WO2016070428A1 - Dm-rs信息的指示方法、装置以及通信系统 - Google Patents

Dm-rs信息的指示方法、装置以及通信系统 Download PDF

Info

Publication number
WO2016070428A1
WO2016070428A1 PCT/CN2014/090646 CN2014090646W WO2016070428A1 WO 2016070428 A1 WO2016070428 A1 WO 2016070428A1 CN 2014090646 W CN2014090646 W CN 2014090646W WO 2016070428 A1 WO2016070428 A1 WO 2016070428A1
Authority
WO
WIPO (PCT)
Prior art keywords
port
user equipment
layers
value
information
Prior art date
Application number
PCT/CN2014/090646
Other languages
English (en)
French (fr)
Inventor
张翼
周华
Original Assignee
富士通株式会社
张翼
周华
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社, 张翼, 周华 filed Critical 富士通株式会社
Priority to PCT/CN2014/090646 priority Critical patent/WO2016070428A1/zh
Priority to JP2017523437A priority patent/JP2017539136A/ja
Priority to CN201480082511.0A priority patent/CN106797246A/zh
Priority to EP14905370.4A priority patent/EP3217569A4/en
Priority to KR1020177012472A priority patent/KR20170069252A/ko
Publication of WO2016070428A1 publication Critical patent/WO2016070428A1/zh
Priority to US15/499,197 priority patent/US20170230161A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • H04B7/0479Special codebook structures directed to feedback optimisation for multi-dimensional arrays, e.g. horizontal or vertical pre-distortion matrix index [PMI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method for indicating demodulation reference signal (DM-RS, De-Modulation Reference Signal) information in a 3D MIMO (3D Multiple Input Multiple Output) system. , devices and communication systems.
  • DM-RS demodulation reference signal
  • De-Modulation Reference Signal De-Modulation Reference Signal
  • a two-dimensional active antenna array can be placed at the transmitting end, which forms a three-dimensional beam by flexible weighting of antenna coefficients.
  • the three-dimensional multi-antenna technology can improve the antenna gain, reduce the beam width, and reduce the interference; on the other hand, by multiplexing more users in space, the multiplexing efficiency of the system can be improved. Therefore, the three-dimensional multi-antenna technology can significantly improve the transmission efficiency and reliability of the system, and is a popular candidate technology for future mobile communication systems.
  • FIG. 1 is a schematic diagram of multi-user MIMO (MU-MIMO) in 3D MIMO. As shown in FIG. 1, the vertical dimension is added to the 3D multi-antenna system, and the dimension of the system capable of supporting MU-MIMO can be further increased.
  • MU-MIMO multi-user MIMO
  • the system supports MU-MIMO dimension is limited, each user supports a maximum rank (rank) of 2 transmission, MU-MIMO maximum And the rank rank is 4.
  • rank the rank of 2 transmission
  • MU-MIMO maximum the rank rank is 4.
  • DM-RS related information needs to be enhanced to ensure reliable demodulation of data.
  • Embodiments of the present invention provide a method, an apparatus, and a communication system for indicating DM-RS information.
  • the signaling indicating the DM-RS information is sent by the base station to the user equipment, so that the user equipment supports high-dimensional MU-MIMO according to the signaling.
  • a method for indicating DM-RS information is provided, which is applied to a 3D MIMO system, and the method includes:
  • the base station sends signaling indicating the DM-RS information to the user equipment, so that the user equipment supports high-dimensional MU-MIMO according to the signaling.
  • a device for indicating DM-RS information is provided, which is applied to a 3D MIMO system, and the device includes:
  • the signaling sending unit sends signaling indicating the DM-RS information to the user equipment, so that the user equipment supports high-dimensional MU-MIMO according to the signaling.
  • a communication system comprising:
  • the base station sends signaling indicating the DM-RS information to the user equipment, so that the user equipment supports high-dimensional MU-MIMO according to the signaling.
  • a computer readable program wherein when the program is executed in a base station, the program causes a computer to perform an indication of DM-RS information as described above in the base station method.
  • a storage medium storing a computer readable program, wherein the computer readable program causes a computer to perform an indication method of DM-RS information as described above in a base station.
  • An advantageous effect of the embodiment of the present invention is that the base station sends signaling indicating the DM-RS information to the user equipment, so that the user equipment can support high-dimensional MU-MIMO according to the signaling.
  • 1 is a schematic diagram of multi-user MIMO in 3D MIMO
  • FIG. 2 is a schematic diagram of DM-RS resources in the current standard
  • 3 is a mapping diagram of codewords to layers in an LTE-A system
  • FIG. 4 is a schematic flow chart of an indication method according to an embodiment of the present invention.
  • FIG. 5 is another schematic flowchart of an indication method according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of supporting high-dimensional MU-MIMO by adding orthogonal sequences according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of supporting high-dimensional MU-MIMO by adding orthogonal ports according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of supporting high-dimensional MU-MIMO by adding orthogonal ports and orthogonal sequences according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a pointing device for DM-RS information according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of another DM-RS information indicating apparatus according to an embodiment of the present invention.
  • FIG. 12 is a schematic block diagram showing a system configuration of a user equipment according to an embodiment of the present invention.
  • Figure 13 is a block diagram showing the configuration of a communication system in accordance with an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of DM-RS resources in the current standard. As shown in FIG. 2, ports 7, 8, 11, 13 and ports 9, 10, 12, and 14 are multiplexed by code division, respectively. Multiplexing is performed by means of frequency division. In the case of multi-user transmission, each user only uses port 7,8 at most, and only uses the dotted box in Figure 2. Resource particles.
  • 12 REs in the subframe that is, 12 REs in the dotted line frame described in FIG. 2 and corresponding ports 7, 8 in the current standard
  • 12REs located in a specific position ie, a broken line frame
  • the subframe is located at a specific position as shown in FIG. 2 (ie, a dotted frame and The 24 REs of the solid line frame are simply referred to as 24RE.
  • FIG. 3 is a diagram showing a mapping relationship of codewords to layers in an LTE-A system. As shown in Figure 3, the system has a maximum of 2 code words (CW, Code Word) and 8 layers (Layer), and each code word corresponds to at most four layers.
  • CW code word
  • Layer layers
  • Table 1 shows the indications of the antenna port, the scrambling identity, and the number of layers in the existing standard.
  • the base station can send the port, the scrambling identifier, and the layer number to the user equipment through a 3-bit dynamic signaling, so that the user equipment performs DM-RS related channel estimation and demodulation.
  • the information shown in Table 1 does not meet the requirements of the system, and the information related to the DM-RS needs to be enhanced to ensure reliable demodulation of the data.
  • the embodiments of the present invention are described in detail below.
  • the embodiment of the invention provides a method for indicating DM-RS information, which is applied to a 3D MIMO system.
  • Figure 4 It is a schematic flowchart of the indication method of the embodiment of the present invention. As shown in FIG. 4, the method includes:
  • Step 401 The base station sends signaling indicating the DM-RS information to the user equipment, so that the user equipment supports high-dimensional MU-MIMO according to the signaling.
  • the orthogonal sequence used by the DM-RS may be added by the base station to support the high-dimensional MIMO; the transmission resources used by the DM-RS may be added by the base station to support the high-dimensional MIMO; and the base station may be notified to the user equipment through the base station.
  • the DM-RS information is used to enable the user equipment to perform interference cancellation (IC) according to the related DM-RS information.
  • the base station can also notify the user equipment of the number of resources used by the DM-RS, so that the user equipment is used according to the DM-RS.
  • the number of resources is received for data.
  • the specific content can be as described in the following embodiments.
  • FIG. 5 is another schematic diagram of an indication method according to an embodiment of the present invention. As shown in FIG. 5, the method includes:
  • Step 501 The base station performs DM-RS resource configuration for the user equipment that performs MU-MIMO.
  • the orthogonal sequence used by the DM-RS can be increased.
  • the value of the nSCID is changed from 0, 1 to 0, 1, 2, 3.
  • the DM-RS after adding the orthogonal sequence can be transmitted by Code Division Multiplexing (CDM).
  • CDM Code Division Multiplexing
  • the transmission resources used by the DM-RS can be increased, for example, the port for the DM-RS is increased from port 7, 8 to port 7, 8, 9, 10.
  • Step 502 The base station sends signaling indicating the DM-RS information to the user equipment.
  • the related signaling may be sent to the user equipment, so that the user equipment performs the corresponding operation.
  • the base station adds the orthogonal sequence of the DM-RS or increases the transmission resource of the DM-RS to support the high-dimensional MIMO.
  • Step 503 The base station generates and transmits a DM-RS on the configured resource.
  • the DM-RS can transmit using more orthogonal sequences. For example, the value of the nSCID is changed from 0, 1 to 0, 1, 2, 3.
  • the DM-RS after adding the orthogonal sequence can be transmitted by Code Division Multiplexing (CDM).
  • CDM Code Division Multiplexing
  • the DM-RS can use more orthogonal ports for transmission, for example, ports for DM-RS are added from port 7,8 to ports 7,8,9,10.
  • the transmission resources used by the DM-RS can be increased. For details, refer to the following embodiments.
  • Step 504 The user equipment estimates the channel by using the DM-RS according to the signaling, and supports data demodulation of the high-dimensional MU-MIMO.
  • the signaling sent by the base station to the user equipment indicating the DM-RS information may be
  • the user equipment supports high-dimensional MU-MIMO according to the signaling.
  • the embodiment of the invention provides a method for indicating DM-RS information.
  • the DM-RSs of more user equipments can be multiplexed on the same resource by quasi-orthogonal sequences.
  • the signaling is used to indicate that the orthogonal sequence used by the DM-RS is increased.
  • FIG. 6 is a schematic diagram of supporting high-dimensional MU-MIMO by adding orthogonal sequences according to an embodiment of the present invention. As shown in Figure 6, ports 7, 8 may correspond to, for example, four orthogonal sequences (1, 2, 3, 4).
  • the signaling may be a dynamic signaling, and the information indicated by the dynamic signaling includes a port, a layer number, and a scrambling identifier, where the number of the scrambling identifiers is greater than two.
  • the information indicated by the dynamic signaling may include: using one codeword, the number of layers is 1, and the port is At 7 o'clock, the value of the scrambling flag is 0, 1, 2, 3; when a code word is used, the layer number is 1 and the port is 8, the scrambling flag has values of 0, 1, 2, 3.
  • Table 2 is a schematic diagram of the port, the scrambling sequence, and the number of layers in the embodiment of the present invention, showing indication information of an antenna port, a scrambling identity, and a layer number in the embodiment of the present invention. , where the maximum rank per user is 2.
  • the base station can send the port, the scrambling identifier, and the layer number to the user equipment through a 4-bit dynamic signaling, where the value of the nSCID can be 0, 1, 2, 3, thereby making the user equipment Perform DM-RS related channel estimation and demodulation to support high-dimensional MIMO.
  • a combination of high layer signaling and dynamic signaling may also be adopted.
  • the signaling includes a dynamic signaling and a high-level signaling; the information indicated by the dynamic signaling includes a port, a layer number, and a scrambling identifier, and the design as shown in Table 1 may be used;
  • the indicated information includes information that groups the scrambling sequence of the user equipment according to the location of the user equipment.
  • the high layer signaling indicates that the grouping is performed by the identifier of the beam group; wherein the initial value of the DM-RS pseudo sequence sequence is determined by using the identifier of the beam group. Or grouping by using a virtual cell identifier; wherein different groups of user equipments are configured with different virtual cell identifiers. By grouping, users with relatively close locations can be assigned to the same group, and spatial separation between different groups is better.
  • the specific grouping method can adopt different implementation techniques.
  • the base station can configure a beam group for the user equipment according to the location of the user equipment, each group is configured with a different nscid_group, and the nscid in the group is the same as 0, 1, so that the dynamic signaling table can reuse the existing standard signaling (for example, a table) 1).
  • the DM-RS sequence For the DM-RS sequence, it can be the same as defined in R10.
  • the initial value of the pseudo-random sequence generator ie, the initial value of the scrambling
  • the existing standard ie, the initial value of the scrambling
  • c init is an initial value of the DM-RS pseudo-sequence sequence
  • n beam_group_ID is an identifier of the beam group, and n beam_group_ID is greater than or equal to 1
  • n SCID is the scrambling identifier
  • the base station may configure different user identifiers (virtual IDs) of different user equipments in different beam groups according to the location of the user equipment.
  • virtual IDs virtual IDs
  • the information indicated by the dynamic signaling may include: using one codeword, the number of layers is 1, and the port is At 7 o'clock, the value of the scrambling identifier is 0, 1, 2, 3; when a codeword is used, the number of layers is 1, and the port is 8, the value of the scrambling identifier is 0, 1, 2, 3; When a codeword is used, the number of layers is 2, and the port is 7-8, the value of the scrambling identifier is 0, 1; when two codewords are used, the number of layers is 2, and the port is 7-8, the scrambling identifier is used.
  • the value of 0, 1, 2, 3 or the scrambling identifier is 0, 1; when two codewords are used, the stratum number is 3, and the port is 7-9, the value of the scrambling flag is 0. , 1; When two codewords are used, the number of layers is 4, and the port is 7-10, the value of the scrambling flag is 0, 1.
  • Table 3 is a schematic diagram of the port, the scrambling sequence, and the number of layers in the embodiment of the present invention, showing indication information of an antenna port, a scrambling identity, and a layer number in the embodiment of the present invention. , where the maximum rank per user is 4.
  • Table 4 is another schematic diagram of ports, scrambling sequences, and number of layers in an embodiment of the present invention, showing an antenna port, a scrambling identity, and an indication of the number of layers in the embodiment of the present invention. Information where the maximum rank per user is 4.
  • the base station sends signaling indicating DM-RS information to the user equipment, where the orthogonal sequence used by the DM-RS is increased; the user equipment can be enabled to support high-dimensional according to the signaling.
  • MU-MIMO MU-MIMO.
  • the embodiment of the invention provides a method for indicating DM-RS information.
  • the DM-RSs of more user equipments are multiplexed on the same resource, which affects the performance of the edge user equipment.
  • the transmission resources used by the DM-RS are increased.
  • the number of DM-RS ports is introduced (for example, from port 7, 8 to port 7, 8, 9, 10).
  • FIG. 7 is a schematic diagram of supporting high-dimensional MU-MIMO by adding orthogonal ports according to an embodiment of the present invention. As shown in Figure 7, ports 7, 8 and ports 9, 10 can all be used for DM-RS.
  • the signaling is a dynamic signaling
  • the information indicated by the dynamic signaling includes a port, a number of layers, and a scrambling identity, wherein the number of ports used is increased.
  • the information indicated by the dynamic signaling includes: when using one codeword, the number of layers is 1, and the port is 7 and the value of the scrambling flag is 0, 1; when using a code word, the number of layers is 1, the port is 8 and the value of the scrambling flag is 0, 1; when using a code word, the number of layers is 1.
  • the port is 9 and the value of the scrambling identifier is 0,1; when using a codeword, the number of layers is 1, the port is 10, and the value of the scrambling identifier is 0,1; two codewords are used.
  • the number of layers is 2, the port is 7-8, and the value of the scrambling flag is 0,1; when two codewords are used, the number of layers is 2, the port is 9-10, and the value of the scrambling identifier is 0,1.
  • Table 5 is another schematic diagram of the port, the scrambling sequence, and the number of layers in the embodiment of the present invention, showing an antenna port, a scrambling identity, and an indication of the number of layers in the embodiment of the present invention.
  • the signaling includes a dynamic signaling and a high layer signaling; the information indicated by the dynamic signaling includes a port and a layer number; and the information indicated by the high layer signaling includes a scrambling identifier.
  • Table 6 is a schematic diagram of the port and the number of layers in the embodiment of the present invention, showing indication information of an antenna port and a layer number in the embodiment of the present invention, wherein the maximum rank per user is 4.
  • the complexity is
  • Table 7 is another schematic diagram of ports, scrambling sequences, and number of layers in an embodiment of the present invention, showing an antenna port, a scrambling identity, and an indication of the number of layers in the embodiment of the present invention. Information where the maximum rank per user is 4.
  • Table 8 is another schematic diagram of ports, scrambling sequences, and number of layers in an embodiment of the present invention, showing an antenna port, a scrambling identity, and an indication of the number of layers in the embodiment of the present invention. Information where the maximum rank per user is 4.
  • the values 8, 9, 10, 11, 12, 13 are used for retransmission.
  • Table 9 is another schematic diagram of the port, the scrambling sequence, and the number of layers in the embodiment of the present invention, showing an antenna port, a scrambling identity, and an indication of the number of layers in the embodiment of the present invention.
  • Table 10 is another schematic diagram of ports, scrambling sequences, and number of layers in an embodiment of the present invention, showing an antenna port, a scrambling identity, and an indication of the number of layers in the embodiment of the present invention. Information where the maximum rank per user is 4.
  • the three streams correspond to ports 7, 8, and 9, respectively, and if they are consistent with MU-MIMO, this ensures the transparency of SU and MU.
  • one user equipment uses port7, another user equipment uses ports 8, 9 (as shown in Table 9); or one user equipment uses ports 7, 9, and another user equipment uses port 8 (as shown in Table 10). ).
  • the base station sends signaling indicating the DM-RS information to the user equipment, where the transmission resource used by the DM-RS is increased; and the user equipment can be enabled to support the high-dimensional MU according to the signaling. - MIMO.
  • an embodiment of the present invention provides a method for indicating DM-RS information.
  • Embodiment 2 and Embodiment 3 can be applied in combination.
  • the dynamic signaling may be in the form shown in Embodiment 3, for example, as shown in Tables 5 and 7-10.
  • the form shown in Embodiment 2 may also be used, for example, as shown in Table 2-4.
  • the higher layer signaling may be, for example, in the form shown in Embodiment 2, for example, grouped according to the location of the user equipment.
  • a combination of higher layer signaling and dynamic signaling as shown in Table 6 can also be employed.
  • FIG. 8 is a schematic diagram of supporting high-dimensional MU-MIMO by adding orthogonal ports and orthogonal sequences according to an embodiment of the present invention.
  • ports 7, 8 and ports 9, 10 can be used for DM-RS; and ports 7, 8 can correspond to, for example, four orthogonal sequences (1, 2, 3, 4), port 9, 10 may correspond to, for example, four orthogonal sequences (1, 2, 3, 4).
  • the base station sends signaling indicating the DM-RS information to the user equipment, where the transmission resource and/or the orthogonal sequence used by the DM-RS is increased; the user equipment may be caused to be according to the To support high-dimensional MU-MIMO.
  • the embodiment of the invention provides a method for indicating DM-RS information.
  • the base station sends the DM-RS information of the other user equipment that performs the MU-MIMO with the user equipment to the user equipment, so that the user equipment is based on the DM-RS of the other user equipment.
  • Information is used for interference cancellation.
  • the DM-RS information of the other user equipment may include: a virtual cell identifier of the other user equipment, or beam group information of the other user equipment; or may be paired with nSCID information of the MU-MIMO user equipment; and if the user equipment The power of the DM-RS is different, and the ratio information of the DM-RS power of the MU-MIMO user equipment to the DM-RS power of the user equipment, or possible ratio information may be paired; however, the present invention is not limited thereto.
  • the channel estimation performance of the DM-RS can be improved by the method of interference cancellation.
  • the UE desires to know the DM-RS sequence of other user equipments that may appear at the location of the corresponding DM-RS.
  • the virtual cell ID of all possible user equipments needs to be notified to the user equipment through higher layer signaling.
  • the base station may send beam group information of other user equipments that perform MU-MIMO with the UE to the UE, so that the UE performs interference cancellation in the beam set.
  • the base station sends signaling indicating the DM-RS information to the user equipment; the user equipment can be caused to perform interference cancellation according to the signaling, thereby supporting high-dimensional MU-MIMO.
  • the embodiment of the invention provides a method for indicating DM-RS information.
  • the base station sends information indicating resources used by the DM-RS to the user equipment, so that the user equipment performs data reception according to resources used by the DM-RS.
  • the resource used by the DM-RS may be 12RE or 24RE.
  • the user equipment when performing MU-MIMO transmission, the user equipment only knows its own DM-RS resource. Location, but the location of the other user equipment DM-RS is unknown. In order to reduce interference to other user equipment DM-RS, reasonable resource mapping is required.
  • the base station can transmit by rate matching or puncturing.
  • the processing may be performed by means of puncturing. Of course, this will affect the demodulation performance of UE 1.
  • the base station can inform the user of the location of all DM-RSs of the device.
  • the base station performs rate matching when performing physical downlink shared channel (PDSCH) transmission on the user equipment.
  • PDSCH physical downlink shared channel
  • User equipments 1, 2, 3, and 4 transmit DM-RSs using ports 7, 8, 9, and 10, respectively; user equipments 1, 2 do not know that user equipments 3, 4 are present, and user equipments 1, 2 are in users.
  • the PDSCH is transmitted at the location corresponding to the device 3, 4DM-RS, which may cause serious interference to the DM-RS of the user equipment 3, 4, and affect system performance;
  • the user equipments 1, 2 perform MU-MIMO transmission using rank 3, 1, respectively, and the user equipment 2 does not know the existence of the user equipment 1, and the user equipment 2 will be at the position of the DM-RS corresponding to the port 9 of the user equipment 1.
  • the data is transmitted, which causes serious interference to the port 9 of the user equipment 1, affecting the performance of the user equipment 1.
  • the present invention is not limited to the above scenario, and such indication signaling is required as long as the DM-RS time-frequency location or resource location of any two user equipments is different.
  • the base station can add 1-bit information to indicate the resources used by the DM-RS, for example, 12 or 24 REs, and the base station transmits the DM-RS at the corresponding location without performing PDSCH data transmission. Thereby, the interference caused by high-dimensional MIMO can be avoided or reduced.
  • the base station sends signaling indicating the DM-RS information to the user equipment, where the information about the resource used by the DM-RS is sent to the user equipment, and the user equipment may be caused according to the signaling.
  • the embodiment of the invention provides a pointing device for DM-RS information, which is applied to a 3D MIMO system.
  • the embodiment of the present invention corresponds to the DM-RS information indication method described in Embodiments 1 to 6, and the same content is not described herein again.
  • FIG. 9 is a schematic diagram of a DM-RS information indicating apparatus according to an embodiment of the present invention, where the DM-RS information indicating apparatus 900 is configured in a base station, and includes: a signaling sending unit 901, which sends an indication DM- to a user equipment.
  • the signaling of the RS information enables the user equipment to support high-dimensional MU-MIMO according to the signaling.
  • the signaling indicates that the orthogonal sequence used by the DM-RS is increased when performing MU-MIMO.
  • the signaling includes dynamic signaling, and the information indicated by the dynamic signaling includes a port, a number of layers, and a scrambling identifier, where the number of the scrambling identifiers is greater than two.
  • the signaling includes the dynamic signaling and the high layer signaling; the information indicated by the dynamic signaling includes a port, a layer number, and a scrambling identifier; and the information indicated by the high layer signaling includes: according to the user equipment The location of the information to be grouped.
  • the signaling indicates that the transmission resources used by the DM-RS are increased when performing MU-MIMO.
  • the signaling includes dynamic signaling, and the information indicated by the dynamic signaling includes a port, a layer number, and a scrambling identifier, wherein the number of using the port is increased.
  • the signaling includes dynamic signaling and high layer signaling; the information indicated by the dynamic signaling includes a port and a layer number; and the information indicated by the high layer signaling includes a scrambling identifier.
  • the base station sends DM-RS information of other user equipments that perform MU-MIMO with the user equipment to the user equipment, so that the user equipment is based on the DM- of the other user equipment.
  • the RS information is used for interference cancellation.
  • the base station sends information indicating resources used by the DM-RS to the user equipment.
  • the resource used by the DM-RS is 12RE or 24RE.
  • the indication device 900 of the DM-RS information may further include:
  • the resource configuration unit 902 performs DM-RS resource configuration for the user equipment that performs MU-MIMO.
  • the transmitting unit 903 generates and transmits a DM-RS on the configured resource
  • the DM-RS can transmit using more orthogonal sequences. For example, the value of the nSCID is changed from 0, 1 to 0, 1, 2, 3.
  • the DM-RS after adding the orthogonal sequence can be transmitted by Code Division Multiplexing (CDM).
  • CDM Code Division Multiplexing
  • the DM-RS can transmit using more orthogonal ports. For example, the port for DM-RS is increased from port 7,8 to port 7,8,9,10; thus the transmission resources used by the DM-RS can be increase.
  • the embodiment further provides a base station, which is provided with the indication device 900 of the DM-RS information as described above.
  • FIG. 10 is a schematic diagram of a structure of a base station according to an embodiment of the present invention.
  • base station 1000 can include a central processing unit (CPU) 200 and memory 210; and memory 210 is coupled to central processing unit 200.
  • the memory 210 can store various data; in addition, a program for information processing is stored, and the program is executed under the control of the central processing unit 200 to receive various information sent by the user equipment and sent to the user equipment. Request information.
  • the central processing unit 200 can be configured to implement the function of the pointing device 900 of the DM-RS information.
  • the base station 1000 can implement the indication method of the DM-RS information as described in Embodiments 1 to 6.
  • the base station 1000 may further include: a transceiver 220, an antenna 230, and the like; wherein the functions of the foregoing components are similar to those of the prior art, and are not described herein again.
  • the base station 900 does not have to include all of the components shown in FIG. 10; in addition, the base station 1000 may further include components not shown in FIG. 10, and reference may be made to the prior art.
  • the user equipment can estimate the channel according to signaling and utilize the DM-RS to support data demodulation of high-dimensional MU-MIMO.
  • FIG. 11 is another schematic diagram of a DM-RS information indicating apparatus according to an embodiment of the present invention, where the DM-RS information indicating apparatus 1100 can be configured in a user equipment, including: a signaling receiving unit 1101, an information receiving unit 1102, and Demodulation unit 1103;
  • the signaling receiving unit 1101 receives signaling indicating the DM-RS information sent by the base station. For specific details of the signaling, reference may be made to Embodiments 1 to 6.
  • the information receiving unit 1102 receives the DM-RS transmitted by the base station.
  • the demodulation unit 1103 estimates the channel using the DM-RS according to the signaling, and supports data demodulation of high-dimensional MU-MIMO.
  • the embodiment of the invention further provides a user equipment, which is provided with the above-mentioned DM-RS information indicating device 1100.
  • FIG. 12 is a schematic block diagram showing the system configuration of a user equipment according to an embodiment of the present invention.
  • the user device 1200 can include a central processing unit 100 and a memory 140; the memory 140 is coupled to the central processing unit 100.
  • the figure is exemplary; other types of structures may be used in addition to or in place of the structure to implement telecommunications functions or other functions.
  • the functionality of the pointing device 1100 of the DM-RS information may be integrated into the central processor 100.
  • the central processing unit 100 may be configured to implement the corresponding user equipment side method as described in Embodiments 1 to 6.
  • the pointing device 1100 of the DM-RS information may be configured separately from the central processing unit 100.
  • the pointing device 1100 of the DM-RS information may be configured as a chip connected to the central processing unit 100 through the central processing unit.
  • the control implements the function of the pointing device 1100 of the DM-RS information.
  • the user equipment 1200 may further include: a communication module 110, an input unit 120, an audio processing unit 130, a display 160, and a power source 170. It is worth noting that the user equipment 1200 is not necessarily It is necessary to include all of the components shown in FIG. 12; in addition, the user equipment 1200 may also include components not shown in FIG. 12, and reference may be made to the prior art.
  • central processor 100 also sometimes referred to as a controller or operational control, may include a microprocessor or other processor device and/or logic device that receives input and controls various aspects of user device 1200. The operation of the part.
  • the memory 140 may be, for example, one or more of a buffer, a flash memory, a hard drive, a removable medium, a volatile memory, a non-volatile memory, or other suitable device. Information related to failures can be stored, and programs for performing related information can be stored. And the central processing unit 100 can execute the program stored by the memory 140 to implement information storage or processing and the like. The functions of other components are similar to those of the existing ones and will not be described here.
  • the various components of user device 1200 may be implemented by special purpose hardware, firmware, software or a combination thereof without departing from the scope of the invention.
  • the base station sends signaling indicating the DM-RS information to the user equipment, so that the user equipment can support high-dimensional MU-MIMO according to the signaling.
  • FIG. 13 is a schematic diagram of a configuration of a communication system according to an embodiment of the present invention.
  • the communication system 1300 includes a base station 1301 and a user equipment 1302.
  • the embodiment of the present invention further provides a computer readable program, wherein the program causes a computer to perform the indication method of the DM-RS information described in Embodiments 1 to 6 in the base station when the program is executed in a base station .
  • the embodiment of the present invention further provides a storage medium storing a computer readable program, wherein the computer readable program causes a computer to execute the indication method of the DM-RS information described in Embodiments 1 to 6 in a base station.
  • the above apparatus and method of the present invention may be implemented by hardware or by hardware in combination with software.
  • the present invention relates to a computer readable program that, when executed by a logic component, enables the logic component to implement the apparatus or components described above, or to cause the logic component to implement the various methods described above Or steps.
  • the present invention also relates to a storage medium for storing the above program, such as a hard disk, a magnetic disk, an optical disk, a DVD, a flash memory, or the like.
  • One or more of the functional blocks described in the figures and/or one or more combinations of functional blocks may be implemented as a general purpose processor, digital signal processor (DSP) for performing the functions described herein.
  • DSP digital signal processor
  • ASIC integrated circuit
  • FPGA field programmable gate array
  • One or more of the functional blocks described with respect to the figures and/or one or more combinations of functional blocks may also be implemented as a combination of computing devices, eg, a combination of a DSP and a microprocessor, multiple microprocessors One or more microprocessors in conjunction with DSP communication or any other such configuration.

Abstract

一种DM-RS信息的指示方法、装置以及通信系统,应用于3D MIMO系统,所述方法包括:基站向用户设备发送指示DM-RS信息的信令。由此,可以使得用户设备根据信令来支持高维MU-MIMO。

Description

DM-RS信息的指示方法、装置以及通信系统 技术领域
本发明涉及一种通信技术领域,特别涉及一种三维多输入多输出(3D MIMO,3D Multiple Input Multiple Output)系统中的解调参考信号(DM-RS,De-Modulation Reference Signal)信息的指示方法、装置以及通信系统。
背景技术
随着天线技术的发展,二维活动天线阵列可以放置在发射端,它通过天线系数的灵活加权来形成三维波束。三维多天线技术一方面能够提高天线增益,减少波束宽度,减少干扰;另一方面通过空间复用更多的用户,可以提高系统的复用效率。因此三维多天线技术能显著提高系统的传输效率和可靠性,是未来移动通信系统的热门候选技术。
相对二维多天线技术,三维多天线技术具有更好的空间分离性,能够支持更多用户复用传输。图1是3D MIMO中多用户MIMO(MU-MIMO)的一示意图,如图1所示,3D多天线系统增加了垂直维,系统能够支持MU-MIMO的维数可以进一步增大。
应该注意,上面对技术背景的介绍只是为了方便对本发明的技术方案进行清楚、完整的说明,并方便本领域技术人员的理解而阐述的。不能仅仅因为这些方案在本发明的背景技术部分进行了阐述而认为上述技术方案为本领域技术人员所公知。
发明内容
目前,在现有LTE系统中,考虑到系统性能增益和参考信号开销的折中,系统支持MU-MIMO的维度受到限制,每用户支持最大秩(rank)为2的传输,MU-MIMO的最大和秩(sum rank)为4。为了支持高维MU-MIMO的传输,DM-RS相关的信息需要增强来保证数据的可靠解调。
本发明实施例提供一种DM-RS信息的指示方法、装置以及通信系统。通过基站向用户设备发送指示DM-RS信息的信令,使得所述用户设备根据所述信令来支持高维MU-MIMO。
根据本发明实施例的第一个方面,提供一种DM-RS信息的指示方法,应用于3D MIMO系统,所述方法包括:
基站向用户设备发送指示DM-RS信息的信令,使得所述用户设备根据所述信令来支持高维MU-MIMO。
根据本发明实施例的第二个方面,提供一种DM-RS信息的指示装置,应用于3D MIMO系统,所述装置包括:
信令发送单元,向用户设备发送指示DM-RS信息的信令,使得所述用户设备根据所述信令来支持高维MU-MIMO。
根据本发明实施例的第三个方面,提供一种通信系统,所述通信系统包括:
基站,向用户设备发送指示DM-RS信息的信令,使得所述用户设备根据所述信令来支持高维MU-MIMO。
根据本发明实施例的又一个方面,提供一种计算机可读程序,其中当在基站中执行所述程序时,所述程序使得计算机在所述基站中执行如上所述的DM-RS信息的指示方法。
根据本发明实施例的又一个方面,提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在基站中执行如上所述的DM-RS信息的指示方法。
本发明实施例的有益效果在于,通过基站向用户设备发送指示DM-RS信息的信令,可以使得所述用户设备根据所述信令来支持高维MU-MIMO。
参照后文的说明和附图,详细公开了本发明的特定实施方式,指明了本发明的原理可以被采用的方式。应该理解,本发明的实施方式在范围上并不因而受到限制。在所附权利要求的精神和条款的范围内,本发明的实施方式包括许多改变、修改和等同。
针对一种实施方式描述和/或示出的特征可以以相同或类似的方式在一个或更多个其它实施方式中使用,与其它实施方式中的特征相组合,或替代其它实施方式中的特征。
应该强调,术语“包括/包含”在本文使用时指特征、整件、步骤或组件的存在,但并不排除一个或更多个其它特征、整件、步骤或组件的存在或附加。
附图说明
参照以下的附图可以更好地理解本发明的很多方面。附图中的部件不是成比例 绘制的,而只是为了示出本发明的原理。为了便于示出和描述本发明的一些部分,附图中对应部分可能被放大或缩小。
在本发明的一个附图或一种实施方式中描述的元素和特征可以与一个或更多个其它附图或实施方式中示出的元素和特征相结合。此外,在附图中,类似的标号表示几个附图中对应的部件,并可用于指示多于一种实施方式中使用的对应部件。
图1是3D MIMO中多用户MIMO的一示意图;
图2是目前标准中的DM-RS资源的一示意图;
图3是LTE-A系统中码字到层的映射关系图;
图4是本发明实施例的指示方法的一流程示意图;
图5是本发明实施例的指示方法的另一流程示意图;
图6是本发明实施例的通过增加正交序列支持高维MU-MIMO的一示意图;
图7是本发明实施例的通过增加正交端口支持高维MU-MIMO的一示意图;
图8是本发明实施例的通过增加正交端口以及正交序列支持高维MU-MIMO的一示意图;
图9是本发明实施例的DM-RS信息的指示装置的一示意图;
图10是本发明实施例的基站的一构成示意图;
图11是本发明实施例的另一DM-RS信息的指示装置的一示意图;
图12是本发明实施例的用户设备的系统构成的一示意框图;
图13是本发明实施例的通信系统的一构成示意图。
具体实施方式
参照附图,通过下面的说明书,本发明的前述以及其它特征将变得明显。在说明书和附图中,具体公开了本发明的特定实施方式,其表明了其中可以采用本发明的原则的部分实施方式,应了解的是,本发明不限于所描述的实施方式,相反,本发明包括落入所附权利要求的范围内的全部修改、变型以及等同物。
图2是目前标准中的DM-RS资源的一示意图,如图2所示,端口7,8,11,13和端口9,10,12,14分别通过码分的方式进行复用,它们之间通过频分的方式进行复用。在进行多用户传输时,每个用户最多仅使用端口7,8,也就仅使用图2中虚线框中的
Figure PCTCN2014090646-appb-000001
的资源粒子。
在以下的实施例中,均以在子帧中的12RE(即图2中所述的虚线框中的12个RE,目前标准中对应端口7,8)为例进行说明。以下为了方便说明,仅将子帧中位于如图2所示的特定位置(即虚线框)的12个RE简称为12RE,将子帧中位于如图2所示的特定位置(即虚线框和实线框)的24个RE简称为24RE。
图3是LTE-A系统中码字到层的映射关系图。如图3所示,系统最多有2个码字(CW,Code Word)、8个层(Layer),每个码字最多对应四个层。
在控制信道DCI 2C/2D中,有关端口、加扰序列、层数目的指示如下表1所示。表1示出了现有标准中天线端口(antenna port)、加扰标识(scrambling identity)以及层数的指示信息。
表1
Figure PCTCN2014090646-appb-000002
如表1所示,基站可以通过一个3比特的动态信令将端口、加扰标识以及层数发送给用户设备,使得用户设备进行DM-RS相关的信道估计以及解调。
但是,为了支持高维MU-MIMO的传输,例如表1所示的信息并不能满足系统的需求,DM-RS相关的信息需要增强来保证数据的可靠解调。以下对本发明实施例进行详细说明。
实施例1
本发明实施例提供一种DM-RS信息的指示方法,应用于3D MIMO系统。图4 是本发明实施例的指示方法的一流程示意图,如图4所示,所述方法包括:
步骤401,基站向用户设备发送指示DM-RS信息的信令,使得所述用户设备根据所述信令来支持高维MU-MIMO。
在本实施例中,可以通过基站增加DM-RS使用的正交序列来支持高维MIMO;也可以通过基站增加DM-RS使用的传输资源来支持高维MIMO;还可以通过基站告知用户设备相关DM-RS信息,使得用户设备根据该相关DM-RS信息进行干扰消除(IC,Interference Cancelling);还可以通过基站告知用户设备DM-RS所使用的资源数目,使得用户设备根据DM-RS所使用的资源数目进行数据接收。具体内容可如后面实施例所述。
图5是本发明实施例的指示方法的另一示意图,如图5所示,所述方法包括:
步骤501,基站为进行MU-MIMO的用户设备进行DM-RS资源配置;
其中,DM-RS使用的正交序列可以被增加,例如nSCID的取值从0,1变为0,1,2,3。增加正交序列后的DM-RS可以通过码分复用(CDM,Code Division Multiplexing)被传输。此外,在进行端口到资源的映射时,DM-RS所使用的传输资源可以被增加,例如用于DM-RS的端口从port 7,8增加到port 7,8,9,10。具体的资源配置内容可以参考后面的实施例。
步骤502,基站向用户设备发送指示DM-RS信息的信令。
在本实施例中,在基站增加了DM-RS的正交序列或者增加了DM-RS的传输资源来支持高维MIMO之后,可以将相关信令发送给用户设备,使得用户设备进行相应的操作来支持高维MIMO。
步骤503,基站生成并在配置的资源上传输DM-RS;
其中,DM-RS可使用较多的正交序列进行传输,例如nSCID的取值从0,1变为0,1,2,3。增加正交序列后的DM-RS可以通过码分复用(CDM,Code Division Multiplexing)被传输。此外,DM-RS可使用较多正交端口进行传输,例如用于DM-RS的端口从port 7,8增加到port 7,8,9,10。这样DM-RS所使用的传输资源可以被增加,具体的内容可以参考后面的实施例。
步骤504,用户设备根据所述信令利用DM-RS来估计信道,支持高维MU-MIMO的数据解调。
由上述实施例可知,通过基站向用户设备发送指示DM-RS信息的信令,可以使 得所述用户设备根据所述信令来支持高维MU-MIMO。
实施例2
在实施例1的基础上,本发明实施例提供一种DM-RS信息的指示方法。在本实施例中,考虑到3D MIMO系统中用户设备的空间分离性会变好,较多的用户设备的DM-RS可以通过准正交序列复用在相同的资源上。
在本实施例中,所述信令用于指示所述DM-RS使用的正交序列被增加。
图6是本发明实施例的通过增加正交序列支持高维MU-MIMO的一示意图。如图6所示,端口7,8可以对应例如4个正交序列(1,2,3,4)。
在一个实施方式中,该信令可以是一动态信令,所述动态信令所指示的信息包括端口、层数以及加扰标识,所述加扰标识的取值数目大于2个。
其中,在进行MU-MIMO传输且每个用户设备支持的最大流数小于或等于2的情况下,所述动态信令指示的信息可以包括:在使用一个码字、层数为1以及端口为7时,加扰标识的取值为0,1,2,3;在使用一个码字、层数为1以及端口为8时,加扰标识的取值为0,1,2,3。
表2是本发明实施例的有关端口、加扰序列以及层数目的一示意表,示出了本发明实施例中天线端口(antenna port)、加扰标识(scrambling identity)以及层数的指示信息,其中每用户最大秩为2。
表2
Figure PCTCN2014090646-appb-000003
Figure PCTCN2014090646-appb-000004
如表2所示,基站可以通过一个4比特的动态信令将端口、加扰标识以及层数发送给用户设备,其中nSCID的取值可以为0,1,2,3,由此使得用户设备进行DM-RS相关的信道估计以及解调,支持高维MIMO。
在另一实施方式中,为了充分利用现有的动态信令,减少信令浪费,还可以采用高层信令和动态信令结合的方式。其中,该信令包括一动态信令以及一高层信令;所述动态信令所指示的信息包括端口、层数以及加扰标识,可以沿用如表1所示的设计;所述高层信令所指示的信息包括:根据所述用户设备的位置对用户设备的加扰序列进行分组的信息。
具体地,所述高层信令指示:通过波束组的标识进行分组;其中使用所述波束组的标识确定DM-RS伪序列序列的初始值。或者通过虚拟小区标识进行分组;其中不同组的用户设备被配置不同的虚拟小区标识。通过分组可以实现位置比较接近的用户分配到相同的分组,不同分组之间的空间分离性较好。具体的分组方法可以采用不同的实现技术。
例如,基站可以根据用户设备的位置为用户设备配置波束组,每组配置不同的nscid_group,组内的nscid相同为0,1,这样动态信令的表格可以重用现有标准的信令(例如表1)。
对于DM-RS序列,可以和R10中的定义相同。其中伪随机序列生成器的初始值(即加扰初始值)与现有标准中
Figure PCTCN2014090646-appb-000005
不同的是,本发明实施例的伪随机序列生成器的初始值可以由下式确定:
Figure PCTCN2014090646-appb-000006
或者,
Figure PCTCN2014090646-appb-000007
其中,cinit为所述DM-RS伪序列序列的初始值;nbeam_group_ID为所述波束组的标识,且nbeam_group_ID大于或等于1;nSCID为所述加扰标识。
再例如,基站可以根据用户设备的位置,将位于不同波束组的用户设备配置不同的虚拟小区标识(虚拟ID)。
其中,在进行MU-MIMO传输且每个用户设备支持的最大流数小于或等于4的情况下,所述动态信令指示的信息可以包括:在使用一个码字、层数为1以及端口为7时,加扰标识的取值为0,1,2,3;在使用一个码字、层数为1以及端口为8时,加扰标识的取值为0,1,2,3;在使用一个码字、层数为2以及端口为7-8时,加扰标识的取值为0,1;在使用两个码字、层数为2以及端口为7-8时,加扰标识的取值为0,1,2,3或者加扰标识的取值为0,1;在使用两个码字、层数为3以及端口为7-9时,加扰标识的取值为0,1;在使用两个码字、层数为4以及端口为7-10时,加扰标识的取值为0,1。
表3是本发明实施例的有关端口、加扰序列以及层数目的一示意表,示出了本发明实施例中天线端口(antenna port)、加扰标识(scrambling identity)以及层数的指示信息,其中每用户最大秩为4。
表3
Figure PCTCN2014090646-appb-000008
Figure PCTCN2014090646-appb-000009
表4是本发明实施例的有关端口、加扰序列以及层数目的另一示意表,示出了本发明实施例中天线端口(antenna port)、加扰标识(scrambling identity)以及层数的指示信息,其中每用户最大秩为4。
表4
Figure PCTCN2014090646-appb-000010
由上述实施例可知,通过基站向用户设备发送指示DM-RS信息的信令,其中所述DM-RS使用的正交序列被增加;可以使得所述用户设备根据所述信令来支持高维MU-MIMO。
实施例3
在实施例1的基础上,本发明实施例提供一种DM-RS信息的指示方法。
在实施例2中,较多用户设备的DM-RS复用在相同的资源上,这会影响边缘用户设备的性能。在本实施例中,所述DM-RS使用的传输资源被增加。例如引入更多的DM-RS端口数(例如从port7,8增加到port7,8,9,10)。
图7是本发明实施例的通过增加正交端口支持高维MU-MIMO的一示意图。如图7所示,端口7,8和端口9,10均可以被用于DM-RS。
在一个实施方式中,该信令为一个动态信令,所述动态信令所指示的信息包括端口、层数以及加扰标识,其中使用所述端口的数目被增加。
其中,在进行MU-MIMO传输且每个用户设备支持的最大流数小于或等于2的情况下,所述动态信令指示的信息包括:在使用一个码字时,层数为1、端口为7以及加扰标识的取值为0,1;在使用一个码字时,层数为1、端口为8以及加扰标识的取值为0,1;在使用一个码字时,层数为1、端口为9以及加扰标识的取值为0,1;在使用一个码字时,层数为1、端口为10以及加扰标识的取值为0,1;在使用两个码字时,层数为2、端口为7-8以及加扰标识的取值为0,1;在使用两个码字时,层数为2、端口为9-10以及加扰标识的取值为0,1。
表5是本发明实施例的有关端口、加扰序列以及层数目的另一示意表,示出了本发明实施例中天线端口(antenna port)、加扰标识(scrambling identity)以及层数的指示信息,其中每用户最大秩为2。
表5
Figure PCTCN2014090646-appb-000011
Figure PCTCN2014090646-appb-000012
在另一个实施方式中,该信令包括一个动态信令以及一个高层信令;所述动态信令所指示的信息包括端口以及层数;所述高层信令所指示的信息包括加扰标识。
表6是本发明实施例的有关端口以及层数目的一示意表,示出了本发明实施例中天线端口(antenna port)以及层数的指示信息,其中每用户最大秩为4。
表6
Figure PCTCN2014090646-appb-000013
表6所示的信息可以使用动态信令指示,而加扰标识可以使用高层信令来指示。考虑到实际MU-MIMO的用户数,每个用户设备可以从4个加扰标识中选择,例如n_SCID=0,1,2,3。这样一方面UE可以有较多的可选ID、也就是序列来选择,克服半静态ID不能灵活变化的缺陷;另一方面ID控制在一定的范围,也减少了高能力用户设备进行盲干扰删除的复杂度。
表7是本发明实施例的有关端口、加扰序列以及层数目的另一示意表,示出了本发明实施例中天线端口(antenna port)、加扰标识(scrambling identity)以及层数的指示信息,其中每用户最大秩为4。
表7
Figure PCTCN2014090646-appb-000014
表8是本发明实施例的有关端口、加扰序列以及层数目的另一示意表,示出了本发明实施例中天线端口(antenna port)、加扰标识(scrambling identity)以及层数的指示信息,其中每用户最大秩为4。
表8
Figure PCTCN2014090646-appb-000015
其中,表8与表7相比,增加2layer时的port 9-10,这样保证两个Rank=2的用户设备的DM-RS可以使用正交端口。其中值8,9,10,11,12,13是用来做重传使用的。
表9是本发明实施例的有关端口、加扰序列以及层数目的另一示意表,示出了本发明实施例中天线端口(antenna port)、加扰标识(scrambling identity)以及层数的指示信息,其中每用户最大秩为4。
表9
Figure PCTCN2014090646-appb-000016
Figure PCTCN2014090646-appb-000017
表10是本发明实施例的有关端口、加扰序列以及层数目的另一示意表,示出了本发明实施例中天线端口(antenna port)、加扰标识(scrambling identity)以及层数的指示信息,其中每用户最大秩为4。
表10
Figure PCTCN2014090646-appb-000018
Figure PCTCN2014090646-appb-000019
其中,DM-RS使用Port7,8时,负载都集中在12个RE上;DM-RS使用Port8,9时,负载分布在24个RE上。考虑到增加重传时的灵活性,Port8-9也可进行重传(例如表9所示),这样可以增加DM-RS分布的均匀性。另一方面,这样也和SU-MIMO的映射方法保持一致,保证透明的MU-MIMO传输。
在SU-MIMO rank=3传输时,3个流分别对应port 7,8,9,对应MU-MIMO时如果保持一致,这样可以保证SU和MU的透明性。其中,对应一个用户设备使用port7,另一个用户设备使用端口8,9(如表9所示);或者一个用户设备使用端口7,9,另一个用户设备用使用端口8(如表10所示)。
由上述实施例可知,通过基站向用户设备发送指示DM-RS信息的信令,其中所述DM-RS使用的传输资源被增加;可以使得所述用户设备根据所述信令来支持高维MU-MIMO。
实施例4
基于实施例2和3,本发明实施例提供一种DM-RS信息的指示方法。
在本实施例中,实施例2和实施例3可以联合被应用。其中,动态信令可以使用实施例3所示的形式,例如如表5、7-10所示;也可以使用实施例2所示的形式,例如如表2-4。高层信令例如可以使用实施例2所示的形式,例如根据所述用户设备的位置进行分组。此外,还可以采用例如表6所示的高层信令和动态信令结合的方式。
图8是本发明实施例的通过增加正交端口以及正交序列支持高维MU-MIMO的一示意图。如图8所示,端口7,8和端口9,10均可以被用于DM-RS;并且端口7,8可以对应例如4个正交序列(1,2,3,4),端口9,10可以对应例如4个正交序列(1,2,3,4)。
由上述实施例可知,通过基站向用户设备发送指示DM-RS信息的信令,其中所述DM-RS使用的传输资源和/或正交序列被增加;可以使得所述用户设备根据所述信令来支持高维MU-MIMO。
实施例5
在实施例1的基础上,本发明实施例提供一种DM-RS信息的指示方法。
在本实施例中,所述基站将与所述用户设备进行MU-MIMO的其他用户设备的DM-RS信息发送给所述用户设备,使得所述用户设备根据所述其他用户设备的DM-RS信息进行干扰消除。
其中,其他用户设备的DM-RS信息可以包括:所述其他用户设备的虚拟小区标识,或者所述其他用户设备的波束组信息;或者可能配对MU-MIMO用户设备的nSCID信息;以及如果用户设备的DM-RS的功率不同,可能配对MU-MIMO用户设备的DM-RS功率相对该用户设备的DM-RS功率的比值信息,或可能的比值信息;但本发明不限于此。
在本实施例中,当多个UE的序列通过码分复用的方式复用在一起时,可通过干扰消除的方法来提高DM-RS的信道估计性能。为了进行干扰消除,UE期望知道对应DM-RS的位置上可能出现的其它用户设备的DM-RS序列。
在一个实施方式中,所有可能的用户设备的虚拟小区ID需要通过高层信令通知给用户设备。
在另一个实施方式中,如果用户设备的DM-RS序列被限制在某些波束集合中,用户设备仅在对应的波束集合中进行序列的干扰消除。因此,基站可以将与该UE进行MU-MIMO的其他用户设备的波束组信息发送给该UE,使得该UE在波束集合中进行干扰消除。
由上述实施例可知,通过基站向用户设备发送指示DM-RS信息的信令;可以使得所述用户设备根据所述信令来进行干扰消除,由此支持高维MU-MIMO。
实施例6
在实施例1的基础上,本发明实施例提供一种DM-RS信息的指示方法。
在本实施例中,所述基站将指示DM-RS所使用资源的信息发送给所述用户设备,使得用户设备根据DM-RS所使用的资源进行数据接收。其中,DM-RS所使用资源可以为12RE或24RE。
在本实施例中,用户设备在进行MU-MIMO传输时,仅知道自己DM-RS资源的 位置,而对于其它用户设备DM-RS的位置是未知的。为了减少对其它用户设备DM-RS的干扰,需要进行合理的资源映射。
基站端可以采用速率匹配或者打孔的方式进行传输。当用户设备不知道其它用户设备DM-RS资源位置时,如果UE 1需要在UE 2的DM-RS位置上传输数据,则可采用打孔的方式进行处理。当然这会影响UE 1的解调性能。此外,基站可以通知用户设备所有DM-RS的位置。基站在对用户设备进行物理下行共享信道(PDSCH,Physical Downlink Shared CHannel)传输时进行速率匹配。
例如:如下两种场景需要这种信令指示:
(1)用户设备1,2,3,4分别使用端口7,8,9,10传输DM-RS;用户设备1,2不知道存在用户设备3,4,则用户设备1,2会在用户设备3,4DM-RS对应的位置上发送PDSCH,这会对用户设备3,4的DM-RS产生严重干扰,影响系统性能;
(2)用户设备1,2分别使用rank 3,1进行MU-MIMO传输,用户设备2不知道用户设备1的存在,用户设备2会在用户设备1的端口9对应的DM-RS的位置上传输数据,这会对用户设备1的端口9产生严重干扰,影响用户设备1的性能。
值得注意的是,本发明并不局限于上述场景,只要存在任意两个用户设备的DM-RS时频位置或资源位置不同,都需要这种指示信令。
因此,基站可以增加1比特信息来指示DM-RS所使用的资源,例如是12个还是24个RE,基站在对应的位置传输DM-RS,不进行PDSCH数据传输。由此可以避免或者降低高维MIMO所带来的干扰。
由上述实施例可知,通过基站向用户设备发送指示DM-RS信息的信令,其中将DM-RS所使用资源的信息发送给所述用户设备;可以使得所述用户设备根据所述信令来支持高维MU-MIMO。
实施例7
本发明实施例提供一种DM-RS信息的指示装置,应用于3D MIMO系统。本发明实施例对应于实施例1至6所述的DM-RS信息的指示方法,相同的内容不再赘述。
图9是本发明实施例的DM-RS信息的指示装置的一示意图,其中该DM-RS信息的指示装置900可以配置在基站中,包括:信令发送单元901,向用户设备发送指示DM-RS信息的信令,使得所述用户设备根据所述信令来支持高维MU-MIMO。
在一个实施方式中,所述信令指示:进行MU-MIMO时所述DM-RS使用的正交序列被增加。
其中,所述信令包括动态信令,所述动态信令所指示的信息包括端口、层数以及加扰标识,所述加扰标识的取值数目大于2个。或者,所述信令包括动态信令以及高层信令;所述动态信令所指示的信息包括端口、层数以及加扰标识;所述高层信令所指示的信息包括:根据所述用户设备的位置进行分组的信息。
在另一个实施方式中,所述信令指示:进行MU-MIMO时所述DM-RS使用的传输资源被增加。
其中,所述信令包括动态信令,所述动态信令所指示的信息包括端口、层数以及加扰标识,其中使用所述端口的数目被增加。或者,所述信令包括动态信令以及高层信令;所述动态信令所指示的信息包括端口以及层数;所述高层信令所指示的信息包括加扰标识。
在另一个实施方式中,所述基站将与所述用户设备进行MU-MIMO的其他用户设备的DM-RS信息发送给所述用户设备,使得所述用户设备根据所述其他用户设备的DM-RS信息进行干扰消除。
在另一个实施方式中,所述基站将指示DM-RS所使用资源的信息发送给所述用户设备。其中,DM-RS所使用资源为12RE或24RE。
如图9所示,该DM-RS信息的指示装置900还可以包括:
资源配置单元902,为进行MU-MIMO的用户设备进行DM-RS资源配置;
传输单元903,在配置的资源上生成并传输DM-RS;
其中,DM-RS可使用较多的正交序列进行传输,例如nSCID的取值从0,1变为0,1,2,3。增加正交序列后的DM-RS可以通过码分复用(CDM,Code Division Multiplexing)被传输。此外,DM-RS可使用较多正交端口进行传输,例如用于DM-RS的端口从port 7,8增加到port 7,8,9,10;这样DM-RS所使用的传输资源可以被增加。
本实施例还提供一种基站,配置有如上所述的DM-RS信息的指示装置900。
图10是本发明实施例的基站的一构成示意图。如图10所示,基站1000可以包括:中央处理器(CPU)200和存储器210;存储器210耦合到中央处理器200。其中该存储器210可存储各种数据;此外还存储信息处理的程序,并且在中央处理器200的控制下执行该程序,以接收该用户设备发送的各种信息、并且向用户设备发送 请求信息。
其中,中央处理器200可以被配置为实现DM-RS信息的指示装置900的功能。基站1000可以实现如实施例1至6所述的DM-RS信息的指示方法。
此外,如图10所示,基站1000还可以包括:收发机220和天线230等;其中,上述部件的功能与现有技术类似,此处不再赘述。值得注意的是,基站900也并不是必须要包括图10中所示的所有部件;此外,基站1000还可以包括图10中没有示出的部件,可以参考现有技术。
此外,用户设备可以根据信令并利用DM-RS来估计信道,支持高维MU-MIMO的数据解调。
图11是本发明实施例的DM-RS信息的指示装置的另一示意图,其中该DM-RS信息的指示装置1100可以配置在用户设备中,包括:信令接收单元1101、信息接收单元1102和解调单元1103;
其中,信令接收单元1101接收基站发送的指示DM-RS信息的信令。关于该信令的具体内容可以参考实施例1至6。信息接收单元1102接收基站发送的DM-RS。解调单元1103根据所述信令并利用DM-RS来估计信道,支持高维MU-MIMO的数据解调。
本发明实施例还提供一种用户设备,配置有上述的DM-RS信息的指示装置1100。
图12是本发明实施例的用户设备的系统构成的一示意框图。如图12所示,该用户设备1200可以包括中央处理器100和存储器140;存储器140耦合到中央处理器100。值得注意的是,该图是示例性的;还可以使用其他类型的结构,来补充或代替该结构,以实现电信功能或其他功能。
在一个实施方式中,DM-RS信息的指示装置1100的功能可以被集成到中央处理器100中。其中,中央处理器100可以被配置为实现如实施例1至6所述的对应用户设备侧的方法。
在另一个实施方式中,DM-RS信息的指示装置1100可以与中央处理器100分开配置,例如可以将DM-RS信息的指示装置1100配置为与中央处理器100连接的芯片,通过中央处理器的控制来实现DM-RS信息的指示装置1100的功能。
如图12所示,该用户设备1200还可以包括:通信模块110、输入单元120、音频处理单元130、显示器160、电源170。值得注意的是,用户设备1200也并不是必 须要包括图12中所示的所有部件;此外,用户设备1200还可以包括图12中没有示出的部件,可以参考现有技术。
如图12所示,中央处理器100有时也称为控制器或操作控件,可以包括微处理器或其他处理器装置和/或逻辑装置,该中央处理器100接收输入并控制用户设备1200的各个部件的操作。
其中,存储器140,例如可以是缓存器、闪存、硬驱、可移动介质、易失性存储器、非易失性存储器或其它合适装置中的一种或更多种。可储存与失败有关的信息,此外还可存储执行有关信息的程序。并且中央处理器100可执行该存储器140存储的该程序,以实现信息存储或处理等。其他部件的功能与现有类似,此处不再赘述。用户设备1200的各部件可以通过专用硬件、固件、软件或其结合来实现,而不偏离本发明的范围。
由上述实施例可知,通过基站向用户设备发送指示DM-RS信息的信令,可以使得所述用户设备根据所述信令来支持高维MU-MIMO。
实施例8
本发明实施例提供一种通信系统,图13是本发明实施例的通信系统的一构成示意图。如图13所示,该通信系统1300包括基站1301以及用户设备1302。其中基站1301中配置有如实施例7所述的DM-RS信息的指示装置900,用户设备1302中配置有如实施例7所述的DM-RS信息的指示装置1100。
本发明实施例还提供一种计算机可读程序,其中当在基站中执行所述程序时,所述程序使得计算机在所述基站中执行实施例1至6所述的DM-RS信息的指示方法。
本发明实施例还提供一种存储有计算机可读程序的存储介质,其中所述计算机可读程序使得计算机在基站中执行实施例1至6所述的DM-RS信息的指示方法。
本发明以上的装置和方法可以由硬件实现,也可以由硬件结合软件实现。本发明涉及这样的计算机可读程序,当该程序被逻辑部件所执行时,能够使该逻辑部件实现上文所述的装置或构成部件,或使该逻辑部件实现上文所述的各种方法或步骤。本发明还涉及用于存储以上程序的存储介质,如硬盘、磁盘、光盘、DVD、flash存储器等。
针对附图中描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,可以实现为用于执行本申请所描述功能的通用处理器、数字信号处理器(DSP)、专 用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其它可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。针对附图描述的功能方框中的一个或多个和/或功能方框的一个或多个组合,还可以实现为计算设备的组合,例如,DSP和微处理器的组合、多个微处理器、与DSP通信结合的一个或多个微处理器或者任何其它这种配置。
以上结合具体的实施方式对本发明进行了描述,但本领域技术人员应该清楚,这些描述都是示例性的,并不是对本发明保护范围的限制。本领域技术人员可以根据本发明的精神和原理对本发明做出各种变型和修改,这些变型和修改也在本发明的范围内。

Claims (20)

  1. 一种DM-RS信息的指示方法,应用于3D MIMO系统,所述方法包括:
    基站向用户设备发送指示DM-RS信息的信令,使得所述用户设备根据所述信令来支持高维MU-MIMO。
  2. 根据权利要求1所述的方法,其中,所述信令指示:在进行MU-MIMO时所述DM-RS使用的正交序列被增加。
  3. 根据权利要求2所述的方法,其中,所述信令包括动态信令,所述动态信令所指示的信息包括端口、层数以及加扰标识,所述加扰标识的取值数目大于2个。
  4. 根据权利要求3所述的方法,其中,在进行MU-MIMO传输且每个用户设备支持的最大流数小于或等于2的情况下,
    所述动态信令指示的信息包括:
    在使用一个码字、层数为1以及端口为7时,加扰标识的取值为0,1,2,3;
    在使用一个码字、层数为1以及端口为8时,加扰标识的取值为0,1,2,3。
  5. 根据权利要求2所述的方法,其中,所述信令包括动态信令以及高层信令;
    所述动态信令所指示的信息包括端口、层数以及加扰标识;
    所述高层信令所指示的信息包括:根据所述用户设备的位置对所述用户设备的加扰序列进行分组的信息。
  6. 根据权利要求5所述的方法,其中,所述高层信令指示:通过波束组的标识进行分组,其中使用所述波束组的标识确定DM-RS伪序列序列的初始值;或者通过虚拟小区标识进行分组,其中不同组的用户设备被配置不同的虚拟小区标识。
  7. 根据权利要求6所述的方法,其中,DM-RS伪序列序列的初始值通过如下公式来确定:
    Figure PCTCN2014090646-appb-100001
    或者,
    Figure PCTCN2014090646-appb-100002
    其中,cinit为所述DM-RS伪序列序列的初始值;nbeam_group_ID为所述波束组的 标识且大于或等于1;nSCID为所述加扰标识。
  8. 根据权利要求3所述的方法,其中,在进行MU-MIMO传输且每个用户设备支持的最大流数小于或等于4的情况下,
    所述动态信令指示的信息包括:
    在使用一个码字、层数为1以及端口为7时,加扰标识的取值为0,1,2,3;
    在使用一个码字、层数为1以及端口为8时,加扰标识的取值为0,1,2,3;
    在使用一个码字、层数为2以及端口为7-8时,加扰标识的取值为0,1;
    在使用两个码字、层数为2以及端口为7-8时,加扰标识的取值为0,1,2,3或者加扰标识的取值为0,1;
    在使用两个码字、层数为3以及端口为7-9时,加扰标识的取值为0,1;
    在使用两个码字、层数为4以及端口为7-10时,加扰标识的取值为0,1。
  9. 根据权利要求1所述的方法,其中,所述信令指示:在进行MU-MIMO时所述DM-RS使用的传输资源被增加。
  10. 根据权利要求9所述的方法,其中,所述信令包括动态信令,所述动态信令所指示的信息包括端口、层数以及加扰标识,其中使用所述端口的数目被增加。
  11. 根据权利要求10所述的方法,其中,在进行MU-MIMO传输且每个用户设备支持的最大流数小于或等于2的情况下,
    所述动态信令指示的信息包括:
    在使用一个码字时,层数为1、端口为7以及加扰标识的取值为0,1;
    在使用一个码字时,层数为1、端口为8以及加扰标识的取值为0,1;
    在使用一个码字时,层数为1、端口为9以及加扰标识的取值为0,1;
    在使用一个码字时,层数为1、端口为10以及加扰标识的取值为0,1;
    在使用两个码字时,层数为2、端口为7-8以及加扰标识的取值为0,1;
    在使用两个码字时,层数为2、端口为9-10以及加扰标识的取值为0,1。
  12. 根据权利要求10所述的方法,其中,在进行MU-MIMO传输且每个用户设备支持的最大流数小于或等于4的情况下,
    所述动态信令指示的信息包括:
    在使用一个码字时,层数为1、端口为7以及加扰标识的取值为0,1;
    在使用一个码字时,层数为1、端口为8以及加扰标识的取值为0,1;
    在使用一个码字时,层数为1、端口为9以及加扰标识的取值为0,1;
    在使用一个码字时,层数为1、端口为10以及加扰标识的取值为0,1;
    在使用一个码字时,层数为2、端口为7-8以及加扰标识的取值为0,1;
    在使用一个码字时,层数为2、端口为9-10以及加扰标识的取值为0,1;
    在使用两个码字时,层数为2、端口为7-8以及加扰标识的取值为0,1;
    在使用两个码字时,层数为2、端口为9-10以及加扰标识的取值为0,1;
    在使用两个码字时,层数为3、端口为7-9以及加扰标识的取值为0,1;
    在使用两个码字时,层数为4、端口为7-10以及加扰标识的取值为0,1。
  13. 根据权利要求12所述的方法,其中,所述动态信令指示的信息还包括:
    在使用两个码字时,层数为2、端口为8-9以及加扰标识的取值为0,1;
    或者,
    在使用一个码字时,层数为2、端口为8-9以及加扰标识的取值为0,1;
    或者,
    在使用一个码字时,层数为2、端口为7,9以及加扰标识的取值为0,1。
  14. 根据权利要求9所述的方法,其中,所述信令包括动态信令以及高层信令;
    所述动态信令所指示的信息包括端口以及层数;
    所述高层信令所指示的信息包括加扰标识。
  15. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述基站将与所述用户设备可能进行MU-MIMO的其他用户设备的DM-RS信息发送给所述用户设备,使得所述用户设备根据所述其他用户设备的DM-RS信息进行干扰消除。
  16. 根据权利要求15所述的方法,其中,所述其他用户设备的DM-RS信息包括如下信息的其中之一或组合:所述其他用户设备的虚拟标识;所述其他用户设备的波束组信息;可能配对用户设备的加扰标识;如果用户设备的DM-RS的功率不同,可能配对用户设备的DM-RS功率相对所述用户设备的DM-RS功率的比值信息,或可能的比值信息。
  17. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述基站将指示DM-RS所使用资源的信息发送给所述用户设备。
  18. 根据权利要求16所述的方法,其中,DM-RS所使用资源为12RE或24RE。
  19. 一种DM-RS信息的指示装置,应用于3D MIMO系统,所述装置包括:
    信令发送单元,向用户设备发送指示DM-RS信息的信令,使得所述用户设备根据所述信令来支持高维MU-MIMO。
  20. 一种通信系统,所述通信系统包括:
    基站,向用户设备发送指示DM-RS信息的信令,使得所述用户设备根据所述信令来支持高维MU-MIMO。
PCT/CN2014/090646 2014-11-07 2014-11-07 Dm-rs信息的指示方法、装置以及通信系统 WO2016070428A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/CN2014/090646 WO2016070428A1 (zh) 2014-11-07 2014-11-07 Dm-rs信息的指示方法、装置以及通信系统
JP2017523437A JP2017539136A (ja) 2014-11-07 2014-11-07 Dm−rs情報の指示方法、装置及び通信システム
CN201480082511.0A CN106797246A (zh) 2014-11-07 2014-11-07 Dm‑rs信息的指示方法、装置以及通信系统
EP14905370.4A EP3217569A4 (en) 2014-11-07 2014-11-07 Method and apparatus for indicating dm-rs information, and communication system
KR1020177012472A KR20170069252A (ko) 2014-11-07 2014-11-07 Dm-rs 정보를 표시하기 위한 방법 및 장치와 통신 시스템
US15/499,197 US20170230161A1 (en) 2014-11-07 2017-04-27 Method and Apparatus for indicating DM-RS Information and Communication System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/090646 WO2016070428A1 (zh) 2014-11-07 2014-11-07 Dm-rs信息的指示方法、装置以及通信系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/499,197 Continuation US20170230161A1 (en) 2014-11-07 2017-04-27 Method and Apparatus for indicating DM-RS Information and Communication System

Publications (1)

Publication Number Publication Date
WO2016070428A1 true WO2016070428A1 (zh) 2016-05-12

Family

ID=55908441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/090646 WO2016070428A1 (zh) 2014-11-07 2014-11-07 Dm-rs信息的指示方法、装置以及通信系统

Country Status (6)

Country Link
US (1) US20170230161A1 (zh)
EP (1) EP3217569A4 (zh)
JP (1) JP2017539136A (zh)
KR (1) KR20170069252A (zh)
CN (1) CN106797246A (zh)
WO (1) WO2016070428A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018040313A1 (zh) * 2016-08-31 2018-03-08 中兴通讯股份有限公司 一种信道编码指示方法、装置、系统及存储介质
JP2020515094A (ja) * 2016-12-19 2020-05-21 華為技術有限公司Huawei Technologies Co.,Ltd. 動的調整ビームセットを用いる伝送方法、基地局、及び端末
CN111431572A (zh) * 2019-01-10 2020-07-17 成都华为技术有限公司 数据传输方法及装置
JP2021503838A (ja) * 2017-11-17 2021-02-12 華為技術有限公司Huawei Technologies Co.,Ltd. ダウンリンク制御情報を送信するための方法、端末デバイス、およびネットワークデバイス
EP4096109A1 (en) * 2016-10-21 2022-11-30 QUALCOMM Incorporated Multi-user multiple input multiple output operation with heterogeneous numerology systems
JP7466612B2 (ja) 2017-02-01 2024-04-12 三菱電機株式会社 基地局、端末、送信方法および受信方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2541390B (en) * 2015-08-14 2021-10-20 Tcl Communication Ltd Systems and methods for multi-user communication
JP2021044598A (ja) * 2017-12-27 2021-03-18 シャープ株式会社 基地局装置、端末装置および通信方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101827393A (zh) * 2010-03-26 2010-09-08 中兴通讯股份有限公司 物理混合重传指示信道的映射方法
CN102076076A (zh) * 2009-11-20 2011-05-25 夏普株式会社 一种解调参考信号的资源分配通知方法
CN102122984A (zh) * 2010-01-11 2011-07-13 株式会社Ntt都科摩 多用户多输入多输出mu-mimo传输方法、无线通信系统以及基站
CN102237961A (zh) * 2010-05-04 2011-11-09 株式会社Ntt都科摩 一种多输入多输出相关信息传输方法
CN102882566A (zh) * 2011-07-12 2013-01-16 华为技术有限公司 降低多用户mimo系统中传输层间干扰的方法及设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5271373B2 (ja) * 2011-03-24 2013-08-21 シャープ株式会社 基地局、端末、通信システム、通信方法、および集積回路
US8675762B2 (en) * 2011-05-02 2014-03-18 Alcatel Lucent Method of transforming pre-coded signals for multiple-in-multiple-out wireless communication
CN103733583A (zh) * 2011-08-05 2014-04-16 瑞典爱立信有限公司 参考信号生成技术
WO2013033919A1 (zh) * 2011-09-09 2013-03-14 富士通株式会社 数据传输方法、系统、发射机和接收机
CN103718491B (zh) * 2011-09-19 2016-09-21 富士通株式会社 数据传输方法、系统、发射机和接收机
US9019924B2 (en) * 2012-04-04 2015-04-28 Samsung Electronics Co., Ltd. High-order multiple-user multiple-input multiple-output operation for wireless communication systems
KR20150073993A (ko) * 2012-09-18 2015-07-01 엘지전자 주식회사 무선 통신 시스템에서 시스템 정보 수신 방법 및 장치
KR20150104155A (ko) * 2013-01-25 2015-09-14 후지쯔 가부시끼가이샤 복조 참조 신호에 대한 시그널링 지시 방법, 사용자 장비, 및 기지국
US9654272B2 (en) * 2013-03-08 2017-05-16 Electronics & Telecommunications Research Institute Method for multi-input multi-output communication in large-scale antenna system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102076076A (zh) * 2009-11-20 2011-05-25 夏普株式会社 一种解调参考信号的资源分配通知方法
CN102122984A (zh) * 2010-01-11 2011-07-13 株式会社Ntt都科摩 多用户多输入多输出mu-mimo传输方法、无线通信系统以及基站
CN101827393A (zh) * 2010-03-26 2010-09-08 中兴通讯股份有限公司 物理混合重传指示信道的映射方法
CN102237961A (zh) * 2010-05-04 2011-11-09 株式会社Ntt都科摩 一种多输入多输出相关信息传输方法
CN102882566A (zh) * 2011-07-12 2013-01-16 华为技术有限公司 降低多用户mimo系统中传输层间干扰的方法及设备

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018040313A1 (zh) * 2016-08-31 2018-03-08 中兴通讯股份有限公司 一种信道编码指示方法、装置、系统及存储介质
EP4096109A1 (en) * 2016-10-21 2022-11-30 QUALCOMM Incorporated Multi-user multiple input multiple output operation with heterogeneous numerology systems
JP2020515094A (ja) * 2016-12-19 2020-05-21 華為技術有限公司Huawei Technologies Co.,Ltd. 動的調整ビームセットを用いる伝送方法、基地局、及び端末
JP7201594B2 (ja) 2016-12-19 2023-01-10 華為技術有限公司 動的調整ビームセットを用いる伝送方法、基地局、及び端末
JP7466612B2 (ja) 2017-02-01 2024-04-12 三菱電機株式会社 基地局、端末、送信方法および受信方法
JP2021503838A (ja) * 2017-11-17 2021-02-12 華為技術有限公司Huawei Technologies Co.,Ltd. ダウンリンク制御情報を送信するための方法、端末デバイス、およびネットワークデバイス
JP7076548B2 (ja) 2017-11-17 2022-05-27 華為技術有限公司 ダウンリンク制御情報を送信するための方法、端末デバイス、およびネットワークデバイス
CN111431572A (zh) * 2019-01-10 2020-07-17 成都华为技术有限公司 数据传输方法及装置
CN111431572B (zh) * 2019-01-10 2021-10-01 成都华为技术有限公司 数据传输方法及装置

Also Published As

Publication number Publication date
KR20170069252A (ko) 2017-06-20
EP3217569A1 (en) 2017-09-13
CN106797246A (zh) 2017-05-31
JP2017539136A (ja) 2017-12-28
EP3217569A4 (en) 2018-06-27
US20170230161A1 (en) 2017-08-10

Similar Documents

Publication Publication Date Title
US10862641B2 (en) Data transmission method and apparatus
WO2016070428A1 (zh) Dm-rs信息的指示方法、装置以及通信系统
US10098103B2 (en) Method and apparatus for multiuser superposition transmission
EP2926484B1 (en) Information signalling for network assisted interference mitigation
TWI599191B (zh) 多輸入多輸出操作方法及裝置
WO2018149273A1 (zh) 一种多码字传输方法及装置
US11870524B2 (en) Method for reporting channel state information in order for performing antenna array-based beamforming in wireless communication system, and device therefor
US10708941B2 (en) Apparatus for acquiring and reporting power allocation
WO2013068834A1 (en) Method and apparatus for transmitting and receiving downlink control information based on multi-user mimo transmission
CN107196689B (zh) 一种上行mu-mimo的方法及系统
BR112013017480B1 (pt) Método, sistema e aparelho para recepção por canal compartilhado de transmissão por downlink em transmissões de multiponto cooperativas
WO2013029482A1 (zh) 一种下行控制信息传输方法及装置
TW201735574A (zh) 裝置及方法
US10652066B2 (en) Device, method, and program for identifying a preferred codebook for non-orthogonal multiplexing/non-orthogonal multiple access
CN116436585A (zh) 用于参考信号配置的方法和装置
US11196522B2 (en) Enhanced sounding reference signal scheme
TWI700910B (zh) 通訊裝置及通訊方法
US10064197B2 (en) Network assisted interference suppression
US10056928B2 (en) Method and apparatus for controlling interference in mobile communication system
TW201216655A (en) Method of handling antipodal parauitary precoding for MIMO OFDM and related communication device
EP2950578A1 (en) Signaling indication method, user equipment and base station for demodulating reference signal
JP2020504915A (ja) 信号の伝送方法、ネットワーク装置及び端末装置
WO2016070430A1 (zh) Dm-rs的资源配置方法、装置以及通信系统
US20210119757A1 (en) Method and Apparatus for Multiple Access Transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14905370

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014905370

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017523437

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177012472

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE