WO2016161884A1 - 开放式三维流道高速电弧放电层扫加工方法 - Google Patents

开放式三维流道高速电弧放电层扫加工方法 Download PDF

Info

Publication number
WO2016161884A1
WO2016161884A1 PCT/CN2016/076654 CN2016076654W WO2016161884A1 WO 2016161884 A1 WO2016161884 A1 WO 2016161884A1 CN 2016076654 W CN2016076654 W CN 2016076654W WO 2016161884 A1 WO2016161884 A1 WO 2016161884A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool electrode
workpiece
flow path
axis
processing
Prior art date
Application number
PCT/CN2016/076654
Other languages
English (en)
French (fr)
Inventor
赵万生
顾琳
陈吉朋
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Priority to DE112016001617.4T priority Critical patent/DE112016001617T5/de
Publication of WO2016161884A1 publication Critical patent/WO2016161884A1/zh
Priority to US15/714,104 priority patent/US10646940B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H9/00Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
    • B23H9/14Making holes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/02Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/02Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges
    • B23H1/022Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges for shaping the discharge pulse train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/04Electrodes specially adapted therefor or their manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/26Apparatus for moving or positioning electrode relatively to workpiece; Mounting of electrode
    • B23H7/265Mounting of one or more thin electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H9/00Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
    • B23H9/10Working turbine blades or nozzles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration

Definitions

  • the invention relates to a technology in the field of metal processing, in particular to an open three-dimensional flow path high-speed arc discharge layer sweeping method for complex geometric features.
  • Three-dimensional flow channels are widely found in key components of power equipment such as engines, steam turbines, centrifugal pumps, and compressors, such as impellers and turbines.
  • power equipment such as engines, steam turbines, centrifugal pumps, and compressors, such as impellers and turbines.
  • compressors such as impellers and turbines.
  • mechanical cutting methods, EDM processing methods, and electrochemical processing methods are common.
  • the mechanical cutting method cuts the material by means of end mill milling, side milling, plunge milling, and even turning and milling.
  • the mechanical cutting process can obtain better processing efficiency for materials with low hardness, and then for difficult-to-cut materials.
  • Flow path processing its inefficiency, tool loss is serious, and for some three-dimensional flow paths with complex shapes, mechanical cutting often cannot be processed normally due to interference; EDM is easy to obtain better surface quality and precision, but its efficiency is limited. Therefore, one of the main problems in the three-dimensional flow path of EDM is that the processing efficiency is low.
  • Electrochemical processing also has efficiency problems, such as the literature "Integral impeller step-by-step numerical control electrolytic machining process and key technologies” (Journal of South China University of Technology (Natural Science Edition), 38 (8), 2010: 71-77) discloses a The electrochemical processing method uses a DC voltage of 12V, an electrolyte of 20% NaNO3 solution, a working pressure of 0.8 MPa, and a processing feed rate of 2 mm/min. It can be seen from the processing parameters that the electrolysis process involves slower electrolysis process, low feed rate, and easy generation of harmful substances such as heavy metals in the electrolysis process, and the subsequent purification process is complicated.
  • the present invention introduces high speed arc discharge machining.
  • High-speed arc discharge is different from traditional EDM.
  • Arc discharge has higher energy density, and the material removal rate per unit time is much higher than that of EDM.
  • the patent document ZL 201110030724.7 authorized literature "Bundle electrode high-speed arc discharge” Processing discloses a high-speed electric discharge machining method for cluster electrodes in the field of arc discharge machining technology. This technology processes titanium alloy materials with peak pressure 635A and appropriate flushing pressure and pulse parameters. The material removal rate is 6844 mm 3 /min.
  • the invention aims at the above-mentioned deficiencies of the prior art, and proposes an open three-dimensional flow path high-speed arc discharge layer sweep processing method, which realizes high-efficiency layered processing of an open three-dimensional flow channel based on high-speed arc discharge of fluid dynamic arc breaking, and eliminates Residual protrusions left on the workpiece due to the opening in the electrode.
  • the invention relates to an open three-dimensional flow path high-speed arc discharge layer sweeping method, which is arranged such that a mounting shaft axis of a tool electrode having six degrees of freedom and an axis of a workpiece to be processed are perpendicular to each other, and the workpiece to be processed is distributed In several flow paths, during the arc discharge, the tool electrodes are swept and displaced in a closed trajectory in a plane or curved surface perpendicular to their mounting axis.
  • the six degrees of freedom refers to a linear motion in the XYZ direction in the vertical coordinate system and an ABC direction rotation around the XYZ axis, respectively.
  • the mutual vertical arrangement means that the mounting axes are perpendicular to each other.
  • the path of the sweep displacement satisfies: under the condition of the corresponding flow path feature of the workpiece to be processed, the tool electrode geometry and the machining allowance, the envelope space formed by the movement of the tool electrode under the path coincides with the workpiece The space does not exceed the predetermined processing cavity size of the flow channel.
  • the tool electrode is set to sweep the displacement while feeding around the remaining two rotational degrees of freedom, specifically:
  • the tool electrode of the Z-direction mounting shaft is set to sweep along the C-axis while sweeping the displacement, thereby realizing the curved surface linkage processing
  • the tool electrode of the Z-direction mounting shaft is set to sweep along the B-axis while sweeping the displacement, thereby realizing the circular bottom surface linkage machining;
  • the working fluid is broken down to form an arc discharge to cut the material.
  • the method includes the following steps:
  • the workpiece and the tool electrode are respectively disposed on the turntable and the spindle of the machine tool, and the axis of the mounting shaft of the tool electrode is perpendicular to the axis of the workpiece; meanwhile, the water-based working fluid in the water tank is passed through the punching hole on the tool electrode and The water tank forms a flushing circuit, and the liquid punching hole on the tool electrode is located on the bottom surface thereof, that is, the side perpendicular to the workpiece axis;
  • the workpiece and the tool electrode are respectively connected to the two poles of the power source, so that the workpiece and the tool electrode form a discharge circuit through the water-based working fluid;
  • the tool electrode is swept in a small closed path along the vertical plane or curved surface of the mounting axis of the tool electrode after feeding in the X, Y, and Z directions to remove the residual protrusion of the workpiece and realize the surface processing of the three-dimensional open channel. .
  • the tool electrode can be rotated along the C axis, and the curved surface can be processed in a coordinated manner.
  • the workpiece can be oscillated along the B axis to perform the arc bottom surface joint processing; in this process, the water-based working fluid is broken down to form an arc discharge. And the material is removed;
  • the workpiece is indexed around the A axis to the next flow path to be processed, and the discharge process is repeated until all flow path processing is completed.
  • the present invention provides an open three-dimensional flow layer layer sweep processing method by introducing high-speed arc discharge, and solves the following problems:
  • the high-speed arc discharge layer sweep is used to improve the processing efficiency and effectively remove the residual protrusions on the material; at the same time, the water-based working fluid is used as the discharge medium, and the fluid dynamic power is broken by the pump electrode and the workpiece.
  • the arc combined with pulsed electrical arc breaking, effectively improves the stability of the machining process and reduces the probability of ablation of the workpiece; in addition, through the curved track layer sweeping motion, sufficient chip exclusion space is generated during the machining process, and the chip removal is improved. Short circuit problems caused by poor (even unable to chip).
  • Figure 1 is a three-dimensional schematic view of the present invention
  • Figure 2 is a partial enlarged view of the present invention
  • FIG. 3 is a schematic diagram of the principle of the present invention.
  • 1 is a water tank
  • 2 is a machine tool
  • 3 is a water tank
  • 4 is a tool electrode
  • 5 is a power source
  • 6 is a workpiece
  • 7 is a turntable.
  • the application environment of the method of the present embodiment includes: a tool electrode 4 disposed on the machine tool 2, a turntable 7 for fixing the workpiece 6, a water tank 3 located under the workpiece 6, a water tank 1 connected to the water tank 3, and A power source connected to the tool electrode 4.
  • the peak current of the power source 5 is a DC power source of 50A-3000A, and the pulse width is 0.002ms-10ms, and the pulse interval is 0-10ms.
  • the workpiece 6 and the tool electrode 4 are respectively disposed on the turntable 7 and the main shaft of the machine tool 2, and the tool electrode 4 mounting shaft axis is perpendicular to the axis of the workpiece 6; meanwhile, the water-based working fluid in the water tank 1 is passed through the tool electrode 4.
  • the liquid hole and the water tank 3 form a liquid-feeding circuit, and the liquid-filling hole on the tool electrode 4 is located on the bottom surface thereof, that is, the side perpendicular to the axis of the workpiece 6;
  • the vertical plane or curved surface of the electrode mounting axis is used for a small closed track sweeping motion to remove the residual protrusion of the workpiece, and the surface processing of the three-dimensional open flow channel is realized.
  • the tool electrode 4 can be rotated along the C axis to perform the curved surface joint processing, and the workpiece 6 can be oscillated along the B axis to perform the circular bottom surface joint processing; in this process, the water-based working fluid is broken down. Forming an arc discharge to remove the material;
  • the flushing circuit means that the water-based working fluid between the tool electrode 4 and the workpiece 6 flows relatively at a pressure of 0.1 MPa or more.
  • the small closed trajectory is obtained by path planning according to the flow path characteristics of the workpiece 6, the tool electrode 4 geometry and the machining allowance, and the planning criterion is: the tool electrode 4 is formed in the envelope space according to the above motion law. The cut portion does not exceed the predetermined processing cavity size of the flow path.
  • the tool electrode 4 is fed in the X, Y, and Z directions, and the discharge is concentrated on the bottom of the tool electrode 4, and the debris formed by the discharge is washed away by the liquid at the bottom of the tool electrode 4; further, the punch hole is removed from the tool electrode 4 a residual protrusion left on the workpiece during discharge, the tool electrode 4 is in a plane or curved surface perpendicular to its mounting axis, in accordance with the closed trajectory
  • the machining flow path is a curved profile
  • the tool electrode 4 can be fed simultaneously around the C axis to realize the curved surface linkage processing; if the bottom surface of the machining flow path is a circular arc surface, then The workpiece 6 can be fed around the B axis to realize the coordinated processing of the arc bottom surface.
  • the envelope space V(x, y, z) formed by the working electrode 4 is smaller than and close to the predetermined processing cavity size without overcutting or interference.
  • the workpiece 6 is indexed around the A axis to the next flow path to be processed under the rotation of the turntable 7, and the discharge process is repeated until all the flow path processing is completed.
  • the layer sweep mode is introduced to realize the layered milling, the residual protrusion on the workpiece 6 is removed, the chip evacuation space is increased, the flushing effect is improved, and the particles are effectively removed, thereby ensuring Processing is normal and efficient.

