WO2016167486A1 - 토크 센서 모듈, 조향각 센싱 장치 및 스테이터 제조 방법 - Google Patents

토크 센서 모듈, 조향각 센싱 장치 및 스테이터 제조 방법 Download PDF

Info

Publication number
WO2016167486A1
WO2016167486A1 PCT/KR2016/002894 KR2016002894W WO2016167486A1 WO 2016167486 A1 WO2016167486 A1 WO 2016167486A1 KR 2016002894 W KR2016002894 W KR 2016002894W WO 2016167486 A1 WO2016167486 A1 WO 2016167486A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
magnet
tooth
head portion
rotor
Prior art date
Application number
PCT/KR2016/002894
Other languages
English (en)
French (fr)
Inventor
이창환
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to US15/564,032 priority Critical patent/US10315694B2/en
Priority to JP2017551302A priority patent/JP6772176B2/ja
Priority to CN201680021647.XA priority patent/CN107532955B/zh
Publication of WO2016167486A1 publication Critical patent/WO2016167486A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/08Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque
    • B62D6/10Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to driver input torque characterised by means for sensing or determining torque
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/104Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving permanent magnets

Definitions

  • the present embodiment relates to a torque sensor module, a steering angle sensing device including the same, and a manufacturing method of a stator which is one component of the torque sensor module.
  • a steering device assisted by a separate power is used as a device to ensure the stability of steering of the vehicle.
  • an auxiliary steering device was used as a hydraulic device, but recently, an electric power steering system with low power loss and high accuracy is used.
  • the electric steering device drives the motor in an electronic control unit according to the driving conditions detected by the vehicle speed sensor, the torque angle sensor, the torque sensor, etc., thereby ensuring turning stability and providing fast resilience.
  • a magnet is disposed along the outer circumferential surface of the rotor and a stator having a protruding piece corresponding to the polarity of the magnet is disposed on the outer circumferential surface of the electric steering device.
  • Torque is detected and transmitted to the electronic controller.
  • the torque angle sensor (Torque Angle Sensor) is configured to detect the torque applied to the steering shaft, output an electrical signal proportional to the detected torque, and outputs an electrical signal proportional to the rotation angle of the steering shaft.
  • the stator is implemented as an integral structure having a plurality of protruding pieces, and when manufacturing, it implements a method of processing a single sheet into an integrated structure, which causes a problem of cost loss due to a large waste of raw materials. .
  • Embodiments of the present invention have been devised to solve the above-described problem, and in particular, the structure of the stator can be implemented in a structure in which a plurality of unit stators are separately manufactured and bound, thereby reducing manufacturing costs, and furthermore, motors. To ensure the universal applicability of manufacturing design according to the size of the.
  • the torque sensor module includes a rotor including a rotor holder and a first magnet disposed on an outer circumferential surface of the rotor holder; And a stator spaced apart from the rotor at an outer side of the rotor, wherein the stator may be formed by combining a plurality of divided unit stator teeth.
  • Each of the plurality of unit stator teeth may include a head portion extending in the circumferential direction and teeth extending in a vertical direction from the head portion.
  • the plurality of unit stator teeth includes a first stator tooth including a first head part, and a second stator tooth including a second head part positioned closest to the first head part among the plurality of unit stator teeth. can do.
  • the first head portion and the second head portion may be spaced apart from each other.
  • the first head portion and the second head portion may be coupled by a coupling member.
  • the first head portion and the second head portion may be coupled by a binding portion.
  • the binding part may be formed by directly fusion bonding the first head part and the second head part.
  • the plurality of unit stator teeth may have the same size and shape of the head and teeth.
  • a magnetic field sensor for detecting a change in magnetic field according to the movement of the first magnet; And a collector disposed on the stator and configured to apply a magnetic field change due to the movement of the first magnet to the magnetic field sensor.
  • the number of unit stator teeth may be an integer multiple of the number of magnetized poles of the first magnet.
  • the plurality of unit stator teeth may be arranged in a circumferential direction and may be disposed to cross each other between adjacent unit stator teeth.
  • the rotor may be coupled to an input shaft and the stator may be coupled to an output shaft.
  • the steering angle sensing device includes: a rotor including a rotor holder and a first magnet disposed on an outer circumferential surface of the rotor holder; A stator spaced apart from the rotor on an outer side of the rotor; And a gear module coupled to and interlocked with the stator, wherein the stator may be formed by combining a plurality of divided unit stator teeth.
  • the gear module includes a main gear interlocked with the stator, a first sub gear and a second sub gear engaged with the main gear, and a rotation center of the first sub gear and a rotation center of the second sub gear.
  • a second magnet and a third magnet may be arranged.
  • the first magnet is coupled to the input shaft or the output shaft, and may be magnetized in the axial direction.
  • the first magnet may be a ring shape having a hollow inside and a horizontal cross section having an outer diameter and an inner diameter.
  • the stator manufacturing method includes the steps of: (a) preparing a flat substrate material; And (b) cutting a plurality of unit stator teeth from the substrate material, wherein the plurality of unit stator teeth comprises: a first stator tooth having a first head and a first head portion extending from the first tooth; And a second stator tooth having a second tooth positioned closest to the first tooth and the substrate material and a second head portion extending from the second tooth, wherein step (b) comprises: The first stator tooth and the second stator tooth may be arranged and cut from the substrate material such that the first stator tooth and the second stator tooth are positioned above the substrate material and the second head part is positioned below the substrate material.
  • step (b) After the step (b), (c) bending the teeth with respect to the head in the plurality of unit stator teeth cut in the step (b); And (d) arranging the plurality of unit stator teeth in the circumferential direction and combining the plurality of unit stator teeth.
  • step (d) the plurality of unit stator teeth may be coupled such that adjacent head portions are zigzag with each other.
  • step (d) the coupling between the plurality of unit stator teeth may be performed by any one or more of insert molding, ultrasonic welding, thermal welding, caulking, and bonding.
  • the yoke member and the first magnet are coupled to the outer circumferential surface of the rotor holder connected to the input shaft through the hollow, and are spaced apart from the outer circumferential surface of the rotor, and the output shaft And a stator connected to the stator, wherein the stator is configured to provide a torque sensor module in which a plurality of unit stators are divided and coupled and disposed in a radial direction of an outer circumferential surface of the first magnet.
  • a rotor coupled to the yoke member and the first magnet to the outer peripheral surface of the rotor holder connected to the input shaft through the hollow, spaced apart from the outer peripheral surface of the rotor, at least 2
  • the above unit stator is divided and coupled, the stator is disposed in the radial direction of the outer peripheral surface of the first magnet and connected to the output shaft, and coupled to the lower side of the stator, interlocked with the main gear and the main gear rotated together with the stator
  • the steering angle sensing device may include a gear module including a plurality of subgear gears including a second magnet and a third magnet.
  • the structure of the stator can be implemented as a structure in which a plurality of unit stators are separately manufactured and bound to reduce manufacturing costs, and furthermore, the universal application of manufacturing design according to the size of the motor. It is effective to secure the sex.
  • FIG. 1 and 2 are views for explaining a comparison structure with the torque sensor module according to an embodiment of the present invention
  • Figures 3 and 4 is a conceptual diagram for explaining the structure of the torque sensor module according to an embodiment of the present invention. to be.
  • FIG. 5 is an exploded perspective view of a steering angle sensing device to which a torque sensor module is applied according to an embodiment of the present invention.
  • FIG. 6 is a cross-sectional view illustrating main parts of the gear module of FIG. 5.
  • FIG. 1 and 2 are views for explaining a comparison structure with the torque sensor module according to an embodiment of the present invention
  • Figures 3 and 4 is a conceptual diagram for explaining the structure of the torque sensor module according to an embodiment of the present invention. to be.
  • the stator is a structure in which the structure of the stator 200 implements a circular shape, and a plurality of teeth 21 are connected to the upper and lower edges and are integrally implemented. It is provided.
  • a magnet 22 may be disposed inside the stator, and a rotor assay (not shown) having a rotor holder or a yoke member may be provided inside the magnet 22.
  • the substrate 1 of a predetermined standard is aligned, cut into the shape shown in FIG. 2 through press working, and the same shape is combined up and down.
  • the area other than the parts constituting the stator is discarded at the time of cutting, which causes a disadvantage that the loss of the raw material, which is an expensive alloy material, becomes very large.
  • the stator 200 may be embodied in a structure in which a plurality of unit stator teeth 210 and 220 are divided and bound to each other.
  • the upper and lower substrate structures integrally implemented as shown in FIG. Rather than bonding, the stator 200 having an annular structure may be implemented by cross-aligning the unit stator teeth 210 and 220.
  • such a structure can increase the convenience of the process in the manufacturing process and at the same time can significantly reduce the waste of materials. That is, as shown in FIG. 4, when a plurality of unit stator teeth 210 and 220 are arranged in a manner in which the shape of the unit stator teeth 210 and 220 intersects the structure of the base substrate material 2 and the cutting process is performed. ) Will be implemented.
  • the plurality of unit stator teeth 210 and 220 may be implemented as a structure in which teeth 212 extending from the head 211 are protruded.
  • the unit stator teeth 210 and 220 are arranged such that the side surfaces of the head portions 211 abut between the adjacent unit stator teeth 210 and 220, as shown in FIG.
  • the boundary between the unit stator teeth 210 and 220 adjacent to each other may be connected.
  • the bar can be manufactured by further expanding or contracting the radius of the stator 200, and an advantage that can be suitably applied to various torque sensor standards can be realized.
  • the unit stator 210 when the unit stator 210 is disposed in an annular structure along a radius of curvature of the outer circumferential surface of the first magnet 130 with a constant curvature, the unit stator tooth 210 in the state of being cut in FIG.
  • the curvature of the head 211 of the 220 is made larger or smaller, the size of the entire stator 200 can be easily adjusted.
  • the directions of the teeth 212 extending from the head portion 211 alternately arrange the arrangement structure of the other unit stator teeth B and C adjacent to both sides of one unit stator tooth A.
  • the specifications of the head portion 211 and teeth 212 are the same, so that the respective intervals can be uniformly implemented to implement the magnetization characteristics uniformly.
  • the number of the unit stator teeth 210 and 220 may be implemented as an integer multiple of the number of magnetized poles of the first magnet 130 to implement efficiency of magnetization characteristics.
  • the head parts 211 of the unit stators 210 and 220 which are adjacent to each other are disposed to be in contact with each other, and the stator 200 is implemented as a structure for binding the same.
  • a binding unit X in which each head portion 211 is bound between adjacent unit stator teeth 210 and 220 may be implemented. That is, in the case of the binding part X, the head part 211 of the unit stator teeth 210 and 220 which adjoins mutually is inserted molding, ultrasonic fusion
  • FIG. 5 is an exploded view of an embodiment of a steering angle sensing device to which the torque sensor module according to the embodiment of the present invention described above with reference to FIGS. 3 and 4 is applied.
  • the structure of the steering angle sensing device to which the torque sensor module according to the exemplary embodiment of the present invention is applied will be described with reference to FIG. 5.
  • the steering angle sensing device 300 according to the embodiment of the present invention, the yoke member 120 and the first magnet 130 on the outer circumferential surface of the rotor holder 110 is connected to the input shaft 10 through a hollow ) May be provided with a rotor 100 coupled thereto.
