WO2016167054A1 - Radar system - Google Patents

Radar system Download PDF

Info

Publication number
WO2016167054A1
WO2016167054A1 PCT/JP2016/057282 JP2016057282W WO2016167054A1 WO 2016167054 A1 WO2016167054 A1 WO 2016167054A1 JP 2016057282 W JP2016057282 W JP 2016057282W WO 2016167054 A1 WO2016167054 A1 WO 2016167054A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind speed
radar system
speed vector
reliability
radar
Prior art date
Application number
PCT/JP2016/057282
Other languages
French (fr)
Japanese (ja)
Inventor
昌裕 箕輪
Original Assignee
古野電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古野電気株式会社 filed Critical 古野電気株式会社
Priority to JP2017512232A priority Critical patent/JP6435040B2/en
Publication of WO2016167054A1 publication Critical patent/WO2016167054A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/04Display arrangements
    • G01S7/06Cathode-ray tube displays or other two dimensional or three-dimensional displays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/95Radar or analogous systems specially adapted for specific applications for meteorological use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present invention relates to a radar system that calculates a wind direction and a wind speed and displays the calculated wind direction and a wind speed on a display.
  • Non-Patent Document 1 a display method as disclosed in Non-Patent Document 1 is known as a method for displaying information on wind direction and wind speed at each point in a predetermined area.
  • an arrow is displayed at each point in the Kinki region.
  • the direction of the arrow indicates the direction of the wind (wind direction), and the color of each arrow corresponds to the speed of the wind (wind speed).
  • the user can know the wind direction and the wind speed at each point in the Kinki region.
  • the present invention is for solving the above-described problems, and an object of the present invention is to provide a radar system capable of displaying the reliability of information on the wind direction and wind speed displayed on the display unit on the display unit.
  • a radar system is based on a received signal generated from a reflected wave of a transmission wave transmitted from a transmission unit, and a wind speed vector at each point and
  • a radar system comprising a wind speed vector calculation unit for calculating a wind speed vector distribution which is the distribution, and a display for displaying the wind speed vector distribution, wherein the display also has reliability of the wind speed vector. Is displayed.
  • the radar system includes at least two radar devices each having the transmission unit, and the transmission units are arranged at different positions, and the wind speed vector calculation unit includes: The wind speed vector is calculated based on a reception signal generated from the reflected wave received by the radar device.
  • the radar system is a wind speed vector reliability distribution which is a distribution of the reliability of the wind speed vector at each point, which is determined based on a position where the at least two radar devices are arranged. Is further provided.
  • the wind speed vector reliability distribution is superimposed on the wind speed vector distribution and displayed on the display.
  • the radar system calculates the wind speed vector using a dual Doppler method.
  • the radar system includes at least three radar devices each having the transmission unit, and the transmission units are arranged at different positions, and the wind speed is measured using a triple Doppler method. Calculate the vector.
  • the radar system includes one radar device having the transmission unit, and the wind speed vector calculation unit is a reception generated from a reflected wave of a transmission wave transmitted from the transmission unit. Based on the signal, the wind speed vector at each point is calculated.
  • the radar system further includes a reliability calculation unit that calculates the reliability for each wind speed vector at each point, and the display unit includes the reliability corresponding to the wind speed vector. The reliability is displayed.
  • the wind speed vector calculation unit calculates the wind speed vector using a simplified VVP method.
  • the present invention it is possible to provide a radar system capable of calculating the reliability of the information on the wind direction and wind speed displayed on the display.
  • FIG. 1 is a block diagram of a weather radar system according to an embodiment of the present invention. It is a figure which shows an example of the position where two radar apparatuses shown in FIG. 1 are arrange
  • the present invention can be widely applied as a weather radar system that calculates a wind direction and a wind speed and displays the calculated wind direction and wind speed on a display.
  • FIG. 1 is a block diagram of a weather radar system 1 (hereinafter simply referred to as a radar system 1) according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of a position where the two radar apparatuses 10 and 20 illustrated in FIG. 1 are arranged.
  • the radar system 1 according to the present embodiment is configured to calculate the horizontal wind direction and wind speed at each point in a predetermined area using two radar devices 10 and 20 arranged at positions separated from each other. Yes.
  • the Doppler is calculated based on the difference between the frequency of the transmission wave and the frequency of the reflected wave that returns after being reflected by precipitation particles (rain, snow, hail, hail) in the atmosphere. Using the speed, the direction and magnitude of the wind speed at each point (that is, the wind speed vector V) is calculated. That is, in the radar system 1, the wind speed vector V at the point where the Doppler speed is observed is calculated.
  • the radar system 1 includes two radar devices 10, 20, a wind speed vector calculation unit 2, a display image generation unit 3, and a display 4.
  • Each radar device 10, 20 includes antennas 11, 21, circulators 12, 22, transmission waveform generators 13, 23, amplifiers 14, 24, transmitters 15, 25, receivers 16, 26, Band pass filters 17 and 27, amplification units 18 and 28, and signal processing units 19 and 29 are provided.
  • the radar apparatuses 10 and 20 have the same configuration except that the installation positions are different. Therefore, only the configuration of the radar apparatus 10 will be described below, and the description of the configuration of the radar apparatus 20 will be omitted.
  • the antenna 11 is provided as a wave transmission unit that transmits an electromagnetic wave as a transmission wave, and is also provided as a wave reception unit that receives a reflected wave of the transmission wave.
  • a transmission signal output from the transmitter 15 is input to the antenna 11 via the circulator 12.
  • a transmission wave generated from the transmission signal is transmitted from the antenna 11.
  • the antenna 11 outputs a reception signal obtained from the received reflected wave to the receiver 16 via the circulator 12.
  • the circulator 12 switches to a connection in which a transmission signal is transmitted from the transmitter 15 to the antenna 11 during transmission. In addition, the circulator 12 switches to a connection in which a reception signal obtained from a reception wave received by the antenna 11 is sent from the antenna 11 to the receiver 16 at the time of reception.
  • the transmission waveform generation unit 13 generates a transmission signal having a waveform that is the basis of the transmission wave transmitted from the antenna 11.
  • the transmission signal generated by the transmission waveform generation unit 13 is amplified by the amplification unit 14 and then output to the antenna 11 via the transmitter 15 and the circulator 12.
  • the receiver 16 receives the received signal obtained from the received wave received by the antenna 11 via the circulator 12.
  • the reception signal received by the receiver 16 is subjected to removal of unnecessary signals such as noise by the band-pass filter 17, amplified by the amplification unit 18, and then output to the signal processing unit 19.
  • FIG. 3 is a schematic diagram showing wind speed vectors Vp 10 and Vp 20 at a certain point p calculated by the signal processing units 19 and 29.
  • the wind speed vectors (wind direction and wind speed) that can be calculated by the signal processing unit 19 include the radar device 10 provided with the signal processing unit 19 among the wind speed vectors Vp at the target point P, and the target. Only the component Vp 10 in the direction d 10 along the straight line connecting the point P.
  • the wind speed vector that can be calculated by the signal processing unit 29 includes the radar device 20 provided with the signal processing unit 29 among the wind speed vectors Vp at the target point P, and the target point P where the wind direction and the wind speed are calculated. Only the component Vp 20 in the direction d 20 along the straight line connecting.
  • the radar apparatus 10 and the radar apparatus 20 are arranged at different positions with respect to each other, the wind direction that can be calculated by the signal processing unit 19 and the wind direction that can be calculated by the signal processing unit 29. The direction is different.
  • the wind speed vector calculation unit 2 is based on the wind speed vector Vp 10 calculated by the signal processing unit 19 of the radar device 10 and the wind speed vector Vp 20 calculated by the signal processing unit 29 of the radar device 20.
  • the wind speed vector Vp at the target point P is calculated.
  • the wind speed vector calculation unit 2 calculates the wind speed vector Vp of the target point P by combining the vector Vp 10 and the vector Vp 20 .
  • the method for calculating the wind speed vector Vp described here is a method called a dual Doppler method.
  • FIG. 4 is a diagram showing the wind speed vector distribution VM calculated by the wind speed vector calculation unit 2.
  • the wind speed vector calculation unit 2 generates the wind speed vector distribution VM, which is the distribution of the wind speed vector V at each point, by performing the above-described vector synthesis process for each point where the Doppler velocity is observed.
  • the direction of the wind speed corresponds to the direction of the arrow shown in FIG. 4, and the magnitude of the wind speed corresponds to the length of the arrow shown in FIG.
  • FIG. 5 is a diagram illustrating an example of the error rate distribution EM (reliability distribution) stored in the error rate distribution storage unit 5 (reliability distribution storage unit) of the display image generation unit 3.
  • FIG. 6 is a diagram showing an image generated by the display image generating unit 3 and displayed on the display device 4.
  • the wind speed vector V at each point is calculated using the dual Doppler method described above with reference to FIG.
  • the magnitude of the wind speed error at that point is determined by the position of the wind speed calculation target point with respect to the two radar devices 10 and 20. Referring to FIG. 5, in FIG. 5, a region Za having a high dot density has a small velocity error rate, and a region Zc having a low dot density has a large velocity error rate. That is, the speed vector at the point included in the region Za has high reliability, and the speed vector at the point included in the region Zc has low reliability.
  • the speed error rate of the speed vector at the point included in the region Za is less than 30%, and the speed error rate of the speed vector at the point included in the region Zb is 30% or more and less than 50%.
  • the speed error rate of the speed vector at the points included in the region Zc is 50% or more.
  • the distribution of speed error rates determined by the positions where the two radar devices 10 and 20 installed at different positions are installed as the error rate distribution EM as an error rate distribution storage unit. 5 is stored. Note that the speed error rate ranges (30% to less than 50%, etc.) of the points included in each of the regions Za, Zb, and Zc illustrated here are merely examples, and other ranges may be used.
  • the display image generation unit 3 is an image in which the wind speed vector distribution VM generated by the wind speed vector calculation unit 2 and the error rate distribution EM stored in the error rate distribution storage unit 5 are superimposed. Is generated. Specifically, the display image generation unit 3 causes the positions where the radar apparatuses 10 and 20 are installed in the wind speed vector distribution VM and the positions of the two radar apparatuses 10 and 20 in the error rate distribution EM match. In addition, an image in which the wind speed vector distribution VM and the error rate distribution EM are superimposed is generated. The display 4 displays the image. Thereby, the user can grasp
  • the point P1 is included in the region Za where the error rate of the wind speed in the error rate distribution EM is within 30%, the error of the wind speed at the point P1 is within 30%. Can be guessed. Specifically, if the wind speed at the point P1 is 10 m / s, it can be estimated that the wind speed at the point P1 is in the range of 7 to 13 m / s. On the other hand, since the point P2 is included in the region Zc where the error rate of the wind speed in the error rate distribution EM is 50% or more, it can be estimated that the error of the wind speed at the point P2 is 50% or more.
  • the error rate of the wind speed vector V at each point where the Doppler velocity is observed is the reliability of the wind speed vector V calculated corresponding to each point. Displayed on the display 4. Thereby, since the user can know the degree of accuracy of the wind speed vector V calculated corresponding to each point (that is, the reliability of the wind speed vector V), the wind speed vector V at each point can be more accurately determined. I can grasp it.
  • the radar system 1 it is possible to provide a radar system that can display the error rate (reliability) of the wind speed vector V displayed on the display 4 on the display 4.
  • the wind speed vector V is calculated by the two radar devices 10 and 20 arranged at different positions.
  • the wind speed vector V can be calculated using the Doppler speed, and therefore the wind speed vector V at each point can be appropriately calculated.
  • the error rate distribution EM which is a distribution of the error rate of the wind speed at each point, determined based on the position where the two radar devices are arranged is stored. That is, according to the radar system 1, it is not necessary to calculate the error rate of the wind speed for each of the wind speed vectors V calculated at each point. Therefore, according to the radar system 1, the calculation load for calculating the error rate of the wind speed at each point can be reduced.