Abstract

一种开放式三维流道高速电弧放电层扫加工方法,将具有六自由度的工具电极(4)与待处理工件(6)以相互垂直的方式放置,电弧放电过程中,工具电极(4)在垂直于其安装轴的平面或曲面内按照封闭轨迹进行扫掠位移;该扫掠位移的路径满足工作电极(4)在该路径下运动所形成的包络空间将工件(6)切除的部分不超过流道预订加工腔体尺寸。这种基于流体动力断弧的高速电弧放电能够实现开放式三维流道的分层铣削和面加工。

Description

开放式三维流道高速电弧放电层扫加工方法 技术领域
本发明涉及的是一种金属加工领域的技术,具体是一种针对复杂的几何特征的开放式三维流道高速电弧放电层扫加工方法。
背景技术
三维流道广泛存在于发动机、汽轮机、离心泵、压缩机等动力设备的关键零部件上,比如叶轮、涡轮等。对开放式三维流道的加工,常见有机械切削方法、电火花成型加工方法、电化学加工方法等。
机械切削方法根据流道特征通过立铣刀分层侧铣、插铣、甚至车铣复合等方式切除材料,机械切削加工对于硬度低的材料可以获得较好的加工效率,然后对于难切削材料的流道加工,其效率低下,刀具损耗严重,并且对于部分形状复杂的三维流道,机械切削往往由于干涉而无法正常加工;电火花放电加工容易获得较好的表面质量和精度,然而其效率有限,因此电火花放电加工三维流道,存在的主要问题之一是加工效率低下。
而电化学加工也存在效率问题,如文献《整体叶轮分步法数控电解加工工艺与关键技术》(华南理工大学学报(自然科学版),38(8),2010:71-77)披露一种电化学加工方法,该方法采用的直流电压为12V,电解液为20%的NaNO3溶液,工作压力为0.8MPa,加工进给速度为2mm/min。从加工参数可见,电化学加工涉及的电解过程较慢,其进给速率低,并且电解过程容易产生重金属等有害物质,后续净化处理过程复杂。
为解决开放式三维流道加工效率问题,本发明引入高速电弧放电加工。高速电弧放电区别于传统的电火花放电加工,电弧放电具有更高的能量密度,其单位时间材料去除率远远高于电火花放电加工,如专利号ZL 201110030724.7的授权文献《集束电极高速电弧放电加工》(赵万生等,上海交通大学)公开了一种电弧放电加工技术领域的集束电极高速放电加工方法,该技术在峰值电流635A时,配合适当的冲液压力及脉冲参数对钛合金材料进行加工,其材料去除率达6844mm3/min。
然而,虽然利用高速电弧放电加工可以获得比普通电火花加工高若干倍的加工效率,但是对于开放式三维流道,无论采用集束电极或者其它成型电极进行放电加工,均容易由于排屑不畅引起短路而无法正常加工;并且,由于工具电极上加工有冲液孔,冲液孔处由于无法放电而导致工件被加工处留有残余凸起。此外,以往加工三维流道为点加工方式,不利于加工效率的优化提高。
发明内容
本发明针对现有技术存在的上述不足,提出一种开放式三维流道高速电弧放电层扫加工方法,基于流体动力断弧的高速电弧放电,实现开放式三维流道的高效分层加工,消除工件上由于电极上开孔导致加工后遗留的残余凸起。
本发明是通过以下技术方案实现的:
本发明涉及一种开放式三维流道高速电弧放电层扫加工方法,将具有六自由度的工具电极的安装轴轴线与待处理工件的轴线以相互垂直的方式设置,该待处理工件上分布有若干流道,电弧放电过程中工具电极在垂直于其安装轴的平面或曲面内按照封闭轨迹进行扫掠位移。
所述的六自由度是指:垂直坐标系下的XYZ方向直线运动以及分别绕XYZ轴的ABC向转动。
所述的相互垂直设置是指:安装轴线相互垂直。
所述的扫掠位移的路径满足:在对应的待处理工件的流道特征、工具电极几何形状及加工余量的条件下,工具电极在该路径下运动所行成的包络空间与工件重合的空间不超过流道预定加工腔体尺寸。
进一步地,当待处理工件上的加工流道为弯曲型面或圆弧底面时,则工具电极设置为扫掠位移的同时绕其余两个转动自由度进行进给,具体为:
a)当X向安装轴的待处理工件上的加工流道为弯曲型面,则Z向安装轴的工具电极设置为扫掠位移的同时绕C轴进行进给,实现弯曲型面联动加工;
b)当X向安装轴的待处理工件上的加工流道底面为圆弧型面,则Z向安装轴的工具电极设置为扫掠位移的同时绕B轴进行进给,实现圆弧底面联动加工;
在上述任一过程中,工作液被击穿后形成电弧放电而切除材料。
所述方法包括以下步骤:
第一步、将工件和工具电极分别设置于转台及机床的主轴上,工具电极的安装轴轴线与工件轴线相垂直;同时,将水箱中的水基工作液通过工具电极上的冲液孔及水槽形成冲液回路,工具电极上的冲液孔位于其底面,即与工件轴线垂直相对的一侧;
