WO2016165080A1 - 参考信号发送与接收方法及装置 - Google Patents

参考信号发送与接收方法及装置 Download PDF

Info

Publication number
WO2016165080A1
WO2016165080A1 PCT/CN2015/076593 CN2015076593W WO2016165080A1 WO 2016165080 A1 WO2016165080 A1 WO 2016165080A1 CN 2015076593 W CN2015076593 W CN 2015076593W WO 2016165080 A1 WO2016165080 A1 WO 2016165080A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
signal sequence
sequence
bits
bit
Prior art date
Application number
PCT/CN2015/076593
Other languages
English (en)
French (fr)
Inventor
金哲
陈哲
张维良
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/076593 priority Critical patent/WO2016165080A1/zh
Priority to EP15888785.1A priority patent/EP3267706B1/en
Priority to CN201580078560.1A priority patent/CN107431906B/zh
Publication of WO2016165080A1 publication Critical patent/WO2016165080A1/zh
Priority to US15/730,136 priority patent/US10389559B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2003Modulator circuits; Transmitter circuits for continuous phase modulation
    • H04L27/2007Modulator circuits; Transmitter circuits for continuous phase modulation in which the phase change within each symbol period is constrained
    • H04L27/2017Modulator circuits; Transmitter circuits for continuous phase modulation in which the phase change within each symbol period is constrained in which the phase changes are non-linear, e.g. generalized and Gaussian minimum shift keying, tamed frequency modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/20Services signaling; Auxiliary data signalling, i.e. transmitting data via a non-traffic channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/01Equalisers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/14Demodulator circuits; Receiver circuits
    • H04L27/144Demodulator circuits; Receiver circuits with demodulation using spectral properties of the received signal, e.g. by using frequency selective- or frequency sensitive elements
    • H04L27/148Demodulator circuits; Receiver circuits with demodulation using spectral properties of the received signal, e.g. by using frequency selective- or frequency sensitive elements using filters, including PLL-type filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a method and an apparatus for transmitting and receiving reference signals.
  • GSM Global System for Mobile Communication
  • FIG. 1 is a schematic diagram of a transmission principle of a GMSK transmitter, in which a pilot symbol is inserted in front of a data symbol, or a pilot symbol is equally inserted into a data symbol, and the pilot symbol is a pseudo-random sequence generated by a pseudo-random manner.
  • the data symbols after the pilot symbols are inserted are differentially encoded and GMSK modulated to obtain a GMSK modulated signal.
  • the GMSK receiver receives the principle diagram, and performs matched filtering on the GMSK modulated signal to obtain a data receiving signal and a pilot receiving signal, which are locally stored according to the pilot receiving signal and are consistent with the GMSK transmitter side.
  • the pilot symbols perform channel estimation, estimate channel coefficients, and perform equalization processing using channel coefficients and data received signals to obtain data estimated symbols, that is, data symbols recovered by the GMSK receiver.
  • Embodiments of the present invention provide a reference signal transmitting and receiving method and apparatus to improve channel estimation accuracy and channel estimation performance.
  • the first aspect provides a reference signal sending method, including:
  • the reference signal sequence includes a plurality of bits, and the two-bit XOR of each of the plurality of bits separated by one bit is 1;
  • the modulated reference signal sequence is transmitted.
  • the reference signal sequence is at least one of: a first reference signal sequence, a second reference signal sequence, a third reference signal sequence, and Fourth reference signal sequence,
  • the first reference signal sequence is a cyclic sequence of sequence 0, 0, 1, and 1
  • the second reference signal sequence is a cyclic sequence of sequence 0, 1, 1, 0,
  • the third reference signal sequence is A cyclic sequence of sequences 1, 0, 0, 1
  • the fourth reference signal sequence being a cyclic sequence of sequences 1, 1, 0, 0.
  • performing Gaussian minimum frequency shift keying GMSK modulation on the reference signal sequence includes:
  • the data bits into which the reference signal sequence is inserted are subjected to GMSK modulation.
  • the method before the acquiring the reference signal sequence, the method further includes: acquiring a pseudo random bit sequence;
  • the acquiring the reference signal sequence includes:
  • the acquiring the reference signal sequence includes: acquiring multiple reference signals sequence;
  • the inserting the reference signal sequence into the data bits includes inserting the plurality of reference signal sequences into the data bits, respectively.
  • the acquiring the pseudo random bit sequence includes:
  • the pseudo random bit sequence is obtained according to the initialization seed, where the initialization seed is an initialization seed used by the communication peer in the channel estimation process.
  • the method before the acquiring the reference signal sequence, the method further includes: receiving an identifier of the reference signal sequence;
  • the acquiring the reference signal sequence includes: acquiring the reference signal sequence identified by the identifier of the reference signal sequence.
  • the inserting the reference signal sequence into the data bit including :
  • the second aspect provides a reference signal receiving method, including:
  • the local reference signal sequence is at least one of: a first reference signal sequence, a second reference signal sequence, and a third reference signal sequence And a fourth reference signal sequence,
  • the first reference signal sequence is a cyclic sequence of sequence 0, 0, 1, and 1
  • the second reference signal sequence is a cyclic sequence of sequence 0, 1, 1, 0,
  • the third reference signal sequence is A circular sequence of sequences 1, 0, 0, 1, the fourth reference signal sequence being a cyclic sequence of sequences 1, 1, 0, 0.
  • the method before the obtaining the channel parameter information by using the reference signal sequence and the local reference signal sequence for channel estimation, the method further includes: Generating the local reference signal sequence.
  • the method before the generating the local reference signal sequence, the method further includes: generating a pseudo random bit sequence;
  • the generating a local reference signal sequence includes:
  • the sequence of the first reference signal sequence, the second reference signal sequence, the third reference signal sequence, and the fourth reference signal sequence of the N consecutive bit identifiers a sequence in which N is greater than or equal to 1.
  • the method before the generating the local reference signal sequence, the method further includes: generating a pseudo random bit sequence C k , k ⁇ 0;
  • the generating a local reference signal sequence includes:
  • the generating the pseudo random bit sequence includes:
  • a pseudo random bit sequence is generated according to the initialization seed, which is an initialization seed used by the communication peer in the GMSK modulation process.
  • the method further includes:
  • the first reference signal sequence, the second reference signal sequence, the third reference signal sequence, and the sequence in the fourth reference signal sequence identified by the reference signal sequence identifier as the local reference signal sequence.
  • the third aspect provides a sending end device, including:
  • a first processing unit configured to acquire a reference signal sequence, where the reference signal sequence includes a plurality of bits, and two bits of each of the plurality of bits are separated by one bit; the Gaussian minimum is performed on the reference signal sequence Frequency shift keying GMSK modulation;
  • the first transceiver unit is configured to send the modulated reference signal sequence.
  • the reference signal sequence is at least one of the following: a first reference signal sequence, a second reference signal sequence, a third reference signal sequence, and Fourth reference signal sequence,
  • the first reference signal sequence is a cyclic sequence of sequence 0, 0, 1, and 1
  • the second reference signal sequence is a cyclic sequence of sequence 0, 1, 1, 0,
  • the third reference signal sequence is A cyclic sequence of sequences 1, 0, 0, 1
  • the fourth reference signal sequence being a cyclic sequence of sequences 1, 1, 0, 0.
  • the second possible implementation in the third aspect wherein the first processing unit is specifically configured to insert the reference signal sequence into data bits; perform GMSK modulation on data bits in which the reference signal sequence is inserted.
  • the first processing unit is further configured to obtain a pseudo random bit sequence, and obtain the pseudo random bit sequence N consecutive Obtaining a sequence of the first reference signal sequence, the second reference signal sequence, the third reference signal sequence, and the fourth reference signal sequence of the N consecutive bit identifiers, where N is greater than or equal to 1.
  • the first processing unit is specifically configured to acquire multiple reference signals a sequence; inserting the plurality of reference signal sequences into the data bits, respectively.
  • the first processing unit is configured to obtain a pseudo random bit sequence according to the initialization seed, where the initialization seed is a communication pair.
  • the initialization seed used in the channel estimation process.
  • the first transceiver unit is further configured to receive an identifier of the reference signal sequence; And the reference signal sequence identified by the identifier of the reference signal sequence.
  • the first processing unit is specifically configured to use the reference signal
  • the sequence is segmented to obtain a plurality of reference signal sequence segments; the reference signal sequence is segmented to obtain a plurality of reference signal sequence segments.
  • the fourth aspect provides a receiving end device, including:
  • a second transceiver unit configured to receive the modulated reference signal sequence
  • a second processing unit configured to demodulate the modulated reference signal sequence to obtain a reference signal sequence, and perform channel estimation using the reference signal sequence and the local reference signal sequence to obtain channel parameter information, where the local reference signal sequence A plurality of bits are included, and the two-bit XOR of each of the plurality of bits is one.
  • the local reference signal sequence is at least one of: a first reference signal sequence, a second reference signal sequence, and a third reference signal sequence And a fourth reference signal sequence,
  • the first reference signal sequence is a cyclic sequence of sequence 0, 0, 1, and 1
  • the second reference signal sequence is a cyclic sequence of sequence 0, 1, 1, 0,
  • the third reference signal sequence is A circular sequence of sequences 1, 0, 0, 1, the fourth reference signal sequence being a cyclic sequence of sequences 1, 1, 0, 0.
  • the second processing unit is further configured to perform channel estimation by using the reference signal sequence and the local reference signal sequence
  • the local reference signal sequence is generated prior to the channel parameter information.
  • the second processing unit is further configured to generate a pseudo random bit sequence before generating the local reference signal sequence
  • the second processing unit is configured to acquire N consecutive bits of the pseudo random bit sequence, acquire the first reference signal sequence, the second reference signal sequence, and the N consecutive bit identifiers
  • the third reference signal sequence and the sequence in the fourth reference signal sequence are used as the local reference signal sequence, where N is greater than or equal to one.
  • the second processing unit is further configured to generate a pseudo random bit sequence C k before generating the local reference signal sequence, K ⁇ 0;
  • the second processing unit is specifically configured to acquire K groups of bits from the pseudo random bit sequence, each group includes two consecutive bits; and acquire the first reference signal identified by each group of bits in the K group of bits
  • the sequence, the second reference signal sequence, the third reference signal sequence, and the sequence in the fourth reference signal sequence are used as the local reference signal sequence.
  • the second processing unit is specifically configured to generate a pseudo according to the initialization seed A random bit sequence, the initialization seed is an initialization seed used by the communication peer in the GMSK modulation process.
  • the second transceiver unit is further configured to receive a reference signal sequence identifier
  • the second processing unit is specifically configured to: identify, by the reference signal sequence, the first reference signal sequence, the second reference signal sequence, the third reference signal sequence, and the fourth reference signal sequence The sequence in the sequence is used as the local reference signal sequence.
  • Reference signal transmitting and receiving method and device provided by embodiment of the present invention, reference signal sequence
  • the column is designed as a sequence of two bits XORs separated by one bit, and GMSK modulation is performed on the reference signal sequence, and the same reference signal sequence is also used for channel estimation in GMSK demodulation, compared to pseudo-random sequences.
  • the pilot symbols improve the accuracy of the channel estimation, which in turn improves the performance of the channel estimation.
  • FIG. 1 is a schematic diagram of a transmission principle of a GMSK transmitter provided by the prior art
  • FIG. 2 is a schematic diagram of a receiving principle of a GMSK receiver provided by the prior art
  • FIG. 3 is a flowchart of a method for sending a reference signal according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a sending principle of a sending end device according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a method for receiving a reference signal according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a receiving principle of a receiving end device according to an embodiment of the present invention.
  • FIG. 7 is a structural diagram of a device at a transmitting end according to an embodiment of the present disclosure.
  • FIG. 8 is a structural diagram of a receiving end device according to an embodiment of the present invention.
  • FIG. 9 is a structural diagram of a reference signal transmitting and receiving system according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a method for transmitting a reference signal according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a sending principle of a device at a transmitting end according to an embodiment of the present invention.
