WO2016166035A1 - Dispositif modulaire de mesure sans contact et système de mesure et de contrôle correspondant - Google Patents

Dispositif modulaire de mesure sans contact et système de mesure et de contrôle correspondant Download PDF

Info

Publication number
WO2016166035A1
WO2016166035A1 PCT/EP2016/057854 EP2016057854W WO2016166035A1 WO 2016166035 A1 WO2016166035 A1 WO 2016166035A1 EP 2016057854 W EP2016057854 W EP 2016057854W WO 2016166035 A1 WO2016166035 A1 WO 2016166035A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
measuring device
support
measurement
frame
Prior art date
Application number
PCT/EP2016/057854
Other languages
English (en)
Inventor
Didier LE NEEL
Gwénaël SAMSON
Original Assignee
Mesure-Systems3D
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mesure-Systems3D filed Critical Mesure-Systems3D
Publication of WO2016166035A1 publication Critical patent/WO2016166035A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/245Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using a plurality of fixed, simultaneously operating transducers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/0002Arrangements for supporting, fixing or guiding the measuring instrument or the object to be measured
    • G01B5/0004Supports

Definitions

  • the present invention relates to the general field of dimensional measurement of mechanical parts of different types.
  • the invention relates more particularly to a metrological structure for carrying out three-dimensional precision control, for example.
  • Measuring devices based on laser sources and detectors can also be implemented to recreate the three-dimensional shape of a part and then to control it.
  • the present invention aims to solve the weaknesses of these prior techniques of measurement and dimensional control.
  • One of the aims of the invention is thus to remedy these drawbacks by proposing a non-contact measurement device of an object or part of an object, such as a mechanical part, comprising:
  • measuring means integral with a frame, said measuring means comprising at least one measuring module consisting of a source for emitting a light beam on the object, and an optical sensor oriented towards the object and able to detect the light beam reflected by the object.
  • such a measuring device is intended for a particular type of parts to control, and the user must therefore have as many measuring devices as types of parts to control.
  • said device further comprises second support means of said measuring module integral with said frame and comprising means for displacing said measuring module in an adjustable manner with respect to the object.
  • the measuring device according to the invention therefore does not have this drawback.
  • the measuring device according to the invention is modular and allows the user to measure several types of parts with the same machine, only by changing (easily and quickly) the configuration of the measuring device.
  • the modular metrological device of the invention makes it possible to digitize in three dimensions mechanical parts of different types for carrying out precision dimensional metrological control, for example.
  • the structure of the metrological device makes it possible to quickly configure several measurement modules (sorting) without contact, these modules being able to be spaced around the part to be checked, for example.
  • each measurement module is mounted on a positioning system comprising several degrees of freedom.
  • These measurement modules make it possible to generate a scatter of points representative of the part in the form of spatial coordinates of points in a three-dimensional space.
  • This set of points determined in the three dimensions of the space can then be processed to obtain the three-dimensional shape (or profile) of the piece and to control the volumetric shape and / or several dimensions (or dimensions) of the piece in the frame. a quality control.
  • Such a measuring device is particularly suitable for the three-dimensional precision measurement of mass-produced parts. It allows the user to control several types of parts with this same device, only by changing (easily and quickly) the configuration of the measurement modules of the measuring device.
  • the second support means comprise a rail mounted on the frame and cooperating with a movable carriage integral with said measuring module.
  • the positioning of the carriage on the rail allows the adjustment of the height "h”, parallel to the longitudinal axis of the measuring device, relative to the workpiece.
  • the second support means comprise a tilt support, or a support element, of the measurement module with respect to the object.
  • the tilt support is selected from a plurality of supports having different inclinations.
  • the inclination support comprises means for setting the inclination.
  • the second support means comprise a shim fixed between the movable carriage and the inclination support.
  • the shim is selected from a plurality of shims of different thicknesses.
  • the second support means comprise a fixing plate of said measuring module mounted on the inclination support.
  • the fixing plate is chosen from a plurality of plates having means for fixing the measurement module allowing different orientations of the measurement module with respect to the object.
  • shims can be used to fix and orient the measuring module with respect to the workpiece. control, so as to allow optimal configuration of the sensor (s) for the part to be controlled.
  • the frame is of cylindrical shape, the first support means of the object being disposed in the center of the frame and the measuring means arranged around the object.
  • the cylindrical shape of the measuring device allows for example the implementation of several measurement modules and the setting of their positioning around the part to be measured and controlled.
  • the first support means of the object are rotatable relative to the frame during the measurement, the measurement module being fixed.
  • the first support means of the object are fixed with respect to the frame during the measurement, the measurement module being mobile.
  • the invention also relates to a measurement and dimensional control system for an object or part of an object, such as a mechanical part, characterized in that it comprises a device for measuring said object or a portion of said object as described above, means for processing the measurements acquired by said measuring device in order to obtain at least one magnitude representative of a dimension and dimensional control means of said object or part of said object .
  • such a system is intended for the measurement and control of parts whose rotation, or the rotation of the sensors around the part, allows the acquisition of the shape of the part by the sensors, as by examples of annular parts, or parts such as a hexagonal ring, a nut, a toothed wheel, a piece of revolution, a full or hollow cylinder ...
  • Figure 1 is a perspective view of a measuring device according to one embodiment of the invention.
  • FIGS. 2A and 2B are partial sectional views of the measuring device of Figure 1 showing one of the measuring modules positioned in two distinct angular positions;
  • Figure 3 is a partial view of a measuring device according to the invention showing the mounting of the measuring module on the corresponding support;
  • FIG. 4 illustrates different examples of wedges, support elements and fixing plates that can be implemented in the support of a measurement module
  • FIGS. 5A and 5B are diagrammatic, lateral and top views, respectively, of a measuring module of a measuring device according to the invention and of a piece to be measured / controlled.
  • FIGS. 1 to 5B show, in a particular embodiment of the invention, a measurement device, or metrological block, 1 without contact.
  • a measuring device is associated with measurement processing means (not shown) in a system for the three-dimensional measurement and precision control of the dimensions of mechanical parts of different types.
  • the measuring device 1 consists, in the embodiment illustrated in FIG. 1, of a frame, or frame, 11 and of a slide-holder 12 which is rotatably mounted relative to the frame 11.
  • the door object 12 serves to maintain a mechanical part, or object, 2 to control.
  • the frame 11 comprises a cylindrical wall 111 which is closed at its lower end by a circular bottom 112.
  • the object-holder 12 is disposed at the center of the bottom 112 and is rotatably mounted around the vertical axis Z of the three-dimensional Cartesian coordinate system XYZ (called "machine mark"), Z axis corresponding to the longitudinal axis of the frame 11.
  • the measuring device 1 implements four supports 4A, 4B,
  • Each support 4A, 4B, 4C, 4D can be configured or modulated according to the part 2 to be inspected, which is here a ball bearing ring.
  • FIG. 3 illustrates the structure of the support 4A, it being understood that the other supports 4B, 4C and 4D have an identical structure.
  • the support 4A comprises a vertical rail 41 removably attached to the inner surface of the wall 111, the rail 41 extending parallel to the axis Z.
  • a carriage 43 is slidably mounted along the axis Z on the rail 41 (the height between the bottom 112 and the carriage 43 is referenced “h"') and can be locked in position by clamping wedges, for example (its stroke along the rail 41 being limited by an adjustment stop 42). It is on this carriage 43 that a measuring module 3A is mounted.
  • the carriage 43 carries a wedge 44 of parallelepipedal shape on which is mounted a support member 45.
  • the support member 45 has, here, an inclined surface (referenced 451 in FIG. 4) on which a plate is assembled. fixing 46 (and orientation) of the measuring module 3A.
  • fixing plate 46 which is of parallelepipedal shape, are drilled several fixing holes which offer the user several possibilities of orientation of the measuring module 3A with respect to the part 2 to control.
  • the supports 4A, 4B, 4C, 4D are arranged around the part 2 to be measured and controlled. It is noted that the inclined surface 451 of the support member 45 of the supports 4B, 4C, 4D is oriented towards the part 2, while the inclined surface 451 of the support element 45 of the support 4A is oriented in the opposite direction .
  • the elements 44, 45, 46 of the support 4A of the measurement module 3A are configurable according to the type of part 2 to be controlled. Different types of wedges 44, support elements 45 and fixing plates 46, illustrated in FIG. 4, can be used to fix and orient the measurement module 3A with respect to the part 2.
  • These elements 44, 45, 46 are chosen so that the measurement sensor used can acquire the area to be measured. It should also be noted that the number of sensors depends on the number of zones viewable by them.
  • a specific support member 45 can be created to obtain a particular configuration, as well as a fixing plate 46.
  • the wedges 44 are of variable thickness, and that the inclination of the inclined surface 451 of the support elements 45 is variable (it can vary from 0 ° to 90 °).
  • the fixing plates 46 each have a plurality of fasteners which allow an orientation about an axis perpendicular to the face of the plate.
  • a positioning parameter of the measurement module 3 around the piece 2 namely the angle " ⁇ " which is measured in the XY plane around the Z axis in the Cartesian coordinate system XYZ, and
  • the positioning of the carriage 43 on the rail 41 makes it possible to adjust the height "h" (parallel to the longitudinal axis of the measuring device 1) of the measurement module 3A with respect to the workpiece 2, and more precisely between the origin point of the Cartesian coordinate system X'Y'Z '(called "object reference") and the origin point of the Cartesian coordinate system X "Y" Z "(called” sensor reference ").
  • the closed cylindrical shape of the measuring device 1 allows the implementation of several measurement modules 3A to 3D and the parameterization of their positioning around the part 2 to be measured and controlled.
  • the wedge 44 makes it possible to adjust the distance "d" between the workpiece 2 and the measuring module 3A, and more precisely between the origin point of the Cartesian coordinate system X'Y'Z '(called "object reference") and the point origin of the Cartesian coordinate system X "Y” Z "(called” sensor mark ").
  • the support member 45 allows the adjustment of the inclination angle "a" between the workpiece 2 and the measurement module 3A, and more precisely between the plane X'Y 'and the plane Y "Z".
  • the fixing plate 46 allows the adjustment of the orientation angle " ⁇ " in the plane Y “Z” around the axis X “of the measuring module 3A with respect to the part 2.
  • the solution of the invention offers three axes of modularity for influencing five adjustment parameters, the parameter “h” being a function of the position of the carriage 43 on the rail 41, the parameter “ ⁇ ” depending on the position of the rail 41 on the frame 11 and the parameters “d”, “ ⁇ ", “ ⁇ ” depending on the choice of elements 44, 45, 46 interchangeable support 4A.
  • the measurement module 3A is, in this example, a laser distance measuring module operating according to the principle of triangulation. In known manner, such a measurement module is able to measure a distance by angular calculation. It also covers a large measuring range and has a high resolution.
  • the measurement module 3A comprises a fixed laser source (or emitter), in the form of a laser diode for example, which projects a point (or a line) laser on the part 2 to be measured and a fixed sensor (receiver), in the form of a CCD detector (for "charge-coupled device” in English, or “charge-coupled device” in French) or CMOS (for "Complementarity metal-oxide-semiconductor” in English or “semi- complementary metal oxide conductor ”) for example.
  • the laser source and the sensor are located on the same face 31A of the measurement module 3A, the face 31A being oriented towards the part 2.
  • the other measurement modules 3B to 3C are preferably identical.
  • the laser beam emitted by the source is reflected on the surface of the part 2 whose position or distance from the source is to be known (that is to say with respect to the measurement module 3A). Reflected light reaches the sensor at an angle that is a function of distance. The position of the beam reflected on the sensor as well as the distance between the source and the sensor of the measurement module 3A makes it possible to deduce distance information for each point acquired.
  • the measuring device 1 thus implements several measurement modules intended to generate a cloud of points representative of the part to be controlled, in the form of coordinates of points in a three-dimensional space.
  • the time required to record the points is relatively short (between 1 and 30 million points, depending on the number of measurement modules, these points being acquired in a time interval between 1 s and 1.5 s).
  • the set of points captured / recorded in the three dimensions of the space is then processed to acquire and control the volumetric shape of the piece 2 (the inner shape of a ring, for example) as part of a quality control of the part 2.
  • the system according to the invention implements a point cloud processing software and three-dimensional representation of the part 2 to be controlled from the measurements from the measurement modules 3A to 3D.
  • part 2 It is possible to control one or more dimensions of part 2. For example, it is possible to control the height of part 2 with two measurement modules, one module measuring the upper face of part 2 and another module measuring the underside of part 2. The measured value is compared to a set value.
  • Such a control system easily integrates into a production line.
  • the measuring device 1 is flexible in that it is easily reconfigurable for the production and control of new parts.
  • a calibration of the measuring device 1 is necessary after each modification of its configuration. This calibration is performed by positioning an "artifact" piece in place of the piece to be measured and making an acquisition with the sensor or sensors implemented. The result of this acquisition is used to define the position of the sensors in the machine coordinate system.
  • the measuring device 1 is accurate, reliable, allows fast measurements, and allows optimal measurement qualities (without degrading the control performance).
  • the measuring device 1 offers a measurement quality greater than or equal to ten micrometers.
  • the number of measurement modules is not limited to the example illustrated above. Thus, this number can be greater than or less than 4.
  • the rails 41 can be movably mounted on the inner surface of the frame 11 so as to be able to be moved in a circular manner around the part 2 to be controlled, and then to be fixed in the chosen angular position.
  • the angle " ⁇ " of positioning of each measurement module is a multiple of 15 °.
  • the object holder 12 is fixed and it is the frame 11 (and therefore the measuring modules 3A to 3D) which is rotatable around the part 2.
  • the shape of the frame 11 is not necessarily cylindrical but can take any other form adapted to the three-dimensional measurement of a part.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Optical Transform (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

L'invention concerne un dispositif de mesure sans contact d'un objet ou d'une partie d'un objet, tel une pièce mécanique, comprenant : des premiers moyens de support dudit objet; des moyens de mesure solidaires d'un bâti, lesdits moyens de mesure comprenant au moins un module de mesure constitué d'une source d'émission d'un faisceau lumineux sur l'objet, et d'un capteur optique orienté vers l'objet et apte à détecter le faisceau lumineux réfléchi par l'objet, ledit dispositif étant caractérisé en ce qu'il comprend en outre : des deuxièmes moyens de support dudit module de mesure solidaires dudit bâti et comprenant des moyens pour déplacer d'une manière réglable ledit module de mesure par rapport à l'objet.

Description

Dispositif modulaire de mesure sans contact et système de mesure et de contrôle correspondant
1. Domaine de l'invention
La présente invention concerne le domaine général de la mesure dimensionnelle de pièces mécaniques de différents types.
L'invention concerne plus particulièrement une structure métrologique pour la réalisation de contrôle tridimensionnel de précision, par exemple.
2. Solutions de l'art antérieur
Certains domaines industriels tels que l'aéronautique, l'automobile, l'horlogerie ... imposent que chaque pièce composant une structure soit réalisée avec une très grande précision dans ses dimensions ou sa forme.
Il est donc nécessaire de prévoir un contrôle dimensionnel de chacune de ces pièces afin de savoir si elles respectent bien les tolérances de fabrication requises. Un tel contrôle est généralement effectué sur la chaîne de fabrication.
De façon connue, il peut être effectué manuellement par un opérateur. Toutefois, l'inspection visuelle des pièces ne répond ni aux cadences de production élevées, ni aux exigences de qualité de certains domaines industriels, l'aéronautique notamment, certains défauts restant difficilement repérables à l 'œil nu.
On connaît également des méthodes mécaniques de contrôle automatisé, telles que les dispositifs de palpation, pour acquérir les dimensions et la forme d'une pièce, puis les contrôler.
Toutefois, ces dispositifs de palpation sont complexes, peu flexibles et mal adaptés à des pièces de petites dimensions. En outre, le temps nécessaire au relevé des points de la pièce à contrôler par le palpeur est relativement important.
Des dispositifs de mesure à base de sources laser et de détecteurs peuvent également être mis en œuvre pour recréer la forme tridimensionnelle d'une pièce, puis la contrôler.
Ce type de dispositifs nécessite toutefois un montage de contrôle particulier et une procédure d'étalonnage complexe pour chaque type de pièce à contrôler. 3. Exposé de l'invention
La présente invention a pour but de solutionner les faiblesses de ces techniques antérieures de mesure et de contrôle dimensionnel.
L'un des buts de l'invention est donc de remédier à ces inconvénients en proposant un dispositif de mesure sans contact d'un objet ou d'une partie d'un objet, tel une pièce mécanique, comprenant :
des premiers moyens de support dudit objet ;
des moyens de mesure solidaires d'un bâti, lesdits moyens de mesure comprenant au moins un module de mesure constitué d'une source d'émission d'un faisceau lumineux sur l'objet, et d'un capteur optique orienté vers l'objet et apte à détecter le faisceau lumineux réfléchi par l'objet.
De façon générale, un tel dispositif de mesure est destiné à un type particulier de pièces à contrôler, et l'utilisateur doit par conséquent posséder autant de dispositifs de mesure que de types de pièces à contrôler.
Selon l'invention, ledit dispositif comprend en outre des deuxièmes moyens de support dudit module de mesure solidaires dudit bâti et comprenant des moyens pour déplacer d'une manière réglable ledit module de mesure par rapport à l'objet.
Le dispositif de mesure conforme à l'invention ne présente donc pas cet inconvénient.
En effet, le dispositif de mesure conforme à l'invention est modulaire et permet à l'utilisateur de mesurer plusieurs types de pièces avec la même machine, uniquement en changeant (facilement et rapidement) la configuration du dispositif de mesure.
Le dispositif métrologique modulaire de l'invention permet de numériser en trois dimensions des pièces mécaniques de différents types pour la réalisation de contrôle métrologique dimensionnel de précision, par exemple.
La structure du dispositif métrologique permet une mise en configuration rapide de plusieurs modules de mesure (tri)dimensionnelle sans contact, ces modules pouvant être espacés autour de la pièce à contrôler, par exemple. Pour ce faire, chaque module de mesure est monté sur un système de positionnement comportant plusieurs degrés de liberté. Ces modules de mesure permettent la génération d'un nuage de points représentatifs de la pièce sous la forme de coordonnées spatiales de points dans un espace à trois dimensions.
Cet ensemble de points déterminés dans les trois dimensions de l'espace peut ensuite être traité pour obtenir la forme (ou profil) tridimensionnelle de la pièce et contrôler la forme volumétrique et/ou plusieurs dimensions (ou cotes) de la pièce dans le cadre d'un contrôle qualité.
Un tel dispositif de mesure est particulièrement adapté à la mesure tridimensionnelle de précision de pièces en grande série. Il permet à l'utilisateur de contrôler plusieurs types de pièces avec ce même dispositif, uniquement en changeant (facilement et rapidement) la configuration des modules de mesure du dispositif de mesure.
En particulier, les deuxièmes moyens de support comprennent un rail monté sur le bâti et coopérant avec un chariot mobile solidaire dudit module de mesure. Ainsi, le positionnement du chariot sur le rail permet le réglage de la hauteur « h », parallèlement à l'axe longitudinal du dispositif de mesure, par rapport à la pièce.
Selon un aspect particulier, les deuxièmes moyens de support comprennent un support d'inclinaison, ou un élément de support, du module de mesure par rapport à l'objet. Par exemple, le support d'inclinaison est choisi parmi une pluralité de supports présentant des inclinaisons différentes. Selon une caractéristique particulière, le support d'inclinaison comprend des moyens de paramétrage de l'inclinaison.
Selon un aspect particulier, les deuxièmes moyens de support comprennent une cale d'épaisseur fixée entre le chariot mobile et le support d'inclinaison. Par exemple, la cale d'épaisseur est choisie parmi une pluralité de cales d'épaisseurs différentes.
Selon un aspect particulier, les deuxièmes moyens de support comprennent une plaque de fixation dudit module de mesure montée sur le support d'inclinaison. Par exemple, la plaque de fixation est choisie parmi une pluralité de plaques présentant des moyens de fixation du module de mesure permettant des orientations différentes du module de mesure par rapport à l'objet.
Différents types de cales, d'éléments de support et de plaques de fixation, peuvent être utilisés pour fixer et orienter le module de mesure par rapport à la pièce à contrôler, de façon à permettre une configuration du ou des capteurs optimale pour la pièce à contrôler.
Selon une caractéristique particulière, le bâti est de forme cylindrique, les premiers moyens de support de l'objet étant disposés au centre du bâti et les moyens de mesure disposés autour de l'objet. La forme cylindrique du dispositif de mesure permet par exemple la mise en œuvre de plusieurs modules de mesure et le paramétrage de leur positionnement autour de la pièce à mesurer et contrôler.
Selon une variante, les premiers moyens de support de l'objet sont mobiles en rotation par rapport au bâti pendant la mesure, le module de mesure étant fixe.
Selon une autre variante, les premiers moyens de support de l'objet sont fixes par rapport au bâti pendant la mesure, le module de mesure étant mobile.
L'invention concerne, par ailleurs, un système de mesure et de contrôle dimensionnel d'un objet ou d'une partie d'un objet, tel une pièce mécanique, caractérisé en ce qu'il comprend un dispositif de mesure dudit objet ou d'une partie dudit objet tel que décrit précédemment, des moyens de traitement des mesures acquises par ledit dispositif de mesure afin d'obtenir au moins une grandeur représentative d'une dimension et des moyens de contrôle dimensionnel dudit objet ou d'une partie dudit objet.
Par exemple, un tel système est destiné à la mesure et au contrôle de pièces dont la mise en rotation, ou la mise en rotation des capteurs autour de la pièce, permette l'acquisition de la forme de la pièce par les capteurs, comme par exemple des pièces annulaires, ou des pièces telles qu'une bague hexagonale, un écrou, une roue dentée, une pièce de révolution, un cylindre plein ou creux...
4. Liste des figures
D'autres caractéristiques et avantages de la technique décrite apparaîtront plus clairement à la lecture de la description suivante d'un mode de réalisation, donné à titre de simple exemple illustratif et non limitatif, et des dessins annexés, parmi lesquels :
la figure 1 est une vue en perspective d'un dispositif de mesure selon un mode de réalisation de l'invention ;
- les figures 2A et 2B sont des vues en coupe partielle du dispositif de mesure de la figure 1 montrant un des modules de mesure positionné selon deux positions angulaires distinctes ; la figure 3 est une vue partielle d'un dispositif de mesure conforme à l'invention montrant le montage du module de mesure sur le support correspondant ;
la figure 4 illustre différents exemples de cales, d'éléments de support et de plaques de fixation pouvant être mises en œuvre dans le support d'un module de mesure ;
les figures 5A et 5B sont des vues schématiques, latérales et du dessus respectivement, d'un module de mesure d'un dispositif de mesure conforme à l'invention et d'une pièce à mesurer/contrôler.
5. Description
On présente en relation avec les figures 1 à 5B un dispositif de mesure, ou bloc métrologique, 1 sans contact, selon un mode de réalisation particulier de l'invention. Un tel dispositif de mesure est associé à des moyens de traitement des mesures (non représentés) dans un système pour la mesure tridimensionnelle et le contrôle de précision des dimensions de pièces mécaniques de différents types.
Le dispositif de mesure 1 est constitué, dans le mode de réalisation illustré sur la figure 1, d'un bâti, ou châssis, 11 et d'un porte-objet 12 qui est monté mobile en rotation par rapport au châssis 11. Le porte-objet 12 sert à maintenir une pièce mécanique, ou objet, 2 à contrôler.
Le bâti 11 comprend une paroi 111 cylindrique qui est fermée à son extrémité inférieure par un fond 112 circulaire. Comme cela est visible sur les figures 2A et 2B, le porte-objet 12 est disposé au centre du fond 112 et est monté mobile en rotation autour de l'axe vertical Z du repère cartésien tridimensionnel XYZ (dit "repère machine"), l'axe Z correspondant à l'axe longitudinal du bâti 11.
Sur la figure 1, le dispositif de mesure 1 met en œuvre quatre supports 4A, 4B,
4C, 4D d'un module de mesure 3 dimensionnelle sans contact.
Chaque support 4A, 4B, 4C, 4D est configurable ou modulable en fonction de la pièce 2 à contrôler, qui est ici une bague de roulement à bille.
La figure 3 illustre la structure du support 4A, étant entendu que les autres supports 4B, 4C et 4D présentent une structure identique.
Le support 4A comporte un rail 41 vertical fixé de façon amovible sur la surface intérieure de la paroi 111, le rail 41 s'étendant parallèlement à l'axe Z. Un chariot 43 est monté coulissant selon l'axe Z sur le rail 41 (la hauteur entre le fond 112 et le chariot 43 est référencée "h"') et peut être verrouillé en position par des coins de serrage, par exemple (sa course le long du rail 41 étant limitée par une butée de réglage 42). C'est sur ce chariot 43 qu'un module de mesure 3A est monté.
Plus précisément, le chariot 43 porte une cale 44 de forme parallélépipédique sur laquelle est montée un élément de support 45. L'élément de support 45 présente, ici, une surface inclinée (référencée 451 sur la figure 4) sur laquelle est assemblée une plaque de fixation 46 (et d'orientation) du module de mesure 3A.
Dans la plaque de fixation 46, qui est de forme parallélépipédique, sont percés plusieurs trous de fixation qui offrent à l'utilisateur plusieurs possibilités d'orientation du module de mesure 3A par rapport à la pièce 2 à contrôler.
Sur la figure 1, du fait de la forme cylindrique du bâti 11, les supports 4A, 4B, 4C, 4D sont disposés autour de la pièce 2 à mesurer et contrôler. On note que la surface inclinée 451 de l'élément de support 45 des supports 4B, 4C, 4D est orientée vers la pièce 2, tandis que la surface inclinée 451 de l'élément de support 45 du support 4A est orientée dans la direction opposée.
Les éléments 44, 45, 46 du support 4A du module de mesure 3A sont configurables selon le type de pièce 2 à contrôler. Différents types de cales 44, d'éléments de support 45 et de plaques de fixation 46, illustrés sur la figure 4, peuvent être utilisés pour fixer et orienter le module de mesure 3A par rapport à la pièce 2.
Ces éléments 44, 45, 46 sont choisis de façon à ce que le capteur de mesure utilisé puisse acquérir la zone que l'on souhaite mesurer. Il est à noter également que le nombre de capteurs dépend du nombre de zones visualisables par ces derniers.
Par ailleurs, si une pièce donnée à contrôler nécessite un angle tout à fait particulier, il est possible de réaliser les éléments 44, 45 et 46 en une seule pièce, une telle mise en œuvre permettant que l'ensemble monté sur le rail puisse être changé rapidement.
Par exemple, lorsqu'une pluralité de cales est nécessaire pour obtenir la configuration souhaitée, il est possible de réaliser une seule cale qui intègre l'ensemble des angles obtenus par la pluralité de cales utilisées pour la configuration choisie. De même, un élément de support 45 spécifique peut être créé pour obtenir une configuration particulière, ainsi qu'une plaque de fixation 46. On note sur la figure 4 que les cales 44 sont d'épaisseur variable, et que l'inclinaison de la surface inclinée 451 des éléments de support 45 est variable (elle peut varier de 0° à 90°). On note également sur la figure 4 que les plaques de fixation 46 présentent chacune une pluralité de fixations qui permettent une orientation autour d'un axe perpendiculaire à la face de la plaque.
Comme illustré en figures 5a et 5b, on distingue cinq paramètres de réglage du module de mesure 3 par rapport à la pièce 2, à savoir :
- un paramètre de positionnement du module de mesure 3 autour de la pièce 2, à savoir l'angle « Θ » qui est mesuré dans le plan XY autour de l'axe Z dans le repère cartésien XYZ, et
- quatre paramètres "h", "d", "α", " β " propres à l'acquisition des données de mesure et de contrôle.
Ces paramètres servent à la calibration initiale du dispositif de mesure 1, qui sera complétée par la suite avec l'artéfact de calibration, comme décrit ci-après.
Comme illustré sur les figures 5A et 5B, le positionnement du chariot 43 sur le rail 41 permet le réglage de la hauteur « h » (parallèlement à l'axe longitudinal du dispositif de mesure 1) du module de mesure 3A par rapport à la pièce 2, et plus précisément entre le point d'origine du repère cartésien X'Y'Z' (dit "repère objet") et le point d'origine du repère cartésien X"Y"Z" (dit "repère capteur").
La forme cylindrique fermée du dispositif de mesure 1 permet la mise en œuvre de plusieurs modules de mesure 3A à 3D et le paramétrage de leur positionnement autour de la pièce 2 à mesurer et contrôler.
La cale 44 permet de régler la distance « d » entre la pièce 2 et le module de mesure 3A, et plus précisément entre le point d'origine du repère cartésien X'Y'Z' (dit "repère objet") et le point d'origine du repère cartésien X"Y"Z" (dit "repère capteur").
L'élément de support 45 permet le réglage de l'angle d'inclinaison « a » entre la pièce 2 et le module de mesure 3A, et plus précisément entre le plan X'Y' et le plan Y"Z".
La plaque de fixation 46 permet le réglage de l'angle d'orientation « β » dans le plan Y"Z" autour de l'axe X" du module de mesure 3A par rapport à la pièce 2.
En d'autres termes, la solution de l'invention offre trois axes de modularité permettant d'influer sur cinq paramètres de réglage, le paramètre "h" étant fonction de la positon du chariot 43 sur le rail 41, le paramètre « Θ » étant fonction de la positon du rail 41 sur le bâti 11 et les paramètres "d", "α", " β " étant fonction du choix des éléments 44, 45, 46 interchangeables du support 4A.
Le module de mesure 3A est, dans cet exemple, un module laser de mesure de distance fonctionnant selon le principe de la triangulation. De façon connue, un tel module de mesure est apte à mesurer une distance par calcul angulaire. Il couvre, par ailleurs, une grande plage de mesure et présente une haute résolution.
Le module de mesure 3A comprend une source (ou émetteur) laser fixe, sous la forme d'une diode laser par exemple, qui projette un point (ou une ligne) laser sur la pièce 2 à mesurer et un capteur (récepteur) fixe, sous la forme d'un détecteur de type CCD (pour "charge-coupled device" en anglais, ou "dispositif à transfert de charge" en français) ou CMOS (pour "Complementarity metal-oxide-semiconductor" en anglais ou "semi-conducteur à oxyde de métal complémentaire") par exemple. La source laser et le capteur sont situés sur la même face 31A du module de mesure 3A, la face 31A étant orientée vers la pièce 2.
Les autres modules de mesure 3B à 3C sont, de préférence, identiques.
Lorsque le porte-objet 12 (et donc la pièce 2) est mis en rotation, le faisceau laser émis par la source est réfléchi sur la surface de la pièce 2 dont on désire connaître la position ou l'éloignement par rapport à la source (c'est-à-dire par rapport au module de mesure 3A). La lumière réfléchie atteint le capteur sous un angle qui est fonction de la distance. La position du faisceau réfléchi sur le capteur ainsi que la distance séparant la source et le capteur du module de mesure 3A, permettent de déduire des informations de distance pour chaque point acquis.
Autres aspects et variantes
Le dispositif de mesure 1 met ainsi en œuvre plusieurs modules de mesure destinés à générer un nuage de points représentatifs de la pièce à contrôler, sous la forme de coordonnées de points dans un espace à trois dimensions.
Le temps nécessaire au relevé des points est relativement court (entre 1 et 30 millions de points, selon le nombre de modules de mesure, ces points étant acquis dans un intervalle de temps compris entre 1 s et 1,5 s).
L'ensemble de points saisis/relevés dans les trois dimensions de l'espace est ensuite être traité pour acquérir et contrôler la forme volumétrique de la pièce 2 (la forme intérieure d'une bague, par exemple) dans le cadre d'un contrôle qualité de la pièce 2.
Pour ce faire, le système conforme à l'invention met en œuvre un logiciel de traitement du nuage de points et de représentation tridimensionnelle de la pièce 2 à contrôler à partir des mesures issues des modules de mesure 3A à 3D.
Il est possible de contrôler une ou plusieurs dimensions de la pièce 2. A titre d'exemple, il est possible de contrôler la hauteur de la pièce 2 avec deux modules de mesure, un module mesurant la face supérieure de la pièce 2 et un autre module mesurant la face inférieure de la pièce 2. La valeur mesurée est comparée à une valeur de consigne.
Un tel système de contrôle s'intègre aisément dans une ligne de production.
Le dispositif de mesure 1 est flexible, en ce sens qu'il est aisément reconfigurable pour la production et le contrôle de nouvelles pièces.
On note qu'un calibrage du dispositif de mesure 1 est nécessaire après chaque modification de sa configuration. Ce calibrage est réalisé en positionnant une pièce « artéfact » en lieu et place de la pièce à mesurer et en réalisant une acquisition avec le ou les capteurs mis en œuvre. Le résultat de cette acquisition est utilisé pour définir la position des capteurs dans le repère de la machine.
Le dispositif de mesure 1 est précis, fiable, permet des mesures rapides, et permet des qualités de mesure optimales (sans dégrader les performances de contrôle).
Ainsi, le dispositif de mesure 1 offre une qualité de mesure supérieure ou égale à dix micromètres.
Il permet l'acquisition complète de la géométrie d'un objet de forme complexe, et notamment de bagues de différents diamètres.
Par ailleurs, le nombre de modules de mesure n'est pas limité à l'exemple illustré précédemment. Ainsi, ce nombre peut être supérieur ou inférieur à 4.
Les rails 41 peuvent être montés mobiles sur la surface intérieure du bâti 11 de façon à pouvoir être déplacés de façon circulaire autour de la pièce 2 à contrôler, puis être fixés dans la position angulaire choisie.
Dans une mise en œuvre particulière de l'invention, l'angle « Θ » de positionnement de chaque module de mesure est un multiple de 15°. Dans une variante du mode de réalisation décrit précédemment, le porte-objet 12 est fixe et c'est le bâti 11 (et donc les modules de mesure 3A à 3D) qui est mobile en rotation autour de la pièce 2.
On note, par ailleurs, que la forme du bâti 11 n'est pas forcément cylindrique mais peut prendre tout autre forme adaptée à la mesure tridimensionnelle d'une pièce.
En outre, d'autres types de modules de mesure peuvent être mis en œuvre.

Claims

REVENDICATIONS
1. Dispositif de mesure sans contact d'un objet ou d'une partie d'un objet, tel une pièce mécanique, comprenant :
des premiers moyens de support dudit objet ;
des moyens de mesure solidaires d'un bâti, lesdits moyens de mesure comprenant au moins un module de mesure constitué d'une source d'émission d'un faisceau lumineux sur l'objet, et d'un capteur optique orienté vers l'objet et apte à détecter le faisceau lumineux réfléchi par l'objet,
ledit dispositif étant caractérisé en ce qu'il comprend en outre :
des deuxièmes moyens de support dudit module de mesure solidaires dudit bâti et comprenant des moyens pour déplacer d'une manière réglable ledit module de mesure par rapport à l'objet.
2. Dispositif de mesure selon la revendication 1, caractérisé en ce que les deuxièmes moyens de support comprennent un rail monté sur ledit bâti et coopérant avec un chariot mobile solidaire dudit module de mesure.
3. Dispositif de mesure selon la revendication 1 ou 2, caractérisé en ce que les deuxièmes moyens de support comprennent un support d'inclinaison dudit module de mesure par rapport à l'objet.
4. Dispositif de mesure selon la revendication 3, caractérisé en ce que le support d'inclinaison est choisi parmi une pluralité de supports présentant des inclinaisons différentes.
5. Dispositif de mesure selon la revendication 3, caractérisé en ce que le support d'inclinaison comprend des moyens de paramétrage de l'inclinaison.
6. Dispositif de mesure selon l'une des revendications 3 à 5, caractérisé en ce que les deuxièmes moyens de support comprennent une cale d'épaisseur fixée entre le chariot mobile et le support d'inclinaison.
7. Dispositif de mesure selon la revendication 6, caractérisé en ce que la cale d'épaisseur est choisie parmi une pluralité de cales d'épaisseurs différentes.
8. Dispositif de mesure selon l'une des revendications 3 à 7, caractérisé en ce que les deuxièmes moyens de support comprennent une plaque de fixation dudit module de mesure montée sur le support d'inclinaison.
9. Dispositif de mesure selon la revendication 8, caractérisé en ce que la plaque de fixation est choisie parmi une pluralité de plaques présentant des moyens de fixation du module de mesure permettant des orientations différentes du module de mesure par rapport à l'objet.
10. Dispositif de mesure selon l'une des revendications 1 à 9, caractérisé en ce que le bâti est de forme cylindrique, les premiers moyens de support dudit objet étant disposés au centre dudit bâti et les moyens de mesure disposés autour dudit objet.
11. Dispositif de mesure selon l'une des revendications 1 à 10, caractérisé en ce que les premiers moyens de support dudit objet sont mobiles en rotation par rapport audit bâti pendant la mesure, ledit au moins module de mesure étant fixe.
12. Dispositif de mesure selon l'une des revendications 1 à 10, caractérisé en ce que les premiers moyens de support dudit objet sont fixes par rapport audit bâti pendant la mesure, ledit au moins module de mesure étant mobile.
13. Système de mesure et de contrôle dimensionnel d'un objet ou d'une partie d'un objet, tel une pièce mécanique, caractérisé en ce qu'il comprend un dispositif de mesure dudit objet ou d'une partie dudit objet selon l'une des revendications 1 à 12, des moyens de traitement des mesures acquises par ledit dispositif de mesure afin d'obtenir au moins une grandeur représentative d'une dimension et des moyens de contrôle dimensionnel dudit objet ou d'une partie dudit objet.
14. Système de mesure et de contrôle selon la revendication 13, caractérisé en qu'il est destiné à la mesure et au contrôle de pièces annulaires.
PCT/EP2016/057854 2015-04-14 2016-04-08 Dispositif modulaire de mesure sans contact et système de mesure et de contrôle correspondant WO2016166035A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1553264A FR3035207B1 (fr) 2015-04-14 2015-04-14 Dispositif modulaire de mesure sans contact et systeme de mesure et de controle correspondant
FR1553264 2015-04-14

Publications (1)

Publication Number Publication Date
WO2016166035A1 true WO2016166035A1 (fr) 2016-10-20

Family

ID=53366148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/057854 WO2016166035A1 (fr) 2015-04-14 2016-04-08 Dispositif modulaire de mesure sans contact et système de mesure et de contrôle correspondant

Country Status (2)

Country Link
FR (1) FR3035207B1 (fr)
WO (1) WO2016166035A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10724852B2 (en) 2015-11-02 2020-07-28 Mesure-Systems3D SAS Device for the contactless three-dimensional inspection of a mechanical component with toothing
US10731975B2 (en) * 2015-11-02 2020-08-04 Mesure-Systems3D SAS Device for the contactless three-dimensional inspection of blades for a turbomachine, especially an aircraft turbine or jet engine
WO2022109542A1 (fr) * 2020-11-20 2022-05-27 Gleason Metrology Systems Corporation Positionnement de capteur sans contact automatisé

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61162705A (ja) * 1985-01-14 1986-07-23 Hitachi Zosen Corp 立体計測方法
DE4301538A1 (de) * 1992-03-17 1994-07-28 Peter Dr Ing Brueckner Verfahren und Anordnung zur berührungslosen dreidimensionalen Messung, insbesondere zur Messung von Gebißmodellen
DE102008036264A1 (de) * 2008-08-04 2010-02-18 Data M Sheet Metal Solutions Gmbh Optischer Sensor und Verfahren zum Vermessen von Profilen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61162705A (ja) * 1985-01-14 1986-07-23 Hitachi Zosen Corp 立体計測方法
DE4301538A1 (de) * 1992-03-17 1994-07-28 Peter Dr Ing Brueckner Verfahren und Anordnung zur berührungslosen dreidimensionalen Messung, insbesondere zur Messung von Gebißmodellen
DE102008036264A1 (de) * 2008-08-04 2010-02-18 Data M Sheet Metal Solutions Gmbh Optischer Sensor und Verfahren zum Vermessen von Profilen

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10724852B2 (en) 2015-11-02 2020-07-28 Mesure-Systems3D SAS Device for the contactless three-dimensional inspection of a mechanical component with toothing
US10731975B2 (en) * 2015-11-02 2020-08-04 Mesure-Systems3D SAS Device for the contactless three-dimensional inspection of blades for a turbomachine, especially an aircraft turbine or jet engine
US11359913B2 (en) 2015-11-02 2022-06-14 DWFritz Automation, Inc. Device for the contactless three-dimensional inspection of blades for a turbomachine, especially an aircraft turbine or jet engine
US11371836B2 (en) 2015-11-02 2022-06-28 DWFritz Automation, Inc. Device for the contactless three-dimensional inspection of a mechanical component with toothing
WO2022109542A1 (fr) * 2020-11-20 2022-05-27 Gleason Metrology Systems Corporation Positionnement de capteur sans contact automatisé

Also Published As

Publication number Publication date
FR3035207B1 (fr) 2021-01-29
FR3035207A1 (fr) 2016-10-21

Similar Documents

Publication Publication Date Title
EP2629049A2 (fr) Palpeur
CA3137237A1 (fr) Module d'usinage et machine-outil avec une unite de detection du profil de l'outil, et procede de detection du profil de l'outil
WO2016166035A1 (fr) Dispositif modulaire de mesure sans contact et système de mesure et de contrôle correspondant
EP3371549B1 (fr) Dispositif de contrôle tridimensionnel sans contact d'une pièce mécanique à denture
EP3069185A1 (fr) Dispositif et methode de mise au point tridimensionnelle pour microscope
FR2927175A1 (fr) Dispositif d'inspection de plaquettes semi-conductrices
EP3728990B1 (fr) Cible tridimensionnelle avec double structure, dispositif et procédé de mesure optique avec une telle cible
EP3221660B1 (fr) Procede et dispositif de caracterisation en trois dimensions d'une surface d'un objet
EP0647829A1 (fr) Dispositif et procédé pour le contrôle géométrique de véhicule
WO1998043112A1 (fr) Dispositif optique de mesure de distance sans contact d'une source lumineuse
CA2962728C (fr) Procede d'orientation de composants de tube
EP1308707B1 (fr) Dispositif de plateau tournant destiné à supporter et orienter une charge
EP3728991B1 (fr) Machine-outil avec un dispositif de mesure optique pour le reperage tridimensionnel entre le porte-outil et le support de piece et procede de mesure optique tridimensionnelle correspondant
EP0781396B1 (fr) Procede de correlation des mesures tridimensionnelles realisees par des systemes d'acquisition d'images et installation pour sa mise en oeuvre
FR2713785A1 (fr) Système de repérage d'orientation d'un instrument d'observation.
CH649408A5 (fr) Appareil de mesure, notamment d'epaisseurs de couches minces, avec mise en coincidence de l'axe d'une sonde de mesure avec une normale a la surface d'une piece a controler.
CH714503A1 (fr) Machine-outil avec un dispositif de mesure optique pour le repérage tridimensionnel entre le porte-outil et le support de pièce.
WO2010034955A1 (fr) Mise au point d'un microscope a reflexion
EP1195575A1 (fr) Dispositif et procédé de détermination de coordonnées surfacique et leurs utilisations et procédé de positionnement d'un ensemble emetteur laser-récepteur
FR3081593A1 (fr) Procede d'etalonnage d'une camera d'un systeme de determination d'images tridimensionnelles et mire d'etalonnage
EP3517940A1 (fr) Procede et système de determination de la variation d'intensite diffractee par un reseau bidimensionnel organise le long d'une direction donnee
CH714502A1 (fr) Système optique pour la mesure tridimensionnelle, dispositif et procédé de mesure avec un tel système optique.
WO2020260594A1 (fr) Machine et méthode de contrôle de pièces mécaniques
CH714501A1 (fr) Cible tridimensionnelle avec double structure, dispositif et procédé de mesure optique avec une telle cible.
WO2002059544A1 (fr) Dispositif de mesure par projection optique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16715324

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16715324

Country of ref document: EP

Kind code of ref document: A1