  • the main gear 32 and spaced apart from the outer circumferential surface of the rotor 100, coupled to the stator 200 and the lower side of the stator 200, coupled to the output shaft 11, and rotates together with the stator 200 and It may include a gear module 30 that interlocks with the main gear 32 and includes a plurality of sub gears 34 and 36 including a second magnet 40 and a third magnet 50.
  • the rotor 100 and the stator 200 constitute a torque sensor module.
  • the magnetic amount is detected according to the difference in the mutual rotation amount to detect the torque of the input shaft 10 and the output shaft 11. To transmit to the electronic controller.
  • stator 200 as described above with reference to FIGS. 3 and 4, after the unit stator teeth 210 and 220 are separated and manufactured, a plurality of unit stator teeth 210 and 220 are attached according to a required standard. It is possible to provide a steering sensing device that can reduce the manufacturing cost and to be customized according to various specifications, and to improve the magnetization characteristics to perform a stable function. same.
  • the input shaft 10 is coupled to an inner surface of the first magnet 130 having a ring shape included in the rotor 100 according to an exemplary embodiment of the present invention.
  • the input shaft 10 is connected to a steering wheel (not shown) of the vehicle and as the driver rotates the steering wheel by operating the steering wheel, the first magnet 130 is rotated in conjunction with the input shaft 10.
  • the first magnets 130 may be coupled to the outer circumferential surface of the input shaft 10 by the rotor holder 110.
  • the above-described yoke member 120 may be further included.
  • the cover C of the upper side of the steering angle sensing device 300 and the first case 80 and the second case 90 of the lower side can accommodate the stator 200 and the angle sensor module. It may be implemented in a structure.
  • stator 200 may be implemented in a ring structure by binding a plurality of unit stator teeth 210 and 220 as described above with reference to FIG. 3. Subsequently, when combined, the inner circumferential surfaces of the magnet 130 and the stator 200 may be spaced apart from each other and disposed to face each other in the illustrated structure.
  • the coupling part 24 may protrude from the lower end of the stator 200.
  • the coupling part 24 may have a cylindrical shape, and the output shaft 11 may be coupled to the coupling part 24.
  • the output shaft 11 is connected to the front wheel of the vehicle in contact with the road, the output shaft 11 and the input shaft 10 is connected by a torsion bar (not shown).
  • a torsional torque is generated in the torsion bar connecting the output shaft 11 and the input shaft 10 by the frictional resistance between the road and the front wheel.
  • the ECU electric control unit
  • the ECU calculates the steering torque by comparing the strength of the preset reference magnetic field with the strength of the magnetic field received from the magnetic field sensor 84, and based on the calculated steering torque, EPS calculates an auxiliary operation force necessary for the user to operate the steering wheel.
  • the first case 80 accommodates the stator 200.
  • the first case 80 has a structure in which an upper end thereof is opened to accommodate the stator 200, and a through hole 82 suitable for penetrating the coupling part 24 protruding from the stator 200 is formed at the lower end of the first case 80. do.
  • angle sensor module interworking with the torque sensor module will be described below with reference to FIG. 5.
  • the angle sensor module in general, as the driver rotates the steering wheel, the main gear 32 attached to the steering shaft rotates in association with each other, and a difference in rotation angle occurs. At this time, the angle sensor module is attached to the main gear 32.
  • the Hall IC recognizes the magnetic field and rotation direction of the magnets 40 and 50 attached to the subgear 34 and 36 to transfer the signal to the electronic controller.
  • the gear module 30 and the second magnet 40 and the third magnet 50 of the steering angle sensing device enable sensing the steering angle of the steering wheel of the user.
  • the gear module 30 may include a main gear 32, a first sub gear 34, and a second sub gear 36.
  • the main gear 32 is fitted to the outer surface of the engaging portion 24 protruding from the stator 200, the teeth are formed on the outer peripheral surface of the main gear 32.
  • the main gear 32 is coupled to the coupling portion 24 and the coupling portion 24 is coupled to the output shaft 11, the main gear 32 is rotated in conjunction with the rotation of the output shaft 11. .
  • engaging grooves (not shown) or engaging grooves coupled to the engaging projections, respectively. (Not shown) can be formed.
  • the first sub gear 34 included in the gear module may have a disc shape, for example, and may have a structure in which teeth are formed on an outer circumferential surface of the first sub gear 34.
  • the first sub gear 34 is geared directly with the teeth of the main gear 32, and the first sub gear 34 and the main gear 32 are arranged in parallel with each other.
  • the main gear 32 and the first sub gear 34 have, for example, a first gear ratio.
  • the second sub gear 36 has a disc shape, for example, teeth are formed on an outer circumferential surface of the second sub gear 36, and the second sub gear 36 is formed of a first sub gear ( As in 34, the gears of the main gear 32 are directly geared to each other, and the second sub gear 36 and the main gear 32 have, for example, a second gear ratio.
  • the first sub gear 34 and the second sub gear 36 are directly geared with the main gear 32, respectively.
  • the first and second sub gears 34 and 36 are directly geared to the main gear 32, the first sub gear 34 is directly geared to the main gear 32 and the first sub gear 34 is disposed.
  • Backlash can be significantly reduced compared to when the second sub-gear 34 is directly toothed.
  • FIG. 6 is a cross-sectional view illustrating main parts of the gear module of FIG. 5.
  • the second magnet 40 is disposed at the rotation center of the first sub gear 34
  • the third magnet 50 is disposed at the rotation center of the second sub gear 36.
  • the second case 90 is coupled to the lower portion of the first case 80, the second case 90 has an upper end opening and a through hole 92 through which the output shaft 11 passes.
  • the first magnet sensor 60 is disposed on an upper surface of the printed circuit board 400 to be described later facing the second magnet 40 fixed to the rotation center of the first sub gear 34.
  • the first magnet sensor 60 measures the rotation angle of the second magnet 40 and transmits a signal generated to the ECU.
  • the second magnet sensor 70 faces the upper surface of the printed circuit board 400 to be described later facing the third magnet 50 fixed to the rotation center of the second sub gear 36. Is disposed on.
  • the second magnet sensor 70 measures the rotation angle of the third magnet 50 and transmits a signal generated to the ECU. Thereafter, the ECU calculates signals output from the first magnet sensor 60 and the second magnet sensor 70, and as a result, the rotation angle of the steering wheel can be calculated.
  • the rotation angle of the steering wheel calculated from the ECU is disposed at the rotation center of the first and second sub gears 34 and 36 geared to the main gear 32 of the gear module 30.
  • the first and second magnet sensors 60 and 70 sense the rotation of the second and third magnets 40 and 50, respectively.
  • the main gear 32 and the first sub it is possible to reduce the backlash generated between the gear 34 and the second sub gear 34, and to reduce the backlash, the actual rotation angle of the output shaft 11 and the first and second magnet sensors 60 and 70. It is possible to greatly reduce the deviation between the sensed rotation angle.
  • the steering angle sensing device 200 may further include a printed circuit board 400.
  • the printed circuit board 400 may have, for example, a donut shape having an opening, and the first sub gear 34 and the second sub gear 36 may rotate on both surfaces of the printed circuit board 400. Are combined.
  • the printed circuit board 400 may be disposed in parallel with, for example, the main gear 32, the first sub gear 34, and the second sub gear 36.
  • the gears 34 and 36 may be geared directly with the main gear 32.
  • First and second magnet sensors 60 and 70 are disposed on an upper surface of the printed circuit board 400 and a lower surface of the printed circuit board 400, respectively.
  • the first magnet sensor 60 disposed on the upper surface of the printed circuit board 400 senses the rotation angle of the second magnet 40 to transmit a sensing signal to the ECU
  • the ECU calculates a steering angle by calculating sensing signals transmitted from the first and second magnet sensors 60 and 70.
  • the second magnet Magnetic fields generated from the 40 and the third magnets 50 may interfere with each other, such that the first and second magnet sensors 60 and 70 may interfere with each other.
  • the magnetic shielding film 95 may be disposed and / or formed on at least one of both surfaces of the printed circuit board 400 corresponding to the first and second sub gears 34 and 36. .
  • the magnetic shielding layer 95 may prevent interference of the magnetic field generated from the second and third magnets 40 and 50, respectively.
  • the torque sensor module includes a rotor holder 110, a rotor 100 including a first magnet 130 disposed on an outer circumferential surface of the rotor holder 110, and a rotor outside the rotor 100. It may include a stator 200 spaced apart from the (100). In this case, the stator 200 may be formed by combining a plurality of divided unit stator teeth 210 and 220.
  • Each of the plurality of unit stator teeth 210 and 220 may include a head portion 211 extending in the circumferential direction and teeth 212 bent and extended in a vertical direction from the head portion 211.
  • the plurality of unit stator teeth 210 and 220 may include a first stator tooth 210 including a first head part and a second one positioned closest to the first head part among the plurality of unit stator teeth 210 and 220. It may include a second stator tooth 220 including a head portion.
  • the first head portion and the second head portion may be spaced apart.
  • the first head portion and the second head portion may be coupled by a coupling member.
  • the first head portion and the second head portion may be joined by a binding portion.
  • the binding part may be formed by directly fusion of the first head part and the second head part.
  • the plurality of unit stator teeth 210 and 220 may have the same size and shape of the head 211 and the teeth 212.
  • the torque sensor module includes a magnetic field sensor 84 that detects a magnetic field change due to the movement of the first magnet 130, and a stator 200, and a magnetic field according to the movement of the first magnet 130. It may include a collector 500 for applying a change to the magnetic field sensor 84.
  • the number of unit stator teeth 210 and 220 may be an integer multiple of the number of magnetized poles of the first magnet 130.
  • the plurality of unit stator teeth 210 and 220 may be arranged in the circumferential direction and may be disposed to cross each other between adjacent unit stator teeth 210 and 220.
  • the rotor 100 may be coupled to the input shaft 10, and the stator 200 may be coupled to the output shaft 11.
  • the steering angle sensing device 300 includes a rotor 100 including a rotor holder 110 and a first magnet 130 disposed on an outer circumferential surface of the rotor holder 110, and a rotor outside the rotor 100. It may include a stator 200 spaced apart from the 100, and a gear module 30 coupled to and interlocked with the stator 200. In this case, the stator 200 may be formed by combining a plurality of divided unit stator teeth 210 and 220.
  • the gear module 30 may include a main gear 32 that cooperates with the stator 200, and a first sub gear 34 and a second sub gear 36 that engage with the main gear 32.
  • the second magnet 40 and the third magnet 50 may be disposed in each of the rotation center of the first sub gear 34 and the rotation center of the second sub gear 36.
  • the first magnet 130 is coupled to the input shaft 10 or the output shaft 11, and may be magnetized in the axial direction.
  • the first magnet 130 may be a ring shape having a hollow inside and having a horizontal cross section having an outer diameter and an inner diameter.
  • the stator manufacturing method includes the steps of: (a) preparing a flat substrate material; And (b) cutting a plurality of unit stator teeth from the substrate material, wherein the plurality of unit stator teeth comprises: a first stator tooth having a first head and a first head portion extending from the first tooth; And a second stator tooth having a second tooth positioned closest to the first tooth and the substrate material and a second head portion extending from the second tooth, wherein step (b) comprises: The first stator tooth and the second stator tooth may be arranged and cut from the substrate material such that the first stator tooth and the second stator tooth are positioned above the substrate material and the second head part is positioned below the substrate material.
  • step (b) After the step (b), (c) bending the teeth with respect to the head in the plurality of unit stator teeth cut in the step (b); And (d) arranging the plurality of unit stator teeth in the circumferential direction and combining the plurality of unit stator teeth.
  • the plurality of unit stator teeth may be coupled such that adjacent head portions are zigzag with each other.
  • the coupling between the plurality of unit stator teeth may be performed by any one or more of insert molding, ultrasonic welding, thermal welding, caulking, and bonding.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Power Steering Mechanism (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