  • the embodiment of the present invention provides a reference signal sending method for the accuracy of the channel estimation when the pilot symbol is a pseudo-random sequence, and the specific steps of the method are as follows:
  • Step S101 acquiring a reference signal sequence, the reference signal sequence includes a plurality of bits, and the two-bit XOR of each of the plurality of bits separated by one bit is 1;
  • the reference signal sequence is at least one of a first reference signal sequence, a second reference signal sequence, a third reference signal sequence, and a fourth reference signal sequence, wherein the first reference signal sequence is sequence 0. a cyclic sequence of 0, 1, 1 wherein the second reference signal sequence is a cyclic sequence of sequence 0, 1, 1, 0, and the third reference signal sequence is a cyclic sequence of sequence 1, 0, 0, 1.
  • the fourth reference signal sequence is a cyclic sequence of sequences 1, 1, 0, 0.
  • the reference signal sequence will appear with four sequences, specifically the first reference signal sequence Seq1: 0, 0, 1, 1, 0, 0, 1 , 1,0,0,1,1,...;second reference signal sequence Seq2: 0,1,1,0,0,1,1,0,0,1,1,0,...; third reference signal Sequence Seq3: 1,0,0,1,1,0,0,1,1,0,0,1,...; fourth reference signal sequence Seq4: 1,1,0,0,1,1,0, 0,1,1,0,0,...
  • the first reference signal sequence is a cyclic sequence of sequence 0, 0, 1, and 1
  • the second reference signal sequence is a cyclic sequence of sequence 0, 1, 1, 0,
  • the third reference signal sequence is sequence 1, 0, 0.
  • the cyclic sequence of 1, the fourth reference signal sequence is a cyclic sequence of the sequence 1, 1, 0, 0.
  • Step S102 performing Gaussian minimum shift keying GMSK modulation on the reference signal sequence
  • Performing Gaussian minimum shift keying GMSK modulation on the reference signal sequence includes: inserting the reference signal sequence into data bits; performing GMSK modulation on data bits in which the reference signal sequence is inserted.
  • the data bits inserted with the reference signal sequence are GMSK-modulated, or the data bits inserted with the reference signal sequence are converted into symbols, and the specific conversion method is: mapping bit 0 to symbol 1, bit 1 is mapped to symbol-1, and GMSK modulation is performed on the converted symbol.
  • the reference signal sequence, the second reference signal sequence, the third reference signal sequence, and the fourth reference signal sequence are randomly selected from another sequence, and a number of bits are truncated from the selected sequence and inserted into the data bits, and so on.
  • Deriving a data bit of the reference signal sequence performing GMSK modulation on the data bit inserted with the reference signal sequence, or converting the data bit inserted with the reference signal sequence into a symbol, and the specific conversion method is: mapping bit 0 to Symbol 1, bit 1 is mapped to symbol -1, and the converted symbol is GMSK modulated.
  • Step S103 Send the modulated reference signal sequence.
  • the reference signal sequence is subjected to Gaussian minimum shift keying GMSK modulation to obtain a GMSK modulated signal, and the transmitting end device transmits the GMSK modulated signal to the receiving end device.
  • the reference signal sequence is designed as a sequence of two bits XOR separated by one bit, and GMSK modulation is performed on the reference signal sequence, and the same reference signal sequence is used for channel estimation in GMSK demodulation.
  • the accuracy of the channel estimation is improved, thereby improving the performance of the channel estimation.
  • the method before the acquiring the reference signal sequence, the method further includes: acquiring a pseudo random bit sequence; and acquiring the reference signal sequence, comprising: acquiring N consecutive bits of the pseudo random bit sequence; Acquiring the sequence of the first reference signal sequence, the second reference signal sequence, the third reference signal sequence, and the fourth reference signal sequence of the N consecutive bit identifiers, where N is greater than or Equal to 1.
  • a sequence is selected from the fourth reference signal sequence, and the specific selection method is: using N consecutive bits as the sequence identifier, determining the reference signal sequence identified by the N consecutive bits according to the sequence identifier; or setting the pseudo random bit sequence N
  • the consecutive bits serve as the initial N bits of the selected reference signal sequence. Where N is greater than or equal to 1.
  • the acquiring the reference signal sequence includes: acquiring a plurality of reference signal sequences; and inserting the reference signal sequence into the data bits includes: inserting the plurality of reference signal sequences into the data bits respectively.
  • the signal sequence, the second reference signal sequence, the third reference signal sequence, and the fourth reference signal sequence are randomly selected from another sequence, and a plurality of bits are truncated from the selected sequence and inserted into the data bits, and so on.
  • the data bits of the reference signal sequence are randomly selected from another sequence, and a plurality of bits are truncated from the selected sequence and inserted into the data bits, and so on.
  • the acquiring the pseudo random bit sequence includes: acquiring a pseudo random bit sequence according to the initialization seed, where the initialization seed is an initialization seed used by the communication peer in the channel estimation process.
  • the pseudo random bit sequence is specifically generated by a pseudo random sequence generator.
  • the input parameter of the pseudo random sequence generator is an initialization seed, and the initialization seed is generated according to parameters such as a cell ID and a terminal ID, and the devices that communicate with each other adopt the same initialization. Seeds to generate the same pseudo-random bit sequence. Inter-cell communication, cell ID, terminal ID, etc. parameter.
  • the data bit includes K component segment data bits; before the acquiring the reference signal sequence, the method further includes: acquiring a pseudo random bit sequence C k , k ⁇ 0; the acquiring the reference signal sequence, including: from the Obtaining K sets of bits in a pseudo-random bit sequence, each set comprising two consecutive bits; acquiring the first reference signal sequence, the second reference signal sequence, and the identifier identified by each set of bits in the K sets of bits a third reference signal sequence and a sequence in the fourth reference signal sequence; the inserting the reference signal sequence into the data bits comprises: inserting L bits of the sequence identified by each of the K sets of bits into The K component segment data bits are either inserted after the K component segment data bits or inserted into the K component segment data bits, where K and L are positive integers.
  • the data bits comprise data bits K segment groups, the acquired pseudo-random bit sequence C k, the k ⁇ 0, the pseudo-random bit sequence C k, k ⁇ 0 each of two consecutive bits as a group a bit, for example, C 0 C 1 is a set of bits, C 2 C 3 is a set of bits, C k C k+1 is a set of bits, and the first reference signal sequence is determined by each set of bits, the first a sequence of two reference signal sequences, the third reference signal sequence, and the fourth reference signal sequence, wherein K sets of bits are obtained from the pseudo-random bit sequence to determine K reference signal sequences, for each reference
  • the signal sequence selects its first L bits, and inserts the selected K sets of L bits before the K component segment data bits, or after the K component segment data bits, or inserts into the In the K component segment data bits, where K and L are positive integers.
  • the first L bits of the sequence determined by C 0 C 1 are inserted before the data bits of the 0th segment, and the first L bits of the sequence determined by C 2 C 3 are inserted into the first component.
  • the first L bits of the sequence determined by such a push C 2k C 2k+1 are inserted before the k-th segment data bit, and the sequence determined by C 2(K-1) C 2K-1 The first L bits are inserted before the (K-1)th segment data bit.
  • the reference signal sequence is determined by two bits adjacent to the pseudo random bit sequence, so that the selection of the reference signal sequence corresponding to each segment of the data bits is random, and the out-of-band caused by the periodicity of the reference signal sequence is avoided.
  • the increase in power leakage also contributes to the randomization of interference between adjacent cells.
  • the method before the acquiring the reference signal sequence, further includes: receiving an identifier of the reference signal sequence; and acquiring the reference signal sequence, including: acquiring the identifier of the reference signal sequence The reference signal sequence.
  • the embodiment of the present invention acquires the sequence in the first reference signal sequence, the second reference signal sequence, the third reference signal sequence, and the fourth reference signal sequence according to the identifier of the reference signal sequence.
  • the inserting the reference signal sequence into a data bit includes: segmenting the reference signal sequence to obtain a plurality of reference signal sequence segments; and inserting the plurality of reference signal sequence segments into the data bits respectively .
  • the obtained reference signal sequence is divided into a plurality of reference signal sequence segments, and a plurality of reference signal sequence segments are respectively inserted into the data bits.
  • the data bit includes a K component segment data bit; the acquiring a reference signal sequence comprising: the first reference signal sequence, the second reference signal sequence, the third reference signal sequence, and the fourth Obtaining any sequence in the reference signal sequence; inserting the reference signal sequence into the data bits includes: dividing the first L*K bits of the acquired sequence into K groups, each group of L bits, and the K group The bits are inserted before the K component segment data bits, respectively, or after the K component segment data bits, or into the K component segment data bits, where K and L are positive integers.
  • the cascading pilot bit sequence may be divided into K groups of L bits each, before the K group bits are inserted before the K component segment data bits, or after the K component segment data bits are inserted, or inserted.
  • K and L are positive integers. Preferred embodiments of the present invention will Before inserting the data bits of the 0th segment, it will Before inserting into the data bits of the first component segment, Inserted before the data bits of the K-1th segment.
  • the reference signal sequence is designed as a sequence of two bits XOR separated by one bit, and GMSK modulation is performed on the reference signal sequence, and the same reference signal sequence is used for channel estimation in GMSK demodulation.
  • the accuracy of the channel estimation is improved, thereby improving the performance of the channel estimation.
  • FIG. 5 is a flowchart of a method for receiving a reference signal according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a receiving principle of a device at a receiving end according to an embodiment of the present invention.
  • the embodiment of the present invention provides a reference signal receiving method for the accuracy of the channel estimation when the pilot symbol is a pseudo-random sequence, and the specific steps of the method are as follows:
  • Step S201 Receive a modulated reference signal sequence.
  • the receiving end device receives the GMSK modulated signal sent by the transmitting end device.
  • Step S202 demodulating the modulated reference signal sequence to obtain a reference signal sequence
  • the receiving end device performs matched filtering on the GMSK modulated signal to obtain a data symbol and a reference signal sequence. If the above step S102 converts the data bit inserted with the reference signal sequence into a symbol, the specific conversion method is: mapping bit 0 to symbol 1 The bit 1 is mapped to the symbol-1, and the converted symbol is GMSK-modulated. Then, the two bits of each of the plurality of bits included in the reference signal sequence demodulated in step S202 are opposite to each other.
  • Step S203 Perform channel estimation using the reference signal sequence and the local reference signal sequence to obtain channel parameter information, where the local reference signal sequence includes a plurality of bits, and two bits of each of the plurality of bits are separated by one bit. Or is 1.
  • the receiving end device pre-stores the local reference signal sequence, or before the receiving end device performs step S201 or step S202, or simultaneously generates a local reference signal sequence, the local reference signal sequence includes a plurality of bits, each of the plurality of bits being separated
  • the two-bit XOR of one bit is 1.
  • the embodiment of the present invention performs Laurent decomposition on the local reference signal sequence, so that the local reference signal sequence includes two bits separated by one bit each. The bits are opposite to each other.
  • the channel parameter information is obtained by performing channel estimation using the reference signal sequence obtained in step S202 and the local reference signal sequence decomposed by Laurent in step S203.
  • the reference signal sequence is designed as a sequence of two bits XOR separated by one bit, and GMSK modulation is performed on the reference signal sequence, and the same reference signal sequence is used for channel estimation in GMSK demodulation.
  • the accuracy of the channel estimation is improved, thereby improving the performance of the channel estimation.
  • the local reference signal sequence is at least one of the following: a first reference signal sequence, a second reference signal sequence, a third reference signal sequence, and a fourth reference signal sequence, where
  • the first reference signal sequence is a cyclic sequence of sequence 0, 0, 1, 1
  • the second reference signal sequence is a cyclic sequence of sequence 0, 1, 1, 0,
  • the third reference signal sequence is sequence 1.
  • a cyclic sequence of 0,0,1, the fourth reference signal sequence being a cyclic sequence of sequences 1, 1, 0, 0.
  • the method further includes: generating the local reference signal sequence.
  • the local reference signal sequence corresponding to the receiving device is consistent with the generating principle of the reference signal sequence corresponding to the transmitting device.
  • the method further includes: generating a pseudo random bit sequence; the generating the local reference signal sequence, comprising: acquiring the N consecutive bits of the pseudo random bit sequence; acquiring the N a sequence of the first reference signal sequence, the second reference signal sequence, the third reference signal sequence, and the fourth reference signal sequence identified by consecutive bits as the local reference signal sequence, where N is greater than or equal to 1.
