WO2016163253A1 - Elastomer composition - Google Patents

Elastomer composition Download PDF

Info

Publication number
WO2016163253A1
WO2016163253A1 PCT/JP2016/059820 JP2016059820W WO2016163253A1 WO 2016163253 A1 WO2016163253 A1 WO 2016163253A1 JP 2016059820 W JP2016059820 W JP 2016059820W WO 2016163253 A1 WO2016163253 A1 WO 2016163253A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
elastomer composition
peptide
polymer
mass
Prior art date
Application number
PCT/JP2016/059820
Other languages
French (fr)
Japanese (ja)
Inventor
伸一 中出
Original Assignee
伸一 中出
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 伸一 中出 filed Critical 伸一 中出
Publication of WO2016163253A1 publication Critical patent/WO2016163253A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L89/00Compositions of proteins; Compositions of derivatives thereof

Definitions

  • the present invention relates to an elastomer composition and a method for producing the same.
  • Elastomer compositions are used in many fields such as industrial products such as tires, belts and hoses, medical-related products such as gloves and masks, and household products such as toys.
  • a typical elastomer composition is vulcanized rubber.
  • the vulcanized rubber is formed by heating and pressurizing a rubber composition containing a base rubber, a vulcanizing agent, a vulcanization accelerator, an anti-aging agent, a reinforcing agent and the like. Natural rubber is frequently used as a base rubber that is inexpensive and has excellent mechanical properties.
  • vulcanized rubber protein components in natural rubber latex collected from plants are known to induce acute allergies.
  • delayed allergy may be induced depending on the type of vulcanization accelerator and anti-aging agent.
  • Environmental problems such as elution of zinc ions from zinc oxide (zinc oxide), which is a vulcanization accelerator, have been pointed out.
  • thermoplastic elastomers that are easy to process and recycle are being investigated as an alternative to vulcanized rubber, but their mechanical properties are not fully satisfactory.
  • JP-A-2009-114250, JP-A-6-166671 and JP-A-8-12814 disclose rubber compositions for which various studies have been made.
  • JP 2009-114250 A relates to a rubber composition containing a diene rubber and gluten.
  • This rubber composition contains a vulcanization accelerator and the like.
  • gluten and diene rubber are chemically bonded.
  • the vulcanized rubber has a high breaking strength (tensile strength) and modulus. Vulcanized rubber having a high breaking strength and modulus is not suitable for use in applications requiring flexibility and stretchability.
  • JP-A-6-166671 and JP-A-8-12814 propose rubber compositions and rubber products that do not contain a vulcanizing agent or the like.
  • JP 2009-114250 A JP-A-6-166671 JP-A-8-12814
  • a thiol group (—SH) in a protein contributes to the formation of a chemical bond with a rubber molecule.
  • a thiol group contained in a protein is usually oxidized in air to form a cystine bond (—SS—). It is not easy to industrially produce and stably use a protein having a thiol group.
  • an elastomer composition containing a protein having a cystine bond and excellent in flexibility and stretchability has not yet been studied.
  • An object of the present invention is to provide an elastomer composition excellent in flexibility and stretchability and easy to produce and a method for producing the same.
  • the elastomer composition according to the present invention comprises a peptide containing 4.0% by mass to 30% by mass of cystine, a halogen group, a sulfone group, a carbonyl group, an amino group, an imino group, a carboxyl group, a hydroxyl group, a sulfide group, It contains as a main component a polymer having at least one polar group selected from the group consisting of a disulfide group, a sulfonyl group, an amide group and a nitrile group.
  • This elastomer composition has a crosslinked structure formed on the basis of electrostatic interaction between a peptide and a polymer and a hydrophobic effect.
  • the 300% modulus ME 300 of this elastomer composition is smaller than the 300% modulus MP 300 of the main polymer.
  • the 300% modulus ME 300 of this elastomer composition is 0.1 MPa or more and 1.0 MPa or less.
  • the breaking strength Tb of this elastomer composition is 0.1 MPa or more and 6.5 MPa or less.
  • the absolute value of the zeta potential of this polymer is 30 mV or more.
  • the polymer is natural rubber that has not been deproteinized.
  • the amount of the peptide with respect to 100 parts by mass of the polymer is 1.0 part by mass or more and 20 parts by mass or less.
  • the elastomer composition is substantially free of vulcanizing agent, vulcanization accelerator and vulcanization acceleration aid.
  • this peptide contains 5.0% by mass or more and 15% by mass or less of cystine bonds.
  • the amount of thiol group contained in the peptide is 1.0% by mass or less.
  • the peptide is a fine particle insoluble in water.
  • the average particle diameter of the fine particles is 0.1 ⁇ m or more and 1.0 ⁇ m or less.
  • the method for producing an elastomer composition according to the present invention comprises: (1) A peptide containing 4.0% by mass to 30% by mass of cystine, a halogen group, a sulfone group, a carbonyl group, an amino group, an imino group, a carboxyl group, a hydroxyl group, a sulfide group, a disulfide group, a sulfonyl group, A first step of obtaining a mixture by mixing a polymer having at least one polar group selected from the group consisting of an amide group and a nitrile group in an aqueous medium; (2) The mixed solution is dried to form a crosslinked structure based on electrostatic interaction and hydrophobic effect between the polymer and the peptide, so that the 300% modulus ME 300 is 300 A second step of obtaining an elastomer composition smaller than% modulus MP 300 .
  • the elastomer composition according to the present invention has a crosslinked structure formed on the basis of electrostatic interaction and hydrophobic effect between a peptide as a main component and a polymer.
  • This elastomer composition is excellent in flexibility and stretchability.
  • a molded article made of this elastomer composition gives a proper feeling to the user. Further, the production of this elastomer composition does not require blending of a vulcanizing agent or the like, or high temperature / high pressure operation. This elastomer composition can be easily and inexpensively produced.
  • the main component of the elastomer composition according to the present invention is a peptide containing 4.0% by mass to 30% by mass of cystine, a halogen group, a sulfone group, a carbonyl group, an amino group, an imino group, a carboxyl group, a hydroxyl group, A polymer having at least one polar group selected from the group consisting of sulfide groups, disulfide groups, sulfonyl groups, amide groups and nitrile groups.
  • This elastomer composition has a cross-linked structure formed mainly from a peptide and a polymer.
  • the elastomer composition according to the present invention has sufficient heat resistance as a molded product despite having no chemical cross-linking structure based on a covalent bond.
  • the detailed mechanism of the cross-linked structure in the present invention has not been clearly elucidated, but the inventor's estimation is as follows.
  • a polymer having a polar group such as a halogen group has a negative surface charge in an aqueous medium.
  • this polymer and a peptide containing cystine are mixed, it is considered that the polymer chain and the peptide molecule aggregate due to electrostatic interaction to form an aggregate.
  • natural drying is performed at room temperature to remove the aqueous medium, so that the polymer chain and the peptide molecule further approach inside the assembly. Presumed that due to the approach of the molecular chain, the electron cloud formed near the polar group in the polymer chain and the electron cloud near the cystine bond in the peptide approach each other and overlap each other, thereby forming a crosslinking point. Is done.
  • the elastomer composition according to the present invention may contain a chemically crosslinked structure.
  • a crosslinked structure may be formed based on other intermolecular interactions between the peptide and the polymer.
  • the elastomer composition having a crosslinked structure formed based on the electrostatic interaction between the peptide and the polymer and the hydrophobic effect is excellent in flexibility and stretchability.
  • the flexibility and stretchability of the elastomer composition are indicated with an index of 300% modulus measured according to the method described in JIS K6251.
  • the 300% modulus ME 300 of the elastomeric composition according to the present invention is defined as the measurement value of a test piece consisting of an elastomeric composition containing only peptides and polymers and substantially no other additives.
  • the 300% modulus ME 300 of the elastomer composition according to the present invention is smaller than the 300% modulus MP 300 of the polymer contained as its component.
  • the ratio of 300% modulus ME 300 of the elastomer composition according to the present invention to 300% modulus MP 300 of the polymer (ME 300 / MP 300 ) is less than 1.
  • the ratio (ME 300 / MP 300 ) is preferably 0.95 or less, and more preferably 0.90 or less.
  • a preferable ratio (ME 300 / MP 300 ) from the viewpoint of durability is 0.50 or more.
  • the 300% modulus ME 300 of the elastomer composition according to the present invention is preferably 1.0 MPa or less.
  • An elastomer composition having an ME 300 of 1.0 MPa or less is soft and easily stretched with a small force.
  • the ME 300 of the elastomer composition is more preferably 0.9 MPa or less, and further preferably 0.80 MPa or less.
  • ME 300 preferable from the viewpoint of durability is 0.1 MPa or more.
  • the breaking strength Tb of the elastomer composition according to the present invention is preferably 0.1 MPa or more and 6.5 MPa or less.
  • a more preferable breaking strength Tb from the viewpoint of durability is 0.5 MPa or more. From the viewpoints of flexibility and stretchability, the more preferable breaking strength Tb is 6.3 MPa or less.
  • the breaking strength Tb of the elastomer composition according to the present invention is based on the method described in JIS K6251 using a test piece made of an elastomer composition containing only a peptide and a polymer and substantially no other additives. Measured value.
  • the elastomer composition contains 1.0 part by mass or more and 20 parts by mass or less of peptide with respect to 100 parts by mass of the polymer.
  • the amount of the peptide is more preferably 1.5 parts by mass or more, and further preferably 2.0 parts by mass or more.
  • a more preferable amount of peptide is 10 parts by mass or less.
  • the polymer used in the elastomer composition according to the present invention includes halogen groups, sulfone groups, carbonyl groups, amino groups, imino groups, carboxyl groups, hydroxyl groups, sulfide groups, disulfide groups, sulfonyl groups, amide groups, and nitrile groups. Having at least one polar group selected from the group consisting of It is speculated that the polar group of the polymer contributes to the formation of a crosslinked structure by imparting a large surface charge in an aqueous medium.
  • polar groups are a halogen group, a carboxyl group, a sulfide group, a disulfide group, and a nitrile group.
  • particularly preferred polar groups are a sulfide group and a disulfide group.
  • the polymer may contain other polar groups or non-polar functional groups. Two or more kinds of polymers having different polar groups may be mixed and used.
  • the structure of the polymer having a polar group is not particularly limited.
  • the polar group may be contained in the main chain of the polymer or may be bonded to the side chain or terminal of the polymer.
  • the type of polymer serving as the main chain is not particularly limited. From the viewpoint of mechanical properties, rubber polymers and thermoplastic elastomers can be suitably used.
  • the rubber-based polymer having a polar group examples include natural rubber (NR), chlorinated natural rubber, chloroprene rubber (CR), acrylonitrile-butadiene rubber (NBR), acrylonitrile-isoprene rubber (NIR), acrylonitrile-butadiene- Isoprene rubber (NBIR), hydrogenated nitrile rubber (HNBR), acrylic rubber (ACM), ethylene-acrylic rubber (AEM), carboxylated butadiene rubber (XBR), carboxylated chloroprene rubber (XCR), carboxylated acrylonitrile-butadiene rubber (XNBR), brominated butyl rubber (BIIR), chlorinated butyl rubber (CIIR), vinylpyridine-butadiene rubber (PBR), vinylpyridine-styrene-butadiene rubber (PSBR), chlorosulfonated polyethylene Beam, and the like.
  • natural rubber NR
  • chlorinated natural rubber chloroprene rubber
  • rubber polymers that can be used as the main chain include isoprene rubber (IR), butadiene rubber (BR), 1,2-butadiene rubber, styrene-butadiene rubber (SBR), butyl rubber (IIR), ethylene-propylene- Examples include diene rubber (EPDM), ethylene-propylene rubber (EPM), ethylene-butene rubber (EBM), and polyethylene rubber.
  • IR isoprene rubber
  • BR butadiene rubber
  • SBR 1,2-butadiene rubber
  • IIR butyl rubber
  • ethylene-propylene- Examples include diene rubber (EPDM), ethylene-propylene rubber (EPM), ethylene-butene rubber (EBM), and polyethylene rubber.
  • thermoplastic elastomers examples include styrene block-containing elastomers, polyvinyl chloride elastomers, polyamide elastomers, polyolefin elastomers, polyurethane elastomers, polyester elastomers, and the like.
  • a thermoplastic elastomer and a rubber-based polymer may be mixed and used. As long as the object of the present invention is achieved, a resin other than the rubber polymer and the thermoplastic elastomer may be mixed.
  • It has at least one polar group selected from the group consisting of halogen groups, sulfone groups, carbonyl groups, amino groups, imino groups, carboxyl groups, hydroxyl groups, sulfide groups, disulfide groups, sulfonyl groups, amide groups, and nitrile groups.
  • polar group selected from the group consisting of halogen groups, sulfone groups, carbonyl groups, amino groups, imino groups, carboxyl groups, hydroxyl groups, sulfide groups, disulfide groups, sulfonyl groups, amide groups, and nitrile groups.
  • preferred polymers are diene rubbers such as chloroprene rubber and acrylonitrile-butadiene rubber, and natural rubber.
  • Natural rubber is composed of an ⁇ -terminal bonded to protein, two trans-1,4-isoprene units, about 1000 cis-1,4-isoprene units, and an ⁇ -terminal bonded to lipid.
  • natural rubber it is considered that a double bond in the main chain and a polar group in a constituent amino acid of a protein interact with a peptide molecule.
  • natural rubber when natural rubber is used as a polymer, natural rubber that has not been deproteinized is preferred.
  • the method for producing the polymer used in the elastomer composition according to the present invention is not particularly limited. Examples thereof include a method based on a polymerization reaction of a monomer having a predetermined polar group, a method based on a chemical reaction between a polymer serving as a main chain and a specific compound. For example, a method of producing a carboxyl group-containing diene rubber by reacting a diene rubber containing a double bond with a carboxylic anhydride.
  • a latex in which fine particles made of polymer are colloidally dispersed in an aqueous medium is manufactured and used.
  • the surface of the fine particle composed of a polymer having a polar group is positively or negatively charged in an aqueous medium. From the viewpoint of promoting electrostatic interaction with a peptide, a polymer having a large surface charge is preferred.
  • zeta potential is defined as the potential difference between a stationary fluid layer on the surface of a microparticle dispersed in an aqueous medium and the aqueous medium.
  • a polymer having an absolute value of zeta potential of 30 mV or more is preferable. From the viewpoint of the affinity between the peptide and the polymer, a polymer having an absolute value of zeta potential of 40 mV or higher is more preferable, a polymer of 45 mV or higher is more preferable, and a polymer of 50 mV or higher is particularly preferable.
  • the upper limit of the absolute value of the zeta potential is not particularly limited, but is preferably 200 mV or less from the viewpoint of manufacturing cost and the like.
  • the zeta potential of the polymer was measured with a zeta potential measuring device (ELSZ-1000Z manufactured by Otsuka Electronics Co., Ltd.) for a dispersion (pH 7, 25 ° C.) containing about 0.05% by mass of the polymer. When defined as a measured value.
  • peptide is defined as a general term for compounds in which two or more molecules of amino acids are linked by peptide bonds. Usually, a peptide consisting of 2 to 10 amino acids is called an oligopeptide. A peptide consisting of 10 to 100 amino acids is called a polypeptide. A compound in which more than 100 amino acids are bound is called a protein. Unless otherwise stated, the term “peptide” herein includes dipeptides, tripeptides, oligopeptides, polypeptides and proteins.
  • the peptide used in the elastomer composition according to the present invention contains cystine as a constituent amino acid.
  • the cystine content [Cys] with respect to all constituent amino acids of this peptide is 4.0% by mass or more and 30% by mass or less.
  • the cystine content [Cys] is preferably 5.0% by mass or more, and more preferably 6.0% by mass or more.
  • the preferred cystine content [Cys] is 20% by mass or less.
  • cystine content [Cys] in the peptide is an amino acid automatic analyzer (a fully automatic amino acid analyzer “JLC-500 / V” manufactured by JEOL Ltd., column: strongly acidic cation exchange resin LCR-6). Is measured.
  • a mixed peptide containing two or more peptides having different cystine contents may be used.
  • the mixed peptide may include a peptide having a cystine content of less than 4.0% by mass. This mixed peptide is prepared so that the average value of cystine content with respect to all constituent amino acids in the peptide is 4.0% by mass or more and 30% by mass or less.
  • the types and ratios of the other constituent amino acids in the peptide are appropriately selected within a range in which the object of the present invention is not inhibited.
  • cysteine There is a peptide containing cysteine as a constituent amino acid. Cysteine has a thiol group (-SH). Thiol groups are easily oxidized in air. Oxidation forms cystine with a cystine bond (-SS-) from two molecules of cysteine. Most of the cysteines in the peptide are contained as cystine.
  • the cystine bond (-SS-) in the peptide contributes to the formation of a crosslinked structure by interacting with the polymer chain.
  • the amount of cystine bond in the peptide is preferably 5.0% by mass or more, more preferably 6.0% by mass or more, and further 7.0% by mass. preferable. From the viewpoint of easy production and availability, the preferable amount of cystine bond is 15% by mass or less.
  • the peptide used in the elastomer composition according to the present invention does not substantially contain a thiol group (-SH), but the peptide may contain a thiol group as long as the object of the present invention is achieved.
  • the thiol group content in the peptide is preferably 1.0% by mass or less, more preferably 0.9% by mass or less, and further preferably 0.8% by mass or less.
  • a method for obtaining a peptide containing 4.0% by mass or more and 30% by mass or less of cystine is not particularly limited.
  • extraction from a natural product hydrolysis of a protein derived from a natural product, genetic engineering, synthesis by a liquid phase method or a solid phase method and the like can be mentioned.
  • a method of hydrolyzing a natural product-derived protein with an acid, alkali or enzyme is preferably used. Hydrolysis conditions are appropriately selected depending on the type of natural product-derived protein.
  • a peptide containing cystine may be obtained by hydrolyzing a natural product-derived protein containing cysteine, followed by further oxidation treatment.
  • Proteins derived from natural products containing cystine or cysteine include keratin and cuticles contained in animal hair, feathers, eggshell membranes, nails, horns, shells, silk threads, etc., ⁇ -lactalbumin, ⁇ -lactoglobulin contained in whey Examples include animal-derived proteins such as serum albumin, ovalbumin and ovotransferrin contained in egg white. Plant-derived proteins contained in wheat, rice, soybeans and the like may be used. Keratins, cuticles, glutenins and oryzins with high cystine and cysteine content are preferred. From the viewpoint of safety, more preferred proteins are keratin, cuticle and oryzinin.
  • a peptide bond is cleaved to generate a peptide having a molecular weight of several thousand to several tens of thousands.
  • the molecular weight of the peptide obtained depends on the type of protein as a raw material and hydrolysis conditions. As long as the object of the present invention is achieved, the molecular weight of the peptide is not particularly limited.
  • the molecular weight of a peptide that is preferable from the viewpoint of miscibility with a polymer is 10,000 or less, more preferably 8,000 or less, and still more preferably 5,000 or less. Two or more peptides having different molecular weights may be mixed and used.
  • the molecular weight of a peptide is defined as the number average molecular weight measured under the following measurement conditions by exclusion limit chromatography (SEC) using a high performance liquid chromatograph.
  • Apparatus HPC-8220GPC (manufactured by Tosoh Corporation) Column: TSK-gel GMPW-XL (manufactured by Tosoh Corporation) Eluent: Dimethylformamide (DMF) Column temperature: 40 ° C Flow rate: 1.0 (ml / min.)
  • Detector differential refractometer RI-8022 Reference material: 6-mercaptopurine monohydrate
  • the peptide used in the present invention may be water-soluble or water-insoluble.
  • fine particles having an average particle size of 1.0 ⁇ m or less from the viewpoint of mixing with a polymer.
  • the lower limit of the average particle diameter of the peptide fine particles is not particularly limited, but is preferably 0.1 ⁇ m or more from the viewpoint of easy production.
  • the average particle diameter of the peptide fine particles is measured by a dynamic light scattering method. A mixture of a water-soluble peptide and water-insoluble peptide fine particles may be used.
  • the elastomer composition according to an embodiment of the present invention is manufactured according to the following steps.
  • a latex in which fine particles made of a polymer are colloidally dispersed in an aqueous medium is prepared.
  • the polymer is at least one selected from the group consisting of halogen groups, sulfone groups, carbonyl groups, amino groups, imino groups, carboxyl groups, hydroxyl groups, sulfide groups, disulfide groups, sulfonyl groups, amide groups, and nitrile groups. It has a polar group.
  • the polymer content in the latex is not particularly limited. From the viewpoint of miscibility with the peptide, latex containing a polymer of 30% by mass or more and 70% by mass or less as the solid content is preferable. A more preferable polymer content is 40% by mass or more and 60% by mass or less.
  • the average particle size of the fine particles made of polymer is preferably 0.5 ⁇ m or less, and more preferably 0.4 ⁇ m or less. From the viewpoint of ease of production, the preferred average particle size is 0.01 ⁇ m or more.
  • the average particle diameter of the polymer fine particles is measured by a dynamic light scattering method using a laser diffraction particle size distribution measuring apparatus.
  • a typical aqueous medium contained in latex is water.
  • the aqueous medium may contain an organic solvent.
  • a hydrophilic organic solvent capable of uniform mixing with water is preferred.
  • Specific examples of the hydrophilic organic solvent include lower alcohols such as methanol and ethanol, and polyhydric alcohols such as ethylene glycol and glycerin.
  • additives such as a dispersion stabilizer, an emulsifier, and a surfactant may be added to the aqueous medium.
  • the method for obtaining latex is not particularly limited.
  • at least one polar group selected from the group consisting of halogen groups, sulfone groups, carbonyl groups, amino groups, imino groups, carboxyl groups, hydroxyl groups, sulfide groups, disulfide groups, sulfonyl groups, amide groups, and nitrile groups
  • a method of emulsion polymerization of a monomer having a surfactant in the presence of a surfactant is not particularly limited.
  • at least one polar group selected from the group consisting of halogen groups, sulfone groups, carbonyl groups, amino groups, imino groups, carboxyl groups, hydroxyl groups, sulfide groups, disulfide groups, sulfonyl groups, amide groups, and nitrile groups
  • a method of emulsion polymerization of a monomer having a surfactant in the presence of a surfactant is not particularly limited.
  • natural rubber latex collected from plants is used as the latex.
  • Natural rubber latex is a dispersion in which rubber particles having an average particle diameter of about 1 ⁇ m are dispersed in water. Natural rubber latex that has not been deproteinized is preferred.
  • proteins in natural rubber latex contribute to the formation of a crosslinked structure. As long as the object of the present invention is achieved, a deproteinized natural rubber latex may be used.
  • a peptide is added to the prepared latex to form a mixed solution containing the polymer and the peptide.
  • This peptide contains 4.0% by mass to 30% by mass of cystine as a constituent amino acid.
  • 1.0 part by mass or more and 20 parts by mass or less of the peptide is added with respect to 100 parts by mass of the polymer solid content in the latex.
  • the amount of the peptide is more preferably 1.5 parts by mass or more, and further preferably 2.0 parts by mass or more.
  • a more preferable amount of peptide is 10 parts by mass or less.
  • the peptide may be added to the latex as an aqueous solution, or may be added to the latex as a dispersion of peptide fine particles.
  • An aqueous solution prepared from a water-soluble peptide and a dispersion of water-insoluble peptide fine particles may be used in combination.
  • hydrophobic interaction due to electrostatic interaction and hydrophobic effect can occur between the polymer fine particles in the latex.
  • the mixed solution containing the polymer and the peptide is put into a predetermined drying container and dried to produce the elastomer composition according to the present invention.
  • the drying conditions of the mixed solution containing the polymer and the peptide are appropriately selected depending on the amount of the mixed solution and the shape of the drying container.
  • the drying temperature is preferably 100 ° C. or lower, more preferably 90 ° C. or lower, and further preferably 80 ° C. or lower.
  • a preferable drying temperature is 15 ° C. or higher.
  • the ideal drying condition is natural drying at room temperature. In the present specification, room temperature means 25 ° C. or higher and 30 ° C. or lower.
  • the drying time is adjusted using the amount of reduction of the aqueous medium in the mixed solution as an index.
  • a drying time during which 90% by mass or more of the aqueous medium contained in the mixed solution before drying is removed is preferable. More preferably, the drying time is adjusted so that 95% by mass or more, more preferably 98% by mass or more of the aqueous medium is removed.
  • the elastomer composition is substantially free of a vulcanizing agent, a vulcanization accelerator, and a vulcanization acceleration aid.
  • This elastomer composition does not include a crosslinked structure in which polymer chains are crosslinked by a vulcanizing agent or the like.
  • This elastomer composition achieves a 300% modulus that is smaller than conventional vulcanized rubber products.
  • a molded article made of this elastomer composition is easily deformed with a small force. When this molded product is applied to the human body, it gives a comfortable feeling to the user.
  • this elastomer composition is applied to toys for infants, gloves for elderly people, and the like, a particularly excellent feeling of use is achieved.
  • a vulcanizing agent In other embodiments, a vulcanizing agent, a vulcanization accelerator, a vulcanization acceleration aid, a reinforcing agent, a colorant, an antiaging agent, etc. These additives are blended and subjected to a vulcanization process.
  • This elastomer composition includes a crosslinked structure based on electrostatic interaction and a hydrophobic effect, and a crosslinked structure obtained by a vulcanizing agent or the like. In this elastomer composition, physical properties such as strength, durability, and heat resistance are improved without impairing flexibility and stretchability. This elastomer composition can be applied to various fields of application.
  • This peptide solution is a brown solution containing a minute amount of fine particles.
  • the physical properties of peptide P1 contained in this peptide solution are as follows. Number average molecular weight (Mn): 8,000 Cystine content: 8.0% by mass Amount of cystine bond: 8.0% by mass Amount of thiol group: 0% by mass
  • Example 1 5 mL of a commercially available high-ammonia natural rubber latex (zeta potential: ⁇ 58.36 mV) prepared to a solid content concentration of 50% was mixed with 2 mL of the peptide solution of Production Example 1, and then stirred at room temperature (about 30 ° C.). Let stand for hours. Next, the entire amount of the obtained blended solution was poured into a tray having a bottom area of 24 cm 2 and naturally dried at room temperature (about 30 ° C.) to obtain a sheet-like composition. The obtained sheet-like composition was washed with water and then naturally dried for 7 days to obtain the elastomer composition of Example 1. The amount of peptide P1 added to 100 parts by mass of the polymer (solid content) in the latex is 10 parts by mass.
  • zeta potential: ⁇ 58.36 mV zeta potential: ⁇ 58.36 mV
  • Example 2 Except for adding 0.25 g of gluten (manufactured by Yutec Co., Ltd., for sugar-restricted food GOPAN) in 2.5 mL of water, and adding the total amount of this dispersion to 5 mL of natural rubber latex described in Example 1, The elastomer composition of Example 2 was obtained in the same manner as Example 1. The amount of gluten added to 100 parts by mass of the polymer (solid content) in the latex is 10 parts by mass.
  • Comparative Example 1 Comparative Example 1 was carried out in the same manner as in Example 1 except that 0.25 g of soy protein was dispersed in 2.5 mL of water, and then the total amount of this dispersion was added to 5 mL of natural rubber latex described in Example 1. An elastomer composition was obtained. The amount of soy protein added to 100 parts by mass of the polymer (solid content) in the latex is 10 parts by mass.
  • Examples 3, 5, and 7 and Comparative Example 5 The elastomer compositions of Examples 3 and 5 and Comparative Example 5 were obtained in the same manner as in Example 1 except that the polymers shown in Table 1-3 were used. In Example 7, dilute sulfuric acid was added so that the pH of the peptide solution of Production Example 1 was slightly acidic (pH 6-7), and then blended into the polymer latex shown in Table 2.
  • Example 4 The elastomer compositions of Examples 4 and 6 and Comparative Example 6 were obtained in the same manner as Example 2 except that the polymers shown in Table 1-3 were used.
  • Example 8 dilute sulfuric acid was added so that the pH of the gluten dispersion became weakly acidic (pH 6-7), and then blended with the polymer latex shown in Table 2.
  • Comparative Examples 2-4 and 7 Elastomer compositions of Comparative Examples 2, 3 and 7 were obtained in the same manner as Comparative Example 1 except that the polymers shown in Table 1-3 were used. In Comparative Example 4, dilute sulfuric acid was added so that the pH of the soy protein dispersion became weakly acidic (pH 6-7), and then blended with the polymer latex shown in Table 2.
  • Example 9 After mixing and stirring 40 mL of the peptide solution of Production Example 1 in 100 mL of chloroprene rubber latex (CR650 manufactured by Showa Denko KK, zeta potential: 32.72 mV) prepared to a solid content concentration of 50%, room temperature (about 30 ° C.) And left for 12 hours. Next, the entire amount of the obtained blended solution was poured into a tray having a bottom area of 200 cm 2 and naturally dried at room temperature (about 30 ° C.) to obtain a sheet-like composition. The obtained sheet-like composition was washed with water, and then naturally dried for 7 days to obtain an elastomer composition of Example 9. The amount of peptide P1 with respect to 100 parts by mass of the polymer (solid content) in the latex is 10 parts by mass.
  • chloroprene rubber latex CR650 manufactured by Showa Denko KK, zeta potential: 32.72 mV
  • Comparative Example 8 An elastomer composition of Comparative Example 8 was obtained in the same manner as in Example 9 except that pure water was used instead of the peptide solution of Production Example 1.
  • Example 10 1500 mL of the high ammonia natural rubber latex described above and 500 mL of chlorinated natural rubber latex (CL-NRL) were mixed to prepare a solid concentration of 50% by mass to obtain a mixed latex. After 200 g of this mixed latex was mixed with 200 g of the peptide solution of Production Example 1 and 200 g of a dispersion containing 10% by mass of gluten and 22.5 g of wax (HE-40 from Ipics, concentration 40% by mass) and stirred. And allowed to stand at room temperature (about 30 ° C.) for 12 hours.
  • CL-NRL chlorinated natural rubber latex
  • Comparative Example 9 An elastomer composition of Comparative Example 9 was obtained in the same manner as in Example 10 except that pure water was used instead of the peptide solution of Production Example 1.
  • Example 11-12 and Comparative Example 10 Elastomer compositions of Examples 11-12 and Comparative Example 10 were obtained in the same manner as in Example 1 except that the polymer and peptide formulations were as shown in Table 5.
  • Example 13 A blending solution was prepared in the same manner as Example 10. Next, a balloon mold having a coagulating liquid (calcium nitrate aqueous solution having a concentration of 30% by mass) attached to the surface was prepared, and this balloon mold was immersed in an immersion tank into which the above-described blending solution was charged. The balloon mold pulled up from the immersion tank was allowed to stand at room temperature (about 30 ° C.) for 1 hour, and then the balloon mold was removed to prepare a rubber balloon made of the elastomer composition of Example 13.
  • a coagulating liquid calcium nitrate aqueous solution having a concentration of 30% by mass
  • Example 14 3000 mL of the above-mentioned high ammonia natural rubber latex and 1000 mL of chlorinated natural rubber latex (CL-NRL) were mixed and prepared so as to have a solid content concentration of 50% by mass to obtain a mixed latex.
  • the mixed latex of 4000 mL was mixed with 200 g of the peptide solution of Production Example 1 and 200 g of a dispersion containing 10% by mass of gluten and 22.5 g of the wax described above, and then stirred, and then further blue-based coloring compound (manufactured by Dainichi Seika Co., Ltd.). 6 g of blue pigment and titanium oxide).
  • Example 14 a rubber balloon made of the elastomer composition of Example 14 was prepared in the same manner as in Example 13 using the compounded liquid obtained by allowing to stand at room temperature (about 30 ° C.) for 12 hours.
  • the amount of peptide P1 with respect to 100 parts by mass of the polymer (solid content) in the latex is 10 parts by mass.
  • Comparative Example 11 A commercially available rubber balloon obtained by vulcanizing a rubber composition containing natural rubber as a base rubber was used as a rubber balloon made of the elastomer composition of Comparative Example 11.
  • HA-NRL Commercially available high ammonia natural rubber latex (Zeta potential: -58.36 mV)
  • CRL (1) Chloroprene rubber latex (CR350 manufactured by Showa Denko KK, zeta potential: 32.72 mV)
  • CRL (2) Chloroprene rubber latex (CR650 manufactured by Showa Denko KK, zeta potential: 32.72 mV)
  • CL-NRL Chloride natural rubber latex (Zeta potential: 50.36 mV)
  • NBRL carboxylated modified acrylonitrile-butadiene rubber latex (LX550 manufactured by Nippon Zeon Co., Ltd., zeta potential: 47.31 mV)
  • IRL Isoprene rubber latex (Cariflex IR0401, zeta potential: 19.47 mV)
  • P1 Peptide of Production Example 1
  • P2 Peptide of Production Example 2
  • the elastomer compositions of the examples are superior in heat resistance, stretchability and flexibility as compared with the elastomer compositions of the comparative examples. Furthermore, as shown in Table 6, in the examples, higher evaluations are obtained for the feeling of use than in the comparative examples. From this evaluation result, the superiority of the present invention is clear.
  • the elastomer composition described above can be used in various fields such as medical supplies, hygiene products, and cosmetic products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

[Problem] To provide an elastomer composition that can be easily manufactured and has an excellent flexibility. [Solution] An elastomer composition comprising, as major components, a peptide that contains 4.0-30 mass% inclusive of cystine and a polymer that carries at least one kind of polar group selected from the group consisting of a halogen group, sulfone group, carbonyl group, amino group, imino group, carboxyl group, hydroxyl group, sulfide group, disulfide group, sulfonyl group, amide group and nitrile group. This elastomer composition has a crosslinked structure that is formed on the basis of an electrostatic interaction and hydrophobic effect of the peptide and the polymer. The 300% modulus of this elastomer composition (ME300) is smaller than the 300% modulus of the polymer (MP300).

Description

エラストマー組成物Elastomer composition
 本発明は、エラストマー組成物及びその製造方法に関する。 The present invention relates to an elastomer composition and a method for producing the same.
 エラストマー組成物は、タイヤ、ベルト、ホース等の工業用品、手袋、マスク等の医療関連用品、玩具等の家庭用品といった多くの分野で利用されている。代表的なエラストマー組成物は、加硫ゴムである。加硫ゴムは、基材ゴム、加硫剤、加硫促進剤、老化防止剤、補強剤等を含むゴム組成物が、加熱及び加圧されることにより形成される。安価で機械的特性に優れた基材ゴムとして、天然ゴムが多用されている。 Elastomer compositions are used in many fields such as industrial products such as tires, belts and hoses, medical-related products such as gloves and masks, and household products such as toys. A typical elastomer composition is vulcanized rubber. The vulcanized rubber is formed by heating and pressurizing a rubber composition containing a base rubber, a vulcanizing agent, a vulcanization accelerator, an anti-aging agent, a reinforcing agent and the like. Natural rubber is frequently used as a base rubber that is inexpensive and has excellent mechanical properties.
 加硫ゴムに関し、植物から採取される天然ゴムラテックス中のタンパク質成分が、急性アレルギーを誘発することが知られている。また、加硫促進剤や老化防止剤の種類によっては、遅延型アレルギーが誘発される場合がある。加硫促進助剤である亜鉛華(酸化亜鉛)からの亜鉛イオンの溶出といった環境問題も指摘されている。 Regarding vulcanized rubber, protein components in natural rubber latex collected from plants are known to induce acute allergies. In addition, delayed allergy may be induced depending on the type of vulcanization accelerator and anti-aging agent. Environmental problems such as elution of zinc ions from zinc oxide (zinc oxide), which is a vulcanization accelerator, have been pointed out.
 医療関連用品や家庭用品といった用途では、安全性の高いエラストマー組成物が求められている。また、乳幼児や高齢者等を対象とする用途では、従来の加硫ゴム製品よりもさらに柔軟で、伸縮性の高いエラストマー組成物が要望されている。 For applications such as medical-related products and household products, highly safe elastomer compositions are required. In addition, in applications intended for infants and the elderly, there is a demand for elastomer compositions that are more flexible than conventional vulcanized rubber products and have high stretchability.
 また、加硫ゴムの場合、製造工程だけではなく、リサイクル工程においても高温・高圧処理が必要である。省エネルギー及び省資源の観点から、加工及びリサイクルが容易な熱可塑性エラストマーが、加硫ゴムの代替として検討されているが、その機械的特性は十分に満足できるものではない。 In the case of vulcanized rubber, high temperature and high pressure treatment is required not only in the production process but also in the recycling process. From the viewpoint of energy saving and resource saving, thermoplastic elastomers that are easy to process and recycle are being investigated as an alternative to vulcanized rubber, but their mechanical properties are not fully satisfactory.
 特開2009-114250号公報、特開平6-166771号公報及び特開平8-12814号公報には、種々の検討がなされたゴム組成物が開示されている。 JP-A-2009-114250, JP-A-6-166671 and JP-A-8-12814 disclose rubber compositions for which various studies have been made.
 特開2009-114250号公報は、ジエン系ゴムとグルテンとを含むゴム組成物に関する。このゴム組成物には、加硫促進剤等が配合されている。このゴム組成物からなる加硫ゴムでは、グルテンとジエン系ゴムとが化学的に結合している。この加硫ゴムの破断強度(引張強度)及びモジュラスは大きい。破断強度及びモジュラスの大きな加硫ゴムは、柔軟性及び伸縮性が要求される用途での使用に適さない。 JP 2009-114250 A relates to a rubber composition containing a diene rubber and gluten. This rubber composition contains a vulcanization accelerator and the like. In the vulcanized rubber made of this rubber composition, gluten and diene rubber are chemically bonded. The vulcanized rubber has a high breaking strength (tensile strength) and modulus. Vulcanized rubber having a high breaking strength and modulus is not suitable for use in applications requiring flexibility and stretchability.
 特開平6-166771号公報及び特開平8-12814号公報では、加硫剤等を含まないゴム組成物及びゴム製品が提案されている。 JP-A-6-166671 and JP-A-8-12814 propose rubber compositions and rubber products that do not contain a vulcanizing agent or the like.
特開2009-114250号公報JP 2009-114250 A 特開平6-166771号公報JP-A-6-166671 特開平8-12814号公報JP-A-8-12814
 特開平6-166771号公報及び特開平8-12814号公報に開示されたゴム組成物には、モジュラス向上のために、タンパク質が配合されている。これらのゴム組成物からなるゴム製品の伸縮性及び柔軟性は、十分に満足できるものではない。 In the rubber compositions disclosed in JP-A-6-166671 and JP-A-8-12814, a protein is blended for improving the modulus. The stretchability and flexibility of rubber products made of these rubber compositions are not fully satisfactory.
 特開平6-166771号公報及び特開平8-12814号公報では、タンパク質中のチオール基(-SH)が、ゴム分子との化学結合の形成に寄与している。タンパク質に含まれるチオール基は、通常、空気中で酸化されて、シスチン結合(-S-S-)を形成する。チオール基を有するタンパク質を工業的に製造し、安定して利用することは、容易ではない。一方、シスチン結合を有するタンパク質を含み、かつ柔軟性及び伸縮性に優れたエラストマー組成物は、未だ検討されていない。 In JP-A-6-166671 and JP-A-8-12814, a thiol group (—SH) in a protein contributes to the formation of a chemical bond with a rubber molecule. A thiol group contained in a protein is usually oxidized in air to form a cystine bond (—SS—). It is not easy to industrially produce and stably use a protein having a thiol group. On the other hand, an elastomer composition containing a protein having a cystine bond and excellent in flexibility and stretchability has not yet been studied.
 本発明の目的は、柔軟性及び伸縮性に優れ、かつ製造容易なエラストマー組成物及びその製造方法の提供である。 An object of the present invention is to provide an elastomer composition excellent in flexibility and stretchability and easy to produce and a method for producing the same.
 本発明に係るエラストマー組成物は、4.0質量%以上30質量%以下のシスチンを含むペプチドと、ハロゲン基、スルホン基、カルボニル基、アミノ基、イミノ基、カルボキシル基、ヒドロキシル基、スルフィド基、ジスルフィド基、スルホニル基、アミド基及びニトリル基からなる群から選択される少なくとも1種の極性基を有する高分子とを主成分として含んでいる。このエラストマー組成物は、ペプチドと高分子との静電相互作用及び疎水効果に基づいて形成される架橋構造を有している。このエラストマー組成物の300%モジュラスME300は、主成分である高分子の300%モジュラスMP300よりも小さい。 The elastomer composition according to the present invention comprises a peptide containing 4.0% by mass to 30% by mass of cystine, a halogen group, a sulfone group, a carbonyl group, an amino group, an imino group, a carboxyl group, a hydroxyl group, a sulfide group, It contains as a main component a polymer having at least one polar group selected from the group consisting of a disulfide group, a sulfonyl group, an amide group and a nitrile group. This elastomer composition has a crosslinked structure formed on the basis of electrostatic interaction between a peptide and a polymer and a hydrophobic effect. The 300% modulus ME 300 of this elastomer composition is smaller than the 300% modulus MP 300 of the main polymer.
 好ましくは、このエラストマー組成物の300%モジュラスME300は、0.1MPa以上1.0MPa以下である。好ましくは、このエラストマー組成物の破断強度Tbは、0.1MPa以上6.5MPa以下である。 Preferably, the 300% modulus ME 300 of this elastomer composition is 0.1 MPa or more and 1.0 MPa or less. Preferably, the breaking strength Tb of this elastomer composition is 0.1 MPa or more and 6.5 MPa or less.
 好ましくは、この高分子のゼータ電位の絶対値は、30mV以上である。好ましくは、この高分子は、脱タンパク質処理をしていない天然ゴムである。 Preferably, the absolute value of the zeta potential of this polymer is 30 mV or more. Preferably, the polymer is natural rubber that has not been deproteinized.
 好ましくは、この高分子100質量部に対するこのペプチドの量は、1.0質量部以上20質量部以下である。 Preferably, the amount of the peptide with respect to 100 parts by mass of the polymer is 1.0 part by mass or more and 20 parts by mass or less.
 好ましくは、このエラストマー組成物は、実質的に加硫剤、加硫促進剤及び加硫促進助剤を含まない。 Preferably, the elastomer composition is substantially free of vulcanizing agent, vulcanization accelerator and vulcanization acceleration aid.
 好ましくは、このペプチドは、5.0質量%以上15質量%以下のシスチン結合を含んでいる。好ましくは、このペプチド中に含まれるチオール基の量は、1.0質量%以下である。 Preferably, this peptide contains 5.0% by mass or more and 15% by mass or less of cystine bonds. Preferably, the amount of thiol group contained in the peptide is 1.0% by mass or less.
 好ましくは、このペプチドは水に不溶の微粒子である。好ましくは、この微粒子の平均粒子径は、0.1μm以上1.0μm以下である。 Preferably, the peptide is a fine particle insoluble in water. Preferably, the average particle diameter of the fine particles is 0.1 μm or more and 1.0 μm or less.
 本発明に係るエラストマー組成物の製造方法は、
(1)4.0質量%以上30質量%以下のシスチンを含むペプチドと、ハロゲン基、スルホン基、カルボニル基、アミノ基、イミノ基、カルボキシル基、ヒドロキシル基、スルフィド基、ジスルフィド基、スルホニル基、アミド基及びニトリル基からなる群から選択される少なくとも1種の極性基を有する高分子とを、水性媒体中で混合して混合液を得る第一工程と、
(2)この混合液を乾燥させて、高分子とペプチドとの間に、静電相互作用及び疎水効果に基づく架橋構造を形成させることにより、その300%モジュラスME300が、この高分子の300%モジュラスMP300よりも小さいエラストマー組成物を得る第二工程とを含んでいる。
The method for producing an elastomer composition according to the present invention comprises:
(1) A peptide containing 4.0% by mass to 30% by mass of cystine, a halogen group, a sulfone group, a carbonyl group, an amino group, an imino group, a carboxyl group, a hydroxyl group, a sulfide group, a disulfide group, a sulfonyl group, A first step of obtaining a mixture by mixing a polymer having at least one polar group selected from the group consisting of an amide group and a nitrile group in an aqueous medium;
(2) The mixed solution is dried to form a crosslinked structure based on electrostatic interaction and hydrophobic effect between the polymer and the peptide, so that the 300% modulus ME 300 is 300 A second step of obtaining an elastomer composition smaller than% modulus MP 300 .
 本発明に係るエラストマー組成物は、主成分であるペプチドと高分子との静電相互作用及び疎水効果に基づいて形成される架橋構造を有している。このエラストマー組成物は、柔軟性及び伸縮性に優れる。このエラストマー組成物からなる成形品は、使用者に、適正な使用感を与える。さらに、このエラストマー組成物の製造には、加硫剤等の配合や、高温・高圧操作を要しない。このエラストマー組成物は、容易かつ安価に製造されうる。 The elastomer composition according to the present invention has a crosslinked structure formed on the basis of electrostatic interaction and hydrophobic effect between a peptide as a main component and a polymer. This elastomer composition is excellent in flexibility and stretchability. A molded article made of this elastomer composition gives a proper feeling to the user. Further, the production of this elastomer composition does not require blending of a vulcanizing agent or the like, or high temperature / high pressure operation. This elastomer composition can be easily and inexpensively produced.
 以下、本発明の好ましい実施形態に基づいて詳細に説明されるが、本発明の範囲がこの実施形態に限定して解釈されるものではない。以下の実施形態を含め、本発明の趣旨を損なわない範囲内で、種々の変更が可能である。なお、本願明細書において使用される用語は、特に言及されない限り、JIS K6200「ゴム-用語」に準拠して定義される。 Hereinafter, although it demonstrates in detail based on preferable embodiment of this invention, the scope of the present invention is limited to this embodiment and is not interpreted. Various modifications are possible within a range that does not impair the gist of the present invention, including the following embodiments. The terms used in this specification are defined according to JIS K6200 “Rubber-Terminology” unless otherwise specified.
(エラストマー組成物)
 本発明に係るエラストマー組成物の主成分は、4.0質量%以上30質量%以下のシスチンを含むペプチドと、ハロゲン基、スルホン基、カルボニル基、アミノ基、イミノ基、カルボキシル基、ヒドロキシル基、スルフィド基、ジスルフィド基、スルホニル基、アミド基及びニトリル基からなる群から選択される少なくとも1種の極性基を有する高分子である。このエラストマー組成物は、ペプチドと高分子とを主成分として形成される架橋構造を有している。
(Elastomer composition)
The main component of the elastomer composition according to the present invention is a peptide containing 4.0% by mass to 30% by mass of cystine, a halogen group, a sulfone group, a carbonyl group, an amino group, an imino group, a carboxyl group, a hydroxyl group, A polymer having at least one polar group selected from the group consisting of sulfide groups, disulfide groups, sulfonyl groups, amide groups and nitrile groups. This elastomer composition has a cross-linked structure formed mainly from a peptide and a polymer.
 この架橋構造では、高分子の分子鎖が、ペプチドと高分子との静電相互作用及び疎水効果に基づいて形成される架橋点によって、拘束されていると推測される。静電相互作用及び疎水効果に基づいて形成される架橋点による高分子鎖の拘束力は、共有結合によって形成される化学的架橋点による拘束力よりも小さい。静電相互作用及び疎水効果に基づいて形成された架橋構造を有するエラストマー組成物では、優れた柔軟性と伸縮性とが達成される。 In this cross-linked structure, it is presumed that the molecular chain of the polymer is constrained by the cross-linking points formed based on the electrostatic interaction between the peptide and the polymer and the hydrophobic effect. The binding force of the polymer chain by the crosslinking point formed based on the electrostatic interaction and the hydrophobic effect is smaller than the binding force by the chemical crosslinking point formed by the covalent bond. In the elastomer composition having a crosslinked structure formed on the basis of electrostatic interaction and hydrophobic effect, excellent flexibility and stretchability are achieved.
 さらに、本発明に係るエラストマー組成物は、共有結合に基づく化学的架橋構造を有していないにも関わらず、成形品として十分な耐熱性を備えている。本発明における架橋構造に関して、詳細なメカニズムは明確には解明されていないが、本発明者等による推測は以下の通りである。 Furthermore, the elastomer composition according to the present invention has sufficient heat resistance as a molded product despite having no chemical cross-linking structure based on a covalent bond. The detailed mechanism of the cross-linked structure in the present invention has not been clearly elucidated, but the inventor's estimation is as follows.
 例えば、ハロゲン基のような極性基を有する高分子は、水性媒体中で、負の表面電荷を有している。この高分子と、シスチンを含むペプチドとを混合すると、静電相互作用により、高分子鎖とペプチド分子とが凝集して集合体を形成すると考えられる。その後、室温下で自然乾燥をおこなって、水性媒体を除去すると、集合体内部で、高分子鎖とペプチド分子とがさらに接近する。分子鎖の接近によって、高分子鎖中の極性基近傍に形成された電子雲と、ペプチド中のシスチン結合近傍の電子雲とが接近して重なり合いが生じることにより、架橋点が形成されると推測される。この電子雲の重なり合いは、集合体内部のみならず、集合体間でも生じると考えられる。集合体内部及び集合体間による複数の電子雲の重なり合いが協同的に作用することにより、高分子及びペプチド中の共有結合の開裂と再結合とをともなわないにも関わらず、化学的架橋構造に近似した強固な架橋構造が形成されると考えられる。さらに、このメカニズムによれば、ペプチドのアミノ酸配列、特にシスチン結合の形成部位とその量が、架橋構造の形成に影響すると推測される。 For example, a polymer having a polar group such as a halogen group has a negative surface charge in an aqueous medium. When this polymer and a peptide containing cystine are mixed, it is considered that the polymer chain and the peptide molecule aggregate due to electrostatic interaction to form an aggregate. Thereafter, natural drying is performed at room temperature to remove the aqueous medium, so that the polymer chain and the peptide molecule further approach inside the assembly. Presumed that due to the approach of the molecular chain, the electron cloud formed near the polar group in the polymer chain and the electron cloud near the cystine bond in the peptide approach each other and overlap each other, thereby forming a crosslinking point. Is done. This overlap of electron clouds is thought to occur not only within the assembly but also between the assemblies. The overlap of multiple electron clouds inside and between aggregates acts cooperatively, resulting in a chemically cross-linked structure despite the covalent bond breaking and recombination in macromolecules and peptides. It is considered that an approximate strong cross-linked structure is formed. Furthermore, according to this mechanism, it is speculated that the amino acid sequence of the peptide, particularly the site and amount of the cystine bond, influence the formation of the crosslinked structure.
 本発明の目的が阻害されない限り、本発明に係るエラストマー組成物は、化学的架橋構造を含みうる。このエラストマー組成物において、ペプチドと高分子との他の分子間相互作用に基づいて架橋構造が形成されてもよい。 As long as the object of the present invention is not hindered, the elastomer composition according to the present invention may contain a chemically crosslinked structure. In this elastomer composition, a crosslinked structure may be formed based on other intermolecular interactions between the peptide and the polymer.
 前述した通り、ペプチドと高分子との静電相互作用及び疎水効果に基づいて形成された架橋構造を有するエラストマー組成物は、柔軟性及び伸縮性に優れる。本願明細書において、エラストマー組成物の柔軟性及び伸縮性は、JIS K6251記載の方法に準拠して測定される300%モジュラスを指標として示される。さらに、本発明に係るエラストマー組成物の300%モジュラスME300は、ペプチド及び高分子のみを含み、実質的に他の添加物を含まないエラストマー組成物からなる試験片の測定値として定義される。 As described above, the elastomer composition having a crosslinked structure formed based on the electrostatic interaction between the peptide and the polymer and the hydrophobic effect is excellent in flexibility and stretchability. In the specification of the present application, the flexibility and stretchability of the elastomer composition are indicated with an index of 300% modulus measured according to the method described in JIS K6251. Furthermore, the 300% modulus ME 300 of the elastomeric composition according to the present invention is defined as the measurement value of a test piece consisting of an elastomeric composition containing only peptides and polymers and substantially no other additives.
 本発明に係るエラストマー組成物の300%モジュラスME300は、その成分として含まれる高分子の300%モジュラスMP300よりも小さい。換言すれば、本発明に係るエラストマー組成物の300%モジュラスME300と、高分子の300%モジュラスMP300との比(ME300/MP300)は、1未満である。柔軟性及び伸縮性の観点から、比(ME300/MP300)は、0.95以下が好ましく、0.90以下がより好ましい。耐久性の観点から好ましい比(ME300/MP300)は、0.50以上である。 The 300% modulus ME 300 of the elastomer composition according to the present invention is smaller than the 300% modulus MP 300 of the polymer contained as its component. In other words, the ratio of 300% modulus ME 300 of the elastomer composition according to the present invention to 300% modulus MP 300 of the polymer (ME 300 / MP 300 ) is less than 1. In light of flexibility and stretchability, the ratio (ME 300 / MP 300 ) is preferably 0.95 or less, and more preferably 0.90 or less. A preferable ratio (ME 300 / MP 300 ) from the viewpoint of durability is 0.50 or more.
 本発明に係るエラストマー組成物の300%モジュラスME300は、1.0MPa以下が好ましい。ME300が1.0MPa以下のエラストマー組成物は柔軟であり、小さな力で容易に引き延ばされる。この観点から、エラストマー組成物のME300は0.9MPa以下がより好ましく、0.80MPa以下がさらに好ましい。耐久性の観点から好ましいME300は、0.1MPa以上である。 The 300% modulus ME 300 of the elastomer composition according to the present invention is preferably 1.0 MPa or less. An elastomer composition having an ME 300 of 1.0 MPa or less is soft and easily stretched with a small force. From this viewpoint, the ME 300 of the elastomer composition is more preferably 0.9 MPa or less, and further preferably 0.80 MPa or less. ME 300 preferable from the viewpoint of durability is 0.1 MPa or more.
 本発明に係るエラストマー組成物の破断強度Tbは、0.1MPa以上6.5MPa以下が好ましい。耐久性の観点からより好ましい破断強度Tbは、0.5MPa以上である。柔軟性及び伸縮性の観点から、より好ましい破断強度Tbは、6.3MPa以下である。本発明に係るエラストマー組成物の破断強度Tbは、ペプチド及び高分子のみを含み、実質的に他の添加物を含まないエラストマー組成物からなる試験片を用いて、JIS K6251記載の方法に準拠して測定される測定値である。 The breaking strength Tb of the elastomer composition according to the present invention is preferably 0.1 MPa or more and 6.5 MPa or less. A more preferable breaking strength Tb from the viewpoint of durability is 0.5 MPa or more. From the viewpoints of flexibility and stretchability, the more preferable breaking strength Tb is 6.3 MPa or less. The breaking strength Tb of the elastomer composition according to the present invention is based on the method described in JIS K6251 using a test piece made of an elastomer composition containing only a peptide and a polymer and substantially no other additives. Measured value.
 好ましくは、このエラストマー組成物は、高分子100質量部に対して、1.0質量部以上20質量部以下のペプチドを含む。架橋構造形成の観点から、ペプチドの量は、1.5質量部以上がより好ましく、2.0質量部以上がさらに好ましい。コスト上の観点から、より好ましいペプチドの量は10質量部以下である。 Preferably, the elastomer composition contains 1.0 part by mass or more and 20 parts by mass or less of peptide with respect to 100 parts by mass of the polymer. From the viewpoint of forming a crosslinked structure, the amount of the peptide is more preferably 1.5 parts by mass or more, and further preferably 2.0 parts by mass or more. From the viewpoint of cost, a more preferable amount of peptide is 10 parts by mass or less.
(高分子)
 本発明に係るエラストマー組成物に用いられる高分子は、ハロゲン基、スルホン基、カルボニル基、アミノ基、イミノ基、カルボキシル基、ヒドロキシル基、スルフィド基、ジスルフィド基、スルホニル基、アミド基及びニトリル基からなる群から選択される少なくとも1種の極性基を有している。高分子の極性基は、水性媒体中で大きな表面電荷を付与することにより、架橋構造の形成に寄与すると推測される。この観点から、より好ましい極性基は、ハロゲン基、カルボキシル基、スルフィド基、ジスルフィド基及びニトリル基である。シスチンを含むペプチドとの親和性の観点から、特に好ましい極性基は、スルフィド基及びジスルフィド基である。本発明の目的が達成される限り、高分子が他の極性基を含んでもよく、非極性の官能基を含んでもよい。異なる極性基を有する2種以上の高分子が混合されて用いられてもよい。
(High molecular)
The polymer used in the elastomer composition according to the present invention includes halogen groups, sulfone groups, carbonyl groups, amino groups, imino groups, carboxyl groups, hydroxyl groups, sulfide groups, disulfide groups, sulfonyl groups, amide groups, and nitrile groups. Having at least one polar group selected from the group consisting of It is speculated that the polar group of the polymer contributes to the formation of a crosslinked structure by imparting a large surface charge in an aqueous medium. From this viewpoint, more preferable polar groups are a halogen group, a carboxyl group, a sulfide group, a disulfide group, and a nitrile group. From the viewpoint of affinity with a peptide containing cystine, particularly preferred polar groups are a sulfide group and a disulfide group. As long as the object of the present invention is achieved, the polymer may contain other polar groups or non-polar functional groups. Two or more kinds of polymers having different polar groups may be mixed and used.
 静電相互作用及び疎水効果に基づく架橋構造を形成しうる限り、極性基を有する高分子の構造は、特に限定されない。上記極性基が、高分子の主鎖に含まれるものでもよく、高分子の側鎖又は末端に結合されたものでもよい。上記極性基が側鎖又は末端に結合される場合、主鎖となる高分子の種類は特に限定されない。機械的物性の観点から、ゴム系高分子及び熱可塑性エラストマーが好適に用いられ得る。 As long as a crosslinked structure based on electrostatic interaction and hydrophobic effect can be formed, the structure of the polymer having a polar group is not particularly limited. The polar group may be contained in the main chain of the polymer or may be bonded to the side chain or terminal of the polymer. When the polar group is bonded to the side chain or the terminal, the type of polymer serving as the main chain is not particularly limited. From the viewpoint of mechanical properties, rubber polymers and thermoplastic elastomers can be suitably used.
 極性基を有するゴム系高分子の具体例として、天然ゴム(NR)、塩素化天然ゴム、クロロプレンゴム(CR)、アクリロニトリル-ブタジエンゴム(NBR)、アクリロニトリル-イソプレンゴム(NIR)、アクリロニトリル-ブタジエン-イソプレンゴム(NBIR)、水素化ニトリルゴム(HNBR)、アクリルゴム(ACM)、エチレン-アクリルゴム(AEM)、カルボキシル化ブタジエンゴム(XBR)、カルボキシル化クロロプレンゴム(XCR)、カルボキシル化アクリロニトリル-ブタジエンゴム(XNBR)、臭素化ブチルゴム(BIIR)、塩素化ブチルゴム(CIIR)、ビニルピリジン-ブタジエンゴム(PBR)、ビニルピリジン-スチレン-ブタジエンゴム(PSBR)、クロロスルホン化ポリエチレンゴム等が挙げられる。 Specific examples of the rubber-based polymer having a polar group include natural rubber (NR), chlorinated natural rubber, chloroprene rubber (CR), acrylonitrile-butadiene rubber (NBR), acrylonitrile-isoprene rubber (NIR), acrylonitrile-butadiene- Isoprene rubber (NBIR), hydrogenated nitrile rubber (HNBR), acrylic rubber (ACM), ethylene-acrylic rubber (AEM), carboxylated butadiene rubber (XBR), carboxylated chloroprene rubber (XCR), carboxylated acrylonitrile-butadiene rubber (XNBR), brominated butyl rubber (BIIR), chlorinated butyl rubber (CIIR), vinylpyridine-butadiene rubber (PBR), vinylpyridine-styrene-butadiene rubber (PSBR), chlorosulfonated polyethylene Beam, and the like.
 さらに、主鎖として用いられうるゴム系高分子として、イソプレンゴム(IR)、ブタジエンゴム(BR)、1、2-ブタジエンゴム、スチレン-ブタジエンゴム(SBR)、ブチルゴム(IIR)、エチレン-プロピレン-ジエンゴム(EPDM)、エチレン-プロピレンゴム(EPM)、エチレン-ブテンゴム(EBM)、ポリエチレンゴム等が例示される。 Further, rubber polymers that can be used as the main chain include isoprene rubber (IR), butadiene rubber (BR), 1,2-butadiene rubber, styrene-butadiene rubber (SBR), butyl rubber (IIR), ethylene-propylene- Examples include diene rubber (EPDM), ethylene-propylene rubber (EPM), ethylene-butene rubber (EBM), and polyethylene rubber.
 熱可塑性エラストマーの例として、スチレンブロック含有エラストマー、ポリ塩化ビニル系エラストマー、ポリアミド系エラストマー、ポリオレフィン系エラストマー、ポリウレタン系エラストマー、ポリエステル系エラストマー等が挙げられる。熱可塑性エラストマーとゴム系高分子とが混合されて用いられてもよい。本発明の目的が達成される限り、ゴム系高分子及び熱可塑性エラストマー以外の他の樹脂が混合されてもよい。 Examples of thermoplastic elastomers include styrene block-containing elastomers, polyvinyl chloride elastomers, polyamide elastomers, polyolefin elastomers, polyurethane elastomers, polyester elastomers, and the like. A thermoplastic elastomer and a rubber-based polymer may be mixed and used. As long as the object of the present invention is achieved, a resin other than the rubber polymer and the thermoplastic elastomer may be mixed.
 ハロゲン基、スルホン基、カルボニル基、アミノ基、イミノ基、カルボキシル基、ヒドロキシル基、スルフィド基、ジスルフィド基、スルホニル基、アミド基及びニトリル基からなる群から選択される少なくとも1種の極性基を有する高分子が、さらに二重結合を含む場合、この二重結合と極性基との電子雲の重なり合いによって、より強固な架橋構造が形成されると考えられる。この観点から、好ましい高分子は、クロロプレンゴム、アクリロニトリル-ブタジエンゴム等のジエン系ゴム及び天然ゴムである。 It has at least one polar group selected from the group consisting of halogen groups, sulfone groups, carbonyl groups, amino groups, imino groups, carboxyl groups, hydroxyl groups, sulfide groups, disulfide groups, sulfonyl groups, amide groups, and nitrile groups. When the polymer further includes a double bond, it is considered that a stronger cross-linked structure is formed by the overlap of the electron cloud of the double bond and the polar group. From this viewpoint, preferred polymers are diene rubbers such as chloroprene rubber and acrylonitrile-butadiene rubber, and natural rubber.
 天然ゴムは、タンパク質に結合したω末端と、2個のtrans-1、4イソプレン単位と、約1000個のcis-1、4イソプレン単位と、脂質に結合したα末端とから構成される。天然ゴムの場合、主鎖中の二重結合と、タンパク質の構成アミノ酸中の極性基とが、ペプチド分子と相互作用すると考えられる。本発明において、天然ゴムを高分子として用いる場合、脱タンパク質処理をしていない天然ゴムが好ましい。 Natural rubber is composed of an ω-terminal bonded to protein, two trans-1,4-isoprene units, about 1000 cis-1,4-isoprene units, and an α-terminal bonded to lipid. In the case of natural rubber, it is considered that a double bond in the main chain and a polar group in a constituent amino acid of a protein interact with a peptide molecule. In the present invention, when natural rubber is used as a polymer, natural rubber that has not been deproteinized is preferred.
 本発明に係るエラストマー組成物に用いられる高分子の製造方法は、特に限定されない。所定の極性基を有する単量体の重合反応による方法、主鎖となる高分子と特定の化合物との化学反応による方法等が例示される。例えば、二重結合を含むジエン系ゴムと、カルボン酸無水物とを反応させて、カルボキシル基含有ジエン系ゴムを製造する方法が挙げられる。 The method for producing the polymer used in the elastomer composition according to the present invention is not particularly limited. Examples thereof include a method based on a polymerization reaction of a monomer having a predetermined polar group, a method based on a chemical reaction between a polymer serving as a main chain and a specific compound. For example, a method of producing a carboxyl group-containing diene rubber by reacting a diene rubber containing a double bond with a carboxylic anhydride.
 本発明の一実施形態に係るエラストマー組成物には、高分子からなる微粒子が水性媒体中にコロイド状に分散したラテックスが製造されて用いられる。極性基を有する高分子からなる微粒子の表面は、水性媒体中で、正又は負に帯電する。ペプチドとの静電相互作用が促進されるとの観点から、大きな表面電荷を有する高分子が好ましい。 In the elastomer composition according to an embodiment of the present invention, a latex in which fine particles made of polymer are colloidally dispersed in an aqueous medium is manufactured and used. The surface of the fine particle composed of a polymer having a polar group is positively or negatively charged in an aqueous medium. From the viewpoint of promoting electrostatic interaction with a peptide, a polymer having a large surface charge is preferred.
 本願明細書において、高分子微粒子の表面電荷は、ゼータ電位を指標として示される。ゼータ電位とは、水性媒体に分散された微粒子表面上の静止流体層と、水性媒体との間の電位差として定義される。 In the present specification, the surface charge of the polymer fine particles is indicated by zeta potential. Zeta potential is defined as the potential difference between a stationary fluid layer on the surface of a microparticle dispersed in an aqueous medium and the aqueous medium.
 ゼータ電位の絶対値が30mV以上である高分子が好ましい。ペプチドと高分子との親和性の観点から、ゼータ電位の絶対値が40mV以上の高分子がより好ましく、45mV以上の高分子がさらに好ましく、50mV以上の高分子が特に好ましい。ゼータ電位の絶対値の上限値は、特に限定されないが、製造コスト等の観点から、200mV以下が好ましい。本願明細書において、高分子のゼータ電位は、約0.05質量%の高分子を含む分散液(pH7、25℃)を、ゼータ電位測定装置(大塚電子社製のELSZ-1000Z)で測定したときの測定値として定義される。 A polymer having an absolute value of zeta potential of 30 mV or more is preferable. From the viewpoint of the affinity between the peptide and the polymer, a polymer having an absolute value of zeta potential of 40 mV or higher is more preferable, a polymer of 45 mV or higher is more preferable, and a polymer of 50 mV or higher is particularly preferable. The upper limit of the absolute value of the zeta potential is not particularly limited, but is preferably 200 mV or less from the viewpoint of manufacturing cost and the like. In the present specification, the zeta potential of the polymer was measured with a zeta potential measuring device (ELSZ-1000Z manufactured by Otsuka Electronics Co., Ltd.) for a dispersion (pH 7, 25 ° C.) containing about 0.05% by mass of the polymer. When defined as a measured value.
(ペプチド)
 本願明細書において、「ペプチド」とは、2分子以上のアミノ酸がペプチド結合により結合された化合物の総称として定義される。通常、2~10分子のアミノ酸からなるペプチドが、オリゴペプチドと称される。10~100分子のアミノ酸からなるペプチドが、ポリペプチドと称される。100分子を超えるアミノ酸が結合した化合物が、タンパク質と称される。特に言及されない限り、本願明細書における「ペプチド」の概念には、ジペプチド、トリペプチド、オリゴペプチド、ポリペプチド及びタンパク質が含まれる。
(peptide)
In the present specification, “peptide” is defined as a general term for compounds in which two or more molecules of amino acids are linked by peptide bonds. Usually, a peptide consisting of 2 to 10 amino acids is called an oligopeptide. A peptide consisting of 10 to 100 amino acids is called a polypeptide. A compound in which more than 100 amino acids are bound is called a protein. Unless otherwise stated, the term “peptide” herein includes dipeptides, tripeptides, oligopeptides, polypeptides and proteins.
 本発明に係るエラストマー組成物に用いられるペプチドは、構成アミノ酸として、シスチンを含む。このペプチドの全構成アミノ酸に対するシスチン含量[Cys]は、4.0質量%以上30質量%以下である。高分子との静電相互作用が促進されるとの観点から、シスチン含量[Cys]は5.0質量%以上が好ましく、6.0質量%以上がより好ましい。製造及び入手容易との観点から、好ましいシスチン含量[Cys]は20質量%以下である。本願明細書において、ペプチド中のシスチン含量[Cys]は、アミノ酸自動分析計(日本電子社製の全自動アミノ酸分析機「JLC-500/V」、カラム:強酸性陽イオン交換樹脂LCR-6)を用いて測定される。 The peptide used in the elastomer composition according to the present invention contains cystine as a constituent amino acid. The cystine content [Cys] with respect to all constituent amino acids of this peptide is 4.0% by mass or more and 30% by mass or less. From the viewpoint of promoting electrostatic interaction with the polymer, the cystine content [Cys] is preferably 5.0% by mass or more, and more preferably 6.0% by mass or more. From the viewpoint of production and availability, the preferred cystine content [Cys] is 20% by mass or less. In the specification of the present application, the cystine content [Cys] in the peptide is an amino acid automatic analyzer (a fully automatic amino acid analyzer “JLC-500 / V” manufactured by JEOL Ltd., column: strongly acidic cation exchange resin LCR-6). Is measured.
 シスチン含量の異なる2以上のペプチドを含む混合ペプチドが用いられてもよい。この混合ペプチドは、シスチン含量が4.0質量%未満のペプチドを含みうる。この混合ペプチドでは、ペプチド中の全構成アミノ酸に対するシスチン含量の平均値が、4.0質量%以上30質量%以下となるように調製される。ペプチド中の他の構成アミノ酸の種類及び比率は、本発明の目的が阻害されない範囲内で、適宜選択される。 A mixed peptide containing two or more peptides having different cystine contents may be used. The mixed peptide may include a peptide having a cystine content of less than 4.0% by mass. This mixed peptide is prepared so that the average value of cystine content with respect to all constituent amino acids in the peptide is 4.0% by mass or more and 30% by mass or less. The types and ratios of the other constituent amino acids in the peptide are appropriately selected within a range in which the object of the present invention is not inhibited.
 構成アミノ酸として、システインを含むペプチドが存在する。システインは、チオール基(-SH)を有する。チオール基は、空気中で容易に酸化される。酸化によって、2分子のシステインから、シスチン結合(-S-S-)を有するシスチンが形成される。ペプチド中のシステインのほとんどは、シスチンとして含まれている。 There is a peptide containing cysteine as a constituent amino acid. Cysteine has a thiol group (-SH). Thiol groups are easily oxidized in air. Oxidation forms cystine with a cystine bond (-SS-) from two molecules of cysteine. Most of the cysteines in the peptide are contained as cystine.
 本発明に係るエラストマー組成物では、ペプチド中のシスチン結合(-S-S-)が、高分子鎖と相互作用することにより、架橋構造の形成に寄与すると推測される。得られるエラストマー組成物の柔軟性及び伸縮性の観点から、ペプチド中のシスチン結合の量は、5.0質量%以上が好ましく、6.0質量%以上がより好ましく、7.0質量%がさらに好ましい。製造及び入手が容易との観点から、好ましいシスチン結合の量は15質量%以下である。 In the elastomer composition according to the present invention, it is presumed that the cystine bond (-SS-) in the peptide contributes to the formation of a crosslinked structure by interacting with the polymer chain. From the viewpoint of flexibility and stretchability of the obtained elastomer composition, the amount of cystine bond in the peptide is preferably 5.0% by mass or more, more preferably 6.0% by mass or more, and further 7.0% by mass. preferable. From the viewpoint of easy production and availability, the preferable amount of cystine bond is 15% by mass or less.
 本発明に係るエラストマー組成物に用いられるペプチドは、実質的にチオール基(-SH)を含まないが、本発明の目的が達成される限り、ペプチドがチオール基を含んでもよい。ペプチド中のチオール基含量は、1.0質量%以下が好ましく、0.9質量%以下がより好ましく、0.8質量%以下がさらに好ましい。 The peptide used in the elastomer composition according to the present invention does not substantially contain a thiol group (-SH), but the peptide may contain a thiol group as long as the object of the present invention is achieved. The thiol group content in the peptide is preferably 1.0% by mass or less, more preferably 0.9% by mass or less, and further preferably 0.8% by mass or less.
 本発明の目的が達成される限り、4.0質量%以上30質量%以下のシスチンを含むペプチドを得る方法は、特に限定されない。例えば、天然物からの抽出、天然物由来タンパク質の加水分解、遺伝子工学、液相法又は固相法による合成等が挙げられる。天然物由来タンパク質を、酸、アルカリ又は酵素によって加水分解する方法が、好適に用いられる。加水分解条件は、天然物由来タンパク質の種類に応じて、適宜選択される。システインを含む天然物由来タンパク質を加水分解した後、さらに酸化処理することにより、シスチンを含むペプチドが得られてもよい。 As long as the object of the present invention is achieved, a method for obtaining a peptide containing 4.0% by mass or more and 30% by mass or less of cystine is not particularly limited. For example, extraction from a natural product, hydrolysis of a protein derived from a natural product, genetic engineering, synthesis by a liquid phase method or a solid phase method and the like can be mentioned. A method of hydrolyzing a natural product-derived protein with an acid, alkali or enzyme is preferably used. Hydrolysis conditions are appropriately selected depending on the type of natural product-derived protein. A peptide containing cystine may be obtained by hydrolyzing a natural product-derived protein containing cysteine, followed by further oxidation treatment.
 シスチン又はシステインを含む天然物由来タンパク質として、獣毛、羽毛、卵殻膜、爪、角、甲羅、絹糸等に含まれるケラチン及びクチクル、乳清に含まれるα-ラクトアルブミン、β-ラクトグロブリン、ウシ血清アルブミン等、卵白に含まれるオボアルブミン、オボトランスフェリン等の動物由来タンパク質が例示される。小麦、米、大豆等に含まれる植物由来タンパク質が用いられてもよい。シスチン及びシステイン含量が多いケラチン、クチクル、グルテニン及びオリゼニンが好ましい。安全性の観点から、より好ましいタンパク質は、ケラチン、クチクル及びオリゼニンである。 Proteins derived from natural products containing cystine or cysteine include keratin and cuticles contained in animal hair, feathers, eggshell membranes, nails, horns, shells, silk threads, etc., α-lactalbumin, β-lactoglobulin contained in whey Examples include animal-derived proteins such as serum albumin, ovalbumin and ovotransferrin contained in egg white. Plant-derived proteins contained in wheat, rice, soybeans and the like may be used. Keratins, cuticles, glutenins and oryzins with high cystine and cysteine content are preferred. From the viewpoint of safety, more preferred proteins are keratin, cuticle and oryzinin.
 天然物由来タンパク質が加水分解されることにより、ペプチド結合が切断され、分子量数千~数万のペプチドが生成される。得られるペプチドの分子量は、原料であるタンパク質の種類や加水分解条件に依存する。本発明の目的が達成される限り、ペプチドの分子量は特に限定されない。高分子との混合性の観点から好ましいペプチドの分子量は、10,000以下であり、より好ましくは、8,000以下であり、更に好ましくは、5,000以下である。分子量の異なる2以上ペプチドが混合されて用いられてもよい。 When a natural product-derived protein is hydrolyzed, a peptide bond is cleaved to generate a peptide having a molecular weight of several thousand to several tens of thousands. The molecular weight of the peptide obtained depends on the type of protein as a raw material and hydrolysis conditions. As long as the object of the present invention is achieved, the molecular weight of the peptide is not particularly limited. The molecular weight of a peptide that is preferable from the viewpoint of miscibility with a polymer is 10,000 or less, more preferably 8,000 or less, and still more preferably 5,000 or less. Two or more peptides having different molecular weights may be mixed and used.
 本願明細書において、ペプチドの分子量は、高速液体クロマトグラフを用いて、排除限界クロマトグラフィー(SEC)により、以下の測定条件で測定される数平均分子量として定義される。
  装置:HPC-8220GPC(東ソー社製)
  カラム:TSK-gel GMPW-XL(東ソー社製)
  溶離液:ジメチルホルムアミド(DMF)
  カラム温度:40℃
  流速:1.0(ml/min.)
  検出器:示差屈折率計RI-8022
  標準物質:6-メルカプトプリンモノハイドレート
In the present specification, the molecular weight of a peptide is defined as the number average molecular weight measured under the following measurement conditions by exclusion limit chromatography (SEC) using a high performance liquid chromatograph.
Apparatus: HPC-8220GPC (manufactured by Tosoh Corporation)
Column: TSK-gel GMPW-XL (manufactured by Tosoh Corporation)
Eluent: Dimethylformamide (DMF)
Column temperature: 40 ° C
Flow rate: 1.0 (ml / min.)
Detector: differential refractometer RI-8022
Reference material: 6-mercaptopurine monohydrate
 本発明において用いられるペプチドは、水溶性であっても良く、水不溶性であってもよい。ペプチドが水不溶性の場合、高分子との混合性の観点から、平均粒子径1.0μm以下の微粒子とされることが好ましい。ペプチド微粒子の平均粒子径の下限値は特に限定されないが、製造容易との観点から、好ましくは0.1μm以上である。ペプチド微粒子の平均粒子径は、動的光散乱法により測定される。水溶性のペプチドと、水不溶性のペプチド微粒子とを混合して用いてもよい。 The peptide used in the present invention may be water-soluble or water-insoluble. When the peptide is insoluble in water, it is preferable to use fine particles having an average particle size of 1.0 μm or less from the viewpoint of mixing with a polymer. The lower limit of the average particle diameter of the peptide fine particles is not particularly limited, but is preferably 0.1 μm or more from the viewpoint of easy production. The average particle diameter of the peptide fine particles is measured by a dynamic light scattering method. A mixture of a water-soluble peptide and water-insoluble peptide fine particles may be used.
(エラストマー組成物の製造方法)
 本発明の一実施形態に係るエラストマー組成物は、以下の工程に従って製造される。
(Method for producing elastomer composition)
The elastomer composition according to an embodiment of the present invention is manufactured according to the following steps.
 この実施形態では、初めに、高分子からなる微粒子が水性媒体中にコロイド状に分散されたラテックスが準備される。この高分子は、ハロゲン基、スルホン基、カルボニル基、アミノ基、イミノ基、カルボキシル基、ヒドロキシル基、スルフィド基、ジスルフィド基、スルホニル基、アミド基及びニトリル基からなる群から選択される少なくとも1種の極性基を有している。 In this embodiment, first, a latex in which fine particles made of a polymer are colloidally dispersed in an aqueous medium is prepared. The polymer is at least one selected from the group consisting of halogen groups, sulfone groups, carbonyl groups, amino groups, imino groups, carboxyl groups, hydroxyl groups, sulfide groups, disulfide groups, sulfonyl groups, amide groups, and nitrile groups. It has a polar group.
 本発明において、ラテックス中の高分子含有量は、特に限定されない。ペプチドとの混合性の観点から、固形分として、30質量%以上70質量%以下の高分子を含むラテックスが好ましい。より好ましい高分子含有量は、40質量%以上60質量%以下である。 In the present invention, the polymer content in the latex is not particularly limited. From the viewpoint of miscibility with the peptide, latex containing a polymer of 30% by mass or more and 70% by mass or less as the solid content is preferable. A more preferable polymer content is 40% by mass or more and 60% by mass or less.
 ラテックスの分散安定性の観点から、高分子からなる微粒子の平均粒子径は、0.5μm以下が好ましく、0.4μm以下がより好ましい。製造容易との観点から、好ましい平均粒子径は、0.01μm以上である。高分子微粒子の平均粒子径は、レーザー回折式粒度分布測定装置を用いて、動的光散乱法により測定される。 From the viewpoint of dispersion stability of latex, the average particle size of the fine particles made of polymer is preferably 0.5 μm or less, and more preferably 0.4 μm or less. From the viewpoint of ease of production, the preferred average particle size is 0.01 μm or more. The average particle diameter of the polymer fine particles is measured by a dynamic light scattering method using a laser diffraction particle size distribution measuring apparatus.
 ラテックスに含まれる代表的な水性媒体は水である。本発明の目的が達成される限り、水性媒体は、有機溶媒を含みうる。水との均一な混合が可能な親水性有機溶媒が好ましい。親水性有機溶媒の具体例として、メタノール、エタノール等の低級アルコール類、エチレングリコール、グリセリン等の多価アルコール類が挙げられる。ペプチドとの相互作用が阻害されない限り、水性媒体に、分散安定剤、乳化剤、界面活性剤等の添加剤が配合されてもよい。 A typical aqueous medium contained in latex is water. As long as the object of the present invention is achieved, the aqueous medium may contain an organic solvent. A hydrophilic organic solvent capable of uniform mixing with water is preferred. Specific examples of the hydrophilic organic solvent include lower alcohols such as methanol and ethanol, and polyhydric alcohols such as ethylene glycol and glycerin. As long as the interaction with the peptide is not inhibited, additives such as a dispersion stabilizer, an emulsifier, and a surfactant may be added to the aqueous medium.
 本発明において、ラテックスを得る方法は、特に限定されない。例えば、ハロゲン基、スルホン基、カルボニル基、アミノ基、イミノ基、カルボキシル基、ヒドロキシル基、スルフィド基、ジスルフィド基、スルホニル基、アミド基及びニトリル基からなる群から選択される少なくとも1種の極性基を有するモノマーを、界面活性剤存在下で乳化重合する方法が挙げられる。 In the present invention, the method for obtaining latex is not particularly limited. For example, at least one polar group selected from the group consisting of halogen groups, sulfone groups, carbonyl groups, amino groups, imino groups, carboxyl groups, hydroxyl groups, sulfide groups, disulfide groups, sulfonyl groups, amide groups, and nitrile groups And a method of emulsion polymerization of a monomer having a surfactant in the presence of a surfactant.
 本発明の他の実施形態では、ラテックスとして、植物から採集された天然ゴムラテックスが用いられる。天然ゴムラテックスは、平均粒子径約1μmのゴム粒子が水に分散した分散液である。脱タンパク質処理されていない天然ゴムラテックスが、好ましい。本発明に係るエラストマー組成物では、天然ゴムラテックス中のタンパク質が、架橋構造の形成に寄与すると推測される。本発明の目的が達成される限り、脱タンパク質処理された天然ゴムラテックスが用いられてもよい。 In another embodiment of the present invention, natural rubber latex collected from plants is used as the latex. Natural rubber latex is a dispersion in which rubber particles having an average particle diameter of about 1 μm are dispersed in water. Natural rubber latex that has not been deproteinized is preferred. In the elastomer composition according to the present invention, it is presumed that proteins in natural rubber latex contribute to the formation of a crosslinked structure. As long as the object of the present invention is achieved, a deproteinized natural rubber latex may be used.
 続いて、準備されたラテックスにペプチドが添加されることにより、高分子及びペプチドを含む混合液が形成される。このペプチドは、構成アミノ酸として、4.0質量%以上30質量%以下のシスチンを含んでいる。 Subsequently, a peptide is added to the prepared latex to form a mixed solution containing the polymer and the peptide. This peptide contains 4.0% by mass to 30% by mass of cystine as a constituent amino acid.
 好ましくは、ラテックス中の高分子固形分100質量部に対して、1.0質量部以上20質量部以下のペプチドが添加される。架橋構造形成の観点から、ペプチドの量は、1.5質量部以上がより好ましく、2.0質量部以上がさらに好ましい。コスト上の観点から、より好ましいペプチドの量は10質量部以下である。 Preferably, 1.0 part by mass or more and 20 parts by mass or less of the peptide is added with respect to 100 parts by mass of the polymer solid content in the latex. From the viewpoint of forming a crosslinked structure, the amount of the peptide is more preferably 1.5 parts by mass or more, and further preferably 2.0 parts by mass or more. From the viewpoint of cost, a more preferable amount of peptide is 10 parts by mass or less.
 本発明において、ペプチドは、水溶液としてラテックスに添加されてもよく、ペプチド微粒子の分散液としてラテックスに添加されてもよい。水溶性ペプチドから調製された水溶液と、水不溶性のペプチド微粒子の分散液とが併用されてもよい。この製造方法では、ペプチドが水溶性であるか否かにかかわらず、ラテックス中の高分子微粒子との間で、静電相互作用及び疎水効果による疎水性相互作用が生じ得る。 In the present invention, the peptide may be added to the latex as an aqueous solution, or may be added to the latex as a dispersion of peptide fine particles. An aqueous solution prepared from a water-soluble peptide and a dispersion of water-insoluble peptide fine particles may be used in combination. In this production method, regardless of whether the peptide is water-soluble or not, hydrophobic interaction due to electrostatic interaction and hydrophobic effect can occur between the polymer fine particles in the latex.
 次の工程として、高分子及びペプチドを含む混合液が、所定の乾燥容器に投入されて、乾燥されることにより、本発明に係るエラストマー組成物が製造される。 As the next step, the mixed solution containing the polymer and the peptide is put into a predetermined drying container and dried to produce the elastomer composition according to the present invention.
 高分子及びペプチドを含む混合液の乾燥条件は、混合液の量及び乾燥容器の形状によって、適宜選択される。ペプチド中のシスチン基の開裂及び高分子との共有結合の形成が抑制されるとの観点から、乾燥温度は、100℃以下が好ましく、90℃以下がより好ましく、80℃以下がさらに好ましい。乾燥効率の観点から、好ましい乾燥温度は、15℃以上である。理想的な乾燥条件は、室温での自然乾燥である。本願明細書において、室温とは25℃以上30℃以下を意味する。 The drying conditions of the mixed solution containing the polymer and the peptide are appropriately selected depending on the amount of the mixed solution and the shape of the drying container. From the viewpoint that cleavage of the cystine group in the peptide and formation of a covalent bond with the polymer are suppressed, the drying temperature is preferably 100 ° C. or lower, more preferably 90 ° C. or lower, and further preferably 80 ° C. or lower. From the viewpoint of drying efficiency, a preferable drying temperature is 15 ° C. or higher. The ideal drying condition is natural drying at room temperature. In the present specification, room temperature means 25 ° C. or higher and 30 ° C. or lower.
 乾燥時間は、混合液中の水性媒体の減少量を指標として調整される。乾燥前の混合液に含まれる水性媒体の90質量%以上が除去される乾燥時間が好ましい。より好ましくは95質量%以上、さらに好ましくは98質量%以上の水性媒体が除去されるように、乾燥時間が調整される。 The drying time is adjusted using the amount of reduction of the aqueous medium in the mixed solution as an index. A drying time during which 90% by mass or more of the aqueous medium contained in the mixed solution before drying is removed is preferable. More preferably, the drying time is adjusted so that 95% by mass or more, more preferably 98% by mass or more of the aqueous medium is removed.
 この実施形態では、エラストマー組成物は、実質的に、加硫剤、加硫促進剤、加硫促進助剤を含まない。このエラストマー組成物は、高分子鎖が加硫剤等によって架橋された架橋構造を含まない。このエラストマー組成物では、従来の加硫ゴム製品よりも小さな300%モジュラスが達成される。このエラストマー組成物からなる成形品は、小さな力で容易に変形される。この成形品が人体に適用されたとき、使用者に快適な使用感を与える。このエラストマー組成物が、乳幼児向けの玩具や高齢者向けの手袋等に適用された場合、特に優れた使用感が達成される。 In this embodiment, the elastomer composition is substantially free of a vulcanizing agent, a vulcanization accelerator, and a vulcanization acceleration aid. This elastomer composition does not include a crosslinked structure in which polymer chains are crosslinked by a vulcanizing agent or the like. This elastomer composition achieves a 300% modulus that is smaller than conventional vulcanized rubber products. A molded article made of this elastomer composition is easily deformed with a small force. When this molded product is applied to the human body, it gives a comfortable feeling to the user. When this elastomer composition is applied to toys for infants, gloves for elderly people, and the like, a particularly excellent feeling of use is achieved.
 他の実施形態では、用途に応じて必要な機械的物性を向上させるため、エラストマー組成物に、加硫剤、加硫促進剤、加硫促進助剤、補強剤、着色剤、老化防止剤等の添加剤が配合され、加硫工程に付される。このエラストマー組成物は、静電相互作用及び疎水効果に基づく架橋構造と、加硫剤等によって得られる架橋構造とを含む。このエラストマー組成物では、柔軟性及び伸縮性が阻害されることなく、強度、耐久性、耐熱性等の物性が改善される。このエラストマー組成物は、種々の用途分野に適用されうる。 In other embodiments, a vulcanizing agent, a vulcanization accelerator, a vulcanization acceleration aid, a reinforcing agent, a colorant, an antiaging agent, etc. These additives are blended and subjected to a vulcanization process. This elastomer composition includes a crosslinked structure based on electrostatic interaction and a hydrophobic effect, and a crosslinked structure obtained by a vulcanizing agent or the like. In this elastomer composition, physical properties such as strength, durability, and heat resistance are improved without impairing flexibility and stretchability. This elastomer composition can be applied to various fields of application.
 以下、実施例によって本発明の効果が明らかにされるが、この実施例の記載に基づいて本発明が限定的に解釈されるべきではない。 Hereinafter, the effects of the present invention will be clarified by examples. However, the present invention should not be interpreted in a limited manner based on the description of the examples.
(ペプチド液の調製)
 [製造例1]
 沸騰させて脱気した2Lの水に、水酸化カリウム(和光純薬製、試薬1級)30g、アルキルスルホン酸界面活性剤(ライオン社製チャーミークリスタ)100mL、非イオン系界面活性剤(花王社製、エマルゲン)20mL及びチオ硫酸ナトリウム(和光純薬製、試薬1級)20gを配合して、処理液を得た。この処理液に、約1cmの長さに切断した市販の毛糸(羊毛)150gを添加した後、60℃で120時間攪拌することにより、製造例1のペプチド液を得た。このペプチド液は、微量の微細粒子を含む茶褐色の溶液である。このペプチド液に含まれるペプチドP1の物性は、以下の通りである。
 数平均分子量(Mn):8,000
 シスチン含量:8.0質量%
 シスチン結合の量:8.0質量%
 チオール基の量:0質量%
(Preparation of peptide solution)
[Production Example 1]
In 2 L of water boiled and degassed, 30 g of potassium hydroxide (manufactured by Wako Pure Chemicals, reagent grade 1), 100 mL of alkylsulfonic acid surfactant (Charmy Christa manufactured by Lion), nonionic surfactant (Kao Corporation) Manufactured by Emulgen) and 20 g of sodium thiosulfate (manufactured by Wako Pure Chemicals, reagent grade 1) were mixed to obtain a treatment solution. To this treatment solution, 150 g of commercially available wool (wool) cut to a length of about 1 cm was added, followed by stirring at 60 ° C. for 120 hours to obtain the peptide solution of Production Example 1. This peptide solution is a brown solution containing a minute amount of fine particles. The physical properties of peptide P1 contained in this peptide solution are as follows.
Number average molecular weight (Mn): 8,000
Cystine content: 8.0% by mass
Amount of cystine bond: 8.0% by mass
Amount of thiol group: 0% by mass
 [製造例2]
 尿素80g、2-メルカプトエタノール20g及びドデシル硫酸ナトリウム10gを、純水100mLに配合して、処理液を得た。この処理液に、羊毛20gを添加して、60℃で24時間攪拌した後、残存する不溶粒子を透析により除去することにより、製造例2のペプチド液を得た。このペプチド液に含まれるペプチドP2の物性は、以下の通りである。
 数平均分子量(Mn):400,000
 シスチン含量:8.0質量%
 シスチン結合の量:0質量%
 チオール基の量:8.0質量%
[Production Example 2]
80 g of urea, 20 g of 2-mercaptoethanol and 10 g of sodium dodecyl sulfate were blended in 100 mL of pure water to obtain a treatment solution. To this treatment solution, 20 g of wool was added and stirred at 60 ° C. for 24 hours, and then the remaining insoluble particles were removed by dialysis to obtain the peptide solution of Production Example 2. The physical properties of peptide P2 contained in this peptide solution are as follows.
Number average molecular weight (Mn): 400,000
Cystine content: 8.0% by mass
Amount of cystine bond: 0% by mass
Amount of thiol group: 8.0% by mass
(塩化天然ゴムラテックス(CL-NRL)の調製)
 市販の高アンモニア天然ゴムラテックス(ゴム固形分濃度62質量%)1000mLに、500mLの洗浄剤(東京硝子機械社製のFineクリーンCL、次亜塩素酸ソーダ及び水酸化カリウムを各3質量%含有)と、40mLの非イオン性界面活性剤(花王社製のエマルゲン106、濃度25質量%)と、400mLの純水とを添加して混合した。得られた混合液のpHが弱酸性(pH6-7)になるように、10質量%の硫酸を添加した後、一部固形化した浮遊物を除去することにより、塩化天然ゴムラテックス(CL-NRL)を製造した。
(Preparation of chlorinated natural rubber latex (CL-NRL))
1000 mL of commercially available high-ammonia natural rubber latex (rubber solid content concentration: 62% by mass), 500 mL of cleaning agent (containing 3% by mass of Fine Clean CL, sodium hypochlorite and potassium hydroxide manufactured by Tokyo Glass Machinery Co., Ltd.) Then, 40 mL of a nonionic surfactant (Emulgen 106 manufactured by Kao Corporation, concentration 25 mass%) and 400 mL of pure water were added and mixed. After adding 10% by mass of sulfuric acid so that the pH of the resulting mixed solution becomes weakly acidic (pH 6-7), the partially solidified suspended matter is removed, thereby chlorinated natural rubber latex (CL- NRL).
 [実施例1]
 固形分濃度50%に調製した市販の高アンモニア天然ゴムラテックス(ゼータ電位:-58.36mV)5mLに、製造例1のペプチド液2mLを配合して攪拌した後、室温(約30℃)で12時間静置した。次いで、得られた配合液の全量を、底面積24cmのトレイに流し入れ、室温(約30℃)で自然乾燥することにより、シート状の組成物を得た。得られたシート状の組成物を水で洗浄した後、さらに7日間、自然乾燥することにより、実施例1のエラストマー組成物を得た。ラテックス中の高分子(固形分)100質量部に対するペプチドP1の添加量は10質量部である。
[Example 1]
5 mL of a commercially available high-ammonia natural rubber latex (zeta potential: −58.36 mV) prepared to a solid content concentration of 50% was mixed with 2 mL of the peptide solution of Production Example 1, and then stirred at room temperature (about 30 ° C.). Let stand for hours. Next, the entire amount of the obtained blended solution was poured into a tray having a bottom area of 24 cm 2 and naturally dried at room temperature (about 30 ° C.) to obtain a sheet-like composition. The obtained sheet-like composition was washed with water and then naturally dried for 7 days to obtain the elastomer composition of Example 1. The amount of peptide P1 added to 100 parts by mass of the polymer (solid content) in the latex is 10 parts by mass.
 [実施例2]
 グルテン(ユウテック社製、糖質制限食材GOPAN用)0.25gを水2.5mLに分散させた後、この分散液の全量を、実施例1で前述した天然ゴムラテックス5mLに添加した以外は、実施例1と同様にして、実施例2のエラストマー組成物を得た。ラテックス中の高分子(固形分)100質量部に対するグルテンの添加量は10質量部である。
[Example 2]
Except for adding 0.25 g of gluten (manufactured by Yutec Co., Ltd., for sugar-restricted food GOPAN) in 2.5 mL of water, and adding the total amount of this dispersion to 5 mL of natural rubber latex described in Example 1, The elastomer composition of Example 2 was obtained in the same manner as Example 1. The amount of gluten added to 100 parts by mass of the polymer (solid content) in the latex is 10 parts by mass.
 [比較例1]
 大豆タンパク0.25gを水2.5mLに分散させた後、この分散液の全量を、実施例1で前述した天然ゴムラテックス5mLに添加した以外は、実施例1と同様にして、比較例1のエラストマー組成物を得た。ラテックス中の高分子(固形分)100質量部に対する大豆タンパクの添加量は10質量部である。
[Comparative Example 1]
Comparative Example 1 was carried out in the same manner as in Example 1 except that 0.25 g of soy protein was dispersed in 2.5 mL of water, and then the total amount of this dispersion was added to 5 mL of natural rubber latex described in Example 1. An elastomer composition was obtained. The amount of soy protein added to 100 parts by mass of the polymer (solid content) in the latex is 10 parts by mass.
 [実施例3、5、7及び比較例5]
 表1-3に示された高分子を使用した他は、実施例1と同様にして、実施例3、5及び比較例5のエラストマー組成物を得た。実施例7では、製造例1のペプチド液のpHが弱酸性(pH6-7)になるように、希硫酸を添加した後、表2に示された高分子のラテックスに配合した。
[Examples 3, 5, and 7 and Comparative Example 5]
The elastomer compositions of Examples 3 and 5 and Comparative Example 5 were obtained in the same manner as in Example 1 except that the polymers shown in Table 1-3 were used. In Example 7, dilute sulfuric acid was added so that the pH of the peptide solution of Production Example 1 was slightly acidic (pH 6-7), and then blended into the polymer latex shown in Table 2.
 [実施例4、6、8及び比較例6]
 表1-3に示された高分子を使用した他は、実施例2と同様にして、実施例4、6及び比較例6のエラストマー組成物を得た。実施例8では、グルテン分散液のpHが弱酸性(pH6-7)になるように、希硫酸を添加した後、表2に示された高分子のラテックスに配合した。
[Examples 4, 6, 8 and Comparative Example 6]
The elastomer compositions of Examples 4 and 6 and Comparative Example 6 were obtained in the same manner as Example 2 except that the polymers shown in Table 1-3 were used. In Example 8, dilute sulfuric acid was added so that the pH of the gluten dispersion became weakly acidic (pH 6-7), and then blended with the polymer latex shown in Table 2.
 [比較例2-4及び7]
 表1-3に示された高分子を使用した他は、比較例1と同様にして、比較例2、3及び7のエラストマー組成物を得た。比較例4では、大豆タンパク分散液のpHが弱酸性(pH6-7)になるように、希硫酸を添加した後、表2に示された高分子のラテックスに配合した。
[Comparative Examples 2-4 and 7]
Elastomer compositions of Comparative Examples 2, 3 and 7 were obtained in the same manner as Comparative Example 1 except that the polymers shown in Table 1-3 were used. In Comparative Example 4, dilute sulfuric acid was added so that the pH of the soy protein dispersion became weakly acidic (pH 6-7), and then blended with the polymer latex shown in Table 2.
 [実施例9]
 固形分濃度50%に調製したクロロプレンゴムラテックス(昭和電工社製のCR650、ゼータ電位:32.72mV)100mLに、製造例1のペプチド液40mLを配合して攪拌した後、室温(約30℃)で12時間静置した。次いで、得られた配合液の全量を底面積200cmのトレイに流し入れ、室温(約30℃)で自然乾燥することにより、シート状の組成物を得た。得られたシート状の組成物を水で洗浄した後、さらに7日間、自然乾燥することにより、実施例9のエラストマー組成物を得た。ラテックス中の高分子(固形分)100質量部に対するペプチドP1の量は10質量部である。
[Example 9]
After mixing and stirring 40 mL of the peptide solution of Production Example 1 in 100 mL of chloroprene rubber latex (CR650 manufactured by Showa Denko KK, zeta potential: 32.72 mV) prepared to a solid content concentration of 50%, room temperature (about 30 ° C.) And left for 12 hours. Next, the entire amount of the obtained blended solution was poured into a tray having a bottom area of 200 cm 2 and naturally dried at room temperature (about 30 ° C.) to obtain a sheet-like composition. The obtained sheet-like composition was washed with water, and then naturally dried for 7 days to obtain an elastomer composition of Example 9. The amount of peptide P1 with respect to 100 parts by mass of the polymer (solid content) in the latex is 10 parts by mass.
 [比較例8]
 製造例1のペプチド液に代えて、純水を使用した以外は実施例9と同様にして、比較例8のエラストマー組成物を得た。
[Comparative Example 8]
An elastomer composition of Comparative Example 8 was obtained in the same manner as in Example 9 except that pure water was used instead of the peptide solution of Production Example 1.
 [実施例10]
 前述の高アンモニア天然ゴムラテックス1500mLと、塩化天然ゴムラテックス(CL-NRL)500mLとを混合し、固形分濃度50質量%になるように調製して、混合ラテックスを得た。この混合ラテックス2000mLに、製造例1のペプチド液200g、10質量%のグルテンを含む分散液200g及びワックス(アイピックス社のHE-40、濃度40質量%)22.5gを配合して攪拌した後、室温(約30℃)で12時間静置した。得られた配合液100mlを、底面積200cmのトレイに流し入れ、室温(約30℃)で自然乾燥することにより、シート状の組成物を得た。得られたシート状の組成物を水で洗浄した後、さらに室温(約30℃)で自然乾燥することにより、実施例10のエラストマー組成物を得た。ラテックス中の高分子(固形分)100質量部に対するペプチドP1の量は10質量部である。
[Example 10]
1500 mL of the high ammonia natural rubber latex described above and 500 mL of chlorinated natural rubber latex (CL-NRL) were mixed to prepare a solid concentration of 50% by mass to obtain a mixed latex. After 200 g of this mixed latex was mixed with 200 g of the peptide solution of Production Example 1 and 200 g of a dispersion containing 10% by mass of gluten and 22.5 g of wax (HE-40 from Ipics, concentration 40% by mass) and stirred. And allowed to stand at room temperature (about 30 ° C.) for 12 hours. 100 ml of the obtained blended solution was poured into a tray having a bottom area of 200 cm 2 and naturally dried at room temperature (about 30 ° C.) to obtain a sheet-like composition. The obtained sheet-like composition was washed with water and then naturally dried at room temperature (about 30 ° C.) to obtain the elastomer composition of Example 10. The amount of peptide P1 with respect to 100 parts by mass of the polymer (solid content) in the latex is 10 parts by mass.
 [比較例9]
 製造例1のペプチド液に代えて、純水を使用した以外は実施例10と同様にして、比較例9のエラストマー組成物を得た。
[Comparative Example 9]
An elastomer composition of Comparative Example 9 was obtained in the same manner as in Example 10 except that pure water was used instead of the peptide solution of Production Example 1.
 [実施例11-12及び比較例10]
 高分子とペプチドとの配合を表5に示されたものとした以外は、実施例1と同様にして、実施例11-12及び比較例10のエラストマー組成物を得た。
[Examples 11-12 and Comparative Example 10]
Elastomer compositions of Examples 11-12 and Comparative Example 10 were obtained in the same manner as in Example 1 except that the polymer and peptide formulations were as shown in Table 5.
(ゴム風船の製造)
 [実施例13]
 実施例10と同様にして、配合液を調製した。次いで、表面に凝固液(濃度30質量%の硝酸カルシウム水溶液)を付着させた風船型を準備し、前述の配合液を投入した浸漬槽に、この風船型を浸漬させた。浸漬槽から引き上げた風船型を、室温(約30℃)で1時間静置した後、風船型を取り除くことにより、実施例13のエラストマー組成物からなるゴム風船を作成した。
(Manufacture of rubber balloons)
[Example 13]
A blending solution was prepared in the same manner as Example 10. Next, a balloon mold having a coagulating liquid (calcium nitrate aqueous solution having a concentration of 30% by mass) attached to the surface was prepared, and this balloon mold was immersed in an immersion tank into which the above-described blending solution was charged. The balloon mold pulled up from the immersion tank was allowed to stand at room temperature (about 30 ° C.) for 1 hour, and then the balloon mold was removed to prepare a rubber balloon made of the elastomer composition of Example 13.
 [実施例14]
 前述の高アンモニア天然ゴムラテックス3000mLと、塩化天然ゴムラテックス(CL-NRL)1000mLとを混合し、固形分濃度50質量%になるように調製して混合ラテックスを得た。この混合ラテックス4000mLに、製造例1のペプチド液200g、10質量%のグルテンを含む分散液200g及び前述のワックス22.5gを配合して攪拌した後、さらにブルー系着色コンパウンド(大日精化社製、青色顔料及び酸化チタン含有)6gを添加した。その後、室温(約30℃)で12時間静置して得られた配合液を用いて、実施例13と同様にして、実施例14のエラストマー組成物からなるゴム風船を作成した。ラテックス中の高分子(固形分)100質量部に対するペプチドP1の量は10質量部である。
[Example 14]
3000 mL of the above-mentioned high ammonia natural rubber latex and 1000 mL of chlorinated natural rubber latex (CL-NRL) were mixed and prepared so as to have a solid content concentration of 50% by mass to obtain a mixed latex. The mixed latex of 4000 mL was mixed with 200 g of the peptide solution of Production Example 1 and 200 g of a dispersion containing 10% by mass of gluten and 22.5 g of the wax described above, and then stirred, and then further blue-based coloring compound (manufactured by Dainichi Seika Co., Ltd.). 6 g of blue pigment and titanium oxide). Thereafter, a rubber balloon made of the elastomer composition of Example 14 was prepared in the same manner as in Example 13 using the compounded liquid obtained by allowing to stand at room temperature (about 30 ° C.) for 12 hours. The amount of peptide P1 with respect to 100 parts by mass of the polymer (solid content) in the latex is 10 parts by mass.
 [比較例11]
 天然ゴムを基材ゴムとして含むゴム組成物が加硫されてなる市販のゴム風船を、比較例11のエラストマー組成物からなるゴム風船とした。
[Comparative Example 11]
A commercially available rubber balloon obtained by vulcanizing a rubber composition containing natural rubber as a base rubber was used as a rubber balloon made of the elastomer composition of Comparative Example 11.
 [耐熱性]
 厚み約1mmのエラストマー組成物から、各2枚の試験片を採取した。交差するように重ねた2枚の試験片を、アルミホイルで覆い、ヘアアイロン(コイズミ社製のTiny)で加熱した。160℃で3分間加熱後の試験片の状態を観察し、以下の基準に従って判定した。実施例及び比較例のエラストマー組成物について得られた結果が、下記表1-5に示されている。
 G:試験片の変形及び融着なし。
 NG:試験片が変形又は融着した。
[Heat-resistant]
Two test pieces each were collected from an elastomer composition having a thickness of about 1 mm. Two test pieces stacked so as to cross each other were covered with aluminum foil and heated with a hair iron (Tiny manufactured by Koizumi). The state of the test piece after heating at 160 ° C. for 3 minutes was observed and judged according to the following criteria. The results obtained for the elastomer compositions of Examples and Comparative Examples are shown in Table 1-5 below.
G: No deformation or fusion of the test piece.
NG: The test piece was deformed or fused.
 [引張試験]
 JIS K6250「ゴム-物理試験方法通則」に規定の打ち抜き刃を使用して、エラストマー組成物、ゴム風船及び高分子のダンベル状3号型試験片を作成した。得られた試験片を用いて、JIS K6251「加硫ゴム及び熱可塑性ゴム-引張特性の求め方」に記載の試験方法に準拠して引張試験をおこなった。実施例及び比較例のエラストマー組成物について得られた300%モジュラス(MPa)、破断強度(%)及び破断伸度(MPa)が、それぞれ、ME300、Tb及びEbとして下記表1-5に示されている。高分子について得られた300%モジュラス(MPa)が、MP300として、下記表1-5に示されている。ゴム風船から採取された試験片について得られた結果が、下記表6に示されている。
[Tensile test]
Using a punching blade defined in JIS K6250 “Rubber-General physical test method”, an elastomer composition, a rubber balloon, and a polymer dumbbell-shaped No. 3 type test piece were prepared. Using the obtained test piece, a tensile test was performed in accordance with the test method described in JIS K6251 “Vulcanized rubber and thermoplastic rubber—How to obtain tensile properties”. The 300% modulus (MPa), the breaking strength (%), and the breaking elongation (MPa) obtained for the elastomer compositions of Examples and Comparative Examples are shown in the following Table 1-5 as ME 300 , Tb, and Eb, respectively. Has been. The 300% modulus (MPa) obtained for the polymer is shown in Table 1-5 below as MP 300 . The results obtained for the specimens taken from the rubber balloons are shown in Table 6 below.
 [硬さ測定]
 JIS K6253「加硫ゴム及び熱可塑性ゴム-硬さの求め方」の規定に準拠して、実施例9-10及び比較例8-9のエラストマー組成物から、厚さ1.5mmの試験片各4枚を採取した。4枚の試験片を重ね合わせた後、アスカーデュロメータA型(高分子計器社)を押しつけることにより、エラストマー組成物の硬さを測定した。測定位置を変えて得られた7の測定値から、最大値と最小値を除いて、5点の平均値を計算した結果が、下記表4に記載されている。
[Hardness measurement]
In accordance with JIS K6253 “Vulcanized Rubber and Thermoplastic Rubber—How to Determine Hardness”, each of 1.5 mm thick test pieces was prepared from the elastomer compositions of Examples 9-10 and Comparative Example 8-9. Four pieces were collected. After stacking the four test pieces, the hardness of the elastomer composition was measured by pressing an Asker Durometer Type A (Polymer Keiki Co., Ltd.). Table 7 below shows the result of calculating the average value of five points from the seven measurement values obtained by changing the measurement position, excluding the maximum value and the minimum value.
[使用感]
 実施例13及び14並びに比較例11のゴム風船を、10名の試験者に使用させ、使用感を聞き取った。「柔らかい」又は「膨らませやすい」と答えた使用者の数に基づいて、下記の格付けをおこなった結果が、下記表6に示されている。
 A:9人以上
 B:6-8人
 C:5人以下
[Usage feeling]
Ten testers were allowed to use the rubber balloons of Examples 13 and 14 and Comparative Example 11 to hear the feeling of use. Based on the number of users who answered “soft” or “easy to inflate”, the following rating results are shown in Table 6 below.
A: 9 people or more B: 6-8 people C: 5 people or less
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1-5に示された化合物の詳細は以下の通りである。
HA-NRL:市販の高アンモニア天然ゴムラテックス(ゼータ電位:-58.36mV)
CRL(1):クロロプレンゴムラテックス(昭和電工社製のCR350、ゼータ電位:32.72mV)
CRL(2):クロロプレンゴムラテックス(昭和電工社製のCR650、ゼータ電位:32.72mV)
CL-NRL:塩化天然ゴムラテックス(ゼータ電位:50.36mV)
NBRL:カルボキシル化変性アクリロニトリル-ブタジエンゴムラテックス(日本ゼオン社製のLX550、ゼータ電位:47.31mV)
IRL:イソプレンゴムラテックス(Cariflex IR0401、ゼータ電位:19.47mV)
P1:製造例1のペプチド
P2:製造例2のペプチド
GT:グルテン
SB:大豆タンパク
Details of the compounds shown in Table 1-5 are as follows.
HA-NRL: Commercially available high ammonia natural rubber latex (Zeta potential: -58.36 mV)
CRL (1) : Chloroprene rubber latex (CR350 manufactured by Showa Denko KK, zeta potential: 32.72 mV)
CRL (2) : Chloroprene rubber latex (CR650 manufactured by Showa Denko KK, zeta potential: 32.72 mV)
CL-NRL: Chloride natural rubber latex (Zeta potential: 50.36 mV)
NBRL: carboxylated modified acrylonitrile-butadiene rubber latex (LX550 manufactured by Nippon Zeon Co., Ltd., zeta potential: 47.31 mV)
IRL: Isoprene rubber latex (Cariflex IR0401, zeta potential: 19.47 mV)
P1: Peptide of Production Example 1 P2: Peptide of Production Example 2 GT: Gluten SB: Soy protein
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表1-5に示されるように、実施例のエラストマー組成物は、比較例のエラストマー組成物と比較して、耐熱性、伸縮性及び柔軟性に優れる。さらに、表6に示されるように、実施例では、使用感について、比較例よりも高い評価が得られている。この評価結果から、本発明の優位性は明らかである。 As shown in Table 1-5, the elastomer compositions of the examples are superior in heat resistance, stretchability and flexibility as compared with the elastomer compositions of the comparative examples. Furthermore, as shown in Table 6, in the examples, higher evaluations are obtained for the feeling of use than in the comparative examples. From this evaluation result, the superiority of the present invention is clear.
 以上説明されたエラストマー組成物は、医療用品、衛生用品、化粧用品等の種々の分野に利用されうる。 The elastomer composition described above can be used in various fields such as medical supplies, hygiene products, and cosmetic products.

Claims (11)

  1.  4.0質量%以上30質量%以下のシスチンを含むペプチドと、ハロゲン基、スルホン基、カルボニル基、アミノ基、イミノ基、カルボキシル基、ヒドロキシル基、スルフィド基、ジスルフィド基、スルホニル基、アミド基及びニトリル基からなる群から選択される少なくとも1種の極性基を有する高分子とを主成分として含み、
     上記ペプチドと上記高分子との静電相互作用及び疎水効果に基づいて形成される架橋構造を有しており、
     その300%モジュラスME300が、上記高分子の300%モジュラスMP300よりも小さいエラストマー組成物。
    A peptide containing 4.0% by mass or more and 30% by mass or less of cystine, a halogen group, a sulfone group, a carbonyl group, an amino group, an imino group, a carboxyl group, a hydroxyl group, a sulfide group, a disulfide group, a sulfonyl group, an amide group, and Comprising as a main component a polymer having at least one polar group selected from the group consisting of nitrile groups,
    Having a cross-linked structure formed based on electrostatic interaction and hydrophobic effect between the peptide and the polymer,
    An elastomer composition having a 300% modulus ME 300 smaller than the 300% modulus MP 300 of the polymer.
  2.  上記エラストマー組成物の300%モジュラスME300が、0.1MPa以上1.0MPa以下である請求項1に記載のエラストマー組成物。 The elastomer composition according to claim 1, wherein 300% modulus ME 300 of the elastomer composition is 0.1 MPa or more and 1.0 MPa or less.
  3.  上記エラストマー組成物の破断強度Tbが、0.1MPa以上6.5MPa以下である請求項1又は2に記載のエラストマー組成物。 The elastomer composition according to claim 1 or 2, wherein the elastomer composition has a breaking strength Tb of 0.1 MPa or more and 6.5 MPa or less.
  4.  上記高分子のゼータ電位の絶対値が30mV以上である請求項1から3のいずれかに記載のエラストマー組成物。 The elastomer composition according to any one of claims 1 to 3, wherein the polymer has an absolute value of zeta potential of 30 mV or more.
  5.  上記高分子が、脱タンパク質処理をしていない天然ゴムである請求項1から4のいずれかに記載のエラストマー組成物。 The elastomer composition according to any one of claims 1 to 4, wherein the polymer is natural rubber that has not been deproteinized.
  6.  上記高分子100質量部に対して、1.0質量部以上20質量部以下の上記ペプチドを含む請求項1から5のいずれかに記載のエラストマー組成物。 The elastomer composition according to any one of claims 1 to 5, comprising 1.0 to 20 parts by mass of the peptide with respect to 100 parts by mass of the polymer.
  7.  実質的に加硫剤、加硫促進剤及び加硫促進助剤を含まない請求項1から6のいずれかに記載のエラストマー組成物。 The elastomer composition according to any one of claims 1 to 6, substantially free of a vulcanizing agent, a vulcanization accelerator, and a vulcanization acceleration aid.
  8.  上記ペプチドが、5.0質量%以上15質量%以下のシスチン結合を含む請求項1から7のいずれかに記載のエラストマー組成物。 The elastomer composition according to any one of claims 1 to 7, wherein the peptide contains 5.0% by mass or more and 15% by mass or less of a cystine bond.
  9.  上記ペプチドに含まれるチオール基の量が1.0質量%以下である請求項1から8のいずれかに記載のエラストマー組成物。 The elastomer composition according to any one of claims 1 to 8, wherein the amount of the thiol group contained in the peptide is 1.0% by mass or less.
  10.  上記ペプチドが水に不溶の微粒子であり、この微粒子の平均粒子径が、0.1μm以上1.0μm以下である請求項1から9のいずれかに記載のエラストマー組成物。 10. The elastomer composition according to claim 1, wherein the peptide is fine particles insoluble in water, and the fine particles have an average particle size of 0.1 μm or more and 1.0 μm or less.
  11.  4.0質量%以上30質量%以下のシスチンを含むペプチドと、ハロゲン基、スルホン基、カルボニル基、アミノ基、イミノ基、カルボキシル基、ヒドロキシル基、スルフィド基、ジスルフィド基、スルホニル基、アミド基及びニトリル基からなる群から選択される少なくとも1種の極性基を有する高分子とを、水性媒体中で混合して混合液を得る第一工程と、
     上記混合液を乾燥させて、上記高分子と上記ペプチドとの間に、静電相互作用及び疎水効果に基づく架橋構造を形成させることにより、その300%モジュラスME300が、上記高分子の300%モジュラスMP300よりも小さいエラストマー組成物を得る第二工程とを含んでいるエラストマー組成物の製造方法。
    A peptide containing 4.0% by mass or more and 30% by mass or less of cystine, a halogen group, a sulfone group, a carbonyl group, an amino group, an imino group, a carboxyl group, a hydroxyl group, a sulfide group, a disulfide group, a sulfonyl group, an amide group, and A first step of obtaining a mixture by mixing a polymer having at least one polar group selected from the group consisting of nitrile groups in an aqueous medium;
    The mixed solution is dried to form a crosslinked structure based on electrostatic interaction and hydrophobic effect between the polymer and the peptide, so that 300% modulus ME 300 is 300% of the polymer. And a second step of obtaining an elastomer composition smaller than the modulus MP 300 .
PCT/JP2016/059820 2015-04-06 2016-03-28 Elastomer composition WO2016163253A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015077342A JP6373789B2 (en) 2015-04-06 2015-04-06 Elastomer composition
JP2015-077342 2015-04-06

Publications (1)

Publication Number Publication Date
WO2016163253A1 true WO2016163253A1 (en) 2016-10-13

Family

ID=57071888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059820 WO2016163253A1 (en) 2015-04-06 2016-03-28 Elastomer composition

Country Status (2)

Country Link
JP (1) JP6373789B2 (en)
WO (1) WO2016163253A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108003398A (en) * 2016-11-01 2018-05-08 住友橡胶工业株式会社 The manufacture method of masterbatch
CN108003397A (en) * 2016-11-01 2018-05-08 住友橡胶工业株式会社 The manufacture method of masterbatch
US11014405B2 (en) 2017-03-16 2021-05-25 Sumitomo Rubber Industries, Ltd. Pneumatic tire

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06166771A (en) * 1992-12-01 1994-06-14 Sumitomo Rubber Ind Ltd Rubber composition and production of rubber product from the same
JP2001288295A (en) * 2000-04-03 2001-10-16 Oji Paper Co Ltd Biodegradable composition and its molded product
JP2013028718A (en) * 2011-07-28 2013-02-07 Sumitomo Rubber Ind Ltd High-attenuation composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58189202A (en) * 1982-04-30 1983-11-04 Denki Kagaku Kogyo Kk Production of particulate chloroprene polymer coagulum
JPS58189201A (en) * 1982-04-30 1983-11-04 Denki Kagaku Kogyo Kk Production of particulate chloroprene polymer coagulum

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06166771A (en) * 1992-12-01 1994-06-14 Sumitomo Rubber Ind Ltd Rubber composition and production of rubber product from the same
JP2001288295A (en) * 2000-04-03 2001-10-16 Oji Paper Co Ltd Biodegradable composition and its molded product
JP2013028718A (en) * 2011-07-28 2013-02-07 Sumitomo Rubber Ind Ltd High-attenuation composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108003398A (en) * 2016-11-01 2018-05-08 住友橡胶工业株式会社 The manufacture method of masterbatch
CN108003397A (en) * 2016-11-01 2018-05-08 住友橡胶工业株式会社 The manufacture method of masterbatch
JP2018070811A (en) * 2016-11-01 2018-05-10 住友ゴム工業株式会社 Method for producing master batch
JP2018070812A (en) * 2016-11-01 2018-05-10 住友ゴム工業株式会社 Method for producing master batch
CN108003397B (en) * 2016-11-01 2021-06-29 住友橡胶工业株式会社 Method for producing masterbatch
CN108003398B (en) * 2016-11-01 2021-08-06 住友橡胶工业株式会社 Method for producing masterbatch
US11014405B2 (en) 2017-03-16 2021-05-25 Sumitomo Rubber Industries, Ltd. Pneumatic tire

Also Published As

Publication number Publication date
JP2016196585A (en) 2016-11-24
JP6373789B2 (en) 2018-08-15

Similar Documents

Publication Publication Date Title
CN102725342B (en) Do not use elastomer rubber and the rubber product of vulcanization accelerator and sulphur
TWI595041B (en) An emulsion for dipping, a composition for impregnation molding, and an impregnated molded article
TWI225445B (en) Accelerator free latex formulations, methods of making same and articles made from same
JP5275520B2 (en) Elastomer rubber and elastomer rubber products that do not use vulcanization accelerators and sulfur
JP6373789B2 (en) Elastomer composition
JP6947162B2 (en) Latex of synthetic rubber and its manufacturing method
JPWO2016104057A1 (en) Dip molding latex composition and dip molded product
CN104644273A (en) Glove coating and manufacturing process
WO2018155243A1 (en) Latex composition
EP3674359A1 (en) Latex composition
JP2014074112A (en) Elastomer molded article having no or reduced amount of zinc oxide and elastomer product
JP2011219543A (en) Dip molding composition and dip molded article
WO2014181714A1 (en) Polyisoprene latex for molding medical supplies, composition for dip molding, medical supplies, and method for molding same
EP1541630A1 (en) Crosslinking Polymer Composition
CA3161886A1 (en) Polymer compositions and products formed therewith
Lhamo et al. Effect of protein addition on properties of guayule natural rubber
WO2019058807A1 (en) Production method for latex composition
JPWO2007004459A1 (en) DIP MOLDING LATEX, DIP MOLDING LATEX COMPOSITION AND DIP MOLDED ARTICLE
JP2018076406A (en) Elastomer composition
JPWO2020054247A1 (en) Latex composition and film molding
EP3851484A1 (en) Xanthogen compound dispersion, conjugated-diene-based polymer latex composition, and film molded body
JP2016128528A (en) Latex composition for dip molding and dip molded article
CA3048252A1 (en) Elastomeric film-forming compositions and associated articles and methods
JP6687324B2 (en) Modified conjugated diene polymer and rubber composition containing the same
TW201938593A (en) Latex of acid-modified conjugated diene-based polymer, and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776421

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 16776421

Country of ref document: EP

Kind code of ref document: A1