的反馈模式。
可选地,所述Q个CSI测量线程中至少存在X个CSI测量线程分别用于X个RANK或LAYER组的信道信息反馈。
可选地,在所述X为2时,
RANK或LAYER组1为RANK={1,2}或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={3,4};或,RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={1,2,3,4};或,RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={3~8};或,RANK或LAYER组1为RANK或LAYER={1~4},RANK或LAYER组2为RANK或LAYER={5~8};或,RANK或LAYER组1为RANK或LAYER={1~4},RANK或LAYER组2为RANK或LAYER={1~8};或,RANK或LAYER组1为RANK或LAYER={1},RANK或LAYER组2为RANK或LAYER={2}or RANK或LAYER={2~4}or{2~8}or{1~2}or{1~4}or{1~8};
在所述X为3时,
RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={3,4},RANK或LAYER组3为RANK或LAYER={5~8};或,RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={1~4},RANK或LAYER组3为RANK或LAYER={1~8};或,RANK或LAYER组1为RANK或LAYER={1}RANK或LAYER组2为{2}RANK或LAYER组2为{3,4};或,RANK或LAYER组1为RANK或LAYER={1}RANK或LAYER组2为{2}RANK或LAYER组2为{3~8};或,RANK或LAYER组1为RANK或LAYER={1}RANK或LAYER组2为{2~4}RANK或LAYER组2为{5,8}。
根据本发明的再一个方面,提供了一种信道信息的配置装置,位于基站侧,包括:第四配置模块,设置为为一个信道状态信息CSI进程配置P1个信道测量导频和P2个干扰测量资源,其中,所述P1个信道测量导频用于执行所述Q个CSI测量线程的信道测量,所述P2个干扰测量资源用于执行所述Q个CSI测量线程的干扰测量,所述P1和所述P2为大于零的整数,且所述P1和所述P2至少之一大于1。
根据本发明实施例的再一个方面,提供了一种信道信息的反馈装置,位于终端侧,包括:获取模块,设置为获取与一个CSI进程对应的Q个CSI测量线程的配置信息,其中,所述配置信息包括:P1个信道测量导频和P2个干扰测量资源,其中,所述P1个信道测量导频用于执行所述Q个CSI测量线程的信道测量,所述P2个干扰测量资源用于执行所述Q个CSI测量线程的干扰测量,所述P1和所述P2为大于零的整数;选择模块,设置为所述终端依据所述P1个信道测量导频和所述P2个干扰测量资源对所述Q个CSI测量线程执行CSI测量及CSI反馈操作,并从执行CSI测量及CSI反馈操作后的所述Q个CSI测量线程中选择Y个CSI测量线程。
可选地,所述Q个CSI测量线程对应的信道测量导频相同,所述Q个CSI测量线程中至少2个CSI测量线程对应的干扰测量资源不同。
可选地,所述Q个CSI测量线程对应的干扰资源测量导频相同,所述Q个CSI测量线程中至少2个CSI测量线程对应的干扰测量资源不同。
可选地,所述Q个CSI测量线程对应的信道测量导频至少存在两种不同类型的导频。
可选地,所述配置信息还包括:CSI的量化和/或反馈方法。
可选地,所述CSI的量化和/或反馈方法至少包括以下之一包括:信道的秩RANK或LAYER的计算方法;秩指示符RI的计算方法;使用的码本量化方法;CSI的反馈模式。
可选地,所述Q个CSI测量线程中至少存在X个CSI测量线程分别用于X个RANK或LAYER组的信道信息反馈。
可选地,在所述X为2时,
RANK或LAYER组1为RANK={1,2}或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={3,4};或,RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={1,2,3,4};或,RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={3~8};或,RANK或LAYER组1为RANK或LAYER={1~4},RANK或LAYER组2为RANK或LAYER={5~8};或,RANK或LAYER组1为RANK或LAYER={1~4},RANK或LAYER组2为RANK或LAYER={1~8};或,RANK或LAYER组1为RANK或LAYER={1},RANK或LAYER组2为RANK或LAYER={2}or RANK或LAYER={2~4}or{2~8}or{1~2}or{1~4}or{1~8};
在所述X为3时,
RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={3,4},RANK或LAYER组3为RANK或LAYER={5~8};或,RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={1~4},RANK或LAYER组3为RANK或LAYER={1~8};或,RANK或LAYER组1为RANK或LAYER={1}RANK或LAYER组2为{2}RANK或LAYER组2为{3,4};或,RANK或LAYER组1为RANK或LAYER={1}RANK或LAYER组2为{2}RANK或LAYER组2为{3~8};或,RANK或LAYER组1为RANK或LAYER={1}RANK或LAYER组2为{2~4}RANK或LAYER组2为{5,8}。
通过本发明实施例,采用为一个信道状态信息CSI进程配置Q个CSI测量线程,而该基站还为Q个CSI测量线程配置P1个信道测量导频和P2个干扰测量资源的方式,即通过配置多个线程以及为该多个线程配置信道测量导频和干扰测量资源实现了多种信道信息的测量,解决了相关技术中导频的测量与反馈技术不够灵活的问题。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的信道信息的配置方法的流程图;
图2是根据本发明实施例的信道信息的反馈方法的流程图;
图3是根据本发明实施例的信道信息的配置装置的结构框图;
图4是根据本发明实施例的信道信息的反馈装置的结构框图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
本实施例提供了一种信道信息的配置方法,图1是根据本发明实施例的信道信息的配置方法的流程图,如图1所示,该方法的步骤包括:
步骤S102:基站为一个信道状态信息CSI进程配置Q个CSI测量线程,其中,Q为大于或等于2的整数;
步骤S104:基站为Q个CSI测量线程配置P1个信道测量导频和P2个干扰测量资源,其中,P1个信道测量导频用于执行Q个CSI测量线程的信道测量,P2个干扰测量资源用于执行Q个CSI测量线程的干扰测量,P1和P2为大于零的整数。
通过本实施例上述步骤S102至步骤S104,采用为一个信道状态信息CSI进程配置Q个CSI测量线程,而该基站还为Q个CSI测量线程配置P1个信道测量导频和P2个干扰测量资源的方式,即通过配置多个线程以及为该多个线程配置信道测量导频和干扰测量资源实现了多种信道信息的测量,解决了相关技术中导频的测量与反馈技术不够灵活的问题。
可选地,基于于本实施例中的信道测量导频和个干扰测量资源,在本实施例的可选实施方式中Q个CSI测量线程与信道测量导频和个干扰测量资源存在如下对应的方式:
方式一:Q个CSI测量线程对应的信道测量导频相同,Q个CSI测量线程中至少2个CSI测量线程对应的干扰测量资源不同。
方式二:Q个CSI测量线程对应的干扰资源测量导频相同,Q个CSI测量线程中至少2个CSI测量线程对应的干扰测量资源不同。
方式三:Q个CSI测量线程对应的信道测量导频至少存在两种不同类型的导频。
对于本实施例的方式,在本实施例的另一个可选实施方式中,本实施例的方式还可以包括如下方法步骤:基站为Q个CSI测量线程配置CSI的量化和/或反馈方法。
而在本实施例的应用场景中,基站为Q个CSI测量线程配置CSI的量化和/或反馈方法至少包括如下的配置操作之一:
配置操作一:基站为Q个CSI测量线程配置信道的秩RANK或传输层数LAYER的计算方法;
配置操作二:基站为Q个CSI测量线程配置秩指示符RI的计算方法;和/或,
配置操作三:基站为Q个CSI测量线程配置使用的码本量化方法;
配置操作四:基站为Q个CSI测量线程配置CSI的反馈模式。
而对于上述配置操作,Q个CSI测量线程中至少存在X个CSI测量线程分别用于X个RANK或LAYER组的信道信息反馈。
例如,在X为2时,
RANK或LAYER组1为RANK={1,2}或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={3,4};或,
RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={1,2,3,4};或,
RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={3~8};或,
RANK或LAYER组1为RANK或LAYER={1~4},RANK或LAYER组2为RANK或LAYER={5~8};或,
RANK或LAYER组1为RANK或LAYER={1~4},RANK或LAYER组2为RANK或LAYER={1~8};或,
RANK或LAYER组1为RANK或LAYER={1},RANK或LAYER组2为RANK或LAYER={2}or RANK或LAYER={2~4}or{2~8}or{1~2}or{1~4}or{1~8};
在X为3时
RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={3,4},RANK或LAYER组3为RANK或LAYER={5~8};或,
RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={1~4},RANK或LAYER组3为RANK或LAYER={1~8};或,
RANK或LAYER组1为RANK或LAYER={1}RANK或LAYER组2为{2}RANK 或LAYER组2为{3,4};或,
RANK或LAYER组1为RANK或LAYER={1}RANK或LAYER组2为{2}RANK或LAYER组2为{3~8};或,
RANK或LAYER组1为RANK或LAYER={1}RANK或LAYER组2为{2~4}RANK或LAYER组2为{5,8}。
此外,本实施例还提供了一种信道信息的配置方法,该方法包括:基站为一个信道状态信息CSI进程配置P1个信道测量导频和P2个干扰测量资源,其中,P1个信道测量导频用于执行Q个CSI测量线程的信道测量,P2个干扰测量资源用于执行Q个CSI测量线程的干扰测量,P1和P2为大于零的整数且P1和P2至少之一大于1。
通过上述方式,在该配置方法中基站可以直接为一个CSI进程配置P1个信道测量导频和P2个干扰测量资源,即为一个CSI进程信道测量导频和干扰测量资源实现了多种信道信息的测量,同样也解决了相关技术中导频的测量与反馈技术不够灵活的问题。
图2是根据本发明实施例的信道信息的反馈方法的流程图,如图2所示,该方法的步骤包括:
步骤S202:终端获取与一个CSI进程对应的Q个CSI测量线程的配置信息;
其中,配置配置信息包括:基站为Q个CSI测量线程配置P1个信道测量导频和P2个干扰测量资源,其中,P1个信道测量导频用于执行Q个CSI测量线程的信道测量,P2个干扰测量资源用于执行Q个CSI测量线程的干扰测量,P1和P2为大于零的整数;
步骤S202:终端依据P1个信道测量导频和P2个干扰测量资源对Q个CSI测量线程执行CSI测量及CSI反馈操作,并从执行CSI测量及CSI反馈操作后的Q个CSI测量线程中选择Y个CSI测量线程。
通过上述步骤S202和步骤S204,能够使得终端侧有非常好的反馈灵活性,避免了单线程时鲁棒性差,性能不佳的问题。
可选地,基于本实施例中的信道测量导频和个干扰测量资源,在本实施例的可选实施方式中Q个CSI测量线程与信道测量导频和个干扰测量资源存在如下对应的方式:
方式一:Q个CSI测量线程对应的信道测量导频相同,Q个CSI测量线程中至少2个CSI测量线程对应的干扰测量资源不同。
方式二:Q个CSI测量线程对应的干扰资源测量导频相同,Q个CSI测量线程中至少2个CSI测量线程对应的干扰测量资源不同。
方式三:Q个CSI测量线程对应的信道测量导频至少存在两种不同类型的导频。
可选地,对于本实施例涉及到的配置操作还可以包括:基站为Q个CSI测量线程配置CSI的量化和/或反馈方法,其中,CSI的量化和/或反馈方法至少包括以下之一包括:RANK或LAYER的计算方法;秩指示符RI的计算方法;使用的码本量化方法;CSI的反馈模式。
而对于上述配置的方法,Q个CSI测量线程中至少存在X个CSI测量线程分别用于X个RANK或LAYER组的信道信息反馈。
例如,在X为2时,
RANK或LAYER组1为RANK={1,2}或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={3,4};或,
RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={1,2,3,4};或,
RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={3~8};或,
RANK或LAYER组1为RANK或LAYER={1~4},RANK或LAYER组2为RANK或LAYER={5~8};或,
RANK或LAYER组1为RANK或LAYER={1~4},RANK或LAYER组2为RANK或LAYER={1~8};或,
RANK或LAYER组1为RANK或LAYER={1},RANK或LAYER组2为RANK或LAYER={2}or RANK或LAYER={2~4}or{2~8}or{1~2}or{1~4}or{1~8};
在X为3时
RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={3,4},RANK或LAYER组3为RANK或LAYER={5~8};或,
RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={1~4},RANK或LAYER组3为RANK或LAYER={1~8};或,
RANK或LAYER组1为RANK或LAYER={1}RANK或LAYER组2为{2}RANK或LAYER组2为{3,4};或,
RANK或LAYER组1为RANK或LAYER={1}RANK或LAYER组2为{2}RANK或LAYER组2为{3~8};或,
RANK或LAYER组1为RANK或LAYER={1}RANK或LAYER组2为{2~4}RANK或LAYER组2为{5,8}。
在本实施例中还提供了一种信道信息的配置装置以及反馈装置,该装置用于实现上述实施例及可选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图3是根据本发明实施例的信道信息的配置装置的结构框图,该装置位于基站侧,如图3所示,该装置包括:第一配置模块32,设置为为一个信道状态信息CSI进程配置Q个CSI测量线程,其中,Q为大于或等于2的整数;第二配置模块34,与第一配置模块耦合连接,设置为为Q个CSI测量线程配置P1个信道测量导频和P2个干扰测量资源,其中,P1个信道测量导频用于执行Q个CSI测量线程的信道测量,P2个干扰测量资源用于执行Q个CSI测量线程的干扰测量,P1和P2为大于零的整数。
需要说明的是,在该装置中第一配置模块32还可以设置为,为一个信道状态信息CSI进程配置P1个信道测量导频和P2个干扰测量资源,其中,P1个信道测量导频用于执行Q个CSI测量线程的信道测量,P2个干扰测量资源用于执行Q个CSI测量线程的干扰测量,P1和P2为大于零的整数且P1和P2至少之一大于1。
即第一配置模块32可以直接为一个信道状态信息CSI进程配置P1个信道测量导频和P2个干扰测量资源,同样的也是能解决相关技术中导频的测量与反馈技术不够灵活的问题。
可选地,基于本实施例中的信道测量导频和个干扰测量资源,在本实施例的可选实施方式中Q个CSI测量线程与信道测量导频和个干扰测量资源存在如下对应的方式:
方式一:Q个CSI测量线程对应的信道测量导频相同,Q个CSI测量线程中至少2个CSI测量线程对应的干扰测量资源不同。
方式二:Q个CSI测量线程对应的干扰资源测量导频相同,Q个CSI测量线程中至少2个CSI测量线程对应的干扰测量资源不同。
方式三:Q个CSI测量线程对应的信道测量导频至少存在两种不同类型的导频。
可选地,本实施例的装置还可以包括:第三配置模块,设置为为Q个CSI测量线程配置CSI的量化和/或反馈方法。
其中该第三配置模块,还设置为基站为Q个CSI测量线程配置RANK或LAYER的计算方法;和/或,为Q个CSI测量线程配置秩指示符RI的计算方法;和/或,为Q个CSI测量线程配置使用的码本量化方法;和/或,为Q个CSI测量线程配置CSI的反馈模式。
对于上述涉及到的Q个CSI测量线程中至少存在X个CSI测量线程分别用于X个RANK或LAYER组的信道信息反馈。
例如,在X为2时,
RANK或LAYER组1为RANK={1,2}或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={3,4};或,
RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={1,2,3,4};或,
RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={3~8};或,
RANK或LAYER组1为RANK或LAYER={1~4},RANK或LAYER组2为RANK或LAYER={5~8};或,
RANK或LAYER组1为RANK或LAYER={1~4},RANK或LAYER组2为RANK或LAYER={1~8};或,
RANK或LAYER组1为RANK或LAYER={1},RANK或LAYER组2为RANK或LAYER={2}or RANK或LAYER={2~4}or{2~8}or{1~2}or{1~4}or{1~8};
