WO2016163643A1 - Fine-powder production device and method - Google Patents

Fine-powder production device and method Download PDF

Info

Publication number
WO2016163643A1
WO2016163643A1 PCT/KR2016/001931 KR2016001931W WO2016163643A1 WO 2016163643 A1 WO2016163643 A1 WO 2016163643A1 KR 2016001931 W KR2016001931 W KR 2016001931W WO 2016163643 A1 WO2016163643 A1 WO 2016163643A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
fine powder
gas
molten metal
unit
Prior art date
Application number
PCT/KR2016/001931
Other languages
French (fr)
Korean (ko)
Inventor
양상선
김용진
양동열
임태수
김기봉
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Publication of WO2016163643A1 publication Critical patent/WO2016163643A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying

Definitions

  • the present invention relates to a fine powder production apparatus and method. More specifically, the present invention relates to a fine powder production apparatus and method for pulverizing a molten raw material using first gas injection, and producing fine powder whose properties are controlled using second liquid injection.
  • the fine powder is made of fine powder of metal, and is used in various fields such as paints, painting tools, gold / silver printing inks, chemical industrial catalysts, raw materials for sparks, and metal reducing agents.
  • the fine powder should have a finer size, and the productivity or production yield should be high.
  • a method for preparing a fine powder a wet method through a chemical method such as pulverization and precipitation of a solid metal, and a spraying method such as spraying using a spray nozzle after melting the metal material.
  • the spraying method may be classified into a water spraying method using a liquid such as water and a gas spraying method using a gas, depending on the cooling medium used.
  • the particle size of the metal powder produced was formed on the average of about 100 ⁇ m.
  • Metals have low melting points such as zinc (Zn), aluminum (Al), tin (Sn), and stainless steel, copper (Cu), iron (Fe), nickel (Ni), and cobalt (Co) depending on the melting temperature. It can be divided into a metal having a high melting point or a multi-element alloy and the like.
  • spherical amorphous powder is prepared using expensive helium gas, which is a gas having a very high cooling rate, and a rotating copper disk mainly cooled after gas injection is manufactured. It has been studied how to produce spherical amorphous powders by cooling the powders and immersing the powders produced by the gas injection into lower stored water or liquid nitrogen. However, this method has to use expensive helium gas, there is a problem that the cost increases.
  • the amorphous powder is produced by the water spray method, it is possible to manufacture the powder to an average size of 10 ⁇ m or less. However, irregularly shaped powders other than spherical powders are produced, thereby increasing the specific target of the powder and increasing the surface roughness.
  • the fine powder may be oxidized depending on the alloy system due to the oxygen contained in the water, and additionally, a reduction process may be required.
  • oxidation occurs, it must be subjected to a reduction step, agglomeration between the powders during the reduction step necessarily requires a grinding step, there is a problem that the process is complicated, the cost increases.
  • the gas injection and water injection method has a problem that it is difficult to control the fraction of the amorphous powder in the powder produced.
  • Patent Document 1 Korean Registered Patent No. 10-0800505
  • Patent Document 2 Korean Patent Publication No. 10-2007-0105256
  • An object of the present invention is to provide a fine powder manufacturing apparatus and method for providing a fine powder consisting of at least one of a metal, an alloy of a metal and a metal / ceramic composite material.
  • Another technical problem to be achieved by the present invention is a fine powder production apparatus for producing fine powder by cooling the pulverized molten liquid droplets using a liquid spray that firstly pulverize the molten metal using a gas injection and secondly spraying a liquid such as water and To provide a method.
  • a molten metal supplier for melting a raw material to supply a molten metal;
  • a gas injector positioned below the molten metal supply unit and configured to inject a gas including an inert gas to pulverize the molten metal to form droplets;
  • the liquid is injected to the droplets formed by the gas injector to inject a liquid such as water (for example, water or liquid nitrogen or liquid argon) to form a fine powder Injection unit;
  • a fine powder collecting unit in which the fine powder formed by the liquid spraying unit is dropped.
  • the fine powder manufacturing apparatus and method according to the embodiment of the present invention it is possible to produce a fine powder made of at least one of a metal, an alloy of a metal and a metal / ceramic composite material.
  • liquid such as water (e.g., water or liquid nitrogen or liquid argon) may be sprayed to prepare a fine powder of a desired shape.
  • the position and the amount of the liquid to be sprayed can be produced in the metal powder and alloy powder, the shape, particle size, amorphous powder fraction, the powder inside the nano-grain size, surface roughness and the like are controlled.
  • FIG. 1 is a view showing a fine powder manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 2 is an enlarged view of a portion of a fine powder production apparatus according to an embodiment of the present invention.
  • FIG 3 is an enlarged view of a part of a fine powder manufacturing apparatus according to an embodiment of the present invention, the shape of the droplets formed by melting the molten metal by the gas injection unit and the fine powder formed by the liquid injection unit Figure is a diagram.
  • Figure 4 is a view illustrating the shape of the liquid spray nozzle of the fine powder production apparatus according to an embodiment of the present invention.
  • Figure 5 is a flow chart showing a method for producing fine powder according to an embodiment of the present invention.
  • the fine powder production apparatus is not only capable of producing fine powders whose properties are controlled by using liquid injection, but also to contribute to cost reduction by widening the selection range of the inert gas in the inert gas injection process.
  • FIG. 1 is a view showing a fine powder manufacturing apparatus according to an embodiment of the present invention.
  • the fine powder manufacturing apparatus 100 is a molten metal supply unit 110, gas injection unit 120, liquid injection unit 130, fine powder collecting unit 140 ).
  • the molten metal supply unit 110 supplies the molten metal by melting the raw material.
  • the molten metal supply unit 110 may include a stirring motor 111, an impeller 112, an operation unit 113, an accommodation unit 114, a heater 115, and a crucible 116.
  • the molten metal supply unit 110 is provided with a crucible 116 and a heater 115 for melting the raw material, and an injection means for accommodating the raw material above the crucible 116 is provided.
  • the raw material may be in the form of an ingot.
  • the raw material may also include at least one of metals, alloys of metals and metal / ceramic composites.
  • the raw material may be formed of a heterogeneous material. That is, the raw material may be a material formed by mixing two or more materials.
  • the molten metal supply part 110 includes an operation part 113 and a receiving part 114 as input means.
  • Receiving unit 114 may be received a raw material therein.
  • Receiving portion 114 may be formed to be rotated about the rotation axis is formed in the rotary shaft in a portion oriented in one direction from the center of the crucible.
  • One side of the body of the receiving unit 114 is connected to the operation unit 113 to tilt the receiving unit 114 in one direction by a user operation so that the raw material contained in the receiving unit 114 can be introduced into the crucible 116. Can be.
  • One end of the operation unit 113 is connected to the receiving unit 114, and the other end is formed to be exposed to the outside of the molten raw material supply unit 110, when the user grips the other end exposed, the receiving unit 114 is centered on the rotation axis As it rises in the holding direction, raw materials contained therein may be introduced into the crucible 116.
  • the user may be provided with a motor and an operation switch, and the user may operate the operation switch, so that the accommodating part 114 may be inclined in one direction by the operation of the motor.
  • the molten metal supply unit 110 includes a heater 115 for heating the crucible 116 to melt a raw material.
  • the crucible 116 is opened upwardly so that the raw material can be received upward.
  • the crucible 116 may be formed so that the receiving area becomes narrower from the top to the bottom.
  • the molten metal supply unit 110 includes a stirring means so that the raw material is input and stirred.
  • the stirring means includes a stirring motor 111 and an impeller 112.
  • the stirring motor 111 is provided at one side of the molten metal supply part 100 to generate rotational force.
  • the impeller 112 rotates so that the raw material is stirred using the rotational force.
  • the gas injection unit 120 injects gas into the molten metal discharged from the molten metal supply unit 110 to pulverize the molten metal, and the liquid injection unit 130 cools the liquid droplets formed by pulverizing the molten metal at a desired position to fine powder. Can be formed.