  • the wind speed vector distribution VM and the error rate distribution EM are displayed in an overlapping manner. Thereby, the user can easily estimate how much the wind speed vector V at each point actually falls within the range.
  • the wind speed vector V at each point is calculated based on the so-called dual Doppler method, the wind speed vector V at each point can be appropriately calculated.
  • FIG. 7 is an enlarged view of a part of the display image displayed on the display of the radar system according to the modification.
  • the error rate distribution EM of the wind speed is displayed as the reliability.
  • the present invention is not limited to this, and other reliability may be displayed.
  • the error rate of the wind speed at each point is ranked according to the magnitude (for example, A to D), and the alphabets A to D are May be displayed in the vicinity of the arrow of the wind speed vector V displayed in FIG.
  • the wind speed vector distribution VM and the error rate distribution EM are displayed so as to overlap each other.
  • the present invention is not limited thereto, and the wind speed vector distribution VM and the error rate distribution EM are displayed on the display 4. May be displayed separately.
  • the configuration may be such that the wind speed error rate of the speed vector at the point is displayed.
  • the wind direction and the wind speed at each point are calculated using the two radar devices 10 and 20.
  • the present invention is not limited to this, and each point is determined by one or three or more radar devices.
  • the wind direction and the wind speed may be calculated.
  • FIG. 8 is a block diagram showing a configuration of a radar system 1a according to a modification.
  • the wind direction and the wind speed at each point are calculated based on the so-called dual Doppler method using the two radar devices 10 and 20, but the present invention is not limited to this.
  • the wind direction and wind speed at each point are calculated based on a so-called simplified VVP (Velocity Volume Processing) method.
  • the simplified VVP method described above is a method obtained by simplifying the VVP method, and is a method capable of calculating the wind direction and the wind speed in a local region (small region, hereinafter, this local region is referred to as a cell). is there.
  • This simplified VVP method is also called a local VAD method. Since the simplified VVP method is a known technique, its detailed description is omitted.
  • the radar system 1a includes a single radar device 10a, a wind speed vector calculation unit 2a, a display image generation unit 3a, and a display 4.
  • the configuration of one radar apparatus 10a is the same as the configuration of each of the radar apparatuses 10 and 20 of the above-described embodiment.
  • the wind speed vector calculation unit 2a and the display image generation unit 3a are different in operation from the wind speed vector calculation unit 2a and the display image generation unit 3a of the above embodiment.
  • a different part from the said embodiment is mainly demonstrated, and description is abbreviate
  • the wind speed vector calculation unit 2a calculates the wind direction and the wind speed of each cell using the Doppler velocities at each of a plurality of points included in each cell, measured by the radar apparatus 10a. Specifically, the wind speed vector calculation unit 2a calculates the Doppler speed Vr at each of a plurality of points in the cell and the horizontal wind speeds u and v (where u is the speed in the east-west direction and v is the speed in the north-south direction). In the meantime, the wind direction and the wind speed of each cell are calculated by using the following equation.
  • is an elevation angle
  • is an azimuth angle
  • the wind speed vector calculation unit 2a uses the azimuth angle ⁇ i (i is a natural number, and is assigned to each point included in the cell) at a predetermined interval for each elevation angle. to calculate the measured Doppler velocity Vr i.
  • the wind velocity vector calculation unit 2a for example by using a least square method or the like, extracts a predetermined condition is satisfied Vr i of Vr i, coefficients of equation (1) as extracted Vr i is most fit u , V are determined. Thereby, the wind direction and the wind speed in each cell are calculated.
  • the predetermined condition is satisfied Vr i, a Vr i coefficients u, v are spaced wide relative to the formula (1) determined becomes less than a predetermined threshold value. Further, in the following, a sample having a predetermined condition is satisfied Vr i (extracted Vr i as described above), referred to as the reliability calculation target sample.
  • the wind speed vector calculation unit 2 a further includes a reliability calculation unit 6.
  • the reliability calculation unit 6 calculates the reliability of the wind direction and the wind speed calculated for each cell. More specifically, the reliability calculation unit 6 calculates a plurality of reliability (first to fourth reliability) as one of values 1 to 4, and integrates the plurality of reliability to obtain a total reliability. Is calculated as any one of A to D. Each reliability (first to fourth reliability) indicates that the data is highly reliable as the value increases. In addition, the total reliability indicates that the data is highly reliable as it goes from D to A.
  • Reliability calculation unit 6 in order to calculate the first reliability, the number na of the point where the Doppler velocity is calculated, the coefficient described above u, Vr i used to determine v is calculated in each cell
  • the first reliability is calculated based on the number nb of the determined points (that is, the number of reliability calculation target samples). Specifically, the reliability calculation unit 6 determines the first reliability according to the numerical value N1 obtained by dividing nb by na.
  • the reliability calculation unit 6 sets the first reliability to 1 when N1 ⁇ 0.25, sets the first reliability to 2 when 0.25 ⁇ N1 ⁇ 0.5, and sets 0
  • the first reliability is set to 3 when .5 ⁇ N1 ⁇ 0.75, and the first reliability is set to 4 when N1 ⁇ 0.75.
  • the reliability calculation unit 6 calculates the second reliability based on the absolute value of the wind speed in each cell and the error of the wind speed in each cell in order to calculate the second reliability. Specifically, the reliability calculation unit 6 determines the second reliability according to a numerical value N2 calculated for each cell, which is a value N2 obtained by dividing the error of the wind speed by the absolute value of the wind speed. For example, as an example, the reliability calculation unit 6 sets the second reliability to 1 when N2 ⁇ 0.5, sets the second reliability to 2 when 0.4 ⁇ N2 ⁇ 0.5, and sets 0 The second reliability is set to 3 when 3 ⁇ N2 ⁇ 0.4, and the second reliability is set to 4 when N2 ⁇ 0.3.
  • the reliability calculation unit 6 calculates the third reliability based on the absolute value of the wind direction error in each cell in order to calculate the third reliability. For example, as an example, the reliability calculation unit 6 sets the third reliability to 1 when the absolute value N3 of the wind direction error is 45 degrees or more, and the third reliability when N3 is 30 degrees or more and less than 45 degrees. Is set to 2, the third reliability is set to 3 when N3 is 12 degrees or more and less than 30 degrees, and the third reliability is set to 4 when N3 is less than 12 degrees.
  • the reliability calculation unit 6 calculates the fourth reliability based on an angle formed by a straight line connecting the radar position and the center point of each cell and the wind direction calculated corresponding to each cell.
  • the fourth reliability is calculated. For example, as an example, the reliability calculation unit 6 sets the fourth reliability to 1 when the angle N4 is 87.5 degrees or more and 90 degrees or less, and when N4 is 85 degrees or more and less than 87.5 degrees.
  • the fourth reliability is set to 2, the fourth reliability is set to 3 when N4 is 80 degrees or more and less than 85 degrees, and the fourth reliability is set to 4 when N4 is less than 80 degrees.
  • the reliability calculation part 6 calculates a total reliability based on the value of the 4th reliability from the 1st reliability calculated as mentioned above. Specifically, the reliability calculation unit 6 sets the total reliability to A when the total of the first reliability to the fourth reliability is 14 to 16, and sets the total reliability when the total is 10 to 13. When the sum is 6 to 9, the total reliability is C. When the sum is 4 or 5, the total reliability is D. This total reliability is calculated for each wind velocity vector V calculated corresponding to each cell.
  • FIG. 7 is an enlarged view of a part of the display screen displayed on the display 4 of the radar system 1a according to the present modification.
  • the total reliability calculated corresponding to each point is displayed in the vicinity of the wind velocity vector V at each point as one of alphabets A, B, C, and D.
  • the user can judge that the direction and the magnitude of the wind speed vector V to which the alphabet A is attached are highly reliable.
  • the user can determine that the direction and the magnitude of the wind speed vector V to which the alphabet D is attached are low in reliability.
  • the wind speed vector V can be calculated by one radar apparatus 10a. Therefore, the configuration of the radar system 1a compared to the case of the radar system 1 according to the above-described embodiment. Can be simplified.
  • the reliability (total reliability) is calculated for each wind speed vector V at each point, and the total reliability is displayed near the wind speed vector V at each point. Thereby, the user can grasp
  • the wind speed vector V is calculated by the simplified VVP method, so that the wind speed vector V can be appropriately calculated.
  • the total reliability obtained by comprehensively evaluating a plurality of reliability levels (first to fourth reliability levels) is calculated, and this total reliability level corresponds to the velocity vector at each point. Is displayed. Thereby, the reliability having higher accuracy can be calculated.
  • the wind speed vector V at each point is calculated by the simplified VVP method. May be calculated.
  • the wind speed vector V may be calculated using the VVP method.
  • FIG. 9 is an enlarged view showing a part of the display screen of the radar system according to the modification.
  • the circles drawn corresponding to the respective wind speed vectors V according to the magnitude of the value N1 calculated by the reliability calculation unit 6 of the modification described with reference to FIG. The size of the diameter is determined.
  • the user can determine that the reliability of the wind speed vector V marked with the circle is high if the diameter of the circle is large, while the wind speed marked with the circle is small if the diameter of the circle is small. It can be determined that the reliability of the vector V is low.
  • FIG. 10 is an enlarged view of a part of the display screen of the radar system according to the modification.
  • the direction and magnitude of the wind speed that can be taken by each speed vector according to the values of N2 and N3 calculated by the reliability calculation unit 6 of the modification described with reference to FIG. Display as an error bar.
  • the user can grasp
  • FIG. 11 is an enlarged view of a part of the display screen of the radar system according to the modification.
  • each wind speed vector V is displayed as a solid line or a dotted line based on the value of N4 calculated by the reliability calculation unit 6 of the modification described with reference to FIG.
  • the wind speed vector V having an N4 value of 87.5 degrees or more and 90 degrees or less is displayed by a dotted line
  • the wind speed vector V having an N4 value of less than 87.5 degrees is a solid line. Is displayed.
  • the user can determine that the magnitude and direction of the wind speed vector V displayed by the solid line is high in reliability, and determines that the reliability of the magnitude and direction of the wind speed vector V displayed in the dotted line is low. it can.
  • FIG. 12 is an enlarged view of a part of the display screen of the radar system according to the modification. As shown in FIG. 12, as a method of displaying the reliability displayed on the display screen, the circle described with reference to FIG. 9, the error bar described with reference to FIG. 10, and the wind speed described with reference to FIG. You may combine with the dotted line display of the vector V.
  • FIG. 12 as a method of displaying the reliability displayed on the display screen, the circle described with reference to FIG. 9, the error bar described with reference to FIG. 10, and the wind speed described with reference to FIG. You may combine with the dotted line display of the vector V.
  • FIG. 13 is a block diagram of a radar system 1b according to a modification.
  • the wind direction and the wind speed at each point are calculated based on the so-called dual Doppler method using the two radar devices 10 and 20, but the present invention is not limited to this.
  • the wind direction and the wind speed at each point are calculated based on the so-called triple Doppler method.
  • the radar system 1b includes another radar device 30 in addition to the two radar devices 10 and 20 included in the radar system 1b according to the embodiment. That is, the radar system 1b includes three radar devices 10, 20, and 30. As with the other radar devices 10 and 20, the radar device 30 includes an antenna 31, a circulator 32, a transmission waveform generation unit 33, an amplification unit 34, a transmitter 35, a receiver 36, and a bandpass filter 37. , An amplification unit 38 and a signal processing unit 39 are provided. Since the configuration and operation of these components included in the radar device 30 are the same as the components included in the radar devices 10 and 20, description thereof is omitted.
  • the wind direction and the wind speed in the horizontal direction and the vertical direction are calculated.
  • the radar system 1b not only the wind direction and wind speed in the horizontal direction but also the wind direction and wind speed in the vertical direction can be calculated.
  • at least one radar device for example, the radar device 30
  • the radar device 30 is installed at a height position different from that of other radar devices. Thereby, it becomes possible to calculate the wind direction and the wind speed in the vertical direction as described above. Since the triple Doppler method is a known technique, a detailed description thereof is omitted.
  • the error rate of the wind speed vector at each point is displayed on the display unit 4 as the reliability of the wind speed vector calculated corresponding to each point, as in the case of the above embodiment.
  • the wind speed vector V of each point can be grasped