본 실시예는, 로터 홀더와, 상기 로터 홀더의 외주면에 배치되는 제1마그넷을 포함하는 로터; 및 상기 로터의 외측에 상기 로터와 이격되어 배치되는 스테이터를 포함하며, 상기 스테이터는, 분할된 복수의 단위 스테이터 투스(tooth)가 결합되어 형성되는 토크 센서 모듈에 관한 것이다.

Description

토크 센서 모듈, 조향각 센싱 장치 및 스테이터 제조 방법
본 실시예는 토크 센서 모듈, 이를 포함하는 조향각 센싱 장치 및 토크 센서 모듈의 일 구성인 스테이터의 제조 방법에 관한 것이다.
일반적으로 자동차의 조향의 안정성을 보장하기 위한 장치로 별도의 동력으로 보조하는 조향장치가 사용된다. 기존에는 이와 같은 보조 조향장치를 유압을 이용한 장치로 사용하였으나, 최근에는 동력의 손실이 적고 정확성 이 우수한 전동식 조향장치(Electronic Power Streeing System)가 사용된다.
상기와 같은 전동식 조향장치(EPS)는 차속센서, 토크 앵글센서 및 토크센서 등에서 감지한 운행조건에 따라 전자제어장치(Electronic Control Unit)에서 모터를 구동하여 선회 안정성을 보장하고 신속한 복원력을 제공함으로써 운전자로 하여금 안전한 주행이 가능하도록 한다. 이러한 전동식 조향장치에서 토크센서의 경우 로터의 외주면을 따라 마그넷이 배치되고 그 외주면에 마그넷의 극성에 대응하는 돌출 편을 가진 스테이터가 배치됨으로써 상호 회전량의 차이에 따라 자기량을 검출하여 입력축과 출력축의 토크를 검출하여 전자 제어장치로 전송하게 된다. 아울러, 토크앵글센서(Torque Angle Sensor)는 조향축에 가해지는 토크를 감지하고 감지된 토크에 비례하는 전기신호를 출력하고, 조향축의 회전각에 비례하는 전기신호를 출력하는 구성이다.
이 경우 상술한 스테이터는 다수의 돌출편을 가지는 일체형 구조물로 구현되는데, 제작시 단일한 시트에서 일체형 구조로 가공하는 방식을 구현하게 되는데, 이로 인해 원재료의 낭비가 커져 비용손실의 문제가 발생하고 있다.
본 발명의 실시예들은 상술한 문제를 해결하기 위하여 안출된 것으로, 특히 스테이터의 구조를 다수의 단위 스테이터가 분리 제작되어 결착하는 구조로 구현할 수 있도록 하여, 제조비용을 절감할 수 있도록 하며, 나아가 모터의 사이즈에 따른 제작 설계의 범용적인 적용성을 확보할 수 있도록 한다.
본 실시예에 따른 토크 센서 모듈은, 로터 홀더와, 상기 로터 홀더의 외주면에 배치되는 제1마그넷을 포함하는 로터; 및 상기 로터의 외측에 상기 로터와 이격되어 배치되는 스테이터를 포함하며, 상기 스테이터는, 분할된 복수의 단위 스테이터 투스(tooth)가 결합되어 형성될 수 있다.
상기 복수의 단위 스테이터 투스 각각은, 원주 방향으로 연장되는 헤드부 및 상기 헤드부로부터 수직 방향으로 절곡되어 연장되는 치를 포함할 수 있다.
상기 복수의 단위 스테이터 투스는, 제1헤드부를 포함하는 제1스테이터 투스와, 상기 복수의 단위 스테이터 투스 중 상기 제1헤드부와 가장 인접하게 위치하는 제2헤드부를 포함하는 제2스테이터 투스를 포함할 수 있다.
상기 제1헤드부 및 상기 제2헤드부는, 이격 배치될 수 있다.
상기 제1헤드부 및 상기 제2헤드부는, 결합부재에 의해 결합될 수 있다.
상기 제1헤드부 및 상기 제2헤드부는 결착부에 의해 결합될 수 있다.
상기 결착부는, 상기 제1헤드부 및 상기 제2헤드부가 직접 융착되어 형성될 수 있다.
상기 복수의 단위 스테이터 투스는, 상호간 헤드부와 치의 크기 및 형상이 동일할 수 있다.
상기 제1마그넷의 이동에 따른 자계 변화를 감지하는 자기장 센서; 및 상기 스테이터에 배치되며, 상기 제1마그넷의 이동에 따른 자계 변화를 상기 자기장 센서에 인가하는 콜렉터를 더 포함할 수 있다.
상기 복수의 단위 스테이터 투스의 개수는, 상기 제1마그넷의 착자된 극수의 정수배일 수 있다.
상기 복수의 단위 스테이터 투스는 원주 방향으로 배열되며, 인접한 단위 스테이터 투스 간 상호 교차 배치될 수 있다.
상기 로터는 입력축과 결합되며, 상기 스테이터는 출력축과 결합될 수 있다.
본 실시예에서 조향각 센싱 장치는, 로터 홀더와, 상기 로터 홀더의 외주면에 배치되는 제1마그넷을 포함하는 로터; 상기 로터의 외측에 상기 로터와 이격되어 배치되는 스테이터; 및 상기 스테이터에 결합되어 연동하는 기어모듈을 포함하며, 상기 스테이터는, 분할된 복수의 단위 스테이터 투스(tooth)가 결합되어 형성될 수 있다.
상기 기어모듈은, 상기 스테이터와 연동하는 메인기어와, 상기 메인기어와 결합하는 제1서브기어 및 제2서브기어를 포함하며, 상기 제1서브기어의 회전 중심 및 상기 제2서브기어의 회전 중심 각각에는, 제2마그넷 및 제3마그넷이 배치될 수 있다.
상기 제1마그넷은 입력축 또는 출력축에 결합되며, 축방향으로 착자될 수 있다.
상기 제1마그넷은, 내부에 중공을 가지며 수평단면의 형상이 외경과 내경을 갖는 환형(ring shape)일 수 있다.
본 실시예에 따른 스테이터 제조 방법은, (a) 평판형의 기판재를 준비하는 단계; 및 (b) 상기 기판재에서 복수의 단위 스테이터 투스를 절개하는 단계를 포함하며, 상기 복수의 단위 스테이터 투스는, 제1치 및 상기 제1치로부터 연장되는 제1헤드부를 갖는 제1스테이터 투스와, 상기 제1치와 상기 기판재에서 가장 인접하게 위치하는 제2치와 상기 제2치로부터 연장되는 제2헤드부를 갖는 제2스테이터 투스를 포함하며, 상기 (b) 단계는, 상기 제1헤드부가 상기 기판재의 상부에 위치하고 상기 제2헤드부가 상기 기판재의 하부에 위치하도록 상기 제1스테이터 투스 및 상기 제2스테이터 투스를 배열하여 상기 기판재로부터 절개할 수 있다.
상기 (b) 단계 이후, (c) 상기 (b) 단계에서 절개된 복수의 단위 스테이터 투스에서 헤드부에 대해 치를 절곡하는 단계; 및 (d) 상기 복수의 단위 스테이터 투스를 원주 방향으로 배열하여 결합시키는 단계를 포함할 수 있다.
상기 (d) 단계에서, 상기 복수의 단위 스테이터 투스는 인접한 헤드부가 상호간 지그재그로 위치하도록 결합될 수 있다.
상기 (d) 단계에서, 상기 복수의 단위 스테이터 투스 간의 결합은, 인서트 몰딩(insert molding), 초음파 융착, 열 융착, 코킹(Caulking) 및 본딩(Bonding) 중 어느 하나 이상에 의할 수 있다.
상술한 과제를 해결하기 위한 수단으로서, 본 발명의 실시예에서는 중공을 통해 입력축과 연결되는 로터홀더의 외주면에 요크부재와 제1마그넷이 결합하는 로터 및 상기 로터의 외주면에 이격되어 배치되며, 출력축과 연결되는 스테이터;를 포함하며, 상기 스테이터는, 다수의 단위 스테이터가 분할되어 결합되며, 상기 제1마그네터의 외주면의 반경방향으로 배치되는 토크 센서 모듈을 제공할 수 있도록 한다.
나아가, 본 발명의 다른 실시예에서는 상술한 토크 센서 모듈을 적용하여 중공을 통해 입력축과 연결되는 로터홀더의 외주면에 요크부재와 제1마그넷이 결합하는 로터, 상기 로터의 외주면에 이격되고, 적어도 2 이상의 단위 스테이터가 분할되어 결합되며, 상기 제1마그네터의 외주면의 반경방향으로 배치되어 출력축과 연결되는 스테이터, 그리고 상기 스테이터 하측에 결합하며, 상기 스테이터와 함께 회동하는 메인기어 및 상기 메인기어와 연동하며 제2마그넷 및 제3마그넷을 포함하는 복수 개의 서브기어를 포함하는 기어모듈을 포함하는 조향각 센싱 장치를 구현할 수 있도록 한다.
본 발명의 실시예에 따르면, 스테이터의 구조를 다수의 단위 스테이터가 분리 제작되어 결착하는 구조로 구현할 수 있도록 하여, 제조비용을 절감할 수 있도록 하며, 나아가 모터의 사이즈에 따른 제작 설계의 범용적인 적용성을 확보할 수 있도록 하는 효과가 있다.