  • Selecting a sequence from the first reference signal sequence, the second reference signal sequence, the third reference signal sequence, and the fourth reference signal sequence by using N consecutive bits of a pseudo random bit sequence is: using N consecutive bits as the sequence identifier, determining the reference signal sequence identified by the N consecutive bits according to the sequence identifier; or using the N consecutive bits of the pseudo random bit sequence as the initial N of the selected reference signal sequence Bit. Where N is greater than or equal to 1.
  • the method further includes: generating a pseudo random bit sequence C k , k ⁇ 0; generating the local reference signal sequence, comprising: acquiring K groups of bits from the pseudo random bit sequence, Each group includes two consecutive bits; obtaining the first reference signal sequence, the second reference signal sequence, the third reference signal sequence, and the fourth identified by each group of bits in the K group of bits The sequence in the reference signal sequence is used as the local reference signal sequence.
  • the generating the pseudo random bit sequence includes: generating a pseudo random bit sequence according to the initialization seed, where the initialization seed is an initialization seed used by the communication peer in the GMSK modulation process.
  • the pseudo random bit sequence is specifically generated by a pseudo random sequence generator.
  • the input parameter of the pseudo random sequence generator is an initialization seed, and the initialization seed is generated according to parameters such as a cell ID and a terminal ID, and the devices that communicate with each other adopt the same initialization. Seeds to generate the same pseudo-random bit sequence.
  • the devices communicating with each other exchange parameters such as the cell ID and the terminal ID through signaling.
  • the reference signal sequence is determined by two bits adjacent to the pseudo random bit sequence, so that the selection of the reference signal sequence corresponding to each segment of the data bits is random, and the out-of-band caused by the periodicity of the reference signal sequence is avoided.
  • the increase in power leakage also contributes to the randomization of interference between adjacent cells.
  • the method further includes: receiving a reference signal sequence identifier; identifying, by the reference signal sequence identifier, the first reference signal sequence, the second reference signal sequence, and the third reference A signal sequence and a sequence in the fourth reference signal sequence are used as the local reference signal sequence.
  • the transmitting device randomly selects a sequence from the first reference signal sequence, the second reference signal sequence, the third reference signal sequence, and the fourth reference signal sequence, sending the identifier of the sequence to the receiving End device
  • the receiving device selects a sequence from the first reference signal sequence, the second reference signal sequence, the third reference signal sequence, and the fourth reference signal sequence according to the identifier of the sequence, so as to receive
  • the sequence selected by the end device is the same as the reference signal sequence selected by the transmitting device.
  • the data bits are equalized and recovered according to the data symbols and the channel parameter information.
  • the reference signal sequence is designed as a sequence of two bits XOR separated by one bit, and GMSK modulation is performed on the reference signal sequence, and the same reference signal sequence is used for channel estimation in GMSK demodulation.
  • the accuracy of the channel estimation is improved, thereby improving the performance of the channel estimation.
  • FIG. 7 is a structural diagram of a device at a transmitting end according to an embodiment of the present invention.
  • the sending end device provided by the embodiment of the present invention may perform the processing flow provided by the reference signal sending method embodiment.
  • the transmitting end device 70 includes a first processing unit 71 and a first transceiver unit 72, where the first processing The unit 71 is configured to acquire a reference signal sequence, where the reference signal sequence includes a plurality of bits, and two bits of each of the plurality of bits are separated by one bit; the Gaussian minimum frequency shift key is applied to the reference signal sequence.
  • the GMSK modulation is controlled; the first transceiver unit 72 is configured to send the modulated reference signal sequence.
  • the first processing unit 71 may be implemented by a processor in the embodiment of the present invention.
  • the reference signal sequence is designed as a sequence of two bits XOR separated by one bit, and GMSK modulation is performed on the reference signal sequence, and the same reference signal sequence is used for channel estimation in GMSK demodulation.
  • the accuracy of the channel estimation is improved, thereby improving the performance of the channel estimation.
  • the reference signal sequence is at least one of the following: a first reference signal sequence, a second reference signal sequence, a third reference signal sequence, and a fourth reference signal sequence, where
  • the first reference signal sequence is a cyclic sequence of sequence 0, 0, 1, 1
  • the second reference signal sequence is a cyclic sequence of sequence 0, 1, 1, 0,
  • the third reference signal sequence is sequence 1, 0 a cyclic sequence of 0, 1
  • the fourth reference signal sequence being a cyclic sequence of the sequence 1, 1, 0, 0.
  • the first processing unit 71 is specifically configured to insert the reference signal sequence into data bits; The data bits inserted with the reference signal sequence are subjected to GMSK modulation.
  • the first processing unit 71 is further configured to acquire a pseudo random bit sequence, acquire the N consecutive bits of the pseudo random bit sequence, and acquire the first reference signal sequence and the second reference of the N consecutive bit identifiers. a sequence in the signal sequence, the third reference signal sequence, and the fourth reference signal sequence, wherein N is greater than or equal to one.
  • the first processing unit 71 is specifically configured to acquire a plurality of reference signal sequences; and insert the plurality of reference signal sequences into the data bits respectively.
  • the first processing unit 71 is specifically configured to obtain a pseudo random bit sequence according to the initialization seed, where the initialization seed is an initialization seed used by the communication peer in the channel estimation process.
  • the first transceiver unit 72 is further configured to receive the identifier of the reference signal sequence.
  • the first processing unit 71 is specifically configured to acquire the reference signal sequence identified by the identifier of the reference signal sequence.
  • the first processing unit 71 is specifically configured to segment the reference signal sequence to obtain a plurality of reference signal sequence segments; segment the reference signal sequence to obtain a plurality of reference signal sequence segments.
  • the first processing unit 71 may be implemented by a processor in the embodiment of the present invention.
  • the method of the method provided by the embodiment of the present invention may be specifically used to perform the method embodiment provided in FIG. 3 above, and specific functions are not described herein again.
  • the reference signal sequence is determined by two bits adjacent to the pseudo random bit sequence, so that the selection of the reference signal sequence corresponding to each segment of the data bits is random, and the out-of-band caused by the periodicity of the reference signal sequence is avoided.
  • the increase in power leakage also contributes to the randomization of interference between adjacent cells.
  • FIG. 8 is a structural diagram of a receiving end device according to an embodiment of the present invention.
  • the receiving end device provided by the embodiment of the present invention can perform the processing flow provided by the reference signal receiving method embodiment.
  • the receiving end device 80 includes a second transceiver unit 81 and a second processing unit 82.
  • the unit 81 is configured to receive a modulated reference signal sequence;
  • the second processing unit 82 is configured to demodulate the modulated reference signal sequence to obtain a reference signal sequence; use the reference signal sequence and the local reference signal sequence to perform channel estimation to obtain a channel Parameter information, wherein the local reference signal sequence comprises a plurality of bits, and the two-bit XOR of each of the plurality of bits is one.
  • the second processing unit 82 may be implemented by a processor in an embodiment of the invention.
  • the reference signal sequence is designed as a sequence of two bits XOR separated by one bit, and GMSK modulation is performed on the reference signal sequence, and the same reference signal sequence is used for channel estimation in GMSK demodulation.
  • the accuracy of the channel estimation is improved, thereby improving the performance of the channel estimation.
  • the local reference signal sequence is at least one of the following: a first reference signal sequence, a second reference signal sequence, a third reference signal sequence, and a fourth reference signal sequence, where
  • the first reference signal sequence is a cyclic sequence of sequence 0, 0, 1, 1
  • the second reference signal sequence is a cyclic sequence of sequence 0, 1, 1, 0,
  • the third reference signal sequence is sequence 1.
  • a cyclic sequence of 0,0,1, the fourth reference signal sequence being a cyclic sequence of sequences 1, 1, 0, 0.
  • the second processing unit 82 is further configured to generate the local reference signal sequence before performing channel estimation using the reference signal sequence and the local reference signal sequence to obtain channel parameter information.
  • the second processing unit 82 is further configured to generate the local reference signal sequence before performing channel estimation using the reference signal sequence and the local reference signal sequence, and the second processing unit 82 is specifically configured to acquire the pseudo random a sequence of N consecutive bits; acquiring the first reference signal sequence, the second reference signal sequence, the third reference signal sequence, and the fourth reference signal sequence of the N consecutive bit identifiers
  • the sequence is the local reference signal sequence, where N is greater than or equal to one.
  • the second processing unit 82 is further configured to generate a pseudo random bit sequence C k , k ⁇ 0 before generating the local reference signal sequence; the second processing unit 82 is specifically configured to obtain K groups of bits from the pseudo random bit sequence, each The group includes two consecutive bits; the first reference signal sequence, the second reference signal sequence, the third reference signal sequence, and the fourth reference identified by each set of bits in the K group of bits are obtained The sequence in the signal sequence acts as the local reference signal sequence.
  • the second processing unit 82 is specifically configured to generate a pseudo random bit sequence according to the initialization seed, where the initialization seed is an initialization seed used by the communication peer in the GMSK modulation process.
  • the second transceiver unit 81 is further configured to receive the reference signal sequence identifier; the second processing unit 82 is specifically configured to: identify, by the reference signal sequence identifier, the first reference signal sequence, the second reference signal sequence, The third reference signal sequence and the sequence in the fourth reference signal sequence serve as the local reference signal sequence.
  • the second processing unit 82 may be implemented by a processor in an embodiment of the invention.
  • the receiving end device provided by the embodiment of the present invention may be specifically used to perform the method embodiment provided in FIG. 5 above, and specific functions are not described herein again.
  • the reference signal sequence is determined by two bits adjacent to the pseudo random bit sequence, so that the selection of the reference signal sequence corresponding to each segment of the data bits is random, and the out-of-band caused by the periodicity of the reference signal sequence is avoided.
  • the increase in power leakage also contributes to the randomization of interference between adjacent cells.
  • FIG. 9 is a structural diagram of a reference signal transmitting and receiving system according to an embodiment of the present invention.
  • the reference signal transmitting and receiving system provided by the embodiment of the present invention may perform the processing flow provided by the reference signal transmitting and receiving method embodiment.
  • the reference signal transmitting and receiving system 90 includes the transmitting end device described in the foregoing embodiment. 70 and the receiving device 80 described in the above embodiment.
  • the reference signal transmitting and receiving system provided by the embodiment of the present invention may perform the processing flow provided by the reference signal transmitting and receiving method embodiment.
  • the embodiment of the present invention designs a reference signal sequence as a sequence of two bits XORs separated by one bit, and performs GMSK modulation on the reference signal sequence, and uses the same reference signal in GMSK demodulation.
  • the sequence performs channel estimation, which improves the accuracy of channel estimation compared to the pilot symbols of the pseudo-random sequence, thereby improving the performance of channel estimation; determining the reference signal sequence by two bits adjacent to the pseudo-random bit sequence, so that each group
  • the selection of the reference signal sequence corresponding to the segment data bit has randomness, avoiding the extra-band power leakage caused by the periodicity of the reference signal sequence, and also facilitating randomization of interference between adjacent cells.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. You can choose which one according to your actual needs. Some or all of the units implement the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the above-described integrated unit implemented in the form of a software functional unit can be stored in a computer readable storage medium.
  • the above software functional unit is stored in a storage medium and includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform the methods of the various embodiments of the present invention. Part of the steps.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Power Engineering (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本发明实施例提供一种参考信号发送与接收方法及装置。参考信号发送方法包括:获取参考信号序列,所述参考信号序列包括多个比特,所述多个比特中每相隔一个比特的两个比特异或为1;对所述参考信号序列进行高斯最小移频键控GMSK调制;发送调制后的所述参考信号序列。本发明实施例将参考信号序列设计为每相隔一个比特的两个比特异或为1的序列,并对参考信号序列进行GMSK调制,同时GMSK解调时也用相同的参考信号序列进行信道估计,相比于伪随机序列的导频符号提高了信道估计的准确性,进而提高了信道估计的性能。