Abstract

[Problem] To provide a radar system that is capable of displaying, on a display device, the reliability of information relating to wind direction and wind speed, which are displayed on the display device. [Solution] A radar system 1 is provided with the following: a wind speed vector calculation unit 2 that, on the basis of a reception signal generated from reflected transmission waves which are transmitted by wave transmission units 11, 21, calculates the wind speed vector at each of multiple points and the wind speed vector distribution thereof; and a display device 4 on which the wind speed vector distribution is displayed. The display device 4 of this radar system 1 also displays the reliability of the wind speed vector.

Description

レーダシステムRadar system
 本発明は、風向及び風速を算出するとともに算出した風向及び風速を表示器に表示させるレーダシステムに関する。 The present invention relates to a radar system that calculates a wind direction and a wind speed and displays the calculated wind direction and a wind speed on a display.
 従来より、所定地域の各地点における風向及び風速の情報を表示する方法として、例えば非特許文献1に開示されるような表示方法が知られている。この非特許文献1で開示される画像では、近畿地方の各地点に矢印が表示されている。そして、この矢印の向きが風の向き(風向)を示すとともに、各矢印の色が風の速さ(風速)に対応している。これにより、ユーザは、近畿地方の各地点における風向及び風速を知ることができる。 Conventionally, for example, a display method as disclosed in Non-Patent Document 1 is known as a method for displaying information on wind direction and wind speed at each point in a predetermined area. In the image disclosed in Non-Patent Document 1, an arrow is displayed at each point in the Kinki region. The direction of the arrow indicates the direction of the wind (wind direction), and the color of each arrow corresponds to the speed of the wind (wind speed). Thereby, the user can know the wind direction and the wind speed at each point in the Kinki region.
 ところで、どのような手法によって風向及び風速を算出する場合であっても、各手法において風向及び風速を算出するために用いられるサンプル点数及び誤差等がデータの信頼性に大きく影響してくる。よって、そのデータの信頼性を知ることは、非常に重要である。しかしながら、上述した非特許文献1の表示画面によれば、地図上の各地点における風向及び風速については知ることができるものの、各地点に表示される風向及び風速の正確さの度合い(以下、本明細書中において、この正確さの度合いを、信頼度と称する場合もある)については、知ることができない。 By the way, no matter what method is used to calculate the wind direction and wind speed, the number of samples and errors used for calculating the wind direction and wind speed in each method greatly affect the reliability of the data. Therefore, it is very important to know the reliability of the data. However, according to the display screen of Non-Patent Document 1 described above, although the wind direction and wind speed at each point on the map can be known, the degree of accuracy of the wind direction and wind speed displayed at each point (hereinafter, this In the specification, this degree of accuracy may be referred to as reliability).
 本発明は、上記課題を解決するためのものであり、その目的は、表示器に表示される風向及び風速に関する情報の信頼度を、表示器に表示可能なレーダシステムを提供することである。 The present invention is for solving the above-described problems, and an object of the present invention is to provide a radar system capable of displaying the reliability of information on the wind direction and wind speed displayed on the display unit on the display unit.
 (1)上記課題を解決するため、本発明のある局面に係るレーダシステムは、送波部から送波された送信波の反射波から生成される受信信号に基づいて、各地点における風速ベクトル及びその分布である風速ベクトル分布を算出する風速ベクトル算出部と、前記風速ベクトル分布が表示される表示器と、を備えたレーダシステムであって、前記表示器には、前記風速ベクトルの信頼度も表示される。 (1) In order to solve the above problem, a radar system according to an aspect of the present invention is based on a received signal generated from a reflected wave of a transmission wave transmitted from a transmission unit, and a wind speed vector at each point and A radar system comprising a wind speed vector calculation unit for calculating a wind speed vector distribution which is the distribution, and a display for displaying the wind speed vector distribution, wherein the display also has reliability of the wind speed vector. Is displayed.
 (2)好ましくは、前記レーダシステムは、それぞれが前記送波部を有し、各前記送波部が互いに異なる位置に配置される少なくとも2つのレーダ装置を備え、前記風速ベクトル算出部は、各前記レーダ装置によって受波された前記反射波から生成される受信信号に基づいて前記風速ベクトルを算出する。 (2) Preferably, the radar system includes at least two radar devices each having the transmission unit, and the transmission units are arranged at different positions, and the wind speed vector calculation unit includes: The wind speed vector is calculated based on a reception signal generated from the reflected wave received by the radar device.
 (3)更に好ましくは、前記レーダシステムは、前記少なくとも2つのレーダ装置が配置される位置に基づいて決定される、前記各地点における前記風速ベクトルの信頼度の分布である風速ベクトル信頼度分布、を記憶する信頼度分布記憶部、を更に備えている。 (3) More preferably, the radar system is a wind speed vector reliability distribution which is a distribution of the reliability of the wind speed vector at each point, which is determined based on a position where the at least two radar devices are arranged. Is further provided.
 (4)更に好ましくは、前記表示器には、前記風速ベクトル分布に、前記風速ベクトル信頼度分布が重ねて表示される。 (4) More preferably, the wind speed vector reliability distribution is superimposed on the wind speed vector distribution and displayed on the display.
 (5)好ましくは、前記レーダシステムは、デュアルドップラー法を用いて前記風速ベクトルを算出する。 (5) Preferably, the radar system calculates the wind speed vector using a dual Doppler method.
 (6)好ましくは、前記レーダシステムは、それぞれが前記送波部を有し、各前記送波部が互いに異なる位置に配置される少なくとも3つのレーダ装置を備え、トリプルドップラー法を用いて前記風速ベクトルを算出する。 (6) Preferably, the radar system includes at least three radar devices each having the transmission unit, and the transmission units are arranged at different positions, and the wind speed is measured using a triple Doppler method. Calculate the vector.
 (7)好ましくは、前記レーダシステムは、前記送波部を有する1つのレーダ装置を備え、前記風速ベクトル算出部は、前記送波部から送波された送信波の反射波から生成される受信信号に基づいて、前記各地点における前記風速ベクトルを算出する。 (7) Preferably, the radar system includes one radar device having the transmission unit, and the wind speed vector calculation unit is a reception generated from a reflected wave of a transmission wave transmitted from the transmission unit. Based on the signal, the wind speed vector at each point is calculated.
 (8)更に好ましくは、前記レーダシステムは、前記各地点における前記風速ベクトル毎に前記信頼度を算出する信頼度算出部、を更に備え、前記表示器には、前記風速ベクトルに対応して前記信頼度が表示される。 (8) More preferably, the radar system further includes a reliability calculation unit that calculates the reliability for each wind speed vector at each point, and the display unit includes the reliability corresponding to the wind speed vector. The reliability is displayed.
 (9)更に好ましくは、前記風速ベクトル算出部は、簡略化VVP法を用いて前記風速ベクトルを算出する。 (9) More preferably, the wind speed vector calculation unit calculates the wind speed vector using a simplified VVP method.
 本発明によれば、表示器に表示される風向及び風速に関する情報の信頼度を算出可能なレーダシステムを提供できる。 According to the present invention, it is possible to provide a radar system capable of calculating the reliability of the information on the wind direction and wind speed displayed on the display.
本発明の実施形態に係る気象レーダシステムのブロック図である。1 is a block diagram of a weather radar system according to an embodiment of the present invention. 図1に示す2つのレーダ装置が配置される位置の一例を示す図である。It is a figure which shows an example of the position where two radar apparatuses shown in FIG. 1 are arrange | positioned. 図1に示す各信号処理部によって算出される風向及び風速を示す模式図である。It is a schematic diagram which shows the wind direction and wind speed which are calculated by each signal processing part shown in FIG. 図1に示す風速ベクトル算出部によって算出された風速ベクトル分布を示す図である。It is a figure which shows the wind speed vector distribution calculated by the wind speed vector calculation part shown in FIG. 図1に示す誤差率分布記憶部に記憶されている誤差率分布の一例を示す図である。It is a figure which shows an example of the error rate distribution memorize | stored in the error rate distribution memory | storage part shown in FIG. 表示画像生成部によって生成される画像であって、表示器に表示される表示画像を示す図である。It is an image produced | generated by the display image production | generation part, Comprising: It is a figure which shows the display image displayed on a display. 変形例に係る気象レーダシステムの表示器に表示される表示画像の一部を拡大して示す図である。It is a figure which expands and shows a part of display image displayed on the indicator of the weather radar system which concerns on a modification. 変形例に係る気象レーダシステムのブロック図である。It is a block diagram of the weather radar system which concerns on a modification. 変形例に係る気象レーダシステムの表示器に表示される表示画面の一部を拡大して示す図である。It is a figure which expands and shows a part of display screen displayed on the indicator of the weather radar system which concerns on a modification. 変形例に係る気象レーダシステムの表示器に表示される表示画面の一部を拡大して示す図である。It is a figure which expands and shows a part of display screen displayed on the indicator of the weather radar system which concerns on a modification. 変形例に係る気象レーダシステムの表示器に表示される表示画面の一部を拡大して示す図である。It is a figure which expands and shows a part of display screen displayed on the indicator of the weather radar system which concerns on a modification. 変形例に係る気象レーダシステムの表示器に表示される表示画面の一部を拡大して示す図である。It is a figure which expands and shows a part of display screen displayed on the indicator of the weather radar system which concerns on a modification. 変形例に係る気象レーダシステムのブロック図である。It is a block diagram of the weather radar system which concerns on a modification.
 以下、本発明を実施するための形態について、図面を参照しつつ説明する。本発明は、風向及び風速を算出するとともに算出した風向及び風速を表示器に表示させる気象レーダシステムとして広く適用することができる。 Hereinafter, modes for carrying out the present invention will be described with reference to the drawings. The present invention can be widely applied as a weather radar system that calculates a wind direction and a wind speed and displays the calculated wind direction and wind speed on a display.
 図1は、本発明の実施形態に係る気象レーダシステム1(以下では、単にレーダシステム1と記載する)のブロック図である。また、図2は、図1に示す2つのレーダ装置10,20が配置される位置の一例を示す図である。本実施形態に係るレーダシステム1は、所定エリア内の各地点における水平方向の風向及び風速を、互いに離れた位置に配置された2つのレーダ装置10,20を用いて算出するように構成されている。本実施形態に係るレーダシステム1では、送信波の周波数と、大気中の降水粒子(雨、雪、あられ、ひょう)に反射して帰来する反射波の周波数との差異に基づいて算出されるドップラー速度を用いて、各地点における風速の向き及び大きさ(すなわち風速ベクトルV)が算出される。すなわち、レーダシステム1では、ドップラー速度が観測された地点における風速ベクトルVが算出される。 FIG. 1 is a block diagram of a weather radar system 1 (hereinafter simply referred to as a radar system 1) according to an embodiment of the present invention. FIG. 2 is a diagram illustrating an example of a position where the two radar apparatuses 10 and 20 illustrated in FIG. 1 are arranged. The radar system 1 according to the present embodiment is configured to calculate the horizontal wind direction and wind speed at each point in a predetermined area using two radar devices 10 and 20 arranged at positions separated from each other. Yes. In the radar system 1 according to the present embodiment, the Doppler is calculated based on the difference between the frequency of the transmission wave and the frequency of the reflected wave that returns after being reflected by precipitation particles (rain, snow, hail, hail) in the atmosphere. Using the speed, the direction and magnitude of the wind speed at each point (that is, the wind speed vector V) is calculated. That is, in the radar system 1, the wind speed vector V at the point where the Doppler speed is observed is calculated.
 レーダシステム1は、図1に示すように、2つのレーダ装置10,20と、風速ベクトル算出部2と、表示画像生成部3と、表示器4と、を備えている。 As shown in FIG. 1, the radar system 1 includes two radar devices 10, 20, a wind speed vector calculation unit 2, a display image generation unit 3, and a display 4.
 各レーダ装置10,20は、アンテナ11,21と、サーキュレータ12,22と、送信波形生成部13,23と、増幅部14,24と、送信機15,25と、受信機16,26と、バンドパスフィルタ17,27と、増幅部18,28と、信号処理部19,29と、を備えている。各レーダ装置10,20は、設置される位置が異なる点を除いて、同じ構成である。よって以下では、レーダ装置10の構成のみを説明し、レーダ装置20の構成の説明を省略する。 Each radar device 10, 20 includes antennas 11, 21, circulators 12, 22, transmission waveform generators 13, 23, amplifiers 14, 24, transmitters 15, 25, receivers 16, 26, Band pass filters 17 and 27, amplification units 18 and 28, and signal processing units 19 and 29 are provided. The radar apparatuses 10 and 20 have the same configuration except that the installation positions are different. Therefore, only the configuration of the radar apparatus 10 will be described below, and the description of the configuration of the radar apparatus 20 will be omitted.
 アンテナ11は、送信波としての電磁波を送波する送波部として設けられているとともに、送信波の反射波を受波する受波部として設けられている。アンテナ11には、送信機15から出力された送信信号がサーキュレータ12を介して入力される。アンテナ11からは、当該送信信号から生成される送信波が送波される。また、アンテナ11は、受波した反射波から得られる受信信号を、サーキュレータ12を介して受信機16へ出力する。 The antenna 11 is provided as a wave transmission unit that transmits an electromagnetic wave as a transmission wave, and is also provided as a wave reception unit that receives a reflected wave of the transmission wave. A transmission signal output from the transmitter 15 is input to the antenna 11 via the circulator 12. A transmission wave generated from the transmission signal is transmitted from the antenna 11. The antenna 11 outputs a reception signal obtained from the received reflected wave to the receiver 16 via the circulator 12.
 サーキュレータ12は、送波時には、送信機15からアンテナ11に送信信号が送られる接続に切り替える。また、サーキュレータ12は、受波時には、アンテナ11によって受波された受信波から得られた受信信号がアンテナ11から受信機16へ送られる接続に切り替える。 The circulator 12 switches to a connection in which a transmission signal is transmitted from the transmitter 15 to the antenna 11 during transmission. In addition, the circulator 12 switches to a connection in which a reception signal obtained from a reception wave received by the antenna 11 is sent from the antenna 11 to the receiver 16 at the time of reception.
 送信波形生成部13は、アンテナ11から送波される送信波の基となる波形を有する送信信号を生成する。送信波形生成部13で生成された送信信号は、増幅部14によって増幅された後、送信機15及びサーキュレータ12を介してアンテナ11へ出力される。 The transmission waveform generation unit 13 generates a transmission signal having a waveform that is the basis of the transmission wave transmitted from the antenna 11. The transmission signal generated by the transmission waveform generation unit 13 is amplified by the amplification unit 14 and then output to the antenna 11 via the transmitter 15 and the circulator 12.
 受信機16は、アンテナ11によって受波された受信波から得られた受信信号を、サーキュレータ12を介して受信する。受信機16で受信された受信信号は、バンドパスフィルタ17によってノイズ等の不要な信号が除去され、増幅部18によって増幅された後、信号処理部19に出力される。 The receiver 16 receives the received signal obtained from the received wave received by the antenna 11 via the circulator 12. The reception signal received by the receiver 16 is subjected to removal of unnecessary signals such as noise by the band-pass filter 17, amplified by the amplification unit 18, and then output to the signal processing unit 19.
 図3は、信号処理部19,29によって算出される、ある地点pでの風速ベクトルVp10,Vp20を示す模式図である。 FIG. 3 is a schematic diagram showing wind speed vectors Vp 10 and Vp 20 at a certain point p calculated by the signal processing units 19 and 29.
 図3を参照して、信号処理部19によって算出可能な風速ベクトル(風向及び風速)は、対象地点Pにおける風速ベクトルVpのうちの、当該信号処理部19が設けられたレー
ダ装置10と、対象地点Pとを結ぶ直線に沿った方向d10の成分Vp10、のみである。一方、信号処理部29によって算出可能な風速ベクトルは、対象地点Pにおける風速ベクトルVpのうちの、当該信号処理部29が設けられたレーダ装置20と、風向及び風速が算出される対象地点Pとを結ぶ直線に沿った方向d20の成分Vp20、のみである。ここで、上述のように、レーダ装置10とレーダ装置20とは、互いに対して異なる位置に配置されているため、信号処理部19によって算出可能な風向と、信号処理部29によって算出可能な風向とは、その方向が異なる。
Referring to FIG. 3, the wind speed vectors (wind direction and wind speed) that can be calculated by the signal processing unit 19 include the radar device 10 provided with the signal processing unit 19 among the wind speed vectors Vp at the target point P, and the target. Only the component Vp 10 in the direction d 10 along the straight line connecting the point P. On the other hand, the wind speed vector that can be calculated by the signal processing unit 29 includes the radar device 20 provided with the signal processing unit 29 among the wind speed vectors Vp at the target point P, and the target point P where the wind direction and the wind speed are calculated. Only the component Vp 20 in the direction d 20 along the straight line connecting. Here, as described above, since the radar apparatus 10 and the radar apparatus 20 are arranged at different positions with respect to each other, the wind direction that can be calculated by the signal processing unit 19 and the wind direction that can be calculated by the signal processing unit 29. The direction is different.
 図3を参照して、風速ベクトル算出部2は、レーダ装置10の信号処理部19で算出された風速ベクトルVp10と、レーダ装置20の信号処理部29で算出された風速ベクトルVp20に基づき、対象地点Pの風速ベクトルVpを算出する。具体的には、風速ベクトル算出部2は、ベクトルVp10とベクトルVp20とを合成することにより、対象地点Pの風速ベクトルVpを算出する。なお、ここで説明した風速ベクトルVpの算出手法は、デュアルドップラー法と呼ばれる手法である。 Referring to FIG. 3, the wind speed vector calculation unit 2 is based on the wind speed vector Vp 10 calculated by the signal processing unit 19 of the radar device 10 and the wind speed vector Vp 20 calculated by the signal processing unit 29 of the radar device 20. The wind speed vector Vp at the target point P is calculated. Specifically, the wind speed vector calculation unit 2 calculates the wind speed vector Vp of the target point P by combining the vector Vp 10 and the vector Vp 20 . The method for calculating the wind speed vector Vp described here is a method called a dual Doppler method.
 図4は、風速ベクトル算出部2によって算出された風速ベクトル分布VMを示す図である。風速ベクトル算出部2は、上述したベクトル合成処理を、ドップラー速度が観測された各地点について行うことにより、各地点における風速ベクトルVの分布である風速ベクトル分布VMを生成する。この風速ベクトル分布VMにおいては、風速の向きが、図4に示す矢印の向きに対応し、風速の大きさが、図4に示す矢印の長さに対応している。 FIG. 4 is a diagram showing the wind speed vector distribution VM calculated by the wind speed vector calculation unit 2. The wind speed vector calculation unit 2 generates the wind speed vector distribution VM, which is the distribution of the wind speed vector V at each point, by performing the above-described vector synthesis process for each point where the Doppler velocity is observed. In this wind speed vector distribution VM, the direction of the wind speed corresponds to the direction of the arrow shown in FIG. 4, and the magnitude of the wind speed corresponds to the length of the arrow shown in FIG.
 図5は、表示画像生成部3の誤差率分布記憶部5(信頼度分布記憶部)に記憶されている誤差率分布EM(信頼度分布)の一例を示す図である。また、図6は、表示画像生成部3によって生成される画像であって、表示器4に表示される表示画像を示す図である。 FIG. 5 is a diagram illustrating an example of the error rate distribution EM (reliability distribution) stored in the error rate distribution storage unit 5 (reliability distribution storage unit) of the display image generation unit 3. FIG. 6 is a diagram showing an image generated by the display image generating unit 3 and displayed on the display device 4.
 本実施形態に係るレーダシステム1では、図3を用いて上述したデュアルドップラー法を用いて、各地点の風速ベクトルVを算出している。一方、デュアルドップラー法を用いて各地点の風速を算出する場合、2つのレーダ装置10,20に対する風速算出対象地点の位置によって、その地点における風速の誤差の大小が決まる。図5を参照して説明すると、図5においてドットの密度が高い領域Zaは速度誤差率が小さく、ドットの密度が低い領域Zcは速度誤差率が大きい。すなわち、領域Zaに含まれる地点の速度ベクトルは、信頼度が高く、領域Zcに含まれる地点の速度ベクトルは、信頼度が低い。具体的には、本実施形態では、領域Zaに含まれる地点の速度ベクトルの速度誤差率は30%未満であり、領域Zbに含まれる地点の速度ベクトルの速度誤差率は30%以上50%未満であり、領域Zcに含まれる地点の速度ベクトルの速度誤差率は50%以上である。本実施形態に係るレーダシステム1の場合、互いに異なる位置に設置された2つのレーダ装置10,20が設置される位置によって決定する速度誤差率の分布が、誤差率分布EMとして誤差率分布記憶部5に記憶されている。なお、ここで例示した各領域Za,Zb,Zcに含まれる地点の速度誤差率の範囲(30%以上50%未満、等)は、あくまで一例であり、それ以外の範囲であってもよい。 In the radar system 1 according to the present embodiment, the wind speed vector V at each point is calculated using the dual Doppler method described above with reference to FIG. On the other hand, when the wind speed at each point is calculated using the dual Doppler method, the magnitude of the wind speed error at that point is determined by the position of the wind speed calculation target point with respect to the two radar devices 10 and 20. Referring to FIG. 5, in FIG. 5, a region Za having a high dot density has a small velocity error rate, and a region Zc having a low dot density has a large velocity error rate. That is, the speed vector at the point included in the region Za has high reliability, and the speed vector at the point included in the region Zc has low reliability. Specifically, in the present embodiment, the speed error rate of the speed vector at the point included in the region Za is less than 30%, and the speed error rate of the speed vector at the point included in the region Zb is 30% or more and less than 50%. The speed error rate of the speed vector at the points included in the region Zc is 50% or more. In the case of the radar system 1 according to the present embodiment, the distribution of speed error rates determined by the positions where the two radar devices 10 and 20 installed at different positions are installed as the error rate distribution EM as an error rate distribution storage unit. 5 is stored. Note that the speed error rate ranges (30% to less than 50%, etc.) of the points included in each of the regions Za, Zb, and Zc illustrated here are merely examples, and other ranges may be used.
 表示画像生成部3は、図6に示すように、風速ベクトル算出部2によって生成された風速ベクトル分布VMと、誤差率分布記憶部5に記憶されている誤差率分布EMとが重ねられた画像を生成する。具体的には、表示画像生成部3は、風速ベクトル分布VMにおいて各レーダ装置10,20が設置されている位置と、誤差率分布EMにおける2つのレーダ装置10,20の位置とが一致するように、風速ベクトル分布VMと誤差率分布EMとが重ねられた画像を生成する。表示器4には、当該画像が表示される。これにより、ユーザは、当該表示画面を見て、各地点における風速の誤差率を、一目で把握することができる。例えば、図6を参照して、地点P1は、誤差率分布EMにおける風速の誤差率が30%以内の領域Zaに含まれているため、当該地点P1の風速の誤差は、30%以内であると
推測できる。具体的には、地点P1における風速が10m/sであるとすると、当該地点P1の風速は、7~13m/sの範囲内であると推測できる。一方、地点P2は、誤差率分布EMにおける風速の誤差率が50%以上の領域Zcに含まれているため、当該地点P2の風速の誤差は、50%以上であると推測できる。
As shown in FIG. 6, the display image generation unit 3 is an image in which the wind speed vector distribution VM generated by the wind speed vector calculation unit 2 and the error rate distribution EM stored in the error rate distribution storage unit 5 are superimposed. Is generated. Specifically, the display image generation unit 3 causes the positions where the radar apparatuses 10 and 20 are installed in the wind speed vector distribution VM and the positions of the two radar apparatuses 10 and 20 in the error rate distribution EM match. In addition, an image in which the wind speed vector distribution VM and the error rate distribution EM are superimposed is generated. The display 4 displays the image. Thereby, the user can grasp | ascertain the error rate of the wind speed in each point at a glance by seeing the said display screen. For example, referring to FIG. 6, since the point P1 is included in the region Za where the error rate of the wind speed in the error rate distribution EM is within 30%, the error of the wind speed at the point P1 is within 30%. Can be guessed. Specifically, if the wind speed at the point P1 is 10 m / s, it can be estimated that the wind speed at the point P1 is in the range of 7 to 13 m / s. On the other hand, since the point P2 is included in the region Zc where the error rate of the wind speed in the error rate distribution EM is 50% or more, it can be estimated that the error of the wind speed at the point P2 is 50% or more.
 [効果]
 以上のように、本実施形態に係るレーダシステム1によれば、ドップラー速度が観測される各地点の風速ベクトルVの誤差率が、各地点に対応して算出された風速ベクトルVの信頼度として表示器4に表示される。これにより、ユーザは、各地点に対応して算出された風速ベクトルVの正確さの度合(すなわち、風速ベクトルVの信頼度)を知ることができるため、各地点の風速ベクトルVをより正確に把握することができる。
[effect]
As described above, according to the radar system 1 according to the present embodiment, the error rate of the wind speed vector V at each point where the Doppler velocity is observed is the reliability of the wind speed vector V calculated corresponding to each point. Displayed on the display 4. Thereby, since the user can know the degree of accuracy of the wind speed vector V calculated corresponding to each point (that is, the reliability of the wind speed vector V), the wind speed vector V at each point can be more accurately determined. I can grasp it.
 従って、レーダシステム1によれば、表示器4に表示される風速ベクトルVの誤差率(信頼度)を、表示器4に表示可能なレーダシステムを提供できる。 Therefore, according to the radar system 1, it is possible to provide a radar system that can display the error rate (reliability) of the wind speed vector V displayed on the display 4 on the display 4.
 また、レーダシステム1によれば、互いに異なる位置に配置された2つのレーダ装置10,20によって風速ベクトルVを算出している。こうすると、例えば本実施形態のように、ドップラー速度を利用して風速ベクトルVを算出することができるため、各地点における風速ベクトルVを適切に算出することができる。 Further, according to the radar system 1, the wind speed vector V is calculated by the two radar devices 10 and 20 arranged at different positions. Thus, for example, as in the present embodiment, the wind speed vector V can be calculated using the Doppler speed, and therefore the wind speed vector V at each point can be appropriately calculated.
 また、レーダシステム1によれば、2つのレーダ装置が配置される位置に基づいて決定される、各地点における風速の誤差率の分布である誤差率分布EM、が記憶されている。すなわち、レーダシステム1によれば、各地点において算出された風速ベクトルVのそれぞれについて風速の誤差率を算出する必要がない。よって、レーダシステム1によれば、各地点における風速の誤差率を算出するための演算負荷を小さくすることができる。 Further, according to the radar system 1, the error rate distribution EM, which is a distribution of the error rate of the wind speed at each point, determined based on the position where the two radar devices are arranged is stored. That is, according to the radar system 1, it is not necessary to calculate the error rate of the wind speed for each of the wind speed vectors V calculated at each point. Therefore, according to the radar system 1, the calculation load for calculating the error rate of the wind speed at each point can be reduced.
 また、レーダシステム1によれば、風速ベクトル分布VMと誤差率分布EMとが重ねて表示される。これにより、ユーザは、各地点での風速ベクトルVが実際にどの程度の範囲内に収まっているかを、容易に推測することができる。 Further, according to the radar system 1, the wind speed vector distribution VM and the error rate distribution EM are displayed in an overlapping manner. Thereby, the user can easily estimate how much the wind speed vector V at each point actually falls within the range.
 また、レーダシステム1によれば、各地点での風速ベクトルVが、いわゆるデュアルドップラー法に基づいて算出されるため、各地点での風速ベクトルVを適切に算出することができる。 Further, according to the radar system 1, since the wind speed vector V at each point is calculated based on the so-called dual Doppler method, the wind speed vector V at each point can be appropriately calculated.
 [変形例]
 以上、本発明の実施形態について説明したが、本発明はこれらに限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。
[Modification]
As mentioned above, although embodiment of this invention was described, this invention is not limited to these, A various change is possible unless it deviates from the meaning of this invention.
 (1)上記実施形態に係るレーダシステム1では、風速の誤差率(信頼度)のみが表示されたが、これに限らず、風向の信頼度のみが表示されてもよく、或いは、風速の信頼度及び風向の信頼度の双方が表示されてもよい。 (1) In the radar system 1 according to the above-described embodiment, only the error rate (reliability) of the wind speed is displayed, but not limited to this, only the reliability of the wind direction may be displayed, or the reliability of the wind speed. Both the degree and the reliability of the wind direction may be displayed.
 (2)図7は、変形例に係るレーダシステムの表示器に表示される表示画像の一部を拡大して示す図である。上記実施形態に係るレーダシステム1では、信頼度として風速の誤差率分布EMが表示されたが、これに限らず、その他の信頼度が表示されてもよい。具体的には、図7を参照して、例えば、各地点での風速の誤差率がその大きさに応じて(例えばA~Dに)ランク分けされ、そのA~Dのアルファベットが、各地点に表示された風速ベクトルVの矢印付近に表示されてもよい。 (2) FIG. 7 is an enlarged view of a part of the display image displayed on the display of the radar system according to the modification. In the radar system 1 according to the embodiment, the error rate distribution EM of the wind speed is displayed as the reliability. However, the present invention is not limited to this, and other reliability may be displayed. Specifically, referring to FIG. 7, for example, the error rate of the wind speed at each point is ranked according to the magnitude (for example, A to D), and the alphabets A to D are May be displayed in the vicinity of the arrow of the wind speed vector V displayed in FIG.
 (3)上記実施形態に係るレーダシステム1では、風速ベクトル分布VMと誤差率分布
EMとを重ねて表示したが、これに限らず、風速ベクトル分布VMと誤差率分布EMとを、表示器4において別々に表示してもよい。或いは、例えば一例として、ユーザが風速ベクトル分布VMにおいて所望の地点の風速ベクトルを選択すると、当該地点の速度ベクトルの風速の誤差率が表示されるような構成であってもよい。
(3) In the radar system 1 according to the above-described embodiment, the wind speed vector distribution VM and the error rate distribution EM are displayed so as to overlap each other. However, the present invention is not limited thereto, and the wind speed vector distribution VM and the error rate distribution EM are displayed on the display 4. May be displayed separately. Alternatively, for example, when the user selects a wind speed vector at a desired point in the wind speed vector distribution VM, for example, the configuration may be such that the wind speed error rate of the speed vector at the point is displayed.
 (4)上記実施形態に係るレーダシステム1では、2つのレーダ装置10,20を用いて各地点の風向及び風速を算出したが、これに限らず、1又は3以上のレーダ装置によって、各地点の風向及び風速を算出してもよい。 (4) In the radar system 1 according to the above-described embodiment, the wind direction and the wind speed at each point are calculated using the two radar devices 10 and 20. However, the present invention is not limited to this, and each point is determined by one or three or more radar devices. The wind direction and the wind speed may be calculated.
 (5)図8は、変形例に係るレーダシステム1aの構成を示すブロック図である。上記実施形態に係るレーダシステム1では、2つのレーダ装置10,20を用いて、いわゆるデュアルドップラー法に基づいて各地点の風向及び風速を算出したが、これに限らない。以下で詳しく説明するレーダシステム1aでは、いわゆる簡略化VVP(Velocity Volume Processing)法に基づいて、各地点の風向及び風速を算出する。 (5) FIG. 8 is a block diagram showing a configuration of a radar system 1a according to a modification. In the radar system 1 according to the above embodiment, the wind direction and the wind speed at each point are calculated based on the so-called dual Doppler method using the two radar devices 10 and 20, but the present invention is not limited to this. In the radar system 1a described in detail below, the wind direction and wind speed at each point are calculated based on a so-called simplified VVP (Velocity Volume Processing) method.
 なお、上述した簡略化VVP法とは、VVP法を簡略化した手法であって、局所域(小領域、以下では、この局所域を、セルと称する)における風向及び風速を算出可能な手法である。この簡略化VVP法は、局所VAD法とも呼ばれる手法である。簡略化VVP法については、公知の技術であるため、その詳細な説明を省略する。 The simplified VVP method described above is a method obtained by simplifying the VVP method, and is a method capable of calculating the wind direction and the wind speed in a local region (small region, hereinafter, this local region is referred to as a cell). is there. This simplified VVP method is also called a local VAD method. Since the simplified VVP method is a known technique, its detailed description is omitted.
 レーダシステム1aは、図8に示すように、1台のレーダ装置10aと、風速ベクトル算出部2aと、表示画像生成部3aと、表示器4と、を備えている。1台のレーダ装置10aの構成は、上述した実施形態の各レーダ装置10,20の構成と同様である。一方、風速ベクトル算出部2a及び表示画像生成部3aは、上記実施形態の風速ベクトル算出部2a及び表示画像生成部3aとは、その動作が異なる。以下では、上記実施形態と異なる部分について主に説明し、その他の部分については、説明を省略する。 As shown in FIG. 8, the radar system 1a includes a single radar device 10a, a wind speed vector calculation unit 2a, a display image generation unit 3a, and a display 4. The configuration of one radar apparatus 10a is the same as the configuration of each of the radar apparatuses 10 and 20 of the above-described embodiment. On the other hand, the wind speed vector calculation unit 2a and the display image generation unit 3a are different in operation from the wind speed vector calculation unit 2a and the display image generation unit 3a of the above embodiment. Below, a different part from the said embodiment is mainly demonstrated, and description is abbreviate | omitted about another part.
 風速ベクトル算出部2aは、レーダ装置10aによって計測された、各セルに含まれる複数地点のそれぞれでのドップラー速度、を用いて、各セルの風向及び風速を算出する。具体的には、風速ベクトル算出部2aは、セル内の複数地点のそれぞれでのドップラー速度Vrと、風の水平速度u,v(uは東西方向の速度、vは南北方向の速度)との間に、以下の式が成り立つことを利用して、各セルの風向及び風速を算出する。 The wind speed vector calculation unit 2a calculates the wind direction and the wind speed of each cell using the Doppler velocities at each of a plurality of points included in each cell, measured by the radar apparatus 10a. Specifically, the wind speed vector calculation unit 2a calculates the Doppler speed Vr at each of a plurality of points in the cell and the horizontal wind speeds u and v (where u is the speed in the east-west direction and v is the speed in the north-south direction). In the meantime, the wind direction and the wind speed of each cell are calculated by using the following equation.
 [数1]
 Vr=u・cosθsinφ+v・cosθcosφ …(1)
[Equation 1]
Vr = u · cos θ sin φ + v · cos θ cos φ (1)
 但し、θは仰角、φは方位角、である。 However, θ is an elevation angle, and φ is an azimuth angle.
 本実施形態の場合、風速ベクトル算出部2aは、それぞれの仰角について、所定間隔の方位角φ(iは自然数であって、セル内に含まれる各地点に対応して付される数)で測定したドップラー速度Vrを算出する。そして、風速ベクトル算出部2aは、例えば最小二乗法等を用いて、Vrのうち所定条件を満たすVrを抽出し、抽出されたVrが最もフィットするように式(1)の係数u,vを決定する。これにより、各セルにおける風向及び風速が算出される。なお、所定条件を満たすVrとは、係数u,vが決定された式(1)に対する離間幅が所定の閾値未満となっているVrである。また、以下では、所定条件を満たすVr(上述のように抽出されたVr)を有するサンプルを、信頼度算出対象サンプルと称する。 In the case of the present embodiment, the wind speed vector calculation unit 2a uses the azimuth angle φ i (i is a natural number, and is assigned to each point included in the cell) at a predetermined interval for each elevation angle. to calculate the measured Doppler velocity Vr i. The wind velocity vector calculation unit 2a, for example by using a least square method or the like, extracts a predetermined condition is satisfied Vr i of Vr i, coefficients of equation (1) as extracted Vr i is most fit u , V are determined. Thereby, the wind direction and the wind speed in each cell are calculated. The predetermined condition is satisfied Vr i, a Vr i coefficients u, v are spaced wide relative to the formula (1) determined becomes less than a predetermined threshold value. Further, in the following, a sample having a predetermined condition is satisfied Vr i (extracted Vr i as described above), referred to as the reliability calculation target sample.
 また、風速ベクトル算出部2aは、信頼度算出部6を更に備えている。信頼度算出部6は、以下で詳しく説明するようにして、各セルに対応して算出された風向及び風速の信頼
度を算出する。やや詳しくは、信頼度算出部6は、複数の信頼度(第1から第4の信頼度)を1から4のいずれかの値として算出し、これら複数の信頼度を統合して総合信頼度をAからDのいずれかとして算出する。各信頼度(第1から第4の信頼度)では、その値が大きくなるにつれて信頼性が高いデータであることが示される。また、総合信頼度では、DからAへ行くにつれて信頼性が高いデータであることが示される。
The wind speed vector calculation unit 2 a further includes a reliability calculation unit 6. As described in detail below, the reliability calculation unit 6 calculates the reliability of the wind direction and the wind speed calculated for each cell. More specifically, the reliability calculation unit 6 calculates a plurality of reliability (first to fourth reliability) as one of values 1 to 4, and integrates the plurality of reliability to obtain a total reliability. Is calculated as any one of A to D. Each reliability (first to fourth reliability) indicates that the data is highly reliable as the value increases. In addition, the total reliability indicates that the data is highly reliable as it goes from D to A.
 信頼度算出部6は、第1信頼度を算出するために、各セルにおいてドップラー速度が算出された地点の数naと、上述した係数u,vを決定するために用いられたVrが算出された地点の数nb(すなわち、信頼度算出対象サンプルの数)と、に基づいて、第1信頼度を算出する。具体的には、信頼度算出部6は、nbをnaで除した値N1の数値に応じて、第1信頼度を決定する。例えば一例として、信頼度算出部6は、N1<0.25の場合には第1信頼度を1とし、0.25≦N1<0.5の場合には第1信頼度を2とし、0.5≦N1<0.75の場合には第1信頼度を3とし、N1≧0.75の場合には第1信頼度を4とする。 Reliability calculation unit 6, in order to calculate the first reliability, the number na of the point where the Doppler velocity is calculated, the coefficient described above u, Vr i used to determine v is calculated in each cell The first reliability is calculated based on the number nb of the determined points (that is, the number of reliability calculation target samples). Specifically, the reliability calculation unit 6 determines the first reliability according to the numerical value N1 obtained by dividing nb by na. For example, as an example, the reliability calculation unit 6 sets the first reliability to 1 when N1 <0.25, sets the first reliability to 2 when 0.25 ≦ N1 <0.5, and sets 0 The first reliability is set to 3 when .5 ≦ N1 <0.75, and the first reliability is set to 4 when N1 ≧ 0.75.
 また、信頼度算出部6は、第2信頼度を算出するために、各セルにおける風速の絶対値と、各セルにおける風速の誤差と、に基づいて、第2信頼度を算出する。具体的には、信頼度算出部6は、セル毎に算出される、風速の誤差を風速の絶対値で除した値N2、の数値に応じて、第2信頼度を決定する。例えば一例として、信頼度算出部6は、N2≧0.5の場合には第2信頼度を1とし、0.4≦N2<0.5の場合には第2信頼度を2とし、0.3≦N2<0.4の場合には第2信頼度を3とし、N2≦0.3の場合には、第2信頼度を4とする。 Further, the reliability calculation unit 6 calculates the second reliability based on the absolute value of the wind speed in each cell and the error of the wind speed in each cell in order to calculate the second reliability. Specifically, the reliability calculation unit 6 determines the second reliability according to a numerical value N2 calculated for each cell, which is a value N2 obtained by dividing the error of the wind speed by the absolute value of the wind speed. For example, as an example, the reliability calculation unit 6 sets the second reliability to 1 when N2 ≧ 0.5, sets the second reliability to 2 when 0.4 ≦ N2 <0.5, and sets 0 The second reliability is set to 3 when 3 ≦ N2 <0.4, and the second reliability is set to 4 when N2 ≦ 0.3.
 また、信頼度算出部6は、第3信頼度を算出するために、各セルにおける風向誤差の絶対値に基づいて、第3信頼度を算出する。例えば一例として、信頼度算出部6は、上記風向誤差の絶対値N3が45度以上の場合には第3信頼度を1とし、N3が30度以上45度未満の場合には第3信頼度を2とし、N3が12度以上30度未満の場合には第3信頼度を3とし、N3が12度未満の場合には第3信頼度を4とする。 Also, the reliability calculation unit 6 calculates the third reliability based on the absolute value of the wind direction error in each cell in order to calculate the third reliability. For example, as an example, the reliability calculation unit 6 sets the third reliability to 1 when the absolute value N3 of the wind direction error is 45 degrees or more, and the third reliability when N3 is 30 degrees or more and less than 45 degrees. Is set to 2, the third reliability is set to 3 when N3 is 12 degrees or more and less than 30 degrees, and the third reliability is set to 4 when N3 is less than 12 degrees.