도 1 및 도 2는 본 발명의 실시예에 따른 토크 센서 모듈과의 비교 구조를 설명하기 위한 도면이며, 도 3 및 도 4는 본 발명의 실시예에 따른 토크 센서 모듈의 구조를 설명하기 위한 개념도이다.
도 5는 본 발명의 일 실시예에 따른 토크 센서 모듈을 적용한 조향각 센싱 장치의 분해 사시도이다.
도 6은 도 5의 기어모듈의 부분을 도시한 요부 단면도이다.
이하에서는 첨부한 도면을 참조하여 본 발명에 따른 구성 및 작용을 구체적으로 설명한다. 첨부 도면을 참조하여 설명함에 있어, 도면 부호에 관계없이 동일한 구성요소는 동일한 참조부여를 부여하고, 이에 대한 중복설명은 생략하기로 한다. 제1, 제2등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
도 1 및 도 2는 본 발명의 실시예에 따른 토크 센서 모듈과의 비교 구조를 설명하기 위한 도면이며, 도 3 및 도 4는 본 발명의 실시예에 따른 토크 센서 모듈의 구조를 설명하기 위한 개념도이다.
도 1 및 도 2를 참조하면, 일반적으로 스테이터는 스테이터(200) 구조물이 원형의 형태를 구현하며, 복수 개의 치(tooth; 21)가 상부와 하부의 테두리부에 연결되어 일체로 구현되는 구조로 구비된다.
이 경우, 상기 스테이터의 내측으로는 마그넷(22)이 배치되며, 상기 마그넷(22) 내측으로는 로터홀더나 요크부재를 구비하는 로터어세이(미도시)가 구비될 수 있다.
상술한 스테이터(200)의 경우, 도 2에 도시된 것과 같이, 일정한 규격의 기판(1)을 어라인하고, 프레스 가공을 통해 도 2에 표시된 형상으로 절단해 내고, 이러한 동일한 형상을 상하에서 결합시켜 하나의 스테이터를 구현할 수 있게 한다. 그러나 이러한 공정은 가공 절단시 스테이터를 구성하는 부분 이외의 영역은 버리게 되어 고가의 합금재인 원자재 손실이 매우 커지게 되는 단점이 발생하게 된다.
아울러, 나아의 규격으로만 구현이 되게 되는바, 최초 설계된 규격에만 적용될 수 있도록 해, 적용의 한계점도 발생하게 된다.
이에, 도 3 및 도 4의 구조와 같은 본 발명의 실시예에 따른 토크 센서 모듈의 구조를 구현할 수 있게 하여 이러한 한계점을 일소할 수 있도록 한다.
즉, 도 3과 같이, 다수의 단위 스테이터 투스(210, 220)를 분할제작하여 이를 상호 결착하는 구조로 스테이터(200)를 구현할 수 있도록 하며, 특히 도 2와 같이 일체형으로 구현된 상하 기판 구조물을 접합하는 것이 아니라, 상기 단위 스테이터 투스(210, 220)를 교차배열하는 방식으로 고리형 구조의 스테이터(200)를 구현할 수 있다.
특히, 이러한 구조는 제조공정에서 공정의 편의성을 증진할 수 있음과 동시에 재료의 낭비를 현저하게 절감할 수 있다. 즉, 도 4와 같이 베이스 기판재(2)의 구조물에 단위 스테이터 투스(210, 220)의 형상을 다수 교차하여 구현하는 방식으로 어라인 한후 이를 절단 가공하게 되면 다수의 단위 스테이터 투스(210, 220)가 구현되게 된다. 복수의 단위 스테이터 투스(210, 220)는 헤드부(211)에서 연장되어 돌출되는 치(212)가 구현되는 구조물로 구현한다.
이후, 상기 단위 스테이터 투스(210, 220)를 도 3에 도시된 구조와 같이, 상호 인접하는 단위 스테이터 투스(210, 220)간에 헤드부(211)의 측면이 맞닿도록 어라인하고, 이를 결착하여 상호 인접하는 단위 스테이터 투스(210, 220)의 경계부가 이어질 수 있도록 한다. 이러한 분리 결합구조의 경우, 미세한 치수의 확장이나 축소 등의 공정에서 필요한 오차 범위 내에서의 설계 변형을 자유롭게 구현할 수 있도록 함은 물론, 단위 스테이터 투스(210, 220)의 개수나 곡률을 변형하는 경우, 스테이터(200)의 반경을 더욱 확장하거나 축소하여 제작이 가능하게 되는바, 다양한 토크센서의 규격에도 적합하게 적용이 가능한 장점이 구현될 수 있다.
이를 테면, 일정한 곡률을 가지고 제1마그넷(130)의 외주면의 곡률 반경 방향을 따라서 고리형 구조로 상기 단위스테이터(210)를 배치하는 경우, 도 4에서 절단 가공된 상태에서 단위 스테이터 투스(210, 220)의 헤드부(211)의 곡률을 크게 하거나 더 작게 구현하는 경우 전체 스테이터(200)의 사이즈 조절이 매우 용이하게 구현할 수 있게 된다.
아울러, 도 3과 같이, 하나의 단위 스테이터 투스(A)의 양옆에 인접하는 다른 단위 스테이터 투스(B, C)의 배치 구조를 헤드부(211)에서 연장되는 치(212)의 방향이 상호 교번하여 배치(교차배치)되는 구조로 구현하여 공간 효율성을 더욱 높일 수 있음은 물론, 단위 스테이터 투스(A, B, C)의 개수를 증대할 수 있도록 할 수 있다. 특히, 본 발명의 실시예에서는, 헤드부(211)와 치(212)의 규격이 상호 동일한 것을 구비하여 각각의 간격이 균일하게 구현될 수 있도록 하여 착자 특성을 균일하게 구현할 수 있도록 한다. 더욱 바람직하게는, 상기 단위 스테이터 투스(210, 220)의 개수는 상기 제1마그넷(130)의 착자된 극수의 정수배로 구현될 수 있도록 하여 착자 특성의 효율화를 구현할 수 있도록 한다.
도 3에서 도시되지는 않았지만, 상호 인접하는 단위 스테이터(210, 220)의 헤드부(211)가 상호 맞닿을 수 있도록 배치하고, 이를 결착하는 구조로 스테이터(200)를 구현하게 되는바, 본 발명의 실시예에서는 특히 다수의 단위 스테이터 투스(210, 220)중 상호 인접하는 단위 스테이터 투스(210, 220) 사이에는 각각의 헤드부(211)가 결착되는 결착부(X)가 구현될 수 있다. 즉, 결착부(X)의 경우, 상호 인접하는 단위 스테이터 투스(210, 220)의 헤드부(211)를 인서트 몰딩(Insert molding), 초음파 융착이나 열융착, 또는 소성가공(caulking), 접착물질을 이용한 접착 등의 방식으로 구현되게 된다. 이 경우, 별도의 매개 부재를 이용하는 경우 외에 단위 스테이터 투스(210, 220) 각각의 헤드부(211)가 직접 융착되는 구조로 구현하게 되면, 더욱 자화특성이 좋아지게 된다.
도 5는, 도 3 및 도 4에서 상술한 본 발명의 실시예에 따른 토크 센서 모듈을 적용한 조향각 센싱 장치의 일 구현예의 분리도면을 도시한 것이다. 이하에서는 도 5를 참조하여 본 발명의 실시예에 따른 토크 센서 모듈을 적용한 조향각 센싱 장치의 구조를 설명하기로 한다.
도 5를 참조하면, 본 발명의 실시예에 따른 조향각 센싱 장치(300)는, 중공을 통해 입력축(10)과 연결되는 로터홀더(110)의 외주면에 요크부재(120)와 제1마그넷(130)이 결합하는 로터(100)가 구비될 수 있다.
아울러, 로터(100)의 외주면에 이격되어 배치되며, 출력축(11)과 연결되는 스테이터(200)와, 스테이터(200) 하측에 결합하며, 스테이터(200)와 함께 회동하는 메인기어(32) 및 메인기어(32)와 연동하며 제2마그넷(40) 및 제3마그넷(50)을 포함하는 복수 개의 서브기어(34, 36)를 포함하는 기어모듈(30)를 포함할 수 있다.
이 경우, 로터(100)와 스테이터(200)는 토크 센서 모듈을 구성하게 된다.
구체적으로, 토크 센서 모듈의 경우 로터(100)의 외주면을 따라 제1마그넷(130)이 배치됨으로써 상호 회전량의 차이에 따라 자기량을 검출하여 입력축(10)과 출력축(11)의 토크를 검출하여 전자 제어장치로 전송하게 하는 기능을 수행한다.
이 경우 특히 스테이터(200)는 도 3 및 도 4에서 상술한 것과 같이, 단위 스테이터 투스(210, 220)가 분리되어 제작된 후, 다수의 단위 스테이터 투스(210, 220)를 필요한 규격에 따라 결착시켜 구현할 수 있도록 하여 제조비용을 절감할 수 있도록 함은 물론, 다양한 규격에 맞춤형으로 적용할 수 있도록 하며, 자화 특성을 향상키겨 안정적인 기능을 수행하는 조향 센싱장치를 제공할 수 있게 함은 상술한 바와 같다.
또한, 도 5의 구조와 같이, 본 발명의 실시예에 따른 로터(100)에 포함되는 링 형상을 갖는 제1마그넷(130)의 내측면에는 입력축(10)이 결합 된다. 입력축(10)은, 차량의 스티어링 휠(미도시)과 연결되고 운전자가 스티어링 휠을 조작하여 스티어링 휠을 회전시킴에 따라 제1마그넷(130)은 입력축(10)과 연동하여 회전된다. 제1마그넷(130)은 로터홀더(110)에 의하여 입력축(10)의 외주면에 결합 될 수 있다. 이 경우 상술한 요크부재(120)가 더 포함될 수 있다. 또한, 조향각 센싱 장치(300)의 상부 쪽의 커버(C)와 하부 쪽의 제1케이스(80) 및 제2케이스(90)를 구비하여 스테이터(200) 및 앵글센서모듈 등을 수용할 수 있는 구조로 구현될 수 있다.
또한, 상기 스테이터(200)는 도 3에 상술한 것과 같이 단위 스테이터 투스(210, 220) 다수개가 결착되어 고리형 구조로 구현될 수 있게 된다. 이후, 결합되는 경우에는 도시된 구조에서 마그넷(130)과 스테이터(200)의 내주면이 상호 이격되어 대향배치되는 구조로 구현될 수 있다.
또한, 상기 스테이터(200)의 하단부로부터는 결합부(24)가 돌출될 수 있다. 상기 결합부(24)는, 예를 들어, 원통 형상을 갖고 결합부(24)에는 출력축(11)이 결합될 수 있다. 이 경우 상기 출력축(11)은 도로와 접촉되는 차량의 전륜과 연결되며, 상기 출력축(11) 및 입력축(10)은 토션바(미도시)에 의하여 연결된다. 이를 통해, 운전자가 스티어링 휠을 회전시킬 경우, 도로와 전륜과의 마찰저항에 의하여 출력축(11) 및 입력축(10)을 연결하는 토션바에는 비틀림 토크가 발생 된다. 토션바에 비틀림 토크가 발생될 경우, 입력축(10)에 연결된 제1마그넷(130) 및 출력축(11)에 연결된 스테이터(200)의 회전 각도는 비틀림 토크에 의하여 서로 다르게 되고, 이로 인해 스테이터(200) 및 제1마그넷(130)은 상대 운동을 하게 된다.
이 경우, 스테이터(200) 및 제1마그넷(130)의 회전 각도가 서로 다를 경우, 제1마그넷(130) 및 스테이터(200)의 회전각의 차이에 따라 제1마그넷(130)과 스테이터(200) 사이에서 자기장이 발생 된다. 제1마그넷(130) 및 스테이터(200) 사이에서 발생 된 자기장은 자기장 센서(84)에 의하여 감지되고, 자기장 센서(84)로부터 감지된 자기장의 세기는 차량의 ECU(Electric Control Unit)로 전송되게 된다. 이 경우 ECU는 기 설정된 기준 자기장의 세기와 자기장 센서(84)로부터 수신된 자기장의 세기를 비교하여 조향 토크를 산출하고, 산출된 조향 토크에 근거하여 사용자가 스티어링 휠을 조작하는데 필요한 보조 조작력을 EPS(Electric Power Steering) 모터 등으로부터 발생시킬 수 있게 된다. 도 5에 도시된 구조에서, 제1케이스(80)는 스테이터(200)를 수납한다. 제1케이스(80)는 스테이터(200)를 수납하기 위해 상단이 개구되고, 하단에는 스테이터(200)로부터 돌출된 결합부(24)가 관통하기에 적합한 관통홀(82)이 형성되는 구조를 구비한다.
상기 토크 센서 모듈과 연동하는 앵글센서모듈을 이하에서 도 5를 참조하여 설명하기로 한다. 앵글센서모듈의 경우, 일반적으로 운전자가 조향휠을 회전함에 따라 조향축에 부착된 메인기어(32)가 연동하여 회전하면서 회전각도의 차이가 발생하게 되고, 이 때 메인기어(32)에 부착된 서브기어(34, 36)들에 부착된 마그넷(40, 50)의 자기장과 회전방향을 홀 아이씨(Hall IC)가 인식하여 신호를 전자제어장치로 이송하게 되는 것이다.
구체적으로, 본 발명의 실시예에 따른 조향각 센싱 장치의 기어 모듈(30) 및 제2마그넷(40) 및 제3마그넷(50)들은 사용자의 스티어링 휠의 조향각을 센싱할 수 있도록 한다. 따라서 상기 기어 모듈(30)은 메인 기어(32), 제1서브 기어(34) 및 제2서브 기어(36)를 포함하여 구성될 수 있다.
이 경우, 상기 메인 기어(32)는 상기 스테이터(200)로부터 돌출된 결합부(24)의 외측면에 끼워지고, 상기 메인 기어(32)의 외주면에는 치열이 형성되어 있다.
상기 메인 기어(32)가 상기 결합부(24)에 결합 되고, 상기 결합부(24)는 상기 출력축(11)과 결합 되기 때문에 메인 기어(32)는 출력축(11)의 회전에 연동하여 회전된다.
아울러, 상기 메인 기어(32)가 결합부(24)의 외측면으로부터 슬립되는 것을 방지하기 위하여 메인 기어(32) 및 결합부(24)에는 각각 걸림돌기(미도시) 또는 걸림 돌기와 결합되는 걸림홈(미도시)을 형성할 수 있다.
상기 기어모듈에 포함되는 상기 제1서브 기어(34)는, 예를 들어, 원판 형상을 갖고, 제1서브 기어(34)의 외주면에는 치열이 형성되는 구조로 형성될 수 있다. 이 경우 상기 제1서브 기어(34)는 상기 메인 기어(32)의 치열과 직접 치차 결합 되고, 제1서브 기어(34) 및 메인 기어(32)는 상호 평행하게 배치된다. 상기 메인 기어(32) 및 제1서브 기어(34)는, 예를 들어, 제1기어비를 갖는다. 또한, 상기 제2서브 기어(36)는, 예를 들어, 원판 형상을 갖고, 제2서브 기어(36)의 외주면에는 치열이 형성되며, 상기 제2서브 기어(36)는 제1서브 기어(34)와 마찬가지로 메인 기어(32)의 치열과 직접 치차 결합 되며, 제2서브 기어(36) 및 메인 기어(32)는, 예를 들어, 제2기어비를 갖는다.
즉, 기어모듈의 구조에서 상기 제1서브 기어(34) 및 제2서브 기어(36)는 각각 상기 메인 기어(32)와 직접 치차 결합 된다. 상기 제1및 제2서브 기어(34, 36)들을 메인 기어(32)에 직접 치차 결합할 경우, 메인 기어(32)에 제1서브기어(34)를 직접 치차 결합 및 제1서브 기어(34)에 제2서브 기어(34)를 직접 치차 결합할 때에 비하여 백래쉬(backlash)를 크게 감소시킬 수 있다.
도 6은 도 5의 기어모듈의 부분을 도시한 요부 단면도이다.
도 6 및 도 5를 참조하면, 제2마그넷(40)은 제1서브 기어(34)의 회전 중심에 배치되고, 제3마그넷(50)은 제2서브 기어(36)의 회전 중심에 배치된다. 제2케이스(90)는 제1케이스(80)의 하부에 결합 되며, 제2케이스(90)는 상단이 개구 되고 하단에는 출력축(11)이 통과하는 관통홀(92)이 형성된다.
제1마그넷 센서(60)는 상기 제1서브 기어(34)의 회전 중심에 고정된 상기 제2마그넷(40)과 마주하게 후술 될 인쇄회로기판(400)의 상면 상에 배치된다. 상기 제1마그넷 센서(60)는 상기 제2마그넷(40)의 회전 각도를 측정하여 발생된 신호를 ECU로 전송한다. 아울러, 상기 제2마그넷 센서(70)는 상기 제2서브 기어(36)의 회전 중심에 고정된 상기 제3마그넷(50)과 마주하게 후술 될 인쇄회로기판(400)의 상기 상면과 대향하는 하면 상에 배치된다.
상술한 상기 제2마그넷 센서(70)는 상기 제3마그넷(50)의 회전각도를 측정하여 발생된 신호를 ECU로 전송한다. 이 후, 상기 ECU는 상기 제1마그넷 센서(60) 및 제2마그넷 센서(70)로부터 각각 출력된 신호를 연산하고 이 결과 조향륜의 회전각도가 산출할 수 있게 된다.
본 발명의 일실시예에서, ECU로부터 산출된 조향륜의 회전각도는 기어 모듈(30)의 메인 기어(32)와 치차 결합된 제1및 제2서브 기어(34, 36)들의 회전 중심에 배치된 제2및 제3마그넷(40, 50)들의 회전을 제1및 제2마그넷 센서(60, 70)가 각각 센싱함으로써 산출된다.
아울러, 본 발명의 일실시예와 같이 기어 모듈(30)의 메인 기어(32)에 제1및 제2서브 기어(34, 36)들을 직접 치차 결합할 경우, 메인 기어(32), 제1서브 기어(34) 및 제2서브 기어(34) 사이에서 발생되는 백래쉬를 감소시킬 수 있고, 백래쉬를 감소시킴에 따라 출력축(11)의 실제 회전 각도 및 제1및 제2마그넷 센서(60, 70)에 의하여 센싱된 회전각도 사이의 편차를 크게 감소 시킬 수 있다.
아울러, 본 발명의 실싱예에 따른 조향각 센싱 장치(200)는 인쇄회로기판(400)을 더 포함할 수 있다. 상기 인쇄회로기판(400)은, 예를 들어, 개구를 갖는 도우넛 형상을 갖고, 상기 인쇄회로기판(400)의 양쪽 면에는 제1서브기어(34) 및 제2서브 기어(36)가 회전 가능하게 결합 된다. 또한, 상기 인쇄회로기판(400)은, 예를 들어, 메인 기어(32), 제1서브 기어(34) 및 제2서브 기어(36)와 평행하게 배치될 수 있고, 제1및 제2서브 기어(34, 36)들은 메인 기어(32)와 직접 치차 결합 될 수 있다. 상기 인쇄회로기판(400)의 상면 및 상기 상면과 대향 하는 하면에는 제1및 제2마그넷 센서(60, 70)들이 각각 배치된다.
이 경우 상기 인쇄회로기판(400)의 상면에 배치된 상기 제1마그넷 센서(60)는 상기 제2마그넷(40)의 회전각을 센싱하여 센싱 신호를 ECU로 전송하고, 상기 제2마그넷 센서(70)는 상기 제3마그넷(50)의 회전각을 센싱하여 센싱 신호를 ECU로 전송한다.
상기 ECU는 상기 제1및 제2마그넷 센서(60, 70)들로부터 전송된 센싱 신호들을 연산하여 조향각을 산출한다. 한편, 상기 인쇄회로기판(400)의 양쪽에 제1서브 기어(34)와 제2마그넷(40) 및 제2서브 기어(36)와 제3마그넷(50)이 배치될 경우, 제2마그넷(40) 및 제3마그넷(50)으로부터 각각 발생된 자기장들이 상호 간섭을 일으켜 제1및 제2마그넷 센서(60, 70)들이 상호 간섭을 일으킬 수 있다. 이를 방지하기 위해서 제1및 제2서브 기어(34, 36)들과 대응하는 인쇄회로기판(400)의 양쪽면들 중 적어도 하나의 면에 자기 차폐막(95)을 배치 및/또는 형성할 수 있다. 자기 차폐막(95)에 의하여 제2및 제3마그넷(40, 50)들로부터 각각 발생 된 자기장의 간섭을 방지할 수 있다.
본 실시예에 따른 토크 센서 모듈은, 로터 홀더(110)와, 로터 홀더(110)의 외주면에 배치되는 제1마그넷(130)을 포함하는 로터(100), 및 로터(100)의 외측에 로터(100)와 이격되어 배치되는 스테이터(200)를 포함할 수 있다. 이때, 스테이터(200)는, 분할된 복수의 단위 스테이터 투스(tooth)(210, 220)가 결합되어 형성될 수 있다.
복수의 단위 스테이터 투스(210, 220) 각각은, 원주 방향으로 연장되는 헤드부(211) 및 헤드부(211)로부터 수직 방향으로 절곡되어 연장되는 치(212)를 포함할 수 있다.
복수의 단위 스테이터 투스(210, 220)는, 제1헤드부를 포함하는 제1스테이터 투스(210)와, 복수의 단위 스테이터 투스(210, 220) 중 제1헤드부와 가장 인접하게 위치하는 제2헤드부를 포함하는 제2스테이터 투스(220)를 포함할 수 있다.
제1헤드부 및 제2헤드부는, 이격 배치될 수 있다. 제1헤드부 및 제2헤드부는, 결합부재에 의해 결합될 수 있다. 제1헤드부 및 제2헤드부는 결착부에 의해 결합될 수 있다. 결착부는, 제1헤드부 및 제2헤드부가 직접 융착되어 형성될 수 있다.
복수의 단위 스테이터 투스(210, 220)는, 상호간 헤드부(211)와 치(212)의 크기 및 형상이 동일할 수 있다.
본 실시예에 따른 토크 센서 모듈은, 제1마그넷(130)의 이동에 따른 자계 변화를 감지하는 자기장 센서(84), 및 스테이터(200)에 배치되며 제1마그넷(130)의 이동에 따른 자계 변화를 자기장 센서(84)에 인가하는 콜렉터(500)를 포함할 수 있다.
복수의 단위 스테이터 투스(210, 220)의 개수는, 제1마그넷(130)의 착자된 극수의 정수배일 수 있다.
복수의 단위 스테이터 투스(210, 220)는 원주 방향으로 배열되며, 인접한 단위 스테이터 투스(210, 220) 간 상호 교차 배치될 수 있다.
로터(100)는 입력축(10)과 결합되며, 스테이터(200)는 출력축(11)과 결합될 수 있다.
본 실시예에서 조향각 센싱 장치(300)는, 로터 홀더(110)와 로터 홀더(110)의 외주면에 배치되는 제1마그넷(130)을 포함하는 로터(100), 로터(100)의 외측에 로터(100)와 이격되어 배치되는 스테이터(200), 및 스테이터(200)에 결합되어 연동하는 기어모듈(30)을 포함할 수 있다. 이때, 스테이터(200)는, 분할된 복수의 단위 스테이터 투스(tooth)(210, 220)가 결합되어 형성될 수 있다.
기어모듈(30)은, 스테이터(200)와 연동하는 메인기어(32)와, 메인기어(32)와 결합하는 제1서브기어(34) 및 제2서브기어(36)를 포함할 수 있다. 이때, 제1서브기어(34)의 회전 중심 및 제2서브기어(36)의 회전 중심 각각에는, 제2마그넷(40) 및 제3마그넷(50)이 배치될 수 있다.
제1마그넷(130)은 입력축(10) 또는 출력축(11)에 결합되며, 축방향으로 착자될 수 있다.
제1마그넷(130)은, 내부에 중공을 가지며 수평단면의 형상이 외경과 내경을 갖는 환형(ring shape)일 수 있다.
본 실시예에 따른 스테이터 제조 방법은, (a) 평판형의 기판재를 준비하는 단계; 및 (b) 상기 기판재에서 복수의 단위 스테이터 투스를 절개하는 단계를 포함하며, 상기 복수의 단위 스테이터 투스는, 제1치 및 상기 제1치로부터 연장되는 제1헤드부를 갖는 제1스테이터 투스와, 상기 제1치와 상기 기판재에서 가장 인접하게 위치하는 제2치와 상기 제2치로부터 연장되는 제2헤드부를 갖는 제2스테이터 투스를 포함하며, 상기 (b) 단계는, 상기 제1헤드부가 상기 기판재의 상부에 위치하고 상기 제2헤드부가 상기 기판재의 하부에 위치하도록 상기 제1스테이터 투스 및 상기 제2스테이터 투스를 배열하여 상기 기판재로부터 절개할 수 있다. 상기 (b) 단계 이후, (c) 상기 (b) 단계에서 절개된 복수의 단위 스테이터 투스에서 헤드부에 대해 치를 절곡하는 단계; 및 (d) 상기 복수의 단위 스테이터 투스를 원주 방향으로 배열하여 결합시키는 단계를 포함할 수 있다. 상기 (d) 단계에서, 상기 복수의 단위 스테이터 투스는 인접한 헤드부가 상호간 지그재그로 위치하도록 결합될 수 있다. 상기 (d) 단계에서, 상기 복수의 단위 스테이터 투스 간의 결합은, 인서트 몰딩(insert molding), 초음파 융착, 열 융착, 코킹(Caulking) 및 본딩(Bonding) 중 어느 하나 이상에 의할 수 있다.
전술한 바와 같은 본 발명의 상세한 설명에서는 구체적인 실시예에 관해 설명하였다. 그러나 본 발명의 범주에서 벗어나지 않는 한도 내에서는 여러 가지 변형이 가능하다. 본 발명의 기술적 사상은 본 발명의 기술한 실시예에 국한되어 정해져서는 안 되며, 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.

Claims (20)

  1. 로터 홀더와, 상기 로터 홀더의 외주면에 배치되는 제1마그넷을 포함하는 로터; 및
    상기 로터의 외측에 상기 로터와 이격되어 배치되는 스테이터를 포함하며,
    상기 스테이터는,
    분할된 복수의 단위 스테이터 투스(tooth)가 결합되어 형성되는 토크 센서 모듈.
  2. 제1항에 있어서,
    상기 복수의 단위 스테이터 투스 각각은, 원주 방향으로 연장되는 헤드부 및 상기 헤드부로부터 수직 방향으로 절곡되어 연장되는 치를 포함하는 토크 센서 모듈.
  3. 제2항에 있어서,
    상기 복수의 단위 스테이터 투스는, 제1헤드부를 포함하는 제1스테이터 투스와, 상기 복수의 단위 스테이터 투스 중 상기 제1헤드부와 가장 인접하게 위치하는 제2헤드부를 포함하는 제2스테이터 투스를 포함하는 토크 센서 모듈.
  4. 제3항에 있어서,
    상기 제1헤드부 및 상기 제2헤드부는, 이격 배치되는 토크 센서 모듈.
  5. 제4항에 있어서,
    상기 제1헤드부 및 상기 제2헤드부는, 결합부재에 의해 결합되는 토크 센서 모듈.
  6. 제3항에 있어서,
    상기 제1헤드부 및 상기 제2헤드부는 결착부에 의해 결합되는 토크 센서 모듈.
  7. 제6항에 있어서,
    상기 결착부는, 상기 제1헤드부 및 상기 제2헤드부가 직접 융착되어 형성되는 토크 센서 모듈.
  8. 제1항에 있어서,
    상기 복수의 단위 스테이터 투스는, 상호간 헤드부와 치의 크기 및 형상이 동일한 토크 센서 모듈.
  9. 제1항에 있어서,
    상기 제1마그넷의 이동에 따른 자계 변화를 감지하는 자기장 센서; 및
    상기 스테이터에 배치되며, 상기 제1마그넷의 이동에 따른 자계 변화를 상기 자기장 센서에 인가하는 콜렉터를 더 포함하는 토크 센서 모듈.
  10. 제1항에 있어서,
    상기 복수의 단위 스테이터 투스의 개수는, 상기 제1마그넷의 착자된 극수의 정수배인 토크 센서 모듈.
  11. 제1항에 있어서,
    상기 복수의 단위 스테이터 투스는 원주 방향으로 배열되며,
    인접한 단위 스테이터 투스 간 상호 교차 배치되는 토크 센서 모듈.
  12. 제1항에 있어서,
    상기 로터는 입력축과 결합되며, 상기 스테이터는 출력축과 결합되는 토크 센서 모듈.
  13. 로터 홀더와, 상기 로터 홀더의 외주면에 배치되는 제1마그넷을 포함하는 로터;
    상기 로터의 외측에 상기 로터와 이격되어 배치되는 스테이터; 및
    상기 스테이터에 결합되어 연동하는 기어모듈을 포함하며,
    상기 스테이터는,
    분할된 복수의 단위 스테이터 투스(tooth)가 결합되어 형성되는 조향각 센싱 장치.
  14. 제13항에 있어서,
    상기 기어모듈은, 상기 스테이터와 연동하는 메인기어와, 상기 메인기어와 결합하는 제1서브기어 및 제2서브기어를 포함하며,
    상기 제1서브기어의 회전 중심 및 상기 제2서브기어의 회전 중심 각각에는, 제2마그넷 및 제3마그넷이 배치되는 조향각 센싱 장치.
  15. 제13항에 있어서,
    상기 제1마그넷은 입력축 또는 출력축에 결합되며, 축방향으로 착자되는 조향각 센싱 장치.
  16. 제15항에 있어서,
    상기 제1마그넷은, 내부에 중공을 가지며 수평단면의 형상이 외경과 내경을 갖는 환형(ring shape)인 조향각 센싱 장치.
  17. (a) 평판형의 기판재를 준비하는 단계; 및
    (b) 상기 기판재에서 복수의 단위 스테이터 투스를 절개하는 단계를 포함하며,
    상기 복수의 단위 스테이터 투스는, 제1치 및 상기 제1치로부터 연장되는 제1헤드부를 갖는 제1스테이터 투스와, 상기 제1치와 상기 기판재에서 가장 인접하게 위치하는 제2치와 상기 제2치로부터 연장되는 제2헤드부를 갖는 제2스테이터 투스를 포함하며,
    상기 (b) 단계는, 상기 제1헤드부가 상기 기판재의 상부에 위치하고 상기 제2헤드부가 상기 기판재의 하부에 위치하도록 상기 제1스테이터 투스 및 상기 제2스테이터 투스를 배열하여 상기 기판재로부터 절개하는 스테이터 제조 방법.
  18. 제17항에 있어서,
    상기 (b) 단계 이후,
    (c) 상기 (b) 단계에서 절개된 복수의 단위 스테이터 투스에서 헤드부에 대해 치를 절곡하는 단계; 및
    (d) 상기 복수의 단위 스테이터 투스를 원주 방향으로 배열하여 결합시키는 단계를 포함하는 스테이터 제조 방법.
  19. 제18항에 있어서,
    상기 (d) 단계에서, 상기 복수의 단위 스테이터 투스는 인접한 헤드부가 상호간 지그재그로 위치하도록 결합되는 스테이터 제조 방법.
  20. 제18항에 있어서,
    상기 (d) 단계에서,
    상기 복수의 단위 스테이터 투스 간의 결합은, 인서트 몰딩(insert molding), 초음파 융착, 열 융착, 코킹(Caulking) 및 본딩(Bonding) 중 어느 하나 이상에 의하는 스테이터 제조 방법.
PCT/KR2016/002894 2015-04-13 2016-03-23 토크 센서 모듈, 조향각 센싱 장치 및 스테이터 제조 방법 WO2016167486A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/564,032 US10315694B2 (en) 2015-04-13 2016-03-23 Torque sensor module, steering angle sensing device, and stator manufacturing method
JP2017551302A JP6772176B2 (ja) 2015-04-13 2016-03-23 操向角センシング装置及び電動式操向装置
CN201680021647.XA CN107532955B (zh) 2015-04-13 2016-03-23 扭矩传感器模块、转向角传感装置及定子制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0051709 2015-04-13
KR1020150051709A KR102327238B1 (ko) 2015-04-13 2015-04-13 토크센서모듈 및 이를 포함하는 조향각 센싱장치

Publications (1)

Publication Number Publication Date
WO2016167486A1 true WO2016167486A1 (ko) 2016-10-20

Family

ID=57127077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/002894 WO2016167486A1 (ko) 2015-04-13 2016-03-23 토크 센서 모듈, 조향각 센싱 장치 및 스테이터 제조 방법

Country Status (5)

Country Link
US (1) US10315694B2 (ko)
JP (1) JP6772176B2 (ko)
KR (1) KR102327238B1 (ko)
CN (1) CN107532955B (ko)
WO (1) WO2016167486A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3619513A4 (en) * 2017-05-04 2021-01-20 Bently Nevada, LLC GEAR MONITORING
KR102521179B1 (ko) * 2018-07-16 2023-04-13 엘지이노텍 주식회사 센싱 장치
DE102018221219B4 (de) * 2018-12-07 2022-03-24 Robert Bosch Gmbh Drehsensorvorrichtung für eine Lenkeinrichtung eines Kraftfahrzeugs
TWI753830B (zh) * 2020-08-18 2022-01-21 拓肯興業股份有限公司 車頭碗組

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020145359A1 (en) * 2001-03-02 2002-10-10 Noriyoshi Nishiyama Motor with stator formed by assembling divided stator-members into an annular shape, and compressor incorporating the same motor
US20090195112A1 (en) * 2008-01-11 2009-08-06 Chai Ji Dong Stator for an electric motor
JP2011244675A (ja) * 2010-05-21 2011-12-01 Ihi Corp 分割型ステータの製造方法及び分割型ステータ
KR101238594B1 (ko) * 2010-07-27 2013-02-28 엘지이노텍 주식회사 스티어링 시스템의 토크 센서
KR101243535B1 (ko) * 2009-07-20 2013-03-20 엘지이노텍 주식회사 조향용 복합 센싱 장치

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2607816A (en) * 1947-01-29 1952-08-19 Stewart Warner Corp Electric motor
US6880229B2 (en) * 2002-03-08 2005-04-19 Dura-Trac, Inc. Electrical machine construction using axially inserted teeth in a stator ring or armature
JP2009168727A (ja) * 2008-01-18 2009-07-30 Nsk Ltd トルク検出器、その製造方法および電動パワーステアリング装置
JP4983695B2 (ja) * 2008-03-31 2012-07-25 株式会社富士通ゼネラル ステータコアの製造方法
KR101640945B1 (ko) * 2010-01-29 2016-07-19 엘지이노텍 주식회사 조향각 센싱 장치
KR101135251B1 (ko) * 2010-10-08 2012-04-12 엘지이노텍 주식회사 Eps모터 스테이터의 분할 코어
TWM435097U (en) * 2011-10-28 2012-08-01 Herng Shan Electronics Co Ltd Three-phase motor structure
JP5994286B2 (ja) * 2012-02-28 2016-09-21 株式会社ジェイテクト トルク検出装置およびその製造方法
CN105865679B (zh) * 2012-05-17 2019-09-13 Lg伊诺特有限公司 转矩角传感器
JP2014066561A (ja) * 2012-09-25 2014-04-17 Panasonic Corp 回転角度・トルク検出装置
JP5786067B2 (ja) * 2013-07-08 2015-09-30 Thk株式会社 磁気式エンコーダ及びセンサ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020145359A1 (en) * 2001-03-02 2002-10-10 Noriyoshi Nishiyama Motor with stator formed by assembling divided stator-members into an annular shape, and compressor incorporating the same motor
US20090195112A1 (en) * 2008-01-11 2009-08-06 Chai Ji Dong Stator for an electric motor
KR101243535B1 (ko) * 2009-07-20 2013-03-20 엘지이노텍 주식회사 조향용 복합 센싱 장치
JP2011244675A (ja) * 2010-05-21 2011-12-01 Ihi Corp 分割型ステータの製造方法及び分割型ステータ
KR101238594B1 (ko) * 2010-07-27 2013-02-28 엘지이노텍 주식회사 스티어링 시스템의 토크 센서

Also Published As

Publication number Publication date
KR102327238B1 (ko) 2021-11-17
KR20160121896A (ko) 2016-10-21
JP6772176B2 (ja) 2020-10-21
CN107532955A (zh) 2018-01-02
US20180086375A1 (en) 2018-03-29
CN107532955B (zh) 2020-10-02
US10315694B2 (en) 2019-06-11
JP2018511804A (ja) 2018-04-26

Similar Documents

Publication Publication Date Title
WO2016108492A1 (ko) 토크센서모듈 및 이를 포함하는 조향각 센싱장치
WO2013085174A1 (en) Torque sensor for measuring torsion of steering column and measurement method using the same
WO2016167486A1 (ko) 토크 센서 모듈, 조향각 센싱 장치 및 스테이터 제조 방법
WO2012141383A1 (en) Anti-separating structure of sensing magnet for motor
WO2015099339A1 (ko) 토크 앵글 센서
WO2011062438A2 (en) Apparatus for detecting steering torque and steering angle and steering system having the same
EP1621447B1 (en) Torque detecting apparatus and electric power steering apparatus
KR200470045Y1 (ko) 일렉트릭 파워 스티어링 시스템
WO2018199606A1 (ko) 센싱장치
WO2011122775A2 (en) Apparatus for detecting torque and steering system having the same
WO2017217729A1 (ko) 로터 및 이를 포함하는 모터
WO2019135549A1 (ko) 모터
WO2017200296A1 (ko) 토크 센서, 토크 앵글 센서 및 이를 포함하는 조향 장치
WO2011062431A2 (en) Apparatus for detecting steering torque and steering angle and steering system having the same
WO2019156440A1 (ko) 모터
WO2012015183A2 (en) Torque index sensor having structure for magnetic shielding
WO2017150886A1 (ko) 로터 및 이를 포함하는 모터
WO2020055068A1 (ko) 모터
WO2016036186A1 (ko) 토크 센서 장치
WO2018101642A1 (ko) 커플러 및 이를 포함하는 모터조립체
WO2017078334A1 (ko) 토크 앵글 센서모듈
WO2018016868A1 (ko) 센서 장치
WO2011062399A2 (en) Apparatus for detecting steering torque and steering angle and automobile steering system having the same
WO2011145820A2 (en) Torque sensor of steering system
WO2020055067A1 (ko) 모터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16780209

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017551302

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15564032

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16780209

Country of ref document: EP

Kind code of ref document: A1