WO2016165152A1 - 基于超宽频无线定位技术的道路监测系统及监测方法 - Google Patents
基于超宽频无线定位技术的道路监测系统及监测方法 Download PDFInfo
- Publication number
- WO2016165152A1 WO2016165152A1 PCT/CN2015/077217 CN2015077217W WO2016165152A1 WO 2016165152 A1 WO2016165152 A1 WO 2016165152A1 CN 2015077217 W CN2015077217 W CN 2015077217W WO 2016165152 A1 WO2016165152 A1 WO 2016165152A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- road
- ultra
- traffic flow
- monitoring
- network mode
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/0269—Inferred or constrained positioning, e.g. employing knowledge of the physical or electromagnetic environment, state of motion or other contextual information to infer or constrain a position
- G01S5/02695—Constraining the position to lie on a curve or surface
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
- G08G1/0108—Measuring and analyzing of parameters relative to traffic conditions based on the source of data
- G08G1/012—Measuring and analyzing of parameters relative to traffic conditions based on the source of data from other sources than vehicle or roadside beacons, e.g. mobile networks
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/052—Detecting movement of traffic to be counted or controlled with provision for determining speed or overspeed
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/065—Traffic control systems for road vehicles by counting the vehicles in a section of the road or in a parking area, i.e. comparing incoming count with outgoing count
Definitions
- the present invention belongs to the field of road monitoring, and in particular relates to a road monitoring system and a monitoring method based on ultra-wideband wireless positioning technology.
- the road monitoring system is mainly based on video surveillance.
- the monitoring points are distributed in the road intersections and the road sections where the traffic flow is concentrated, and the road traffic conditions are uploaded through the image transmission channel.
- the central duty officer can understand the road conditions in each area according to the situation, so as to adjust the traffic flow of each intersection to ensure smooth traffic.
- the existing road monitoring system cannot perform high-precision positioning of the vehicles in the road, and the positioning stability is insufficient, and it is impossible to count the traffic flow of the same road according to the vehicles moving at high speed.
- the reason is that the existing road monitoring systems generally adopt the following three positioning methods, which are detailed as follows:
- the first positioning method adopts GPS positioning mode. Since GPS positioning is global positioning, it will be affected by various factors, and the positioning accuracy is low. Therefore, the road monitoring system using GPS positioning method cannot be used for roads. High-precision positioning of vehicles in the middle;
- the second positioning method in the form of video monitoring, because the image data is limited by the coverage of the camera, there are few identifiable images in the background, and the image is susceptible to light and dark interference, thus identifying the image in the image. Since the success rate of the vehicle is low, it is impossible to accurately position the vehicle on the road, and it is not possible to count the traffic flow of the same road based on the vehicle moving at a high speed.
- An object of the embodiments of the present invention is to provide a road monitoring system based on an ultra-wideband wireless positioning technology, which aims to solve the existing road monitoring system, and cannot perform high-precision positioning and insufficient positioning stability on the road vehicles. It is not possible to count the traffic flow of the same road based on the vehicles moving at high speed.
- Embodiments of the present invention are implemented in this manner, a road monitoring system based on ultra-wideband wireless positioning technology, including:
- At least three base stations located next to the road, interconnected and synchronized, are configured to receive the ultra-wideband pulse signal, and upload the received engraving of the ultra-wideband pulse signal;
- a road monitoring server connected to the base station, configured to generate an actual coordinate of the electronic license plate according to a positioning algorithm and an engraving of the super-wideband pulse signal uploaded by each of the base stations, in a pre-stored In the road coordinate database, according to the road coordinate range corresponding to each road and the actual coordinate of each of the electronic license plates, the road where each of the vehicles is located is located, and the traffic flow of each road is monitored, and the traffic flow includes driving At least one of speed and traffic flow.
- Another object of the embodiments of the present invention is to provide a monitoring method based on the above road monitoring system, including [0012] the electronic license plate transmitting an ultra-wideband pulse signal to the base station;
- the base station receives the ultra-wideband pulse signal, uploading and receiving the ultra-wideband pulse signal to the road monitoring server;
- the road monitoring server generates the actual coordinate of the electronic license plate according to the positioning algorithm and the engraving of the super-wideband pulse signal uploaded by each of the base stations, in the pre-stored road coordinate database, according to each a road coordinate range corresponding to the road and an actual coordinate of each of the electronic license plates, positioning a road where each of the vehicles is located, and monitoring traffic flow of each road, the traffic flow including at least a driving speed and a traffic flow One.
- a road monitoring server is provided, and the actual coordinate of the electronic license plate may be generated according to a positioning algorithm and an engraving of the super-wideband pulse signal uploaded by each of the base stations.
- the road where each of the vehicles is located is located according to the road coordinate range corresponding to each road and the actual coordinates of each of the electronic license plates, and the traffic flow of each road is monitored.
- Solved the existing road monitoring system unable to accurately position and stabilize the vehicles in the road. Insufficient sexuality, and the problem of traffic flow on the same road cannot be counted based on vehicles moving at high speed.
- the beneficial effects are in two aspects, as detailed below:
- the base station and the base station adopts ultra-wideband wireless communication technology, and the ultra-wideband wireless communication technology transmits data by using a nanosecond non-sinusoidal narrow pulse.
- the ultra-wideband wireless communication technology transmits data by using a nanosecond non-sinusoidal narrow pulse.
- frequency bandwidth, multi-channel, low power consumption, low interference, high safety factor, and existing spectrum it will not interfere with the existing ultra-wideband communication applications, so it can be used for high-speed mobile electronic license plates.
- High-precision positioning enables high-precision positioning of vehicles with electronic license plates attached to the road, and the stability of positioning can be enhanced.
- FIG. 1 is a structural diagram of a road monitoring system based on an ultra-wideband wireless positioning technology according to an embodiment of the present invention.
- FIG. 2 is a flowchart of implementing a monitoring method of a road monitoring system according to an embodiment of the present invention
- FIG. 3 is a first implementation flowchart of monitoring traffic flow of each road according to an embodiment of the present invention.
- FIG. 4 is a second implementation flowchart of monitoring traffic flow of each road according to an embodiment of the present invention.
- FIG. 5 is a flowchart of an implementation of transmitting a road speed map according to an embodiment of the present invention
- FIG. 6 is a flowchart of an implementation of a road traffic flow diagram of a road vehicle according to an embodiment of the present invention.
- FIG. 1 is a structural diagram of a road monitoring system based on an ultra-wideband wireless positioning technology according to an embodiment of the present invention, which is described in detail as follows: [0027] an electronic license plate 1 attached to the vehicle and transmitting an ultra-wideband pulse signal;
- the road monitoring server 3 connected to the base station 2 is configured to generate an actual coordinate of the electronic license plate 1 according to a positioning algorithm and an engraving of the super-wideband pulse signal uploaded by each of the base stations 2 And in a pre-stored road coordinate database, positioning a road where each of the vehicles is located according to a road coordinate range corresponding to each road and an actual coordinate of each of the electronic license plates, and monitoring traffic flow of each road, Traffic flow includes at least one of driving speed and traffic flow.
- [0031] calling the pre-stored road coordinate database, detecting, in the pre-stored road coordinate database, the real coordinate of each of the electronic license plates belongs to the road coordinate range, and positioning each according to the pre-configured road coordinate range and the corresponding relationship of the roads The road where the vehicle is located.
- the base station 2 and the base station 2 are interconnected by using a wired network mode or a wireless network mode, where the wired network mode includes a fiber network and a twisted pair.
- the wireless network mode includes at least one of a WIFI network mode, a 3G network mode, a 4G network mode, and a 5G network mode.
- the base station 2 and the vehicle positioning server 3 are interconnected by a wired network mode or a wireless network mode
- the wired network mode includes an optical network, an Ethernet composed of twisted pairs, and a coaxial cable.
- the wireless network mode includes at least one of a WIFI network mode, a 3G network mode, a 4G network mode, and a 5G network mode.
- the electronic license plate 1 is attached to the windshield of the vehicle, and the ultra-wideband pulse signal is transmitted without direction through the ultra-wideband antenna.
- the road monitoring server 3 is further configured to store a correspondence between the electronic license plate 1 and the vehicle
- the peer also stores the correspondence between each road and road coordinate range.
- the position coordinates of the vehicle include two-dimensional coordinates and three-dimensional coordinates. [0038] When three base stations 2 are used, two-dimensional coordinates can be calculated, and when four or more base stations 2 are used, three-dimensional coordinates can be calculated.
- the road monitoring server 3 connected to the base station 2 can implement the method in two parts and is implemented by two servers, as follows:
- a positioning server configured to generate an actual coordinate of the electronic license plate 1 according to a positioning algorithm and an engraving of the super-wideband pulse signal uploaded by each of the base stations 2;
- a monitoring server in the pre-stored road coordinate database, according to the road coordinate range corresponding to each road and the actual coordinate of each of the electronic license plates, locate each road where the vehicle is located, and monitor each road Traffic flow, the traffic flow including at least one of driving speed and traffic flow.
- the signal transmission between the base station 2 and the electronic license plate 1 and between the base station 2 and the base station 2 adopts an ultra-wideband wireless positioning technology, and has the characteristics of low power consumption and ultra-wideband.
- the technology enables high-precision positioning of the high-speed moving electronic license plate 1.
- This embodiment mainly describes the connection relationship between the road monitoring server and the base station, as follows: [0045]
- the road monitoring server directly connects one of the at least three base stations or multiple base stations, or
- the road monitoring server connects one of the at least three base stations or a plurality of base stations through a data switching device.
- Synchronization between the base station and the base station can be accomplished by transmitting a synchronization pulse to other base stations by one of the at least three base stations.
- the road monitoring server 3 is directly connected to one of the at least three base stations or a plurality of base stations.
- the road monitoring server 3 directly connects one of the at least three base stations or a plurality of base stations, and indicates that the connection link between the road monitoring server 3 and the base station is a direct link. Road, there is no data exchange equipment in the middle.
- the number of the base stations directly connected to the road monitoring server 3 may be one or more.
- the connected base station can be understood as the primary base station, and the remaining base stations are the secondary base stations, and the primary base station and the secondary base stations are cascaded.
- the primary base station aggregates and uploads the engraving of the super-wideband pulse signal received by the other secondary base stations.
- the road monitoring server 3 summarizes and counts the engravings of the super-wideband pulse signals received by the three base stations.
- the road monitoring server 3 connects one of the at least three base stations or a plurality of base stations through a data switching device.
- the data exchange device is a device for performing electronic data exchange, and includes at least one of a router, a switch, an optical transceiver, and a fiber transceiver.
- the number of base stations connected to the road monitoring server 3 through the data exchange device may be one or more.
- the base station connected to the road monitoring server 3 can be understood as the primary base station, and the remaining base stations are the secondary base stations, and the primary base station and the primary base station The secondary base stations are cascaded.
- the primary base station aggregates and uploads the engraving of the super wideband pulse signal received by the other secondary base stations.
- the road monitoring server 3 summarizes and counts the engravings of the super-wideband pulse signals received by the three base stations.
- the road monitoring server 3 connects one of the at least three base stations or the plurality of base stations ⁇ , the networking structure between the base station and the road monitoring server 3 through the data switching device, and includes any of the following architectures.
- the base station and the base station are connected by a network cable, one or more base stations are connected to the data distribution port of the router through the network cable, and the data distribution port of the router is connected to the road monitoring server through the network cable 3;
- the base station and the base station are connected by a network cable, one or more base stations are connected to the data distribution port of the switch through the network cable, and the data distribution port of the switch is connected to the road monitoring server through the network cable 3;
- the base station and the base station use optical fiber connection, one or more base stations are connected to the input end of the optical transceiver through the optical fiber, and the output end of the optical transceiver is connected to the road monitoring server 3 through the network cable;
- the base station and the base station are connected by using an optical fiber, and one or more base stations are connected to the input end of the optical transceiver through the optical fiber, and the output end of the optical transceiver is connected to the road monitoring server 3 through the network cable.
- FIG. 2 is a flowchart of implementing a monitoring method of a road monitoring system according to an embodiment of the present invention, where the monitoring method includes:
- the electronic license plate 1 sends an ultra-wideband pulse signal to the base station 2;
- the base station 2 receives the ultra-wideband pulse signal, uploading and receiving the ultra-wideband pulse signal engraved to the road monitoring server 3;
- the road monitoring server 3 generates the real coordinate of the electronic license plate 1 according to the positioning algorithm and the engraving of the super-wideband pulse signal uploaded by each of the base stations 2, in the pre-stored road coordinate database. And locating the road where each of the vehicles is located according to a road coordinate range corresponding to each road and an actual coordinate of each of the electronic license plates 1, and monitoring traffic flow of each road, the traffic flow including the driving speed and the vehicle At least one of the flows.
- the positioning algorithm includes at least one of a Time of Arrival (TOA) algorithm and a Time Difference of Arrival (TOA) algorithm.
- TOA Time of Arrival
- TOA Time Difference of Arrival
- the signal transmission between the base station 2 and the electronic license plate 1 between the base station 2 and the base station 2 uses ultra-wideband wireless communication technology, and the ultra-wideband wireless communication technology adopts a nanosecond level.
- the sinusoidal narrow pulse transmission data has the characteristics of frequency bandwidth, multi-channel, low power consumption, low interference, high safety factor, and existing spectrum, and does not interfere with the existing ultra-wideband communication applications.
- the high-speed moving electronic license plate 1 performs high-precision positioning, and then highly accurately positions the vehicle in which the electronic license plate 1 is attached to the road, and the positioning can also enhance the stability of the positioning.
- FIG. 3 is a first implementation flowchart of monitoring traffic flow of each road according to an embodiment of the present invention, which is as follows:
- S301 In a preset first time interval, measure a distance that each of the vehicles passes according to a change value of an actual coordinate of each of the electronic license plates 1, and obtain an instantaneous vehicle speed of each of the vehicles. ;
- each of the instantaneous vehicle speeds is collected, the distance between the electronic vehicle license plate and the current diurnal line is known, and the farther the distance and the earlier the inter-turn time are known.
- the reference value of the speed of the car is smaller. Therefore, according to different distances and different inter-segments, the weights are assigned to each instantaneous vehicle speed, and the instantaneous vehicle speeds with weights are added, divided by the number of vehicles, and the average speed of each road. In order to avoid the situation of instantaneous vehicle speed failure in the short section, it is also possible to avoid the situation that the marking line area in the same road section is large and the speed of the vehicle is invalid, so that the marking line of the same road section can be effectively described. The instantaneous speed of the inter-turn.
- the instantaneous vehicle speed of the same road segment is counted, thereby enhancing the intelligence degree of the road monitoring system based on the ultra-wideband wireless positioning technology.
- FIG. 4 is a second implementation flowchart of monitoring traffic flow of each road according to an embodiment of the present invention, which is described in detail as follows:
- S401 Tracking each of the vehicles in each road in a preset second time zone
- the road is marked as a preferred road so that the road is preferred after navigation.
- the number of vehicles in the same road segment enhances the intelligence level of the road monitoring system based on the ultra-wideband wireless positioning technology.
- FIG. 5 is a flowchart of an implementation of transmitting a road speed map according to an embodiment of the present invention, which is described in detail as follows:
- the road speed is higher than a preset vehicle speed threshold ⁇
- the road is marked as a preferred road so that the navigation is preferred, the road is preferred.
- the road speed map is sent to the mobile terminal, so that after the mobile terminal receives the road speed map, the road speed map may be displayed for the vehicle owner to drive reference.
- FIG. 6 is a flowchart of an implementation of a road traffic flow diagram of a road vehicle according to an embodiment of the present invention, which is described in detail as follows:
- S601 according to the level of the traffic volume of each road, using different colors to draw a road traffic flow map, or, according to different roads, using different colors to draw a road traffic flow map; [0093] S602. Send the road traffic flow map to the mobile terminal.
- the road traffic flow map is sent to the mobile terminal, so that after the mobile terminal receives the road traffic flow map, the road speed map may be displayed for the vehicle owner to drive reference.
- the present invention can be implemented by means of software plus necessary general hardware.
- the program may be stored in a readable storage medium such as a random access memory, a flash memory, a read only memory, a programmable read only memory, an electrically erasable programmable memory, a register, or the like.
- the storage medium is located in a memory, the processor reads information in the memory, and in conjunction with its hardware, performs the methods described in various embodiments of the present invention.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Traffic Control Systems (AREA)
Abstract
本发明适用于道路监测领域,提供了基于超宽频无线定位技术的道路监测系统及监测方法,道路监测系统包括贴附在车辆上,发送超宽频脉冲信号的电子车牌;位于道路旁,互联且同步的至少三个基站,用于接收超宽频脉冲信号,上传接收到超宽频脉冲信号的时刻;道路监测服务器,用于根据定位算法和各个基站上传的接收到超宽频脉冲信号的时刻,生成电子车牌的实时坐标,在预存的道路坐标数据库中,根据每条道路对应的道路坐标范围和每个电子车牌的实时坐标,确定每个车辆所在的道路,监测每条道路的交通流量。在本发明中,基站、电子车牌之间的信号传递采用超宽频无线通讯技术,可以对贴附电子车牌且高速移动车辆进行高精度定位,进而监测到交通流量。
Description
基于超宽频无线定位技术的道路监测系统及监测方法 技术领域
[0001] 本发明属于道路监测领域, 尤其涉及基于超宽频无线定位技术的道路监测系统 及监测方法。
背景技术
[0002] 近几年来, 社会经济飞速发展, 城市车辆保有量持续迅猛增长, 道路交通混杂, 交通效率在各大中城市已很常见, 并且有愈演愈烈的趋势。 为了缓解道路交通 问题, 节省幵车的吋间, 道路监测系统以视频监控为主, 监控点分布在车流、 人流比较集中的道路交叉口、 重点路段, 通过图像传输通道将路面交通情况实 吋上传到道路监控指挥中心, 中心值班人员可以据此及吋了解各区域路面状况 , 以便调整各路口车辆流量, 确保交通通畅。
[0003] 然而, 现有的道路监测系统, 无法对道路中的车辆进行高精度定位、 定位稳定 性不足, 且无法根据高速移动的车辆, 统计相同道路的交通流量。 其原因在于 , 现有的道路监测系统, 一般采用以下三种定位方式, 详述如下:
[0004] 第一种定位方式, 采用 GPS定位方式, 由于 GPS定位是全球定位, 会受到各种 各样因素的影响, 定位的精度较低, 因此采用 GPS定位方式的道路监测系统, 无 法对道路中的车辆进行高精度定位;
[0005] 第二种定位方式, 以视频监控的方式, 由于图像的数据受摄像头覆盖率的限制 , 因此在后台中可识别的图像少, 此外图像易受光线明暗干扰, 因此识别出图 像中的车辆的成功率低, 因此无法对道路中的车辆进行高精度定位, 也无法根 据高速移动的车辆, 统计相同道路的交通流量。
技术问题
[0006] 本发明实施例的目的在于提供一种基于超宽频无线定位技术的道路监测系统, 旨在解决现有的道路监测系统, 无法对道路中的车辆进行高精度定位、 定位稳 定性不足, 且无法根据高速移动的车辆, 统计相同道路的交通流量的问题。
问题的解决方案
技术解决方案
[0007] 本发明实施例是这样实现的, 一种基于超宽频无线定位技术的道路监测系统, 包括:
[0008] 贴附在车辆上, 发送超宽频脉冲信号的电子车牌;
[0009] 位于道路旁, 互联且同步的至少三个基站, 用于接收所述超宽频脉冲信号, 上 传接收到所述超宽频脉冲信号的吋刻;
[0010] 连于所述基站的道路监测服务器, 用于根据定位算法和各个所述基站上传的接 收到所述超宽频脉冲信号的吋刻, 生成所述电子车牌的实吋坐标, 在预存的道 路坐标数据库中, 根据每条道路对应的道路坐标范围和每个所述电子车牌的实 吋坐标, 定位每个所述车辆所在的道路, 监测每条道路的交通流量, 所述交通 流量包括行车速度和车流量中的至少一种。
[0011] 本发明实施例的另一目的在于提供基于上述的道路监测系统的监测方法, 包括 [0012] 所述电子车牌发送超宽频脉冲信号至所述基站;
[0013] 所述基站接收所述超宽频脉冲信号, 上传接收到所述超宽频脉冲信号的吋刻至 所述道路监测服务器;
[0014] 所述道路监测服务器根据定位算法和各个所述基站上传的接收到所述超宽频脉 冲信号的吋刻, 生成所述电子车牌的实吋坐标, 在预存的道路坐标数据库中, 根据每条道路对应的道路坐标范围和每个所述电子车牌的实吋坐标, 定位每个 所述车辆所在的道路, 监测每条道路的交通流量, 所述交通流量包括行车速度 和车流量中的至少一种。
发明的有益效果
有益效果
[0015] 在本发明实施例中, 提供了道路监测服务器, 可根据定位算法和各个所述基站 上传的接收到所述超宽频脉冲信号的吋刻, 生成所述电子车牌的实吋坐标, 在 预存的道路坐标数据库中, 根据每条道路对应的道路坐标范围和每个所述电子 车牌的实吋坐标, 定位每个所述车辆所在的道路, 监测每条道路的交通流量。 解决了现有的道路监测系统, 无法对道路中的车辆进行高精度定位、 定位稳定
性不足, 且无法根据高速移动的车辆, 统计相同道路的交通流量的问题。 有益 效果在于两方面, 详述如下:
[0016] 一方面, 由于基站与电子车牌之间, 基站与基站之间的信号传递采用超宽频无 线通讯技术, 而超宽频无线通讯技术, 由于采用纳秒级的非正弦波窄脉冲传输 数据, 具有频带宽、 多频道、 低功耗、 不易受干扰、 安全系数高, 与现有频谱 其存, 不会干扰现有的超宽频频通信应用等特点, 因此可以通过对高速移动的 电子车牌进行高精度定位, 进而对道路中贴附电子车牌的车辆进行高精度定位 , 同吋还可增强定位的稳定性。
[0017] 另一方面, 根据每条道路对应的道路坐标范围和每个所述电子车牌的实吋坐标 , 定位每个所述车辆所在的道路, 监测每条道路的交通流量, 从而可引导各种 类型的车辆至合适的道路, 可减轻道路上的交通压力。
对附图的简要说明
附图说明
[0018] 图 1是本发明实施例提供的基于超宽频无线定位技术的道路监测系统的结构图
[0019] 图 2是本发明实施例提供的道路监测系统的监测方法的实现流程图;
[0020] 图 3是本发明实施例提供的监测每条道路的交通流量的第一实现流程图;
[0021] 图 4是本发明实施例提供的监测每条道路的交通流量的第二实现流程图;
[0022] 图 5是本发明实施例提供的发送道路车速图的实现流程图;
[0023] 图 6是本发明实施例提供的发送道路车流量图的实现流程图。
本发明的实施方式
[0024] 为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例 , 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅仅用 以解释本发明, 并不用于限定本发明。
[0025] 实施例一
[0026] 图 1是本发明实施例提供的基于超宽频无线定位技术的道路监测系统的结构图 , 详述如下:
[0027] 贴附在车辆上, 发送超宽频脉冲信号的电子车牌 1 ;
[0028] 位于道路旁, 互联且同步的至少三个基站 2, 用于接收所述超宽频脉冲信号, 上传接收到所述超宽频脉冲信号的吋刻;
[0029] 连于所述基站 2的道路监测服务器 3, 用于根据定位算法和各个所述基站 2上传 的接收到所述超宽频脉冲信号的吋刻, 生成所述电子车牌 1的实吋坐标, 在预存 的道路坐标数据库中, 根据每条道路对应的道路坐标范围和每个所述电子车牌 的实吋坐标, 定位每个所述车辆所在的道路, 监测每条道路的交通流量, 所述 交通流量包括行车速度和车流量中的至少一种。
[0030] 其中, 根据每条道路对应的道路坐标范围和每个所述电子车牌的实吋坐标, 定 位每个所述车辆所在的道路, 具体为:
[0031] 调用预存的道路坐标数据库, 在预存的道路坐标数据库中, 检测每个所述电子 车牌的实吋坐标所属于道路坐标范围, 根据预配置的道路坐标范围和道路的对 应关系, 定位每个所述车辆所在的道路。
[0032] 每隔预设吋间监测每条道路的交通流量, 将所述道路和所述交通流量建立对应 关系并记录存储, 建立道路监测数据库。
[0033] 其中, 在所述至少三个基站 2中, 基站 2与基站 2之间, 采用有线的网络模式或 者无线的网络模式互联, 所述有线的网络模式包括光纤网络、 双绞线组成的以 太网、 同轴电缆组成的以太网中的至少一种, 所述无线的网络模式包括 WIFI网 络模式、 3G网络模式、 4G网络模式、 5G网络模式中的至少一种。
[0034] 其中, 所述基站 2和车辆定位服务器 3之间, 采用有线的网络模式或者无线的网 络模式互联, 所述有线的网络模式包括光纤网络、 双绞线组成的以太网、 同轴 电缆组成的以太网中的至少一种, 所述无线的网络模式包括 WIFI网络模式、 3G 网络模式、 4G网络模式、 5G网络模式中的至少一种。
[0035] 其中, 所述电子车牌 1贴附在车辆的挡风玻璃上, 通过超宽频天线, 无方向地 发送超宽频脉冲信号。
[0036] 其中, 所述道路监测服务器 3还用于存储所述电子车牌 1和所述车辆的对应关系
, 同吋还存储每条道路和道路坐标范围的对应关系。
[0037] 需说明的是, 所述车辆的位置坐标包括二维坐标和三维坐标。
[0038] 当采用三个基站 2吋, 可算出二维坐标, 当采用四个以上的基站 2吋, 可算出三 维坐标。
[0039] 需说明的是, 连于所述基站 2的道路监测服务器 3, 可以将执行的方法分幵两部 分, 由两个服务器来实现, 详述如下:
[0040] 一定位服务器, 用于根据定位算法和各个所述基站 2上传的接收到所述超宽频 脉冲信号的吋刻, 生成所述电子车牌 1的实吋坐标;
[0041] 一监测服务器, 在预存的道路坐标数据库中, 根据每条道路对应的道路坐标范 围和每个所述电子车牌的实吋坐标, 定位每个所述车辆所在的道路, 监测每条 道路的交通流量, 所述交通流量包括行车速度和车流量中的至少一种。
[0042] 在本发明实施例中, 基站 2与电子车牌 1之间, 基站 2与基站 2之间的信号传递采 用超宽频无线定位技术, 具有低功耗、 超宽频的特点, 借助这种传送技术可以 对高速移动的电子车牌 1进行高精度定位。
[0043] 实施例二
[0044] 本实施例主要描述了道路监测服务器与基站之间的连接关系, 详述如下: [0045] 道路监测服务器直连所述至少三个基站中的一个基站或者多个基站, 或者, 所 述道路监测服务器通过数据交换设备连接所述至少三个基站中的一个基站或者 多个基站。
[0046] 通过至少三个基站中的一个基站发送同步脉冲给其它基站, 即可完成基站与基 站之间的同步。
[0047] 其中, 道路监测服务器与基站之间, 存在两种连接方式, 详述如下:
[0048] 第一种连接方式:
[0049] 所述道路监测服务器 3直连所述至少三个基站中的一个基站或者多个基站。
[0050] 需说明的是, 所述道路监测服务器 3直连所述至少三个基站中的一个基站或者 多个基站, 表示所述道路监测服务器 3与基站之间的连接链路是直连链路, 中间 没有数据交换设备。
[0051] 需说明的是, 所述道路监测服务器 3直连基站的数量, 可以为一个, 也可以为 多个。
[0052] 当所述道路监测服务器 3连接基站的数量为一个吋, 与所述道路监测服务器 3相
连接的基站可理解为主基站, 剩下的基站为辅基站, 主基站与辅基站之间级联 。 主基站汇总并上传其它辅基站接收到所述超宽频脉冲信号的吋刻。
[0053] 当所述道路监测服务器 3直连基站的数量为多个吋, 道路监测服务器 3汇总并统 计所述三个基站上传的接收到所述超宽频脉冲信号的吋刻。
[0054] 第二种连接方式:
[0055] 所述道路监测服务器 3通过数据交换设备连接所述至少三个基站中的一个基站 或者多个基站。
[0056] 其中, 所述数据交换设备为进行电子数据交换的设备, 包括路由器、 交换机、 光端机、 光纤收发器中的至少一种。
[0057] 需说明的是, 所述道路监测服务器 3通过数据交换设备连接基站的数量, 可以 为一个, 也可以为多个。
[0058] 当所述道路监测服务器 3通过数据交换设备连接基站的数量为一个吋, 与所述 道路监测服务器 3相连接的基站可理解为主基站, 剩下的基站为辅基站, 主基站 与辅基站之间级联。 主基站汇总并上传其它辅基站接收到所述超宽频脉冲信号 的吋刻。
[0059] 当所述道路监测服务器 3通过数据交换设备连接基站的数量为多个吋, 道路监 测服务器 3汇总并统计所述三个基站上传的接收到所述超宽频脉冲信号的吋刻。
[0060] 需说明的是, 道路监测服务器 3通过数据交换设备连接至少三个基站中的一个 基站或者多个基站吋, 基站和道路监测服务器 3之间的组网架构, 包括以下架构 中的任意一种, 详述如下:
[0061] 一、 基站与基站之间采用网线连接, 一个或者多个基站通过网线连接路由器的 数据分发端口, 路由器的数据分发端口通过网线连接道路监测服务器 3 ;
[0062] 二、 基站与基站之间采用网线连接, 一个或者多个基站通过网线连接交换机的 数据分发端口, 交换机的数据分发端口通过网线连接道路监测服务器 3 ;
[0063] 三、 基站与基站之间采用光纤连接, 一个或者多个基站通过光纤连接光端机的 输入端, 光端机的输出端通过网线连接道路监测服务器 3 ;
[0064] 四、 基站与基站之间采用光纤连接, 一个或者多个基站通过光纤连接光纤收发 器的输入端, 光纤收发器的输出端, 通过网线连接道路监测服务器 3。
[0065] 实施例三
[0066] 图 2是本发明实施例提供的道路监测系统的监测方法的实现流程图, 所述监测 方法包括:
[0067] S201 , 所述电子车牌 1发送超宽频脉冲信号至所述基站 2;
[0068] S202, 所述基站 2接收所述超宽频脉冲信号, 上传接收到所述超宽频脉冲信号 的吋刻至所述道路监测服务器 3;
[0069] S203 , 道路监测服务器 3根据定位算法和各个所述基站 2上传的接收到所述超宽 频脉冲信号的吋刻, 生成所述电子车牌 1的实吋坐标, 在预存的道路坐标数据库 中, 根据每条道路对应的道路坐标范围和每个所述电子车牌 1的实吋坐标, 定位 每个所述车辆所在的道路, 监测每条道路的交通流量, 所述交通流量包括行车 速度和车流量中的至少一种。
[0070] 其中, 所述定位算法包括到达吋间 (Time of Arrival, TOA) 算法和到达吋间 差 (Time Difference of Arrival, TOA) 算法中的至少一种。
[0071] 在本发明实施例中, 基站 2与电子车牌 1之间, 基站 2与基站 2之间的信号传递采 用超宽频无线通讯技术, 而超宽频无线通讯技术, 由于采用纳秒级的非正弦波 窄脉冲传输数据, 具有频带宽、 多频道、 低功耗、 不易受干扰、 安全系数高, 与现有频谱其存, 不会干扰现有的超宽频通信应用等特点, 因此可以通过对高 速移动的电子车牌 1进行高精度定位, 进而对道路中贴附电子车牌 1的车辆进行 高精度定位, 同吋还可增强定位的稳定性。
[0072] 实施例四
[0073] 图 3是本发明实施例提供的监测每条道路的交通流量的第一实现流程图, 详述 如下:
[0074] S301 , 在预设第一吋间内, 根据每个所述电子车牌 1的实吋坐标的变化值, 测 量每个所述车辆通过的距离, 得到每个所述车辆的瞬吋车速;
[0075] S302, 统计每个所述车辆通过每条道路中同一路段的瞬吋车速, 得到每条道路 的平均车速, 将每条道路的平均车速设置为每条道路的行车速度。
[0076] 其中, 每个瞬吋车速在收集吋, 电子车牌离同一路段中标线的距离和当前吋间 的吋间差都是已知的, 而距离越远和吋间越早的瞬吋车速的参考价值就越小,
因此根据不同距离, 不同吋间段, 为每个瞬吋车速分配权值, 将具有权值的瞬 吋车速相加, 除以所述车辆的个数, 每条道路的平均车速。 以避免短吋间内, 瞬吋车速失效的情况, 同吋, 还可避免同一路段中标线面积较大吋, 瞬吋车速 失效的情况, 从而能有效地描述同一路段中标线在某一吋间段的瞬吋车速。
[0077] 在本发明实施例中, 统计同一路段的瞬吋车速, 从而增强了基于超宽频无线定 位技术的道路监测系统的智能化程度。
[0078] 实施例五
[0079] 图 4是本发明实施例提供的监测每条道路的交通流量的第二实现流程图, 详述 如下:
[0080] S401 , 在预设第二吋间内, 对每条道路中的每个所述车辆跟踪;
[0081] S402, 统计在每条道路中通过同一路段的车辆数, 得到每条道路的车流量。
[0082] 当该道路中的车辆数少于预设的车辆阈值吋, 标记该道路为优选道路, 以便于 在导航吋, 优选该道路。
[0083] 在本发明实施例中, 同一路段的车辆数, 从而增强了基于超宽频无线定位技术 的道路监测系统的智能化程度。
[0084] 实施例六
[0085] 图 5是本发明实施例提供的发送道路车速图的实现流程图, 详述如下:
[0086] S501 , 根据每条道路的行车速度的高低, 采用不同颜色绘制道路车速图, 或者
, 根据不同的道路, 采用不同颜色绘制道路车速图;
[0087] S502, 向移动终端发送所述道路车速图。
[0088] 当该道路车速高于预设的车速阈值吋, 标记该道路为优选道路, 以便于在导航 吋, 优选该道路。
[0089] 在本发明实施例中, 向移动终端发送道路车速图, 以使得移动终端接收到道路 车速图后, 可以显示道路车速图, 供车主驾车参考。
[0090] 实施例七
[0091] 图 6是本发明实施例提供的发送道路车流量图的实现流程图, 详述如下:
[0092] S601 , 根据每条道路的车流量的高低, 采用不同颜色绘制道路车流量图, 或者 , 根据不同的道路, 采用不同颜色绘制道路车流量图;
[0093] S602, 向移动终端发送所述道路车流量图。
[0094] 在本发明实施例中, 向移动终端发送道路车流量图, 以使得移动终端接收到道 路车流量图后, 可以显示道路车速图, 供车主驾车参考。
[0095] 通过以上的实施方式的描述, 所属领域的技术人员可以清楚地了解到本发明可 借助软件加必需的通用硬件的方式来实现。 所述的程序可以存储于可读取存储 介质中, 所述的存储介质, 如随机存储器、 闪存、 只读存储器、 可编程只读存 储器、 电可擦写可编程存储器、 寄存器等。 该存储介质位于存储器, 处理器读 取存储器中的信息, 结合其硬件执行本发明各个实施例所述的方法。
[0096] 以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到的变 化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范围应以 权利要求的保护范围为准。
Claims
[权利要求 1] 一种基于超宽频无线定位技术的道路监测系统, 其特征在于, 包括: 贴附在车辆上, 发送超宽频脉冲信号的电子车牌; 位于道路旁, 互联且同步的至少三个基站, 用于接收所述超宽频脉冲 信号, 上传接收到所述超宽频脉冲信号的吋刻; 连于所述基站的道路监测服务器, 用于根据定位算法和各个所述基站 上传的接收到所述超宽频脉冲信号的吋刻, 生成所述电子车牌的实吋 坐标, 在预存的道路坐标数据库中, 根据每条道路对应的道路坐标范 围和每个所述电子车牌的实吋坐标, 定位每个所述车辆所在的道路, 监测每条道路的交通流量, 所述交通流量包括行车速度和车流量中的 至少一种。
[权利要求 2] 如权利要求 1所述的基于超宽频无线定位技术的道路监测系统, 其特 征在于, 在所述至少三个基站中, 基站与基站之间, 采用有线的网络 模式或者无线的网络模式互联, 所述有线的网络模式包括光纤网络、 双绞线组成的以太网、 同轴电缆组成的以太网中的至少一种, 所述无 线的网络模式包括 WIFI网络模式、 3G网络模式、 4G网络模式、 5G网 络模式中的至少一种。
[权利要求 3] 如权利要求 1所述的基于超宽频无线定位技术的道路监测系统, 其特 征在于, 所述基站和道路监测服务器之间, 采用有线的网络模式或者 无线的网络模式互联, 所述有线的网络模式包括光纤网络、 双绞线组 成的以太网、 同轴电缆组成的以太网中的至少一种, 所述无线的网络 模式包括 WIFI网络模式、 3G网络模式、 4G网络模式、 5G网络模式中 的至少一种。
[权利要求 4] 如权利要求 1所述的基于超宽频无线定位技术的道路监测系统, 其特 征在于, 所述道路监测服务器直连所述至少三个基站中的一个基站或 者多个基站, 或者, 所述道路监测服务器通过数据交换设备连接所述 至少三个基站中的一个基站或者多个基站。
[权利要求 5] —种基于权利要求 1所述的道路监测系统的监测方法, 其特征在于,
所述监测方法包括:
所述电子车牌发送超宽频脉冲信号至所述基站; 所述基站接收所述超宽频脉冲信号, 上传接收到所述超宽频脉冲信号 的吋刻至所述道路监测服务器;
所述道路监测服务器根据定位算法和各个所述基站上传的接收到所述 超宽频脉冲信号的吋刻, 生成所述电子车牌的实吋坐标, 在预存的道 路坐标数据库中, 根据每条道路对应的道路坐标范围和每个所述电子 车牌的实吋坐标, 定位每个所述车辆所在的道路, 监测每条道路的交 通流量, 所述交通流量包括行车速度和车流量中的至少一种。
[权利要求 6] 如权利要求 5所述的监测方法, 其特征在于, 所述定位算法包括到达 吋间 TOA算法和到达吋间差 TDOA算法中的至少一种。
[权利要求 7] 如权利要求 5所述的监测方法, 其特征在于, 所述当所述交通流量为 行车速度吋, 所述监测每条道路的交通流量, 具体为:
在预设第一吋间内, 根据每个所述电子车牌的实吋坐标的变化值, 测 量每个所述车辆通过的距离, 得到每个所述车辆的瞬吋车速; 统计每个所述车辆通过每条道路中同一路段的瞬吋车速, 得到每条道 路的平均车速, 将每条道路的平均车速设置为每条道路的行车速度。
[权利要求 8] 如权利要求 5所述的监测方法, 其特征在于, 所述当所述交通流量为 车流量吋, 所述监测每条道路的交通流量, 具体为:
在预设第二吋间内, 对每条道路中的每个所述车辆跟踪;
统计在每条道路中通过同一路段的车辆数, 得到每条道路的车
[权利要求 9] 如权利要求 5所述的监测方法, 其特征在于, 所述监测方法, 还包括 根据每条道路的行车速度的高低, 采用不同颜色绘制道路车速图, 或 者,
根据不同的道路, 采用不同颜色绘制道路车速图; 向移动终端发送所述道路车速图。
[权利要求 10] 如权利要求 5所述的监测方法, 其特征在于, 所述监测方法, 还包括
根据每条道路的车流量的高低, 采用不同颜色绘制道路车流量图, 或 者, 根据不同的道路, 采用不同颜色绘制道路车流量图;
向移动终端发送所述道路车流量图。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510175450.9 | 2015-04-14 | ||
CN201510175450.9A CN104809872A (zh) | 2015-04-14 | 2015-04-14 | 基于超宽频无线定位技术的道路监测系统及监测方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016165152A1 true WO2016165152A1 (zh) | 2016-10-20 |
Family
ID=53694668
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/077217 WO2016165152A1 (zh) | 2015-04-14 | 2015-04-22 | 基于超宽频无线定位技术的道路监测系统及监测方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104809872A (zh) |
WO (1) | WO2016165152A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105448124A (zh) * | 2015-11-27 | 2016-03-30 | 苏州云达通信科技有限公司 | 基于wifi的车辆跟踪定位系统 |
CN105764032B (zh) * | 2016-02-16 | 2019-05-03 | 深圳市唯传科技有限公司 | 一种车辆定位跟踪系统及定位跟踪方法 |
CN108242157A (zh) * | 2018-01-31 | 2018-07-03 | 福建工程学院 | 一种隧道车流量的监测方法及终端 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090029423A (ko) * | 2007-09-18 | 2009-03-23 | 엘지전자 주식회사 | 울트라 와이드밴드를 이용한 위치 표시 방법 및 장치 |
CN101883426A (zh) * | 2010-06-19 | 2010-11-10 | 中国海洋大学 | 高精度的超宽带无线定位方法 |
CN103150909A (zh) * | 2012-12-31 | 2013-06-12 | 叶松 | 环保型智能交通监测系统 |
CN103488453A (zh) * | 2013-09-16 | 2014-01-01 | 四川航天系统工程研究所 | 集成定位与显示解算的超宽带定位跟踪系统及方法 |
CN104008648A (zh) * | 2014-06-16 | 2014-08-27 | 北京易华录信息技术股份有限公司 | 一种基于雷达跟踪技术的拥堵引发点监测系统及方法 |
CN104301673A (zh) * | 2014-09-28 | 2015-01-21 | 北京正安融翰技术有限公司 | 一种基于视频分析的实时车流分析与全景可视方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6900740B2 (en) * | 2003-01-03 | 2005-05-31 | University Of Florida Research Foundation, Inc. | Autonomous highway traffic modules |
CN101089914A (zh) * | 2007-07-06 | 2007-12-19 | 上海强领智能科技发展有限公司 | 可视化的智能交通管理系统及其实现方法 |
US20110035140A1 (en) * | 2009-08-07 | 2011-02-10 | James Candy | Vehicle sensing system utilizing smart pavement markers |
CN102930738A (zh) * | 2012-10-25 | 2013-02-13 | 北京交通大学 | 一种车辆定位及交通流量检测系统与方法 |
CN102968900B (zh) * | 2012-11-15 | 2014-08-20 | 南京城市智能交通有限公司 | 一种对rfid交通数据进行处理的方法 |
CN104064031B (zh) * | 2014-07-02 | 2016-08-17 | 丁宏飞 | 一种应用电子车牌的车辆违章监控和追踪定位系统 |
-
2015
- 2015-04-14 CN CN201510175450.9A patent/CN104809872A/zh active Pending
- 2015-04-22 WO PCT/CN2015/077217 patent/WO2016165152A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090029423A (ko) * | 2007-09-18 | 2009-03-23 | 엘지전자 주식회사 | 울트라 와이드밴드를 이용한 위치 표시 방법 및 장치 |
CN101883426A (zh) * | 2010-06-19 | 2010-11-10 | 中国海洋大学 | 高精度的超宽带无线定位方法 |
CN103150909A (zh) * | 2012-12-31 | 2013-06-12 | 叶松 | 环保型智能交通监测系统 |
CN103488453A (zh) * | 2013-09-16 | 2014-01-01 | 四川航天系统工程研究所 | 集成定位与显示解算的超宽带定位跟踪系统及方法 |
CN104008648A (zh) * | 2014-06-16 | 2014-08-27 | 北京易华录信息技术股份有限公司 | 一种基于雷达跟踪技术的拥堵引发点监测系统及方法 |
CN104301673A (zh) * | 2014-09-28 | 2015-01-21 | 北京正安融翰技术有限公司 | 一种基于视频分析的实时车流分析与全景可视方法 |
Non-Patent Citations (1)
Title |
---|
CAI, XINMEI ET AL.: "The Application of UWB Technology in Intelligent Transportation System", JOURNAL OF HIGHWAY AND TRANSPORTATION RESEARCH AND DEVELOPMENT (APPLICATION TECHNOLOGY EDITION, 31 July 2013 (2013-07-31), pages 313, 314, ISSN: 1002-0268 * |
Also Published As
Publication number | Publication date |
---|---|
CN104809872A (zh) | 2015-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016165147A1 (zh) | 基于超宽频无线定位技术的停车场引导系统及引导方法 | |
WO2019085846A1 (zh) | 一种快速车道的规划方法及单元 | |
WO2022042098A1 (zh) | 远程驾驶方法、装置、系统、设备及介质 | |
WO2016165154A1 (zh) | 基于超宽频无线定位技术的交通灯优化系统及优化方法 | |
CN106971542B (zh) | 一种基于rfid的监控非机动车非法驶入机动车道的系统及其方法 | |
CN204904585U (zh) | 一种高清视频一体机、交通信号机及基于视觉传感的交通信号控制系统 | |
CN103116995A (zh) | 基于电子眼的车联网数据传输路径选择优化方法 | |
CN102324182A (zh) | 基于蜂窝网络的交通道路信息检测系统及其检测方法 | |
WO2016165152A1 (zh) | 基于超宽频无线定位技术的道路监测系统及监测方法 | |
CN105844926B (zh) | 一种交通灯控制方法、装置及系统 | |
CN106887140B (zh) | 一种基于vanet的道路交通拥堵检测方法 | |
WO2014180394A1 (zh) | 道路监控方法、摄像装置、车载终端、及系统 | |
CN106781554A (zh) | 智能交通信号控制系统 | |
CN104599528A (zh) | 一种基于北斗的智能车辆监控方法 | |
Sewalkar et al. | Towards 802.11 p-based vehicle-to-pedestrian communication for crash prevention systems | |
CN109243177B (zh) | 道路交通广域诱导方法 | |
WO2016165155A1 (zh) | 基于超宽频无线定位技术的车距报警系统及报警方法 | |
CN107437340A (zh) | 用于公路管理和交警管理的联合执法平台及流程 | |
Lyu et al. | Fine-grained TDMA MAC design toward ultra-reliable broadcast for autonomous driving | |
CN105528910A (zh) | 一种自组网通信的智慧路贴 | |
WO2016165156A1 (zh) | 基于超宽频无线定位技术的可疑车辆定位系统及定位方法 | |
WO2016165153A1 (zh) | 基于超宽频无线定位技术的公交车报站系统及报站方法 | |
CN109246663A (zh) | 一种车载终端、车辆管理服务器以及近距离定位基站 | |
CN103581016A (zh) | 一种车辆网络路由方法 | |
WO2016165149A1 (zh) | 一种车辆超速检测方法和系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15888856 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15888856 Country of ref document: EP Kind code of ref document: A1 |