WO2016165092A1 - 预编码矩阵指示的反馈和接收方法、装置以及通信系统 - Google Patents

预编码矩阵指示的反馈和接收方法、装置以及通信系统 Download PDF

Info

Publication number
WO2016165092A1
WO2016165092A1 PCT/CN2015/076691 CN2015076691W WO2016165092A1 WO 2016165092 A1 WO2016165092 A1 WO 2016165092A1 CN 2015076691 W CN2015076691 W CN 2015076691W WO 2016165092 A1 WO2016165092 A1 WO 2016165092A1
Authority
WO
WIPO (PCT)
Prior art keywords
pmi
noma
user equipment
rank
base station
Prior art date
Application number
PCT/CN2015/076691
Other languages
English (en)
French (fr)
Inventor
张健
王昕�
周华
Original Assignee
富士通株式会社
张健
王昕�
周华
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 张健, 王昕�, 周华 filed Critical 富士通株式会社
Priority to PCT/CN2015/076691 priority Critical patent/WO2016165092A1/zh
Priority to CN201580077526.2A priority patent/CN107409009A/zh
Publication of WO2016165092A1 publication Critical patent/WO2016165092A1/zh
Priority to US15/722,681 priority patent/US20180026699A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0486Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking channel rank into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0026Interference mitigation or co-ordination of multi-user interference
    • H04J11/0036Interference mitigation or co-ordination of multi-user interference at the receiver
    • H04J11/004Interference mitigation or co-ordination of multi-user interference at the receiver using regenerative subtractive interference cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2646Arrangements specific to the transmitter only using feedback from receiver for adjusting OFDM transmission parameters, e.g. transmission timing or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a feedback and reception method, apparatus, and communication system for a Precoding Matrix Indicator (PMI) of Non-Orthogonal Multiple Access (NOMA).
  • PMI Precoding Matrix Indicator
  • NOMA Non-Orthogonal Multiple Access
  • the theoretical research work of the fifth generation (5G) mobile communication technology has gradually begun.
  • One of the requirements of the 5G communication system is to support a higher system capacity (for example, 1000 times) than 4G and more terminal connections (for example, 100 times) than 4G.
  • mobile communication has adopted orthogonal multiple access technology.
  • Research shows that non-orthogonal multiple access technology can realize larger capacity domain than orthogonal multiple access technology.
  • This theoretical guidance makes non-orthogonal multiple access technology become 5G research.
  • One of the key technologies One of the key technologies.
  • NOMA Non-orthogonal
  • LTE-A Release 13 One of the ways to achieve non-orthogonality is that the power domain is non-orthogonal, and its representative technology, NOMA, has been included in the discussion of LTE-A Release 13. NOMA technology is based on the theory of superposition codes. The transmitting end sends superimposed symbols, and the receiving end needs to use SIC (Successive Interference Cancel) technology to separate and recover data information. For the case where the transmitting end uses a single antenna, the NOMA technology can theoretically realize the entire capacity domain of the downlink broadcast channel and the uplink multiple access channel.
  • SIC Successessive Interference Cancel
  • the inventor has found that the NOMA can multiplex the user equipment in the power domain.
  • the key is that the user equipment performing the SIC can demodulate the data of other user equipments and delete the interference of the data to its own useful signal, which requires the user equipment of the SIC.
  • demodulating an interfering signal which is a useful signal to other user equipment
  • it has a higher signal to interference and noise ratio than other user equipment demodulating its own useful signal.
  • MIMO Multiple Input Multiple Output
  • OFDM Orthogonal Frequency Division Multiplexing
  • Embodiments of the present invention provide a NOMA PMI feedback and reception method, apparatus, and communication system.
  • the user equipment feeds back auxiliary PMI information (ie, NOMA PMI) to provide reference information for the base station to perform NOMA scheduling, so that the base station can schedule appropriate user equipment to ensure SIC performance.
  • auxiliary PMI information ie, NOMA PMI
  • a method for receiving a PMI is provided, which is applied to a base station of a NOMA system, where the feedback method includes:
  • the NOMA scheduling is performed according to the NOMA PMI fed back by a plurality of user equipments.
  • a receiving apparatus for a PMI which is configured in a base station of a NOMA system, and the feedback apparatus includes:
  • the scheduling unit performs NOMA scheduling according to the NOMA PMI fed back by the multiple user equipments.
  • a PMI feedback method for a user equipment of a NOMA system, where the feedback method includes:
  • the OFDM PMI and the NOMA PMI are fed back to the base station.
  • a feedback device of a PMI which is configured in a user equipment of a NOMA system, and the feedback device includes:
  • the indication determining unit determines an OFDM PMI of rank r and a NOMA PMI of rank Nr; wherein r represents a rank number of the user equipment, and Nr represents a number of receive antennas of the user equipment and a number of transmit antennas of the base station Minimum value
  • a communication system using NOMA comprising:
  • the user equipment determines and feeds back an OFDM PMI of rank r and a NOMA PMI of rank Nr; where r represents the rank of the user equipment, and Nr represents the number of receive antennas of the user equipment and the number of transmit antennas of the base station Minimum value
  • a computer readable program wherein when the program is executed in a base station, the program causes a computer to perform a receiving method of the PMI as described above in the base station.
  • a storage medium storing a computer readable program, wherein the computer readable program causes a computer to perform a receiving method of a PMI as described above in a base station.
  • a computer readable program wherein when the program is executed in a user device, the program causes a computer to perform a feedback method of a PMI as described above in the user device .
  • a storage medium storing a computer readable program, wherein the computer readable program causes a computer to perform a feedback method of a PMI as described above in a user equipment.
  • An advantageous effect of the embodiment of the present invention is that the user equipment feeds back an OFDM PMI with a rank r and a NOMA PMI with a rank of Nr, and provides reference information for the base station to perform NOMA scheduling, so that the base station can schedule a suitable user equipment to ensure SIC performance. Thereby, SIC error propagation in a MIMO system using NOMA can be reduced.
  • FIG. 1 is a schematic diagram of a MIMO system according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a method for receiving a PMI according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic diagram of a feedback method of a PMI according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic diagram of a receiving apparatus of a PMI according to Embodiment 3 of the present invention.
  • Figure 5 is a schematic diagram of a base station according to Embodiment 3 of the present invention.
  • FIG. 6 is a schematic diagram of a feedback device of a PMI according to Embodiment 4 of the present invention.
  • FIG. 7 is a schematic diagram of a user equipment according to Embodiment 4 of the present invention.
  • Figure 8 is a schematic diagram of a communication system according to Embodiment 5 of the present invention.
  • the user equipment UE1 experiences the channel representation as H 1
  • the noise is represented as n 1
  • the path loss is represented as ⁇ 1
  • the user equipment UE2 experiences the channel representation as H 2 .
  • the noise is expressed as n 2 and the path loss is expressed as ⁇ 2 .
  • the base station transmits the symbols a 1 , a 2 to the user equipment UE1 using the NOMA method, and the precoding vectors used are denoted by w 1 , w 2 ; the base station transmits the symbol b 1 to the user equipment UE2, and the pre- The coding vector is w 1 .
  • FIG. 1 is a schematic diagram of a MIMO system according to an embodiment of the present invention, showing a case of two user equipments performing NOMA scheduling. As shown, the user equipment UE1 and a user equipment UE2 NOMA power only in the domain multiplexed beam 1 w 1.
  • the base station allocates different powers for different symbols, and uses the same time-frequency resource to transmit superimposed symbols on one power domain.
  • the NOMA superimposed symbol transmitted by the base station is
  • the received symbols of the user equipment UE1 and the user equipment UE2 are respectively represented as
  • the user equipment UE2 After receiving the signal sent by the base station, the user equipment UE2 independently demodulates the self symbol b 1 ; the user equipment UE1 demodulates b 1 for the purpose of SIC, deletes the b 1 interference and demodulates the self symbol a 1 , a 2 .
  • the User Equipment UE1 demodulates the user equipment UE2 symbols b 1 ratio of signal to interference noise referred to as SINR 1d2, the user equipment UE2 demodulates the signal to interference noise itself symbols b 1 ratio denoted SINR 2d2, referred to as the noise power ⁇ 2, then Have
  • User equipment UE1 can successfully demodulated symbols b 1 user equipment UE2 needs to meet SINR 1d2> SINR 2d2, but above SINR 1d2, SINR 2d2 expression does not always guarantee SINR 1d2> SINR 2d2 established, demodulation error for b 1 of the The error propagation is directly affected, which directly affects the demodulation of the user equipment UE1 for a 1 , a 2 .
  • the embodiment of the invention provides a method for receiving a PMI, which is applied to a base station of a NOMA system.
  • FIG. 2 is a schematic diagram of a method for receiving a PMI according to an embodiment of the present invention. As shown in FIG. 2, the method for feeding the PMI includes:
  • Step 201 The base station receives an OFDM PMI with a rank r and a NOMA PMI with a rank of Nr, which are fed back by the user equipment, where r represents the rank of the user equipment, and Nr represents the number of receiving antennas of the user equipment and the base station. The minimum of the number of antennas;
  • Step 202 The base station performs NOMA scheduling according to the NOMA PMI fed back by the multiple user equipments.
  • the PMI fed back by the user equipment may include an OFDM PMI of rank r (ie, a conventional PMI) and a NOMA PMI of rank Nr, where r represents the rank of the user equipment, and Nr represents the user equipment.
  • r represents the rank of the user equipment
  • Nr represents the user equipment.
  • rank-1 PMI traditional OFDM PMI
  • the user equipment UE2 can also feed back a rank of 2 (rank-2; as described above, both the base station and the user equipment are configured with two antennas, that is, the number of receiving antennas of the user equipment.
  • the number of transmit antennas of the base station is 2, so the Nr is also 2) PMI (which may be referred to as NOMA PMI), which is used to characterize the complete channel matrix direction of the user equipment UE2.
  • NOMA PMI which may be referred to as NOMA PMI
  • the base station After receiving the NOMA PMI of the complete channel matrix information that is fed back by the user equipment, the base station performs the corresponding NOMA user scheduling according to the NOMA PMI, that is, the NOMA pairing transmission may be selected in two or more user equipments that feed back the same NOMA PMI. User equipment.
  • the base station selects two user equipments that feed back the same NOMA PMI to perform NOMA scheduling, thereby ensuring that the two user equipments satisfy SINR 1d2 > SINR 2d2 , and can better ensure the SIC performance of the NOMA.
  • selection criteria may be based on distance criteria, so that the direction of the channel H 2 PMI rank-2 is closest. For example, using the chodal distance, select W that minimizes Tr(W H , H 2 )/
  • the precoding matrix identified by the fed back NOMA PMI has the same number of rows and columns as the channel matrix H 2 , that is, the number of rows of the precoding matrix identified by the NOMA PMI is the user equipment.
  • the number of transmitting antennas, the number of columns being the number of receiving antennas of the user equipment.
  • the NOMA PMI can characterize the complete channel matrix direction of the user equipment.
  • the user equipment feeds back the OFDM PMI with rank r and the NOMA PMI with rank Nr, and provides reference information for the base station to perform NOMA scheduling, so that the base station can schedule appropriate user equipment to ensure SIC performance.
  • SIC error propagation in a MIMO system using NOMA can be reduced.
  • the embodiment of the present invention provides a PMI feedback method, which is configured in the user equipment of the NOMA system, and the same content as that in Embodiment 1 is not described herein.
  • FIG. 3 is a schematic diagram of a PMI feedback method according to an embodiment of the present invention. As shown in FIG. 3, the PMI feedback method includes:
  • Step 301 The user equipment determines an OFDM PMI with a rank r and a NOMA PMI with a rank of Nr; where r represents the rank of the user equipment, and Nr represents the number of receive antennas of the user equipment and the number of transmit antennas of the base station.
  • Step 302 The user equipment feeds back the NOMA PMI to the base station.
  • the NOMA PMI is used to quantize the complete channel matrix of the user equipment itself.
  • the user equipment may make the NOMA PMI of the rank Nr and the direction of the channel H2 of the user equipment closest to each other based on the distance criterion.
  • the present invention is not limited thereto, and other methods may be used to determine the PMI of rank Nr.
  • a method may be used in which W which minimizes Tr(W H , H 2 )/
  • the number of rows of the precoding matrix identified by the NOMA PMI is the number of transmit antennas of the user equipment, and the number of columns is the number of receive antennas of the user equipment.
  • the user equipment feeds back the OFDM PMI with the rank r and the NOMA PMI with the rank Nr, and provides reference information for the base station to perform the NOMA scheduling, so that the base station can schedule the appropriate user equipment to ensure Certificate SIC performance.
  • SIC error propagation in a MIMO system using NOMA can be reduced.
  • the embodiment of the invention provides a receiving device of a PMI, which is configured in a base station of the NOMA system.
  • the embodiment of the present invention corresponds to the receiving method of the PMI in Embodiment 1, and the same content is not described herein again.
  • the receiving apparatus 400 of the PMI includes:
  • the receiving unit 401 receives the OFDM PMI of the rank r and the NOMA PMI of the rank Nr fed back by the user equipment; where r represents the rank of the user equipment, and Nr represents the number of receiving antennas of the user equipment and the base station The minimum of the number of transmit antennas;
  • the scheduling unit 402 performs NOMA scheduling according to the NOMA PMI fed back by multiple user equipments.
  • the NOMA PMI is used to quantize the complete channel matrix of the user equipment itself.
  • the scheduling unit 402 is specifically configured to: select, in the user equipment that feeds back the same NOMA PMI, the user equipment that performs the NOMA pairing transmission.
  • the embodiment further provides a base station, which is provided with the receiving device 400 of the PMI as described above.
  • FIG. 5 is a schematic diagram of a structure of a base station according to an embodiment of the present invention.
  • base station 500 can include a central processing unit (CPU) 200 and memory 210; and memory 210 is coupled to central processing unit 200.
  • the memory 210 can store various data; in addition, a program for information processing is stored, and the program is executed under the control of the central processing unit 200.
  • the base station 500 can implement the receiving method of the PMI as described in Embodiment 1.
  • the central processing unit 200 may be configured to implement the functions of the receiving device 400 of the PMI; that is, the central processing unit 200 may be configured to perform control of receiving an OFDM PMI of rank r and a NOM PMI of rank Nr fed back by the user equipment. And performing NOMA scheduling according to the NOMA PMI fed back by the plurality of user equipments; wherein r represents the rank of the user equipment, and Nr represents a minimum of the number of receiving antennas of the user equipment and the number of transmitting antennas of the base station.
  • the base station 500 may further include: a transceiver 220, an antenna 230, and the like; wherein the functions of the foregoing components are similar to those of the prior art, and details are not described herein again. It should be noted that the base station 500 does not have to include all the components shown in FIG. 5; in addition, the base station 500 may further include components not shown in FIG. 5, and reference may be made to the prior art.
  • the user equipment feeds back the OFDM PMI with rank r and the NOMA PMI with rank Nr, and provides reference information for the base station to perform NOMA scheduling, so that the base station can schedule appropriate user equipment to ensure SIC performance.
  • SIC error propagation in a MIMO system using NOMA can be reduced.
  • An embodiment of the present invention provides a PMI feedback device, which is configured in a user equipment of a NOMA system.
  • the embodiment of the present invention corresponds to the feedback method of the PMI in Embodiment 2, and the same content is not described again.
  • FIG. 6 is a schematic diagram of a feedback device according to an embodiment of the present invention. As shown in FIG. 6, the feedback device 600 of the PMI includes:
  • the indication determining unit 601 determines an OFDM PMI of rank r and a NOMA PMI of rank Nr; wherein r represents the rank of the user equipment, and Nr represents the number of receive antennas of the user equipment and the number of transmit antennas of the base station Minimum value
  • the indication feedback unit 602 feeds back the OFDM PMI and the NOMA PMI to the base station.
  • the NOMA PMI is used to quantize the complete channel matrix of the user equipment itself.
  • the indication determining unit 601 may make the NOMA PMI of the rank Nr and the direction of the channel H2 of the user equipment closest to each other based on the distance criterion.
  • the indication determining unit 601 may be specifically configured to: select W that minimizes Tr(W H , H 2 )/
  • the number of rows of the precoding matrix identified by the NOMA PMI is the number of transmit antennas of the user equipment, and the number of columns is the number of receive antennas of the user equipment.
  • the embodiment of the invention further provides a user equipment, which is provided with the feedback device 600 of the above PMI.
  • FIG. 7 is a schematic diagram of a user equipment according to an embodiment of the present invention.
  • the user device 700 can include a central processing unit 100 and a memory 140; the memory 140 is coupled to the central processing unit 100.
  • the figure is exemplary; other types of structures may be used in addition to or in place of the structure to implement telecommunications functions or other functions.
  • the functionality of the feedback device 600 of the PMI can be integrated into the central processor 100.
  • the central processing unit 100 may be configured to perform control of: determining and feeding back an OFDM PMI of rank r and a NOMA PMI of rank Nr; wherein r represents the rank of the user equipment, and Nr represents the reception of the user equipment The minimum of the number of antennas and the number of transmit antennas of the base station.
  • the feedback device 600 of the PMI can be configured separately from the central processing unit 100, such as
  • the feedback device 600 of the PMI can be configured as a chip connected to the central processing unit 100, and the function of the feedback device 600 of the PMI can be realized by the control of the central processing unit.
  • the user equipment 700 may further include: a communication module 110, an input unit 120, an audio processing unit 130, a memory 140, a camera 150, a display 160, and a power source 170.
  • the functions of the above components are similar to those of the prior art, and are not described herein again. It should be noted that the user equipment 700 does not have to include all the components shown in FIG. 7, and the above components are not required; in addition, the user equipment 700 may further include components not shown in FIG. There are technologies.
  • the user equipment feeds back the OFDM PMI with rank r and the NOMA PMI with rank Nr, and provides reference information for the base station to perform NOMA scheduling, so that the base station can schedule appropriate user equipment to ensure SIC performance.
  • SIC error propagation in a MIMO system using NOMA can be reduced.
  • FIG. 8 is a schematic diagram of a communication system according to an embodiment of the present invention.
  • the communication system 800 includes: a base station 801 and a user equipment 802;
  • the user equipment 802 determines and feeds back an OFDM PMI of rank r and a NOMA PMI of rank Nr; where r represents the rank of the user equipment, and Nr represents the number of receive antennas of the user equipment and the transmit antenna of the base station. The minimum of the number;
  • the base station 801 receives the OFDM PMI and the NOMA PMI fed back by the user equipment 802; and performs NOMA scheduling according to the NOMA PMI fed back by multiple user equipments.
  • the NOMA PMI is used to quantize the complete channel matrix of the user equipment itself.
  • An embodiment of the present invention provides a computer readable program, wherein when the program is executed in a base station, the program causes a computer to execute a receiving method of the PMI as described in Embodiment 1 in the base station.
  • An embodiment of the present invention provides a storage medium storing a computer readable program, wherein the computer readable program causes a computer to execute a receiving method of the PMI as described in Embodiment 1 in a base station.
  • An embodiment of the present invention provides a computer readable program, wherein when the program is executed in a user equipment, the program causes a computer to perform a feedback method of the PMI as described in Embodiment 2 in the user equipment.
  • An embodiment of the present invention provides a storage medium storing a computer readable program, wherein the computer readable program causes a computer to perform a feedback method of the PMI as described in Embodiment 2 in a user equipment.
  • the above apparatus and method of the present invention may be implemented by hardware or by hardware in combination with software.
  • the present invention relates to a computer readable program that, when executed by a logic component, enables the logic component to implement the apparatus or components described above, or to cause the logic component to implement the various methods described above Or steps.
  • the present invention also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, or the like.
  • One or more of the functional blocks described in the figures and/or one or more combinations of functional blocks may be implemented as a general purpose processor, digital signal processor (DSP) for performing the functions described herein.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • One or more of the functional blocks described with respect to the figures and/or one or more combinations of functional blocks may also be implemented as a combination of computing devices, eg, a combination of a DSP and a microprocessor, multiple microprocessors One or more microprocessors in conjunction with DSP communication or any other such configuration.

Abstract

一种PMI的反馈和接收方法、装置以及通信系统。所述PMI的反馈方法包括:用户设备确定秩为r的OFDM PMI以及秩为Nr的NOMA PMI,以及将所述OFDM PMI和所述NOMA PMI反馈给基站;其中r表示所述用户设备的秩数,Nr表示所述用户设备的接收天线数和所述基站的发射天线数中的最小值。由此,为基站进行NOMA调度提供参考信息,使基站能够调度合适的用户设备以保证SIC性能;可以减小使用NOMA的MIMO系统中SIC错误传播。

Description

预编码矩阵指示的反馈和接收方法、装置以及通信系统 技术领域
本发明涉及通信技术领域,特别涉及一种非正交多址接入(NOMA,Non-Orthogonal Multiple Access)的预编码矩阵指示(PMI,Precoding Matrix Indicator)的反馈和接收方法、装置以及通信系统。
背景技术
第五代(5G)移动通信技术的理论研究工作已经逐渐展开。5G通信系统的需求之一是支持比4G更高的系统容量(例如1000倍)以及比4G更多的终端连接数目(例如100倍)。之前历代移动通信均采用正交多址技术,研究表明,非正交多址技术能够实现比正交多址技术更大的容量域,这一理论指导使得非正交多址技术成为5G研究的关键技术之一。
实现非正交的方式之一是功率域非正交,其代表性技术NOMA目前已经被纳入LTE-A Release 13的讨论范围。NOMA技术基于叠加码理论,发送端发送叠加符号,接收端需要使用串行干扰删除(SIC,Successive Interference Cancel)技术分离并恢复数据信息。对于发送端使用单天线的情形,NOMA技术理论上能够实现下行广播信道和上行多址信道的全部容量域。
应该注意,上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
但是,发明人发现,NOMA能够在功率域复用用户设备,关键在于进行SIC的用户设备能够解调其他用户设备的数据,并删除该数据对自身有用信号的干扰,这要求进行SIC的用户设备在解调干扰信号(该干扰信号对其他用户设备而言是有用信号)时具有比其他用户设备解调自身有用信号更高的信干噪比。
然而,对于多输入多输出(MIMO,Multiple Input Multiple Output)系统而言,由于不同用户设备可能反馈不同的秩(rank),例如用户设备反馈rank=1的传统正交 频分复用(OFDM,Orthogonal Frequency Division Multiplexing)PMI。在得到NOMA调度的2个用户设备使用不同秩时,进行SIC的用户设备需要更高信干噪比的这一要求将难以得到满足,从而导致进行SIC的用户设备第一级解调失败,进而产生错误传播。
本发明实施例提供一种NOMA PMI的反馈和接收方法、装置以及通信系统。通过用户设备反馈辅助PMI信息(即NOMA PMI),为基站进行NOMA调度提供参考信息,使基站能够调度合适的用户设备以保证SIC性能。
根据本发明实施例的第一个方面,提供一种PMI的接收方法,应用于NOMA系统的基站,所述反馈方法包括:
接收用户设备反馈的秩为r的OFDM PMI以及秩为Nr的NOMA PMI;其中r表示所述用户设备的秩数,Nr表示所述用户设备的接收天线数和所述基站的发射天线数中的最小值;
根据多个用户设备反馈的NOMA PMI进行NOMA调度。
根据本发明实施例的第二个方面,提供一种PMI的接收装置,配置于NOMA系统的基站,所述反馈装置包括:
指示接收单元,接收用户设备反馈的秩为r的OFDM PMI以及秩为Nr的NOMA PMI;其中r表示所述用户设备的秩数,Nr表示所述用户设备的接收天线数和所述基站的发射天线数中的最小值;
调度单元,根据多个用户设备反馈的NOMA PMI进行NOMA调度。
根据本发明实施例的第三个方面,提供一种PMI的反馈方法,应用于NOMA系统的用户设备,所述反馈方法包括:
确定秩为r的OFDM PMI以及秩为Nr的NOMA PMI;其中r表示所述用户设备的秩数,Nr表示所述用户设备的接收天线数和所述基站的发射天线数中的最小值;
将所述OFDM PMI以及所述NOMA PMI反馈给基站。
根据本发明实施例的第四个方面,提供一种PMI的反馈装置,配置于NOMA系统的用户设备,所述反馈装置包括:
指示确定单元,确定秩为r的OFDM PMI以及秩为Nr的NOMA PMI;其中r表示所述用户设备的秩数,Nr表示所述用户设备的接收天线数和所述基站的发射天线数中的最小值;
指示反馈单元,将所述OFDM PMI以及所述NOMA PMI反馈给基站。
根据本发明实施例的第五个方面,提供一种通信系统,使用NOMA,所述通信系统包括:
用户设备,确定并反馈秩为r的OFDM PMI以及秩为Nr的NOMA PMI;其中r表示所述用户设备的秩数,Nr表示所述用户设备的接收天线数和所述基站的发射天线数中的最小值;
基站,接收所述用户设备反馈的所述OFDM PMI以及所述NOMA PMI;以及根据多个用户设备反馈的NOMA PMI进行NOMA调度。
根据本发明实施例的又一个方面,提供一种计算机可读程序,其中当在基站中执行所述程序时,所述程序使得计算机在所述基站中执行如上所述的PMI的接收方法。
根据本发明实施例的又一个方面,提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在基站中执行如上所述PMI的接收方法。
根据本发明实施例的又一个方面,提供一种计算机可读程序,其中当在用户设备中执行所述程序时,所述程序使得计算机在所述用户设备中执行如上所述的PMI的反馈方法。
根据本发明实施例的又一个方面,提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在用户设备中执行如上所述PMI的反馈方法。
本发明实施例的有益效果在于,用户设备反馈秩为r的OFDM PMI以及秩为Nr的NOMA PMI,为基站进行NOMA调度提供参考信息,使基站能够调度合适的用户设备以保证SIC性能。由此,可以减小使用NOMA的MIMO系统中的SIC错误传播。
参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原理可以被采用的方式。应该理解,本发明的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
参照以下的附图可以更好地理解本发明的很多方面。附图中的部件不是成比例绘制的,而只是为了示出本发明的原理。为了便于示出和描述本发明的一些部分,附图中对应部分可能被放大或缩小。
在本发明的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
图1是本发明实施例的MIMO系统的一示意图
图2是本发明实施例1的PMI的接收方法的一示意图;
图3是本发明实施例2的PMI的反馈方法的一示意图;
图4是本发明实施例3的PMI的接收装置的一示意图;
图5是本发明实施例3的基站的一示意图;
图6是本发明实施例4的PMI的反馈装置的一示意图;
图7是本发明实施例4的用户设备的一示意图;
图8是本发明实施例5的通信系统的一示意图。
具体实施方式
参照附图,通过下面的说明书,本发明的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本发明的特定实施方式,其表明了其中可以采用本发明的原则的部分实施方式,应了解的是,本发明不限于所描述的实施方式,相反,本发明包括落入所附权利要求的范围内的全部修改、变型以及等同物。
在MIMO系统中,假设基站和用户设备均配置有2根天线,用户设备UE1经历信道表示为H1,噪声表示为n1,路径损耗表示为ρ1,用户设备UE2经历信道表示为H2,噪声表示为n2,路径损耗表示为ρ2
假设ρ1<ρ2,因此用户设备UE1的信噪比高于用户设备UE2,因此用户设备UE1有能力支持秩为2的双流传输,用户设备UE2由于信噪比较低,仅能支持秩为1的单流传输。在这种情况下,基站使用NOMA方式发送符号a1,a2给用户设备UE1,所 使用的预编码向量记为w1,w2;基站发送符号b1给用户设备UE2,所使用的预编码向量为w1
图1是本发明实施例的MIMO系统的一示意图,示出了进行NOMA调度的两个用户设备的情况。如图1所示,用户设备UE1和用户设备UE2仅在波束w1内进行NOMA功率域复用。
假设基站总功率为P,基站为不同符号分配不同功率,使用相同的时频资源发送一个功率域上的叠加符号。假设分配给符号a1,a2,b1的功率分别为0.5P1、0.5P1、P2,其中P1+P2=P,则基站发送的NOMA叠加符号为
Figure PCTCN2015076691-appb-000001
用户设备UE1、用户设备UE2的接收符号分别表示为
Figure PCTCN2015076691-appb-000002
Figure PCTCN2015076691-appb-000003
在接收到基站发送的信号后,用户设备UE2独立解调自身符号b1;用户设备UE1出于SIC目的也要解调b1,删除掉b1干扰后进而解调自身符号a1,a2。将用户设备UE1解调用户设备UE2符号b1的信干噪比记为SINR1d2,将用户设备UE2解调自身符号b1的信干噪比记为SINR2d2,噪声功率记为σ2,则有
Figure PCTCN2015076691-appb-000004
Figure PCTCN2015076691-appb-000005
用户设备UE1能够成功解调用户设备UE2符号b1需要满足SINR1d2>SINR2d2,然而上述的SINR1d2,SINR2d2表达式并不能始终保证SINR1d2>SINR2d2成立,对b1的解调错误将导致错误传播,直接影响用户设备UE1后续对a1,a2的解调。
以下对本发明实施例如何解决上述问题进行详细说明。
实施例1
本发明实施例提供一种PMI的接收方法,应用于NOMA系统的基站。
图2是本发明实施例的PMI的接收方法的一示意图,如图2所示,所述PMI的反馈方法包括:
步骤201,基站接收用户设备反馈的秩为r的OFDM PMI以及秩为Nr的NOMA PMI;其中r表示所述用户设备的秩数,Nr表示所述用户设备的接收天线数和所述基站的发射天线数中的最小值;
步骤202,基站根据多个用户设备反馈的NOMA PMI进行NOMA调度。
在本实施例中,对于如上所述的(1)(2)式,发现当H1=eH2时,即H1,H2具有相同的方向时,能够保证SINR1d2>SINR2d2成立。因此在用户设备进行PMI反馈时,可以令用户设备反馈一个量化自身完整信道矩阵的PMI(可以称为NOMA PMI)。
在本实施例中,用户设备反馈的PMI可以包括秩为r的OFDM PMI(即传统的PMI)以及秩为Nr的NOMA PMI,其中r表示所述用户设备的秩数,Nr表示所述用户设备的接收天线数和所述基站的发射天线数中的最小值。用户设备向基站反馈这样的辅助信息之后,将有助于满足SINR1d2>SINR2d2,从而减少错误传播。
例如,对于上述用户设备UE2,由于其使用秩1进行单流传输,根据现有标准将只反馈一个秩为1(rank-1)的PMI(传统的OFDM PMI),然而该PMI不足以刻画用户设备UE2的完整信道矩阵方向。
为保证NOMA的SIC性能,本发明实施例可以使用户设备UE2也反馈一个秩为2(rank-2;如上所述,基站和用户设备均配置有2根天线,即用户设备的接收天线数和所述基站的发射天线数均为2,因此此时Nr也为2)的PMI(可以称为NOMA PMI),用来表征用户设备UE2的完整信道矩阵方向。基站在接收到用户设备反馈的表征完整信道矩阵信息的NOMA PMI后,将根据NOMA PMI进行相应的NOMA用户调度,即可以在反馈相同NOMA PMI的两个或以上的用户设备中选择进行NOMA配对传输的用户设备。
例如,基站在进行NOMA用户配对时,选择反馈相同NOMA PMI的两个用户设备进行NOMA调度,由此可保证这两用户设备满足SINR1d2>SINR2d2,能够更好地保证NOMA的SIC性能。
在本实施例中,用户设备在确定NOMA PMI时,选取准则可以基于距离准则,使rank-2的PMI与信道H2的方向最为接近。例如使用chodal距离,在码书中选择使 Tr(WH,H2)/||W||||H2||最小的W,将该W的索引作为NOMA PMI反馈;其中Tr为矩阵的迹,||表示范数。关于上述公式的各种参数以及含义可以参考相关技术。
在本实施例中,反馈的NOMA PMI所标识的预编码矩阵具有与信道矩阵H2相同的行数和列数,即所述NOMA PMI所标识的预编码矩阵的行数为所述用户设备的发射天线数,列数为所述用户设备的接收天线数。由此,NOMA PMI可以刻画用户设备的完整信道矩阵方向。
由上述实施例可知,用户设备反馈秩为r的OFDM PMI以及秩为Nr的NOMA PMI,为基站进行NOMA调度提供参考信息,使基站能够调度合适的用户设备以保证SIC性能。由此,可以减小使用NOMA的MIMO系统中的SIC错误传播。
实施例2
本发明实施例提供一种PMI的反馈方法,配置于NOMA系统的用户设备,与实施例1相同的内容不再赘述。
图3是本发明实施例的PMI的反馈方法的一示意图,如图3所示,所述PMI的反馈方法包括:
步骤301,用户设备确定秩为r的OFDM PMI以及秩为Nr的NOMA PMI;其中r表示所述用户设备的秩数,Nr表示所述用户设备的接收天线数和所述基站的发射天线数中的最小值;
步骤302,用户设备将所述NOMA PMI反馈给基站。
在本实施例中,所述NOMA PMI用于量化所述用户设备自身完整信道矩阵。
在本实施例中,用户设备可以基于距离准则使所述秩为Nr的NOMA PMI与所述用户设备的信道H2的方向最为接近。但本发明不限于此,还可以使用其他的方法确定所述秩为Nr的PMI。
在本实施例中,具体地可以使用如下方法:在码书中选择使Tr(WH,H2)/||W||||H2||最小的W,将该W的索引作为所述NOMA PMI;其中所述NOMA PMI所标识的预编码矩阵的行数为所述用户设备的发射天线数,列数为所述用户设备的接收天线数。
由上述实施例可知,用户设备反馈秩为r的OFDM PMI以及秩为Nr的NOMA PMI,为基站进行NOMA调度提供参考信息,使基站能够调度合适的用户设备以保 证SIC性能。由此,可以减小使用NOMA的MIMO系统中的SIC错误传播。
实施例3
本发明实施例提供一种PMI的接收装置,配置于NOMA系统的基站。本发明实施例对应于实施例1中的PMI的接收方法,相同的内容不再赘述。
图4是本发明实施例的PMI的接收装置的一示意图,如图4所示,所述PMI的接收装置400包括:
指示接收单元401,接收用户设备反馈的秩为r的OFDM PMI以及秩为Nr的NOMA PMI;其中r表示所述用户设备的秩数,Nr表示所述用户设备的接收天线数和所述基站的发射天线数中的最小值;
调度单元402,根据多个用户设备反馈的NOMA PMI进行NOMA调度。
在本实施例中,所述NOMA PMI用于量化所述用户设备自身完整信道矩阵。
在本实施例中,所述调度单元402具体可以用于:在反馈相同NOMA PMI的两个或以上的用户设备中选择进行NOMA配对传输的用户设备。
本实施例还提供一种基站,配置有如上所述PMI的接收装置400。
图5是本发明实施例的基站的一构成示意图。如图5所示,基站500可以包括:中央处理器(CPU)200和存储器210;存储器210耦合到中央处理器200。其中该存储器210可存储各种数据;此外还存储信息处理的程序,并且在中央处理器200的控制下执行该程序。
其中,基站500可以实现如实施例1所述的PMI的接收方法。中央处理器200可以被配置为实现所述PMI的接收装置400的功能;即中央处理器200可以被配置为进行如下控制:接收用户设备反馈的秩为r的OFDM PMI以及秩为Nr的NOMA PMI,以及根据多个用户设备反馈的NOMA PMI进行NOMA调度;其中r表示所述用户设备的秩数,Nr表示所述用户设备的接收天线数和所述基站的发射天线数中的最小值。
此外,如图5所示,基站500还可以包括:收发机220和天线230等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,基站500也并不是必须要包括图5中所示的所有部件;此外,基站500还可以包括图5中没有示出的部件,可以参考现有技术。
由上述实施例可知,用户设备反馈秩为r的OFDM PMI以及秩为Nr的NOMA PMI,为基站进行NOMA调度提供参考信息,使基站能够调度合适的用户设备以保证SIC性能。由此,可以减小使用NOMA的MIMO系统中的SIC错误传播。
实施例4
本发明实施例提供一种PMI的反馈装置,配置于NOMA系统的用户设备。本发明实施例对应于实施例2中的PMI的反馈方法,相同的内容不再赘述。
图6是本发明实施例的反馈装置的一示意图,如图6所示,所述PMI的反馈装置600包括:
指示确定单元601,确定秩为r的OFDM PMI以及秩为Nr的NOMA PMI;其中r表示所述用户设备的秩数,Nr表示所述用户设备的接收天线数和所述基站的发射天线数中的最小值;
指示反馈单元602,将所述OFDM PMI以及所述NOMA PMI反馈给基站。
在本实施例中,所述NOMA PMI用于量化所述用户设备自身完整信道矩阵。
在本实施例中,所述指示确定单元601可以基于距离准则使所述秩为Nr的NOMA PMI与所述用户设备的信道H2的方向最为接近。
其中,指示确定单元601具体可以用于:在码书中选择使Tr(WH,H2)/||W||||H2||最小的W,将该W的索引作为所述NOMA PMI;其中所述NOMA PMI所标识的预编码矩阵的行数为所述用户设备的发射天线数,列数为所述用户设备的接收天线数。
本发明实施例还提供一种用户设备,配置有上述的PMI的反馈装置600。
图7是本发明实施例的用户设备的一示意图。如图7所示,该用户设备700可以包括中央处理器100和存储器140;存储器140耦合到中央处理器100。值得注意的是,该图是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。
在一个实施方式中,PMI的反馈装置600的功能可以被集成到中央处理器100中。其中,中央处理器100可以被配置为进行如下控制:确定并反馈秩为r的OFDM PMI以及秩为Nr的NOMA PMI;其中r表示所述用户设备的秩数,Nr表示所述用户设备的接收天线数和所述基站的发射天线数中的最小值。
在另一个实施方式中,PMI的反馈装置600可以与中央处理器100分开配置,例 如可以将PMI的反馈装置600配置为与中央处理器100连接的芯片,通过中央处理器的控制来实现PMI的反馈装置600的功能。
如图7所示,该用户设备700还可以包括:通信模块110、输入单元120、音频处理单元130、存储器140、照相机150、显示器160、电源170。其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,用户设备700也并不是必须要包括图7中所示的所有部件,上述部件并不是必需的;此外,用户设备700还可以包括图7中没有示出的部件,可以参考现有技术。
由上述实施例可知,用户设备反馈秩为r的OFDM PMI以及秩为Nr的NOMA PMI,为基站进行NOMA调度提供参考信息,使基站能够调度合适的用户设备以保证SIC性能。由此,可以减小使用NOMA的MIMO系统中的SIC错误传播。
实施例5
本发明实施例还提供一种使用NOMA的通信系统,与实施例1至4相同的内容不再赘述。图8是本发明实施例的通信系统的一示意图,如图8所示,所述通信系统800包括:基站801和用户设备802;
其中,用户设备802确定并反馈秩为r的OFDM PMI以及秩为Nr的NOMA PMI;其中r表示所述用户设备的秩数,Nr表示所述用户设备的接收天线数和所述基站的发射天线数中的最小值;
基站801接收所述用户设备802反馈的所述OFDM PMI以及所述NOMA PMI;以及根据多个用户设备反馈的NOMA PMI进行NOMA调度。
在本实施例中,所述NOMA PMI用于量化所述用户设备自身完整信道矩阵。
本发明实施例提供一种计算机可读程序,其中当在基站中执行所述程序时,所述程序使得计算机在所述基站中执行如实施例1所述的PMI的接收方法。
本发明实施例提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在基站中执行如实施例1所述的PMI的接收方法。
本发明实施例提供一种计算机可读程序,其中当在用户设备中执行所述程序时,所述程序使得计算机在所述用户设备中执行如实施例2所述的PMI的反馈方法。
本发明实施例提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在用户设备中执行如实施例2所述的PMI的反馈方法。
本发明以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本发明涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本发明还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本发明保护范围的限制。本领域技术人员可以根据本发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围内。

Claims (9)

  1. 一种预编码矩阵指示即PMI的接收装置,配置于非正交多址接入即NOMA系统的基站,所述PMI的接收装置包括:
    指示接收单元,接收用户设备反馈的秩为r的正交频分复用即OFDM PMI以及秩为Nr的NOMA PMI;其中r表示所述用户设备的秩数,Nr表示所述用户设备的接收天线数和所述基站的发射天线数中的最小值;
    调度单元,根据多个用户设备反馈的NOMA PMI进行NOMA调度。
  2. 根据权利要求1所述的PMI的接收装置,其中,所述调度单元用于:在反馈相同NOMA PMI的两个或以上的用户设备中,选择进行NOMA配对传输的用户设备。
  3. 根据权利要求1所述的PMI的接收装置,其中,所述NOMA PMI用于量化所述用户设备自身完整信道矩阵。
  4. 一种预编码矩阵指示即PMI的反馈装置,配置于非正交多址接入即NOMA系统的用户设备,所述反馈装置包括:
    指示确定单元,确定秩为r的OFDM PMI以及秩为Nr的NOMA PMI;其中r表示所述用户设备的秩数,Nr表示所述用户设备的接收天线数和基站的发射天线数中的最小值;
    指示反馈单元,将所述OFDM PMI和所述NOMA PMI反馈给所述基站。
  5. 根据权利要求4所述的PMI的反馈装置,其中,所述NOMA PMI用于量化所述用户设备自身完整信道矩阵。
  6. 根据权利要求4所述的反馈装置,其中,所述指示确定单元用于:基于距离准则使所述秩为Nr的PMI与所述用户设备的信道H2的方向最为接近。
  7. 根据权利要求6所述的反馈装置,其中,所述指示确定单元具体用于:在码书中选择使Tr(WH,H2)/||W||||H2||最小的W,将所述W的索引作为所述NOMA PMI;
    其中,所述NOMA PMI所标识的预编码矩阵的行数为所述用户设备的发射天线数,列数为所述用户设备的接收天线数。
  8. 一种通信系统,使用非正交多址接入即NOMA,所述通信系统包括:
    用户设备,确定并反馈秩为r的OFDM PMI和秩为Nr的NOMA PMI;其中r表示所述用户设备的秩数,Nr表示所述用户设备的接收天线数和基站的发射天线数中 的最小值;
    基站,接收所述用户设备反馈的所述OFDM PMI和所述NOMA PMI;以及根据多个用户设备反馈的NOMA PMI进行NOMA调度。
  9. 根据权利要求8所述的通信系统,其中,所述NOMA PMI用于量化所述用户设备自身完整信道矩阵。
PCT/CN2015/076691 2015-04-16 2015-04-16 预编码矩阵指示的反馈和接收方法、装置以及通信系统 WO2016165092A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2015/076691 WO2016165092A1 (zh) 2015-04-16 2015-04-16 预编码矩阵指示的反馈和接收方法、装置以及通信系统
CN201580077526.2A CN107409009A (zh) 2015-04-16 2015-04-16 预编码矩阵指示的反馈和接收方法、装置以及通信系统
US15/722,681 US20180026699A1 (en) 2015-04-16 2017-10-02 Methods and Apparatuses for Feeding Back and Receiving Pre-coding Matrix Indicator and Communication System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/076691 WO2016165092A1 (zh) 2015-04-16 2015-04-16 预编码矩阵指示的反馈和接收方法、装置以及通信系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/722,681 Continuation US20180026699A1 (en) 2015-04-16 2017-10-02 Methods and Apparatuses for Feeding Back and Receiving Pre-coding Matrix Indicator and Communication System

Publications (1)

Publication Number Publication Date
WO2016165092A1 true WO2016165092A1 (zh) 2016-10-20

Family

ID=57125635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/076691 WO2016165092A1 (zh) 2015-04-16 2015-04-16 预编码矩阵指示的反馈和接收方法、装置以及通信系统

Country Status (3)

Country Link
US (1) US20180026699A1 (zh)
CN (1) CN107409009A (zh)
WO (1) WO2016165092A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107947841A (zh) * 2017-11-20 2018-04-20 西安电子科技大学 大规模mimo非正交多址系统多天线用户对调度方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108882352B (zh) * 2018-05-29 2021-03-12 南京邮电大学 一种基于非完美sic的权重速率最优的下行noma功率分配方法
CN113132975B (zh) * 2021-04-22 2022-06-14 大连理工大学 一种多天线协作非正交多址系统的安全传输方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101371459A (zh) * 2006-01-20 2009-02-18 三星电子株式会社 在频分多址系统中进行开环功率控制的方法和设备
CN101414865A (zh) * 2008-11-12 2009-04-22 东南大学 无线中继器辅助多用户接入系统的联合多用户发送方法
CN101924602A (zh) * 2009-06-12 2010-12-22 华为技术有限公司 数据传输方法及设备
CN104158631A (zh) * 2014-08-27 2014-11-19 北京邮电大学 一种数据流的发射方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8615198B2 (en) * 2009-08-27 2013-12-24 Samsung Electronics Co., Ltd. Method and apparatus for triggering multicell MIMO schemes in multiple antenna system
KR101701896B1 (ko) * 2010-08-04 2017-02-02 삼성전자주식회사 개 루프 멀티 셀 미모 시스템에서 성능 향상을 위한 장치 및 방법
US10003486B2 (en) * 2014-04-28 2018-06-19 Intel IP Corporation Non-orthogonal multiple access (NOMA) wireless systems and methods
US9882623B2 (en) * 2014-09-18 2018-01-30 Qualcomm Incorporated Dual thread feedback design for non-orthogonal channels
WO2016144100A1 (ko) * 2015-03-09 2016-09-15 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 수행하는 장치
WO2016159736A1 (ko) * 2015-04-02 2016-10-06 삼성전자 주식회사 무선 통신 시스템에서 다운링크 정보를 송신하는 방법 및 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101371459A (zh) * 2006-01-20 2009-02-18 三星电子株式会社 在频分多址系统中进行开环功率控制的方法和设备
CN101414865A (zh) * 2008-11-12 2009-04-22 东南大学 无线中继器辅助多用户接入系统的联合多用户发送方法
CN101924602A (zh) * 2009-06-12 2010-12-22 华为技术有限公司 数据传输方法及设备
CN104158631A (zh) * 2014-08-27 2014-11-19 北京邮电大学 一种数据流的发射方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107947841A (zh) * 2017-11-20 2018-04-20 西安电子科技大学 大规模mimo非正交多址系统多天线用户对调度方法
CN107947841B (zh) * 2017-11-20 2021-05-04 西安电子科技大学 大规模mimo非正交多址系统多天线用户对调度方法

Also Published As

Publication number Publication date
CN107409009A (zh) 2017-11-28
US20180026699A1 (en) 2018-01-25

Similar Documents

Publication Publication Date Title
JP7469844B2 (ja) 4TxMIMOのためのPUCCHでのCSIフィードバックのためのコードブックサブサンプリング
US11689255B2 (en) Wireless communication system, and device and method in wireless communication system
US11539406B2 (en) Transmission modes and signaling for uplink MIMO support or single TB dual-layer transmission in LTE uplink
US10547366B2 (en) Method and apparatus for CSI reporting on PUCCH
US20210167832A1 (en) Method and apparatus to csi reporting using multiple antenna panels in advanced wireless communication systems
JP6083620B2 (ja) 通信装置及び通信方法
US20130301746A1 (en) Codebook based downlink multi-user interference alignment scheme
US20180191410A1 (en) Subset of w2 method and apparatus for sending precoding information and feeding back precoding information
US9654192B2 (en) Apparatus and method for channel feedback in multiple input multiple output system
JP2016514388A (ja) Lteにおける4txコードブックエンハンスメント
US10652066B2 (en) Device, method, and program for identifying a preferred codebook for non-orthogonal multiplexing/non-orthogonal multiple access
WO2016070428A1 (zh) Dm-rs信息的指示方法、装置以及通信系统
US10404435B2 (en) Pilot signal generation method and apparatus
WO2016165092A1 (zh) 预编码矩阵指示的反馈和接收方法、装置以及通信系统
US11196522B2 (en) Enhanced sounding reference signal scheme
US20200112352A1 (en) Rank-2 csi construction with 1-layer srs
CN107666339B (zh) 一种发送信道状态信息的方法和设备
CN113632398B (zh) 用于较高秩扩展的信道状态信息反馈
CN116325614A (zh) 频域分量的指示

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15888797

Country of ref document: EP

Kind code of ref document: A1