  • the gas injection unit 120 and the liquid injection unit 130 will be described later with reference to FIGS. 2 and 3.
  • the fine powder collecting unit 140 is located at the bottom of the fine powder manufacturing apparatus 100, that is, the lower portion of the liquid spraying unit 130, and may collect the fine powder cooled by the liquid spraying unit 130.
  • the fine powder collecting unit 140 may be implemented in the form of a chamber structurally connected to the molten metal supply unit 110.
  • FIG. 2 is an enlarged view of a portion of a fine powder production apparatus according to an embodiment of the present invention.
  • the gas injection unit 120 may include a gas storage unit 121, a gas heating unit 122, and a gas injection nozzle 123.
  • the gas storage unit 121 stores an inert gas such as nitrogen or argon.
  • an inert gas such as nitrogen or argon.
  • expensive helium gas which is a gas having a high cooling rate
  • the cooling rate is slower than helium gas, but relatively low cost, without using such expensive helium gas.
  • An amorphous fine powder can be prepared using an inert gas such as phosphorus nitrogen or argon. That is, the slow cooling rate can be compensated for by the liquid spraying treatment in the liquid spraying unit 130.
  • the gas heating unit 122 receives an inert gas such as nitrogen or argon from the gas storage unit 121 and heats it.
  • the heated gas pulverizes the molten metal by injecting the gas into the molten metal discharged from the molten metal supply unit 110 through the gas injection nozzle 123.
  • the gas injection nozzle 123 may be a hole type or an open slit type.
  • the temperature of the gas injected from the gas injection unit 120 is preferably formed at room temperature, that is, 25 ° C to 750 ° C. If the temperature of the injected gas is less than 25 ° C., there is a problem in that the cooling cost to make the temperature is consumed and the economic effect is lowered. Therefore, the temperature of the gas injected from the gas injector 120 is preferably 25 ° C. or more. On the other hand, when the temperature of the injected gas exceeds 750 ° C., the manufacturing of the equipment is difficult to increase the cost there is a problem. Therefore, the temperature of the gas injected from the gas injector 120 is preferably 750 ° C. or less.
  • the pressure injected from the gas injection unit 120 is preferably formed to 1bar to 150bar.
  • the pressure injected from the gas injection unit 120 is preferably 1 bar or more.
  • the pressure injected from the gas injection unit 120 is preferably 150 bar or less.
  • FIG 3 is an enlarged view of a part of a fine powder manufacturing apparatus according to an embodiment of the present invention, the shape of the droplets formed by melting the molten metal by the gas injection unit and the fine powder formed by the liquid injection unit Figure is a diagram.
  • the liquid spraying unit 130 forms a fine powder having a desired shape by spraying a liquid on the liquid droplets formed by pulverizing the molten metal by the gas spraying unit 120.
  • the liquid may be water or liquid nitrogen or liquid argon. That is, by injecting water or liquid nitrogen or liquid argon into the droplets formed by pulverizing the molten metal by using an inert gas such as nitrogen or argon having a slow cooling rate, the slow cooling rate is compensated for, and the drop distance from the molten metal supply unit 110 is reduced.
  • an amorphous fine powder having a desired shape can be manufactured.
  • the fine powder may be oxidized due to the oxygen contained in the water, and additionally, a reduction process may be required.
  • the fine powder is not oxidized and thus no further reduction process is required.
  • the liquid injection unit 130 in the present invention is not intended for the purpose of micronization as in the prior art, but for the purpose of cooling the high-temperature droplets formed by gas injection, the quantity used is significantly higher than that of the conventional liquid injection. little.
  • the position and the amount of water or liquid nitrogen or liquid argon to be sprayed it is possible to simultaneously control the shape, nanocrystalline and amorphous fraction of the fine powder.
  • the droplet formed by the gas injection unit 120 becomes more spherical due to the cohesive force of the droplet, the farther the falling distance from the gas injection unit 120. That is, the portion where the drop, which is the closest hem to the molten metal supply unit 110 starts, has a low cohesive force, and thus an irregularity is increased to form an irregular liquid, a strip liquid, or a ribbon liquid, and as the drop distance increases, The cohesive force of the enemy is gradually increased to form an elliptical liquid or a spherical liquid.
  • the liquid spraying unit 130, the liquid storage unit 131, the liquid spraying position It may include a control unit 132, a liquid pressurizing unit 133, and a liquid injection nozzle 134.
  • the liquid injection unit 130 is preferably installed spaced apart from the gas injection nozzle 123 of the gas injection unit 120 by 1 mm or more and 2000 mm or less. When the separation distance is less than 1 mm, it is difficult to manufacture nozzles having such a gap, and the distance between the gas injection nozzle 123 and the liquid injection unit 130 is so close that the gas and the liquid injection unit injected from the gas injection nozzle 123 are too close. Liquids sprayed from the liquid jet nozzle 134 of 130 affect each other, making it difficult to form fine powder of a desired quality.
  • the droplets formed by the gas injection unit 120 may be cooled before being cooled by the liquid injection unit 130, that is, during the drop, so that the formation of fine powder of a desired quality is achieved. There is a difficult problem.
  • the liquid storage unit 131 stores liquid to be injected through the liquid injection nozzle 134.
  • the liquid spray position adjusting unit 132 adjusts the vertical position of the liquid jet nozzle 134.
  • the liquid spraying position adjusting unit 132 supports the liquid spraying nozzle 134 and moves a support rail and a liquid spraying nozzle 134 installed on the support rail up and down to guide the movement in the vertical direction. It can be designed to include.
  • the support may be provided in which the through holes are formed at predetermined vertical intervals, and the liquid injection nozzle 134 may be inserted into the through holes.
  • the position of the liquid ejection nozzle can be remotely controlled by controlling the movement of the motor from the outside, and in the latter case, the user can manually prepare the fine powder of the desired shape by placing the liquid ejection nozzle at the desired position. have.
  • such a liquid injection position adjusting unit 132 is only an example, but is not limited thereto.
  • the liquid pressurizing unit 133 controls the pressure of the liquid to be injected through the liquid injection nozzle 134. If the injection pressure is less than 1bar, the amount of liquid that is a cooling medium is insufficient to cool the entire liquid droplets and powder produced in the gas injection unit, if the injection pressure exceeds 1500bar, there is a problem that the production of equipment difficult. Therefore, the pressure of the liquid injected through the liquid pressurizing unit 133 is preferably formed to 1bar to 1500bar.
  • the liquid jet nozzle 134 may be provided with at least one. More preferably, two or more are provided. When provided as one, only droplets close to the water injection nozzle 134 are cooled among the falling droplets, and the distant droplets may not be cooled, and thus two or more are spaced at equal distances around the falling droplets. It is desirable to have the droplets cool evenly.
  • the nozzle shape of the liquid jet nozzle 134 includes an open slit nozzle, a hole nozzle, and a multiple nozzle.
  • the open slit nozzle may spray liquid through the annular nozzle 134a.
  • a plurality of circular nozzles 134b are arranged at regular intervals to form an annular shape, and the liquid may be injected through the plurality of circular nozzles 134b.
  • a plurality of polygonal (for example, triangular) nozzles 134c are arranged at regular intervals to form an annular shape, and the liquid may be injected through the plurality of polygonal nozzles 134c.
  • Figure 5 is a flow chart showing a method for producing fine powder according to an embodiment of the present invention.
  • the molten metal supply unit 110 discharges the molten metal generated by melting the raw material through the molten metal outlet. (S110)
  • inert gas such as nitrogen and argon is injected into the molten metal discharged through the molten metal outlet.
  • inert gas such as nitrogen and argon is injected into the molten metal discharged through the molten metal outlet.
  • the temperature of the inert gas is injected at room temperature, that is, 25 ° C to 750 ° C, the pressure is adjusted to 1 bar to 150 bar.
  • the position of the liquid jet nozzle 134 is adjusted using the liquid jet position adjusting unit 132. (S130) At this time, the position of the liquid jet nozzle has a droplet shape corresponding to the shape of the fine powder of the desired shape. Is placed into position.
  • the liquid is sprayed through the liquid jet nozzle 134 to cool the droplet at the corresponding position to form a fine powder of a desired shape.
  • the pressure of the liquid to be injected is adjusted to be 1bar to 1500bar.

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

The present invention relates to a fine-powder production device and method wherein, in the first instance, a molten raw material is disintegrated by using gas jetting, and, in the second instance, a fine powder of which the characteristics are controlled is produced by using liquid jetting. The fine-powder production device according to the present invention comprises: a molten metal supply unit which supplies a molten metal by melting a raw material; a gas jetting unit which is positioned underneath the molten metal supply unit and disintegrates the molten metal so as to form droplets by jetting a gas comprising an inert gas; a liquid jetting unit which is positioned underneath the gas jetting unit, and forms a fine powder by jetting a liquid, with adjustment of the position of jetting onto the drops formed by means of the gas jetting unit; and a fine powder capture unit into which falls a fine powder formed by means of the liquid jetting unit.

Description

미세분말 제조장치 및 방법Fine powder manufacturing apparatus and method
본 발명은 미세분말 제조 장치 및 방법에 관한 것이다. 보다 상세하게는 1차로 가스 분사를 이용하여, 용융 원료를 분쇄시키고, 2차로 액체분사를 이용하여 특성이 제어된 미세분말을 제조하는 미세분말 제조 장치 및 방법에 관한 것이다.The present invention relates to a fine powder production apparatus and method. More specifically, the present invention relates to a fine powder production apparatus and method for pulverizing a molten raw material using first gas injection, and producing fine powder whose properties are controlled using second liquid injection.
미세분말은 금속을 미세한 가루로 만든 것으로, 도료, 회화구, 금/은색 인쇄 잉크, 화학공업용촉매나 불꽃의 원료 및 금속 환원제 등과 같이 다양한 분야에 이용된다.The fine powder is made of fine powder of metal, and is used in various fields such as paints, painting tools, gold / silver printing inks, chemical industrial catalysts, raw materials for sparks, and metal reducing agents.
이러한 미세분말의 제조방식에는 다양한 종류가 있으며, 미세분말은 보다 미세한 사이즈를 가져야 하고, 또한 그 생산성 내지 생산수율이 높아야 한다. 일반적으로 미세분말을 제조하는 방법으로는 고체금속을 분쇄하는 분쇄법과 석출과 같은 화학적 방법을 통한 습식법, 그리고 금속소재를 용융시킨 뒤 분사노즐을 이용하여 분무하는 분무법 등이 사용된다. 상기 방법 중, 상기 분무법은 사용하는 냉각매체에 따라 물과 같은 액체를 사용하는 수분사법과 가스를 사용하는 가스 분무법으로 구분할 수 있다. There are various types of the production method of such fine powder, the fine powder should have a finer size, and the productivity or production yield should be high. In general, as a method for preparing a fine powder, a wet method through a chemical method such as pulverization and precipitation of a solid metal, and a spraying method such as spraying using a spray nozzle after melting the metal material. In the above method, the spraying method may be classified into a water spraying method using a liquid such as water and a gas spraying method using a gas, depending on the cooling medium used.
종래 가스 분무법(Gas Atomization)에 의한 미세분말제조방법은 일반적으로 용융금속을 분사노즐을 통하여 흘려주면서 상온의 아르곤 또는 질소와 같은 불활성 가스를 분사하여 금속분말을 제조하며, 제조된 금속분말의 입자크기가 평균 100㎛ 정도로 형성되었다. 금속은 용융온도에 따라 아연(Zn), 알루미늄(Al), 주석(Sn) 등과 같이 낮은 융점을 갖는 소재와 스테인레스강, 구리(Cu), 철(Fe), 니켈(Ni), 코발트(Co) 등과 같이 높은 융점을 갖는 금속 또는 다원계 합금 등으로 구분할 수 있다. In the conventional method for producing fine powder by gas atomization (Gas Atomization) in general, while flowing the molten metal through the injection nozzle to produce a metal powder by injecting an inert gas such as argon or nitrogen at room temperature, the particle size of the metal powder produced Was formed on the average of about 100 μm. Metals have low melting points such as zinc (Zn), aluminum (Al), tin (Sn), and stainless steel, copper (Cu), iron (Fe), nickel (Ni), and cobalt (Co) depending on the melting temperature. It can be divided into a metal having a high melting point or a multi-element alloy and the like.
한편, 비정질 금속 및 합금 분말을 제조하기 위해서는 액상에서 고상의 분말을 제조할 때 냉각속도가 아주 빨라야 한다. 그러한 이유로 가스 분사법에서는 비정질 분말의 제조가 어려우며, 이를 해결하기 위해 냉각속도가 아주 빠른 가스인 고가의 헬륨가스를 사용하여 구형 비정질 분말을 제조하고, 가스 분사 후에 냉각된 주로 구리 재질의 회전 디스크를 사용하여 분말을 냉각하고, 가스 분사로 제조된 분말을 하부 저장된 물 또는 액체 질소에 침지시켜 구형 비정질 분말을 제조하는 방법이 연구되었다. 하지만, 이 방법은 고가의 헬륨가스를 사용해야 하므로, 비용이 증가하는 문제가 있다.On the other hand, in order to produce amorphous metal and alloy powder, the cooling rate should be very fast when producing a solid powder in the liquid phase. For this reason, it is difficult to produce amorphous powder in the gas injection method, and to solve this problem, spherical amorphous powder is prepared using expensive helium gas, which is a gas having a very high cooling rate, and a rotating copper disk mainly cooled after gas injection is manufactured. It has been studied how to produce spherical amorphous powders by cooling the powders and immersing the powders produced by the gas injection into lower stored water or liquid nitrogen. However, this method has to use expensive helium gas, there is a problem that the cost increases.
한편, 수분사법으로 비정질 분말을 제조하면 분말의 평균크기가 10 ㎛이하까지 제조가 가능하다. 하지만, 구형분말이 아닌 불규칙형상의 분말이 제조되어 분말의 비표적이 넓어지고, 표면 거칠기가 증가하게 된다. On the other hand, if the amorphous powder is produced by the water spray method, it is possible to manufacture the powder to an average size of 10 μm or less. However, irregularly shaped powders other than spherical powders are produced, thereby increasing the specific target of the powder and increasing the surface roughness.
또한, 물을 분사하는 경우, 물에 포함된 산소로 인해 합금계에 따라 미세분말이 산화될 수 있고, 추가적으로 환원공정이 요구될 수도 있다. 산화가 일어나는 경우, 반드시 환원공정을 거쳐야 하고, 환원공정 시 분말끼리 응집이 일어나 반드시 분쇄공정이 필요하게 되어, 공정이 복잡해지고, 비용이 증가하는 문제가 있다. 또한 상기 가스분사와 수분사법에서는 제조되는 분말 중 비정질 분말의 분율을 제어하기 어렵다는 문제가 있다.In addition, in the case of spraying water, the fine powder may be oxidized depending on the alloy system due to the oxygen contained in the water, and additionally, a reduction process may be required. When oxidation occurs, it must be subjected to a reduction step, agglomeration between the powders during the reduction step necessarily requires a grinding step, there is a problem that the process is complicated, the cost increases. In addition, the gas injection and water injection method has a problem that it is difficult to control the fraction of the amorphous powder in the powder produced.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
(특허문헌 1) 한국등록특허 제 10-0800505호(Patent Document 1) Korean Registered Patent No. 10-0800505
(특허문헌 2) 한국공개특허 제 10-2007-0105256호(Patent Document 2) Korean Patent Publication No. 10-2007-0105256
본 발명이 이루고자 하는 기술적 과제는 금속, 금속의 합금 및 금속/세라믹 복합물질 중 적어도 하나로 이루어진 미세분말을 제공하는 미세분말 제조 장치 및 방법을 제공하는데 있다. An object of the present invention is to provide a fine powder manufacturing apparatus and method for providing a fine powder consisting of at least one of a metal, an alloy of a metal and a metal / ceramic composite material.
본 발명이 이루고자 하는 다른 기술적 과제는 1차로 가스 분사를 이용해 용탕을 분쇄시키고 2차로 물 등의 액체를 분사하는 액체분사를 이용하여 분쇄된 용탕액적을 냉각시켜 미세분말을 제조하는 미세분말제조장치 및 방법을 제공하는데 있다.Another technical problem to be achieved by the present invention is a fine powder production apparatus for producing fine powder by cooling the pulverized molten liquid droplets using a liquid spray that firstly pulverize the molten metal using a gas injection and secondly spraying a liquid such as water and To provide a method.
상기 목적을 달성하기 위한, 본 발명에 따른 미세분말제조장치는, In order to achieve the above object, the fine powder production apparatus according to the present invention,
원료 물질을 용융시켜 용탕을 공급하는 용탕공급부; 상기 용탕공급부 하부에 위치하며, 불활성 가스를 포함한 가스를 분사하여 용탕을 분쇄하여 액적을 형성하는 가스 분사부; 상기 가스 분사부 하부에 위치하며, 상기 가스 분사부에 의해 형성된 액적에 분사되는 위치를 조절하여 물 등의 액체(예를 들어, 물 또는 액체 질소 또는 액체 아르곤)를 분사하여 미세분말을 형성하는 액체분사부; 및, 상기 액체분사부에 의해 형성된 미세분말이 적하되는 미세분말 포집부를 포함한다.A molten metal supplier for melting a raw material to supply a molten metal; A gas injector positioned below the molten metal supply unit and configured to inject a gas including an inert gas to pulverize the molten metal to form droplets; Located under the gas injector, the liquid is injected to the droplets formed by the gas injector to inject a liquid such as water (for example, water or liquid nitrogen or liquid argon) to form a fine powder Injection unit; And a fine powder collecting unit in which the fine powder formed by the liquid spraying unit is dropped.
또한, 본 발명에 따른 미세분말 제조방법은, In addition, the fine powder production method according to the present invention,
원료 물질을 용융시켜서 용탕을 형성한 후, 상기 용탕을 배출시키는 단계; 상기 배출된 용탕에 불활성 가스를 분사하여 액적을 형성하는 단계; 상기 액적에 분사될 액체의 위치를 조절하는 단계; 및, 상기 액적에 액체를 분사하여 상기 액적을 냉각시켜 미세분말을 제조하는 단계를 포함한다.Melting the raw material to form a molten metal, and then discharging the molten metal; Spraying an inert gas on the discharged molten metal to form droplets; Adjusting the position of the liquid to be sprayed on the droplets; And cooling the droplets to produce fine powder by spraying a liquid on the droplets.
본 발명의 실시형태에 따른 미세분말제조장치 및 방법에 의하면, 금속, 금속의 합금 및 금속/세라믹 복합물질 중 적어도 하나로 이루어진 미세분말을 제조할 수 있다. According to the fine powder manufacturing apparatus and method according to the embodiment of the present invention, it is possible to produce a fine powder made of at least one of a metal, an alloy of a metal and a metal / ceramic composite material.
또한, 용탕에 고온고압의 가스를 분사하여 용탕 줄기를 분쇄하여 띠형상, 타원형, 구형상 등 다양한 형상의 액적을 제조하고, 원하는 위치로 액체분사 노즐의 위치를 조절하여 물 등의 액체(예를 들어, 물 또는 액체 질소 또는 액체 아르곤)를 분사함으로써 원하는 형상의 미세분말을 제조할 수 있다.In addition, by spraying a gas of high temperature and high pressure to the molten metal to pulverize the molten stem to produce droplets of various shapes such as strip, elliptical, spherical shape, and by adjusting the position of the liquid injection nozzle to the desired position, liquid such as water (e.g. For example, water or liquid nitrogen or liquid argon) may be sprayed to prepare a fine powder of a desired shape.
또한, 분사되는 액체의 위치 및 양을 조절하여 형상, 입도, 비정질 분말 분율, 분말 내부 나노결정립 크기, 표면조도 등이 제어된 금소 및 합금분말을 제조할 수 있다.In addition, by adjusting the position and the amount of the liquid to be sprayed can be produced in the metal powder and alloy powder, the shape, particle size, amorphous powder fraction, the powder inside the nano-grain size, surface roughness and the like are controlled.
도 1은 본 발명의 일 실시예에 따른 미세분말 제조장치를 도시한 도면이다.1 is a view showing a fine powder manufacturing apparatus according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 미세분말 제조장치의 일부를 확대 도시한 도면이다.2 is an enlarged view of a portion of a fine powder production apparatus according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 미세분말 제조장치의 일부를 확대 도시한 도면으로, 가스분사부에 의해 용탕이 분쇄되어 형성된 액적의 낙하 거리에 따른 형상 및 액체 분사부에 의해 형성된 미세분말을 도시한 도면이다.3 is an enlarged view of a part of a fine powder manufacturing apparatus according to an embodiment of the present invention, the shape of the droplets formed by melting the molten metal by the gas injection unit and the fine powder formed by the liquid injection unit Figure is a diagram.
도 4는 본 발명의 일 실시예에 따른 미세분말 제조장치의 액체분사노즐의 형상을 예시한 도면이다.Figure 4 is a view illustrating the shape of the liquid spray nozzle of the fine powder production apparatus according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 미세분말 제조방법을 나타낸 순서도이다.Figure 5 is a flow chart showing a method for producing fine powder according to an embodiment of the present invention.
본 발명에 따른 미세분말 제조장치는 액체분사를 이용하여 특성이 제어된 미세분말을 생산할 수 있을 뿐만 아니라, 비활성가스분사 과정에서 비활성가스의 선택폭을 넓혀 비용절감에 기여하기 위한 것이다.The fine powder production apparatus according to the present invention is not only capable of producing fine powders whose properties are controlled by using liquid injection, but also to contribute to cost reduction by widening the selection range of the inert gas in the inert gas injection process.
이하 본 발명의 실시예를 첨부된 도면들을 참조하여 상세히 설명한다. 우선 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의한다. 또한 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 당업자에게 자명하거나 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. First, in adding reference numerals to the components of each drawing, it is noted that the same reference numerals are assigned to the same components as much as possible, even if displayed on different drawings. In addition, in describing the present invention, when it is determined that the detailed description of the related well-known configuration or function is apparent to those skilled in the art or may obscure the gist of the present invention, the detailed description will be omitted.
도 1은 본 발명의 일 실시예에 따른 미세분말 제조장치를 도시한 도면이다.1 is a view showing a fine powder manufacturing apparatus according to an embodiment of the present invention.
도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 미세분말제조 장치(100)는 용탕공급부(110), 가스분사부(120), 액체분사부(130), 미세분말 포집부(140)를 포함한다.As shown in Figure 1, the fine powder manufacturing apparatus 100 according to an embodiment of the present invention is a molten metal supply unit 110, gas injection unit 120, liquid injection unit 130, fine powder collecting unit 140 ).
용탕공급부(110)는 원료 물질을 용융시켜 용탕을 공급한다. 이를 위해 용탕공급부(110)는 교반모터(111), 임펠러(112), 조작부(113), 수용부(114), 히터(115) 및 도가니(116)을 포함할 수 있다. The molten metal supply unit 110 supplies the molten metal by melting the raw material. For this purpose, the molten metal supply unit 110 may include a stirring motor 111, an impeller 112, an operation unit 113, an accommodation unit 114, a heater 115, and a crucible 116.
용탕공급부(110)는 원료 물질을 용융시키기 위한 도가니(116) 및 히터(115)가 구비되고, 도가니(116)의 상측으로 원료물질이 수용되는 투입수단이 구비된다. 상기 원료물질은 잉곳의 형태일 수 있다. 또한 원료 물질은 금속, 금속의 합금 및 금속/세라믹 복합물질 중 적어도 어느 하나를 포함할 수 있다. 또한, 원료 물질은 이종 물질로 형성 수 있다. 즉, 원료 물질은 두 가지 이상의 물질을 혼합하여 형성된 물질일 수 있다.The molten metal supply unit 110 is provided with a crucible 116 and a heater 115 for melting the raw material, and an injection means for accommodating the raw material above the crucible 116 is provided. The raw material may be in the form of an ingot. The raw material may also include at least one of metals, alloys of metals and metal / ceramic composites. In addition, the raw material may be formed of a heterogeneous material. That is, the raw material may be a material formed by mixing two or more materials.
용탕공급부(110)는 투입수단으로 조작부(113) 및 수용부(114)를 포함한다. 수용부(114)는 내부에 원료물질이 수용될 수 있다. 수용부(114)는 도가니 중심에서 일방향으로 치우친 부분에 회전축이 형성되어 회전축을 중심으로 회동할 수 있도록 형성될 수 있다. 수용부(114)의 몸체 일측에는 사용자 조작에 의해 수용부(114)를 일방향으로 기울여 수용부(114) 내부에 수용된 원료물질이 도가니(116) 내부로 투입될 수 있도록 하는 조작부(113)가 연결될 수 있다. 조작부(113)는 일단이 수용부(114)에 연결되고, 타단이 용융 원료 공급부(110)의 외측으로 노출되도록 형성되어 사용자가 노출된 타단을 파지하여 당기게 되면 수용부(114)가 회전축을 중심으로 파지하는 방향으로 상승하게 되어 내부에 수용된 원료물질이 도가니(116) 내부로 투입될 수 있다. 이때, 모터와 조작스위치 등을 구비하여 사용자가 조작 스위치를 조작함으로써, 수용부(114)가 모터의 작동에 의해 일방향으로 기울어지도록 구성할 수 있다. The molten metal supply part 110 includes an operation part 113 and a receiving part 114 as input means. Receiving unit 114 may be received a raw material therein. Receiving portion 114 may be formed to be rotated about the rotation axis is formed in the rotary shaft in a portion oriented in one direction from the center of the crucible. One side of the body of the receiving unit 114 is connected to the operation unit 113 to tilt the receiving unit 114 in one direction by a user operation so that the raw material contained in the receiving unit 114 can be introduced into the crucible 116. Can be. One end of the operation unit 113 is connected to the receiving unit 114, and the other end is formed to be exposed to the outside of the molten raw material supply unit 110, when the user grips the other end exposed, the receiving unit 114 is centered on the rotation axis As it rises in the holding direction, raw materials contained therein may be introduced into the crucible 116. In this case, the user may be provided with a motor and an operation switch, and the user may operate the operation switch, so that the accommodating part 114 may be inclined in one direction by the operation of the motor.
용탕공급부(110)는 도가니(116)를 가열하여 원료물질을 용융시키기 위한 히터(115)를 구비한다. 도가니(116)는 상측으로 원료물질이 수용될 수 있도록 상방이 개구되어 있다. 또한, 도가니(116)는 상부에서 하부로 갈수록 수용면적이 좁아지도록 형성될 수 있다. The molten metal supply unit 110 includes a heater 115 for heating the crucible 116 to melt a raw material. The crucible 116 is opened upwardly so that the raw material can be received upward. In addition, the crucible 116 may be formed so that the receiving area becomes narrower from the top to the bottom.
용탕공급부(110)는 원료 물질이 투입되어 교반될 수 있도록 교반수단을 포함한다. 교반수단은 교반모터(111) 및 임펠러(112)를 포함한다. 교반모터(111)는 용탕공급부(100) 일측에 구비되어 회전력을 생성한다. 임펠러(112)는 상기 회전력을 이용하여 원료물질이 교반되도록 회전한다. The molten metal supply unit 110 includes a stirring means so that the raw material is input and stirred. The stirring means includes a stirring motor 111 and an impeller 112. The stirring motor 111 is provided at one side of the molten metal supply part 100 to generate rotational force. The impeller 112 rotates so that the raw material is stirred using the rotational force.
가스 분사부(120)는 용탕공급부(110)로부터 배출되는 용탕에 가스를 분사하여 용탕을 분쇄시키고, 액체분사부(130)는 용탕이 분쇄되어 형성된 액적을 원하는 위치에서 냉각시켜서 원하는 형상의 미세분말을 형성할 수 있다. 가스 분사부(120)와 액체분사부(130)에 대해서는 도 2, 도 3을 참조하여 후술한다. The gas injection unit 120 injects gas into the molten metal discharged from the molten metal supply unit 110 to pulverize the molten metal, and the liquid injection unit 130 cools the liquid droplets formed by pulverizing the molten metal at a desired position to fine powder. Can be formed. The gas injection unit 120 and the liquid injection unit 130 will be described later with reference to FIGS. 2 and 3.
미세분말 포집부(140)는 미세분말 제조장치(100)의 가장 하부, 즉 상기 액체분사부(130)의 하부에 위치하며, 액체분사부(130)에서 냉각된 미세 분말을 포집할 수 있다. 상기 미세분말 포집부(140)는 상기 용탕공급부(110)와 구조적으로 연결된 챔버 형태로 구현될 수 있다.The fine powder collecting unit 140 is located at the bottom of the fine powder manufacturing apparatus 100, that is, the lower portion of the liquid spraying unit 130, and may collect the fine powder cooled by the liquid spraying unit 130. The fine powder collecting unit 140 may be implemented in the form of a chamber structurally connected to the molten metal supply unit 110.
도 2는 본 발명의 일 실시예에 따른 미세분말 제조장치의 일부를 확대 도시한 도면이다.2 is an enlarged view of a portion of a fine powder production apparatus according to an embodiment of the present invention.
도 2에 도시된 바와 같이, 상기 가스 분사부(120)는 가스 저장 유닛(121), 가스 가열 유닛(122), 및 가스 분사 노즐(123)을 포함할 수 있다.As shown in FIG. 2, the gas injection unit 120 may include a gas storage unit 121, a gas heating unit 122, and a gas injection nozzle 123.
상기 가스 저장 유닛(121)은, 질소나 아르곤 등의 불활성 가스가 저장된다. 종래에는 비정질 미세분말을 제조하기 위해서는 냉각속도가 빠른 가스인 고가의 헬륨 가스를 사용해야 하지만, 본 발명에 의하면, 이러한 고가의 헬륨 가스를 사용하지 않고, 헬륨 가스에 비해 냉각속도가 느리지만 상대적으로 저가인 질소나 아르곤 등 불활성 가스를 사용하여 비정질 미세분말을 제조할 수 있다. 즉, 액체분사부(130)에서의 액체분사 처리에 의해 느린 냉각속도를 보완할 수 있다.The gas storage unit 121 stores an inert gas such as nitrogen or argon. Conventionally, in order to prepare amorphous fine powder, expensive helium gas, which is a gas having a high cooling rate, should be used. However, according to the present invention, the cooling rate is slower than helium gas, but relatively low cost, without using such expensive helium gas. An amorphous fine powder can be prepared using an inert gas such as phosphorus nitrogen or argon. That is, the slow cooling rate can be compensated for by the liquid spraying treatment in the liquid spraying unit 130.
미세한 원료 분말을 제조하기 위해서는 분사가스의 속도를 증가시켜야 한다. 이를 위해 상기 가스 가열 유닛(122)은, 가스 저장 유닛(121)으로부터 질소나 아르곤 등의 불활성 가스를 공급 받아서 이를 가열한다. 가열된 가스는 가스 분사 노즐(123)을 통해 용탕공급부(110)로부터 배출되는 용탕에 가스를 분사하여 용탕을 분쇄시킨다. 상기 가스 분사 노즐(123)은 홀형(hole type) 또는 오픈 슬릿형 (open slit type)일 수 있다.In order to produce a fine raw material powder, the velocity of the injection gas must be increased. To this end, the gas heating unit 122 receives an inert gas such as nitrogen or argon from the gas storage unit 121 and heats it. The heated gas pulverizes the molten metal by injecting the gas into the molten metal discharged from the molten metal supply unit 110 through the gas injection nozzle 123. The gas injection nozzle 123 may be a hole type or an open slit type.
이때, 가스 분사부(120)에서 분사되는 가스의 온도는 상온, 즉 25°°C 내지 750°°C 로 형성되는 것이 바람직하다. 분사되는 가스의 온도가 25°°C 미만일 경우, 상기 온도를 만들기 위한 냉각비용이 소모되어 경제적인 효과가 낮아지는 문제가 있다. 따라서, 가스 분사부(120)에서 분사되는 가스의 온도는 25°°C 이상인 것이 바람직하다.한편, 분사되는 가스의 온도가 750°°C를 초과하는 경우, 장비의 제작이 어려워서 비용이 증가하는 문제가 있다. 따라서 가스 분사부(120)에서 분사되는 가스의 온도는 750°°C 이하인 것이 바람직하다.At this time, the temperature of the gas injected from the gas injection unit 120 is preferably formed at room temperature, that is, 25 ° C to 750 ° C. If the temperature of the injected gas is less than 25 ° C., there is a problem in that the cooling cost to make the temperature is consumed and the economic effect is lowered. Therefore, the temperature of the gas injected from the gas injector 120 is preferably 25 ° C. or more. On the other hand, when the temperature of the injected gas exceeds 750 ° C., the manufacturing of the equipment is difficult to increase the cost there is a problem. Therefore, the temperature of the gas injected from the gas injector 120 is preferably 750 ° C. or less.
또한, 이때, 가스 분사부(120)에서 분사되는 압력은 1bar 내지 150bar로 형성되는 것이 바람직하다. 분사 압력이 1bar 미만일 경우, 압력에 의한 분쇄력이 낮아져 분쇄된 원료 분말의 크기가 크기 때문에 미세 분말을 얻기 어려운 문제가 있다. 따라서, 가스 분사부(120)에서 분사되는 압력은 1bar 이상인 것이 바람직하다. 한편, 분사 압력이 150bar를 초과하는 경우, 장비의 제작이 어려워서 비용이 증가하는 문제가 있다. 따라서, 가스 분사부(120)에서 분사되는 압력은 150bar 이하인 것이 바람직하다.In addition, at this time, the pressure injected from the gas injection unit 120 is preferably formed to 1bar to 150bar. When the injection pressure is less than 1 bar, the grinding force due to the pressure is lowered because the size of the pulverized raw material powder is large, there is a problem that it is difficult to obtain a fine powder. Therefore, the pressure injected from the gas injection unit 120 is preferably 1 bar or more. On the other hand, if the injection pressure exceeds 150bar, there is a problem that the cost is increased because the production of the equipment is difficult. Therefore, the pressure injected from the gas injection unit 120 is preferably 150 bar or less.
도 3은 본 발명의 일 실시예에 따른 미세분말 제조장치의 일부를 확대 도시한 도면으로, 가스분사부에 의해 용탕이 분쇄되어 형성된 액적의 낙하 거리에 따른 형상 및 액체분사부에 의해 형성된 미세분말을 도시한 도면이다.3 is an enlarged view of a part of a fine powder manufacturing apparatus according to an embodiment of the present invention, the shape of the droplets formed by melting the molten metal by the gas injection unit and the fine powder formed by the liquid injection unit Figure is a diagram.
상기 액체분사부(130)는 가스분사부(120)에 의해 용탕이 분쇄되어 형성된 액적에 액체를 분사하여 원하는 형상의 미세분말을 형성한다. 여기서, 상기 액체는 물 또는 액체 질소 또는 액체 아르곤일 수 있다. 즉, 냉각속도가 느린 질소나 아르곤 등의 불활성 가스를 사용하여 용탕이 분쇄되어 형성된 액적에 물 또는 액체 질소 또는 액체 아르곤을 분사함으로써 느린 냉각속도를 보완하고, 용탕공급부(110)로부터의 낙하 거리에 따라 변화하는 여러 형상 중에서 원하는 형상이 형성된 위치에서 액체를 분사함으로써 원하는 형상의 비정질 미세분말을 제조할 수 있도록 한다. 물을 분사하는 경우, 물에 포함된 산소로 인해 미세분말이 산화될 수 있고, 추가적으로 환원공정이 요구될 수도 있다. 액체 질소나 액체 아르곤을 분사하는 경우, 미세분말이 산화되지 않으므로 추가적인 환원공정이 요구되지 않는다. The liquid spraying unit 130 forms a fine powder having a desired shape by spraying a liquid on the liquid droplets formed by pulverizing the molten metal by the gas spraying unit 120. Herein, the liquid may be water or liquid nitrogen or liquid argon. That is, by injecting water or liquid nitrogen or liquid argon into the droplets formed by pulverizing the molten metal by using an inert gas such as nitrogen or argon having a slow cooling rate, the slow cooling rate is compensated for, and the drop distance from the molten metal supply unit 110 is reduced. By spraying a liquid at a position where a desired shape is formed among various shapes according to the present invention, an amorphous fine powder having a desired shape can be manufactured. When spraying water, the fine powder may be oxidized due to the oxygen contained in the water, and additionally, a reduction process may be required. When spraying liquid nitrogen or liquid argon, the fine powder is not oxidized and thus no further reduction process is required.
한편, 본 발명에서의 액체분사부(130)는 종래와 같은 미분화용을 목적으로 하는 것이 아니라, 가스분사로 형성된 고온의 액적을 냉각하는 것을 목적으로 하므로 종래의 액체분사보다 사용되는 수량이 현저하게 적다. 또한, 분사되는 물 또는 액체질소 또는 액체아르곤의 위치 및 양을 조절하여 미세분말의 형상, 나노결정립 및 비정질분율을 동시에 제어할 수 있다.On the other hand, the liquid injection unit 130 in the present invention is not intended for the purpose of micronization as in the prior art, but for the purpose of cooling the high-temperature droplets formed by gas injection, the quantity used is significantly higher than that of the conventional liquid injection. little. In addition, by controlling the position and the amount of water or liquid nitrogen or liquid argon to be sprayed, it is possible to simultaneously control the shape, nanocrystalline and amorphous fraction of the fine powder.
보다 구체적으로, 가스분사부(120)에 의해 형성된 액적은, 가스분사부(120)로부터 낙하거리가 멀어질수록, 액적의 응집력으로 인해 점점 구형을 띄게 된다. 즉, 용탕공급부(110)와 가장 가까운 밑단인 낙하가 시작되는 부분은, 응집력이 약하기 때문에 불규칙도가 증가하여 불규칙형 액상, 띠형 액상 또는 리본 형 액상 등이 형성되며, 낙하거리가 멀어질수록 액적의 응집력이 점점 더해져서 타원형 액상, 구형 액상 등이 형성된다. More specifically, the droplet formed by the gas injection unit 120 becomes more spherical due to the cohesive force of the droplet, the farther the falling distance from the gas injection unit 120. That is, the portion where the drop, which is the closest hem to the molten metal supply unit 110 starts, has a low cohesive force, and thus an irregularity is increased to form an irregular liquid, a strip liquid, or a ribbon liquid, and as the drop distance increases, The cohesive force of the enemy is gradually increased to form an elliptical liquid or a spherical liquid.
이러한 낙하거리에 따른 액적의 형상 변화를 이용하여 원하는 형상의 미세분말을 제조하기 위해, 도 3에 도시된 바와 같이, 상기 액체분사부(130)는, 액체 저장유닛(131)와, 액체분사 위치조절유닛(132)와, 액체 가압유닛(133)와, 액체 분사노즐(134)을 포함할 수 있다.In order to manufacture a fine powder having a desired shape using the shape change of the droplet according to the falling distance, as shown in Figure 3, the liquid spraying unit 130, the liquid storage unit 131, the liquid spraying position It may include a control unit 132, a liquid pressurizing unit 133, and a liquid injection nozzle 134.
이러한 액체분사부(130)는 상기 가스분사부(120)의 가스분사노즐(123)과 1 mm이상 2000mm이하로 이격되어 설치되는 것이 바람직하다. 이격 거리가 1 mm 미만인 경우, 이러한 간격을 가지는 노즐의 제조가 어렵고, 가스 분사 노즐(123)과 액체분사부(130)의 거리가 너무 가까워서 가스 분사 노즐(123)에서 분사되는 가스와 액체분사부(130)의 액체 분사노즐(134)에서 분사되는 액체가 서로 영향을 미치어 원하는 품질의 미세분말의 형성이 어려운 문제가 있다. 또한, 이격 거리가 2000mm를 초과하는 경우, 가스분사부(120)에 의해 형성된 액적이 액체분사부(130)에 의해 냉각되기 전에, 즉, 낙하 도중에 냉각될 수도 있어서 원하는 품질의 미세분말의 형성이 어려운 문제가 있다.The liquid injection unit 130 is preferably installed spaced apart from the gas injection nozzle 123 of the gas injection unit 120 by 1 mm or more and 2000 mm or less. When the separation distance is less than 1 mm, it is difficult to manufacture nozzles having such a gap, and the distance between the gas injection nozzle 123 and the liquid injection unit 130 is so close that the gas and the liquid injection unit injected from the gas injection nozzle 123 are too close. Liquids sprayed from the liquid jet nozzle 134 of 130 affect each other, making it difficult to form fine powder of a desired quality. In addition, when the separation distance exceeds 2000 mm, the droplets formed by the gas injection unit 120 may be cooled before being cooled by the liquid injection unit 130, that is, during the drop, so that the formation of fine powder of a desired quality is achieved. There is a difficult problem.
상기 액체 저장유닛(131)은 액체 분사노즐(134)을 통해 분사될 액체가 저장된다. The liquid storage unit 131 stores liquid to be injected through the liquid injection nozzle 134.
상기 액체분사 위치조절유닛(132)은 액체 분사노즐(134)의 수직 위치를 조절한다. 예를 들어, 액체분사 위치조절유닛(132)은 액체 분사노즐(134)을 지지하며 수직 방향으로 이동하는 것을 가이드 하는 지지레일과 지지레일 상에 설치된 액체 분사노즐(134)을 상하로 이동시키는 모터를 포함하여 설계될 수 있다. 또는, 기설정된 수직 간격으로 관통홀이 형성되는 지지대를 마련하고, 액체 분사노즐(134)이 상기 관통홀에 삽입되는 구조로 설계될 수 있다. 전자의 경우, 외부에서 모터의 운동을 조절하여 액체 분사노즐의 위치를 원격제어할 수 있고, 후자의 경우, 사용자가 수동으로 원하는 위치에 액체 분사노즐을 배치시켜서 원하는 형상의 미세분말을 제조할 수 있다. 물론, 이러한 액체분사 위치조절유닛(132)은 예시일 뿐, 이에 한정되는 것은 아니다.The liquid spray position adjusting unit 132 adjusts the vertical position of the liquid jet nozzle 134. For example, the liquid spraying position adjusting unit 132 supports the liquid spraying nozzle 134 and moves a support rail and a liquid spraying nozzle 134 installed on the support rail up and down to guide the movement in the vertical direction. It can be designed to include. Alternatively, the support may be provided in which the through holes are formed at predetermined vertical intervals, and the liquid injection nozzle 134 may be inserted into the through holes. In the former case, the position of the liquid ejection nozzle can be remotely controlled by controlling the movement of the motor from the outside, and in the latter case, the user can manually prepare the fine powder of the desired shape by placing the liquid ejection nozzle at the desired position. have. Of course, such a liquid injection position adjusting unit 132 is only an example, but is not limited thereto.
상기 액체 가압유닛(133)은 액체 분사노즐(134)을 통해 분사될 액체의 압력을 조절한다. 분사 압력이 1bar 미만일 경우, 냉각매체인 액체의 량이 부족하여 가스분사부에서 제조된 액적 및 분말 전체의 냉각이 어렵고, 분사 압력이 1500bar를 초과하는 경우, 장비의 제작이 어려운 문제가 있다. 따라서, 상기 액체 가압유닛(133)을 통해 분사되는 액체의 압력은 1bar 내지 1500bar로 형성되는 것이 바람직하다.The liquid pressurizing unit 133 controls the pressure of the liquid to be injected through the liquid injection nozzle 134. If the injection pressure is less than 1bar, the amount of liquid that is a cooling medium is insufficient to cool the entire liquid droplets and powder produced in the gas injection unit, if the injection pressure exceeds 1500bar, there is a problem that the production of equipment difficult. Therefore, the pressure of the liquid injected through the liquid pressurizing unit 133 is preferably formed to 1bar to 1500bar.
상기 액체 분사노즐(134)은 적어도 하나 이상 구비될 수 있다. 보다 바람직하게는 2개 이상으로 구비되는 것이 바람직하다. 하나로 구비되는 경우에는, 낙하되는 액적들 중에서 수 분사노즐(134)과 가까운 액적만 냉각되고, 멀리 있는 액적은 냉각되지 않을 수도 있기 때문에, 낙하되는 액적들 주위로 균등한 거리로 이격되어 2개 이상 구비하여 액적들이 고르게 냉각되도록 하는 것이 바람직하다.The liquid jet nozzle 134 may be provided with at least one. More preferably, two or more are provided. When provided as one, only droplets close to the water injection nozzle 134 are cooled among the falling droplets, and the distant droplets may not be cooled, and thus two or more are spaced at equal distances around the falling droplets. It is desirable to have the droplets cool evenly.
도 4에는 액체 분사노즐(134)의 노즐 형상이 예시되어 있다. 도 4에 도시된 바와 같이, 액체 분사노즐(134)의 노즐 형상은 오픈 슬릿형 노즐, 홀형 노즐, 다중 노즐 등이 있다.4 illustrates a nozzle shape of the liquid jet nozzle 134. As shown in FIG. 4, the nozzle shape of the liquid jet nozzle 134 includes an open slit nozzle, a hole nozzle, and a multiple nozzle.
상기 오픈 슬릿형 노즐은 고리형 노즐(134a)을 통해 액체를 분사할 수 있다. 상기 홀형 노즐은 복수의 원형 노즐(134b)이 일정한 간격으로 배열되어 환형을 형성하며, 복수의 원형 노즐(134b)을 통해 액체를 분사할 수 있다. 상기 다중 노즐은 복수의 다각형(예를 들어 삼각형) 노즐(134c)이 일정한 간격으로 배열되어 환형을 형성하며, 복수의 다각형 노즐(134c)을 통해 액체를 분사할 수 있다.The open slit nozzle may spray liquid through the annular nozzle 134a. In the hole nozzle, a plurality of circular nozzles 134b are arranged at regular intervals to form an annular shape, and the liquid may be injected through the plurality of circular nozzles 134b. In the multi-nozzle, a plurality of polygonal (for example, triangular) nozzles 134c are arranged at regular intervals to form an annular shape, and the liquid may be injected through the plurality of polygonal nozzles 134c.
도 5를 참조하여 본 발명에 따른 미세분말제조방법을 설명한다. 도 5는 본 발명의 일 실시예에 따른 미세분말 제조방법을 나타낸 순서도이다.With reference to Figure 5 will be described a fine powder production method according to the present invention. Figure 5 is a flow chart showing a method for producing fine powder according to an embodiment of the present invention.
먼저, 용탕공급부(110)는 원료 물질을 용융시켜 생성된 용탕을 용탕 배출구를 통해 배출한다. (S110)First, the molten metal supply unit 110 discharges the molten metal generated by melting the raw material through the molten metal outlet. (S110)
그 다음, 용탕 배출구를 통해 배출되는 용탕에 질소, 아르곤 등의 불활성 가스를 분사한다. (S120) 이때, 분사되는 불활성 가스의 온도는 상온, 즉 25°°C 내지 750°°C, 압력은 1bar 내지 150bar가 되도록 조절한다.Then, inert gas such as nitrogen and argon is injected into the molten metal discharged through the molten metal outlet. At this time, the temperature of the inert gas is injected at room temperature, that is, 25 ° C to 750 ° C, the pressure is adjusted to 1 bar to 150 bar.
그 다음, 액체분사 위치조절유닛(132)을 이용하여 액체 분사노즐(134)의 위치를 조절한다.(S130) 이때, 액체 분사노즐의 위치는 원하는 형상의 미세분말 형상과 대응되는 액적 형상을 띠는 위치로 위치시킨다. Then, the position of the liquid jet nozzle 134 is adjusted using the liquid jet position adjusting unit 132. (S130) At this time, the position of the liquid jet nozzle has a droplet shape corresponding to the shape of the fine powder of the desired shape. Is placed into position.
그 다음, 액체 분사노즐(134)을 통해 액체를 분사하여 해당 위치에 있는 액적을 냉각시켜서 원하는 형상의 미세분말을 형성한다. (S140) 이때, 분사되는 액체의 압력은 1bar 내지 1500bar가 되도록 조절한다.Then, the liquid is sprayed through the liquid jet nozzle 134 to cool the droplet at the corresponding position to form a fine powder of a desired shape. At this time, the pressure of the liquid to be injected is adjusted to be 1bar to 1500bar.
그 다음, 액체분사 냉각을 통해 형성된 미세분말이 낙하되어 포집된 미세분말 포집부에서 미세분말을 수거한다. (S150)Then, the fine powder formed through the liquid spray cooling is dropped to collect the fine powder in the collected fine powder collecting portion. (S150)
이상에서 본 발명의 바람직한 실시예에 대해 도시하고 설명하였으나, 본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.Although the preferred embodiments of the present invention have been shown and described above, the present invention is not limited to the specific preferred embodiments described above, and the present invention belongs to the present invention without departing from the gist of the present invention as claimed in the claims. Various modifications can be made by those skilled in the art, and such changes are within the scope of the claims.
[부호의 설명] [Description of the code]
110: 용탕공급부110: molten metal supply unit
120: 가스 분사부120: gas injection unit
130: 액체 분사부130: liquid jet
140: 미세분말 포집부140: fine powder collecting unit

Claims (14)

  1. 원료 물질을 용융시켜 용탕을 공급하는 용탕공급부;A molten metal supplier for melting a raw material to supply a molten metal;
    상기 용탕공급부 하부에 위치하며, 불활성 가스를 포함한 가스를 분사하여 용탕을 분쇄하여 액적을 형성하는 가스 분사부; A gas injector positioned below the molten metal supply unit and configured to inject a gas including an inert gas to pulverize the molten metal to form droplets;
    상기 가스 분사부 하부에 위치하며, 상기 가스 분사부에 의해 형성된 액적에 분사되는 위치를 조절하고, 액체를 분사하여 미세분말을 형성하는 액체 분사부; 및,A liquid injector disposed under the gas injector, controlling a position to be injected into the droplet formed by the gas injector, and injecting liquid to form fine powder; And,
    상기 액체 분사부에 의해 형성된 미세분말이 적하되는 미세분말 포집부;A fine powder collecting portion in which the fine powder formed by the liquid ejecting portion is dropped;
    를 포함하는 미세분말 제조장치.Fine powder manufacturing apparatus comprising a.
  2. 제 1항에 있어서, The method of claim 1,
    상기 가스의 온도는 25°°C 내지 750°°C이고, 상기 가스의 압력은 1bar 내지 150bar인 미세분말 제조장치.The temperature of the gas is 25 ° C to 750 ° C, the pressure of the gas is 1bar to 150bar fine powder manufacturing apparatus.
  3. 제 1항에 있어서,The method of claim 1,
    상기 가스는, 질소, 아르곤 중 적어도 어느 하나를 포함하는 미세분말 제조 장치.The gas is a fine powder production apparatus containing at least one of nitrogen, argon.
  4. 제 1항에 있어서,The method of claim 1,
    상기 가스 분사부는, 상기 불활성 가스를 포함한 가스를 분사하는 가스 분사노즐을 포함하며,The gas injection unit includes a gas injection nozzle for injecting a gas containing the inert gas,
    상기 액체 분사부는, 상기 가스 분사 노즐과 1mm 내지 2000mm 이격되어 설치되는 미세분말 제조 장치.The liquid injection unit, fine powder manufacturing apparatus is installed spaced apart from the gas injection nozzle 1mm to 2000mm.
  5. 제 1항에 있어서,The method of claim 1,
    상기 액체는 물 또는 액체 질소 또는 액체 아르곤이며,The liquid is water or liquid nitrogen or liquid argon,
    상기 액체 분사부는, 상기 액체를 저장하는 액체 저장유닛;The liquid injection unit, a liquid storage unit for storing the liquid;
    상기 액체를 분사하는 액체 분사노즐;A liquid jet nozzle for injecting the liquid;
    상기 액체 분사노즐을 통해 분사될 액체의 압력을 조절하는 액체 가압유닛; 및,A liquid pressurizing unit for adjusting a pressure of the liquid to be sprayed through the liquid spray nozzle; And,
    상기 액체 분사노즐의 수직 위치를 조절하는 액체분사 위치조절유닛;A liquid spray position adjusting unit for adjusting a vertical position of the liquid spray nozzle;
    을 포함하는 미세분말 제조 장치.Fine powder production apparatus comprising a.
  6. 제 5항에 있어서,The method of claim 5,
    상기 액체 분사노즐은, 낙하되는 액적들 주위로 기설정된 거리로 이격되어 2개 이상 구비되는 미세분말 제조장치.The liquid jet nozzle is provided with two or more fine powder spaced apart from the predetermined distance around the falling droplets.
  7. 제 5항에 있어서,The method of claim 5,
    상기 액체 분사 노즐의 노즐 형상은 다중 노즐, 홀형 노즐, 오픈슬릿형 노즐 중 어느 하나를 포함하는 포함한 미세분말 제조장치.The nozzle shape of the liquid jet nozzle is fine powder manufacturing apparatus comprising any one of a multi-nozzle, a hole nozzle, an open slit nozzle.
  8. 제 1항에 있어서,The method of claim 1,
    상기 액체 분사부의 분사 압력은 1bar 내지 1500bar인 미세분말 제조장치.The injection pressure of the liquid injection unit is a fine powder manufacturing apparatus of 1bar to 1500bar.
  9. 원료 물질을 용융시켜서 용탕을 형성한 후, 상기 용탕을 배출시키는 단계;Melting the raw material to form a molten metal, and then discharging the molten metal;
    상기 배출된 용탕에 불활성 가스를 분사하여 액적을 형성하는 단계;Spraying an inert gas on the discharged molten metal to form droplets;
    상기 액적에 분사될 액체의 위치를 조절하는 단계; 및,Adjusting the position of the liquid to be sprayed on the droplets; And,
    상기 액적에 액체를 분사하여 상기 액적을 냉각시켜 미세분말을 제조하는 단계;Spraying liquid onto the droplets to cool the droplets to produce fine powder;
    를 포함하는 미세분말 제조방법.Fine powder production method comprising a.
  10. 제 9항에 있어서,The method of claim 9,
    상기 액적을 형성하는 단계에서, 상기 불활성 가스는 질소, 아르곤 중 적어도 어느 하나를 포함하는 미세분말 제조방법.In the forming of the droplet, the inert gas is fine powder manufacturing method comprising at least one of nitrogen, argon.
  11. 제 9항에 있어서, The method of claim 9,
    상기 액적을 형성하는 단계에서, 상기 불활성 가스의 온도는 25°°C 내지 750°°C이고, 상기 불활성 가스의 압력은 1bar 내지 150bar인 미세분말 제조방법.In the forming of the droplet, the temperature of the inert gas is 25 ° C to 750 ° C, the pressure of the inert gas is 1bar to 150bar fine powder manufacturing method.
  12. 제 9항에 있어서,The method of claim 9,
    상기 액체는 물 또는 액체 질소 또는 액체 아르곤이며, 상기 액체의 압력은 1bar 내지 1500bar인 미세분말 제조방법.The liquid is water or liquid nitrogen or liquid argon, the pressure of the liquid is 1bar to 1500bar fine powder manufacturing method.
  13. 제 1항 내지 제 8항 중 어느 한 항의 미세분말 제조장치에 의해 제조된 미세분말.Fine powder produced by the fine powder manufacturing apparatus of any one of claims 1 to 8.
  14. 제 9항 내지 제 12항 중 어느 한 항의 미세분말 제조방법에 의해 제조된 미세분말.The fine powder produced by the method for producing a fine powder according to any one of claims 9 to 12.
PCT/KR2016/001931 2015-04-07 2016-02-26 Fine-powder production device and method WO2016163643A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150048889 2015-04-07
KR10-2015-0048889 2015-04-07

Publications (1)

Publication Number Publication Date
WO2016163643A1 true WO2016163643A1 (en) 2016-10-13

Family

ID=57072261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/001931 WO2016163643A1 (en) 2015-04-07 2016-02-26 Fine-powder production device and method

Country Status (1)

Country Link
WO (1) WO2016163643A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3868492A1 (en) * 2020-02-20 2021-08-25 Kolon Industries, Inc. Spray nozzle and metal powder manufacturing apparatus including same
CN115971501A (en) * 2023-03-21 2023-04-18 山西盛世多乐信息技术有限公司 Intelligent production facility of metal powder

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004107740A (en) * 2002-09-19 2004-04-08 Seiko Epson Corp Method and apparatus for producing metal powder by water atomization method, metal powder, and part
US6773246B2 (en) * 1996-11-19 2004-08-10 Tsao Chi-Yuan A. Atomizing apparatus and process
KR20130078560A (en) * 2011-12-30 2013-07-10 한국기계연구원 Fabrication method of amorphous alloy powder using gas atomization
KR101372839B1 (en) * 2013-08-26 2014-03-12 공주대학교 산학협력단 Method and apparatus for manufacturing powders
KR20140134551A (en) * 2013-05-14 2014-11-24 부산대학교 산학협력단 Method and atomizer apparatus for manufacturing metal powder

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6773246B2 (en) * 1996-11-19 2004-08-10 Tsao Chi-Yuan A. Atomizing apparatus and process
JP2004107740A (en) * 2002-09-19 2004-04-08 Seiko Epson Corp Method and apparatus for producing metal powder by water atomization method, metal powder, and part
KR20130078560A (en) * 2011-12-30 2013-07-10 한국기계연구원 Fabrication method of amorphous alloy powder using gas atomization
KR20140134551A (en) * 2013-05-14 2014-11-24 부산대학교 산학협력단 Method and atomizer apparatus for manufacturing metal powder
KR101372839B1 (en) * 2013-08-26 2014-03-12 공주대학교 산학협력단 Method and apparatus for manufacturing powders

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3868492A1 (en) * 2020-02-20 2021-08-25 Kolon Industries, Inc. Spray nozzle and metal powder manufacturing apparatus including same
CN115971501A (en) * 2023-03-21 2023-04-18 山西盛世多乐信息技术有限公司 Intelligent production facility of metal powder
CN115971501B (en) * 2023-03-21 2023-11-07 山西盛世多乐信息技术有限公司 Intelligent production equipment for metal powder

Similar Documents

Publication Publication Date Title
KR102074861B1 (en) Apparatus and Method for Manufacturing Minute Powder
EP3294482B1 (en) Methods and apparatuses for producing metallic powder material
US4762553A (en) Method for making rapidly solidified powder
US5176874A (en) Controlled process for the production of a spray of atomized metal droplets
US11389873B2 (en) Method for producing metal powders by means of gas atomization and production plant of metal powders according to such method
US6496529B1 (en) Refining and casting apparatus and method
US10232434B2 (en) Refining and casting apparatus and method
CN101332511B (en) Injection apparatus, injection molding atomizing chamber and injection molding method
KR101695171B1 (en) Slag granulation system and method of operation
KR100800505B1 (en) Fabricating apparatus for metal powder
JP2004523359A5 (en)
WO2016163643A1 (en) Fine-powder production device and method
JP2004183049A (en) Method and apparatus for producing fine metal powder by gas atomization method
CN109848429B (en) Combined device for preparing spherical metal powder by using gas atomization method
CN113210621A (en) Device and method for double-flow gas atomization of metal powder through vacuum induction melting
JP2017145494A (en) Metal powder production apparatus
CN103769596A (en) Method for preparing high-stacking-density oblate powder material
WO2015030456A1 (en) Method for preparing powder, multi-injection nozzle, and apparatus for preparing powder
EP0543017A1 (en) Method and device for making metallic powder
US7093463B1 (en) Method and device for producing powders that consist of substantially spherical particles
KR101517584B1 (en) Apparatus and Method for Manufacturing Minute Powder
JPH07102307A (en) Production of flaky powder material
JPH06172817A (en) Production of quenched metal powder
KR102602603B1 (en) Metal powder sorting device for sorting by particle size in the multi arc jet plasma atomizer
JPH04187707A (en) Manufacture of metal powder and gas atomizing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16776746

Country of ref document: EP

Kind code of ref document: A1