Description

参考信号发送与接收方法及装置 技术领域
本发明实施例涉及通信技术领域,尤其涉及一种参考信号发送与接收方法及装置。
背景技术
高斯滤波最小频移键控(Gaussian Filtered Minimum Shift Keying,简称GMSK)作为一种恒包络的连续相位调制技术广泛应用在全球移动通信系统(Global System for Mobile Communication,简称GSM)中。
如图1所示GMSK发送机发送原理示意图,在数据符号的前面插入导频符号,或者将导频符号等间隔的插入到数据符号中,导频符号是通过伪随机方式生成的伪随机序列,插入导频符号后的数据符号经过差分编码和GMSK调制后得到GMSK调制信号。如图2所示GMSK接收机接收原理示意图,将GMSK调制信号进行匹配滤波,获得数据接收信号和导频接收信号,依据导频接收信号和GMSK接收机本地存储的且与GMSK发送机一侧一致的导频符号进行信道估计,估计出信道系数,利用信道系数和数据接收信号进行均衡处理获得数据估计符号即GMSK接收机恢复出的数据符号。
但是,在GMSK发送机和GMSK接收机应用伪随机序列作为导频符号将影响信道估计的准确性,导致信道估计的性能较低。
发明内容
本发明实施例提供一种参考信号发送与接收方法及装置,以提高信道估计的准确性,以及信道估计的性能。
第一方面提供一种参考信号发送方法,包括:
获取参考信号序列,所述参考信号序列包括多个比特,所述多个比特中每相隔一个比特的两个比特异或为1;
对所述参考信号序列进行高斯最小移频键控GMSK调制;
发送调制后的所述参考信号序列。
结合第一方面,在第一方面第一种可能的实现方式中,所述参考信号序列为如下序列中的至少一种:第一参考信号序列、第二参考信号序列、第三参考信号序列和第四参考信号序列,
其中,所述第一参考信号序列为序列0,0,1,1的循环序列,所述第二参考信号序列为序列0,1,1,0的循环序列,所述第三参考信号序列为序列1,0,0,1的循环序列,所述第四参考信号序列为序列1,1,0,0的循环序列。
结合第一方面第一种可能的实现方式,在第一方面第二种可能的实现方式中,对所述参考信号序列进行高斯最小移频键控GMSK调制,包括:
将所述参考信号序列插入到数据比特;
对插入有所述参考信号序列的数据比特进行GMSK调制。
结合第一方面第二种可能的实现方式,在第一方面第三种可能的实现方式中,所述获取参考信号序列之前,所述方法还包括:获取伪随机比特序列;
所述获取参考信号序列,包括:
获取所述伪随机比特序列N个连续的比特;
获取所述N个连续的比特标识的所述第一参考信号序列、所述第二参考信号序列、所述第三参考信号序列和所述第四参考信号序列中的序列,其中,N大于或等于1。
结合第一方面第二种可能的实现方式或第一方面第三种可能的实现方式,在第一方面第四种可能的实现方式中,所述获取参考信号序列,包括:获取多个参考信号序列;
所述将所述参考信号序列插入到数据比特,包括:将所述多个参考信号序列分别插入到所述数据比特。
结合第一方面第四种可能的实现方式,在第一方面第五种可能的实现方式中,所述获取伪随机比特序列,包括:
依据初始化种子获取伪随机比特序列,所述初始化种子是通信对端在信道估计过程中采用的初始化种子。
结合第一方面第二种可能的实现方式,在第一方面第六种可能的实现方式中,所述获取参考信号序列之前,还包括:接收所述参考信号序列的标识;
所述获取参考信号序列,包括:获取所述参考信号序列的标识所标识的所述参考信号序列。
结合第一方面第二种可能的实现方式或第一方面第六种可能的实现方式,在第一方面第七种可能的实现方式中,所述将所述参考信号序列插入到数据比特,包括:
将所述参考信号序列进行分段获得多个参考信号序列分段;
将所述多个参考信号序列分段分别插入到所述数据比特。
第二方面提供一种参考信号接收方法,包括:
接收调制的参考信号序列;
对所述调制的参考信号序列进行解调获得参考信号序列;
使用所述参考信号序列和本地参考信号序列进行信道估计获得信道参数信息,其中,所述本地参考信号序列包括多个比特,所述多个比特中每相隔一个比特的两个比特异或为1。
结合第二方面,在第二方面第一种可能的实现方式中,所述本地参考信号序列为如下序列中的至少一种:第一参考信号序列、第二参考信号序列、第三参考信号序列和第四参考信号序列,
其中,所述第一参考信号序列为序列0,0,1,1的循环序列,所述第二参考信号序列为序列0,1,1,0的循环序列,所述第三参考信号序列为序列1,0,0,1的循环序列,所述第四参考信号序列是序列1,1,0,0的循环序列。
结合第二方面第一种可能的实现方式,在第二方面第二种可能的实现方式中,所述使用所述参考信号序列和本地参考信号序列进行信道估计获得信道参数信息之前,还包括:生成所述本地参考信号序列。
结合第二方面第二种可能的实现方式,在第二方面第三种可能的实现方式中,所述生成所述本地参考信号序列之前,所述方法还包括:生成伪随机比特序列;
所述生成本地参考信号序列,包括:
获取所述伪随机比特序列N个连续的比特;
获取所述N个连续的比特标识的所述第一参考信号序列、所述第二参考信号序列、所述第三参考信号序列和所述第四参考信号序列中的序列作为所述本地参考信号序列,其中,N大于或等于1。
结合第二方面第三种可能的实现方式,在第二方面第四种可能的实现方式中,所述生成本地参考信号序列之前,所述方法还包括:生成伪随机比特序列Ck,k≥0;
所述生成本地参考信号序列,包括:
从所述伪随机比特序列中获取K组比特,每组包含两个连续的比特;
获取所述K组比特中每组比特所标识的所述第一参考信号序列、所述第二参考信号序列、所述第三参考信号序列和所述第四参考信号序列中的序列作为所述本地参考信号序列。
结合第二方面第三种可能的实现方式或第二方面第四种可能的实现方式,在第二方面第五种可能的实现方式中,所述生成伪随机比特序列,包括:
依据初始化种子生成伪随机比特序列,所述初始化种子是通信对端在GMSK调制过程中采用的初始化种子。
结合第二方面第一种可能的实现方式,在第二方面第六种可能的实现方式中,还包括:
接收参考信号序列标识;
将所述参考信号序列标识所标识的所述第一参考信号序列、所述第二参考信号序列、所述第三参考信号序列和所述第四参考信号序列中的序列作为所述本地参考信号序列。
第三方面提供一种发送端设备,包括:
第一处理单元,用于获取参考信号序列,所述参考信号序列包括多个比特,所述多个比特中每相隔一个比特的两个比特异或为1;对所述参考信号序列进行高斯最小移频键控GMSK调制;
第一收发单元,用于发送调制后的所述参考信号序列。
结合第三方面,在第三方面第一种可能的实现方式中,所述参考信号序列为如下序列中的至少一种:第一参考信号序列、第二参考信号序列、第三参考信号序列和第四参考信号序列,
其中,所述第一参考信号序列为序列0,0,1,1的循环序列,所述第二参考信号序列为序列0,1,1,0的循环序列,所述第三参考信号序列为序列1,0,0,1的循环序列,所述第四参考信号序列为序列1,1,0,0的循环序列。
结合第三方面第一种可能的实现方式,在第三方面第二种可能的实现方 式中,所述第一处理单元具体用于将所述参考信号序列插入到数据比特;对插入有所述参考信号序列的数据比特进行GMSK调制。
结合第三方面第二种可能的实现方式,在第三方面第三种可能的实现方式中,所述第一处理单元还用于获取伪随机比特序列;获取所述伪随机比特序列N个连续的比特;获取所述N个连续的比特标识的所述第一参考信号序列、所述第二参考信号序列、所述第三参考信号序列和所述第四参考信号序列中的序列,其中,N大于或等于1。
结合第三方面第二种可能的实现方式或第三方面第三种可能的实现方式,在第三方面第四种可能的实现方式中,所述第一处理单元具体用于获取多个参考信号序列;将所述多个参考信号序列分别插入到所述数据比特。
结合第三方面第四种可能的实现方式,在第三方面第五种可能的实现方式中,所述第一处理单元具体用于依据初始化种子获取伪随机比特序列,所述初始化种子是通信对端在信道估计过程中采用的初始化种子。
结合第三方面第二种可能的实现方式,在第三方面第六种可能的实现方式中,所述第一收发单元还用于接收所述参考信号序列的标识;所述第一处理单元具体用于获取所述参考信号序列的标识所标识的所述参考信号序列。
结合第三方面第二种可能的实现方式或第三方面第六种可能的实现方式,在第三方面第七种可能的实现方式中,所述第一处理单元具体用于将所述参考信号序列进行分段获得多个参考信号序列分段;将所述参考信号序列进行分段获得多个参考信号序列分段。
第四方面提供一种接收端设备,包括:
第二收发单元,用于接收调制的参考信号序列;
第二处理单元,用于对所述调制的参考信号序列进行解调获得参考信号序列;使用所述参考信号序列和本地参考信号序列进行信道估计获得信道参数信息,其中,所述本地参考信号序列包括多个比特,所述多个比特中每相隔一个比特的两个比特异或为1。
结合第四方面,在第四方面第一种可能的实现方式中,所述本地参考信号序列为如下序列中的至少一种:第一参考信号序列、第二参考信号序列、第三参考信号序列和第四参考信号序列,
其中,所述第一参考信号序列为序列0,0,1,1的循环序列,所述第二参考信号序列为序列0,1,1,0的循环序列,所述第三参考信号序列为序列1,0,0,1的循环序列,所述第四参考信号序列是序列1,1,0,0的循环序列。
结合第四方面第一种可能的实现方式,在第四方面第二种可能的实现方式中,所述第二处理单元还用于在使用所述参考信号序列和本地参考信号序列进行信道估计获得信道参数信息之前,生成所述本地参考信号序列。
结合第四方面第二种可能的实现方式,在第四方面第三种可能的实现方式中,所述第二处理单元还用于在生成所述本地参考信号序列之前,生成伪随机比特序列;
所述第二处理单元具体用于获取所述伪随机比特序列N个连续的比特;获取所述N个连续的比特标识的所述第一参考信号序列、所述第二参考信号序列、所述第三参考信号序列和所述第四参考信号序列中的序列作为所述本地参考信号序列,其中,N大于或等于1。
结合第四方面第三种可能的实现方式,在第四方面第四种可能的实现方式中,所述第二处理单元还用于在生成本地参考信号序列之前,生成伪随机比特序列Ck,k≥0;
所述第二处理单元具体用于从所述伪随机比特序列中获取K组比特,每组包含两个连续的比特;获取所述K组比特中每组比特所标识的所述第一参考信号序列、所述第二参考信号序列、所述第三参考信号序列和所述第四参考信号序列中的序列作为所述本地参考信号序列。
结合第四方面第三种可能的实现方式或第四方面第四种可能的实现方式,在第四方面第五种可能的实现方式中,所述第二处理单元具体用于依据初始化种子生成伪随机比特序列,所述初始化种子是通信对端在GMSK调制过程中采用的初始化种子。
结合第四方面第一种可能的实现方式,在第四方面第六种可能的实现方式中,所述第二收发单元还用于接收参考信号序列标识;
所述第二处理单元具体用于将所述参考信号序列标识所标识的所述第一参考信号序列、所述第二参考信号序列、所述第三参考信号序列和所述第四参考信号序列中的序列作为所述本地参考信号序列。
本发明实施例提供的参考信号发送与接收方法及装置,将参考信号序 列设计为每相隔一个比特的两个比特异或为1的序列,并对参考信号序列进行GMSK调制,同时GMSK解调时也用相同的参考信号序列进行信道估计,相比于伪随机序列的导频符号提高了信道估计的准确性,进而提高了信道估计的性能。
附图说明
图1为现有技术提供的GMSK发送机发送原理示意图;
图2为现有技术提供的GMSK接收机接收原理示意图;
图3为本发明实施例提供的参考信号发送方法流程图;
图4为本发明实施例提供的发送端设备发送原理示意图;
图5为本发明实施例提供的参考信号接收方法流程图;
图6为本发明实施例提供的接收端设备接收原理示意图;
图7为本发明实施例提供的发送端设备的结构图;
图8为本发明实施例提供的接收端设备的结构图;
图9为本发明实施例提供的参考信号发送与接收系统的结构图。
具体实施方式
图3为本发明实施例提供的参考信号发送方法流程图;图4为本发明实施例提供的发送端设备发送原理示意图。本发明实施例针对导频符号为伪随机序列时影响信道估计的准确性,提供了参考信号发送方法,该方法具体步骤如下:
步骤S101、获取参考信号序列,所述参考信号序列包括多个比特,所述多个比特中每相隔一个比特的两个比特异或为1;
参考信号序列是由多个0、1比特构成的0、1序列pi,i≥0,且序列pi,i≥0中每相隔一个比特的两个比特异或为1,即pi⊕pi+2=1。
所述参考信号序列为如下序列中的至少一种:第一参考信号序列、第二参考信号序列、第三参考信号序列和第四参考信号序列,其中,所述第一参考信号序列为序列0,0,1,1的循环序列,所述第二参考信号序列为序列0,1,1,0的循环序列,所述第三参考信号序列为序列1,0,0,1的循环序列,所述第四参考信号序列为序列1,1,0,0的循环序列。
由于参考信号序列中每相隔一个比特的两个比特异或为1,则参考信号序列将出现4种序列,具体为第一参考信号序列Seq1:0,0,1,1,0,0,1,1,0,0,1,1,…;第二参考信号序列Seq2:0,1,1,0,0,1,1,0,0,1,1,0,…;第三参考信号序列Seq3:1,0,0,1,1,0,0,1,1,0,0,1,…;第四参考信号序列Seq4:1,1,0,0,1,1,0,0,1,1,0,0,…。其中,第一参考信号序列为序列0,0,1,1的循环序列,第二参考信号序列为序列0,1,1,0的循环序列,第三参考信号序列为序列1,0,0,1的循环序列,第四参考信号序列为序列1,1,0,0的循环序列。
步骤S102、对所述参考信号序列进行高斯最小移频键控GMSK调制;
对所述参考信号序列进行高斯最小移频键控GMSK调制,包括:将所述参考信号序列插入到数据比特;对插入有所述参考信号序列的数据比特进行GMSK调制。
从第一参考信号序列、第二参考信号序列、第三参考信号序列和第四参考信号序列中任一选取一个序列,将选出的序列分成多个分段,将多个分段分别插入到数据比特中,对插入有所述参考信号序列的数据比特进行GMSK调制,或者将插入有所述参考信号序列的数据比特转换为符号,具体的转换方法为:将比特0映射为符号1,比特1映射为符号-1,对转换后的符号进行GMSK调制。
或者从第一参考信号序列、第二参考信号序列、第三参考信号序列和第四参考信号序列中随机选取一个序列,从选出的序列中截取若干比特插入到数据比特中,再从第一参考信号序列、第二参考信号序列、第三参考信号序列和第四参考信号序列中随机选取另一个序列,从选出的序列中截取若干比特插入到数据比特中,以此类推得到插入有所述参考信号序列的数据比特,对插入有所述参考信号序列的数据比特进行GMSK调制,或者将插入有所述参考信号序列的数据比特转换为符号,具体的转换方法为:将比特0映射为符号1,比特1映射为符号-1,对转换后的符号进行GMSK调制。
步骤S103、发送调制后的所述参考信号序列。
如图4所示,参考信号序列进行高斯最小移频键控GMSK调制后获得GMSK调制信号,发送端设备将GMSK调制信号发送给接收端设备。
本发明实施例将参考信号序列设计为每相隔一个比特的两个比特异或为1的序列,并对参考信号序列进行GMSK调制,同时GMSK解调时也用相同的参考信号序列进行信道估计,相比于伪随机序列的导频符号提高了信道估计的准确性,进而提高了信道估计的性能。
在上述实施例的基础上,所述获取参考信号序列之前,所述方法还包括:获取伪随机比特序列;所述获取参考信号序列,包括:获取所述伪随机比特序列N个连续的比特;获取所述N个连续的比特标识的所述第一参考信号序列、所述第二参考信号序列、所述第三参考信号序列和所述第四参考信号序列中的序列,其中,N大于或等于1。
在获取参考信号序列之前获取一个伪随机比特序列,通过伪随机比特序列N个连续的比特从所述第一参考信号序列、所述第二参考信号序列、所述第三参考信号序列和所述第四参考信号序列中选取一个序列,具体的选取方法为:用N个连续的比特作为序列标识,根据序列标识确定N个连续的比特所标识的参考信号序列;或者将伪随机比特序列N个连续的比特作为选取的参考信号序列的初始N个比特。其中,N大于或等于1。
所述获取参考信号序列,包括:获取多个参考信号序列;所述将所述参考信号序列插入到数据比特,包括:将所述多个参考信号序列分别插入到所述数据比特。
从第一参考信号序列、第二参考信号序列、第三参考信号序列和第四参考信号序列中随机选取一个序列,从选出的序列中截取若干比特插入到数据比特中,再从第一参考信号序列、第二参考信号序列、第三参考信号序列和第四参考信号序列中随机选取另一个序列,从选出的序列中截取若干比特再次插入到数据比特中,以此类推得到插入有所述参考信号序列的数据比特。
所述获取伪随机比特序列,包括:依据初始化种子获取伪随机比特序列,所述初始化种子是通信对端在信道估计过程中采用的初始化种子。
伪随机比特序列具体通过伪随机序列生成器生成,伪随机序列生成器的输入参数为初始化种子,初始化种子具体根据小区ID、终端ID等参数来产生,且相互通信的设备之间采用相同的初始化种子,以便生成相同的伪随机比特序列。相互通信的设备之间通过信令交互小区ID、终端ID等 参数。
所述数据比特包括K组分段数据比特;所述获取参考信号序列之前,所述方法还包括:获取伪随机比特序列Ck,k≥0;所述获取参考信号序列,包括:从所述伪随机比特序列中获取K组比特,每组包含两个连续的比特;获取所述K组比特中每组比特所标识的所述第一参考信号序列、所述第二参考信号序列、所述第三参考信号序列和所述第四参考信号序列中的序列;所述将所述参考信号序列插入到数据比特,包括:将所述K组比特各自所标识的序列的L个比特分别插入到所述K组分段数据比特之前,或插入到所述K组分段数据比特之后,或插入到所述K组分段数据比特中,其中,K和L为正整数。
本发明实施例中数据比特包括K组分段数据比特,获取到伪随机比特序列Ck,k≥0后,将伪随机比特序列Ck,k≥0中每两个连续的比特作为一组比特,例如,C0C1为一组比特,C2C3为一组比特,CkCk+1为一组比特,由每一组比特确定所述第一参考信号序列、所述第二参考信号序列、所述第三参考信号序列和所述第四参考信号序列中的一个序列,则从所述伪随机比特序列中获取K组比特可确定K个参考信号序列,对于每个参考信号序列选取其前L个比特,并将选取出的K组L个比特分别插入到所述K组分段数据比特之前,或插入到所述K组分段数据比特之后,或插入到所述K组分段数据比特中,其中,K和L为正整数。
由每一组比特确定所述第一参考信号序列、所述第二参考信号序列、所述第三参考信号序列和所述第四参考信号序列中的一个序列的具体过程如下:例如,从伪随机比特序列Ck,k≥0中选取两个比特分别为第2k个比特C2k和第2k+1个比特C2k+1,若C2k=0,C2k+1=0,则选取第一参考信号序列;若C2k=0,C2k+1=1,则选取第二参考信号序列;若C2k=1,C2k+1=0,则选取第三参考信号序列;若C2k=1,C2k+1=1,则选取第四参考信号序列;即
Figure PCTCN2015076593-appb-000001
本发明实施例优选,由C0C1所确定的序列的前L个比特插入到第0组分 段数据比特之前,C2C3所确定的序列的前L个比特插入到第1组分段数据比特之前,以此类推C2kC2k+1所确定的序列的前L个比特插入到第k组分段数据比特之前,C2(K-1)C2K-1所确定的序列的前L个比特插入到第(K-1)组分段数据比特之前。
本发明实施例通过伪随机比特序列相邻的两个比特确定参考信号序列,使每组分段数据比特对应的参考信号序列的选取具有随机性,避免参考信号序列出现周期性从而造成的频带外功率泄露增大,也有助于相邻小区间的干扰随机化。
在图3对应的实施例基础上,所述获取参考信号序列之前,还包括:接收所述参考信号序列的标识;所述获取参考信号序列,包括:获取所述参考信号序列的标识所标识的所述参考信号序列。
本发明实施例依据参考信号序列的标识获取第一参考信号序列、第二参考信号序列、第三参考信号序列和第四参考信号序列中的序列。
所述将所述参考信号序列插入到数据比特,包括:将所述参考信号序列进行分段获得多个参考信号序列分段;将所述多个参考信号序列分段分别插入到所述数据比特。
将获取的参考信号序列分成多个参考信号序列分段,并将多个参考信号序列分段分别插入到所述数据比特。
所述数据比特包括K组分段数据比特;所述获取参考信号序列,包括:从所述第一参考信号序列、所述第二参考信号序列、所述第三参考信号序列和所述第四参考信号序列中获取任一序列;所述将所述参考信号序列插入到数据比特,包括:将所述获取的序列的前L*K个比特分成K组,每组L个比特,将K组比特分别插入到所述K组分段数据比特之前,或插入到所述K组分段数据比特之后,或插入到所述K组分段数据比特中,其中,K和L为正整数。
从所述第一参考信号序列、所述第二参考信号序列、所述第三参考信号序列和所述第四参考信号序列中获取任一序列的前L*K个比特,该L*K个比特作为级联导频比特序列,级联导频比特序列具体表示为
Figure PCTCN2015076593-appb-000002
该级联导频比特序列可分成K组,每组L个比特,将K组比特分别插入到所述K组分段数据比特之前, 或插入到所述K组分段数据比特之后,或插入到所述K组分段数据比特中,其中,K和L为正整数。本发明实施例优选,将
Figure PCTCN2015076593-appb-000003
插入到第0组分段数据比特之前,将
Figure PCTCN2015076593-appb-000004
插入到第1组分段数据比特之前,将
Figure PCTCN2015076593-appb-000005
插入到第K-1组分段数据比特之前。
本发明实施例将参考信号序列设计为每相隔一个比特的两个比特异或为1的序列,并对参考信号序列进行GMSK调制,同时GMSK解调时也用相同的参考信号序列进行信道估计,相比于伪随机序列的导频符号提高了信道估计的准确性,进而提高了信道估计的性能。
图5为本发明实施例提供的参考信号接收方法流程图;图6为本发明实施例提供的接收端设备接收原理示意图。本发明实施例针对导频符号为伪随机序列时影响信道估计的准确性,提供了参考信号接收方法,该方法具体步骤如下:
步骤S201、接收调制的参考信号序列;
如图6所示,接收端设备接收发送端设备发送的GMSK调制信号。
步骤S202、对所述调制的参考信号序列进行解调获得参考信号序列;
接收端设备对GMSK调制信号进行匹配滤波获得数据符号和参考信号序列,若上述步骤S102将插入有所述参考信号序列的数据比特转换为符号,具体的转换方法为:将比特0映射为符号1,比特1映射为符号-1,对转换后的符号进行GMSK调制,则步骤S202解调获得的参考信号序列包括的多个比特中每相隔一个比特的两个比特互为相反数。
步骤S203、使用所述参考信号序列和本地参考信号序列进行信道估计获得信道参数信息,其中,所述本地参考信号序列包括多个比特,所述多个比特中每相隔一个比特的两个比特异或为1。
接收端设备预先存储有本地参考信号序列,或者在接收端设备在执行步骤S201或步骤S202之前,或者同时生成本地参考信号序列,本地参考信号序列包括多个比特,所述多个比特中每相隔一个比特的两个比特异或为1,在图6所示的基础上,本发明实施例对本地参考信号序列进行Laurent分解,使本地参考信号序列包括的多个比特中每相隔一个比特的两个比特互为相反数。使用步骤S202获得的参考信号序列和步骤S203经过Laurent分解的本地参考信号序列进行信道估计获得信道参数信息。
本发明实施例将参考信号序列设计为每相隔一个比特的两个比特异或为1的序列,并对参考信号序列进行GMSK调制,同时GMSK解调时也用相同的参考信号序列进行信道估计,相比于伪随机序列的导频符号提高了信道估计的准确性,进而提高了信道估计的性能。
在上述实施例的基础上,所述本地参考信号序列为如下序列中的至少一种:第一参考信号序列、第二参考信号序列、第三参考信号序列和第四参考信号序列,其中,所述第一参考信号序列为序列0,0,1,1的循环序列,所述第二参考信号序列为序列0,1,1,0的循环序列,所述第三参考信号序列为序列1,0,0,1的循环序列,所述第四参考信号序列是序列1,1,0,0的循环序列。
所述使用所述参考信号序列和本地参考信号序列进行信道估计获得信道参数信息之前,还包括:生成所述本地参考信号序列。
接收端设备对应的本地参考信号序列与发送端设备对应的参考信号序列的生成原则一致。
所述生成所述本地参考信号序列之前,所述方法还包括:生成伪随机比特序列;所述生成本地参考信号序列,包括:获取所述伪随机比特序列N个连续的比特;获取所述N个连续的比特标识的所述第一参考信号序列、所述第二参考信号序列、所述第三参考信号序列和所述第四参考信号序列中的序列作为所述本地参考信号序列,其中,N大于或等于1。
通过伪随机比特序列N个连续的比特从所述第一参考信号序列、所述第二参考信号序列、所述第三参考信号序列和所述第四参考信号序列中选取一个序列,具体的选取方法为:用N个连续的比特作为序列标识,根据序列标识确定N个连续的比特所标识的参考信号序列;或者将伪随机比特序列N个连续的比特作为选取的参考信号序列的初始N个比特。其中,N大于或等于1。
所述生成本地参考信号序列之前,所述方法还包括:生成伪随机比特序列Ck,k≥0;所述生成本地参考信号序列,包括:从所述伪随机比特序列中获取K组比特,每组包含两个连续的比特;获取所述K组比特中每组比特所标识的所述第一参考信号序列、所述第二参考信号序列、所述第三参考信号序列和所述第四参考信号序列中的序列作为所述本地参考信号序 列。
将伪随机比特序列Ck,k≥0中每两个连续的比特作为一组比特,例如,C0C1为一组比特,C2C3为一组比特,CkCk+1为一组比特,由每一组比特确定所述第一参考信号序列、所述第二参考信号序列、所述第三参考信号序列和所述第四参考信号序列中的一个序列,例如,从伪随机比特序列Ck,k≥0中选取两个比特分别为第2k个比特C2k和第2k+1个比特C2k+1,若C2k=0,C2k+1=0,则选取第一参考信号序列作为所述本地参考信号序列;若C2k=0,C2k+1=1,则选取第二参考信号序列作为所述本地参考信号序列;若C2k=1,C2k+1=0,则选取第三参考信号序列作为所述本地参考信号序列;若C2k=1,C2k+1=1,则选取第四参考信号序列作为所述本地参考信号序列;即
Figure PCTCN2015076593-appb-000006
所述生成伪随机比特序列,包括:依据初始化种子生成伪随机比特序列,所述初始化种子是通信对端在GMSK调制过程中采用的初始化种子。
伪随机比特序列具体通过伪随机序列生成器生成,伪随机序列生成器的输入参数为初始化种子,初始化种子具体根据小区ID、终端ID等参数来产生,且相互通信的设备之间采用相同的初始化种子,以便生成相同的伪随机比特序列。相互通信的设备之间通过信令交互小区ID、终端ID等参数。
本发明实施例通过伪随机比特序列相邻的两个比特确定参考信号序列,使每组分段数据比特对应的参考信号序列的选取具有随机性,避免参考信号序列出现周期性从而造成的频带外功率泄露增大,也有助于相邻小区间的干扰随机化。
在图5对应实施例的基础上,还包括:接收参考信号序列标识;将所述参考信号序列标识所标识的所述第一参考信号序列、所述第二参考信号序列、所述第三参考信号序列和所述第四参考信号序列中的序列作为所述本地参考信号序列。
发送端设备从所述第一参考信号序列、所述第二参考信号序列、所述第三参考信号序列和所述第四参考信号序列中随机选取一个序列后,将该序列的标识发送给接收端设备,接收端设备依据该序列的标识从所述第一参考信号序列、所述第二参考信号序列、所述第三参考信号序列和所述第四参考信号序列中选取序列,以使接收端设备选取的序列与发送端设备选取的参考信号序列相同。
如图6所示,依据数据符号和信道参数信息进行均衡恢复出数据比特。
本发明实施例将参考信号序列设计为每相隔一个比特的两个比特异或为1的序列,并对参考信号序列进行GMSK调制,同时GMSK解调时也用相同的参考信号序列进行信道估计,相比于伪随机序列的导频符号提高了信道估计的准确性,进而提高了信道估计的性能。
图7为本发明实施例提供的发送端设备的结构图。本发明实施例提供的发送端设备可以执行参考信号发送方法实施例提供的处理流程,如图7所示,发送端设备70包括第一处理单元71和第一收发单元72,其中,第一处理单元71用于获取参考信号序列,所述参考信号序列包括多个比特,所述多个比特中每相隔一个比特的两个比特异或为1;对所述参考信号序列进行高斯最小移频键控GMSK调制;第一收发单元72用于发送调制后的所述参考信号序列。
在本发明实施例中第一处理单元71可以由处理器实现。
本发明实施例将参考信号序列设计为每相隔一个比特的两个比特异或为1的序列,并对参考信号序列进行GMSK调制,同时GMSK解调时也用相同的参考信号序列进行信道估计,相比于伪随机序列的导频符号提高了信道估计的准确性,进而提高了信道估计的性能。
在上述实施例的基础上,所述参考信号序列为如下序列中的至少一种:第一参考信号序列、第二参考信号序列、第三参考信号序列和第四参考信号序列,其中,所述第一参考信号序列为序列0,0,1,1的循环序列,所述第二参考信号序列为序列0,1,1,0的循环序列,所述第三参考信号序列为序列1,0,0,1的循环序列,所述第四参考信号序列为序列1,1,0,0的循环序列。
第一处理单元71具体用于将所述参考信号序列插入到数据比特;对 插入有所述参考信号序列的数据比特进行GMSK调制。
第一处理单元71还用于获取伪随机比特序列;获取所述伪随机比特序列N个连续的比特;获取所述N个连续的比特标识的所述第一参考信号序列、所述第二参考信号序列、所述第三参考信号序列和所述第四参考信号序列中的序列,其中,N大于或等于1。
第一处理单元71具体用于获取多个参考信号序列;将所述多个参考信号序列分别插入到所述数据比特。
第一处理单元71具体用于依据初始化种子获取伪随机比特序列,所述初始化种子是通信对端在信道估计过程中采用的初始化种子。
第一收发单元72还用于接收所述参考信号序列的标识;第一处理单元71具体用于获取所述参考信号序列的标识所标识的所述参考信号序列。
第一处理单元71具体用于将所述参考信号序列进行分段获得多个参考信号序列分段;将所述参考信号序列进行分段获得多个参考信号序列分段。
在本发明实施例中第一处理单元71可以由处理器实现。
本发明实施例提供的发送端设备可以具体用于执行上述图3所提供的方法实施例,具体功能此处不再赘述。
本发明实施例通过伪随机比特序列相邻的两个比特确定参考信号序列,使每组分段数据比特对应的参考信号序列的选取具有随机性,避免参考信号序列出现周期性从而造成的频带外功率泄露增大,也有助于相邻小区间的干扰随机化。
图8为本发明实施例提供的接收端设备的结构图。本发明实施例提供的接收端设备可以执行参考信号接收方法实施例提供的处理流程,如图8所示,接收端设备80包括第二收发单元81和第二处理单元82,其中,第二收发单元81用于接收调制的参考信号序列;第二处理单元82用于对所述调制的参考信号序列进行解调获得参考信号序列;使用所述参考信号序列和本地参考信号序列进行信道估计获得信道参数信息,其中,所述本地参考信号序列包括多个比特,所述多个比特中每相隔一个比特的两个比特异或为1。
在本发明实施例中第二处理单元82可以由处理器实现。
本发明实施例将参考信号序列设计为每相隔一个比特的两个比特异或为1的序列,并对参考信号序列进行GMSK调制,同时GMSK解调时也用相同的参考信号序列进行信道估计,相比于伪随机序列的导频符号提高了信道估计的准确性,进而提高了信道估计的性能。
在上述实施例的基础上,所述本地参考信号序列为如下序列中的至少一种:第一参考信号序列、第二参考信号序列、第三参考信号序列和第四参考信号序列,其中,所述第一参考信号序列为序列0,0,1,1的循环序列,所述第二参考信号序列为序列0,1,1,0的循环序列,所述第三参考信号序列为序列1,0,0,1的循环序列,所述第四参考信号序列是序列1,1,0,0的循环序列。
第二处理单元82还用于在使用所述参考信号序列和本地参考信号序列进行信道估计获得信道参数信息之前,生成所述本地参考信号序列。
第二处理单元82还用于在使用所述参考信号序列和本地参考信号序列进行信道估计获得信道参数信息之前,生成所述本地参考信号序列;第二处理单元82具体用于获取所述伪随机比特序列N个连续的比特;获取所述N个连续的比特标识的所述第一参考信号序列、所述第二参考信号序列、所述第三参考信号序列和所述第四参考信号序列中的序列作为所述本地参考信号序列,其中,N大于或等于1。
第二处理单元82还用于在生成本地参考信号序列之前,生成伪随机比特序列Ck,k≥0;第二处理单元82具体用于从所述伪随机比特序列中获取K组比特,每组包含两个连续的比特;获取所述K组比特中每组比特所标识的所述第一参考信号序列、所述第二参考信号序列、所述第三参考信号序列和所述第四参考信号序列中的序列作为所述本地参考信号序列。
第二处理单元82具体用于依据初始化种子生成伪随机比特序列,所述初始化种子是通信对端在GMSK调制过程中采用的初始化种子。
第二收发单元81还用于接收参考信号序列标识;第二处理单元82具体用于将所述参考信号序列标识所标识的所述第一参考信号序列、所述第二参考信号序列、所述第三参考信号序列和所述第四参考信号序列中的序列作为所述本地参考信号序列。
在本发明实施例中第二处理单元82可以由处理器实现。
本发明实施例提供的接收端设备可以具体用于执行上述图5所提供的方法实施例,具体功能此处不再赘述。
本发明实施例通过伪随机比特序列相邻的两个比特确定参考信号序列,使每组分段数据比特对应的参考信号序列的选取具有随机性,避免参考信号序列出现周期性从而造成的频带外功率泄露增大,也有助于相邻小区间的干扰随机化。
图9为本发明实施例提供的参考信号发送与接收系统的结构图。本发明实施例提供的参考信号发送与接收系统可以执行参考信号发送与接收方法实施例提供的处理流程,如图9所示,参考信号发送与接收系统90包括上述实施例所述的发送端设备70和上述实施例所述的接收端设备80。
本发明实施例提供的参考信号发送与接收系统可以执行参考信号发送与接收方法实施例提供的处理流程。
综上所述,本发明实施例将参考信号序列设计为每相隔一个比特的两个比特异或为1的序列,并对参考信号序列进行GMSK调制,同时GMSK解调时也用相同的参考信号序列进行信道估计,相比于伪随机序列的导频符号提高了信道估计的准确性,进而提高了信道估计的性能;通过伪随机比特序列相邻的两个比特确定参考信号序列,使每组分段数据比特对应的参考信号序列的选取具有随机性,避免参考信号序列出现周期性从而造成的频带外功率泄露增大,也有助于相邻小区间的干扰随机化。
在本发明所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的 部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能单元的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能单元存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (31)

  1. 一种参考信号发送方法,其特征在于,包括:
    获取参考信号序列,所述参考信号序列包括多个比特,所述多个比特中每相隔一个比特的两个比特异或为1;
    对所述参考信号序列进行高斯最小移频键控GMSK调制;
    发送调制后的所述参考信号序列。
  2. 根据权利要求1所述的方法,其特征在于,所述参考信号序列为如下序列中的至少一种:第一参考信号序列、第二参考信号序列、第三参考信号序列和第四参考信号序列,
    其中,所述第一参考信号序列为序列0,0,1,1的循环序列,所述第二参考信号序列为序列0,1,1,0的循环序列,所述第三参考信号序列为序列1,0,0,1的循环序列,所述第四参考信号序列为序列1,1,0,0的循环序列。
  3. 根据权利要求2所述的方法,其特征在于,对所述参考信号序列进行高斯最小移频键控GMSK调制,包括:
    将所述参考信号序列插入到数据比特;
    对插入有所述参考信号序列的数据比特进行GMSK调制。
  4. 根据权利要求3所述的方法,其特征在于,
    所述获取参考信号序列之前,所述方法还包括:获取伪随机比特序列;
    所述获取参考信号序列,包括:
    获取所述伪随机比特序列N个连续的比特;
    获取所述N个连续的比特标识的所述第一参考信号序列、所述第二参考信号序列、所述第三参考信号序列和所述第四参考信号序列中的序列,其中,N大于或等于1。
  5. 根据权利要求3或4所述的方法,其特征在于,
    所述获取参考信号序列,包括:获取多个参考信号序列;
    所述将所述参考信号序列插入到数据比特,包括:将所述多个参考信号序列分别插入到所述数据比特。
  6. 根据权利要求5所述的方法,其特征在于,所述获取伪随机比特序列,包括:
    依据初始化种子获取伪随机比特序列,所述初始化种子是通信对端在 信道估计过程中采用的初始化种子。
  7. 根据权利要求3所述的方法,其特征在于,所述获取参考信号序列之前,还包括:接收所述参考信号序列的标识;
    所述获取参考信号序列,包括:获取所述参考信号序列的标识所标识的所述参考信号序列。
  8. 根据权利要求3或7所述的方法,其特征在于,所述将所述参考信号序列插入到数据比特,包括:
    将所述参考信号序列进行分段获得多个参考信号序列分段;
    将所述多个参考信号序列分段分别插入到所述数据比特。
  9. 一种参考信号接收方法,其特征在于,包括:
    接收调制的参考信号序列;
    对所述调制的参考信号序列进行解调获得参考信号序列;
    使用所述参考信号序列和本地参考信号序列进行信道估计获得信道参数信息,其中,所述本地参考信号序列包括多个比特,所述多个比特中每相隔一个比特的两个比特异或为1。
  10. 根据权利要求9所述的方法,其特征在于,所述本地参考信号序列为如下序列中的至少一种:第一参考信号序列、第二参考信号序列、第三参考信号序列和第四参考信号序列,
    其中,所述第一参考信号序列为序列0,0,1,1的循环序列,所述第二参考信号序列为序列0,1,1,0的循环序列,所述第三参考信号序列为序列1,0,0,1的循环序列,所述第四参考信号序列是序列1,1,0,0的循环序列。
  11. 根据权利要求10所述的方法,其特征在于,
    所述使用所述参考信号序列和本地参考信号序列进行信道估计获得信道参数信息之前,还包括:
    生成所述本地参考信号序列。
  12. 根据权利要求11所述的方法,其特征在于,所述生成所述本地参考信号序列之前,所述方法还包括:生成伪随机比特序列;
    所述生成本地参考信号序列,包括:
    获取所述伪随机比特序列N个连续的比特;
    获取所述N个连续的比特标识的所述第一参考信号序列、所述第二参 考信号序列、所述第三参考信号序列和所述第四参考信号序列中的序列作为所述本地参考信号序列,其中,N大于或等于1。
  13. 根据权利要求12所述的方法,其特征在于,
    所述生成本地参考信号序列之前,所述方法还包括:生成伪随机比特序列Ck,k≥0;
    所述生成本地参考信号序列,包括:
    从所述伪随机比特序列中获取K组比特,每组包含两个连续的比特;
    获取所述K组比特中每组比特所标识的所述第一参考信号序列、所述第二参考信号序列、所述第三参考信号序列和所述第四参考信号序列中的序列作为所述本地参考信号序列。
  14. 根据权利要求12或13所述的方法,其特征在于,所述生成伪随机比特序列,包括:
    依据初始化种子生成伪随机比特序列,所述初始化种子是通信对端在GMSK调制过程中采用的初始化种子。
  15. 根据权利要求10所述的方法,其特征在于,还包括:
    接收参考信号序列标识;
    将所述参考信号序列标识所标识的所述第一参考信号序列、所述第二参考信号序列、所述第三参考信号序列和所述第四参考信号序列中的序列作为所述本地参考信号序列。
  16. 一种发送端设备,其特征在于,包括:
    第一处理单元,用于获取参考信号序列,所述参考信号序列包括多个比特,所述多个比特中每相隔一个比特的两个比特异或为1;对所述参考信号序列进行高斯最小移频键控GMSK调制;
    第一收发单元,用于发送调制后的所述参考信号序列。
  17. 根据权利要求16所述的发送端设备,其特征在于,所述参考信号序列为如下序列中的至少一种:第一参考信号序列、第二参考信号序列、第三参考信号序列和第四参考信号序列,
    其中,所述第一参考信号序列为序列0,0,1,1的循环序列,所述第二参考信号序列为序列0,1,1,0的循环序列,所述第三参考信号序列为序列1,0,0,1的循环序列,所述第四参考信号序列为序列1,1,0,0的循环序列。
  18. 根据权利要求17所述的发送端设备,其特征在于,所述第一处理单元具体用于将所述参考信号序列插入到数据比特;对插入有所述参考信号序列的数据比特进行GMSK调制。
  19. 根据权利要求18所述的发送端设备,其特征在于,所述第一处理单元还用于获取伪随机比特序列;获取所述伪随机比特序列N个连续的比特;获取所述N个连续的比特标识的所述第一参考信号序列、所述第二参考信号序列、所述第三参考信号序列和所述第四参考信号序列中的序列,其中,N大于或等于1。
  20. 根据权利要求18或19所述的发送端设备,其特征在于,所述第一处理单元具体用于获取多个参考信号序列;将所述多个参考信号序列分别插入到所述数据比特。
  21. 根据权利要求20所述的发送端设备,其特征在于,所述第一处理单元具体用于依据初始化种子获取伪随机比特序列,所述初始化种子是通信对端在信道估计过程中采用的初始化种子。
  22. 根据权利要求18所述的发送端设备,其特征在于,所述第一收发单元还用于接收所述参考信号序列的标识;
    所述第一处理单元具体用于获取所述参考信号序列的标识所标识的所述参考信号序列。
  23. 根据权利要求18或22所述的发送端设备,其特征在于,所述第一处理单元具体用于将所述参考信号序列进行分段获得多个参考信号序列分段;将所述参考信号序列进行分段获得多个参考信号序列分段。
  24. 一种接收端设备,其特征在于,包括:
    第二收发单元,用于接收调制的参考信号序列;
    第二处理单元,用于对所述调制的参考信号序列进行解调获得参考信号序列;使用所述参考信号序列和本地参考信号序列进行信道估计获得信道参数信息,其中,所述本地参考信号序列包括多个比特,所述多个比特中每相隔一个比特的两个比特异或为1。
  25. 根据权利要求24所述的接收端设备,其特征在于,所述本地参考信号序列为如下序列中的至少一种:第一参考信号序列、第二参考信号序列、第三参考信号序列和第四参考信号序列,
    其中,所述第一参考信号序列为序列0,0,1,1的循环序列,所述第二参考信号序列为序列0,1,1,0的循环序列,所述第三参考信号序列为序列1,0,0,1的循环序列,所述第四参考信号序列是序列1,1,0,0的循环序列。
  26. 根据权利要求25所述的接收端设备,其特征在于,所述第二处理单元还用于在使用所述参考信号序列和本地参考信号序列进行信道估计获得信道参数信息之前,生成所述本地参考信号序列。
  27. 根据权利要求26所述的接收端设备,其特征在于,所述第二处理单元还用于在生成所述本地参考信号序列之前,生成伪随机比特序列;
    所述第二处理单元具体用于获取所述伪随机比特序列N个连续的比特;获取所述N个连续的比特标识的所述第一参考信号序列、所述第二参考信号序列、所述第三参考信号序列和所述第四参考信号序列中的序列作为所述本地参考信号序列,其中,N大于或等于1。
  28. 根据权利要求27所述的接收端设备,其特征在于,所述第二处理单元还用于在生成本地参考信号序列之前,生成伪随机比特序列Ck,k≥0;
    所述第二处理单元具体用于从所述伪随机比特序列中获取K组比特,每组包含两个连续的比特;获取所述K组比特中每组比特所标识的所述第一参考信号序列、所述第二参考信号序列、所述第三参考信号序列和所述第四参考信号序列中的序列作为所述本地参考信号序列。
  29. 根据权利要求27或28所述的接收端设备,其特征在于,所述第二处理单元具体用于依据初始化种子生成伪随机比特序列,所述初始化种子是通信对端在GMSK调制过程中采用的初始化种子。
  30. 根据权利要求25所述的接收端设备,其特征在于,所述第二收发单元还用于接收参考信号序列标识;
    所述第二处理单元具体用于将所述参考信号序列标识所标识的所述第一参考信号序列、所述第二参考信号序列、所述第三参考信号序列和所述第四参考信号序列中的序列作为所述本地参考信号序列。
  31. 一种参考信号发送与接收系统,其特征在于,包括如权利要求16-23任一项所述的发送端设备,以及如权利要求24-30任一项所述的接收端设备。
PCT/CN2015/076593 2015-04-15 2015-04-15 参考信号发送与接收方法及装置 WO2016165080A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2015/076593 WO2016165080A1 (zh) 2015-04-15 2015-04-15 参考信号发送与接收方法及装置
EP15888785.1A EP3267706B1 (en) 2015-04-15 2015-04-15 Reference signal sending and receiving method and device
CN201580078560.1A CN107431906B (zh) 2015-04-15 2015-04-15 参考信号发送与接收方法及装置
US15/730,136 US10389559B2 (en) 2015-04-15 2017-10-11 Reference signal sending method, reference signal receiving method, and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/076593 WO2016165080A1 (zh) 2015-04-15 2015-04-15 参考信号发送与接收方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/730,136 Continuation US10389559B2 (en) 2015-04-15 2017-10-11 Reference signal sending method, reference signal receiving method, and apparatus

Publications (1)

Publication Number Publication Date
WO2016165080A1 true WO2016165080A1 (zh) 2016-10-20

Family

ID=57125618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/076593 WO2016165080A1 (zh) 2015-04-15 2015-04-15 参考信号发送与接收方法及装置

Country Status (4)

Country Link
US (1) US10389559B2 (zh)
EP (1) EP3267706B1 (zh)
CN (1) CN107431906B (zh)
WO (1) WO2016165080A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017206259B3 (de) * 2017-04-11 2018-07-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Sender und empfänger und entsprechende verfahren
DE102018218730A1 (de) * 2018-10-31 2020-04-30 Diehl Metering Gmbh Detektion einer Pilotsequenz auf einfachen Rechnern

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1384675A (zh) * 2001-04-27 2002-12-11 上海大唐移动通信设备有限公司 一种高斯最小频移键控数字调制方法和装置
CN103490824A (zh) * 2013-09-04 2014-01-01 中国电子科技集团公司第四十一研究所 一种evm分析的参考信号恢复方法
CN104333525A (zh) * 2014-10-23 2015-02-04 广州海格通信集团股份有限公司 一种gmsk调制系统同步方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4742514A (en) * 1986-03-25 1988-05-03 Motorola, Inc. Method and apparatus for controlling a TDM communication device
FR2633471B1 (fr) 1988-06-28 1990-10-05 Trt Telecom Radio Electr Procede de demodulation coherente d'un signal module numeriquement en phase continue et a enveloppe constante
NL8802291A (nl) * 1988-09-16 1990-04-17 Koninkl Philips Electronics Nv Inrichting voor het verzenden van datawoorden welke een gedigitaliseerde analoog signaal vertegenwoordigen en een inrichting voor het ontvangen van de verzonden datawoorden.
US5027352A (en) * 1989-01-05 1991-06-25 Motorola, Inc. Receiver frequency offset bias circuit for TDM radios
US5103459B1 (en) * 1990-06-25 1999-07-06 Qualcomm Inc System and method for generating signal waveforms in a cdma cellular telephone system
KR100294711B1 (ko) 1999-03-15 2001-07-12 서평원 최적의 파일럿 심볼을 이용한 프레임 동기 방법
DK1171981T3 (da) * 1999-04-22 2004-03-15 Infineon Technologies Ag Digitalt GMSK-filter
US20080069265A1 (en) * 2006-09-15 2008-03-20 Nokia Corporation Transmitter
US7903756B2 (en) * 2007-10-22 2011-03-08 Harris Corporation System and method for communicating data using waveform with extended preamble

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1384675A (zh) * 2001-04-27 2002-12-11 上海大唐移动通信设备有限公司 一种高斯最小频移键控数字调制方法和装置
CN103490824A (zh) * 2013-09-04 2014-01-01 中国电子科技集团公司第四十一研究所 一种evm分析的参考信号恢复方法
CN104333525A (zh) * 2014-10-23 2015-02-04 广州海格通信集团股份有限公司 一种gmsk调制系统同步方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3267706A4 *

Also Published As

Publication number Publication date
EP3267706A1 (en) 2018-01-10
US20180034673A1 (en) 2018-02-01
EP3267706B1 (en) 2020-08-05
US10389559B2 (en) 2019-08-20
CN107431906B (zh) 2020-02-21
CN107431906A (zh) 2017-12-01
EP3267706A4 (en) 2018-02-21

Similar Documents

Publication Publication Date Title
CN110072287B (zh) 基于加扰的数据传输方法
CA2995500C (en) A differential chaos shift keying (dcsk) based on hybrid chaotic system
CN110418220B (zh) 一种广义频分复用系统、光纤信号的生成方法及装置
US20220116212A1 (en) Process for monovalent one-to-one extraction of keys from the propagation channel
CN104270234B (zh) 一种基于欠奈奎斯特采样的宽带信号检测识别方法
JP6312106B2 (ja) 送信機および受信機
CN115296737B (zh) 基于自由空间光通信的adm-gsmppm星座构建方法和装置
CN111065096A (zh) 针对无线通信的物理层加密传输系统及其方法
CN102656856A (zh) 在无线传输中的导频子载波
WO2016165080A1 (zh) 参考信号发送与接收方法及装置
US11888657B2 (en) Reconstruction method and device for multi-carrier differential chaos shift keying (DCSK) signal
CN1993950B (zh) 通过互补序列来改进信噪比的方法
CN110290083A (zh) 基于低秩矩阵估计的多载波差分混沌系统解调方法
WO2022258193A1 (en) Generation and reception of precoded signals based on codebook linearization
CN106685474A (zh) 一种基于zc序列的循环扩频调制方法
CN104079306A (zh) 一种接收机的操作方法和信号接收设备
CN107018114B (zh) 一种scma码本盲估计方法
CN114980086A (zh) 模型训练、密钥生成方法、训练设备、通信方及系统
CN107276954B (zh) 一种基带信号处理方法及装置
CN113473457B (zh) 一种基于隐私保护的非正交安全编码方法
CN110300449B (zh) 一种基于伪多径的安全通信方法及装置
CN117014268B (zh) 基于三维星座通信图的dcsk通信方法及相关装置
CN117118790B (zh) 基于码块索引调制的dcsk通信方法及相关装置
CN111884983B (zh) 基于星座图优化的多载波信号索引调制和解调方法
CN111052820B (zh) 一种系统消息传输的方法及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888785

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015888785

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE