WO2016166787A1 - Solar power generation system - Google Patents

Solar power generation system Download PDF

Info

Publication number
WO2016166787A1
WO2016166787A1 PCT/JP2015/061314 JP2015061314W WO2016166787A1 WO 2016166787 A1 WO2016166787 A1 WO 2016166787A1 JP 2015061314 W JP2015061314 W JP 2015061314W WO 2016166787 A1 WO2016166787 A1 WO 2016166787A1
Authority
WO
WIPO (PCT)
Prior art keywords
string
current
voltage
power
power generation
Prior art date
Application number
PCT/JP2015/061314
Other languages
French (fr)
Japanese (ja)
Inventor
嶋田 隆一
Original Assignee
国立大学法人東京工業大学
クリーンエナジーファクトリー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学, クリーンエナジーファクトリー株式会社 filed Critical 国立大学法人東京工業大学
Priority to PCT/JP2015/061314 priority Critical patent/WO2016166787A1/en
Priority to JP2015530790A priority patent/JP6037585B1/en
Publication of WO2016166787A1 publication Critical patent/WO2016166787A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a photovoltaic power generation system, and more particularly to a photovoltaic power generation system including a control device for extracting more electric power for each solar cell string in which a large number of solar cell panels are connected in series.
  • the power conditioner can change the voltage of the string by maximum power point tracking (hereinafter referred to as “MPPT”) control so that the DC power of the string can be converted with an optimum voltage.
  • MPPT maximum power point tracking
  • the power conditioner includes a DC / DC converter for controlling the voltage step-up / step-down, and supplies a voltage to a voltage source capacitor of an inverter that converts the voltage into an AC voltage for connection to an external power system.
  • the maximum power point is not necessarily the individual string.
  • the voltage at the maximum power point of each string is not the same in a wide mega solar site and is particularly sensitive to temperature changes. When panels are installed on slopes, it is considered that there is a difference of several tens of degrees (° C) in the surface temperature between panels due to differences in height, wind flow, etc.
  • the panel arrangement at the mega solar site should be arranged so that there is no temperature difference.
  • each panel constituting the string includes a voltage detection means and a power detection means for detecting the amount of power output from the panel, and is further necessary based on the detected panel voltage and power amount.
  • a solar power generation system provided with a power replenishing means for replenishing an appropriate power (see Patent Document 1).
  • Patent Document 1 the invention described in Patent Document 1 is excellent in that the optimum MPPT control is performed by detecting the voltage and the electric energy for each panel, but each panel is individually operated as long as each panel operates normally as designed. Although there is no need to perform MPPT control, there is a waste that power conversion loss is added, and voltage detection means and power detection are present in all hundreds to thousands of panels. There is a problem that it is too expensive to install the means. It is also necessary to avoid contention between MPPT control performed on individual strings and MPPT control performed on the entire string by the power conditioner.
  • the present invention has been made in view of the above-described problems. The present invention does not perform MPPT conversion for every string, not for every panel, and keeps normal strings as they are.
  • An object of the present invention is to provide a photovoltaic power generation system capable of performing both control and MPPT control of a power conditioner that converts current of all strings.
  • a photovoltaic power generation system connects a string formed by connecting a plurality of solar cell panels in series, and DC power generated by each of the solar cell panels to the string.
  • a photovoltaic power generation system that converts the power of the string and supplies it to a load or a power system, the current measuring means connected in series to the string to measure the current of the string, and the current of the string.
  • a backflow prevention diode connected in series with the string, a DC power source connected in parallel with the backflow prevention diode, and for increasing the voltage of the string by a predetermined value, and the current
  • a voltage having a predetermined value is supplied from the DC power source to the string. Characterized by comprising a Gosuru control means.
  • the current of the string can be recovered and supplied to the power conditioner. Therefore, the generated power of the string can be used effectively.
  • FIG. 1 is a diagram showing a first embodiment of a photovoltaic power generation system according to the present invention. It is a figure for demonstrating the reason which can recover
  • FIG. 1 is a diagram showing a first embodiment of a photovoltaic power generation system according to the present invention.
  • the photovoltaic power generation system shown in FIG. 1 converts a plurality of strings 2 configured by connecting a plurality of panels 1 in series, and DC power generated by each panel 1 by a power converter 3 connected to the strings 2.
  • the power converter 3 charges the voltage source capacitor through a DC / DC converter that controls the DC current to obtain the maximum power by collecting currents of a plurality of strings, and voltage-type pulse width modulation (Pulse Width Modulation). Modulation (hereinafter referred to as “PWM”).
  • PWM pulse width modulation
  • the inverter is linked to a three-phase alternating current by an inverter and is called a power conditioner.
  • This solar power generation system includes a current measuring device 4 connected in series to the string 2 to measure the current of the string 2 and a reverse flow connected in series to the string 2 to prevent a reverse flow of the current of the string 2.
  • a prevention diode 5 and a DC power supply 7 connected in parallel with the backflow prevention diode 5 via the voltage supply switch 6 and for raising the voltage of the string 2 by a predetermined value are provided.
  • the control device 8 that controls to turn on the voltage supply switch 6 and replenish the string 2 with a predetermined voltage from the DC power source 7 is also provided.
  • the control device 8 may be a dedicated device, or a general-purpose computer may be used.
  • a bypass diode 9 and a capacitor 10 are connected to the panel 1 in parallel.
  • the bypass diode 9 functions to maintain the power generation of the string 2 by bypassing the current in the solar cell module that is shaded or failed.
  • the capacitor 10 serves to reduce the influence of changes in the generated voltage due to sunlight and temperature changes and stabilize the generated voltage of the panel.
  • reference numeral 11 is a connection / disconnection switch for switching connection / disconnection of the string 2 to the power converter 3, and for switching operation / maintenance.
  • the current of the string including the defective panel becomes abnormally smaller than the current of other strings. That is, since the current of the string becomes equal to the current of the defective panel, the current of the entire string is lowered.
  • the reason why the current of the string 2 whose current has decreased can be recovered by supplementing a predetermined voltage from the DC power supply 7 will be described with reference to FIG. 2.
  • FIG. 2 is a diagram for explaining the reason why a current can be recovered by replenishing a predetermined voltage to a string with degraded performance.
  • FIG. 2A shows that the MPPT voltage at the maximum power point differs depending on the panel temperature in a mega solar in which an array is configured by connecting a large number of strings in parallel. As can be seen, the MPPT voltage at 25 ° C. is about 260V, while the MPPT voltage at 50 ° C. is about 210V.
  • the MPPT voltage of that string will drop to about 210V, but the inverter will be 260V just like any other normal string connected in parallel.
  • FIG. 2A since the curve on the left side of the MPPT voltage is gentle, the replenishing voltage may be somewhat large. Of course, it is natural to control in a range where the electric power obtained is larger than the electric power to be supplemented.
  • FIG. 2B shows that the MPPT voltage at the maximum power point of the string is lowered when a part of the panel in the string 2 is in the shade. In this case, if a voltage of about 50 V (about 20%) is replenished, the power recovers from about 600 W to about 1600 W.
  • the control device 8 checks whether or not the current value of each string 2 is equal to or less than a predetermined value. Then, a string having a current value equal to or smaller than a predetermined value is found, the switch 6 of the string is turned on, and a predetermined voltage is injected from the DC power source 7 to the string.
  • the predetermined value may be set to 20% of a normal average current value, and a string that falls below the predetermined average current value may be determined to be abnormal. It is considered that the replenishing voltage is highly effective when it is a voltage corresponding to a generated voltage of about 20% of the maximum output point voltage of a normal string. As shown in FIG.
  • the replenishment voltage depends on the voltage of the maximum power point to move, and the magnitude of the maximum power point movement in the non-standard state differs depending on the mega solar depending on the installation conditions of the mega solar, weather conditions, and the like. Because it seems, decide while driving.
  • the optimum value of the voltage to be replenished is not obtained but it is sufficient if it is equal to or higher than that voltage.
  • the voltage is about one or two panels. Even if an extra voltage is injected, the string current is limited to the current of each panel, so it does not become so large, and the surplus power does not become a loss, and the power only flows to the power conditioner 3. So there are few problems.
  • the DC power source 7 may be one in which AC power output from the power conditioner 3 is generated by a transformer diode rectifier.
  • the current for each string 2 is monitored by the current measuring device 4, the string whose output current is abnormally reduced is selected, and the necessary voltage (voltage for about one panel) is replenished. Since the current of the string can be supplied to the power conditioner, the generated power of the string can be used effectively.
  • Table 1 below shows the effect of the present invention by simulation using PSIM. For each case where the performance of some of the 10-panel strings deteriorates, the power required for replenishment is compared with the power increased by that (excluding the power required for replenishment). It is shown. Thereby, the effect of the present invention was verified.
  • the step-up chopper circuit includes an inductor 12, a semiconductor switch 13 that performs a switching operation of the current of the string 2, a backflow prevention diode 5, and a DC capacitor 14.
  • a control device 8 that controls the gate voltage of the semiconductor switch 13 to perform on / off control is provided.
  • the semiconductor switch is preferably a MOSFET or an IGBT, for example.
  • One control device 8 may be provided for the entire system or may be provided for each string. When provided for each string, it is sufficient to perform control to maximize the current detected by the current measuring device 4. This is because the voltage is determined by the output high voltage DC bus.
  • the MPPT of this string is also characterized in that simple control with only current measurement is sufficient. Since a general boost chopper circuit is used here, description of the operation principle is omitted.
  • the control device 8 constantly monitors the current value of each string 2 measured by the current measuring device 4, and the control device 8 determines whether or not the current value of the string 2 is abnormal. Since the criteria for determination are the same as in the first embodiment, description thereof is omitted. If the control device 8 determines that the current value of the string 2 is abnormal, the control device 8 gives an on / off signal to the gate of the semiconductor switch 13 to perform PWM control. As a result, the voltage of the string 2 connected to the power conditioner 3 increases, and the string 2 recovers the current.
  • the PWM duty ratio (Duty) of the semiconductor switch 13 is about 20%. Since the control device 8 constantly monitors the current value of the string 2, the control unit 8 gradually increases the duty ratio, and controls to stop increasing the duty ratio when the increase in the current of the string 2 stops. Also good. This is because even if the voltage is further increased, if the voltage returns to normal, the current does not increase in the string, and this does not disturb the MPPT control by the power conditioner.
  • the negative terminal of the DC capacitor 14 of the boost chopper circuit in the second embodiment is connected to the positive side of the string 2 instead of the ground. Accordingly, the voltage applied to the DC capacitor 14 is only about one or two panels (about 30 to 100 V), and a small capacitor with a small rated voltage can be used.
  • the semiconductor switch 13 of the boost chopper circuit in the second embodiment can be used as a switch for short-circuiting the string 2.
  • a panel with a constant current characteristic does not flow over the maximum current even if it is short-circuited.
  • the voltage becomes a voltage that is not dangerous to the human body, and the output current becomes zero by the reverse current prevention diode 5, so that the direct current Even so, the connection / cutoff switch 11 can be disconnected from the output high voltage DC bus without generating an arc.
  • FIG. 4 is a diagram showing a modification of the second embodiment of the photovoltaic power generation system according to the present invention.
  • the modification of the second embodiment shown in FIG. 4 is obtained by replacing the semiconductor switch 13 in the second embodiment shown in FIG. 3 with a magnetic energy recovery switch (hereinafter referred to as “MERS”) 13.
  • MERS magnetic energy recovery switch
  • the MERS 13 connects a series circuit of a MOSFET (S1) and a diode (d1) and a series circuit of a diode (d2) and a MOSFET (S2) in parallel, and connects between the anode of the diode d1 and the cathode of the diode d2.
  • a second DC capacitor C1 for regenerating magnetic energy is connected.
  • the control device 8 controls the MOSFET (S1) and the MOSFET (S2) to be turned on / off simultaneously.
  • PWM control is performed in the same manner as in the second embodiment, it is characterized by soft switching with little switching loss and noise.
  • the MERS is in parallel conduction, switching is possible even when one MOSFET has a malfunction such as inoperative or open, and reliability is improved. In order to eliminate the switching loss, it is necessary to turn on or off at zero voltage or zero current, but the MERS 13 can realize it. This will be described with reference to FIG.
  • FIG. 5 is a diagram for explaining the operation of MERS.
  • FIG. 5A shows a state when the MOSFET (S1) and the MOSFET (S2) are turned off from on.
  • S1 and S2 are turned off at the same time, the magnetic energy stored in the inductor 12 in FIG. 4 is charged in the capacitor C1 through the path indicated by the arrow in FIG.
  • MERS Magnetic Interference
  • FIG. 6 is a diagram showing a third embodiment of the photovoltaic power generation system according to the present invention.
  • a necessary voltage is supplemented by using an external DC power supply 7, but in the third embodiment, a voltage generated by stepping down the voltage of the string 2 with a step-down chopper (panels of about 1 to 2).
  • the voltage for the sheet is injected as a supplementary voltage to the ground side of the string 2.
  • the step-down chopper circuit includes an inductor 12, a semiconductor switch 13, a backflow prevention diode 5, and a DC capacitor 14. Moreover, the control apparatus 8 which controls the gate voltage of the semiconductor switch 13 and performs on-off control is provided.
  • the semiconductor switch is preferably a MOSFET or an IGBT, for example.
  • One control device 8 may be provided for the entire system or may be provided for each string. Since a general step-down chopper circuit is used here, the explanation of the operation principle is omitted.
  • the semiconductor switch 13 of the step-down chopper circuit in the third embodiment can be used as a switch for short-circuiting the string 2.
  • a panel with constant current characteristics does not flow beyond the maximum current even if short-circuited, and the voltage becomes a voltage that is not dangerous to the human body, and the output current becomes zero by the backflow prevention diode 5, so even if it is a direct current,
  • the connection / disconnection switch 11 can be disconnected from the output high voltage DC bus.
  • FIG. 7 is a diagram showing a modification of the third embodiment of the photovoltaic power generation system according to the present invention.
  • the modification of the third embodiment shown in FIG. 7 is the same as the third embodiment except that the semiconductor switch 13 in the third embodiment shown in FIG. 6 is replaced with MERS13. Further, the configuration, operation, and features of the MERS 13 are the same as those of the modified example of the second embodiment, and thus description thereof is omitted.
  • FIG. 8 is a diagram showing a fourth embodiment of the photovoltaic power generation system according to the present invention.
  • the fourth embodiment is a resistor between the drain and gate of the semiconductor switch 13 in order to short-circuit the semiconductor switch 13 by the voltage of the string in the second embodiment and the third embodiment (including modifications thereof). 15 and a mechanical contact switch 16 for disconnecting between the control device 8 and the gate.
  • FIG. 8A shows the connection between the drain and gate of the semiconductor switch 13 of the second embodiment shown in FIG. 3 and the third embodiment shown in FIG. A case is shown in which they are connected via a mechanical contact switch 16.
  • FIG. 8B shows a connection between the drain and gate of the MOSFET (S1) of the MERS 13 in the modification of the second embodiment shown in FIG. 4 and the modification of the third embodiment shown in FIG.
  • the control device 8 and the gate are connected via the mechanical contact switch 16 is shown.
  • the resistor 15 and the mechanical contact switch 16 may be connected to S2.
  • the resistance value of the resistor 15 may be a resistance value that does not affect the operation of the control device 8 that performs high-speed PWM control.
  • the output impedance of the control device 8 is about 100 ⁇ or less. Therefore, it may be 1 k ⁇ to 10 k ⁇ which is 10 to 100 times that.
  • connection / disconnection switch 11 for each string and disconnect the string 2 from the output high voltage DC bus.
  • the DC power of the string is several hundred volts and several A, this The disconnection by the connection / break switch 11 may cause an arc and is difficult unless a DC breaker having a special structure is used. Therefore, it is necessary to short the string 2 to a voltage that is not dangerous.
  • there is a method of short-circuiting the semiconductor switch 13 by continuing to turn on the gate of the semiconductor switch 13 by a signal from the control device 8, but the reliability as a safety device is lacking. That is, the reliability of the power supply of the control device 8 becomes a problem.
  • the gate is disconnected from the control device 8 by turning off the mechanical contact switch 16 instead of short-circuiting the semiconductor switch 13 by driving the gate by a signal from the control device 8, and the gate voltage is stringed.
  • the semiconductor switch 13 is short-circuited by raising the voltage. As a result, the drain-source voltage becomes a low voltage threshold voltage. Therefore, as long as voltage is generated in the string, the semiconductor switch 13 can be short-circuited by turning off the mechanical contact switch 16, so that the reliability of the power supply of the control device 8 does not matter.
  • the switch 16 is a mechanical contact switch, a signal for driving the gate is required if it is a semiconductor switch, but if it is a mechanical contact switch, a manual switch (for example, a push button switch or a toggle switch) This is because the gate drive signal is unnecessary. Further, although a voltage for gate control is applied to the mechanical contact switch 16, the voltage is very small (15 V or less) and almost no current flows, so a switch for minute current may be used.
  • replenishment is performed by measuring the current for each string of the solar battery panel in the mega solar and replenishing the string voltage in an abnormally low current value in series. There is an increase in electric power that exceeds the generated electric power, and the generated electric power can be increased.
  • the voltage source may be a DC power source capable of outputting a voltage of about 1 to 2 panels (about 30 to 100 V), it may be an industrial general-purpose power source and does not require accuracy.
  • the description of the embodiment is finished as described above, but it is needless to say that the configurations of the embodiments, operations, and modifications described above can be arbitrarily combined as long as they do not contradict each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The purpose of the present invention is to perform MPPT control by a simple method for individual strings in a solar power generation system that has strings 2 formed by serially connecting a plurality of solar cell panels 1, the DC power generated by the solar cell panels being converted by a power converter 3 connected to the strings 2, and supplied to a load or a power system. Therefore, in this solar power generation system, current measurement devices 4 for measuring the current in the strings 2 are serially connected to the strings 2, and reverse-flow-prevention diodes 5 are serially connected to the strings 2 in order to prevent the current in the strings 2 from flowing in reverse. In addition, a DC power source 7 for boosting the voltage in the strings 2 by a predetermined value is connected in parallel to the reverse-flow-prevention diodes 5 via switches 6, and a control device 8 is provided for performing control so that the switches 6 are closed and a voltage of predetermined value is supplied from the DC power source 7 to the strings 2 when the current measured by the current measurement devices 4 is equal to or less than a predetermined value.

Description

太陽光発電システムSolar power system
 本発明は、太陽光発電システムに関し、特に、太陽電池パネルを多数直列接続した太陽電池ストリング毎に、より多くの電力を抽出するための制御装置を備えた太陽光発電システムに関する。 The present invention relates to a photovoltaic power generation system, and more particularly to a photovoltaic power generation system including a control device for extracting more electric power for each solar cell string in which a large number of solar cell panels are connected in series.
 太陽光発電設備は、大規模のものは広い場所に数千枚から数万枚の太陽電池パネル(以下「パネル」という。)を直列・並列に接続して置かれる。
 一般に、パネルを多数直列に接続した太陽電池ストリング(以下「ストリング」という。)を並列に複数接続して太陽電池アレイを構成する場合、発電電圧等の規格が揃ったストリングを選択して使用することが行われている。
Large-scale solar power generation facilities are installed in a wide space with thousands to tens of thousands of solar panels (hereinafter referred to as “panels”) connected in series and in parallel.
Generally, when a solar cell array is configured by connecting a plurality of solar cell strings (hereinafter referred to as “strings”) in which a number of panels are connected in series, a string having a standard such as a generated voltage is selected and used. Things have been done.
 このストリングを多数並列に接続することにより電流を増やして、ストリングの発電電力を、一括して交流へ変換するパワーコンデショナと呼ばれる連系インバータ装置により電力系へ出力する。
 パワーコンディショナは、ストリングの直流電力を最適な電圧で変換できるように最大電力点追跡(Maximum Power Point Tracking、以下「MPPT」という。)制御によってストリングの電圧を変化させることができる。パワーコンディショナは、この電圧を昇降圧制御するためのDC/DCコンバータを備えており、外部電力系統へ連系するための交流電圧に変換するインバータの電圧源コンデンサに電圧を供給している。
By connecting a large number of strings in parallel, the current is increased, and the generated power of the strings is output to the power system by a connected inverter device called a power conditioner that collectively converts the string into AC.
The power conditioner can change the voltage of the string by maximum power point tracking (hereinafter referred to as “MPPT”) control so that the DC power of the string can be converted with an optimum voltage. The power conditioner includes a DC / DC converter for controlling the voltage step-up / step-down, and supplies a voltage to a voltage source capacitor of an inverter that converts the voltage into an AC voltage for connection to an external power system.
 しかし、並列接続されているストリング全体としてパワーコンディショナへの入力電圧が共通に一つに決まってしまうため、個別のストリングでは必ずしも最大電力点になっているとは限らない。
 各ストリングの最大電力点の電圧は、広いメガソーラサイトの中では同一ではなく、特に温度の変化には敏感に反応する。パネルが斜面に設置されている場合、高低の差、風の流れ等で、パネル間では表面温度で数十度(℃)の差が出るとも考えられる。
However, since the input voltage to the power conditioner is determined as a single common string as a whole of the strings connected in parallel, the maximum power point is not necessarily the individual string.
The voltage at the maximum power point of each string is not the same in a wide mega solar site and is particularly sensitive to temperature changes. When panels are installed on slopes, it is considered that there is a difference of several tens of degrees (° C) in the surface temperature between panels due to differences in height, wind flow, etc.
 例えば、日が陰ってパネルの温度が下がり、再び日が射してパネルの温度が上がる場合、その温度差は60度(℃)にもなるとの観測結果がある。最大電力点の電圧は1度の温度差で約0.5%変化するので、最悪の場合、過渡的ではあるが、同一のパネルにおいても約30%の電圧変化が生じることがある。従って、メガソーラサイトにおけるパネル配置は温度差の出ないように配置すべきである。 For example, there is an observation result that the temperature difference becomes 60 degrees (° C.) when the temperature of the panel decreases due to the sun, and the temperature of the panel increases again when the sun shines. Since the voltage at the maximum power point changes by about 0.5% with a temperature difference of 1 degree, the voltage change of about 30% may occur even in the same panel even in the worst case. Therefore, the panel arrangement at the mega solar site should be arranged so that there is no temperature difference.
 また、ストリング内のパネル1枚が破損若しくは経年変化による性能劣化、又はパネル表面の汚れ、部分陰などによって出力が低下した場合も問題になる。その場合、そのストリングの電流は電流の一番小さいパネルの電流に等しくなるので、そのストリング全体としての出力が低下する。
 各ストリングの電力を集めるパワーコンディショナの電圧は、他の正常なストリングの電圧に合わせるように動作しているので、出力が低下したストリングのMPPT制御はされなくなる。従って、各ストリング毎のMPPT制御が必要となる。
Another problem arises when the output of the panel in the string is deteriorated due to breakage or deterioration over time, or due to dirt or partial shade on the panel surface. In that case, since the current of the string becomes equal to the current of the panel having the smallest current, the output of the entire string is lowered.
Since the voltage of the inverter that collects the power of each string operates so as to match the voltage of the other normal strings, the MPPT control of the string whose output is lowered is not performed. Therefore, MPPT control for each string is required.
 この様な状況に鑑み、一部のパネルの性能劣化や環境変化に伴って出力が低下したストリングの動作点電圧が最大電力点電圧に近づくように、当該ストリングに電圧を補充して電流を回復させ、当該ストリングの回復した電流がパワーコンディショナに供給されるように制御することが必要となる。
 このような場合に、ストリングを構成するパネル1枚毎に電圧検出手段とパネルから出力される電力量を検出する電力検出手段とを備え、さらに、検出されたパネル電圧と電力量に基づいて必要な電力を補充する電力補充手段を備えた太陽光発電システムが提案されている(特許文献1参照)。
In view of this situation, the string is replenished with current to restore the current so that the operating point voltage of the string whose output has decreased due to performance degradation or environmental changes of some panels approaches the maximum power point voltage. Therefore, it is necessary to perform control so that the recovered current of the string is supplied to the power conditioner.
In such a case, each panel constituting the string includes a voltage detection means and a power detection means for detecting the amount of power output from the panel, and is further necessary based on the detected panel voltage and power amount. There has been proposed a solar power generation system provided with a power replenishing means for replenishing an appropriate power (see Patent Document 1).
国際公開第2013/018826号International Publication No. 2013/018826
 しかしながら、特許文献1に記載の発明は、パネル1枚毎に電圧と電力量を検出して最適なMPPT制御を行うという点では優れているが、各パネルが設計通り正常に動作する限りパネル個々にMPPT制御する必要が無いにもかかわらず常に制御を行っているため、電力変換の損失が加わるという無駄が存在し、また、数百から数千もあるパネルの全てに電圧検出手段や電力検出手段を設置するにはコストがかかり過ぎるという問題がある。
 また、個々のストリングに対して行うMPPT制御と、パワーコンディショナが行うストリング全体に対するMPPT制御との競合を避ける必要もある。
 本発明は上述のような問題点に鑑みなされたものであり、本発明は、パネル1枚毎ではなく、さらに全てのストリング毎にMPPT変換は行わずに、正常なストリングはそのままにして、性能の劣化したストリングに対してだけ、正確なMPPT制御では無いが「効果のある電力点を探す」制御、云わばEPPT(Effective Power Point Tracking)制御を行うことで、ストリング毎に簡易な方法でMPPT制御を行い、全ストリングの電流を変換するパワーコンディショナのMPPT制御との両立を図ることが可能な太陽光発電システムを提供することを目的とする。
However, the invention described in Patent Document 1 is excellent in that the optimum MPPT control is performed by detecting the voltage and the electric energy for each panel, but each panel is individually operated as long as each panel operates normally as designed. Although there is no need to perform MPPT control, there is a waste that power conversion loss is added, and voltage detection means and power detection are present in all hundreds to thousands of panels. There is a problem that it is too expensive to install the means.
It is also necessary to avoid contention between MPPT control performed on individual strings and MPPT control performed on the entire string by the power conditioner.
The present invention has been made in view of the above-described problems. The present invention does not perform MPPT conversion for every string, not for every panel, and keeps normal strings as they are. It is not an accurate MPPT control only for a degraded string, but “PTF (Effective Power Point Tracking)” control, that is, EPPT (Effective Power Point Tracking) control, is performed for each string in a simple manner. An object of the present invention is to provide a photovoltaic power generation system capable of performing both control and MPPT control of a power conditioner that converts current of all strings.
 上記目的を達成するために、本発明に係る太陽光発電システムは、複数の太陽電池パネルを直列に接続して構成されるストリングと、上記各太陽電池パネルで発生した直流電力を上記ストリングに接続された電力変換器により変換して負荷又は電力系統に供給する太陽光発電システムであって、上記ストリングの電流を計測するために上記ストリングに直列に接続された電流計測手段と、上記ストリングの電流の逆流を防止するために、上記ストリングに直列に接続された逆流防止ダイオードと、上記逆流防止ダイオードと並列に接続され、上記ストリングの電圧を所定の値だけ上昇させるための直流電源と、上記電流計測手段で計測された電流が所定の値以下の場合に、上記直流電源から上記ストリングに所定値の電圧を供給するように制御する制御手段を備えたことを特徴とする。 In order to achieve the above object, a photovoltaic power generation system according to the present invention connects a string formed by connecting a plurality of solar cell panels in series, and DC power generated by each of the solar cell panels to the string. A photovoltaic power generation system that converts the power of the string and supplies it to a load or a power system, the current measuring means connected in series to the string to measure the current of the string, and the current of the string In order to prevent backflow of the string, a backflow prevention diode connected in series with the string, a DC power source connected in parallel with the backflow prevention diode, and for increasing the voltage of the string by a predetermined value, and the current When the current measured by the measuring means is less than a predetermined value, a voltage having a predetermined value is supplied from the DC power source to the string. Characterized by comprising a Gosuru control means.
 上記構成によれば、ストリング毎の電流をモニターして、出力電流が異常に低下したストリングに必要な電圧を補充することにより、当該ストリングの電流を回復させてパワーコンディショナに供給することができるので、ストリングの発電電力を有効に利用することができる。 According to the above configuration, by monitoring the current for each string and replenishing the necessary voltage to the string whose output current is abnormally reduced, the current of the string can be recovered and supplied to the power conditioner. Therefore, the generated power of the string can be used effectively.
本発明に係る太陽光発電システムの第1実施形態を示す図である。1 is a diagram showing a first embodiment of a photovoltaic power generation system according to the present invention. 性能が劣化したストリングに対して所定の電圧を補充することにより電流を回復させることができる理由を説明するための図である。It is a figure for demonstrating the reason which can recover | restore an electric current by replenishing a predetermined voltage with respect to the string in which performance deteriorated. 本発明に係る太陽光発電システムの第2実施形態を示す図である。It is a figure which shows 2nd Embodiment of the solar energy power generation system which concerns on this invention. 本発明に係る太陽光発電システムの第2実施形態の変形例を示す図である。It is a figure which shows the modification of 2nd Embodiment of the solar energy power generation system which concerns on this invention. 磁気エネルギー回生スイッチの動作を説明するための図である。It is a figure for demonstrating operation | movement of a magnetic energy regeneration switch. 本発明に係る太陽光発電システムの第3実施形態を示す図である。It is a figure which shows 3rd Embodiment of the solar energy power generation system which concerns on this invention. 本発明に係る太陽光発電システムの第3実施形態の変形例を示す図である。It is a figure which shows the modification of 3rd Embodiment of the solar energy power generation system which concerns on this invention. 本発明に係る太陽光発電システムの第4実施形態を示す図である。It is a figure which shows 4th Embodiment of the solar energy power generation system which concerns on this invention.
 以下、この発明を実施するための形態について、具体的に説明する。 Hereinafter, modes for carrying out the present invention will be specifically described.
〔第1実施形態:図1〕
 図1は、本発明に係る太陽光発電システムの第1実施形態を示す図である。
 図1に示す太陽光発電システムは、複数のパネル1を直列に接続して構成される複数のストリング2と、各パネル1で発生した直流電力をストリング2に接続された電力変換器3により変換して負荷に供給するものである。電力変換器3は、複数のストリングの電流を集めて最大の電力が得られる直流電圧になるように制御するDC/DCコンバータを介して電圧源コンデンサを充電し、電圧型パルス幅変調(Pulse Width Modulation、以下「PWM」という。)インバータにより三相交流に連系するものであり、パワーコンディショナと呼ばれている。
[First Embodiment: FIG. 1]
FIG. 1 is a diagram showing a first embodiment of a photovoltaic power generation system according to the present invention.
The photovoltaic power generation system shown in FIG. 1 converts a plurality of strings 2 configured by connecting a plurality of panels 1 in series, and DC power generated by each panel 1 by a power converter 3 connected to the strings 2. To supply the load. The power converter 3 charges the voltage source capacitor through a DC / DC converter that controls the DC current to obtain the maximum power by collecting currents of a plurality of strings, and voltage-type pulse width modulation (Pulse Width Modulation). Modulation (hereinafter referred to as “PWM”). The inverter is linked to a three-phase alternating current by an inverter and is called a power conditioner.
 この太陽光発電システムは、ストリング2の電流を計測するためにストリング2に直列に接続された電流計測装置4と、ストリング2の電流の逆流を防止するためにストリング2に直列に接続された逆流防止ダイオード5と、電圧供給スイッチ6を介して逆流防止ダイオード5と並列に接続され、ストリング2の電圧を所定の値だけ上昇させるための直流電源7とを備えている。
 また、電流計測装置4で計測された電流が所定の値以下の場合に、電圧供給スイッチ6をオンして直流電源7からストリング2に所定値の電圧を補充するように制御する制御装置8も備えている。制御装置8としては専用の装置でもよいし、汎用のコンピュータの利用も可能である。
This solar power generation system includes a current measuring device 4 connected in series to the string 2 to measure the current of the string 2 and a reverse flow connected in series to the string 2 to prevent a reverse flow of the current of the string 2. A prevention diode 5 and a DC power supply 7 connected in parallel with the backflow prevention diode 5 via the voltage supply switch 6 and for raising the voltage of the string 2 by a predetermined value are provided.
In addition, when the current measured by the current measuring device 4 is less than or equal to a predetermined value, the control device 8 that controls to turn on the voltage supply switch 6 and replenish the string 2 with a predetermined voltage from the DC power source 7 is also provided. I have. The control device 8 may be a dedicated device, or a general-purpose computer may be used.
 なお、パネル1にはバイパスダイオード9及びコンデンサ10が並列に接続されている。
バイパスダイオード9は、日影になったり故障したりした太陽電池モジュールにおいて、電流をバイパスさせることにより、ストリング2の発電を維持する働きをする。また、コンデンサ10は、日光や温度変化による発電電圧の変化の影響を和らげ、パネルの発電電圧を安定化させる働きをするものである。
 また、参照符号11で示すものは、ストリング2の電力変換器3への接続/遮断を切り換えるための接続/遮断スイッチであり、運転/保守の切り換えのためにある。
A bypass diode 9 and a capacitor 10 are connected to the panel 1 in parallel.
The bypass diode 9 functions to maintain the power generation of the string 2 by bypassing the current in the solar cell module that is shaded or failed. Further, the capacitor 10 serves to reduce the influence of changes in the generated voltage due to sunlight and temperature changes and stabilize the generated voltage of the panel.
Also, what is denoted by reference numeral 11 is a connection / disconnection switch for switching connection / disconnection of the string 2 to the power converter 3, and for switching operation / maintenance.
 パネルの部分陰、性能劣化や温度変化等、何らかの要因によって、特定のパネルの発電電流が減少すると、その不良パネルを含むストリングの電流が他のストリングの電流よりも異常に少なくなる。すなわち、そのストリングの電流は不良パネルの電流に等しくなるので、そのストリング全体としての電流が低下するからである。
 図1に示す太陽光発電システムにおいて、直流電源7から所定の電圧を補充することによって、電流が低下したストリング2の電流を回復させることができる理由を、図2を参照して説明する。
When the generated current of a specific panel decreases due to some factor such as partial shadow of the panel, performance deterioration, temperature change, etc., the current of the string including the defective panel becomes abnormally smaller than the current of other strings. That is, since the current of the string becomes equal to the current of the defective panel, the current of the entire string is lowered.
In the photovoltaic power generation system shown in FIG. 1, the reason why the current of the string 2 whose current has decreased can be recovered by supplementing a predetermined voltage from the DC power supply 7 will be described with reference to FIG. 2.
 図2は、性能が劣化したストリングに対して所定の電圧を補充することにより電流を回復させることができる理由を説明するための図である。
 図2(A)は、多数のストリングを並列接続してアレイを構成するメガソーラにおいて、パネル温度の違いにより最大電力点のMPPT電圧が異なることを示している。
 図からわかるように、25℃におけるMPPT電圧は約260Vであるのに対して、50℃におけるMPPT電圧は約210Vである。
FIG. 2 is a diagram for explaining the reason why a current can be recovered by replenishing a predetermined voltage to a string with degraded performance.
FIG. 2A shows that the MPPT voltage at the maximum power point differs depending on the panel temperature in a mega solar in which an array is configured by connecting a large number of strings in parallel.
As can be seen, the MPPT voltage at 25 ° C. is about 260V, while the MPPT voltage at 50 ° C. is about 210V.
 今、25℃であるストリングが急に50℃に温度上昇した場合、そのストリングのMPPT電圧は約210Vに下がるが、パワーコンディショナは並列接続されている他の正常なストリングと同じように、260Vでの制御を続けるため、出力低下したストリングの電力は約400Wにまで低下してしまう。
 そこで、直流電源7から約20%(約50V)の電圧を直列に補充すれば、出力低下したストリングの電圧を約210V(=260V-50V)にすることができる。すなわち、出力低下したストリングをMPPT電圧で駆動することができることになるため、電力は約1600Wにまで回復する。
If a string that is now 25 ° C suddenly rises to 50 ° C, the MPPT voltage of that string will drop to about 210V, but the inverter will be 260V just like any other normal string connected in parallel. In order to continue the control at, the power of the string whose output is reduced is reduced to about 400 W.
Therefore, if a voltage of about 20% (about 50V) is replenished in series from the DC power source 7, the voltage of the string whose output is reduced can be made about 210V (= 260V-50V). That is, since the string whose output is reduced can be driven by the MPPT voltage, the power is recovered to about 1600 W.
 なお、図2(A)から分かるように、MPPT電圧の左側のカーブは緩やかであるので、補充する電圧は多少大きくても構わない。もちろん、補充する電力より得られる電力が大きい範囲で制御するのは当然である。
 図2(B)は、ストリング2の中のパネルの一部が日陰に入ったような場合に、ストリングの最大電力点のMPPT電圧が下がることを示している。この場合、約50V(約20%)の電圧を補充すれば、電力は約600Wから約1600Wまで回復することを示している。
As can be seen from FIG. 2A, since the curve on the left side of the MPPT voltage is gentle, the replenishing voltage may be somewhat large. Of course, it is natural to control in a range where the electric power obtained is larger than the electric power to be supplemented.
FIG. 2B shows that the MPPT voltage at the maximum power point of the string is lowered when a part of the panel in the string 2 is in the shade. In this case, if a voltage of about 50 V (about 20%) is replenished, the power recovers from about 600 W to about 1600 W.
 図1に戻って、電流計測装置4で各ストリング2の電流を計測し制御装置8に送ると、制御装置8は、各ストリング2の電流値が所定の値以下であるか否かをチェックし、電流値が所定の値以下であるストリングを見つけ、そのストリングのスイッチ6をオンして、直流電源7からそのストリングに所定の電圧を注入する。所定の値は、例えば、通常の平均電流値の20%に設定しておき、それを下回ったストリングは異常と判断するようにしてもよい。
 補充する電圧は、正常なストリングの最大出力点電圧の20%程度の発電電圧に相当する電圧であると効果が大きいと考えられる。図2に示すように、補充する電圧は移動する最大電力点の電圧に依存し、非標準状態における最大電力点の移動の大きさは、メガソーラの設置条件、気象条件等によりメガソーラごとに異なると思われるため、実際に運転しながら決定する。
Returning to FIG. 1, when the current measuring device 4 measures the current of each string 2 and sends it to the control device 8, the control device 8 checks whether or not the current value of each string 2 is equal to or less than a predetermined value. Then, a string having a current value equal to or smaller than a predetermined value is found, the switch 6 of the string is turned on, and a predetermined voltage is injected from the DC power source 7 to the string. For example, the predetermined value may be set to 20% of a normal average current value, and a string that falls below the predetermined average current value may be determined to be abnormal.
It is considered that the replenishing voltage is highly effective when it is a voltage corresponding to a generated voltage of about 20% of the maximum output point voltage of a normal string. As shown in FIG. 2, the replenishment voltage depends on the voltage of the maximum power point to move, and the magnitude of the maximum power point movement in the non-standard state differs depending on the mega solar depending on the installation conditions of the mega solar, weather conditions, and the like. Because it seems, decide while driving.
 この場合、電圧を注入すると、能力低下した不良パネルにはバイパスダイオード9をオンするだけの電圧が補充されることになるので、他の正常なパネルの電流は不良パネルのバイパスダイオード9を通って流れ、ストリング2は電流を回復する。
 従って、電圧を補充してストリング2の電流が増加するか否かを観測し、増加する場合はそのまま電圧補充を継続する。ストリング2の電流が増加しない場合は、電圧補充を停止する。正常なストリングは電流が増加しないからであり、パワーコンディショナによるMPPT制御を妨害しない為でもある。
In this case, when a voltage is injected, a defective panel whose capacity has been reduced is supplemented with a voltage sufficient to turn on the bypass diode 9, so that other normal panel currents pass through the bypass diode 9 of the defective panel. Flow, string 2 restores current.
Therefore, it is observed whether or not the current of the string 2 increases by replenishing the voltage. If it increases, the replenishment of the voltage is continued as it is. When the current of the string 2 does not increase, the voltage supply is stopped. This is because the normal string does not increase the current and does not interfere with the MPPT control by the power conditioner.
 なお、補充すべき電圧の最適値は存在するが、最適値を求めるのではなく、その電圧以上であれば構わないとするのが本発明の特徴でもある。その電圧というのは、約パネル1~2枚分の電圧である。たとえ余分な電圧を注入したとしても、ストリング電流は各パネルの電流に制限されるので、それほど大きくはならず、また、余剰電力は損失にはならず、その電力はパワーコンディショナ3へ流れるだけなので問題は少ないと言える。
 また、直流電源7は、パワーコンディショナ3から出力された交流電力を変圧器ダイオード整流器で作り出したものでも構わない。
Although there is an optimum value of the voltage to be replenished, it is also a feature of the present invention that the optimum value is not obtained but it is sufficient if it is equal to or higher than that voltage. The voltage is about one or two panels. Even if an extra voltage is injected, the string current is limited to the current of each panel, so it does not become so large, and the surplus power does not become a loss, and the power only flows to the power conditioner 3. So there are few problems.
Further, the DC power source 7 may be one in which AC power output from the power conditioner 3 is generated by a transformer diode rectifier.
 上記構成によれば、ストリング2毎の電流を電流計測装置4でモニターして、出力電流が異常に低下したストリングを選択して必要な電圧(パネル約1枚分の電圧)を補充することにより、当該ストリングの電流をパワーコンディショナに供給することができるので、ストリングの発電電力を有効に利用することができる。
 以下の表1に示すのは、本発明による効果をPSIMを用いたシミュレーションによって表したものである。10枚のパネルから成るストリングのうちの一部のパネルが性能劣化した場合の各ケースについて、補充に要した電力と、それによって純増した電力(補充に要した電力を除く。)を対比して示したものである。これにより、本発明の効果が検証された。
Figure JPOXMLDOC01-appb-T000001
According to the above configuration, the current for each string 2 is monitored by the current measuring device 4, the string whose output current is abnormally reduced is selected, and the necessary voltage (voltage for about one panel) is replenished. Since the current of the string can be supplied to the power conditioner, the generated power of the string can be used effectively.
Table 1 below shows the effect of the present invention by simulation using PSIM. For each case where the performance of some of the 10-panel strings deteriorates, the power required for replenishment is compared with the power increased by that (excluding the power required for replenishment). It is shown. Thereby, the effect of the present invention was verified.
Figure JPOXMLDOC01-appb-T000001
〔第2実施形態:図3〕
 次に、本発明の第2実施形態について、図3を用いて説明する。図3は、本発明に係る太陽光発電システムの第2実施形態を示す図である。第2実施形態は、発電電流が低下したストリング2の発電電圧を昇圧チョッパによって昇圧することによって発電電流を回復させるものである。図1の第1実施形態では、外部の直流電源7を用いて必要な電圧を補充したが、第2実施形態ではストリング2の発電電圧自体を昇圧させるために、昇圧チョッパ回路を用いる。
[Second Embodiment: FIG. 3]
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 3 is a diagram showing a second embodiment of the photovoltaic power generation system according to the present invention. In the second embodiment, the power generation current is recovered by boosting the power generation voltage of the string 2 in which the power generation current has decreased by a boost chopper. In the first embodiment of FIG. 1, a necessary voltage is supplemented using the external DC power supply 7, but in the second embodiment, a boost chopper circuit is used to boost the generated voltage itself of the string 2.
 図3において、昇圧チョッパ回路は、インダクタ12、ストリング2の電流のスイッチング動作を行う半導体スイッチ13、逆流防止ダイオード5、直流コンデンサ14を備えている。半導体スイッチ13のゲート電圧を制御してオンオフ制御を行う制御装置8を備えている。半導体スイッチは、例えば、MOSFETやIGBTが好適である。制御装置8はシステム全体として1個設けるか、ストリング毎に設けてもよい。ストリング毎に設ける場合、電流計測装置4で検出される電流を最大にする制御を行えばよい。電圧は、出力高圧DC母線で決まっているからである。このストリングのMPPTは電流計測のみの簡易な制御で足りるのも特徴である。
 なお、ここでは一般的な昇圧チョッパ回路を利用しているので、その動作原理についての説明は省略する。
In FIG. 3, the step-up chopper circuit includes an inductor 12, a semiconductor switch 13 that performs a switching operation of the current of the string 2, a backflow prevention diode 5, and a DC capacitor 14. A control device 8 that controls the gate voltage of the semiconductor switch 13 to perform on / off control is provided. The semiconductor switch is preferably a MOSFET or an IGBT, for example. One control device 8 may be provided for the entire system or may be provided for each string. When provided for each string, it is sufficient to perform control to maximize the current detected by the current measuring device 4. This is because the voltage is determined by the output high voltage DC bus. The MPPT of this string is also characterized in that simple control with only current measurement is sufficient.
Since a general boost chopper circuit is used here, description of the operation principle is omitted.
 図3において、制御装置8は、電流計測装置4が計測した各ストリング2の電流値を常時監視しており、制御装置8は、ストリング2の電流値が異常か否かを判断する。判断の基準は第1実施形態と同じであるので、説明は省略する。
 制御装置8がストリング2の電流値を異常であると判断すると、制御装置8は、半導体スイッチ13のゲートにオン/オフ信号を与えてPWM制御を行う。これにより、パワーコンディショナ3に接続されるストリング2の電圧は上昇し、ストリング2は電流を回復する。
In FIG. 3, the control device 8 constantly monitors the current value of each string 2 measured by the current measuring device 4, and the control device 8 determines whether or not the current value of the string 2 is abnormal. Since the criteria for determination are the same as in the first embodiment, description thereof is omitted.
If the control device 8 determines that the current value of the string 2 is abnormal, the control device 8 gives an on / off signal to the gate of the semiconductor switch 13 to perform PWM control. As a result, the voltage of the string 2 connected to the power conditioner 3 increases, and the string 2 recovers the current.
 ストリング2の電圧の上昇分は20%程度(パネル約1~2枚分の電圧)であるので、半導体スイッチ13のPWMのデューティ比(Duty)は20%程度である。
 なお、制御装置8は、ストリング2の電流値を常に監視しているので、デューティ比を徐々に上げて行き、ストリング2の電流の増加が停止するところでデューティ比の増加を止めるように制御してもよい。電圧をそれ以上上昇させても、電圧が正常に戻れば、ストリングは電流が増加しないからであり、パワーコンディショナによるMPPT制御を妨害しない為でもある。
Since the increase in the voltage of the string 2 is about 20% (the voltage for about one or two panels), the PWM duty ratio (Duty) of the semiconductor switch 13 is about 20%.
Since the control device 8 constantly monitors the current value of the string 2, the control unit 8 gradually increases the duty ratio, and controls to stop increasing the duty ratio when the increase in the current of the string 2 stops. Also good. This is because even if the voltage is further increased, if the voltage returns to normal, the current does not increase in the string, and this does not disturb the MPPT control by the power conditioner.
 なお、第2実施形態における昇圧チョッパ回路の直流コンデンサ14のマイナス端子はグランドではなく、ストリング2のプラス側に接続されている。従って、直流コンデンサ14にかかる電圧はパネル約1~2枚分の電圧(約30~100V)にしかならず、定格電圧の小さい小型のコンデンサが使用できる。 Note that the negative terminal of the DC capacitor 14 of the boost chopper circuit in the second embodiment is connected to the positive side of the string 2 instead of the ground. Accordingly, the voltage applied to the DC capacitor 14 is only about one or two panels (about 30 to 100 V), and a small capacitor with a small rated voltage can be used.
 また、第2実施形態における昇圧チョッパ回路の半導体スイッチ13をオンし続けるとストリング2を短絡するスイッチとしても利用することができる。
 定電流的特性を持つパネルは、短絡しても最大電流以上は流れず、短絡することにより電圧が人体に危険の無い電圧になり、逆電流防止ダイオード5によって出力電流がゼロになるので、直流であっても、接続/遮断スイッチ11によって出力高電圧のDC母線からアークの発生無しに離脱することができる。
Further, if the semiconductor switch 13 of the boost chopper circuit in the second embodiment is kept on, it can be used as a switch for short-circuiting the string 2.
A panel with a constant current characteristic does not flow over the maximum current even if it is short-circuited. By short-circuiting, the voltage becomes a voltage that is not dangerous to the human body, and the output current becomes zero by the reverse current prevention diode 5, so that the direct current Even so, the connection / cutoff switch 11 can be disconnected from the output high voltage DC bus without generating an arc.
〔第2実施形態の変形例:図4、図5〕
 次に、本発明の第2実施形態の変形例について、図4を用いて説明する。図4は、本発明に係る太陽光発電システムの第2実施形態の変形例を示す図である。
 図4に示す第2実施形態の変形例は、図3に示す第2実施形態における半導体スイッチ13を磁気エネルギー回生スイッチ(Magnetic Energy Recovery Switch、以下「MERS」という。)13で置き換えたものであり、それ以外は第2実施形態と同一である。
[Modifications of Second Embodiment: FIGS. 4 and 5]
Next, a modification of the second embodiment of the present invention will be described with reference to FIG. FIG. 4 is a diagram showing a modification of the second embodiment of the photovoltaic power generation system according to the present invention.
The modification of the second embodiment shown in FIG. 4 is obtained by replacing the semiconductor switch 13 in the second embodiment shown in FIG. 3 with a magnetic energy recovery switch (hereinafter referred to as “MERS”) 13. Other than that, the second embodiment is the same as the second embodiment.
 図4において、MERS13は、MOSFET(S1)とダイオード(d1)の直列回路と、ダイオード(d2)とMOSFET(S2)の直列回路を並列に接続し、ダイオードd1のアノードとダイオードd2のカソード間に磁気エネルギーを回生する第二の直流コンデンサC1を接続して構成したものである。
 制御装置8は、MOSFET(S1)とMOSFET(S2)を同時にオン/オフするように制御する。第2実施形態と同様にPWM制御を行うが、スイッチング損失やノイズが少ないソフトスイッチングであることが特長である。また、MERSは並列導通になるので、片方のMOSFETに不動作、開放等の故障があった場合でもスイッチングは可能であり、信頼性が上がる。
 スイッチング損失をなくすためには、電圧ゼロ又は電流ゼロにオン又はオフをする必要があるが、MERS13はそれを実現することができる。図5を用いてそれを説明する。
In FIG. 4, the MERS 13 connects a series circuit of a MOSFET (S1) and a diode (d1) and a series circuit of a diode (d2) and a MOSFET (S2) in parallel, and connects between the anode of the diode d1 and the cathode of the diode d2. A second DC capacitor C1 for regenerating magnetic energy is connected.
The control device 8 controls the MOSFET (S1) and the MOSFET (S2) to be turned on / off simultaneously. Although PWM control is performed in the same manner as in the second embodiment, it is characterized by soft switching with little switching loss and noise. Further, since the MERS is in parallel conduction, switching is possible even when one MOSFET has a malfunction such as inoperative or open, and reliability is improved.
In order to eliminate the switching loss, it is necessary to turn on or off at zero voltage or zero current, but the MERS 13 can realize it. This will be described with reference to FIG.
 図5は、MERSの動作を説明するための図である。図5(A)は、MOSFET(S1)及びMOSFET(S2)がオンからオフになった時の状態を示している。S1及びS2が同時にオフになると、図4のインダクタ12に蓄積されている磁気エネルギーは、図5(A)の矢印の経路でコンデンサC1に充電される。磁気エネルギーが全てコンデンサC1に蓄積されると、それ以上電流が流れなくなり、電流はゼロになる。 FIG. 5 is a diagram for explaining the operation of MERS. FIG. 5A shows a state when the MOSFET (S1) and the MOSFET (S2) are turned off from on. When S1 and S2 are turned off at the same time, the magnetic energy stored in the inductor 12 in FIG. 4 is charged in the capacitor C1 through the path indicated by the arrow in FIG. When all the magnetic energy is stored in the capacitor C1, no more current flows and the current becomes zero.
 この状態でS1及びS2をオンすれば、図5(B)の状態に遷移し、線路のインダクタンスにより電流ゼロからゆっくりと立ち上がるのでソフトスイッチングが実現する。この時、電流は矢印の方向に流れる。コンデンサC1から電荷が放電してコンデンサC1の電圧が略ゼロになると、ダイオードd1及びd2が順方向に導通する並列導通状態になり、図5(C)の状態になる。図5(C)の状態で完全にコンデンサC1の電圧がゼロになった後で、S1及びS2をオフすれば、オフした瞬間はコンデンサの電圧がゼロであるから、ハードなスイッチングでは発生していた遮断時のサージが発生せずにソフトなスイッチングが実現し、図5(A)の状態になる。図5(A)~(C)のサイクルを繰り返すことにより、スイッチング損失のないソフトスイッチングが可能になる。 If S1 and S2 are turned on in this state, the state transitions to the state shown in FIG. 5B, and the current rises slowly from zero due to the inductance of the line, so that soft switching is realized. At this time, current flows in the direction of the arrow. When the electric charge is discharged from the capacitor C1 and the voltage of the capacitor C1 becomes substantially zero, the diodes d1 and d2 are connected in a parallel conduction state in the forward direction, and the state shown in FIG. 5C is obtained. If S1 and S2 are turned off after the voltage of capacitor C1 is completely zero in the state of FIG. 5C, the voltage of the capacitor is zero at the moment of turning off. Soft switching is realized without generating a surge at the time of interruption, and the state shown in FIG. By repeating the cycles of FIGS. 5A to 5C, soft switching without switching loss becomes possible.
 MERSをDC/DC変換のスイッチに使うことにより、磁気エネルギーが抵抗に消費されることなく回生されるのが第一の利点であるが、ソフトなスイッチングは、太陽発電のDC/DC変換で問題になるスイッチング・ノイズが少なくなることも大きな利点である。スイッチング・ノイズを低減するMERSを適用することは、広い面積を占めるメガソーラがノイズを曝露して近隣の無線通信の妨害や電磁妨害:EMI(Electro-Magnetic Interference)となることを防ぐ効果がある。 By using MERS as a switch for DC / DC conversion, the primary advantage is that magnetic energy is regenerated without being consumed by the resistor, but soft switching is a problem in DC / DC conversion of solar power generation. It is also a great advantage that the switching noise is reduced. Application of MERS that reduces switching noise has an effect of preventing mega-solars that occupy a large area from being exposed to noise and causing interference with nearby wireless communication and electromagnetic interference: EMI (Electro-Magnetic Interference).
〔第3実施形態:図6〕
 次に、本発明の第3実施形態について、図6を用いて説明する。図6は、本発明に係る太陽光発電システムの第3実施形態を示す図である。図1の第1実施形態では、外部の直流電源7を用いて必要な電圧を補充したが、第3実施形態ではストリング2の電圧を降圧チョッパで降圧して作り出した電圧(パネル約1~2枚分の電圧)を補充用の電圧としてストリング2のグランド側に注入するものである。
[Third Embodiment: FIG. 6]
Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 6 is a diagram showing a third embodiment of the photovoltaic power generation system according to the present invention. In the first embodiment of FIG. 1, a necessary voltage is supplemented by using an external DC power supply 7, but in the third embodiment, a voltage generated by stepping down the voltage of the string 2 with a step-down chopper (panels of about 1 to 2). The voltage for the sheet) is injected as a supplementary voltage to the ground side of the string 2.
 図6において、降圧チョッパ回路は、インダクタ12、半導体スイッチ13、逆流防止ダイオード5、直流コンデンサ14を備えている。また、半導体スイッチ13のゲート電圧を制御してオンオフ制御を行う制御装置8を備えている。半導体スイッチは、例えば、MOSFETやIGBTが好適である。制御装置8はシステム全体として1個設けるか、ストリング毎に設けてもよい。
 なお、ここでは一般的な降圧チョッパ回路を利用しているので、その動作原理についての説明は省略する。
In FIG. 6, the step-down chopper circuit includes an inductor 12, a semiconductor switch 13, a backflow prevention diode 5, and a DC capacitor 14. Moreover, the control apparatus 8 which controls the gate voltage of the semiconductor switch 13 and performs on-off control is provided. The semiconductor switch is preferably a MOSFET or an IGBT, for example. One control device 8 may be provided for the entire system or may be provided for each string.
Since a general step-down chopper circuit is used here, the explanation of the operation principle is omitted.
 また、補充する電圧値及び制御装置8の制御動作は第2実施形態と基本的に同じであるので説明は省略する。
 また、直流コンデンサ14にかかる電圧はパネル約1~2枚分の電圧(約30~100V)にしかならず、定格電圧の小さい小型のコンデンサが使用できるのも、第2実施形態と同じである。
Further, the voltage value to be replenished and the control operation of the control device 8 are basically the same as those in the second embodiment, and thus the description thereof is omitted.
Further, the voltage applied to the DC capacitor 14 is only about one or two panels (about 30 to 100 V), and a small capacitor with a small rated voltage can be used as in the second embodiment.
 また、第3実施形態における降圧チョッパ回路の半導体スイッチ13をオンし続けるとストリング2を短絡するスイッチとしても利用することができる。
 定電流的特性を持つパネルは、短絡しても最大電流以上は流れずに電圧が人体に危険の無い電圧になり、逆流防止ダイオード5によって出力電流がゼロになるので、直流であっても、接続/遮断スイッチ11によって出力高電圧のDC母線から離脱することができる。
Further, if the semiconductor switch 13 of the step-down chopper circuit in the third embodiment is kept on, it can be used as a switch for short-circuiting the string 2.
A panel with constant current characteristics does not flow beyond the maximum current even if short-circuited, and the voltage becomes a voltage that is not dangerous to the human body, and the output current becomes zero by the backflow prevention diode 5, so even if it is a direct current, The connection / disconnection switch 11 can be disconnected from the output high voltage DC bus.
〔第3実施形態の変形例:図7〕
 図7は、本発明に係る太陽光発電システムの第3実施形態の変形例を示す図である。
 図7に示す第3実施形態の変形例は、図6に示す第3実施形態における半導体スイッチ13をMERS13で置き換えたものであり、それ以外は第3実施形態と同一である。
 また、MERS13の構成、動作及び特長については、第2実施形態の変形例と同じであるので説明を省略する。
[Modification of Third Embodiment: FIG. 7]
FIG. 7 is a diagram showing a modification of the third embodiment of the photovoltaic power generation system according to the present invention.
The modification of the third embodiment shown in FIG. 7 is the same as the third embodiment except that the semiconductor switch 13 in the third embodiment shown in FIG. 6 is replaced with MERS13.
Further, the configuration, operation, and features of the MERS 13 are the same as those of the modified example of the second embodiment, and thus description thereof is omitted.
 上述の通り、第2実施形態、第3実施形態及びそれらの変形例の方法は、チョッパ回路がストリング2と並列接続されるので、ストリング電圧を短絡保護するクローバースイッチ(crowbar switch)としても使え、ストリングの設置工事や保守時の安全に寄与する。 As described above, since the chopper circuit is connected in parallel with the string 2 in the methods of the second embodiment, the third embodiment, and the modifications thereof, it can also be used as a crowbar switch that protects the string voltage from being short-circuited. Contributes to safety during string installation and maintenance.
〔第4実施形態:図8〕
 次に、本発明の第4実施形態について、図8を用いて説明する。図8は、本発明に係る太陽光発電システムの第4実施形態を示す図である。
 第4実施形態は、第2実施形態及び第3実施形態(それらの変形例も含む。)において、ストリングの電圧によって半導体スイッチ13を短絡させるために、半導体スイッチ13のドレイン-ゲート間を抵抗器15で接続し、かつ、制御装置8とゲートとの間を遮断するために機械接点スイッチ16を備えたものである。
[Fourth Embodiment: FIG. 8]
Next, a fourth embodiment of the present invention will be described with reference to FIG. FIG. 8 is a diagram showing a fourth embodiment of the photovoltaic power generation system according to the present invention.
The fourth embodiment is a resistor between the drain and gate of the semiconductor switch 13 in order to short-circuit the semiconductor switch 13 by the voltage of the string in the second embodiment and the third embodiment (including modifications thereof). 15 and a mechanical contact switch 16 for disconnecting between the control device 8 and the gate.
 図8(A)は、図3に示す第2実施形態及び図6に示す第3実施形態の半導体スイッチ13のドレイン-ゲート間を抵抗器15で接続し、かつ、制御装置8とゲートとの間を機械接点スイッチ16を介して接続した場合を示している。
 また、図8(B)は、図4に示す第2実施形態の変形例及び図7に示す第3実施形態の変形例のMERS13のMOSFET(S1)のドレイン-ゲート間を抵抗器15で接続し、かつ、制御装置8とゲートとの間を機械接点スイッチ16を介して接続した場合を示している。なお、S2の方に抵抗器15及び機械接点スイッチ16を接続しても構わない。
 また、抵抗器15の抵抗値は、高速なPWM制御を行う制御装置8の動作に影響を与えない程度の抵抗値であればよく、具体的には、制御装置8の出力インピーダンスが100Ω程度以下であるから、その10~100倍の1kΩ~10kΩであればよい。
FIG. 8A shows the connection between the drain and gate of the semiconductor switch 13 of the second embodiment shown in FIG. 3 and the third embodiment shown in FIG. A case is shown in which they are connected via a mechanical contact switch 16.
Further, FIG. 8B shows a connection between the drain and gate of the MOSFET (S1) of the MERS 13 in the modification of the second embodiment shown in FIG. 4 and the modification of the third embodiment shown in FIG. In addition, the case where the control device 8 and the gate are connected via the mechanical contact switch 16 is shown. Note that the resistor 15 and the mechanical contact switch 16 may be connected to S2.
Further, the resistance value of the resistor 15 may be a resistance value that does not affect the operation of the control device 8 that performs high-speed PWM control. Specifically, the output impedance of the control device 8 is about 100Ω or less. Therefore, it may be 1 kΩ to 10 kΩ which is 10 to 100 times that.
 10年以上の寿命を想定している太陽電池パネルは保守点検が必要である。その場合、ストリング毎に接続/遮断スイッチ11をオフにして、ストリング2を出力高電圧DC母線から切り離す必要があるが、ストリングの直流電力は数百V、数Aになっているため、これを接続/遮断スイッチ11により切り離すことは、アークの発生も考えられ、特殊な構造の直流遮断器を使用しなければ困難である。
 そこで、ストリング2を短絡して危険のない電圧まで下げる必要がある。この場合、半導体スイッチ13のゲートを制御装置8からの信号によってオンし続けることにより半導体スイッチ13を短絡する方法もあるが、安全装置としての信頼性に欠ける。すなわち、制御装置8の電源の信頼性が問題になるからである。
Solar cell panels that are expected to have a lifetime of 10 years or more require maintenance. In that case, it is necessary to turn off the connection / disconnection switch 11 for each string and disconnect the string 2 from the output high voltage DC bus. However, since the DC power of the string is several hundred volts and several A, this The disconnection by the connection / break switch 11 may cause an arc and is difficult unless a DC breaker having a special structure is used.
Therefore, it is necessary to short the string 2 to a voltage that is not dangerous. In this case, there is a method of short-circuiting the semiconductor switch 13 by continuing to turn on the gate of the semiconductor switch 13 by a signal from the control device 8, but the reliability as a safety device is lacking. That is, the reliability of the power supply of the control device 8 becomes a problem.
 第4実施形態は、制御装置8からの信号によってゲートを駆動して半導体スイッチ13を短絡するのではなく、機械接点スイッチ16をオフすることにより、ゲートを制御装置8から切り離し、ゲート電圧をストリング電圧まで引き上げて半導体スイッチ13を短絡するものである。その結果、ドレイン-ソース間は低電圧のスレッショルド電圧になる。従って、ストリングに電圧が発生している限り、機械接点スイッチ16をオフすれば半導体スイッチ13を短絡することができるので、制御装置8の電源の信頼性は問題とならない。 In the fourth embodiment, the gate is disconnected from the control device 8 by turning off the mechanical contact switch 16 instead of short-circuiting the semiconductor switch 13 by driving the gate by a signal from the control device 8, and the gate voltage is stringed. The semiconductor switch 13 is short-circuited by raising the voltage. As a result, the drain-source voltage becomes a low voltage threshold voltage. Therefore, as long as voltage is generated in the string, the semiconductor switch 13 can be short-circuited by turning off the mechanical contact switch 16, so that the reliability of the power supply of the control device 8 does not matter.
 なお、スイッチ16を機械接点スイッチとしたのは、半導体スイッチであればゲートを駆動するための信号が必要となるが、機械接点スイッチであれば、手動スイッチ(例えば、押しボタンスイッチやトグルスイッチ等)が使用でき、ゲート駆動信号が不要だからである。
 また、機械接点スイッチ16にはゲート制御用の電圧がかかるが、その電圧はわずかであり(15V以下)、電流もほとんど流れないため、微小電流用のスイッチでも構わない。
If the switch 16 is a mechanical contact switch, a signal for driving the gate is required if it is a semiconductor switch, but if it is a mechanical contact switch, a manual switch (for example, a push button switch or a toggle switch) This is because the gate drive signal is unnecessary.
Further, although a voltage for gate control is applied to the mechanical contact switch 16, the voltage is very small (15 V or less) and almost no current flows, so a switch for minute current may be used.
 以上説明したように、本発明に係る太陽光発電システムによれば、メガソーラにおける太陽電池パネルのストリング毎の電流を計測し、異常に低い電流値のストリングの電圧を直列に補充することで、補充した電力以上の電力増加があって、発電電力を増加させることができる。
 また、ストリングのパネル1枚が破損などして修理・交換するまでの間、補充電圧源を挿入してそのストリングの発電を続けることができる。電圧源はパネル1~2枚程度の電圧(約30~100V)が出力可能な直流電源であればよいので、産業用の汎用電源でもよく、精度も要求しない。
 以上で実施形態の説明を終了するが、以上説明した各実施形態、動作及び変形例の構成は、相互に矛盾しない限り任意に組み合わせて実施可能であることはもちろんである。
As described above, according to the photovoltaic power generation system according to the present invention, replenishment is performed by measuring the current for each string of the solar battery panel in the mega solar and replenishing the string voltage in an abnormally low current value in series. There is an increase in electric power that exceeds the generated electric power, and the generated electric power can be increased.
In addition, it is possible to continue the power generation of the string by inserting a supplementary voltage source until one string panel is damaged and repaired or replaced. Since the voltage source may be a DC power source capable of outputting a voltage of about 1 to 2 panels (about 30 to 100 V), it may be an industrial general-purpose power source and does not require accuracy.
The description of the embodiment is finished as described above, but it is needless to say that the configurations of the embodiments, operations, and modifications described above can be arbitrarily combined as long as they do not contradict each other.
1 太陽電池パネル
2 太陽電池ストリング
3 電力変換器(パワーコンディショナ)
4 電流計測装置
5 逆流防止ダイオード
6 電圧供給スイッチ
7 直流電源
8 制御装置
9 バイパスダイオード
10 コンデンサ
11 接続/遮断スイッチ
12 インダクタ
13 半導体スイッチ(磁気エネルギー回生スイッチ)
14 直流コンデンサ
15 抵抗器
16 機械接点スイッチ
S1、S2 半導体スイッチ(MOSFET)
C1 第二の直流コンデンサ
d1、d2 ダイオード
 
 
DESCRIPTION OF SYMBOLS 1 Solar cell panel 2 Solar cell string 3 Power converter (power conditioner)
4 Current measuring device 5 Backflow prevention diode 6 Voltage supply switch 7 DC power supply 8 Control device 9 Bypass diode 10 Capacitor 11 Connection / cutoff switch 12 Inductor 13 Semiconductor switch (magnetic energy regeneration switch)
14 DC capacitor 15 Resistor 16 Mechanical contact switch S1, S2 Semiconductor switch (MOSFET)
C1 Second DC capacitor d1, d2 diode

Claims (7)

  1.  複数の太陽電池パネルを直列に接続して構成されるストリングと、前記各太陽電池パネルで発生した直流電力を前記ストリングに接続された電力変換器により変換して負荷又は電力系統に供給する太陽光発電システムであって、該太陽光発電システムは、
     前記ストリングの電流を計測するために前記ストリングに直列に接続された電流計測手段と、
     前記ストリングの電流の逆流を防止するために、前記ストリングに直列に接続された逆流防止ダイオードと、
     前記逆流防止ダイオードと並列に接続され、前記ストリングの電圧を所定値だけ上昇させるための直流電源と、
     前記電流計測手段で計測された電流が所定の値以下の場合に、前記直流電源から前記ストリングに前記所定値の電圧を供給するように制御する制御手段を備えたことを特徴とする太陽光発電システム。
    A string formed by connecting a plurality of solar cell panels in series, and sunlight supplied to a load or a power system by converting DC power generated by each of the solar cell panels by a power converter connected to the string A solar power generation system,
    Current measuring means connected in series to the string to measure the current of the string;
    A backflow prevention diode connected in series with the string to prevent backflow of current in the string;
    A DC power source connected in parallel with the backflow prevention diode and for increasing the voltage of the string by a predetermined value;
    Photovoltaic power generation comprising control means for controlling to supply the voltage of the predetermined value from the DC power source to the string when the current measured by the current measuring means is below a predetermined value. system.
  2.  複数の太陽電池パネルを直列に接続して構成されるストリングと、前記各太陽電池パネルで発生した直流電力を前記ストリングに接続された電力変換器により変換して負荷又は電力系統に供給する太陽光発電システムであって、該太陽光発電システムは、
     前記ストリングの電流を計測するために前記ストリングに直列に接続された電流計測手段と、
     前記ストリングと前記電力変換器との間に挿入され、前記ストリングの電圧を所定の割合だけ上昇させるための昇圧チョッパ回路とを備え、
     前記昇圧チョッパ回路は、
     前記ストリングの電流のスイッチングを行う素子が半導体スイッチであって、かつ、前記昇圧チョッパ回路を構成する直流コンデンサのマイナス端子が前記ストリングのプラス端子に接続されるとともに、
     前記電流計測手段で計測された電流が所定の値以下の場合に、前記ストリングの電圧を所定の割合だけ上昇させるように前記半導体スイッチのゲートを制御する制御手段を備えたことを特徴とする太陽光発電システム。
    A string formed by connecting a plurality of solar cell panels in series, and sunlight supplied to a load or a power system by converting DC power generated by each of the solar cell panels by a power converter connected to the string A solar power generation system,
    Current measuring means connected in series to the string to measure the current of the string;
    A step-up chopper circuit inserted between the string and the power converter for increasing the voltage of the string by a predetermined rate;
    The step-up chopper circuit is
    The element for switching the current of the string is a semiconductor switch, and the negative terminal of the DC capacitor constituting the boost chopper circuit is connected to the positive terminal of the string,
    The solar system comprising: a control means for controlling the gate of the semiconductor switch so as to increase the voltage of the string by a predetermined ratio when the current measured by the current measuring means is less than or equal to a predetermined value. Photovoltaic system.
  3.  複数の太陽電池パネルを直列に接続して構成されるストリングと、前記各太陽電池パネルで発生した直流電力を前記ストリングに接続された電力変換器により変換して負荷又は電力系統に供給する太陽光発電システムであって、該太陽光発電システムは、
     前記ストリングの電流を計測するために前記ストリングに直列に接続された電流計測手段と、
     前記ストリングの電圧を所定の割合だけ降下させるための降圧チョッパ回路とを備え、
     前記降圧チョッパ回路は、
     前記ストリングの電流のスイッチングを行う素子が半導体スイッチであって、かつ、前記降圧チョッパ回路を構成する直流コンデンサのプラス端子が前記ストリングのマイナス端子に接続され、さらに前記直流コンデンサのマイナス端子がグランドに接続されるとともに、
     前記電流計測手段で計測された電流が所定の値以下の場合に、前記ストリングの電圧を前記所定の割合だけ降下させた電圧を前記ストリングに直列に付加するように前記半導体スイッチのゲートを制御する制御手段を備えたことを特徴とする太陽光発電システム。
    A string formed by connecting a plurality of solar cell panels in series, and sunlight supplied to a load or a power system by converting DC power generated by each of the solar cell panels by a power converter connected to the string A solar power generation system,
    Current measuring means connected in series to the string to measure the current of the string;
    A step-down chopper circuit for lowering the voltage of the string by a predetermined rate;
    The step-down chopper circuit is
    The element for switching the current of the string is a semiconductor switch, the plus terminal of the DC capacitor constituting the step-down chopper circuit is connected to the minus terminal of the string, and the minus terminal of the DC capacitor is connected to the ground. Connected,
    When the current measured by the current measuring means is less than or equal to a predetermined value, the gate of the semiconductor switch is controlled so that a voltage obtained by dropping the voltage of the string by the predetermined ratio is added in series to the string. A photovoltaic power generation system comprising a control means.
  4.  前記制御手段が、前記昇圧チョッパ回路又は降圧チョッパ回路における昇圧又は降圧の割合を徐々に変化させながら前記計測手段が計測した前記ストリングの電流値の変化を監視し、
     前記電流値の増加が停止したところで前記昇圧又は降圧の割合を固定化させるように制御することを特徴とする請求項2又は3に記載の太陽光発電システム。
    The control means monitors the change in the current value of the string measured by the measurement means while gradually changing the rate of step-up or step-down in the step-up chopper circuit or step-down chopper circuit,
    4. The photovoltaic power generation system according to claim 2, wherein control is performed so that the ratio of the step-up or step-down is fixed when the increase in the current value stops. 5.
  5.  前記ストリングの電流のスイッチングを行う素子が磁気エネルギー回生スイッチであって、
     該磁気エネルギー回生スイッチは、2個の半導体スイッチと2個のダイオードがそれぞれ同じ向きに対角線上に配置されたブリッジ回路を形成し、該ブリッジ回路の直流端子間に接続された第二の直流コンデンサを備えるとともに、
     前記制御手段は、前記ブリッジ回路の各半導体スイッチのゲートに制御信号を与えて、各半導体スイッチを同時にオン/オフ制御を行うことを特徴とする請求項2乃至4のいずれかに記載の太陽光発電システム。
    The element that switches the current of the string is a magnetic energy regenerative switch,
    The magnetic energy regenerative switch forms a bridge circuit in which two semiconductor switches and two diodes are arranged diagonally in the same direction, and a second DC capacitor connected between the DC terminals of the bridge circuit With
    5. The sunlight according to claim 2, wherein the control unit applies a control signal to a gate of each semiconductor switch of the bridge circuit to simultaneously perform on / off control of each semiconductor switch. Power generation system.
  6. 前記半導体スイッチがMOSFETであって、該MOSFETのドレイン-ゲート間を抵抗器で接続し、かつ、前記制御手段と前記ゲートとの間に機械接点スイッチを挿入し、
     前記機械接点スイッチをオフした時に、前記ストリングの電圧によって前記MOSFETをオンすることにより前記ストリングを短絡することを特徴とする請求項2乃至4のいずれかに記載の太陽光発電システム。
    The semiconductor switch is a MOSFET, the drain and gate of the MOSFET are connected by a resistor, and a mechanical contact switch is inserted between the control means and the gate;
    5. The photovoltaic power generation system according to claim 2, wherein when the mechanical contact switch is turned off, the string is short-circuited by turning on the MOSFET by a voltage of the string. 6.
  7.  前記半導体スイッチがMOSFETであって、少なくとも一方の前記MOSFETのドレイン-ゲート間を抵抗器で接続し、かつ、前記制御手段と前記ゲートとの間に機械接点スイッチを挿入し、
     前記機械接点スイッチをオフした時に、前記ストリングの電圧によって前記MOSFETをオンすることにより前記ストリングを短絡することを特徴とする請求項5に記載の太陽光発電システム。
     
     
    The semiconductor switch is a MOSFET, the drain-gate of at least one of the MOSFETs is connected by a resistor, and a mechanical contact switch is inserted between the control means and the gate;
    6. The photovoltaic power generation system according to claim 5, wherein when the mechanical contact switch is turned off, the string is short-circuited by turning on the MOSFET according to the voltage of the string.

PCT/JP2015/061314 2015-04-13 2015-04-13 Solar power generation system WO2016166787A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/061314 WO2016166787A1 (en) 2015-04-13 2015-04-13 Solar power generation system
JP2015530790A JP6037585B1 (en) 2015-04-13 2015-04-13 Solar power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/061314 WO2016166787A1 (en) 2015-04-13 2015-04-13 Solar power generation system

Publications (1)

Publication Number Publication Date
WO2016166787A1 true WO2016166787A1 (en) 2016-10-20

Family

ID=57126531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061314 WO2016166787A1 (en) 2015-04-13 2015-04-13 Solar power generation system

Country Status (2)

Country Link
JP (1) JP6037585B1 (en)
WO (1) WO2016166787A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107276519B (en) * 2017-08-14 2019-01-08 张若玮 Solar energy self-control power generating equipment
CN110502057B (en) * 2019-07-05 2020-12-25 北京空间飞行器总体设计部 Current equalizing method of spacecraft solar power adjusting module without current detection

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018826A1 (en) * 2011-08-01 2013-02-07 国立大学法人東京工業大学 Solar power generation system
JP2014067259A (en) * 2012-09-26 2014-04-17 Panasonic Corp Power conditioner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009131120A1 (en) * 2008-04-23 2009-10-29 シャープ株式会社 Power lines for solar power generation system, solar power generation system using the power lines, and method for inspecting malfunction of the solar power generation system
JP4673921B2 (en) * 2009-05-01 2011-04-20 オーナンバ株式会社 Anomaly detection apparatus and method for solar cell power generation system
US9285816B2 (en) * 2011-01-28 2016-03-15 Prakash Easwaran Harvesting power from DC (direct current) sources

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018826A1 (en) * 2011-08-01 2013-02-07 国立大学法人東京工業大学 Solar power generation system
JP2014067259A (en) * 2012-09-26 2014-04-17 Panasonic Corp Power conditioner

Also Published As

Publication number Publication date
JP6037585B1 (en) 2016-12-07
JPWO2016166787A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
KR101520981B1 (en) Localized Power Point Optimizer for Solar Cell Installations
US8212409B2 (en) Method for activating a multi-string inverter for photovoltaic plants
KR101648924B1 (en) Apparatus for power correction of solar power generation system that compensate variableness of solar cell module
CN108604607B (en) Protection circuit for a Photovoltaic (PV) module, method for operating the protection circuit and Photovoltaic (PV) system comprising such a protection circuit
US9966866B2 (en) Distributed power system, DC-DC converter, and power conditioner
JP6711296B2 (en) Power supply system, DC/DC converter and power conditioner
US11532985B2 (en) Switching circuits having multiple operating modes and associated methods
US10090691B2 (en) Power generation system of renewable-energy-based electric power generator and DC power source combiner provided with reverse current prevention device capable of preventing power loss in power generation system
CN115242092A (en) Flying capacitor three-level DCDC converter, photovoltaic system and control method
JP5211772B2 (en) Power conditioner operation control device and photovoltaic power generation system
JP6037585B1 (en) Solar power system
KR20160075054A (en) Maximum power point tracking apparatus and method
WO2014062168A1 (en) Systems and methods for controlling maximum power point tracking controllers
CN102163938B (en) Sunshine power generation device and sunshine power generation system
CN111869086B (en) Inverter
KR20130115719A (en) Grid-tied multistring photovoltaic inverter system
WO2020146999A1 (en) Pv power converter and control method and pv power plant using the same
US20240088643A1 (en) Dc-dc converter
CN221042783U (en) Circuit for inhibiting PID effect of photovoltaic module and photovoltaic inverter comprising circuit
CN117136482A (en) Photovoltaic power generation system
CN114243927A (en) Short-circuit type photovoltaic module turn-off device
CN116643137A (en) Power converter and boosting unit failure detection method thereof
CN117411426A (en) Circuit and method for inhibiting PID effect of photovoltaic module
KR20140020390A (en) Reverse voltage protecting system and method for protecting reverse voltage using the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015530790

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15889125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15889125

Country of ref document: EP

Kind code of ref document: A1