在X为3时,
RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={3,4},RANK或LAYER组3为RANK或LAYER={5~8};或,
RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={1~4},RANK或LAYER组3为RANK或LAYER={1~8};或,
RANK或LAYER组1为RANK或LAYER={1}RANK或LAYER组2为{2}RANK或LAYER组2为{3,4};或,
RANK或LAYER组1为RANK或LAYER={1}RANK或LAYER组2为{2}RANK或LAYER组2为{3~8};或,
RANK或LAYER组1为RANK或LAYER={1}RANK或LAYER组2为{2~4} RANK或LAYER组2为{5,8}。
图4是根据本发明实施例的信道信息的反馈装置的结构框图,该装置位于终端侧,如图4所示,该装置包括:获取模块42,获取与一个CSI进程对应的Q个CSI测量线程的配置信息,其中,配置信息包括:P1个信道测量导频和P2个干扰测量资源,其中,P1个信道测量导频用于执行Q个CSI测量线程的信道测量,P2个干扰测量资源用于执行Q个CSI测量线程的干扰测量,P1和P2为大于零的整数;选择模块44,与接收模块42耦合连接,用于依据P1个信道测量导频和P2个干扰测量资源对Q个CSI测量线程执行CSI测量及CSI反馈操作,并从执行CSI测量及CSI反馈操作后的Q个CSI测量线程中选择Y个CSI测量线程。
可选地,基于本实施例中的信道测量导频和个干扰测量资源,在本实施例的可选实施方式中Q个CSI测量线程与信道测量导频和个干扰测量资源存在如下对应的方式:
方式一:Q个CSI测量线程对应的信道测量导频相同,Q个CSI测量线程中至少2个CSI测量线程对应的干扰测量资源不同。
方式二:Q个CSI测量线程对应的干扰资源测量导频相同,Q个CSI测量线程中至少2个CSI测量线程对应的干扰测量资源不同。
方式三:Q个CSI测量线程对应的信道测量导频至少存在两种不同类型的导频。
可选地,配置操作还包括:基站为Q个CSI测量线程配置CSI的量化和/或反馈方法,其中,其中,CSI的量化和/或反馈方法至少包括以下之一包括:RANK或LAYER的计算方法;秩指示符RI的计算方法;使用的码本量化方法;CSI的反馈模式。
对于本实施例中涉及到的Q个CSI测量线程中至少存在X个CSI测量线程分别用于X个RANK或LAYER组的信道信息反馈。
例如,在X为2时,
RANK或LAYER组1为RANK={1,2}或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={3,4};或,
RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={1,2,3,4};或,
RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={3~8};或,
RANK或LAYER组1为RANK或LAYER={1~4},RANK或LAYER组2为RANK 或LAYER={5~8};或,
RANK或LAYER组1为RANK或LAYER={1~4},RANK或LAYER组2为RANK或LAYER={1~8};或,
RANK或LAYER组1为RANK或LAYER={1},RANK或LAYER组2为RANK或LAYER={2}or RANK或LAYER={2~4}or{2~8}or{1~2}or{1~4}or{1~8};
在X为3时,
RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={3,4},RANK或LAYER组3为RANK或LAYER={5~8};或,
RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={1~4},RANK或LAYER组3为RANK或LAYER={1~8};或,
RANK或LAYER组1为RANK或LAYER={1}RANK或LAYER组2为{2}RANK或LAYER组2为{3,4};或,
RANK或LAYER组1为RANK或LAYER={1}RANK或LAYER组2为{2}RANK或LAYER组2为{3~8};或,
RANK或LAYER组1为RANK或LAYER={1}RANK或LAYER组2为{2~4}RANK或LAYER组2为{5,8}。
下面结合本发明的可选实施例对本发明进行举例说明;
对于本可选实施例在基站侧采用的技术方案的步骤包括:
步骤S302:基站为一个CSI(Process)进程配置Q个CSI测量线程,其中,Q>=2;
步骤S304:基站还可以为Q个线程配置P1个信道测量导频,基站还为Q个线程配置P2个干扰测量资源配置,P1,P2为大于0的整数。
对于终端而言,终端从Q个线程中选出Y个线程,并按照Y个线程对应配置进行CSI测量及CSI反馈,其中,Y<Q;
此外,该终端向基站反馈Y个线程的选择信息,其中,该Y可以为1。
此外,本可选实施例中的基站还可以为Q个线程配置CSI的量化和/或反馈方法;
其中,配置配置CSI的量化和/或反馈方法包括以下至少之一:基站为Q个线程配置CQI的计算方法;基站为Q个线程配置RANK或LAYER的计算方法;基站为Q个线程配置使用的码本量化方法;基站为Q个线程配置CSI的反馈模式;
可选地,对于本可选实施例中基站为Q个CSI测量线程配置P1套信道测量导频,其中,Q>=P1>1,P1套导频被用于Q个CSI测量线程的信道测量;
以及,基站至少为Q个CSI测量线程配置P2套干扰测量资源,Q>=P2>1,P2套干扰测量资源被用于Q个CSI测量线程的干扰测量;
在此基础上,对于本可选实施例中的Q个CSI测量线程与信道测量导频以及干扰测量资源的对应关系,可以是:
Q个CSI测量线程对应的信道测量导频相同,Q个CSI测量线程中至少2个线程对应的干扰测量资源不同;或,
Q个CSI测量线程对应的干扰资源测量导频相同,Q个CSI测量线程中至少2个线程对应的干扰测量资源不同;或,
Q个CSI测量线程对应的信道测量导频至少存在两种不同类型的导频(如:预编码导频/非预编码导频)。
对于上述Q个CSI测量线程中至少存在X个线程分别用于X个RANK或LAYER组的信道信息反馈。
在该X为2时,
RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={3,4};
或者RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={1,2,3,4};
或者,RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={3~8};
或者,RANK或LAYER组1为RANK或LAYER={1~4},RANK或LAYER组2为RANK或LAYER={5~8};
或者,RANK或LAYER组1为RANK或LAYER={1~4},RANK或LAYER组2为RANK或LAYER={1~8};
或者,RANK或LAYER组1为RANK或LAYER={1},RANK或LAYER组2为RANK或LAYER={2}or RANK或LAYER={2~4}or{2~8}or{1~2}or{1~4}or{1~8}
在该X为3;
RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为 RANK或LAYER={3,4},RANK或LAYER组3为RANK或LAYER={5~8};
RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={1~4},RANK或LAYER组3为RANK或LAYER={1~8};
RANK或LAYER组1为RANK或LAYER={1}RANK或LAYER组2为{2}RANK或LAYER组2为{3,4};
RANK或LAYER组1为RANK或LAYER={1}RANK或LAYER组2为{2}RANK或LAYER组2为{3~8};
RANK或LAYER组1为RANK或LAYER={1}RANK或LAYER组2为{2~4}RANK或LAYER组2为{5,8}
需要说明的是,多个CSI进程对应的线程参数可以独立配置,多个CSI进程对应的线程个数CQI可以分别配置
此外,本可选实施例还提供了一种信道信息CSI的反馈的方法,该方法将从终端侧进行描述,该方法包括:
终端获得一个CSI反馈(Process)进程对应的Q个CSI测量线程(thread)的配置信息。Q>=2;
Q个CSI测量线程配置信息至少包括:P1个信道测量导频,P2个干扰测量资源配置,P1,P2为大于0的整数;
终端从Q个CSI测量线程中选出Y个线程,并按照Y个线程对应配置进行CSI测量及CSI反馈,Y<Q;
终端向基站反馈Y个线程的选择信息,其中,该可以是Y=1
本可选实施例中Q个CSI测量线程配置信息还包括CSI的量化和/或反馈方法;
其中,CSI的量化方法包括CQI的计算方法;CSI的量化方法包括RANK或LAYER的计算方法;CSI的量化方法包括使用的码本量化方法;CSI的量化方法包括CSI的反馈模式;
此外,本可选实施例的方法还包括:Q个CSI测量线程的信道测量基于基站配置的P1套信道测量导频,Q>=P1>1;
Q个CSI测量线程的干扰测量基于基站配置的P2套干扰测量资源,Q>=P2>1;
其中,Q个CSI测量线程对应的信道测量导频相同,Q个CSI测量线程中至少2个线程对应的干扰测量资源不同;
Q个CSI测量线程对应的干扰资源测量导频相同,Q个CSI测量线程中至少2个线程对应的干扰测量资源不同;
Q个CSI测量线程对应的信道测量导频至少存在两种不同类型的导频(预编码导频/非预编码导频);
需要说明的是,Q个CSI测量线程中至少存在X个线程分别用于X个RI组的信道信息反馈
在该X为2时,
RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={3,4};
或者RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={1,2,3,4};
或者,RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={3~8};
或者,RANK或LAYER组1为RANK或LAYER={1~4},RANK或LAYER组2为RANK或LAYER={5~8};
或者,RANK或LAYER组1为RANK或LAYER={1~4},RANK或LAYER组2为RANK或LAYER={1~8};
或者,RANK或LAYER组1为RANK或LAYER={1},RANK或LAYER组2为RANK或LAYER={2}or RANK或LAYER={2~4}or{2~8}or{1~2}or{1~4}or{1~8};
在X为3时,
RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={3,4},RANK或LAYER组3为RANK或LAYER={5~8};
RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={1~4},RANK或LAYER组3为RANK或LAYER={1~8};
RANK或LAYER组1为RANK或LAYER={1}RANK或LAYER组2为{2}RANK或LAYER组2为{3,4};
RANK或LAYER组1为RANK或LAYER={1}RANK或LAYER组2为{2}RANK或LAYER组2为{3~8};
RANK或LAYER组1为RANK或LAYER={1}RANK或LAYER组2为{2~4} RANK或LAYER组2为{5,8}。
通过本发明中描述的方式,通过多个线程实现了多种信道信息的测量,能够使得终端侧有非常好的反馈灵活性,避免了单线程时鲁棒性差,性能不佳的问题,同时,有效的控制了反馈的开销。
下面通过本可选实施例的具体实施例对本可选实施例进行详细举例说明;
首选对本信道信息反馈的配置方法进行描述,该方法的步骤包括:
步骤S301:基站为一个CSI反馈(Process)进程配置Q个CSI测量线程(thread)
这里一个CSI测量线程对应完成CSI测量所需要的一套CSI测量配置,至少包括信道测量部分的配置,反馈测量部分的配置,以及反馈模式等其他配置。
相关技术中的CSI进程定义如下:CSI进程(基于进程分配反馈资源只包含1个CSI测量线程)包括:信道测量部分、干扰测量部分以及其他配置。
而本可选实施例提供的CSI进程的定义如下:CSI进程(基于进程分配反馈资源)包括:Q个CSI测量线程,每个CSI测量线程都包括信道测量部分、干扰测量部分以及其他配置。
与相关技术中的CSI进程定义不同,相关技术中的CSI进程可以理解只包含一个线程。本可选实施例提供的的CSI进程中包括多个线程,每个线程都需要配置或约定与之对应的信道测量与干扰测量及反馈模式等相关的配置。
步骤S302:终端从Q个CSI测量线程中选出Y个线程,并按照Y个线程对应配置进行CSI测量及CSI反馈,其中,Y<Q;
由于反馈资源是基于进程分配的,各线程不一定均对应于反馈资源;部分线程的CSI测量后得到的量化结果需要反馈,但部分线程对应的CSI测量结果并不需要反馈;
基站为终端配置Q个CSI测量线程,这里的Q个CSI测量线程一般是对应于Q种不同的量化和/或反馈方法。Q为大于1的整数,这样就可以支持多种CSI测量和反馈之间的动态选择,但为了避免过高的复杂度,Q可选为2、3或4,Q的取值可以通过基站与终端预先约定或基站通过信令配置给基站。这里,不同的CSI Process对应的Q的取值可以独立配置。
其中,上述不同可以体现在以下方面之一:Q个CSI测量线程信道测量方面的不同;Q个CSI测量线程干扰测量方面的不同;Q个CSI测量线程CSI量化方法的不同;Q个CSI测量线程CSI反馈方法的不同;Q个CSI测量线程对应的RANK或LAYER组不同。
基于上述本可选实施例的信道信息的配置方法,下面通过不同的应用场景具体的实施例进行说明;
可选实施例1:各线程信道测量方面的不同;
比如配置的测量导频不同,这里的测量导频不同包括:不同的导频端口数、不同的导频功率、不同的导频周期、不同的导频密度、不同的导频频域位置、不同的导频类型等等。
对于上述的测量导频不同进行举例说明:如2个CSI测量线程,其中:
A)线程1配置端口数为N1,线程2配置端口数为N2;其中N1,N2为不相等的正整数。
B)线程1配置发送功率为Power1,线程2配置发送功率为Power2;其中Power1和Power2为不相等的正数。
C)线程1配置导频周期为T1,线程2配置导频周期为T2;其中T1和T2为不相等的正整数。
D)线程1在一个资源块里的导频RE个数配置N1个,线程2在一个资源块里的导频RE个数配置N2个;其中N1,N2为不相等的正整数。
E)线程1配置的导频类型为波束导频,线程2配置的导频类型为非波束导频。
F)线程1配置的波束导频的波束半功率宽度为W1,线程2配置的波束导频的波束半功率宽度为W2,其中,W1和W2为不同的正数。
G)线程1发送导频所用的天线集合为W1,线程2发送导频所用的天线集合为W2,其中,W1和W2集合里至少有一个元素不同。
H)线程1配置的形成波束导频的波束的个数N1个,线程2配置的形成波束导频的波束的个数为N2个,其中,N1,N2为不相等的正整数。
基站可以将Q个CSI测量线程配置为全部独立的信道测量,即Q个CSI测量线程配置了Q套信道测量导频。或者,
基站可以将Q个CSI测量线程配置为部分独立的信道测量,即Q个CSI测量线程配置了少于Q套信道测量导频。即至少有2个进程配置了相同的信道测量导频。
最后需要说明的是,完全相同的信道测量也是可以的,但此时其他方面需要有不 同。
可选实施例2:各线程干扰测量方面的不同;
本可选实施例2涉及的干扰测量资源不同包括:不同的干扰测量RE个数:不同的干扰测量位置:不同的干扰测量资源的周期等。
对于该干扰测量资源的不同进行举例说明:如2个CSI测量线程;
A)线程1配置端口数为N1,线程2配置端口数为N2;其中N1,N2为不相等的正整数。
B)线程1配置发送功率为Power1,线程2配置发送功率为Power2;其中Power1和Power2为不相等的正数。
C)线程1配置导频周期为T1,线程2配置导频周期为T2,;其中T1和T2为不相等的正整数。
D)线程1在一个资源块里的导频RE个数配置N1个,线程2在一个资源块里的导频RE个数配置N2个;其中N1,N2为不相等的正整数。
E)线程1配置的导频类型为波束导频,线程2配置的导频类型为非波束导频。
F)线程1配置的波束导频的波束半功率宽度为W1,线程2配置的波束导频的波束半功率宽度为W2,其中,W1和W2为不同的正数。
G)线程1发送导频所用的天线集合为W1,线程2发送导频所用的天线集合为W2,其中,W1和W2集合里至少有一个元素不同。
H)线程1配置的形成波束导频的波束的个数N1个,线程2配置的形成波束导频的波束的个数为N2个,其中,N1,N2为不相等的正整数。
基站可以将Q个CSI测量线程配置为全部独立的干扰测量,即Q个CSI测量线程配置了Q套干扰测量导频;或者,
基站可以将Q个CSI测量线程配置为部分独立的干扰测量,即Q个CSI测量线程配置了少于Q套干扰测量导频。即至少有2个进程配置了相同的干扰测量导频。
最后需要说明的是,在本可选实施例中完全相同的干扰测量也是可以的,但此时其他方面需要有不同。
可选实施例3:各线程CSI的量化方法的不同;
基站为Q个CSI测量线程配置不同的CQI的计算方法;
比如:线程i的信道测量导频为一个4端口的CSI-RS,终端基于4端口的测量导频假设4个端口按照传输分集技术进行传输,进而得到线程i的一个传输分集CQI,线程j的信道测量导频为一个2端口的CSI-RS,终端基于2个端口的测量导频假设2个端口按照2层预编码技术进行传输,进而得到与之对应的2个CQI。
还可以是,线程i的信道测量导频为一个4端口的CSI-RS,终端基于4端口的测量导频假设4个端口按照传输分集技术进行传输,进而得到线程i的一个传输分集CQI,线程j的信道测量导频为一个4端口的CSI-RS,终端基于4个端口的测量导频假设4个端口按照4层预编码技术进行传输,进而得到与之对应的2个CQI。
还可以是,线程i的信道测量导频为一个4端口的CSI-RS,终端基于4端口的测量导频假设4个端口按照传输分集技术进行传输,进而得到线程i的一个传输分集CQI,线程j的信道测量导频为一个4端口的CSI-RS,终端基于4个端口进行端口选择,进而得到最佳的端口并上报该端口对应的CQI。
基站为Q个CSI测量线程配置不同的RANK或LAYER的计算方法;
比如:基站为终端配置线程i的RANK或LAYER由其对应的CSI-RS导频中端口个数或DMRS(数据专有解调导频)导频端口个数计算确定,线程j的RANK或LAYER由基站根据当前信道矩阵H最适合的传输层数确定,一般是假设闭环预编码传输,由终端遍历各种层数的假设,比较不同传输层时的性能,并选取最佳的传输层数。
基站为Q个CSI测量线程配置不同的码本模型;
比如:线程i的信道测量导频为一个16端口的CSI-RS,线程j的信道测量导频也为相同的CSI-RS,线程k的信道测量导频也为相同的CSI-RS。基站为终端配置对于线程i,j,k分别使用如下的码字模型1、2、3进行量化反馈;其中模型1为线程i,模型2为线程j,模型3为线程k。
模型1
Figure PCTCN2016070074-appb-000012
模型2
Figure PCTCN2016070074-appb-000013
模型3
Figure PCTCN2016070074-appb-000014
基站为Q个CSI测量线程配置不同的码本反馈方法;
比如:线程i的信道测量导频为一个8端口的CSI-RS,线程j的信道测量导频也为相同的CSI-RS,线程k的信道测量导频也为相同的CSI-RS。基站为终端配置对于线程i,j,k分别使用如下的码本反馈方法进行量化反馈;
线程i:使用LTE-A Rel-10版本中的8天线反馈方法;
线程j:反馈基于两个码本分别反馈两个码字矩阵D和W,码字矩阵D为一个diagonal矩阵,表征预编码幅度信息,码字矩阵W为一个酉矩阵,且为恒模矩阵,表征预编码相位信息;
线程k:基于以下模型4进行反馈,反馈其中的各参数信息,包括v0,v1,v2,v3,α1212
模型4
Figure PCTCN2016070074-appb-000015
基站为Q个CSI测量线程配置不同的码本精度;
比如:线程i的信道测量导频为一个4端口的CSI-RS,线程j的信道测量导频也为相同的CSI-RS;基站为终端配置对于线程i,j,分别使用两种不同精度的码本。
线程i,4bit的码本,每个RANK或LAYER下的码本包含16个码字;
线程j,6bit码本,每个RANK或LAYER下的码本包含64个码字。
又比如,线程i的信道测量导频为一个8端口的CSI-RS,线程j的信道测量导频 也为相同的CSI-RS;基站为终端配置对于线程i,j,分别使用两种不同精度的码本;
线程i,6bit的码本,每个RANK或LAYER下的码本包含64个码字;
线程j,8bit码本,每个RANK或LAYER下的码本包含256个码字。
基站为Q个CSI测量线程配置不同的反馈参数的多少;
线程i的信道测量导频为一个16端口的CSI-RS,线程j的信道测量导频也为相同的CSI-RS,线程k的信道测量导频也为相同的CSI-RS。基站为终端配置对于线程i,j,k都使用如下的码字模型5进行量化反馈;
模型5
Figure PCTCN2016070074-appb-000016
线程i,基站配置v0~v3,终端量化反馈α1212
线程j,基站配置α1212,终端量化反馈v0~v3;
线程k,终端量化反馈v0~v3α1212
可选实施例4:各线程CSI的反馈模式的不同;
线程i的信道测量导频为一个8端口的非预编码CSI-RS,线程j的信道测量导频配置为2端口的预编码CSI-RS。基站为终端配置对于线程i,j分别需要如下的反馈内容;
线程i:上报RANK或LAYER、PMI、CQI;
线程j:上报RANK或LAYER和CQI;
或者,线程i的信道测量导频为一个8端口的非预编码CSI-RS,线程j的信道测量导频配置为2端口的预编码CSI-RS。基站为终端配置对于线程i,j分别需要如下的反馈内容;
线程i:上报RANK或LAYER、PMI、CQI;
线程j:上报CQI;
或者,线程i的信道测量导频为一个4端口的预编码CSI-RS,线程j的信道测量 导频配置为2端口的预编码CSI-RS。基站为终端配置对于线程i,j分别需要如下的反馈内容;
线程i:上报RANK或LAYER、CQI,端口选择信息;
线程j:上报CQI;
或者,线程i的信道测量导频为一个4端口的预编码CSI-RS,线程j的信道测量导频配置为2端口的预编码CSI-RS。基站为终端配置对于线程i,j分别需要如下的反馈内容
线程i:上报RANK或LAYER、CQI;
线程j:上报CQI。
可选实施例5:各线程对应的RANK或LAYER组不同;
其中,Q个CSI测量线程中至少存在X个线程分别用于X个RANK或LAYER组的信道信息反馈;
在该X可以为2时;
RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={3,4};
或者,RANK或LAYER组1为RANK或LAYER={1},RANK或LAYER组2为RANK或LAYER={2,3,4};
或者,RANK或LAYER组1为RANK或LAYER={1},RANK或LAYER组2为RANK或LAYER={1~4};
或者,RANK或LAYER组1为RANK或LAYER={1},RANK或LAYER组2为RANK或LAYER={2~8};
或者,RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={1,2,3,4};
或者,RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={3~8};
或者,RANK或LAYER组1为RANK或LAYER={1~4},RANK或LAYER组2为RANK或LAYER={5~8};
或者,RANK或LAYER组1为RANK或LAYER={1~4},RANK或LAYER组2 为RANK或LAYER={1~8};
在该X为3时,
RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={3,4},RANK或LAYER组3为RANK或LAYER={5~8};
或者,RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={1~4},RANK或LAYER组3为RANK或LAYER={1~8};
或者,RANK或LAYER组1为RANK或LAYER={1,2,3},RANK或LAYER组2为RANK或LAYER={4,5,6},RANK或LAYER组3为RANK或LAYER={7,8};
在该X为4时,
RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={3,4},RANK或LAYER组3为RANK或LAYER={5,6},RANK或LAYER组4为{7,8};
或者,RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={1~4},RANK或LAYER组3为RANK或LAYER={5,6},RANK或LAYER组4为{5~8}。
可选实施例6:终端获取基站配置的Q个CSI测量线程;
终端接收基站的配置信令,从中获取Q个CSI测量线程的配置,如下表2和表3:
Figure PCTCN2016070074-appb-000017
Figure PCTCN2016070074-appb-000018
表2
Figure PCTCN2016070074-appb-000019
Figure PCTCN2016070074-appb-000020
Figure PCTCN2016070074-appb-000021
表3
需要说明的是,可以根据不同的应用场景结合上面的可选实施例1-5产生多种不同的配置。
可选实施例7:终端从Q个CSI测量线程中选择Y个进行反馈;
终端按照每个线程的配置进行CSI测量量化,得到多个CSI测量量化结果。终端可以根据容量最大准则选出1个或多个较佳的结果进行反馈。
终端可以根据容量最大准则选出1个或多个较佳的结果进行反馈。终端还可以根据量化效率最高的准则选出1个或多个较佳的结果进行反馈。
需要说明的是,终端还可以通过上行信道向基站反馈上述结果对应的CSI测量线程。
通过本可选实施例,采用通过多个线程实现了多种信道信息的测量,能够使得终端侧有非常好的反馈灵活性,解决了单线程时鲁棒性差,性能不佳的问题,进而达到了有效控制反馈的开销的效果。
在另外一个实施例中,还提供了一种软件,该软件用于执行上述实施例及优选实施方式中描述的技术方案。
在另外一个实施例中,还提供了一种存储介质,该存储介质中存储有上述软件,该存储介质包括但不限于:光盘、软盘、硬盘、可擦写存储器等。
显然,本领域的技术人员应该明白,上述本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
上述仅为本发明的可选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
在本发明实施例上述实施过程中,采用为一个信道状态信息CSI进程配置Q个CSI测量线程,而该基站还为Q个CSI测量线程配置P1个信道测量导频和P2个干扰测量资源的方式,即通过配置多个线程以及为该多个线程配置信道测量导频和干扰测量资源实现了多种信道信息的测量,解决了相关技术中导频的测量与反馈技术不够灵活的问题。

Claims (34)

  1. 一种信道信息的配置方法,包括:
    基站为一个信道状态信息CSI进程配置Q个CSI测量线程,其中,所述Q为大于或等于2的整数;
    所述基站为所述Q个CSI测量线程配置P1个信道测量导频和P2个干扰测量资源,其中,所述P1个信道测量导频用于执行所述Q个CSI测量线程的信道测量,所述P2个干扰测量资源用于执行所述Q个CSI测量线程的干扰测量,所述P1和所述P2为大于零的整数。
  2. 根据权利要求1所述的方法,其中,所述Q个CSI测量线程对应的信道测量导频相同,所述Q个CSI测量线程中至少2个CSI测量线程对应的干扰测量资源不同。
  3. 根据权利要求1所述的方法,其中,所述Q个CSI测量线程对应的干扰资源测量导频相同,所述Q个CSI测量线程中至少2个CSI测量线程对应的干扰测量资源不同。
  4. 根据权利要求1所述的方法,其中,所述Q个CSI测量线程对应的信道测量导频至少存在两种不同类型的导频。
  5. 根据权利要求1所述的方法,其中,所述方法包括:
    所述基站为所述Q个CSI测量线程配置所述CSI的量化和/或反馈方法。
  6. 根据权利要求5所述的方法,其中,所述基站为所述Q个CSI测量线程配置所述CSI的量化和/或反馈方法包括:
    所述基站为所述Q个CSI测量线程配置信道的秩RANK或传输层数LAYER的计算方法;和/或,
    所述基站为所述Q个CSI测量线程配置秩指示符RI的计算方法;和/或,
    所述基站为所述Q个CSI测量线程配置使用的码本量化方法;和/或,
    所述基站为所述Q个CSI测量线程配置CSI的反馈模式。
  7. 根据权利要求6所述的方法,其中,所述Q个CSI测量线程中至少存在X个CSI测量线程分别用于X个RANK或LAYER组的信道信息反馈。
  8. 根据权利要求7所述的方法,其中,
    在所述X为2时,
    RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或 LAYER={3,4};或,
    RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={1,2,3,4};或,
    RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={3~8};或,
    RANK或LAYER组1为RANK或LAYER={1~4},RANK或LAYER组2为RANK或LAYER={5~8};或,
    RANK或LAYER组1为RANK或LAYER={1~4},RANK或LAYER组2为RANK或LAYER={1~8};或,
    RANK或LAYER组1为RANK或LAYER={1},RANK或LAYER组2为RANK或LAYER={2}or RANK或LAYER={2~4}or{2~8}or{1~2}or{1~4}or{1~8};
    在所述X为3时,
    RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={3,4},RANK或LAYER组3为RANK或LAYER={5~8};或,
    RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={1~4},RANK或LAYER组3为RANK或LAYER={1~8};或,
    RANK或LAYER组1为RANK或LAYER={1}RANK或LAYER组2为{2}RANK或LAYER组2为{3,4};或,
    RANK或LAYER组1为RANK或LAYER={1}RANK或LAYER组2为{2}RANK或LAYER组2为{3~8};或,
    RANK或LAYER组1为RANK或LAYER={1}RANK或LAYER组2为{2~4}RANK或LAYER组2为{5,8}。
  9. 一种信道信息的配置方法,包括:
    基站为一个信道状态信息CSI进程配置P1个信道测量导频和P2个干扰测量资源,其中,所述P1个信道测量导频用于执行所述Q个CSI测量线程的信道测量,所述P2个干扰测量资源用于执行所述Q个CSI测量线程的干扰测量,所述P1和所述P2为大于零的整数,且所述P1和所述P2至少之一大于1。
  10. 一种信道信息的反馈方法,包括:
    终端获取与一个CSI进程对应的Q个CSI测量线程的配置信息,其中,所述 配置信息包括:P1个信道测量导频和P2个干扰测量资源,其中,所述P1个信道测量导频用于执行所述Q个CSI测量线程的信道测量,所述P2个干扰测量资源用于执行所述Q个CSI测量线程的干扰测量,所述P1和所述P2为大于零的整数;
    所述终端依据所述P1个信道测量导频和所述P2个干扰测量资源对所述Q个CSI测量线程执行CSI测量及CSI反馈操作,并从执行CSI测量及CSI反馈操作后的所述Q个CSI测量线程中选择Y个CSI测量线程。
  11. 根据权利要求10所述的方法,其中,所述Q个CSI测量线程对应的信道测量导频相同,所述Q个CSI测量线程中至少2个CSI测量线程对应的干扰测量资源不同。
  12. 根据权利要求10所述的方法,其中,所述Q个CSI测量线程对应的干扰资源测量导频相同,所述Q个CSI测量线程中至少2个CSI测量线程对应的干扰测量资源不同。
  13. 根据权利要求10所述的方法,其中,所述Q个CSI测量线程对应的信道测量导频至少存在两种不同类型的导频。
  14. 根据权利要求10所述的方法,其中,所述配置信息还用于指示所述基站为所述Q个CSI测量线程配置所述CSI的量化和/或反馈方法。
  15. 根据权利要求14所述的方法,其中,所述CSI的量化和/或反馈方法至少包括以下之一包括:信道的秩RANK或传输层数LAYER的计算方法;秩指示符RI的计算方法;使用的码本量化方法;CSI的反馈模式。
  16. 根据权利要求15所述的方法,其中,所述Q个CSI测量线程中至少存在X个CSI测量线程分别用于X个RANK或LAYER组的信道信息反馈。
  17. 根据权利要求16所述的方法,其中,
    在所述X为2时,
    RANK或LAYER组1为RANK={1,2}或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={3,4};或,
    RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={1,2,3,4};或,
    RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={3~8};或,
    RANK或LAYER组1为RANK或LAYER={1~4},RANK或LAYER组2为RANK或 LAYER={5~8};或,
    RANK或LAYER组1为RANK或LAYER={1~4},RANK或LAYER组2为RANK或LAYER={1~8};或,
    RANK或LAYER组1为RANK或LAYER={1},RANK或LAYER组2为RANK或LAYER={2}or RANK或LAYER={2~4}or{2~8}or{1~2}or{1~4}or{1~8};
    在所述X为3时
    RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={3,4},RANK或LAYER组3为RANK或LAYER={5~8};或,
    RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={1~4},RANK或LAYER组3为RANK或LAYER={1~8};或,
    RANK或LAYER组1为RANK或LAYER={1}RANK或LAYER组2为{2}RANK或LAYER组2为{3,4};或,
    RANK或LAYER组1为RANK或LAYER={1}RANK或LAYER组2为{2}RANK或LAYER组2为{3~8};或,
    RANK或LAYER组1为RANK或LAYER={1}RANK或LAYER组2为{2~4}RANK或LAYER组2为{5,8}。
  18. 一种信道信息的配置装置,位于基站侧,包括:
    第一配置模块,设置为为一个信道状态信息CSI进程配置Q个CSI测量线程,其中,所述Q为大于或等于2的整数;
    第二配置模块,设置为为所述Q个CSI测量线程配置P1个信道测量导频和P2个干扰测量资源,其中,所述P1个信道测量导频用于执行所述Q个CSI测量线程的信道测量,所述P2个干扰测量资源用于执行所述Q个CSI测量线程的干扰测量,所述P1和所述P2为大于零的整数。
  19. 根据权利要求18所述的装置,其中,所述Q个CSI测量线程对应的信道测量导频相同,所述Q个CSI测量线程中至少2个CSI测量线程对应的干扰测量资源不同。
  20. 根据权利要求18所述的装置,其中,所述Q个CSI测量线程对应的干扰资源测量导频相同,所述Q个CSI测量线程中至少2个CSI测量线程对应的干扰测量资源不同。
  21. 根据权利要求18所述的装置,其中,所述Q个CSI测量线程对应的信道测量导频 至少存在两种不同类型的导频。
  22. 根据权利要求18所述的装置,其中,所述装置包括:
    第三配置模块,设置为为所述Q个CSI测量线程配置所述CSI的量化和/或反馈方法。
  23. 根据权利要求22所述的装置,其中,
    所述第三配置模块,还设置为所述基站为所述Q个CSI测量线程配置信道的秩RANK或传输层数LAYER的计算方法;和/或,
    为所述Q个CSI测量线程配置秩指示符RI的计算方法;和/或,
    为所述Q个CSI测量线程配置使用的码本量化方法;和/或,
    为所述Q个CSI测量线程配置CSI的反馈模式。
  24. 根据权利要求23所述的装置,其中,所述Q个CSI测量线程中至少存在X个CSI测量线程分别用于X个RANK或LAYER组的信道信息反馈。
  25. 根据权利要求24所述的装置,其中,
    在所述X为2时,
    RANK或LAYER组1为RANK={1,2}或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={3,4};或,
    RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={1,2,3,4};或,
    RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={3~8};或,
    RANK或LAYER组1为RANK或LAYER={1~4},RANK或LAYER组2为RANK或LAYER={5~8};或,
    RANK或LAYER组1为RANK或LAYER={1~4},RANK或LAYER组2为RANK或LAYER={1~8};或,
    RANK或LAYER组1为RANK或LAYER={1},RANK或LAYER组2为RANK或LAYER={2}or RANK或LAYER={2~4}or{2~8}or{1~2}or{1~4}or{1~8};
    在所述X为3时,
    RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={3,4},RANK或LAYER组3为RANK或LAYER={5~8};或,
    RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={1~4},RANK或LAYER组3为RANK或LAYER={1~8};或,
    RANK或LAYER组1为RANK或LAYER={1}RANK或LAYER组2为{2}RANK或LAYER组2为{3,4};或,
    RANK或LAYER组1为RANK或LAYER={1}RANK或LAYER组2为{2}RANK或LAYER组2为{3~8};或,
    RANK或LAYER组1为RANK或LAYER={1}RANK或LAYER组2为{2~4}RANK或LAYER组2为{5,8}。
  26. 一种信道信息的配置装置,位于基站侧,包括:
    第四配置模块,设置为为一个信道状态信息CSI进程配置P1个信道测量导频和P2个干扰测量资源,其中,所述P1个信道测量导频用于执行所述Q个CSI测量线程的信道测量,所述P2个干扰测量资源用于执行所述Q个CSI测量线程的干扰测量,所述P1和所述P2为大于零的整数,且所述P1和所述P2至少之一大于1。
  27. 一种信道信息的反馈装置,位于终端侧,包括:
    获取模块,设置为获取与一个CSI进程对应的Q个CSI测量线程的配置信息,其中,所述配置信息包括:P1个信道测量导频和P2个干扰测量资源,其中,所述P1个信道测量导频用于执行所述Q个CSI测量线程的信道测量,所述P2个干扰测量资源用于执行所述Q个CSI测量线程的干扰测量,所述P1和所述P2为大于零的整数;
    选择模块,设置为所述终端依据所述P1个信道测量导频和所述P2个干扰测量资源对所述Q个CSI测量线程执行CSI测量及CSI反馈操作,并从执行CSI测量及CSI反馈操作后的所述Q个CSI测量线程中选择Y个CSI测量线程。
  28. 根据权利要求27所述的装置,其中,所述Q个CSI测量线程对应的信道测量导频相同,所述Q个CSI测量线程中至少2个CSI测量线程对应的干扰测量资源不同。
  29. 根据权利要求27所述的装置,其中,所述Q个CSI测量线程对应的干扰资源测量导频相同,所述Q个CSI测量线程中至少2个CSI测量线程对应的干扰测量资源不同。
  30. 根据权利要求27所述的装置,其中,所述Q个CSI测量线程对应的信道测量导频至少存在两种不同类型的导频。
  31. 根据权利要求27所述的装置,其中,所述配置信息还包括:CSI的量化和/或反馈方法。
  32. 根据权利要求31所述的装置,其中,所述CSI的量化和/或反馈方法至少包括以下之一包括:信道的秩RANK或LAYER的计算方法;秩指示符RI的计算方法;使用的码本量化方法;CSI的反馈模式。
  33. 根据权利要求32所述的装置,其中,所述Q个CSI测量线程中至少存在X个CSI测量线程分别用于X个RANK或LAYER组的信道信息反馈。
  34. 根据权利要求33所述的装置,其中,
    在所述X为2时,
    RANK或LAYER组1为RANK={1,2}或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={3,4};或,
    RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={1,2,3,4};或,
    RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={3~8};或,
    RANK或LAYER组1为RANK或LAYER={1~4},RANK或LAYER组2为RANK或LAYER={5~8};或,
    RANK或LAYER组1为RANK或LAYER={1~4},RANK或LAYER组2为RANK或LAYER={1~8};或,
    RANK或LAYER组1为RANK或LAYER={1},RANK或LAYER组2为RANK或LAYER={2}or RANK或LAYER={2~4}or{2~8}or{1~2}or{1~4}or{1~8};
    在所述X为3时,
    RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={3,4},RANK或LAYER组3为RANK或LAYER={5~8};或,
    RANK或LAYER组1为RANK或LAYER={1,2},RANK或LAYER组2为RANK或LAYER={1~4},RANK或LAYER组3为RANK或LAYER={1~8};或,
    RANK或LAYER组1为RANK或LAYER={1}RANK或LAYER组2为{2}RANK或 LAYER组2为{3,4};或,
    RANK或LAYER组1为RANK或LAYER={1}RANK或LAYER组2为{2}RANK或LAYER组2为{3~8};或,
    RANK或LAYER组1为RANK或LAYER={1}RANK或LAYER组2为{2~4}RANK或LAYER组2为{5,8}。
PCT/CN2016/070074 2015-04-20 2016-01-04 信道信息的配置方法及装置、反馈方法及装置 WO2016169304A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017555337A JP2018514165A (ja) 2015-04-20 2016-01-04 チャネル情報の設定方法及び装置、フィードバック方法及び装置
EP16782452.3A EP3288205A4 (en) 2015-04-20 2016-01-04 Channel information configuration method and device, and feedback method and device
US15/568,078 US10673505B2 (en) 2015-04-20 2016-01-04 Method and device for configuring channel information, and method and device for channel information feedback

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510188098.2 2015-04-20
CN201510188098.2A CN106160825B (zh) 2015-04-20 2015-04-20 信道信息的配置方法及装置、反馈方法及装置

Publications (1)

Publication Number Publication Date
WO2016169304A1 true WO2016169304A1 (zh) 2016-10-27

Family

ID=57143702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070074 WO2016169304A1 (zh) 2015-04-20 2016-01-04 信道信息的配置方法及装置、反馈方法及装置

Country Status (5)

Country Link
US (1) US10673505B2 (zh)
EP (1) EP3288205A4 (zh)
JP (1) JP2018514165A (zh)
CN (1) CN106160825B (zh)
WO (1) WO2016169304A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019537893A (ja) * 2016-11-04 2019-12-26 華為技術有限公司Huawei Technologies Co.,Ltd. 基準信号測定方法および装置
EP3547745A4 (en) * 2017-01-06 2020-01-01 Huawei Technologies Co., Ltd. METHOD, DEVICE AND SYSTEM FOR PROCESSING CHANNEL STATUS INFORMATION
JP2020509656A (ja) * 2017-02-06 2020-03-26 テレフオンアクチーボラゲット エルエム エリクソン(パブル) チャネル状態情報フィードバックのための動的インジケーション

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106160825B (zh) * 2015-04-20 2021-07-30 中兴通讯股份有限公司 信道信息的配置方法及装置、反馈方法及装置
CN108810932A (zh) * 2017-05-05 2018-11-13 华为技术有限公司 信道状态信息处理方法及其装置
CN110504999B (zh) * 2018-05-17 2021-11-30 华为技术有限公司 通信方法、终端设备和网络设备
CN111432479B (zh) * 2019-01-10 2024-03-29 华为技术有限公司 传输信道状态信息的方法和装置
CN111818546B (zh) * 2019-04-10 2022-07-12 成都华为技术有限公司 干扰测量的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103716116A (zh) * 2012-09-28 2014-04-09 中兴通讯股份有限公司 信道状态信息反馈信令的配置方法、基站和终端
CN103795491A (zh) * 2012-11-01 2014-05-14 中兴通讯股份有限公司 信道状态信息的处理方法、基站和终端
CN103825663A (zh) * 2014-02-21 2014-05-28 电信科学技术研究院 信道状态信息测量方法以及装置
US20140334391A1 (en) * 2013-05-09 2014-11-13 Sharp Laboratories Of America, Inc. Channel state measurement and reporting

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101901927B1 (ko) * 2010-09-28 2018-09-27 엘지전자 주식회사 무선 통신 시스템에서 셀간 간섭 조정 방법 및 장치
MY164105A (en) * 2011-08-12 2017-11-30 Interdigital Patent Holdings Inc Interference measurement in wireless networks
JP5155431B1 (ja) * 2011-10-03 2013-03-06 株式会社エヌ・ティ・ティ・ドコモ 移動通信方法、無線基地局及び移動局
US9155098B2 (en) * 2012-03-29 2015-10-06 Qualcomm Incorporated Channel state information reference signal (CSI-RS) configuration and CSI reporting restrictions
US9204317B2 (en) * 2012-05-11 2015-12-01 Telefonaktiebolaget L M Ericsson (Publ) Methods and arrangements for CSI reporting
US8798550B2 (en) * 2012-05-11 2014-08-05 Telefonaktiebolaget L M Ericsson (Publ) Methods and arrangements for CSI reporting
US9326176B2 (en) * 2012-06-11 2016-04-26 Samsung Electronics Co., Ltd. Channel state information transmission/reception method and apparatus for use in wireless communication system
US20140022988A1 (en) * 2012-07-20 2014-01-23 Alexei Davydov User equipment and method for antenna port quasi co-location signaling in coordinated multi-point operations
US20140045510A1 (en) * 2012-07-25 2014-02-13 Nec Laboratories America, Inc. Coordinated Multipoint Transmission and Reception (CoMP)
CN103580819B (zh) * 2012-07-31 2018-05-18 中兴通讯股份有限公司 信道状态信息反馈的配置方法及装置,测量、反馈方法及装置
CN103580820A (zh) * 2012-08-03 2014-02-12 上海贝尔股份有限公司 控制ri报告的方法及装置
US9106386B2 (en) * 2012-08-03 2015-08-11 Intel Corporation Reference signal configuration for coordinated multipoint
KR101988285B1 (ko) * 2012-09-20 2019-06-12 삼성전자 주식회사 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 장치
RU2611258C2 (ru) * 2012-09-28 2017-02-21 Хуавей Текнолоджиз Ко., Лтд. Способ обработки информации о состоянии канала, сетевое устройство и пользовательское оборудование
CN103780358B (zh) * 2012-10-24 2018-08-21 中兴通讯股份有限公司 一种确定信道状态信息的方法及终端
US8976884B2 (en) 2012-12-20 2015-03-10 Google Technology Holdings LLC Method and apparatus for antenna array channel feedback
WO2014157940A1 (ko) * 2013-03-27 2014-10-02 엘지전자 주식회사 다증 샐 기반 무선 통신 시스템에서 참조 신호를 설정하는 방법 및 이를 위한 장치
US9807763B2 (en) * 2013-08-21 2017-10-31 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement for configuring CSI measurements
CN104519515B (zh) * 2013-09-27 2019-07-02 中兴通讯股份有限公司 上下行配置信息通知、获取方法,基站和用户设备
CN106170942B (zh) * 2014-02-18 2019-09-03 Lg 电子株式会社 在支持无线资源的使用变化的无线通信系统中报告信道状态信息的方法及其设备
US9813216B2 (en) * 2014-04-04 2017-11-07 Lg Electronics Inc. Method for reporting channel state information having interference cancellation capability reflected therein, and apparatus therefor
CN106160825B (zh) * 2015-04-20 2021-07-30 中兴通讯股份有限公司 信道信息的配置方法及装置、反馈方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103716116A (zh) * 2012-09-28 2014-04-09 中兴通讯股份有限公司 信道状态信息反馈信令的配置方法、基站和终端
CN103795491A (zh) * 2012-11-01 2014-05-14 中兴通讯股份有限公司 信道状态信息的处理方法、基站和终端
US20140334391A1 (en) * 2013-05-09 2014-11-13 Sharp Laboratories Of America, Inc. Channel state measurement and reporting
CN103825663A (zh) * 2014-02-21 2014-05-28 电信科学技术研究院 信道状态信息测量方法以及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3288205A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019537893A (ja) * 2016-11-04 2019-12-26 華為技術有限公司Huawei Technologies Co.,Ltd. 基準信号測定方法および装置
EP3547745A4 (en) * 2017-01-06 2020-01-01 Huawei Technologies Co., Ltd. METHOD, DEVICE AND SYSTEM FOR PROCESSING CHANNEL STATUS INFORMATION
US11082986B2 (en) 2017-01-06 2021-08-03 Huawei Technologies Co., Ltd. Channel state information processing method and apparatus, and system
JP2020509656A (ja) * 2017-02-06 2020-03-26 テレフオンアクチーボラゲット エルエム エリクソン(パブル) チャネル状態情報フィードバックのための動的インジケーション
US11825325B2 (en) 2017-02-06 2023-11-21 Telefonaktiebolaget Lm Ericsson (Publ) Dynamic indication for channel state information feedback

Also Published As

Publication number Publication date
EP3288205A1 (en) 2018-02-28
JP2018514165A (ja) 2018-05-31
US20180145735A1 (en) 2018-05-24
CN106160825A (zh) 2016-11-23
US10673505B2 (en) 2020-06-02
CN106160825B (zh) 2021-07-30
EP3288205A4 (en) 2018-05-02

Similar Documents

Publication Publication Date Title
JP7336489B2 (ja) 更に最適化されたオーバーヘッドを有するマルチビームコードブック
KR102382603B1 (ko) 다운링크 및 업링크 채널 상태 정보를 획득하기 위한 방법 및 장치
CN107636984B (zh) 用于操作mimo测量参考信号和反馈的方法和装置
WO2016169304A1 (zh) 信道信息的配置方法及装置、反馈方法及装置
CN113346935B (zh) 用于码本设计和信令的方法和装置
CN107294643B (zh) 一种信道状态信息反馈和配置的方法和装置
US9344164B2 (en) Method, system and device for feeding back and receiving PMI
KR102059125B1 (ko) 셀룰러 무선 통신 시스템을 위한 채널 상태 정보 코드워드 구성 장치 및 방법
JP2019537874A (ja) プリコーディング行列指示方法、装置、及びシステム
US10574409B2 (en) Information notification method and channel state information process execution method
KR20180043811A (ko) 무선 통신 시스템에서 피드백 신호를 송수신하는 방법 및 장치
WO2017076281A1 (zh) 信道状态信息的反馈方法、测量导频的配置方法及装置
KR20170020287A (ko) 채널 상태 정보 피드백 방법 및 장치
WO2015109796A1 (zh) 信道状态信息处理方法、装置、终端及基站
WO2017076347A1 (zh) 一种信道状态信息量化反馈方法及终端
WO2017076280A1 (zh) 信道测量的配置方法及装置、信道信息反馈方法及装置
WO2011160451A1 (zh) 信道状态信息的反馈方法及终端
WO2012041107A1 (zh) 信道状态信息反馈方法及终端
WO2011085581A1 (zh) 信道状态信息反馈方法和用户终端
CN106899378B (zh) 信道状态信息报告实例的确定方法及装置
CN109964414B (zh) 针对混合类a/b操作的高级csi报告
WO2017167156A1 (zh) Dmrs的发送方法及装置
KR102054203B1 (ko) 다중 입력 및 다중 출력 시스템에서 채널 추정 피드백 방법 및 장치
WO2021209206A1 (en) Enhanced new radio (nr) type ii channel state information (csi) feedback using angle and delay reciprocity
WO2017167161A1 (zh) 一种实现信道状态信息反馈的方法、装置及计算机存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16782452

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017555337

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15568078

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE