WO2016163113A1 - Simulation device, simulation system, simulation method, and computer-readable recording medium - Google Patents

Simulation device, simulation system, simulation method, and computer-readable recording medium Download PDF

Info

Publication number
WO2016163113A1
WO2016163113A1 PCT/JP2016/001905 JP2016001905W WO2016163113A1 WO 2016163113 A1 WO2016163113 A1 WO 2016163113A1 JP 2016001905 W JP2016001905 W JP 2016001905W WO 2016163113 A1 WO2016163113 A1 WO 2016163113A1
Authority
WO
WIPO (PCT)
Prior art keywords
moving body
body model
moving
model
adjacent
Prior art date
Application number
PCT/JP2016/001905
Other languages
French (fr)
Japanese (ja)
Inventor
孝志 吉田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2017511470A priority Critical patent/JP6662378B2/en
Publication of WO2016163113A1 publication Critical patent/WO2016163113A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles

Definitions

  • the present invention relates to a simulation apparatus, a simulation system, a simulation method, and a computer-readable recording medium.
  • a simulation is performed to simulate the above situation on a computer. This simulation is performed, for example, by quantifying the state of a sidewalk existing in an urban area or the like, the state of movement of a pedestrian or the like on the sidewalk.
  • Patent Document 1 describes a crowd walking simulation system.
  • a repulsive force that depends on distance acts between pedestrians and between a pedestrian and an obstacle, and there is no relation between the pedestrian and a target point. It is set so that a constant suction force acts.
  • Patent Document 2 describes a pedestrian simulation device and the like.
  • a personal space that forms a space between anthropomorphic models is formed for an anthropomorphic model that travels on a link connecting two points, and when an overlap between personal spaces is detected, Determine the avoidance direction position of the personification model.
  • Patent Document 3 describes a technology such as a traffic simulation device.
  • a route is selected from a plurality of pedestrian route candidates generated based on map information from the departure point to the destination in consideration of the risk of each route. Then, according to the selected route, the traffic state is simulated by moving a pedestrian model or the like that models a pedestrian.
  • Patent Document 4 describes a traffic flow simulation device and the like.
  • the traffic flow simulation device described in Patent Document 4 calculates the position of a moving destination where a moving body moves along a path constituted by one or more lanes.
  • the present invention has been made in order to solve the above-mentioned problems, and has as its main object to provide a simulation apparatus and the like that can appropriately express the behavior of a pedestrian or the like with a small calculation load.
  • the simulation apparatus is based on a moving body model selecting unit that selects a moving body model that moves on a moving path, the selected moving body model, the traveling direction of the moving body model, and the form of the moving path.
  • Adjacency relationship deriving means for deriving a relationship with an adjacent moving body model positioned in a predetermined direction
  • position updating means for updating the position of the moving body model in the moving path according to the relationship with the adjacent moving body.
  • the simulation method selects a moving body model that moves on a moving path, and determines a predetermined moving body model, a traveling direction of the moving body model, and a form of the moving path. A relationship with the adjacent moving body model positioned in the direction is derived, and the position of the moving body model in the moving path is updated according to the relationship with the adjacent moving body.
  • a computer-readable recording medium includes a process for selecting a moving body model that moves on a moving path, a selected moving body model, an advancing direction of the moving body model, and a moving path.
  • a process of deriving a relationship with an adjacent moving body model located in a predetermined direction determined based on the form and a process of updating the position of the moving body model in the movement path according to the relationship with the adjacent moving body Store the program to be executed non-temporarily.
  • each component of each device represents a functional unit block.
  • Each component of each device can be realized by any combination of an information processing device 500 and software as shown in FIG. 12, for example.
  • the information processing apparatus 500 includes the following configuration as an example.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • a program 504 loaded into the RAM 503
  • a storage device 505 for storing the program 504
  • a drive device 507 for reading / writing the storage medium 506
  • Communication interface 508 connected to the communication network 509
  • An input / output interface 510 for inputting / outputting data -Bus 511 connecting each component
  • Each component such as each device in each embodiment is realized by the CPU 501 acquiring and executing a program 504 that realizes these functions.
  • the program 504 that realizes the function of each component of each device is stored in advance in the storage device 505 or the RAM 503, for example, and is read by the CPU 501 as necessary.
  • the program 504 may be supplied to the CPU 501 via the communication network 509 or may be stored in the recording medium 506 in advance, and the drive device 507 may read the program and supply it to the CPU 501.
  • each device may be realized by an arbitrary combination of the information processing device 500 and a program that are separately provided for each component.
  • a plurality of constituent elements included in each device may be realized by an arbitrary combination of one information processing device 500 and a program.
  • each component of each device or the like is realized by a general purpose or dedicated circuit including a processor or the like, or a combination thereof. These may be constituted by a single chip cage or may be constituted by a plurality of chip cages connected via a bus. Part or all of each component of each device may be realized by a combination of the above-described circuit and the like and a program.
  • each device When some or all of the constituent elements of each device are realized by a plurality of information processing devices and circuits, the plurality of information processing devices and circuits may be centrally arranged or distributedly arranged. Also good.
  • the information processing apparatus, the circuit, and the like may be realized as a form in which each is connected via a communication network, such as a client and server system and a cloud computing system.
  • FIG. 1 is a diagram showing a configuration of a simulation apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a configuration of a simulation system including the simulation apparatus according to the first embodiment of the present invention.
  • FIG. 3 is a diagram illustrating an example of a moving path used in the simulation apparatus according to the first embodiment of the present invention.
  • FIG. 4 is a diagram illustrating an example of sections included in a moving path that is a target in the simulation apparatus according to the first embodiment of the present invention.
  • FIG. 5 is a diagram illustrating an example of an intersection included in a moving path that is a target in the simulation apparatus according to the first embodiment of the present invention.
  • FIG. 1 is a diagram showing a configuration of a simulation apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a configuration of a simulation system including the simulation apparatus according to the first embodiment of the present invention.
  • FIG. 3 is a diagram illustrating an example of a moving path used in
  • FIG. 6 is a diagram illustrating another example of intersections included in a moving path that is a target in the simulation apparatus according to the first embodiment of the present invention.
  • FIG. 7 is a diagram illustrating an example of a moving body model and an adjacent moving body model that move along a moving path that is a target in the simulation apparatus according to the first embodiment of the present invention.
  • FIG. 8 is a diagram illustrating another example of a moving body model and an adjacent moving body model that move on a moving path that is a target in the simulation apparatus according to the first embodiment of the present invention.
  • FIG. 7 is a diagram illustrating an example of a moving body model and an adjacent moving body model that move along a moving path that is a target in the simulation apparatus according to the first embodiment of the present invention.
  • FIG. 8 is a diagram illustrating another example of a moving body model and an adjacent moving body model that move on a moving path that is a target in the simulation apparatus according to the first embodiment of the present invention.
  • FIG. 9 is a diagram illustrating an example of the relationship between the moving body model and the adjacent moving body model in the section of the moving path targeted in the simulation apparatus according to the first embodiment of the present invention and the updating of the position of the moving body model. is there.
  • FIG. 10 is a diagram illustrating an example of the relationship between the moving body model and the adjacent moving body model at the intersection of the moving paths targeted in the simulation apparatus according to the first embodiment of the present invention and the updating of the position of the moving body model. is there.
  • FIG. 11 is a flowchart showing the operation of the simulation apparatus according to the first embodiment of the present invention.
  • the simulation apparatus 100 includes a moving body model selection unit 110, an adjacent relationship deriving unit 120, and a position update unit 130.
  • the moving body model selection unit 110 selects a moving body model that moves on the moving path.
  • the adjacent relationship deriving unit 120 derives a relationship between the selected moving body model and the adjacent moving body model positioned in a predetermined direction determined based on the traveling direction of the moving body model and the form of the moving path.
  • the position updating unit 130 updates the position of the moving body model in the moving path according to the relationship with the adjacent moving body.
  • a simulation system 10 including the simulation apparatus 100 according to the first embodiment of the present invention is configured.
  • the simulation system 10 includes a moving path generation unit 11 and a moving body model generation unit 12.
  • the travel path generation unit 11 and information on the travel path are generated.
  • the moving path has at least one of a section and an intersection.
  • generation part 12 produces
  • FIG. 3 is a diagram illustrating an example of the moving path 50.
  • the moving path 50 includes one or more lanes 52 through which the moving body model 54 passes, and has at least one of a section 51 connecting two points and an intersection 53 to which the plurality of sections 51 are connected.
  • the moving path 50 has both a section 51 and an intersection 53.
  • the section 51 connects between any two points. That is, the section 51 is related to, for example, a road connecting any two points on an actual road and its sidewalk.
  • FIG. 4 shows an example of the section 51.
  • the length of the section 51 may be determined according to the distance between any two points on an actual road, for example.
  • Each section 51 includes one or more lanes 52 extending along the section 51.
  • each of the lanes 52 corresponds to a width that allows a pedestrian or the like to pass on an actual sidewalk associated with the section 51, for example.
  • each lane 52 is assumed to have a width of about 50 cm (centimeter) to 1 m (meter) on an actual sidewalk associated with the section 51.
  • the number of lanes 52 included in each section 51 is determined based on, for example, the actual width of the sidewalk associated with the section 51.
  • the number of lanes 52 included in each section 51 can be obtained by dividing the actual width of a sidewalk associated with the section 51 by the width per lane 52.
  • the number of lanes 52 may change midway.
  • the section 51 is configured as a plurality of sections 51 by setting intermediate points at locations where the number of lanes 52 changes. This corresponds to, for example, a case where the width of an actual sidewalk associated with the section 51 changes.
  • the number of lanes 52 included in each of the sections 51 may be determined by a method different from the method described above.
  • the number of lanes 52 included in each section 51 is appropriately determined according to, for example, the actual sidewalk situation associated with the section, the contents evaluated by the simulation apparatus 100 in the present embodiment, and the like.
  • intersection 53 is a portion where a plurality of the sections 51 described above are connected in the moving path 50. That is, the intersection 53 is related to, for example, an intersection where a plurality of roads are connected to each other on an actual road.
  • each of the sections 51 includes one or more lanes 52 as described above.
  • intersection 53 is an arbitrary shape. As an example, as shown in FIG. 5, the intersection 53 has a polygonal shape with each width of the section 51 connected to the intersection 53 as one side. Alternatively, the intersection 53 may have a shape corresponding to the shape of an actual intersection or the like associated with the intersection 53, as shown in FIG.
  • the moving body model 54 is a model that represents the state of movement on the moving path 51 for any type of moving body that moves on the moving path 51. That is, the moving body model 54 corresponds to, for example, a pedestrian who moves on the moving path 51.
  • the moving body model 54 When the moving body model 54 is arranged in the section 51 of the moving path 50, it is arranged in any of the lanes 52 included in the section 51. In this case, the moving body model 54 is arranged at any position including the end point of the lane 52.
  • a section 51 as a movement source and a section 51 as a movement destination are set.
  • the lane 52 that is the movement source is set.
  • a lane 52 that is a movement destination is set in the section 51 that is a movement destination.
  • the moving body model 54 is arranged so as to move at an arbitrary position between the end point of the lane 52 serving as the movement source and the end point of the lane 52 serving as the movement destination.
  • the moving body model 54 is disposed at an arbitrary position along a virtual route connecting the end point of the lane 52 that is the movement source and the end point of the lane 52 that is the movement destination. That is, the moving body model 54 is assumed to move along the virtual route.
  • the traveling direction and the moving speed are set for each of the moving body models 54.
  • the traveling direction is set as a direction from one end of the section 51 to the other end. That is, the moving body model 54 is assumed to move in either one of the directions in which the section 51 extends.
  • the traveling direction is set as a direction in which the moving body model 54 heads from the lane 52 that is the movement source to the end point of the lane 52 that is the movement destination.
  • the traveling direction of the moving body model 54 is expressed by the direction of one vertex of a triangle representing the moving body model 54. For example, in the example illustrated in FIG. 4, the traveling direction is set so that the moving body model 54 is directed from the lower side to the upper side in the drawing.
  • the moving speed is set according to the moving speed in a normal case of a pedestrian or the like associated with each of the moving body models 54, for example.
  • the same moving speed may be set for all the moving body models 54, or different moving speeds may be set for each of the moving body models 54.
  • the moving speed set for each moving body model 54 is based on, for example, the moving speed of a pedestrian or the like represented by the moving body model 54. Determined.
  • a plurality of moving body models 54 may be arranged at the same position.
  • the moving body model 54 when the process is repeatedly executed, the moving body model 54 may be newly arranged on the moving path 50 in the middle of the repeated process.
  • the above-described moving path 50 is determined according to, for example, a traffic path such as an actual sidewalk to be simulated and its connection relation.
  • the travel path may be determined based on data such as a virtual road network.
  • the moving path 50 when the simulation is performed during the identification of one road or at one specific intersection, the moving path 50 is only the section 51 or the intersection 53. The form may be included.
  • Each component of the simulation apparatus 100 operates based on information relating to the moving path 50 and the moving body model 54 generated in advance.
  • Each component of the simulation apparatus 100 acquires such information in advance via, for example, an input unit or a communication network (not shown). Further, each component of the simulation apparatus 100 may acquire these pieces of information stored in advance in an arbitrary memory or disk device (not shown).
  • the moving path generation unit 11 generates information on the moving path 50 described above. Moreover, the mobile body model production
  • the moving body model selection unit 110 selects one of a plurality of moving body models 54 arranged on the moving path 50.
  • a series of simulation processing is performed in the adjacent relationship deriving unit 120 and the position updating unit 130 for the moving body model 54 selected by the moving body model selecting unit 110.
  • the moving body model selection unit 110 randomly selects one of the plurality of moving body models 54, for example.
  • the mobile body model selection unit 110 may randomly select the mobile body model 54 arranged in the section 51 and the mobile body model 54 arranged at the intersection 53 without distinguishing.
  • the moving body model selection unit 110 may select one of the plurality of moving body models 54 based on an arbitrary order or procedure determined according to the characteristics of the moving path 50 or the moving body model 54. May be selected.
  • the adjacency relationship deriving unit 120 derives the relationship between the moving object model 54 selected by the moving object model selecting unit 110 and the adjacent moving object model 55.
  • the adjacent moving body model 55 is a moving body model located in a predetermined direction determined based on the traveling direction of the moving body model 54 and the form of the moving path 50. That is, in the present embodiment, the adjacent moving body model 55 with respect to the moving body model 54 is a moving body model that can affect the movement of the moving body model 54 in each of the section 51 or the intersection 53.
  • the relationship between the adjacent moving body model 55 and the moving body model 54 and the adjacent moving body model 55 is, for example, as follows according to the position of the moving body model 54 selected by the moving body model selecting unit 110 in the moving path 50. Determined.
  • the adjacent relationship deriving unit 120 moves the nearest moving body model located in the traveling direction of the moving body model 54 in the lane 52 where the moving body model 54 is located.
  • the body model 55 is specified.
  • FIG. 7 is a diagram illustrating an example in the case where the moving body model 55 is specified when the moving body model 54 is located in the section 51.
  • the adjacent relationship deriving unit 120 specifies the moving body model as the adjacent moving body model 55.
  • the adjacency deriving unit 120 is located in a predetermined range in the traveling direction of the mobile object model 54, and the source and destination sections 51 are the same.
  • a near moving body model is specified as the adjacent moving body model 55.
  • the predetermined range is a fan-shaped range that extends from the moving body model 54 in the traveling direction.
  • a range of about 45 degrees on each of the left and right sides indicated by the fan-shaped figure with respect to the traveling direction of the moving body model 54 indicated by the arrow is a predetermined range.
  • the predetermined range may be a range of another shape.
  • the predetermined range may be a range of a shape in which a fan-shaped corner is rounded.
  • the adjacent relationship deriving unit 120 uses a moving body model located at the same point as the moving body model 54 selected by the moving body model selecting unit 110, for example, according to the above-described procedure. As specified. In other words, the adjacent relationship deriving unit 120 may not use the moving body model positioned at the same point as the moving body model 54 selected by the moving body model selecting unit 110 as the adjacent moving body model 55.
  • the adjacent relationship deriving unit 120 relates to the traveling direction of the adjacent mobile body model 55 and the distance between the mobile body model 54 and the adjacent mobile body model 55 as the relationship between the mobile body model 54 and the adjacent mobile body model 55. Deriving information.
  • the adjacency relationship deriving unit 120 derives these pieces of information, for example, when the position of the moving body model 54 on the moving path 50 is any of the above-described cases.
  • the position updating unit 130 updates the position of the moving body model 54 in the moving path 50 according to the relationship between the moving body model 54 and the adjacent moving body model 55 derived by the adjacent relationship deriving unit 120.
  • the position of the mobile object model 54 after being updated in the position update unit 130 corresponds to the position of the mobile object model 54 at a time point after an arbitrary period from the corresponding time point before the update.
  • the position update unit 130 updates the position of the moving body model 54, so that the moving model 54 according to the moving speed of the moving body model 54 and the relationship between the moving body model 54 and the adjacent moving body model 55.
  • the state of movement in an arbitrary period is represented.
  • the arbitrary period described above behaves in a relatively short time such as a pedestrian associated with the moving body model 54 according to the moving speed of the moving body model 54, the relationship with the adjacent moving body model 55, and the like. Is appropriately determined so that is appropriately expressed.
  • the above-described arbitrary period is based on the time required for the pedestrian to move from one step to several steps on an actual road or the like. It is defined as 1 second.
  • the position update unit 130 repeatedly updates the position of the moving body model 54, thereby expressing the movement of the moving body model 54 in an arbitrary period.
  • the position update unit 130 the position after the update of the mobile object model 54 is determined, for example, as follows according to the position of the mobile object model 54 at the time of the update.
  • the position update unit 130 updates the position of the mobile object model 54 as follows, for example.
  • the position update unit 130 updates the position so that the moving body model 54 avoids the adjacent moving body model 55.
  • the predetermined interval described above is appropriately determined according to the moving speed of the moving body model 54, the state of the moving path 50, and the like. As an example, when the moving body model 54 is associated with a pedestrian or the like, the predetermined interval is set as 1 m based on a distance that requires a collision of a pedestrian or the like on an actual road or the like. .
  • the position updating unit 130 updates the position of the moving body model 54 as follows according to the number of lanes 52 in the section 51 in which the moving body model 54 is located as the above-described avoiding operation. To do. That is, when a plurality of lanes 52 are included in the section 51 where the mobile object model 54 is located, the position update unit 130 moves to the lane 52 adjacent to the lane 52 where the mobile object model 54 is located at that time. Update its position so that. That is, the position update unit 130 adjusts the position of the moving body model 54 so that the moving body model 54 moves to either the left or right lane 52 adjacent to the lane 52 where the moving body model 54 is located at that time. Update.
  • the position updating unit 130 may update the position of the moving body model 54 so as to move the moving body model 54 in a predetermined direction on the left side or the right side of the position at that time, for example. In this way, by updating the position of the moving body model 54 so as to move in a predetermined direction, when there are a plurality of moving body models 54 in the section 51, the moving body model 54 heading in the same direction As a result, the section 51 moves to the same side.
  • the operation of the position update unit 130 described above corresponds to, for example, such a behavior of a pedestrian.
  • FIG. 9 is a diagram illustrating an operation example when the position of the mobile object model 54 is updated by the position update unit 130 when the section 51 where the mobile object model 54 is located includes a plurality of lanes 52.
  • the adjacent mobile body model 55 is located in the lane 52-1 where the mobile body model 54-1 is located. Further, the moving directions of the moving body model 54-1 and the adjacent moving body model 55 are different from each other. It is assumed that the interval between the moving body model 54-1 and the adjacent moving body model 55 is smaller than the predetermined interval described above. In this case, the position updating unit 130 updates the position of the moving body model 54 so as to move the moving body model 54 to the lane 52-2 that is the left lane of the lane 52-1.
  • the position updating unit 130 does not have to consider the presence of the moving body model 54-2 when updating the position of the moving body model 54-1.
  • the position update unit 130 updates the position of the mobile object model 54 as being stopped. That is, the position update unit 130 updates the updated position of the mobile object model 54 based on the point where the mobile object model 54 is arranged before the update. For example, in this case, the position update unit 130 sets the position of the moving body model 54 before the update as the position after the updating of the moving body model 54 as it is. Even when a plurality of lanes 52 are included in the section 51 in which the mobile object model 54 is located, if the mobile object model 54 is located in the leftmost or rightmost lane 52, the position updating unit 130 determines the relevant mobile object model 54. Updates its position as stops.
  • the position update unit 130 updates the position of the moving body model 54 based on the moving speed that is decelerated from the normal moving speed of the moving body model 54. That is, assuming that the moving body model 54 moves at a speed slower than a predetermined normal moving speed, the position of the moving body model 54 is updated by determining the position after the movement.
  • This action is based on the approach to other pedestrians when it is assumed that pedestrians move at a predetermined normal movement speed on a real sidewalk. This corresponds to the operation of reducing the moving speed so as to avoid the above.
  • the position updating unit 130 updates the position of the moving body model 54 on the assumption that the moving body model 54 moves at a speed of 0.2 m per second.
  • the position update unit 130 causes the moving body model 54 to move normally. Update its position to move at speed.
  • the moving body model 54 is assumed to be sufficiently separated from the adjacent moving body model 55.
  • the position updating unit 130 determines the normal moving speed that is determined in advance for the moving body model 54.
  • the position of the moving body model 54 is updated based on the above. That is, the position updating unit 130 updates the position so that the moving body model 54 moves at a predetermined normal moving speed.
  • the position update unit 130 updates the position of the moving body model 54 so that the moving body model 54 moves in a preset traveling direction.
  • the moving body model 54 when the moving body model 54 reaches the end point of the section 51 including the lane 52 where the moving body model 54 is located, the moving body model 54 may be removed from the moving path 50, for example. As will be described later, when the position of the moving body model 54 is repeatedly updated, the moving body model 54 may be treated as being located at the intersection 53 to which the section 51 is connected.
  • the position updating unit 130 updates the position of the moving body model 54 as follows, for example.
  • the position update unit 130 updates the position so as to stop the moving body model 54. .
  • FIG. 10 is a diagram illustrating an operation example when the position of the moving object model 54-1 is updated by the position update unit 130 when the moving object model 54-1 is located at the intersection 53.
  • the moving source of the moving body model 54-1 is the section 51-1
  • the moving destination is the section 51-3.
  • the position update unit 130 causes the moving body model 54-1 to stop. Update the position of -1.
  • the position updating unit 130 updates the position of the moving body model 54-1 so that the moving body model 54-1 is stopped, thereby expressing the state of movement of the pedestrian or the like described above.
  • the position updating unit 130 The position is updated based on the decelerated moving speed. That is, the moving body model 130 updates the position of the moving body model 54 based on the moving speed that is decelerated from the normal moving speed of the moving body model 54. That is, assuming that the moving body model 54 moves at a speed slower than a predetermined normal moving speed, the position of the moving body model 54 is updated by determining the position after the movement.
  • the position update unit 130 causes the mobile body model 54 to move at a normal movement speed. Update position.
  • the position updating unit 130 updates the position of the moving body model 54 so that the moving body model 54 moves from the preset moving source lane 52 to the moving destination lane 52.
  • the position update unit 130 is different from the mobile object model 54 selected by the mobile object model selection unit 110 in that the source and destination lanes 52 are different.
  • the moving body model 54 may not be considered. This corresponds to an operation in which each pedestrian or the like moves in a desired direction while avoiding a collision when the pedestrian or the like moves in different directions at an intersection or the like.
  • a moving body model 54-2 further exists at the intersection 53 with respect to the moving body model 54-1 and the adjacent moving body model 55 described above.
  • the position update unit 130 when updating the position of the mobile object model 54-1, the position update unit 130 is based on the relationship between the mobile object model 54-1 and the adjacent mobile object model 55. Update the position of -1. That is, the position updating unit 130 does not have to update the position based on the relationship between the moving body model 54-1 and the moving body model 54-2.
  • the position of the moving body model 54-2 is updated by the position updating unit 130, for example, the position of the moving body model 54-2 is updated so as to move at a normal moving speed. Is done.
  • the mobile body model 54 when the mobile body model 54 reaches the section 51 as the movement destination, the mobile body model 54 may be removed from the movement path 50, for example. As will be described later, when the position of the moving body model 54 is repeatedly updated, the moving body model 54 may be treated as being located in the movement source section 51.
  • the location updating unit 130 does not have to perform the processes related to all the above updates.
  • the position updating unit 130 may update the position of the moving body model 54 by performing an operation that the moving body model 54 avoids or moving at a normal moving speed.
  • the position update unit 130 executes processing related to necessary update according to the property of the moving body model 54, the state of the moving path 50, and the like.
  • the moving body model selection unit 110 selects one of the plurality of moving body models 54 arranged on the moving path 50 (step S101).
  • the adjacent relationship deriving unit 120 specifies the adjacent moving body model 55 for the moving body model 54 selected in step S101. Then, the adjacent relationship deriving unit 120 derives the relationship between the moving body model 54 and the adjacent moving body model 55 (step S102).
  • the position updating unit 130 updates the position of the moving body model 54 in the moving path 50 according to the relationship between the moving body model 54 and the adjacent moving body model 55 derived in step S103 (step S103).
  • the position of the moving body model 54 in the moving path 50 By updating the position of the moving body model 54 in the moving path 50, the moving state of the moving body model in an arbitrary period is represented.
  • step S101 to S103 represents the state of movement in the above-described arbitrary period with respect to the moving body model 54 selected in step S101. Similarly, the process from step S101 to S103 is also performed for the other moving body models 54, and the state of movement in an arbitrary period regarding the plurality of moving body models 54 arranged on the moving path 50 is represented.
  • the moving body model selection unit 110 determines whether or not to execute the processing from step S101 to step S103 for another moving body model 54 among the plurality of moving body models 54 arranged on the moving path 50. Judgment is made (step S104).
  • the other moving body model 54 is a model different from the moving body model 54 that has been the target of the processing from steps S101 to S103, for example.
  • the mobile model selection unit 110 When the process is executed on another mobile model 54, the mobile model selection unit 110 returns to step S101, and selects one of the mobile models 54 in which the processes from step S101 to step S103 are not executed. select. Then, the operations of steps S102 and S103 are performed in the adjacent relationship deriving unit 120 and the position updating unit 130 for the selected moving body model 54, respectively.
  • the mobile body model selection part 110 may acquire beforehand the information regarding the mobile body model 54 used as the object processed in this step via an input means.
  • step S101 to step S103 is executed for all the moving body models 54, such as when the processing is not repeatedly executed for other moving body models 54 in step S104, the processing of step S105 is performed. Processing is performed.
  • step S105 for example, the moving body model selection unit 110 further performs processing from step S101 to step S104 to determine whether or not to update the position of the moving body model 54 repeatedly.
  • step S105 the moving object model selecting unit 110 determines that the process is repeated according to the certain period. For example, when an arbitrary period corresponds to 1 second and a certain period corresponds to 1 hour (that is, 3600 seconds), step S105 is performed so that the processing from step S101 to step S104 is repeated 3600 times. Is performed.
  • the moving body model selection unit 110 returns to step S101 and continues the process.
  • the processing in the simulation apparatus 100 ends.
  • the result regarding the update of the position of the moving body model 54 executed in each step described above is obtained as a simulation result representing the movement of a pedestrian or the like on the moving path 50 via an arbitrary output means (not shown) or a communication network. Is output. Further, the simulation result may be output to an arbitrary memory or disk device (not shown).
  • the simulation apparatus 100 updates the position of the moving body model 54 in accordance with the relationship with the adjacent moving body model 55, so that the moving body model 54 moves on the moving path 50. Express.
  • the position update unit 130 In the processing of the position update unit 130, the position of the moving body model 54 in the moving path 50 is updated according to the relationship with the adjacent moving body model 55. That is, by considering the behavior of a small number of adjacent moving body models 55, the position of the moving body model 54 as a target in the moving path 50 is updated. Therefore, the position update unit 130 can update the position of the target mobile model 54 in the moving path 50 with a small calculation load.
  • the position updating unit 130 updates the position of the moving body model 54 on the moving path 50 in accordance with the movement of the pedestrian or the like represented by the moving body model 54, such as the avoiding operation described above. Therefore, the simulation apparatus 100 according to the present embodiment can simulate a pedestrian or the like along the movement of an actual pedestrian or the like.
  • the simulation apparatus 100 can appropriately express the behavior of a pedestrian or the like with a small calculation load.
  • the simulation apparatus 100, the simulation system 10, and the like in the above-described embodiment are used for various purposes when evaluating the movement of a pedestrian or the like in an urban area or the like.
  • the simulation apparatus 100 or the like is used for evaluating each required time according to the road through which the crowd passes when the crowd is assumed to pass through an urban area.
  • the simulation apparatus 100 or the like is used when examining a method for guiding a so-called difficult-to-return person who has become difficult to move or go home due to a stop of transportation or the like during a disaster.
  • the simulation apparatus 100 or the like in the above-described embodiment is used for evaluation of a technique when guiding each pedestrian to a suitable road so that a large number of pedestrians can move smoothly as a whole.
  • the simulation apparatus 100 performs a simulation on the state of movement of a pedestrian or the like who is difficult to return to the home based on the information on the moving path 50 representing a city road or the like.
  • Information about the travel path 50 representing a city road or the like is generated by, for example, the travel path generation unit 11 of the simulation system 10. This simulation is repeatedly executed in the simulation apparatus 100 by changing various conditions, thereby evaluating a method related to guiding a pedestrian who is difficult to return home.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

The purpose of the present invention is to provide a simulation device, etc., which are capable of appropriately presenting an action of a pedestrian, etc., with a small computation load. Provided is a simulation device, comprising: a moving body model selection unit 110 which selects a moving body model 54 which moves along a movement path 50; a proximate relation derivation unit 120 which derives a relation between the selected moving body model 54 and a proximate moving body model 55 which is located in a prescribed direction which is determined on the basis of the progress direction of the moving body model 54 and the form of the movement path 50; and a position update unit 130 which updates the position of the moving body model on the movement path 50 according to the relation between the moving body model and the proximate moving body model 55.

Description

シミュレーション装置、シミュレーションシステム、シミュレーション方法及びコンピュータ読み取り可能記録媒体Simulation apparatus, simulation system, simulation method, and computer-readable recording medium
 本発明は、シミュレーション装置、シミュレーションシステム、シミュレーション方法及びコンピュータ読み取り可能記録媒体に関する。 The present invention relates to a simulation apparatus, a simulation system, a simulation method, and a computer-readable recording medium.
 歩道等を移動する歩行者、自転車、車椅子等(以下「歩行者等」とする)の移動の容易さや、歩行者等を所望の方向へ誘導する方法の評価を目的として、歩行者等の移動の様子を計算機上で模擬するシミュレーションが行われる場合がある。このシミュレーションは、例えば市街地等に存在する歩道の状況や、歩道における歩行者等の移動の様子等を数値化することで行われる。 Movement of pedestrians, etc. for the purpose of evaluating the ease of movement of pedestrians, bicycles, wheelchairs, etc. (hereinafter referred to as “pedestrians”) on a sidewalk, etc., and methods for guiding pedestrians, etc. in a desired direction There is a case where a simulation is performed to simulate the above situation on a computer. This simulation is performed, for example, by quantifying the state of a sidewalk existing in an urban area or the like, the state of movement of a pedestrian or the like on the sidewalk.
 特許文献1には、群衆歩行シミュレーションシステムが記載されている。特許文献1に記載の群衆歩行シミュレーションシステムでは、歩行者同士、歩行者と障害物との間には距離に依存する反発力が作用し、歩行者と目標地点との間には距離に関係ない一定の吸引力が作用するように設定される。 Patent Document 1 describes a crowd walking simulation system. In the crowd walking simulation system described in Patent Document 1, a repulsive force that depends on distance acts between pedestrians and between a pedestrian and an obstacle, and there is no relation between the pedestrian and a target point. It is set so that a constant suction force acts.
 特許文献2には、歩行者シミュレーション装置等が記載されている。特許文献2に記載の技術では、2点間を結ぶリンク上を進行する擬人モデルに対して、擬人モデル間の間隔を確保するパーソナルスペースを形成し、パーソナルスペース同士の重複が検出された場合、擬人モデルの回避方向位置を決定する。 Patent Document 2 describes a pedestrian simulation device and the like. In the technique described in Patent Document 2, a personal space that forms a space between anthropomorphic models is formed for an anthropomorphic model that travels on a link connecting two points, and when an overlap between personal spaces is detected, Determine the avoidance direction position of the personification model.
 特許文献3には、交通シミュレーション装置等の技術が記載されている。特許文献3に記載の技術では、地図情報に基づいて複数生成された歩行者の出発地から目的地までの経路の候補から、経路の各々の危険度を考慮して経路が選択される。そして、選択された経路に従って、歩行者をモデル化した歩行者モデル等を移動させて交通状態がシミュレーションされる。 Patent Document 3 describes a technology such as a traffic simulation device. In the technique described in Patent Document 3, a route is selected from a plurality of pedestrian route candidates generated based on map information from the departure point to the destination in consideration of the risk of each route. Then, according to the selected route, the traffic state is simulated by moving a pedestrian model or the like that models a pedestrian.
 特許文献4には、交通流シミュレーション装置等が記載されている。特許文献4に記載の交通流シミュレーション装置は、移動体が1以上のレーンによって構成される通路を移動する移動先の位置を計算する。 Patent Document 4 describes a traffic flow simulation device and the like. The traffic flow simulation device described in Patent Document 4 calculates the position of a moving destination where a moving body moves along a path constituted by one or more lanes.
特開平4-75199号公報Japanese Patent Laid-Open No. 4-75199 特開2009-301295号公報JP 2009-301295 A 特開2009-19920号公報JP 2009-19920 A 特開2008-129874号公報JP 2008-129874 A
 歩行者等の移動の様子を模擬するシミュレーションにおいては、多数の歩行者の移動の様子が、その行動特性に基づいて適切に表現されることが好ましい。しかしながら、特許文献1又は2に記載の技術では、歩行者等の移動の様子が再現される場合に、その歩行者等の周囲に存在する多くの他の歩行者等が計算の対象とされる必要がある。また、特許文献3又は4に記載の技術では、各々の装置等において再現される歩行者等に関する移動の様子が、現実の歩行者等の移動の様子とは異なる場合がある。 In a simulation that simulates the movement of a pedestrian or the like, it is preferable that the movement of a large number of pedestrians is appropriately expressed based on their behavioral characteristics. However, in the technique described in Patent Document 1 or 2, when the state of movement of a pedestrian or the like is reproduced, many other pedestrians existing around the pedestrian or the like are targeted for calculation. There is a need. Further, in the technique described in Patent Document 3 or 4, the movement of a pedestrian or the like reproduced in each device or the like may be different from the movement of an actual pedestrian or the like.
 すなわち、上述した各特許文献に記載の技術は、歩行者等の移動の様子を模擬する際に必要となる計算負荷が大きく、かつ、歩行者等の行動特性が適切に表現されない可能性がある。 That is, the technology described in each of the above-mentioned patent documents has a large calculation load required when simulating the movement of a pedestrian or the like, and the behavior characteristics of the pedestrian or the like may not be appropriately expressed. .
 本発明は、上記課題を解決するためになされたものであって、小さい計算負荷で歩行者等の行動を適切に表現できるシミュレーション装置等を提供することを主たる目的とする。 The present invention has been made in order to solve the above-mentioned problems, and has as its main object to provide a simulation apparatus and the like that can appropriately express the behavior of a pedestrian or the like with a small calculation load.
 本発明の一態様におけるシミュレーション装置は、移動路を移動する移動体モデルを選択する移動体モデル選択手段と、選択された移動体モデルと、移動体モデルの進行方向及び移動路の形態に基づいて定められる所定の方向に位置する隣接移動体モデルとの関係を導出する隣接関係導出手段と、隣接移動体との関係に応じて、移動体モデルの移動路における位置を更新する位置更新手段とを備える。 The simulation apparatus according to one aspect of the present invention is based on a moving body model selecting unit that selects a moving body model that moves on a moving path, the selected moving body model, the traveling direction of the moving body model, and the form of the moving path. Adjacency relationship deriving means for deriving a relationship with an adjacent moving body model positioned in a predetermined direction, and position updating means for updating the position of the moving body model in the moving path according to the relationship with the adjacent moving body. Prepare.
 また、本発明の一態様におけるシミュレーション方法は、移動路を移動する移動体モデルを選択し、選択された移動体モデルと、移動体モデルの進行方向及び移動路の形態に基づいて定められる所定の方向に位置する隣接移動体モデルとの関係を導出し、隣接移動体との関係に応じて、移動体モデルの移動路における位置を更新する。 The simulation method according to one aspect of the present invention selects a moving body model that moves on a moving path, and determines a predetermined moving body model, a traveling direction of the moving body model, and a form of the moving path. A relationship with the adjacent moving body model positioned in the direction is derived, and the position of the moving body model in the moving path is updated according to the relationship with the adjacent moving body.
 また、本発明の一態様におけるコンピュータ読み取り可能記録媒体は、コンピュータに、移動路を移動する移動体モデルを選択する処理と、選択された移動体モデルと、移動体モデルの進行方向及び移動路の形態に基づいて定められる所定の方向に位置する隣接移動体モデルとの関係を導出する処理と、隣接移動体との関係に応じて、移動体モデルの移動路における位置を更新する処理とを実行させるプログラムを非一時的に格納する。 In addition, a computer-readable recording medium according to one embodiment of the present invention includes a process for selecting a moving body model that moves on a moving path, a selected moving body model, an advancing direction of the moving body model, and a moving path. A process of deriving a relationship with an adjacent moving body model located in a predetermined direction determined based on the form and a process of updating the position of the moving body model in the movement path according to the relationship with the adjacent moving body Store the program to be executed non-temporarily.
 本発明によると、小さい計算負荷で歩行者等の行動を適切に表現できるシミュレーション装置等を提供することができる。 According to the present invention, it is possible to provide a simulation device or the like that can appropriately express the behavior of a pedestrian or the like with a small calculation load.
本発明の第1の実施形態におけるシミュレーション装置の構成を示す図である。It is a figure which shows the structure of the simulation apparatus in the 1st Embodiment of this invention. 本発明の第1の実施形態におけるシミュレーション装置を備えるシミュレーションシステムの構成を示す図である。It is a figure which shows the structure of a simulation system provided with the simulation apparatus in the 1st Embodiment of this invention. 本発明の第1の実施形態におけるシミュレーション装置において対象とされる移動路の例を示す図である。It is a figure which shows the example of the moving path made into object in the simulation apparatus in the 1st Embodiment of this invention. 本発明の第1の実施形態におけるシミュレーション装置において対象とされる移動路に含まれる区間の例を示す図である。It is a figure which shows the example of the area contained in the moving path made into object in the simulation apparatus in the 1st Embodiment of this invention. 本発明の第1の実施形態におけるシミュレーション装置において対象とされる移動路に含まれる交点の一例を示す図である。It is a figure which shows an example of the intersection contained in the moving path made into object in the simulation apparatus in the 1st Embodiment of this invention. 本発明の第1の実施形態におけるシミュレーション装置において対象とされる移動路に含まれる交点の別の一例を示す図である。It is a figure which shows another example of the intersection contained in the moving path made into object in the simulation apparatus in the 1st Embodiment of this invention. 本発明の第1の実施形態におけるシミュレーション装置において対象とされる移動路を移動する移動体モデル及び隣接移動体モデルの一例を示す図である。It is a figure which shows an example of the mobile body model which moves the moving path made into object in the simulation apparatus in the 1st Embodiment of this invention, and an adjacent mobile body model. 本発明の第1の実施形態におけるシミュレーション装置において対象とされる移動路を移動する移動体モデル及び隣接移動体モデルの別の一例を示す図である。It is a figure which shows another example of the mobile body model which moves the moving path made into object in the simulation apparatus in the 1st Embodiment of this invention, and an adjacent mobile body model. 本発明の第1の実施形態におけるシミュレーション装置において対象とされる移動路の区間における移動体モデルと隣接移動体モデルとの関係及び移動体モデルの位置の更新に関する例を示す図である。It is a figure which shows the example regarding the relationship between the mobile body model and adjacent mobile body model in the area of the moving path made into object in the simulation apparatus in the 1st Embodiment of this invention, and the update of the position of a mobile body model. 本発明の第1の実施形態におけるシミュレーション装置において対象とされる移動路の交点における移動体モデルと隣接移動体モデルとの関係及び移動体モデルの位置の更新に関する例を示す図である。It is a figure which shows the example regarding the relationship between the mobile body model and adjacent mobile body model in the intersection of the moving path made into the object in the simulation apparatus in the 1st Embodiment of this invention, and the update of the position of a mobile body model. 本発明の第1の実施形態におけるシミュレーション装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the simulation apparatus in the 1st Embodiment of this invention. 本発明の各実施形態におけるシミュレーション装置等を実現する情報処理装置の構成例を示す図である。It is a figure which shows the structural example of the information processing apparatus which implement | achieves the simulation apparatus etc. in each embodiment of this invention.
 本発明の各実施形態について、添付の図面を参照して説明する。なお、本発明の各実施形態において、各装置の各構成要素は、機能単位のブロックを示している。各装置の各構成要素は、例えば図12に示すような情報処理装置500とソフトウェアとの任意の組み合わせにより実現することができる。情報処理装置500は、一例として、以下のような構成を含む。 Embodiments of the present invention will be described with reference to the accompanying drawings. In each embodiment of the present invention, each component of each device represents a functional unit block. Each component of each device can be realized by any combination of an information processing device 500 and software as shown in FIG. 12, for example. The information processing apparatus 500 includes the following configuration as an example.
  ・CPU(Central Processing Unit)501
  ・ROM(Read Only Memory)502
  ・RAM(Ramdom Access Memory)503
  ・RAM503にロードされるプログラム504
  ・プログラム504を格納する記憶装置505
  ・記憶媒体506の読み書きを行うドライブ装置507
  ・通信ネットワーク509と接続する通信インターフェース508
  ・データの入出力を行う入出力インターフェース510
  ・各構成要素を接続するバス511
 各実施形態における各装置等の各構成要素は、これらの機能を実現するプログラム504をCPU501が取得して実行することで実現される。各装置の各構成要素の機能を実現するプログラム504は、例えば、予め記憶装置505やRAM503に格納されており、必要に応じてCPU501が読み出す。なお、プログラム504は、通信ネットワーク509を介してCPU501に供給されてもよいし、予め記録媒体506に格納されており、ドライブ装置507が当該プログラムを読み出してCPU501に供給してもよい。
CPU (Central Processing Unit) 501
ROM (Read Only Memory) 502
-RAM (Random Access Memory) 503
A program 504 loaded into the RAM 503
A storage device 505 for storing the program 504
A drive device 507 for reading / writing the storage medium 506
Communication interface 508 connected to the communication network 509
An input / output interface 510 for inputting / outputting data
-Bus 511 connecting each component
Each component such as each device in each embodiment is realized by the CPU 501 acquiring and executing a program 504 that realizes these functions. The program 504 that realizes the function of each component of each device is stored in advance in the storage device 505 or the RAM 503, for example, and is read by the CPU 501 as necessary. Note that the program 504 may be supplied to the CPU 501 via the communication network 509 or may be stored in the recording medium 506 in advance, and the drive device 507 may read the program and supply it to the CPU 501.
 各装置等の実現方法には、様々な変形例がある。例えば、各装置は、構成要素毎にそれぞれ別個の情報処理装置500とプログラムとの任意の組み合わせにより実現されてもよい。また、各装置が備える複数の構成要素が、一つの情報処理装置500とプログラムとの任意の組み合わせにより実現されてもよい。 There are various modifications to the method of realizing each device. For example, each device may be realized by an arbitrary combination of the information processing device 500 and a program that are separately provided for each component. A plurality of constituent elements included in each device may be realized by an arbitrary combination of one information processing device 500 and a program.
 また、各装置等の各構成要素の一部又は全部は、プロセッサ等を含む汎用または専用の回路 (circuitry)や、これらの組み合わせによって実現される。これらは、単一のチップ によって構成されてもよいし、バスを介して接続される複数のチップ によって構成されてもよい。各装置の各構成要素の一部又は全部は、上述した回路等とプログラムとの組み合わせによって実現されてもよい。 In addition, a part or all of each component of each device or the like is realized by a general purpose or dedicated circuit including a processor or the like, or a combination thereof. These may be constituted by a single chip cage or may be constituted by a plurality of chip cages connected via a bus. Part or all of each component of each device may be realized by a combination of the above-described circuit and the like and a program.
 各装置の各構成要素の一部又は全部が複数の情報処理装置や回路等により実現される場合には、複数の情報処理装置や回路等は、集中配置されてもよいし、分散配置されてもよい。例えば、情報処理装置や回路等は、クライアントアンドサーバシステム、クラウドコンピューティングシステム等、各々が通信ネットワークを介して接続される形態として実現されてもよい。 When some or all of the constituent elements of each device are realized by a plurality of information processing devices and circuits, the plurality of information processing devices and circuits may be centrally arranged or distributedly arranged. Also good. For example, the information processing apparatus, the circuit, and the like may be realized as a form in which each is connected via a communication network, such as a client and server system and a cloud computing system.
 (第1の実施形態)
 最初に、本発明の第1の実施形態について説明する。図1は、本発明の第1の実施形態におけるシミュレーション装置の構成を示す図である。図2は、本発明の第1の実施形態におけるシミュレーション装置を備えるシミュレーションシステムの構成を示す図である。図3は、本発明の第1の実施形態におけるシミュレーション装置において用いられる移動路の例を示す図である。図4は、本発明の第1の実施形態におけるシミュレーション装置において対象とされる移動路に含まれる区間の例を示す図である。図5は、本発明の第1の実施形態におけるシミュレーション装置において対象とされる移動路に含まれる交点の一例を示す図である。図6は、本発明の第1の実施形態におけるシミュレーション装置において対象とされる移動路に含まれる交点の別の一例を示す図である。図7は、本発明の第1の実施形態におけるシミュレーション装置において対象とされる移動路を移動する移動体モデル及び隣接移動体モデルの一例を示す図である。図8は、本発明の第1の実施形態におけるシミュレーション装置において対象とされる移動路を移動する移動体モデル及び隣接移動体モデルの別の一例を示す図である。図9は、本発明の第1の実施形態におけるシミュレーション装置において対象とされる移動路の区間における移動体モデルと隣接移動体モデルとの関係及び移動体モデルの位置の更新に関する例を示す図である。図10は、本発明の第1の実施形態におけるシミュレーション装置において対象とされる移動路の交点における移動体モデルと隣接移動体モデルとの関係及び移動体モデルの位置の更新に関する例を示す図である。図11は、本発明の第1の実施形態におけるシミュレーション装置の動作を示すフローチャートである。
(First embodiment)
First, a first embodiment of the present invention will be described. FIG. 1 is a diagram showing a configuration of a simulation apparatus according to the first embodiment of the present invention. FIG. 2 is a diagram illustrating a configuration of a simulation system including the simulation apparatus according to the first embodiment of the present invention. FIG. 3 is a diagram illustrating an example of a moving path used in the simulation apparatus according to the first embodiment of the present invention. FIG. 4 is a diagram illustrating an example of sections included in a moving path that is a target in the simulation apparatus according to the first embodiment of the present invention. FIG. 5 is a diagram illustrating an example of an intersection included in a moving path that is a target in the simulation apparatus according to the first embodiment of the present invention. FIG. 6 is a diagram illustrating another example of intersections included in a moving path that is a target in the simulation apparatus according to the first embodiment of the present invention. FIG. 7 is a diagram illustrating an example of a moving body model and an adjacent moving body model that move along a moving path that is a target in the simulation apparatus according to the first embodiment of the present invention. FIG. 8 is a diagram illustrating another example of a moving body model and an adjacent moving body model that move on a moving path that is a target in the simulation apparatus according to the first embodiment of the present invention. FIG. 9 is a diagram illustrating an example of the relationship between the moving body model and the adjacent moving body model in the section of the moving path targeted in the simulation apparatus according to the first embodiment of the present invention and the updating of the position of the moving body model. is there. FIG. 10 is a diagram illustrating an example of the relationship between the moving body model and the adjacent moving body model at the intersection of the moving paths targeted in the simulation apparatus according to the first embodiment of the present invention and the updating of the position of the moving body model. is there. FIG. 11 is a flowchart showing the operation of the simulation apparatus according to the first embodiment of the present invention.
 図1に示すとおり、本発明の第1の実施形態におけるシミュレーション装置100は、移動体モデル選択部110と、隣接関係導出部120と、位置更新部130とを備える。移動体モデル選択部110は、移動路を移動する移動体モデルを選択する。隣接関係導出部120は、選択された移動体モデルと、移動体モデルの進行方向及び移動路の形態に基づいて定められる所定の方向に位置する隣接移動体モデルとの関係を導出する。位置更新部130は、隣接移動体との関係に応じて、移動体モデルの移動路における位置を更新する。 As shown in FIG. 1, the simulation apparatus 100 according to the first embodiment of the present invention includes a moving body model selection unit 110, an adjacent relationship deriving unit 120, and a position update unit 130. The moving body model selection unit 110 selects a moving body model that moves on the moving path. The adjacent relationship deriving unit 120 derives a relationship between the selected moving body model and the adjacent moving body model positioned in a predetermined direction determined based on the traveling direction of the moving body model and the form of the moving path. The position updating unit 130 updates the position of the moving body model in the moving path according to the relationship with the adjacent moving body.
 また、図2に示すとおり、本発明の第1の実施形態におけるシミュレーション装置100を含むシミュレーションシステム10が構成される。シミュレーションシステム10は、移動路生成部11と、移動体モデル生成部12とを備える。移動路生成部11と、移動路に関する情報を生成する。移動路は、区間と交点との少なくとも一方を有する。また、移動体モデル生成部12は、移動路に配置される所定の数の移動モデルに関する情報を生成する。 Further, as shown in FIG. 2, a simulation system 10 including the simulation apparatus 100 according to the first embodiment of the present invention is configured. The simulation system 10 includes a moving path generation unit 11 and a moving body model generation unit 12. The travel path generation unit 11 and information on the travel path are generated. The moving path has at least one of a section and an intersection. Moreover, the mobile body model production | generation part 12 produces | generates the information regarding the predetermined number of movement models arrange | positioned at a movement path.
 まず、本実施形態におけるシミュレーション装置100が対象とする移動路及び移動体モデルについて説明する。
図3は、移動路50の一例を示す図である。移動路50は、移動体モデル54が通過する1つ以上のレーン52を含み、2つの地点の間を結ぶ区間51と、複数の区間51が接続される交点53との少なくとも一方を有する。図3に示す例では、移動路50は、区間51及び交点53の双方を有する。
First, a moving path and a moving body model targeted by the simulation apparatus 100 according to the present embodiment will be described.
FIG. 3 is a diagram illustrating an example of the moving path 50. The moving path 50 includes one or more lanes 52 through which the moving body model 54 passes, and has at least one of a section 51 connecting two points and an intersection 53 to which the plurality of sections 51 are connected. In the example shown in FIG. 3, the moving path 50 has both a section 51 and an intersection 53.
 移動路50において、区間51は、任意の2つの地点の間を接続する。すなわち、区間51は、一例として、現実の道路において任意の2つの地点の間を結ぶ道路やその歩道と関係付けられる。図4は、区間51の一例を示す。区間51は、例えば現実の道路において任意の2つの地点の間の距離等に応じて長さが定められてもよい。 In the moving path 50, the section 51 connects between any two points. That is, the section 51 is related to, for example, a road connecting any two points on an actual road and its sidewalk. FIG. 4 shows an example of the section 51. The length of the section 51 may be determined according to the distance between any two points on an actual road, for example.
 区間51の各々は、当該区間51に沿って延びる1つ以上のレーン52を含む。本発明の各実施形態においては、後述する移動体モデル54が任意の区間51を移動する場合には、移動体モデル54は、当該区間51に含まれるレーン52の一つを通過することが想定されている。そのため、レーン52の各々は、例えば当該区間51と関係付けられる現実の歩道において、歩行者等が通行可能な程度の幅に相当することが想定される。例えば、各々のレーン52は当該区間51と関係付けられる現実の歩道において、50cm(センチメートル)から1m(メートル)程度の幅であることが想定される。 Each section 51 includes one or more lanes 52 extending along the section 51. In each embodiment of the present invention, when a moving body model 54 described later moves in an arbitrary section 51, it is assumed that the moving body model 54 passes through one of the lanes 52 included in the section 51. Has been. Therefore, it is assumed that each of the lanes 52 corresponds to a width that allows a pedestrian or the like to pass on an actual sidewalk associated with the section 51, for example. For example, each lane 52 is assumed to have a width of about 50 cm (centimeter) to 1 m (meter) on an actual sidewalk associated with the section 51.
 したがって、区間51の各々に含まれるレーン52の数は、例えば当該区間51と関係付けられる現実の歩道の幅等に基づいて定められる。一例として、区間51の各々に含まれるレーン52の数は、当該区間51に関係付けられる現実の歩道の幅を、1つのレーン52当たりの幅にて割ることで求められる。 Therefore, the number of lanes 52 included in each section 51 is determined based on, for example, the actual width of the sidewalk associated with the section 51. As an example, the number of lanes 52 included in each section 51 can be obtained by dividing the actual width of a sidewalk associated with the section 51 by the width per lane 52.
 また、ある区間51において、レーン52の数が途中で変わる場合がある。この場合には、当該区間51は、レーン52の数が変わる箇所に中間点が設置されて複数の区間51として構成される。このことは、例えば、当該区間51と関係付けられる現実の歩道の幅等が変化する場合に相当する。 In some sections 51, the number of lanes 52 may change midway. In this case, the section 51 is configured as a plurality of sections 51 by setting intermediate points at locations where the number of lanes 52 changes. This corresponds to, for example, a case where the width of an actual sidewalk associated with the section 51 changes.
 なお、区間51の各々に含まれるレーン52の数は、上述した方法と異なる方法で定められてもよい。区間51の各々に含まれるレーン52の数は、例えば当該区間と関係付けられる現実の歩道の状況や、本実施形態におけるシミュレーション装置100において評価される内容等に応じて適宜定められる。 Note that the number of lanes 52 included in each of the sections 51 may be determined by a method different from the method described above. The number of lanes 52 included in each section 51 is appropriately determined according to, for example, the actual sidewalk situation associated with the section, the contents evaluated by the simulation apparatus 100 in the present embodiment, and the like.
 交点53は、移動路50において複数の上述した区間51が接続される部分である。すなわち、交点53は、一例として、現実の道路において複数の道路が互いに接続する交差点等と関係付けられる。 The intersection 53 is a portion where a plurality of the sections 51 described above are connected in the moving path 50. That is, the intersection 53 is related to, for example, an intersection where a plurality of roads are connected to each other on an actual road.
 交点53には、任意の数の区間51が接続される。各々の交点53に接続される区間51は、例えば当該交点53と関係付けられた現実の交差点等に接続される道路の数に応じて定められる。また、区間51の各々は、先に説明したようにそれぞれ1つ以上のレーン52を含む。 Any number of sections 51 are connected to the intersection 53. The section 51 connected to each intersection 53 is determined according to the number of roads connected to an actual intersection or the like associated with the intersection 53, for example. Further, each of the sections 51 includes one or more lanes 52 as described above.
 また、交点53は、任意の形状とされる。一例として、交点53は、図5に示すように、交点53に接続される区間51の各々の幅を一つの辺とする多角形状の形状とされる。又は、交点53は、図6に示すように、当該交点53と関係付けられた現実の交差点等の形状に応じた形状であってもよい。 Also, the intersection 53 is an arbitrary shape. As an example, as shown in FIG. 5, the intersection 53 has a polygonal shape with each width of the section 51 connected to the intersection 53 as one side. Alternatively, the intersection 53 may have a shape corresponding to the shape of an actual intersection or the like associated with the intersection 53, as shown in FIG.
 本実施形態におけるシミュレーション装置100が動作する場合には、予め、シミュレーション装置100の処理対象となる移動路50に任意の数の移動体モデル54が配置される。移動体モデル54は、移動路51を移動する任意の種類の移動体について、移動路51における移動の様子を表すモデルである。すなわち、移動体モデル54は、例えば移動路51を移動する歩行者等に対応する。 When the simulation apparatus 100 according to the present embodiment operates, an arbitrary number of moving body models 54 are arranged in advance on the movement path 50 to be processed by the simulation apparatus 100. The moving body model 54 is a model that represents the state of movement on the moving path 51 for any type of moving body that moves on the moving path 51. That is, the moving body model 54 corresponds to, for example, a pedestrian who moves on the moving path 51.
 移動体モデル54は、移動路50の区間51に配置される場合には、区間51に含まれるレーン52のいずれかに配置される。この場合には、移動体モデル54は、当該レーン52の端点を含むいずれかの位置に配置される。 When the moving body model 54 is arranged in the section 51 of the moving path 50, it is arranged in any of the lanes 52 included in the section 51. In this case, the moving body model 54 is arranged at any position including the end point of the lane 52.
 移動体モデル54は、移動路50の交点53に配置される場合には、まず、移動元となる区間51と移動先となる区間51が設定される。また、移動元となる区間51において、移動元となるレーン52が設定される。更に、移動先となる区間51において、移動先となるレーン52が設定される。そして、移動体モデル54は、移動元となるレーン52の端点と、移動先となるレーン52の端点との間の任意の位置を移動するように配置される。一例として、移動体モデル54は、移動元となるレーン52の端点と、移動先となるレーン52の端点との間を結ぶ仮想的な経路に沿った任意の位置に配置される。すなわち、移動体モデル54は、当該仮想的な経路に沿って移動することが想定されている。 When the moving body model 54 is arranged at the intersection 53 of the moving path 50, first, a section 51 as a movement source and a section 51 as a movement destination are set. In the section 51 that is the movement source, the lane 52 that is the movement source is set. Furthermore, a lane 52 that is a movement destination is set in the section 51 that is a movement destination. The moving body model 54 is arranged so as to move at an arbitrary position between the end point of the lane 52 serving as the movement source and the end point of the lane 52 serving as the movement destination. As an example, the moving body model 54 is disposed at an arbitrary position along a virtual route connecting the end point of the lane 52 that is the movement source and the end point of the lane 52 that is the movement destination. That is, the moving body model 54 is assumed to move along the virtual route.
 上述したいずれの場合においても、移動体モデル54のそれぞれには、進行方向及び移動速度が設定される。移動体モデル54が移動路50の区間51に配置される場合には、進行方向は、区間51のいずれか一方の端部から他方の端部への方向として設定される。すなわち、移動体モデル54は、区間51が延びる方向のいずれか一方に移動することが想定される。移動体モデル54が移動路50の交点53に配置される場合には、進行方向は、移動体モデル54は移動元となるレーン52から移動先となるレーン52の端点へ向かう方向として設定される。本実施形態の各図面においては、移動体モデル54の進行方向は、移動体モデル54を表す三角形の一つの頂点の向きにて表現される。例えば、図4に示す例では、移動体モデル54は、図中の下側から上側へ向かうとして進行方向が設定される。 In any of the cases described above, the traveling direction and the moving speed are set for each of the moving body models 54. When the moving body model 54 is arranged in the section 51 of the moving path 50, the traveling direction is set as a direction from one end of the section 51 to the other end. That is, the moving body model 54 is assumed to move in either one of the directions in which the section 51 extends. When the moving body model 54 is arranged at the intersection 53 of the moving path 50, the traveling direction is set as a direction in which the moving body model 54 heads from the lane 52 that is the movement source to the end point of the lane 52 that is the movement destination. . In each drawing of the present embodiment, the traveling direction of the moving body model 54 is expressed by the direction of one vertex of a triangle representing the moving body model 54. For example, in the example illustrated in FIG. 4, the traveling direction is set so that the moving body model 54 is directed from the lower side to the upper side in the drawing.
 また、移動速度は、例えば移動体モデル54の各々に対応付けられている歩行者等の通常の場合における移動の速度に応じて設定される。移動速度は、全ての移動体モデル54に対して同じ移動速度が設定されてもよいし、移動体モデル54の各々に対して異なる移動速度が設定されてもよい。移動体モデル54の各々に対して異なる移動速度が設定される場合には、各々の移動体モデル54に設定される移動速度は、例えば当該移動体モデル54が表す歩行者等の移動速度に基づいて定められる。 Also, the moving speed is set according to the moving speed in a normal case of a pedestrian or the like associated with each of the moving body models 54, for example. As the moving speed, the same moving speed may be set for all the moving body models 54, or different moving speeds may be set for each of the moving body models 54. When different moving speeds are set for each of the moving body models 54, the moving speed set for each moving body model 54 is based on, for example, the moving speed of a pedestrian or the like represented by the moving body model 54. Determined.
 いずれの場合においても、複数の移動体モデル54が、同じ位置に配置されてもよい。また、本実施形態におけるシミュレーション装置100において、処理が繰り返し実行される場合には、移動体モデル54は、当該繰り返しの処理の途中において、新たに移動路50に配置されてもよい。 In any case, a plurality of moving body models 54 may be arranged at the same position. In the simulation apparatus 100 according to the present embodiment, when the process is repeatedly executed, the moving body model 54 may be newly arranged on the moving path 50 in the middle of the repeated process.
 上述した移動路50は、例えばシミュレーションの対象とする現実の歩道等の交通路やその接続関係等に応じて定められる。また、移動路は、仮想的な道路網等のデータに基づいて定められてもよい。本実施形態におけるシミュレーション装置100において、一本の道路の特定の間や、特定の一か所の交差点に関してシミュレーションが行われる場合には、移動路50は、区間51又は交点53いずれか一方のみを含む形態であってもよい。 The above-described moving path 50 is determined according to, for example, a traffic path such as an actual sidewalk to be simulated and its connection relation. In addition, the travel path may be determined based on data such as a virtual road network. In the simulation apparatus 100 according to the present embodiment, when the simulation is performed during the identification of one road or at one specific intersection, the moving path 50 is only the section 51 or the intersection 53. The form may be included.
 本実施形態におけるシミュレーション装置100の各構成要素は、予め生成された、上述の移動路50及び移動体モデル54に関する情報に基づいて動作する。シミュレーション装置100の各構成要素は、これらの情報を、例えば図示しない入力部や通信ネットワーク等を介して予め取得する。また、シミュレーション装置100の各構成要素は、図示しない任意のメモリやディスク装置等に予め格納されたこれらの情報を取得してもよい。 Each component of the simulation apparatus 100 according to the present embodiment operates based on information relating to the moving path 50 and the moving body model 54 generated in advance. Each component of the simulation apparatus 100 acquires such information in advance via, for example, an input unit or a communication network (not shown). Further, each component of the simulation apparatus 100 may acquire these pieces of information stored in advance in an arbitrary memory or disk device (not shown).
 また、シミュレーションシステム10においては、移動路生成部11は、上述した移動路50に関する情報を生成する。また、移動体モデル生成部12は、上述した移動体モデル54に関する情報を生成する。したがって、シミュレーションシステム10に備えられるシミュレーション装置100の各構成要素は、移動路生成部11及び移動体モデル生成部12にて生成された移動路50及び移動体モデル54に関する情報に基づいて動作してもよい。なお、シミュレーションシステム10に備えられるシミュレーション装置100の各構成要素は、例えば図示しない入力部や通信ネットワーク等を介して取得してもよい。また、一本の道路の特定の間や、特定の一か所の交差点に関してシミュレーションが行われる場合には、移動路生成部11は、区間51又は交点53のいずれか一方のみに関する情報を生成するような構成であってもよい。 Further, in the simulation system 10, the moving path generation unit 11 generates information on the moving path 50 described above. Moreover, the mobile body model production | generation part 12 produces | generates the information regarding the mobile body model 54 mentioned above. Therefore, each component of the simulation apparatus 100 provided in the simulation system 10 operates based on information on the moving path 50 and the moving body model 54 generated by the moving path generation unit 11 and the moving body model generation unit 12. Also good. In addition, you may acquire each component of the simulation apparatus 100 with which the simulation system 10 is provided via the input part which is not shown in figure, a communication network, etc., for example. Further, when a simulation is performed during the specification of a single road or a specific intersection, the moving path generation unit 11 generates information related to only one of the section 51 and the intersection 53. Such a configuration may be adopted.
 次に、本実施形態におけるシミュレーション装置100の各構成要素を説明する。 Next, each component of the simulation apparatus 100 in this embodiment will be described.
 移動体モデル選択部110は、移動路50において複数の移動体モデル54が配置されている場合に、その一つを選択する。本実施形態におけるシミュレーション装置100においては、移動体モデル選択部110にて選択された移動体モデル54に対して、隣接関係導出部120及び位置更新部130において、一連のシミュレーションに関する処理が行われる。 The moving body model selection unit 110 selects one of a plurality of moving body models 54 arranged on the moving path 50. In the simulation apparatus 100 according to the present embodiment, a series of simulation processing is performed in the adjacent relationship deriving unit 120 and the position updating unit 130 for the moving body model 54 selected by the moving body model selecting unit 110.
 移動体モデル選択部110は、例えば、複数の移動体モデル54のうちの一つをランダムに選択する。この場合には、移動体モデル選択部110は、区間51に配置された移動体モデル54と、交点53に配置された移動体モデル54とを区別せずにランダムに選択してもよい。その他の方法として、動体モデル選択部110は、移動路50や移動体モデル54の各々の特性などに応じて定められる任意の順序や手順に基づいて、複数の移動体モデル54のうちの一つを選択してもよい。 The moving body model selection unit 110 randomly selects one of the plurality of moving body models 54, for example. In this case, the mobile body model selection unit 110 may randomly select the mobile body model 54 arranged in the section 51 and the mobile body model 54 arranged at the intersection 53 without distinguishing. As another method, the moving body model selection unit 110 may select one of the plurality of moving body models 54 based on an arbitrary order or procedure determined according to the characteristics of the moving path 50 or the moving body model 54. May be selected.
 隣接関係導出部120は、移動体モデル選択部110において選択された移動体モデル54と、隣接移動体モデル55との関係を導出する。隣接移動体モデル55は、上述のように、移動体モデル54の進行方向及び移動路50の形態に基づいて定められる所定の方向に位置する移動体モデルである。すなわち、本実施形態においては、移動体モデル54に対する隣接移動体モデル55は、区間51又は交点53のそれぞれにおいて、当該移動体モデル54の移動に影響を及ぼし得る移動体モデルである。 The adjacency relationship deriving unit 120 derives the relationship between the moving object model 54 selected by the moving object model selecting unit 110 and the adjacent moving object model 55. As described above, the adjacent moving body model 55 is a moving body model located in a predetermined direction determined based on the traveling direction of the moving body model 54 and the form of the moving path 50. That is, in the present embodiment, the adjacent moving body model 55 with respect to the moving body model 54 is a moving body model that can affect the movement of the moving body model 54 in each of the section 51 or the intersection 53.
 隣接移動体モデル55や、移動体モデル54と隣接移動体モデル55との関係は、移動体モデル選択部110において選択された移動体モデル54の移動路50における位置に応じて、例えば次のように定められる。 The relationship between the adjacent moving body model 55 and the moving body model 54 and the adjacent moving body model 55 is, for example, as follows according to the position of the moving body model 54 selected by the moving body model selecting unit 110 in the moving path 50. Determined.
 移動体モデル54が区間51に位置する場合には、隣接関係導出部120は、移動体モデル54が位置するレーン52において、移動体モデル54の進行方向に位置する最も近い移動体モデルを隣接移動体モデル55として特定する。 When the moving body model 54 is located in the section 51, the adjacent relationship deriving unit 120 moves the nearest moving body model located in the traveling direction of the moving body model 54 in the lane 52 where the moving body model 54 is located. The body model 55 is specified.
 図7は、移動体モデル54が区間51に位置する際に移動体モデル55を特定する場合の例を示す図である。図7に示す例では、移動体モデル52が位置するレーン52と同じレーンに他の移動体モデルが1つ存在する。したがって、隣接関係導出部120は、その移動体モデルを隣接移動体モデル55として特定する。 FIG. 7 is a diagram illustrating an example in the case where the moving body model 55 is specified when the moving body model 54 is located in the section 51. In the example illustrated in FIG. 7, there is one other moving body model in the same lane as the lane 52 where the moving body model 52 is located. Therefore, the adjacent relationship deriving unit 120 specifies the moving body model as the adjacent moving body model 55.
 移動体モデル54が交点53に位置する場合には、隣接関係導出部120は、移動体モデル54の進行方向にある所定の範囲に位置し、移動元及び移動先の区間51が同一である最も近い移動体モデルを隣接移動体モデル55として特定する。この場合において、所定の範囲は、例えば図8に示すように、移動体モデル54からその進行方向に向かって広がる扇形状の範囲とされる。図8の例においては、矢印に示す移動体モデル54の進行方向に対して、扇形状の図形によって示される左右それぞれ45度程度の範囲が所定の範囲とされる。ただし、この所定の範囲は他の形状の範囲であってもよい。例えば、所定の範囲は、扇形の角が丸められた形状の範囲であってもよい。 When the mobile object model 54 is located at the intersection 53, the adjacency deriving unit 120 is located in a predetermined range in the traveling direction of the mobile object model 54, and the source and destination sections 51 are the same. A near moving body model is specified as the adjacent moving body model 55. In this case, for example, as shown in FIG. 8, the predetermined range is a fan-shaped range that extends from the moving body model 54 in the traveling direction. In the example of FIG. 8, a range of about 45 degrees on each of the left and right sides indicated by the fan-shaped figure with respect to the traveling direction of the moving body model 54 indicated by the arrow is a predetermined range. However, the predetermined range may be a range of another shape. For example, the predetermined range may be a range of a shape in which a fan-shaped corner is rounded.
 なお、本実施形態においては、隣接関係導出部120は、移動体モデル選択部110において選択された移動体モデル54と同じ地点に位置する移動体モデルを、例えば上述の手順に従って隣接移動体モデル55として特定する。なわち、隣接関係導出部120は、移動体モデル選択部110において選択された移動体モデル54と同じ地点に位置する移動体モデルを隣接移動体モデル55としなくてもよい。 In the present embodiment, the adjacent relationship deriving unit 120 uses a moving body model located at the same point as the moving body model 54 selected by the moving body model selecting unit 110, for example, according to the above-described procedure. As specified. In other words, the adjacent relationship deriving unit 120 may not use the moving body model positioned at the same point as the moving body model 54 selected by the moving body model selecting unit 110 as the adjacent moving body model 55.
 また、隣接関係導出部120は、移動体モデル54と隣接移動体モデル55との関係として、隣接移動体モデル55の進行方向や、移動体モデル54と隣接移動体モデル55との間の距離に関する情報を導出する。隣接関係導出部120は、例えば移動体モデル54の移動路50における位置が上述のいずれの場合においても、これらの情報を導出する。 Further, the adjacent relationship deriving unit 120 relates to the traveling direction of the adjacent mobile body model 55 and the distance between the mobile body model 54 and the adjacent mobile body model 55 as the relationship between the mobile body model 54 and the adjacent mobile body model 55. Deriving information. The adjacency relationship deriving unit 120 derives these pieces of information, for example, when the position of the moving body model 54 on the moving path 50 is any of the above-described cases.
 位置更新部130は、隣接関係導出部120にて導出された移動体モデル54と隣接移動体モデル55との関係に応じて、移動体モデル54の移動路50における位置を更新する。 The position updating unit 130 updates the position of the moving body model 54 in the moving path 50 according to the relationship between the moving body model 54 and the adjacent moving body model 55 derived by the adjacent relationship deriving unit 120.
 位置更新部130において更新された後の移動体モデル54の位置は、その更新の前に対応する時点から任意の期間だけ後の時点における移動体モデル54の位置に相当する。つまり、位置更新部130にて移動体モデル54の位置が更新されることで、移動体モデル54の移動速度や、移動体モデル54と隣接移動体モデル55との関係に応じた当該移動モデル54の任意の期間における移動の様子が表される。 The position of the mobile object model 54 after being updated in the position update unit 130 corresponds to the position of the mobile object model 54 at a time point after an arbitrary period from the corresponding time point before the update. In other words, the position update unit 130 updates the position of the moving body model 54, so that the moving model 54 according to the moving speed of the moving body model 54 and the relationship between the moving body model 54 and the adjacent moving body model 55. The state of movement in an arbitrary period is represented.
 なお、上述した任意の期間は、移動体モデル54の移動速度や隣接移動体モデル55との関係等に応じて、移動体モデル54に対応付けられている歩行者等の比較的短い時間における振る舞いが適切に表されるように適宜定められる。一例として、移動体モデル54が歩行者等に対応付けられている場合には、現実の道路等において歩行者が1歩から数歩移動する場合に要する時間に基づいて、上述した任意の期間は1秒として定められる。 Note that the arbitrary period described above behaves in a relatively short time such as a pedestrian associated with the moving body model 54 according to the moving speed of the moving body model 54, the relationship with the adjacent moving body model 55, and the like. Is appropriately determined so that is appropriately expressed. As an example, when the moving body model 54 is associated with a pedestrian or the like, the above-described arbitrary period is based on the time required for the pedestrian to move from one step to several steps on an actual road or the like. It is defined as 1 second.
 また、位置更新部130において、移動体モデル54の位置の更新が繰り返されることで、当該移動体モデル54の任意の期間における移動の様子が表現される。 In addition, the position update unit 130 repeatedly updates the position of the moving body model 54, thereby expressing the movement of the moving body model 54 in an arbitrary period.
 位置更新部130においては、移動体モデル54の更新後における位置は、その更新の時点における移動体モデル54の位置に応じて、例えば次のように決定される。位置更新部130は、移動体モデル54が区間51に位置する場合は、移動体モデル54の位置を例えば以下のように更新する。 In the position update unit 130, the position after the update of the mobile object model 54 is determined, for example, as follows according to the position of the mobile object model 54 at the time of the update. When the mobile object model 54 is located in the section 51, the position update unit 130 updates the position of the mobile object model 54 as follows, for example.
 移動体モデル54が区間51に位置する場合に、隣接移動体モデル55と移動体モデル54とが同じレーン52に位置し、その間隔が所定の間隔よりも小さく、かつ各々の移動方向が互いに異なることが想定される。現実の道路等においては、歩道等の同じ位置を複数の歩行者が互いに向き合う方向に移動する場合は、歩行者は、衝突を避けるように互いに回避するように移動することが考えられる。したがって、この場合には、位置更新部130は、移動体モデル54が隣接移動体モデル55を回避するようにその位置を更新する。なお、上述した所定の間隔は、移動体モデル54の移動速度や移動路50の状態等に応じて適宜定められる。一例として、移動体モデル54が歩行者等に対応付けられている場合には、現実の道路等において歩行者等の衝突を回避する必要が生じる距離に基づいて、所定の間隔は1mとして定められる。 When the moving body model 54 is located in the section 51, the adjacent moving body model 55 and the moving body model 54 are located in the same lane 52, the interval is smaller than a predetermined interval, and the respective moving directions are different from each other. It is assumed that On an actual road or the like, when a plurality of pedestrians move in the same direction on a sidewalk or the like in a direction in which the pedestrians face each other, the pedestrians may move so as to avoid each other so as to avoid a collision. Therefore, in this case, the position update unit 130 updates the position so that the moving body model 54 avoids the adjacent moving body model 55. The predetermined interval described above is appropriately determined according to the moving speed of the moving body model 54, the state of the moving path 50, and the like. As an example, when the moving body model 54 is associated with a pedestrian or the like, the predetermined interval is set as 1 m based on a distance that requires a collision of a pedestrian or the like on an actual road or the like. .
 より具体的には、位置更新部130は、上述した回避するような動作として、移動体モデル54が位置する区間51におけるレーン52の数に応じて以下のように移動体モデル54の位置を更新する。つまり、移動体モデル54が位置する区間51に複数のレーン52が含まれる場合には、位置更新部130は、その時点において当該移動体モデル54が位置するレーン52に隣接するレーン52へ移動させるようにその位置を更新する。すなわち、位置更新部130は、その時点において当該移動体モデル54が位置するレーン52に隣接する左右のいずれかにあるレーン52へ移動体モデル54が移動するように、移動体モデル54の位置を更新する。 More specifically, the position updating unit 130 updates the position of the moving body model 54 as follows according to the number of lanes 52 in the section 51 in which the moving body model 54 is located as the above-described avoiding operation. To do. That is, when a plurality of lanes 52 are included in the section 51 where the mobile object model 54 is located, the position update unit 130 moves to the lane 52 adjacent to the lane 52 where the mobile object model 54 is located at that time. Update its position so that. That is, the position update unit 130 adjusts the position of the moving body model 54 so that the moving body model 54 moves to either the left or right lane 52 adjacent to the lane 52 where the moving body model 54 is located at that time. Update.
 この場合には、位置更新部130は、移動体モデル54を、例えばその時点における位置の左側又は右側の予め定めた方向に移動させるように移動体モデル54の位置を更新してもよい。このように、移動体モデル54の位置を予め定めた方向に移動するように更新することで、当該区間51に複数の移動体モデル54が存在する場合に、同じ方向に向かう移動体モデル54が区間51の同じ一つの側に移動する結果となる。 In this case, the position updating unit 130 may update the position of the moving body model 54 so as to move the moving body model 54 in a predetermined direction on the left side or the right side of the position at that time, for example. In this way, by updating the position of the moving body model 54 so as to move in a predetermined direction, when there are a plurality of moving body models 54 in the section 51, the moving body model 54 heading in the same direction As a result, the section 51 moves to the same side.
 現実の歩道等の道路においては、異なる方向から多数の歩行者等が互いに向かい合うようにして近づく際には、同一の方向に向かう歩行者等が歩道等の同一側に寄ることで、衝突を回避することがある。上述した位置更新部130の動作は、例えばこのような歩行者等の行動に相当する。 On actual roads such as sidewalks, when a large number of pedestrians from different directions approach each other, pedestrians heading in the same direction stop on the same side of the sidewalk and avoid collisions. There are things to do. The operation of the position update unit 130 described above corresponds to, for example, such a behavior of a pedestrian.
 図9は、移動体モデル54が位置する区間51に複数のレーン52が含まれる場合において、位置更新部130によって移動体モデル54の位置が更新される際の一動作例を示す図である。 FIG. 9 is a diagram illustrating an operation example when the position of the mobile object model 54 is updated by the position update unit 130 when the section 51 where the mobile object model 54 is located includes a plurality of lanes 52.
 図9に示す例においては、移動体モデル54-1が位置するレーン52-1に隣接移動体モデル55が位置する。また、移動体モデル54-1と隣接移動体モデル55の移動方向は互いに異なっている。そして、移動体モデル54-1と隣接移動体モデル55との間隔は、上述した所定の間隔よりも小さいことが想定される。この場合には、位置更新部130は、移動体モデル54をレーン52-1の左側のレーンであるレーン52-2に移動させるように移動体モデル54の位置を更新する。 In the example shown in FIG. 9, the adjacent mobile body model 55 is located in the lane 52-1 where the mobile body model 54-1 is located. Further, the moving directions of the moving body model 54-1 and the adjacent moving body model 55 are different from each other. It is assumed that the interval between the moving body model 54-1 and the adjacent moving body model 55 is smaller than the predetermined interval described above. In this case, the position updating unit 130 updates the position of the moving body model 54 so as to move the moving body model 54 to the lane 52-2 that is the left lane of the lane 52-1.
 なお、レーン52-2には、別の移動体モデル54-2が存在し、移動体モデル54-2と移動体モデル54-1との間隔は、移動体モデル54-1と隣接移動体モデル55との間隔よりも小さい。しかしながら、移動体モデル54-2の移動方向は、移動体モデル54-1の移動方向と同じである。一般に、現実の歩道等において同じ方向へ向かう歩行者等は、互いに歩道等の移動を阻害する可能性は小さい。したがって、位置更新部130は、移動体モデル54-1の位置を更新する際に、移動体モデル54-2の存在を考慮しなくてもよい。 Note that another moving body model 54-2 exists in the lane 52-2, and the distance between the moving body model 54-2 and the moving body model 54-1 is the same as that of the moving body model 54-1 and the adjacent moving body model 54-1. It is smaller than the interval with 55. However, the moving direction of the moving body model 54-2 is the same as the moving direction of the moving body model 54-1. In general, pedestrians or the like heading in the same direction on an actual sidewalk or the like are unlikely to interfere with movement of the sidewalk or the like. Therefore, the position updating unit 130 does not have to consider the presence of the moving body model 54-2 when updating the position of the moving body model 54-1.
 また、移動体モデル54が位置する区間51に1つのレーン52が含まれる場合には、位置更新部130は、当該移動体モデル54が停止するとしてその位置を更新する。すなわち、位置更新部130は、更新前において移動体モデル54が配置されている地点に基づいて、移動体モデル54の更新後の位置を更新する。例えば、この場合には、位置更新部130は、更新前における移動体モデル54の位置を、そのまま移動体モデル54の更新後の位置とする。移動体モデル54が位置する区間51に複数のレーン52が含まれる場合においても、移動体モデル54が左端又は右端のレーン52に位置する場合には、位置更新部130は、当該移動体モデル54が停止するとしてその位置を更新する。 Further, when one lane 52 is included in the section 51 where the mobile object model 54 is located, the position update unit 130 updates the position of the mobile object model 54 as being stopped. That is, the position update unit 130 updates the updated position of the mobile object model 54 based on the point where the mobile object model 54 is arranged before the update. For example, in this case, the position update unit 130 sets the position of the moving body model 54 before the update as the position after the updating of the moving body model 54 as it is. Even when a plurality of lanes 52 are included in the section 51 in which the mobile object model 54 is located, if the mobile object model 54 is located in the leftmost or rightmost lane 52, the position updating unit 130 determines the relevant mobile object model 54. Updates its position as stops.
 これらの動作は、現実の歩道等において、複数の歩行者等が歩道等の同じ位置を対向して移動する場合において、歩行者等の各々が、衝突を回避するように歩道における位置を変更したり、停止したりする動作等に相当する。 These movements change the position on the sidewalk so that each of the pedestrians avoids a collision when a plurality of pedestrians move facing the same position on the sidewalk on an actual sidewalk, etc. It corresponds to an operation to stop or stop.
 また、移動体モデル54が区間51に位置する場合に、移動体モデル54と隣接移動体モデル55との間隔が上述の所定の間隔よりも大きい予め定めた範囲にある(予め定めた範囲よりも小さい)ことが想定される。この場合には、位置更新部130は、移動体モデル54の通常の移動速度よりも減速した移動速度に基づいて、移動体モデル54の位置を更新する。すなわち、移動体モデル54が予め定められた通常の移動速度よりも遅い速度にて移動するとして、移動後の位置を定めて移動体モデル54の位置を更新する。 Further, when the moving body model 54 is located in the section 51, the distance between the moving body model 54 and the adjacent moving body model 55 is in a predetermined range that is larger than the above-described predetermined interval (more than the predetermined range). Small). In this case, the position update unit 130 updates the position of the moving body model 54 based on the moving speed that is decelerated from the normal moving speed of the moving body model 54. That is, assuming that the moving body model 54 moves at a speed slower than a predetermined normal moving speed, the position of the moving body model 54 is updated by determining the position after the movement.
 この動作は、現実の歩道等において、歩行者等が予め定められた通常の移動速度にて移動すると他の歩行者等に接近することが想定される場合に、他の歩行者等との接近を避けるように移動する速度を低くする動作に相当する。 This action is based on the approach to other pedestrians when it is assumed that pedestrians move at a predetermined normal movement speed on a real sidewalk. This corresponds to the operation of reducing the moving speed so as to avoid the above.
 例えば、移動体モデル54の通常の移動速度が毎秒0.5m、隣接移動体モデル55との距離が1.2m、所定の間隔が1mである場合が想定される。この場合に、位置更新部130は、当該移動体モデル54が毎秒0.2mに減速して移動するとして、移動体モデル54の位置を更新する。 For example, it is assumed that the normal moving speed of the moving body model 54 is 0.5 m per second, the distance from the adjacent moving body model 55 is 1.2 m, and the predetermined interval is 1 m. In this case, the position updating unit 130 updates the position of the moving body model 54 on the assumption that the moving body model 54 moves at a speed of 0.2 m per second.
 また、移動体モデル54が区間51に位置し、隣接移動体モデル55と移動体モデル54との間隔が上述の場合と異なる場合には、位置更新部130は、移動体モデル54が通常の移動速度にて移動するようにその位置を更新する。 In addition, when the moving body model 54 is located in the section 51 and the interval between the adjacent moving body model 55 and the moving body model 54 is different from the above case, the position update unit 130 causes the moving body model 54 to move normally. Update its position to move at speed.
 移動体モデル54と隣接移動体モデル55との間隔が上述した所定の間隔や範囲よりも大きい場合には、移動体モデル54は、隣接移動体モデル55と十分に離れていると想定される。つまり、移動体モデル54と隣接移動体モデル55との間隔が離れていると判断できる所定の条件を満たす場合には、位置更新部130は、移動体モデル54の予め定められた通常の移動速度に基づいて移動体モデル54の位置を更新する。すなわち、位置更新部130は、移動体モデル54が予め定めた通常の移動速度にて移動するようにその位置を更新する。位置更新部130は、移動体モデル54予め設定された進行方向に移動するように、移動体モデル54の位置を更新する。 When the interval between the moving body model 54 and the adjacent moving body model 55 is larger than the predetermined interval or range described above, the moving body model 54 is assumed to be sufficiently separated from the adjacent moving body model 55. In other words, when the predetermined condition that allows determining that the distance between the moving body model 54 and the adjacent moving body model 55 is separated is satisfied, the position updating unit 130 determines the normal moving speed that is determined in advance for the moving body model 54. The position of the moving body model 54 is updated based on the above. That is, the position updating unit 130 updates the position so that the moving body model 54 moves at a predetermined normal moving speed. The position update unit 130 updates the position of the moving body model 54 so that the moving body model 54 moves in a preset traveling direction.
 なお、移動体モデル54が、当該移動体モデル54の位置するレーン52が含まれる区間51の端点に到達した場合には、当該移動体モデル54は、例えば移動路50から取り除かれてもよい。後述のように、移動体モデル54の位置が繰り返して更新される場合には、移動体モデル54は、当該区間51が接続する交点53に位置するとして扱われてもよい。 In addition, when the moving body model 54 reaches the end point of the section 51 including the lane 52 where the moving body model 54 is located, the moving body model 54 may be removed from the moving path 50, for example. As will be described later, when the position of the moving body model 54 is repeatedly updated, the moving body model 54 may be treated as being located at the intersection 53 to which the section 51 is connected.
 一方、位置更新部130は、移動体モデル54が交点53に位置する場合には、移動体モデル54の位置を例えば以下のように更新する。 On the other hand, when the moving body model 54 is located at the intersection 53, the position updating unit 130 updates the position of the moving body model 54 as follows, for example.
 移動体モデル54が交点53に位置する場合において、移動体モデル54及び隣接移動体モデル55の移動元及び移動先となるレーン52が同一である場合が想定される。この場合に、移動体モデル54と隣接移動体モデル55との間隔が上述した所定の間隔より小さい場合には、位置更新部130は、当該移動体モデル54を停止させるようにその位置を更新する。 When the moving body model 54 is located at the intersection 53, it is assumed that the moving source model 54 and the adjacent moving body model 55 have the same lane 52 as the moving source and the moving destination. In this case, when the interval between the moving body model 54 and the adjacent moving body model 55 is smaller than the predetermined interval described above, the position update unit 130 updates the position so as to stop the moving body model 54. .
 図10は、移動体モデル54-1が交点53に位置する場合において、位置更新部130によって移動体モデル54-1の位置が更新される際の一動作例を示す図である。図10の例において、移動体モデル54-1の移動元は、区間51-1であり、移動先は区間51-3である。また、移動体モデル54-1に対して、移動元及び移動体が同じである隣接移動体モデル55が存在する。そして、移動体モデル54-1と隣接移動体モデル55との間隔が上述した所定の間隔より小さい場合には、位置更新部130は、移動体モデル54-1を停止させるように移動体モデル54-1の位置を更新する。 FIG. 10 is a diagram illustrating an operation example when the position of the moving object model 54-1 is updated by the position update unit 130 when the moving object model 54-1 is located at the intersection 53. In the example of FIG. 10, the moving source of the moving body model 54-1 is the section 51-1, and the moving destination is the section 51-3. Further, there is an adjacent moving body model 55 having the same moving source and moving body with respect to the moving body model 54-1. When the interval between the moving body model 54-1 and the adjacent moving body model 55 is smaller than the predetermined interval described above, the position update unit 130 causes the moving body model 54-1 to stop. Update the position of -1.
 すなわち、現実の交差点等において、同じ方向へ向かう歩行者等は、他の方向へ向かう歩行者等との接触を避け、互いに円滑に移動できるように、必要な距離を保ちながら移動することが想定される。位置更新部130が、移動体モデル54-1を停止させるように移動体モデル54-1の位置を更新することで、上述した歩行者等の移動の様子が表現される。 In other words, it is assumed that pedestrians, etc., traveling in the same direction at actual intersections, etc. will move while maintaining the necessary distance so that they can move smoothly with each other, avoiding contact with pedestrians, etc., traveling in other directions. Is done. The position updating unit 130 updates the position of the moving body model 54-1 so that the moving body model 54-1 is stopped, thereby expressing the state of movement of the pedestrian or the like described above.
 また、この場合に、移動体モデル54と隣接移動体モデル55との間隔が上述の所定の間隔よりも大きい予め定めた範囲にある場合には、位置更新部130は、当該移動体モデル54の減速した移動速度に基づいて、その位置を更新する。すなわち、移動体モデル130は、移動体モデル54の通常の移動速度よりも減速した移動速度に基づいて、移動体モデル54の位置を更新する。すなわち、移動体モデル54が予め定められた通常の移動速度よりも遅い速度にて移動するとして、移動後の位置を定めて移動体モデル54の位置を更新する。 In this case, if the distance between the moving body model 54 and the adjacent moving body model 55 is within a predetermined range that is larger than the predetermined distance, the position updating unit 130 The position is updated based on the decelerated moving speed. That is, the moving body model 130 updates the position of the moving body model 54 based on the moving speed that is decelerated from the normal moving speed of the moving body model 54. That is, assuming that the moving body model 54 moves at a speed slower than a predetermined normal moving speed, the position of the moving body model 54 is updated by determining the position after the movement.
 また、隣接移動体モデル55と移動体モデル54との関係が上述した各々の場合とは異なる場合には、位置更新部130は、移動体モデル54が通常の移動速度にて移動するようにその位置を更新する。位置更新部130は、移動体モデル54予め設定された移動元となるレーン52から移動先となるレーン52へ移動するように、移動体モデル54の位置を更新する。 Further, when the relationship between the adjacent mobile body model 55 and the mobile body model 54 is different from each of the above cases, the position update unit 130 causes the mobile body model 54 to move at a normal movement speed. Update position. The position updating unit 130 updates the position of the moving body model 54 so that the moving body model 54 moves from the preset moving source lane 52 to the moving destination lane 52.
 なお、移動体モデル54が交点53に位置する場合には、位置更新部130は、移動体モデル選択部110にて選択された移動体モデル54と移動元及び移動先となるレーン52が異なる他の移動体モデル54を考慮しなくてもよい。このことは、歩行者等が交差点等において異なる向きに移動する場合において、各々が互いに衝突を避けつつ各々が所望の方向へ移動する動作に相当する。 When the mobile object model 54 is located at the intersection 53, the position update unit 130 is different from the mobile object model 54 selected by the mobile object model selection unit 110 in that the source and destination lanes 52 are different. The moving body model 54 may not be considered. This corresponds to an operation in which each pedestrian or the like moves in a desired direction while avoiding a collision when the pedestrian or the like moves in different directions at an intersection or the like.
 図10に示す例においては、上述した移動体モデル54-1及び隣接移動体モデル55に対して、更に移動体モデル54-2が交点53に存在する。図10の例において、移動体モデル54-1の位置を更新する場合には、位置更新部130は、移動体モデル54-1と隣接移動体モデル55との関係に基づいて、移動体モデル54-1の位置を更新する。すなわち、位置更新部130は、移動体モデル54-1と移動体モデル54-2との関係に基づいて位置を更新しなくてもよい。図10の例において、位置更新部130にて移動体モデル54-2の位置が更新される場合には、例えば移動体モデル54-2は通常の移動速度にて移動するようにその位置が更新される。 In the example shown in FIG. 10, a moving body model 54-2 further exists at the intersection 53 with respect to the moving body model 54-1 and the adjacent moving body model 55 described above. In the example of FIG. 10, when updating the position of the mobile object model 54-1, the position update unit 130 is based on the relationship between the mobile object model 54-1 and the adjacent mobile object model 55. Update the position of -1. That is, the position updating unit 130 does not have to update the position based on the relationship between the moving body model 54-1 and the moving body model 54-2. In the example of FIG. 10, when the position of the moving body model 54-2 is updated by the position updating unit 130, for example, the position of the moving body model 54-2 is updated so as to move at a normal moving speed. Is done.
 なお、移動体モデル54が移動先となる区間51に到達した場合には、当該移動体モデル54は、例えば移動路50から取り除かれてもよい。後述のように、移動体モデル54の位置が繰り返して更新される場合には、移動体モデル54は、移動元の区間51に位置するとして扱われてもよい。 In addition, when the mobile body model 54 reaches the section 51 as the movement destination, the mobile body model 54 may be removed from the movement path 50, for example. As will be described later, when the position of the moving body model 54 is repeatedly updated, the moving body model 54 may be treated as being located in the movement source section 51.
 位置更新部130は、上記の全ての更新に関する処理を行わなくてもよい。例えば、位置更新部130は、移動体モデル54が回避する動作を行うか又は通常の移動速度にて移動するとして、移動体モデル54の位置を更新してもよい。位置更新部130は、移動体モデル54の性質や移動路50の状況などに応じて、必要される更新に関する処理を実行する。 The location updating unit 130 does not have to perform the processes related to all the above updates. For example, the position updating unit 130 may update the position of the moving body model 54 by performing an operation that the moving body model 54 avoids or moving at a normal moving speed. The position update unit 130 executes processing related to necessary update according to the property of the moving body model 54, the state of the moving path 50, and the like.
 次に、図9に示すフローチャートを用いて、本実施形態におけるシミュレーション装置100の動作を説明する。 Next, the operation of the simulation apparatus 100 in the present embodiment will be described using the flowchart shown in FIG.
 最初に、移動体モデル選択部110は、移動路50に配置された複数の移動体モデル54のうち、その一つを選択する(ステップS101)。 First, the moving body model selection unit 110 selects one of the plurality of moving body models 54 arranged on the moving path 50 (step S101).
 次に、隣接関係導出部120は、ステップS101において選択された移動体モデル54に対する隣接移動体モデル55を特定する。そして、隣接関係導出部120は、移動体モデル54と、隣接移動体モデル55との関係を導出する(ステップS102)。 Next, the adjacent relationship deriving unit 120 specifies the adjacent moving body model 55 for the moving body model 54 selected in step S101. Then, the adjacent relationship deriving unit 120 derives the relationship between the moving body model 54 and the adjacent moving body model 55 (step S102).
 次に、位置更新部130は、ステップS103において導出された移動体モデル54と隣接移動体モデル55との関係に応じて、移動体モデル54の移動路50における位置を更新する(ステップS103)。移動体モデル54の移動路50における位置が更新されることで、当該移動体モデルの任意の期間における移動の様子が表される。 Next, the position updating unit 130 updates the position of the moving body model 54 in the moving path 50 according to the relationship between the moving body model 54 and the adjacent moving body model 55 derived in step S103 (step S103). By updating the position of the moving body model 54 in the moving path 50, the moving state of the moving body model in an arbitrary period is represented.
 ステップS101からS103までの動作によって、ステップS101にて選択された移動体モデル54に関して、上述した任意の期間における移動の様子が表される。同様に、他の移動体モデル54に関してもステップS101からS103までの処理が行われることで、移動路50に配置された複数の移動体モデル54に関する任意の期間における移動の様子が表される。 The operation from step S101 to S103 represents the state of movement in the above-described arbitrary period with respect to the moving body model 54 selected in step S101. Similarly, the process from step S101 to S103 is also performed for the other moving body models 54, and the state of movement in an arbitrary period regarding the plurality of moving body models 54 arranged on the moving path 50 is represented.
 そこで、例えば移動体モデル選択部110は、移動路50に配置された複数の移動体モデル54のうち、他の移動体モデル54に対してステップS101からステップS103の処理を実行するか否かを判断する(ステップS104)。他の移動体モデル54は、例えば先にステップS101からS103までの処理の対象とされた移動体モデル54と異なるモデルである。 Therefore, for example, the moving body model selection unit 110 determines whether or not to execute the processing from step S101 to step S103 for another moving body model 54 among the plurality of moving body models 54 arranged on the moving path 50. Judgment is made (step S104). The other moving body model 54 is a model different from the moving body model 54 that has been the target of the processing from steps S101 to S103, for example.
 他の移動体モデル54に対して処理を実行する場合には、移動体モデル選択部110は、ステップS101に戻り、ステップS101からステップS103の処理が未実行である移動体モデル54の一つを選択する。そして、選択された移動体モデル54に対して、隣接関係導出部120及び位置更新部130においてステップS102及びS103の動作がそれぞれ実行される。なお、移動体モデル選択部110は、本ステップにおいて処理が行われる対象となる移動体モデル54に関する情報を、入力手段等を介して予め所得してもよい。 When the process is executed on another mobile model 54, the mobile model selection unit 110 returns to step S101, and selects one of the mobile models 54 in which the processes from step S101 to step S103 are not executed. select. Then, the operations of steps S102 and S103 are performed in the adjacent relationship deriving unit 120 and the position updating unit 130 for the selected moving body model 54, respectively. In addition, the mobile body model selection part 110 may acquire beforehand the information regarding the mobile body model 54 used as the object processed in this step via an input means.
 ステップS101からステップS103の処理が全ての移動体モデル54に対して実行された場合等、ステップS104にて他の移動体モデル54に対して処理を繰り返し実行しないとした場合には、ステップS105の処理が行われる。 If the processing from step S101 to step S103 is executed for all the moving body models 54, such as when the processing is not repeatedly executed for other moving body models 54 in step S104, the processing of step S105 is performed. Processing is performed.
 ステップS105においては、例えば移動体モデル選択部110は、更にステップS101からステップS104までの処理を行って移動体モデル54の位置の更新を繰り返すか否かを判断する。 In step S105, for example, the moving body model selection unit 110 further performs processing from step S101 to step S104 to determine whether or not to update the position of the moving body model 54 repeatedly.
 ステップS101からステップS104までの処理を行い、移動体モデル54の位置の更新を繰り返すことで、上述した任意の期間よりも長い一定の期間における移動体モデル54の移動の様子がシミュレーションされる。したがって、移動体モデル54の移動の様子に関する当該一定の期間におけるシミュレーションが必要な場合には、ステップS105において、移動体モデル選択部110は、当該一定の期間に応じて処理を繰り返すと判断する。例えば、任意の期間が1秒間に相当し、かつ、一定の期間が1時間(すなわち、3600秒)に相当する場合には、ステップS101からステップS104までの処理が3600回繰り返されるようにステップS105の動作が実行される。 By performing the processing from step S101 to step S104 and repeatedly updating the position of the moving body model 54, the movement of the moving body model 54 in a certain period longer than the above-described arbitrary period is simulated. Therefore, when a simulation in the certain period regarding the movement of the moving object model 54 is necessary, in step S105, the moving object model selecting unit 110 determines that the process is repeated according to the certain period. For example, when an arbitrary period corresponds to 1 second and a certain period corresponds to 1 hour (that is, 3600 seconds), step S105 is performed so that the processing from step S101 to step S104 is repeated 3600 times. Is performed.
 移動体モデル54の位置の更新を繰り返して実行する場合には、移動体モデル選択部110は、ステップS101に戻って処理を継続する。必要な回数の移動体モデル54の位置が既に繰り返されている場合等、移動体モデル54の位置の更新を繰り返して実行しない場合には、シミュレーション装置100における処理が終了する。 When repeatedly updating the position of the moving body model 54, the moving body model selection unit 110 returns to step S101 and continues the process. When the position of the mobile object model 54 has not been repeatedly updated, such as when the required number of positions of the mobile object model 54 has already been repeated, the processing in the simulation apparatus 100 ends.
 上述した各ステップにて実行された移動体モデル54の位置の更新に関する結果は、移動路50における歩行者等の移動の様子を表すシミュレーション結果として、図示しない任意の出力手段や通信ネットワーク等を介して出力される。また、当該シミュレーション結果は、図示しない任意のメモリやディスク装置等へ出力されてもよい。 The result regarding the update of the position of the moving body model 54 executed in each step described above is obtained as a simulation result representing the movement of a pedestrian or the like on the moving path 50 via an arbitrary output means (not shown) or a communication network. Is output. Further, the simulation result may be output to an arbitrary memory or disk device (not shown).
 以上のとおり、本実施形態におけるシミュレーション装置100は、移動体モデル54について、隣接移動体モデル55との関係に応じて位置が更新することによって、移動路50における移動体モデル54の移動の様子を表現する。 As described above, the simulation apparatus 100 according to the present embodiment updates the position of the moving body model 54 in accordance with the relationship with the adjacent moving body model 55, so that the moving body model 54 moves on the moving path 50. Express.
 位置更新部130の処理においては、隣接移動体モデル55との関係に応じて移動体モデル54の移動路50における位置が更新される。すなわち、少ない数の隣接移動体モデル55の挙動を考慮することで、対象である移動体モデル54の移動路50における位置が更新される。したがって、位置更新部130は、小さい計算負荷にて対象である移動体モデル54の移動路50における位置を更新することが可能となる。 In the processing of the position update unit 130, the position of the moving body model 54 in the moving path 50 is updated according to the relationship with the adjacent moving body model 55. That is, by considering the behavior of a small number of adjacent moving body models 55, the position of the moving body model 54 as a target in the moving path 50 is updated. Therefore, the position update unit 130 can update the position of the target mobile model 54 in the moving path 50 with a small calculation load.
 また、位置更新部130は、上述した回避する動作等のように、移動体モデル54が表す歩行者等の動きに即して移動体モデル54の移動路50における位置を更新する。したがって、本実施形態におけるシミュレーション装置100は、現実の歩行者等の動きに沿った歩行者等のシミュレーションが可能となる。 Also, the position updating unit 130 updates the position of the moving body model 54 on the moving path 50 in accordance with the movement of the pedestrian or the like represented by the moving body model 54, such as the avoiding operation described above. Therefore, the simulation apparatus 100 according to the present embodiment can simulate a pedestrian or the like along the movement of an actual pedestrian or the like.
 すなわち、本実施形態におけるシミュレーション装置100は、小さい計算負荷で歩行者等の行動を適切に表現することができる。 That is, the simulation apparatus 100 according to the present embodiment can appropriately express the behavior of a pedestrian or the like with a small calculation load.
 (シミュレーション装置の適用例)
 上述した実施形態におけるシミュレーション装置100やシミュレーションシステム10等は、市街地等における歩行者等の移動の様子を評価する場合の種々の用途に用いられる。例えば、シミュレーション装置100等は、群衆が市街地を通過することが想定される場合において、群衆が通過する道路に応じた各々の所要時間の評価等に用いられる。
(Application example of simulation device)
The simulation apparatus 100, the simulation system 10, and the like in the above-described embodiment are used for various purposes when evaluating the movement of a pedestrian or the like in an urban area or the like. For example, the simulation apparatus 100 or the like is used for evaluating each required time according to the road through which the crowd passes when the crowd is assumed to pass through an urban area.
 具体的な一例として、シミュレーション装置100等は、災害時において、交通機関等の停止に伴い移動や帰宅が困難になった、いわゆる帰宅困難者を誘導する方法を検討する場合に用いられる。 As a specific example, the simulation apparatus 100 or the like is used when examining a method for guiding a so-called difficult-to-return person who has become difficult to move or go home due to a stop of transportation or the like during a disaster.
 災害等が発生し、交通機関の多くが停止している場合には、交通機関を利用できないことから、平常時と比較して多くの人が帰宅困難者として歩いて帰宅することが想定される。この場合には、大都市の市街地には、それぞれが異なる方向へ向かう多数の歩行者が集まる可能性が考えられる。上述した実施形態におけるシミュレーション装置100等は、多数の歩行者が全体として円滑な移動を可能とするように、各々の歩行者を適した道へ誘導する場合の手法の評価に用いられる。 When disasters occur and many of the transportation facilities are stopped, it is assumed that many people walk home as people who have difficulty returning home because they cannot use the transportation facilities. . In this case, there is a possibility that a large number of pedestrians heading in different directions gather in the urban area of a large city. The simulation apparatus 100 or the like in the above-described embodiment is used for evaluation of a technique when guiding each pedestrian to a suitable road so that a large number of pedestrians can move smoothly as a whole.
 すなわち、シミュレーション装置100は、市街地の道路等を表す移動路50に関する情報に基づいて、上述した帰宅困難者である歩行者等の移動の様子に関するシミュレーションを行う。市街地の道路等を表す移動路50に関する情報は、例えばシミュレーションシステム10の移動路生成部11等で生成される。このシミュレーションが、種々の条件を変えてシミュレーション装置100において繰り返し実行されることで、帰宅困難者である歩行者等を誘導する場合に関する手法が評価される。 That is, the simulation apparatus 100 performs a simulation on the state of movement of a pedestrian or the like who is difficult to return to the home based on the information on the moving path 50 representing a city road or the like. Information about the travel path 50 representing a city road or the like is generated by, for example, the travel path generation unit 11 of the simulation system 10. This simulation is repeatedly executed in the simulation apparatus 100 by changing various conditions, thereby evaluating a method related to guiding a pedestrian who is difficult to return home.
 以上、実施形態等を参照して本発明を説明したが、本発明は上記実施形態等に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。また、実施形態における各構成は、本発明のスコープを逸脱しない限りにおいて、互いに組み合わせることが可能である。 Although the present invention has been described above with reference to the embodiments and the like, the present invention is not limited to the above embodiments and the like. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention. In addition, each configuration in the embodiment can be combined with each other without departing from the scope of the present invention.
 この出願は、2015年4月6日に出願された日本出願特願2015-77644を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2015-77644 filed on April 6, 2015, the entire disclosure of which is incorporated herein.
 10  シミュレーションシステム
 11  移動路生成部
 12  移動体モデル生成部
 50  移動路
 51  区間
 52  レーン
 53  交点
 54  移動体モデル
 55  隣接移動体モデル
 100  シミュレーション装置
 110  移動体モデル選択部
 120  隣接関係導出部
 130  位置更新部
 500  情報処理装置
 501  CPU
 502  ROM
 503  RAM
 504  プログラム
 505  記憶装置
 506  記憶媒体
 507  ドライブ装置
 508  通信インターフェース
 509  通信ネットワーク
 510  入出力インターフェース
 511  バス
DESCRIPTION OF SYMBOLS 10 Simulation system 11 Travel path production | generation part 12 Mobile body model production | generation part 50 Movement path 51 Section 52 Lane 53 Intersection 54 Mobile body model 55 Adjacent mobile body model 100 Simulation apparatus 110 Mobile body model selection part 120 Adjacent relation derivation part 130 Position update part 500 Information processing apparatus 501 CPU
502 ROM
503 RAM
504 Program 505 Storage device 506 Storage medium 507 Drive device 508 Communication interface 509 Communication network 510 Input / output interface 511 Bus

Claims (10)

  1.  移動体モデルが通過する1つ以上のレーンを含み、2つの地点の間を接続する区間と、複数の前記区間が接続される交点との少なくとも一方を有する移動路を移動する移動体モデルを選択する移動体モデル選択手段と、
     選択された前記移動体モデルと、前記移動体モデルの進行方向及び前記移動路の形態に基づいて定められる所定の方向に位置する隣接移動体モデルとの関係を導出する隣接関係導出手段と、
     前記隣接移動体モデルとの前記関係に応じて、前記移動体モデルの前記移動路における位置を更新する位置更新手段とを備える、シミュレーション装置。
    Select a moving body model that moves on a moving path including at least one of a section connecting two points and an intersection connecting a plurality of sections, including one or more lanes through which the moving body model passes Mobile body model selection means to
    Adjacency relationship deriving means for deriving a relationship between the selected moving object model and an adjacent moving object model positioned in a predetermined direction determined based on the traveling direction of the moving object model and the form of the moving path;
    A simulation apparatus comprising: a position updating unit configured to update a position of the moving body model in the moving path according to the relationship with the adjacent moving body model.
  2.  前記隣接関係導出手段は、前記移動体モデルが前記移動路の前記区間に位置する場合において、前記移動体モデルが位置する前記レーンと同じ前記レーンに位置し、かつ、前記移動体モデルの進行方向に位置する最も近い他の前記移動体モデルを隣接移動体モデルであるとして、前記移動体モデルと隣接移動体モデルとの関係を導出する、請求項1に記載のシミュレーション装置。 The adjacency derivation means is located in the same lane as the lane in which the moving body model is located when the moving body model is located in the section of the moving path, and the traveling direction of the moving body model The simulation apparatus according to claim 1, wherein the closest other moving body model positioned at is assumed to be an adjacent moving body model, and a relationship between the moving body model and the adjacent moving body model is derived.
  3.  前記隣接関係導出手段は、前記移動体モデルと移動元及び移動先となる前記区間が同一であり、かつ、前記移動体モデルに最も近い他の前記移動体モデルを隣接移動体モデルであるとして、前記移動体モデルと隣接移動体モデルとの関係を導出する、請求項1又は2に記載のシミュレーション装置。 The adjacency derivation means is the same as the moving body model and the section that is the moving source and the moving destination, and the other moving body model closest to the moving body model is an adjacent moving body model, The simulation apparatus according to claim 1, wherein a relationship between the moving body model and an adjacent moving body model is derived.
  4.  前記位置更新手段は、前記移動体モデルと前記隣接移動体モデルとの間隔が所定の条件を満たす場合に、移動体モデルの予め定められた移動速度に基づいて前記移動体モデルの位置を更新する、請求項1から3のいずれか一項に記載のシミュレーション装置。 The position updating unit updates the position of the mobile object model based on a predetermined moving speed of the mobile object model when an interval between the mobile object model and the adjacent mobile object model satisfies a predetermined condition. The simulation apparatus according to any one of claims 1 to 3.
  5.  前記位置更新手段は、前記移動体モデルが前記区間に位置する場合において、前記移動体モデルと前記隣接移動体モデルとの間隔が所定の間隔よりも小さい場合に、前記移動体モデルが位置する前記レーンと隣接する前記レーンに前記移動体モデルの位置を更新する、請求項1から4のいずれか一項に記載のシミュレーション装置。 The position update means is configured to position the moving body model when the moving body model is located in the section and the interval between the moving body model and the adjacent moving body model is smaller than a predetermined interval. The simulation apparatus according to claim 1, wherein the position of the moving object model is updated in the lane adjacent to the lane.
  6.  前記位置更新手段は、前記移動体モデルが前記交点に位置する場合において、前記移動体モデルと前記隣接移動体モデルとの間隔が所定の間隔よりも小さい場合に、前記移動体モデルが配置されている地点に基づいて前記移動体モデルの位置を更新する、請求項1から5のいずれか一項に記載のシミュレーション装置。 The position updating means is arranged such that when the moving body model is located at the intersection, the moving body model is arranged when an interval between the moving body model and the adjacent moving body model is smaller than a predetermined interval. The simulation device according to claim 1, wherein the position of the moving body model is updated based on a certain point.
  7.  前記位置更新手段は、前記移動体モデルと前記隣接移動体モデルとの間隔が所定の間隔よりも大きく、かつ、所定の範囲にある場合に、前記移動体モデルの通常の移動速度よりも減速した移動速度に基づいて前記移動体モデルの位置を更新する、請求項1から6のいずれか一項に記載のシミュレーション装置。 The position updating means is decelerated from the normal moving speed of the moving body model when the interval between the moving body model and the adjacent moving body model is larger than a predetermined interval and within a predetermined range. The simulation apparatus according to claim 1, wherein the position of the moving body model is updated based on a moving speed.
  8. 請求項1から7のいずれか一項に記載のシミュレーション装置と、
     前記移動体モデルが通過する1つ以上のレーンを含み、2つの地点の間を接続する区間と、複数の前記区間が接続される交点との少なくとも一方を有する前記移動路に関する情報を生成する移動路生成手段と、
     前記移動路に配置される所定の数の前記移動モデルに関する情報を生成する移動体モデル生成手段とを備える、シミュレーションシステム。
    The simulation apparatus according to any one of claims 1 to 7,
    A movement that includes one or more lanes through which the moving body model passes and generates information related to the moving path having at least one of a section connecting two points and an intersection connecting the plurality of sections. Road generation means;
    A simulation system comprising: moving body model generation means for generating information on a predetermined number of the movement models arranged on the movement path.
  9.  移動体モデルが通過する1つ以上のレーンを含み、2つの地点の間を接続する区間と、複数の前記区間が接続される交点との少なくとも一方を有する移動路を移動する移動体モデルを選択し、
     選択された前記移動体モデルと、前記移動体モデルの進行方向及び前記移動路の形態に基づいて定められる所定の方向に位置する隣接移動体モデルとの関係を導出し、
     前記隣接移動体との前記関係に応じて、前記移動体モデルの前記移動路における位置を更新する、シミュレーション方法。
    Select a moving body model that moves on a moving path including at least one of a section connecting two points and an intersection connecting a plurality of sections, including one or more lanes through which the moving body model passes And
    Deriving a relationship between the selected moving body model and an adjacent moving body model located in a predetermined direction determined based on the traveling direction of the moving body model and the form of the moving path;
    A simulation method for updating a position of the moving body model in the moving path in accordance with the relationship with the adjacent moving body.
  10.  コンピュータに、
     移動体モデルが通過する1つ以上のレーンを含み、2つの地点の間を接続する区間と、複数の前記区間が接続される交点との少なくとも一方を有する移動路を移動する移動体モデルを選択する処理と、
     選択された前記移動体モデルと、前記移動体モデルの進行方向及び前記移動路の形態に基づいて定められる所定の方向に位置する隣接移動体モデルとの関係を導出する処理と、
     前記隣接移動体との前記関係に応じて、前記移動体モデルの前記移動路における位置を更新する処理とを実行させるプログラムを格納した、コンピュータ読み取り可能記録媒体。
    On the computer,
    Select a moving body model that moves on a moving path including at least one of a section connecting two points and an intersection connecting a plurality of sections, including one or more lanes through which the moving body model passes Processing to
    A process of deriving a relationship between the selected moving body model and an adjacent moving body model located in a predetermined direction determined based on the traveling direction of the moving body model and the form of the moving path;
    A computer-readable recording medium storing a program for executing a process of updating the position of the moving body model in the moving path according to the relationship with the adjacent moving body.
PCT/JP2016/001905 2015-04-06 2016-04-05 Simulation device, simulation system, simulation method, and computer-readable recording medium WO2016163113A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017511470A JP6662378B2 (en) 2015-04-06 2016-04-05 Simulation apparatus, simulation system, simulation method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-077644 2015-04-06
JP2015077644 2015-04-06

Publications (1)

Publication Number Publication Date
WO2016163113A1 true WO2016163113A1 (en) 2016-10-13

Family

ID=57072547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001905 WO2016163113A1 (en) 2015-04-06 2016-04-05 Simulation device, simulation system, simulation method, and computer-readable recording medium

Country Status (2)

Country Link
JP (1) JP6662378B2 (en)
WO (1) WO2016163113A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7356961B2 (en) 2020-11-26 2023-10-05 トヨタテクニカルディベロップメント株式会社 Pedestrian road crossing simulation device, pedestrian road crossing simulation method, and pedestrian road crossing simulation program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052297A (en) * 1999-08-06 2001-02-23 Fujitsu Ltd Method and device for supporting safe travel and recording medium
JP2008129874A (en) * 2006-11-21 2008-06-05 Hitachi Ltd Traffic flow simulation device, traffic flow simulation method, and traffic flow simulation program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052297A (en) * 1999-08-06 2001-02-23 Fujitsu Ltd Method and device for supporting safe travel and recording medium
JP2008129874A (en) * 2006-11-21 2008-06-05 Hitachi Ltd Traffic flow simulation device, traffic flow simulation method, and traffic flow simulation program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7356961B2 (en) 2020-11-26 2023-10-05 トヨタテクニカルディベロップメント株式会社 Pedestrian road crossing simulation device, pedestrian road crossing simulation method, and pedestrian road crossing simulation program

Also Published As

Publication number Publication date
JPWO2016163113A1 (en) 2018-02-22
JP6662378B2 (en) 2020-03-11

Similar Documents

Publication Publication Date Title
CN113486531B (en) Vehicle driving path planning method, device and system
Kneidl et al. A hybrid multi-scale approach for simulation of pedestrian dynamics
US20190164007A1 (en) Human driving behavior modeling system using machine learning
Nagel et al. TRANSIMS for transportation planning
US11740620B2 (en) Operational testing of autonomous vehicles
Regele Using ontology-based traffic models for more efficient decision making of autonomous vehicles
US11474529B2 (en) System and method for motion planning of an autonomous driving machine
US11361127B2 (en) Simulation device, simulation method, and storage medium
CN114667494A (en) Robot control model learning method, robot control model learning device, robot control model learning program, robot control method, robot control device, robot control program, and robot
Krueger et al. SILAB-A task-oriented driving simulation
Haghpanah et al. Application of bug navigation algorithms for large-scale agent-based evacuation modeling to support decision making
Xu et al. An Entry Time-based Supply Framework (ETSF) for mesoscopic traffic simulations
Lu et al. AA‐FVDM: An accident‐avoidance full velocity difference model for animating realistic street‐level traffic in rural scenes
EP2660756A1 (en) Method, apparatus and computer program product for simulating the movement of entities in an area
WO2016163113A1 (en) Simulation device, simulation system, simulation method, and computer-readable recording medium
Chmielewska et al. Computer simulation of traffic flow based on cellular automata and multi-agent system
US20230031829A1 (en) System and methods of adaptive relevancy prediction for autonomous driving
Testa et al. Crowdest: a method for estimating (and not simulating) crowd evacuation parameters in generic environments
Hesham et al. Context-sensitive personal space for dense crowd simulation
Haubrich et al. A semantic road network model for traffic simulations in virtual environments: Generation and integration
KR100757758B1 (en) System and method for traffic simulation
Petryshyn et al. Deep Reinforcement Learning for Autonomous Driving in Amazon Web Services DeepRacer
Hattori et al. Massive multiagent-based urban traffic simulation with fine-grained behavior models
JP4869903B2 (en) Moving body simulation apparatus and method
Hussein et al. Validation of an agent-based microscopic pedestrian simulation model at a scramble phase signalized intersection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776285

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017511470

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16776285

Country of ref document: EP

Kind code of ref document: A1