 また、信頼度算出部6は、第4信頼度を算出するために、レーダ位置と各セルの中心点とを結ぶ直線と、各セルに対応して算出された風向とがなす角度に基づいて、第4信頼度を算出する。例えば一例として、信頼度算出部6は、上記角度N4が87.5度以上且つ90度以下の場合には第4信頼度を1とし、N4が85度以上且つ87.5度未満の場合には第4信頼度を2とし、N4が80度以上且つ85度未満の場合には第4信頼度を3とし、N4が80度未満の場合には第4信頼度を4とする。 Further, the reliability calculation unit 6 calculates the fourth reliability based on an angle formed by a straight line connecting the radar position and the center point of each cell and the wind direction calculated corresponding to each cell. The fourth reliability is calculated. For example, as an example, the reliability calculation unit 6 sets the fourth reliability to 1 when the angle N4 is 87.5 degrees or more and 90 degrees or less, and when N4 is 85 degrees or more and less than 87.5 degrees. The fourth reliability is set to 2, the fourth reliability is set to 3 when N4 is 80 degrees or more and less than 85 degrees, and the fourth reliability is set to 4 when N4 is less than 80 degrees.
 そして、信頼度算出部6は、上述のようにして算出した第1信頼度から第4信頼度の値に基づいて、総合信頼度を算出する。具体的には、信頼度算出部6は、第1信頼度から第4信頼度の合計が14から16の場合には総合信頼度をAとし、前記合計が10から13の場合には総合信頼度をBとし、前記合計が6から9の場合には総合信頼度をCとし、前記合計が4又は5の場合には総合信頼度をDとする。この総合信頼度は、各セルに対応して算出された風速ベクトルVのそれぞれに対して、算出される。 And the reliability calculation part 6 calculates a total reliability based on the value of the 4th reliability from the 1st reliability calculated as mentioned above. Specifically, the reliability calculation unit 6 sets the total reliability to A when the total of the first reliability to the fourth reliability is 14 to 16, and sets the total reliability when the total is 10 to 13. When the sum is 6 to 9, the total reliability is C. When the sum is 4 or 5, the total reliability is D. This total reliability is calculated for each wind velocity vector V calculated corresponding to each cell.
 図7は、本変形例に係るレーダシステム1aの表示器4に表示される表示画面の一部を拡大して示す図である。本変形例に係るレーダシステム1aでは、各地点に対応して算出された総合信頼度が、A,B,C,Dのいずれかのアルファベットとして、各地点の風速ベクトルV付近に表示される。これにより、ユーザは、Aのアルファベットが付されている風速ベクトルVの向き及び大きさについては、信頼性が高いと判断できる。一方、ユーザは、Dのアルファベットが付されている風速ベクトルVの向き及び大きさについては、信頼性が低いと判断できる。 FIG. 7 is an enlarged view of a part of the display screen displayed on the display 4 of the radar system 1a according to the present modification. In the radar system 1a according to this modification, the total reliability calculated corresponding to each point is displayed in the vicinity of the wind velocity vector V at each point as one of alphabets A, B, C, and D. Thereby, the user can judge that the direction and the magnitude of the wind speed vector V to which the alphabet A is attached are highly reliable. On the other hand, the user can determine that the direction and the magnitude of the wind speed vector V to which the alphabet D is attached are low in reliability.
 以上のように、本変形例に係るレーダシステム1aによれば、1つのレーダ装置10aによって風速ベクトルVを算出することができるため、上記実施形態に係るレーダシステム1の場合と比べて、その構成を簡略化することができる。 As described above, according to the radar system 1a according to the present modification, the wind speed vector V can be calculated by one radar apparatus 10a. Therefore, the configuration of the radar system 1a compared to the case of the radar system 1 according to the above-described embodiment. Can be simplified.
 また、レーダシステム1aによれば、各地点での風速ベクトルV毎に信頼度(総合信頼度)が算出され、それらの総合信頼度が各地点での風速ベクトルV付近に表示される。これにより、ユーザは、各地点での風速ベクトルVの信頼度を容易に把握することができる。 Further, according to the radar system 1a, the reliability (total reliability) is calculated for each wind speed vector V at each point, and the total reliability is displayed near the wind speed vector V at each point. Thereby, the user can grasp | ascertain easily the reliability of the wind speed vector V in each point.
 また、レーダシステム1aによれば、簡略化VVP法によって風速ベクトルVが算出されるため、風速ベクトルVを適切に算出することができる。 Further, according to the radar system 1a, the wind speed vector V is calculated by the simplified VVP method, so that the wind speed vector V can be appropriately calculated.
 また、レーダシステム1aによれば、複数の信頼度(第1から第4の信頼度)を総合的に評価した総合信頼度が算出され、この総合信頼度が各地点の速度ベクトルに対応して表示される。これにより、より高い確度を有する信頼度を算出することができる。 Further, according to the radar system 1a, the total reliability obtained by comprehensively evaluating a plurality of reliability levels (first to fourth reliability levels) is calculated, and this total reliability level corresponds to the velocity vector at each point. Is displayed. Thereby, the reliability having higher accuracy can be calculated.
 (6)図8を用いて説明した変形例に係るレーダシステム1aによれば、各地点における風速ベクトルVを、簡略化VVP法によって算出したが、これに限らず、その他の手法によって風速ベクトルVを算出してもよい。例えば一例として、VVP法を用いて風速ベクトルVを算出してもよい。 (6) According to the radar system 1 a according to the modification described with reference to FIG. 8, the wind speed vector V at each point is calculated by the simplified VVP method. May be calculated. For example, as an example, the wind speed vector V may be calculated using the VVP method.
 (7)図9は、変形例に係るレーダシステムの表示画面の一部を拡大して示す図である。本変形例に係るレーダシステムでは、図8を用いて説明した変形例の信頼度算出部6が算出した値N1の大きさに応じて、各風速ベクトルVに対応して描画された丸印の径の大きさが決定される。これにより、ユーザは、丸印の径が大きければ、当該丸印が付された風速ベクトルVの信頼度が高いと判断できる一方、丸印の径が小さければ、当該丸印が付された風速ベクトルVの信頼度が低いと判断できる。 (7) FIG. 9 is an enlarged view showing a part of the display screen of the radar system according to the modification. In the radar system according to this modification, the circles drawn corresponding to the respective wind speed vectors V according to the magnitude of the value N1 calculated by the reliability calculation unit 6 of the modification described with reference to FIG. The size of the diameter is determined. Thus, the user can determine that the reliability of the wind speed vector V marked with the circle is high if the diameter of the circle is large, while the wind speed marked with the circle is small if the diameter of the circle is small. It can be determined that the reliability of the vector V is low.
 (8)図10は、変形例に係るレーダシステムの表示画面の一部を拡大して示す図である。本変形例に係るレーダシステムでは、図8を用いて説明した変形例の信頼度算出部6が算出したN2及びN3の値に応じて、各速度ベクトルがとり得る風速の向き及び大きさを、エラーバーとして表示する。これにより、ユーザは、各風速ベクトルVの誤差をエラーバーによって直接的に把握することができる。 (8) FIG. 10 is an enlarged view of a part of the display screen of the radar system according to the modification. In the radar system according to this modification, the direction and magnitude of the wind speed that can be taken by each speed vector according to the values of N2 and N3 calculated by the reliability calculation unit 6 of the modification described with reference to FIG. Display as an error bar. Thereby, the user can grasp | ascertain directly the error of each wind speed vector V with an error bar.
 (9)図11は、変形例に係るレーダシステムの表示画面の一部を拡大して示す図である。本変形例に係るレーダシステムでは、図8を用いて説明した変形例の信頼度算出部6が算出したN4の値に基づいて、各風速ベクトルVを実線表示又は点線表示する。具体的には、例えば一例として、N4の値が87.5度以上且つ90度以下となる風速ベクトルVは点線で表示され、N4の値が87.5度未満となる風速ベクトルVは実線で表示される。これにより、ユーザは、実線で表示された風速ベクトルVの大きさ及び向きについては信頼性が高いと判断でき、点線で表示された風速ベクトルVの大きさ及び向きについては信頼性が低いと判断できる。 (9) FIG. 11 is an enlarged view of a part of the display screen of the radar system according to the modification. In the radar system according to the present modification, each wind speed vector V is displayed as a solid line or a dotted line based on the value of N4 calculated by the reliability calculation unit 6 of the modification described with reference to FIG. Specifically, for example, as an example, the wind speed vector V having an N4 value of 87.5 degrees or more and 90 degrees or less is displayed by a dotted line, and the wind speed vector V having an N4 value of less than 87.5 degrees is a solid line. Is displayed. Thereby, the user can determine that the magnitude and direction of the wind speed vector V displayed by the solid line is high in reliability, and determines that the reliability of the magnitude and direction of the wind speed vector V displayed in the dotted line is low. it can.
 (10)図12は、変形例に係るレーダシステムの表示画面の一部を拡大して示す図である。図12に示すように、表示画面に表示される信頼度の表示方法として、図9を用いて説明した丸印と、図10を用いて説明したエラーバーと、図11を用いて説明した風速ベクトルVの点線表示とを組み合わせてもよい。 (10) FIG. 12 is an enlarged view of a part of the display screen of the radar system according to the modification. As shown in FIG. 12, as a method of displaying the reliability displayed on the display screen, the circle described with reference to FIG. 9, the error bar described with reference to FIG. 10, and the wind speed described with reference to FIG. You may combine with the dotted line display of the vector V. FIG.
 (11)図13は、変形例に係るレーダシステム1bのブロック図である。上記実施形
態に係るレーダシステム1では、2つのレーダ装置10,20を用いて、いわゆるデュアルドップラー法に基づいて各地点の風向及び風速を算出したが、これに限らない。レーダシステム1bでは、いわゆるトリプルドップラー法に基づいて、各地点の風向及び風速が算出される。
(11) FIG. 13 is a block diagram of a radar system 1b according to a modification. In the radar system 1 according to the above embodiment, the wind direction and the wind speed at each point are calculated based on the so-called dual Doppler method using the two radar devices 10 and 20, but the present invention is not limited to this. In the radar system 1b, the wind direction and the wind speed at each point are calculated based on the so-called triple Doppler method.
 レーダシステム1bは、上記実施形態に係るレーダシステム1bが備える2つのレーダ装置10,20の他に、もう1つのレーダ装置30を備えている。すなわち、レーダシステム1bは、3つのレーダ装置10,20,30を備えている。レーダ装置30は、他のレーダ装置10,20と同様、アンテナ31と、サーキュレータ32と、送信波形生成部33と、増幅部34と、送信機35と、受信機36と、バンドパスフィルタ37と、増幅部38と、信号処理部39と、を備えている。レーダ装置30が備えるこれらの構成要素の構成及び動作は、レーダ装置10,20が備える各構成要素と同じであるため、その説明を省略する。 The radar system 1b includes another radar device 30 in addition to the two radar devices 10 and 20 included in the radar system 1b according to the embodiment. That is, the radar system 1b includes three radar devices 10, 20, and 30. As with the other radar devices 10 and 20, the radar device 30 includes an antenna 31, a circulator 32, a transmission waveform generation unit 33, an amplification unit 34, a transmitter 35, a receiver 36, and a bandpass filter 37. , An amplification unit 38 and a signal processing unit 39 are provided. Since the configuration and operation of these components included in the radar device 30 are the same as the components included in the radar devices 10 and 20, description thereof is omitted.
 そして、レーダシステム1bでは、3つのレーダ装置10,20,30を用いたトリプルドップラー法を用いることにより、水平方向及び鉛直方向の風向及び風速(すなわち、3次元空間における風速ベクトル)が算出される。このように、レーダシステム1bによれば、水平方向における風向及び風速だけでなく、鉛直方向における風向及び風速も算出できる。レーダシステム1bでは、少なくとも1つのレーダ装置(例えば、レーダ装置30)が、他のレーダ装置と異なる高さ位置に設置されている。これにより、上述のような鉛直方向における風向及び風速を算出することが可能となる。なお、トリプルドップラー法は公知の技術であるため、その詳細な説明を省略する。 In the radar system 1b, by using the triple Doppler method using the three radar devices 10, 20, and 30, the wind direction and the wind speed in the horizontal direction and the vertical direction (that is, the wind speed vector in the three-dimensional space) are calculated. . Thus, according to the radar system 1b, not only the wind direction and wind speed in the horizontal direction but also the wind direction and wind speed in the vertical direction can be calculated. In the radar system 1b, at least one radar device (for example, the radar device 30) is installed at a height position different from that of other radar devices. Thereby, it becomes possible to calculate the wind direction and the wind speed in the vertical direction as described above. Since the triple Doppler method is a known technique, a detailed description thereof is omitted.
 そして、レーダシステム1bでも、上記実施形態の場合と同様、各地点の風速ベクトルの誤差率が、各地点に対応して算出された風速ベクトルの信頼度として表示器4に表示される。これにより、上記実施形態の場合と同様、各地点の風速ベクトルVをより正確に把握することができる。 Also in the radar system 1b, the error rate of the wind speed vector at each point is displayed on the display unit 4 as the reliability of the wind speed vector calculated corresponding to each point, as in the case of the above embodiment. Thereby, like the case of the said embodiment, the wind speed vector V of each point can be grasped | ascertained more correctly.
 1,1a,1b レーダシステム
 2,2a    風速ベクトル算出部
 4       表示器
1, 1a, 1b Radar system 2, 2a Wind speed vector calculation unit 4 Display

Claims (9)

  1.  送波部から送波された送信波の反射波から生成される受信信号に基づいて、各地点における風速ベクトル及びその分布である風速ベクトル分布を算出する風速ベクトル算出部と、前記風速ベクトル分布が表示される表示器と、を備えたレーダシステムであって、
     前記表示器には、前記風速ベクトルの信頼度も表示されることを特徴とする、レーダシステム。
    Based on the reception signal generated from the reflected wave of the transmission wave transmitted from the transmission unit, the wind speed vector calculation unit that calculates the wind speed vector at each point and the wind speed vector distribution that is the distribution thereof, and the wind speed vector distribution is A radar system comprising: an indicator to be displayed;
    The radar system according to claim 1, wherein the wind speed vector reliability is also displayed on the display.
  2.  請求項1に記載のレーダシステムであって、
     それぞれが前記送波部を有し、各前記送波部が互いに異なる位置に配置される少なくとも2つのレーダ装置を備え、
     前記風速ベクトル算出部は、各前記レーダ装置によって受波された前記反射波から生成される受信信号に基づいて前記風速ベクトルを算出することを特徴とする、レーダシステム。
    The radar system according to claim 1,
    Each having the transmission unit, each of the transmission units comprises at least two radar devices disposed at different positions;
    The radar system according to claim 1, wherein the wind speed vector calculation unit calculates the wind speed vector based on a reception signal generated from the reflected wave received by each radar device.
  3.  請求項2に記載のレーダシステムであって、
     前記少なくとも2つのレーダ装置が配置される位置に基づいて決定される、前記各地点における前記風速ベクトルの信頼度の分布である風速ベクトル信頼度分布、を記憶する信頼度分布記憶部、を更に備えていることを特徴とする、レーダシステム。
    The radar system according to claim 2,
    A reliability distribution storage unit that stores a wind speed vector reliability distribution, which is a distribution of reliability of the wind speed vector at each point, determined based on positions where the at least two radar devices are disposed; A radar system characterized by
  4.  請求項3に記載のレーダシステムであって、
     前記表示器には、前記風速ベクトル分布に、前記風速ベクトル信頼度分布が重ねて表示されることを特徴とする、レーダシステム。
    The radar system according to claim 3,
    The radar system according to claim 1, wherein the wind speed vector reliability distribution is superimposed on the wind speed vector distribution and displayed on the display.
  5.  請求項2から請求項4のいずれか1項に記載のレーダシステムであって、デュアルドップラー法を用いて前記風速ベクトルを算出することを特徴とする、レーダシステム。 The radar system according to any one of claims 2 to 4, wherein the wind velocity vector is calculated using a dual Doppler method.
  6.  請求項2から請求項4のいずれか1項に記載のレーダシステムであって、
     それぞれが前記送波部を有し、各前記送波部が互いに異なる位置に配置される少なくとも3つのレーダ装置を備え、
     トリプルドップラー法を用いて前記風速ベクトルを算出することを特徴とする、レーダシステム。
    The radar system according to any one of claims 2 to 4,
    Each having the transmission section, each of the transmission sections comprises at least three radar devices arranged at different positions;
    A radar system, wherein the wind speed vector is calculated using a triple Doppler method.
  7.  請求項1に記載のレーダシステムであって、
     前記送波部を有する1つのレーダ装置を備え、
     前記風速ベクトル算出部は、前記送波部から送波された送信波の反射波から生成される受信信号に基づいて、前記各地点における前記風速ベクトルを算出することを特徴とする、レーダシステム。
    The radar system according to claim 1,
    Comprising one radar device having the transmission section;
    The radar system according to claim 1, wherein the wind speed vector calculation unit calculates the wind speed vector at each point based on a reception signal generated from a reflected wave of a transmission wave transmitted from the transmission unit.
  8.  請求項7に記載のレーダシステムであって、
     前記各地点における前記風速ベクトル毎に前記信頼度を算出する信頼度算出部、を更に備え、
     前記表示器には、前記風速ベクトルに対応して前記信頼度が表示されることを特徴とする、レーダシステム。
    The radar system according to claim 7,
    A reliability calculation unit that calculates the reliability for each wind speed vector at each point;
    The radar system according to claim 1, wherein the reliability is displayed on the display unit corresponding to the wind speed vector.
  9.  請求項8に記載のレーダシステムであって、
     前記風速ベクトル算出部は、簡略化VVP法を用いて前記風速ベクトルを算出することを特徴とする、レーダシステム。
    The radar system according to claim 8,
    The radar system according to claim 1, wherein the wind velocity vector calculation unit calculates the wind velocity vector using a simplified VVP method.
PCT/JP2016/057282 2015-04-16 2016-03-09 Radar system WO2016167054A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017512232A JP6435040B2 (en) 2015-04-16 2016-03-09 Radar system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-084191 2015-04-16
JP2015084191 2015-04-16

Publications (1)

Publication Number Publication Date
WO2016167054A1 true WO2016167054A1 (en) 2016-10-20

Family

ID=57126566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057282 WO2016167054A1 (en) 2015-04-16 2016-03-09 Radar system

Country Status (2)

Country Link
JP (1) JP6435040B2 (en)
WO (1) WO2016167054A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7431377B1 (en) 2023-08-29 2024-02-14 株式会社日立パワーソリューションズ Wind condition observation equipment placement support device and wind condition observation equipment placement support method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020126039A1 (en) * 2001-01-10 2002-09-12 Dalton Shelly D. Multi-stage processing for efficient and accurate spectral moment estimation
JP2004085472A (en) * 2002-08-28 2004-03-18 Mitsubishi Electric Corp Radar signal processor, and method of processing radar signal
JP2007170859A (en) * 2005-12-19 2007-07-05 Mitsubishi Electric Corp Radar system
JP2010217077A (en) * 2009-03-18 2010-09-30 Japan Aerospace Exploration Agency Alarm display method of remote air flow, and system for the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020126039A1 (en) * 2001-01-10 2002-09-12 Dalton Shelly D. Multi-stage processing for efficient and accurate spectral moment estimation
JP2004085472A (en) * 2002-08-28 2004-03-18 Mitsubishi Electric Corp Radar signal processor, and method of processing radar signal
JP2007170859A (en) * 2005-12-19 2007-07-05 Mitsubishi Electric Corp Radar system
JP2010217077A (en) * 2009-03-18 2010-09-30 Japan Aerospace Exploration Agency Alarm display method of remote air flow, and system for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7431377B1 (en) 2023-08-29 2024-02-14 株式会社日立パワーソリューションズ Wind condition observation equipment placement support device and wind condition observation equipment placement support method

Also Published As

Publication number Publication date
JP6435040B2 (en) 2018-12-05
JPWO2016167054A1 (en) 2018-02-08

Similar Documents

Publication Publication Date Title
US8068050B2 (en) Methods and systems for detection of hazard to aviation due to convective weather
EP3012656B1 (en) Clutter suppressing device and radar apparatus provided with the same
JP2017003416A (en) Rainfall prediction system
JP6689396B2 (en) Weather forecasting device, weather forecasting method, and program
US11604274B2 (en) Apparatus and method for composition for dual-polarization weather radar observation data using earth spherical coordinate system
JP2011053028A (en) Doppler radar apparatus and method of calculating doppler velocity
EP2990820B1 (en) Clutter suppressing device and radar apparatus provided with the same
JP6435040B2 (en) Radar system
Cosoli et al. A real-time and offline quality control methodology for SeaSonde high-frequency radar currents
EP3006956A1 (en) Surface tidal-current estimation device, radar device, surface tidal-current estimation method and surface tidal-current estimation program
US7942821B2 (en) Doppler velocity detection device and ultrasonographic device using the same
CN105572637B (en) A kind of far field sonic location system and method
Friedrich et al. Influence of ground clutter contamination on polarimetric radar parameters
CN108061666A (en) A kind of power transmission tower damnification recognition method
JP6154219B2 (en) Echo signal processing device, wave radar device, echo signal processing method, and echo signal processing program
CN106320396B (en) The low strain dynamic two-speed signal averaging detection method of building solid pile
KR101354522B1 (en) Retrival method of high resolution wind fields of multiple-doppler radar using by variational and fgat method
JP5398424B2 (en) Meteorological radar system and its precipitation intensity calculation method and program
JPWO2017179343A1 (en) Signal processing apparatus and radar apparatus
RU2568232C2 (en) System for monitoring stress-strain state of main pipelines
CN103148882A (en) Composite indication method of physical parameter measured value
JP6689961B2 (en) Signal processing device, radar device, and signal processing method
JP5491788B2 (en) Weather radar system and its precipitation intensity calculation method
JP2008051541A (en) Typhoon center detection device
CN104965103A (en) Wind speed measurement method based on parametric array

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16779846

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017512232

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16779846

Country of ref document: EP

Kind code of ref document: A1