第二步,将工件和工具电极分别接电源的两极,使得工件和工具电极通过水基工作液形成放电回路;
第三步,工具电极在X,Y,Z方向进给后沿工具电极的安装轴线的垂直平面或曲面作小幅封闭轨迹扫掠运动,以去除工件残留凸起,实现三维开放流道的面加工。
根据被加工流道特征,工具电极可沿C轴转动,进行弯曲型面联动加工,工件可沿B轴摆动进行圆弧底面联动加工;此过程中,水基工作液被击穿后形成电弧放电而切除材料;
第四步,在完成单个流道的若干层层扫切削后,工件绕A轴分度至下一个待加工流道位置,重复放电过程直至完成所有流道加工。
技术效果
与现有技术相比,本发明通过引入高速电弧放电,给出开放式三维流道层扫加工方法,解决了如下问题:
1)提高了开放式三维流道加工效率,加大了材料去除率;
2)通过面加工,代替以往的点加工,进一步提高材料去除率;
3)增强了加工过程的稳定性,即具备良好的断弧特性,防止了工件烧蚀;
4)提高了加工切屑的排除有效性,排屑方便,降低了短路几率。具体来说,利用高速电弧放电层扫,提高了其加工效率,并有效去除材料上残余的凸起;同时,利用水基工作液作为放电介质,通过工具电极和工件间冲液进行流体动力断弧,并结合脉冲电气断弧,有效提高了加工过程稳定性,降低了工件烧蚀概率;此外,通过曲线轨迹层扫式运动,在加工过程中产生充足的切屑排除空间,改善了由于排屑不畅(甚至无法排屑)而导致的短路问题等。
附图说明
图1为本发明的三维示意图;
图2为本发明局部放大图;
图3为本发明原理示意图;
图中:1为水箱,2为机床,3为水槽,4为工具电极,5为电源,6为工件,7为转台。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
如图1所示,本实施例方法的应用环境包括:设置于机床2上的工具电极4、用于固定工件6的转台7、位于工件6下的水槽3、与水槽3相连的水箱1以及与工具电极4相连的电源。
所述的电源5的峰值电流为50A-3000A的直流电源,其脉冲宽度为0.002ms-10ms,脉冲间隔为0-10ms。
本实施例包括以下步骤:
1)将工件6和工具电极4分别设置于转台7及机床2的主轴上,工具电极4安装轴轴线与工件6轴线相垂直;同时,将水箱1中的水基工作液通过工具电极4上的冲液孔及水槽3形成冲液回路,工具电极4上的冲液孔位于其底面,即与工件6轴线垂直相对的一侧;
2)将工件6和工具电极4分别接电源5的两极,使得工件6和工具电极4通过水基工作液形成放电回路;
3)工具电极4在X,Y,Z方向进给后沿电极安装轴线的垂直平面或曲面作小幅封闭轨迹扫掠运动,以去除工件残留凸起,实现三维开放流道的面加工。
4)根据被加工流道特征,工具电极4可沿C轴转动,进行弯曲型面联动加工,工件6可沿B轴摆动进行圆弧底面联动加工;此过程中,水基工作液被击穿后形成电弧放电而切除材料;
5)在完成单个流道的若干层层扫切削后,工件6绕A轴分度至下一个待加工流道位置,重复放电过程直至完成所有流道加工。
所述的冲液回路是指:工具电极4和工件6之间的水基工作液以0.1MPa以上压力相对流动。
所述的小幅封闭轨迹根据工件6的流道特征、工具电极4几何形状及加工余量,通过路径规划获得,其规划准则是:工具电极4按上述运动规律行成的包络空间将工件6切除的部分不超过流道预定加工腔体尺寸。
如图2和图3所示的开放式三维流道高速电弧放电层扫加工方法,其层扫原理进一步阐述如下:
工具电极4在X,Y,Z方向进给,将放电集中于工具电极4的底部,放电形成的碎屑由工具电极4底部的液体冲走;此外,为去除工具电极4冲液孔处不放电而在工件上留下的残余凸起,工具电极4在垂直于其安装轴的平面或曲面内,按照封闭轨迹
Figure PCTCN2016076654-appb-000001
做小幅扫掠;此过程中,若加工流道为弯曲型面,则工具电极4可同时绕C轴进行进给,实现弯曲型面联动加工;若加工流道底面为圆弧型面,则工件6可绕B轴进行进给,实现圆弧底面联动加工。
上述运动过程中工作电极4所形成的包络空间V(x,y,z)小于且接近预定加工腔体尺寸则不会产生过切或者干涉。在完成单个流道层扫切削后,工件6在转台7带动下绕A轴分度至下一个待加工流道位置,重复放电过程直至完成所有流道加工。在工具电极4进给的过程中,引入层扫方式,实现分层铣削,去除工件6上残余凸起,并且增大了排屑空间,提高冲液效果,有效排走蚀除颗粒,从而保证加工正常、高效进行。

Claims (4)

  1. 一种开放式三维流道高速电弧放电层扫加工方法,其特征在于,将具有六自由度的工具电极的安装轴轴线与待处理工件的轴线以相互垂直的方式设置,电弧放电过程中工具电极在垂直于其安装轴的平面或曲面内按照封闭轨迹进行扫掠位移;
    所述的扫掠位移的路径满足:工作电极在该路径下运动所行成的包络空间将工件切除的部分不超过流道预定加工腔体尺寸。
  2. 根据权利要求1所述的方法,其特征是,当待处理工件上的加工流道为弯曲型面或圆弧底面时,则工具电极设置为扫掠位移的同时绕其余两个转动自由度进行进给。
  3. 根据权利要求1或2所述的方法,其特征是,当X向安装轴的待处理工件上的加工流道为弯曲型面,则Z向安装轴的工具电极设置为扫掠位移的同时绕C轴进行进给,实现弯曲型面联动加工;当X向安装轴的待处理工件上的加工流道底面为圆弧型面,则Z向安装轴的工具电极设置为扫掠位移的同时绕B轴进行进给,实现圆弧底面联动加工。
  4. 根据上述任一权利要求所述的方法,其特征是,所述方法包括以下步骤:
    第一步、将工件和工具电极分别设置于转台及机床的主轴上,工具电极的安装轴轴线与工件轴线相垂直;同时,将水箱中的水基工作液通过工具电极上的冲液孔及水槽形成冲液回路,工具电极上的冲液孔位于其底面,即与工件轴线垂直相对的一侧;
    第二步,将工件和工具电极分别接电源的两极,使得工件和工具电极通过水基工作液形成放电回路;
    第三步,工具电极在X,Y,Z方向进给后沿工具电极的安装轴线的垂直平面或曲面作小幅封闭轨迹扫掠运动,以去除工件残留凸起,实现三维开放流道的面加工;
    第四步,在完成单个流道的若干层层扫切削后,工件绕A轴分度至下一个待加工流道位置,重复放电过程直至完成所有流道加工。
PCT/CN2016/076654 2015-04-09 2016-03-17 开放式三维流道高速电弧放电层扫加工方法 WO2016161884A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112016001617.4T DE112016001617T5 (de) 2015-04-09 2016-03-17 Spülschichtverarbeitungsverfahren mit Hochgeschwindigkeitsbogenentladung für offenen dreidimensionalen Strömungsweg
US15/714,104 US10646940B2 (en) 2015-04-09 2017-09-25 Machining method for three-dimensional open flow channel using high-speed arc discharge layered sweep

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510167085.7A CN104772535B (zh) 2015-04-09 2015-04-09 开放式三维流道高速电弧放电层扫加工方法
CN201510167085.7 2015-04-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/714,104 Continuation US10646940B2 (en) 2015-04-09 2017-09-25 Machining method for three-dimensional open flow channel using high-speed arc discharge layered sweep

Publications (1)

Publication Number Publication Date
WO2016161884A1 true WO2016161884A1 (zh) 2016-10-13

Family

ID=53614469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/076654 WO2016161884A1 (zh) 2015-04-09 2016-03-17 开放式三维流道高速电弧放电层扫加工方法

Country Status (4)

Country Link
US (1) US10646940B2 (zh)
CN (1) CN104772535B (zh)
DE (1) DE112016001617T5 (zh)
WO (1) WO2016161884A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104772535B (zh) * 2015-04-09 2017-07-18 上海交通大学 开放式三维流道高速电弧放电层扫加工方法
CN106695030B (zh) * 2015-11-12 2018-06-12 上海交通大学 基于复合断弧机制的电弧放电制造金属微细颗粒的加工方法
CN107052480A (zh) * 2017-06-15 2017-08-18 群基精密工业(苏州)有限公司 一种新型五轴轮胎放电加工专用机
CN108406015B (zh) * 2018-05-29 2023-08-15 泗县微腾知识产权运营有限公司 一种微米级电火花加工设备
CN108705162A (zh) * 2018-08-13 2018-10-26 深圳创源航天科技有限公司 流体驱动的放电加工装置及方法
CN110230082B (zh) * 2019-07-18 2021-06-25 烟台大学 一种集束阴极微弧氧化膜制备装置和方法
CN113523459B (zh) * 2021-07-12 2022-07-19 惠州市盈旺精密技术有限公司 电极体以及电极

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0917033A2 (en) * 1997-11-14 1999-05-19 Fanuc Ltd Controller for machine
CN101693310A (zh) * 2009-10-15 2010-04-14 清华大学 三维微细电火花伺服扫描粗精加工结合工艺
US20100140226A1 (en) * 2008-12-08 2010-06-10 Dong-Yea Sheu Tandem micro electro-discharge machining apparatus
CN103934528A (zh) * 2014-04-14 2014-07-23 上海交通大学 一种用于电火花加工的六轴联动插补方法
CN104084654A (zh) * 2014-07-15 2014-10-08 上海交通大学 六轴联动空间摇动电火花加工方法
CN104117741A (zh) * 2014-07-15 2014-10-29 上海交通大学 闭式整体叶盘电火花加工六轴联动摄动进给方法
CN104772535A (zh) * 2015-04-09 2015-07-15 上海交通大学 开放式三维流道高速电弧放电层扫加工方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1185171A (fr) * 1958-02-14 1959-07-30 Polymecanique Procédé pour l'usinage d'outils, outillage pour la mise en oeuvre de ce procédé ou procédés similaires et outils conformes à ceux obtenus
US3390247A (en) * 1966-06-27 1968-06-25 Elox Inc Coolant circulation system for electrical discharge machining apparatus
CH581005A5 (zh) * 1974-11-14 1976-10-29 Charmilles Sa Ateliers
US4310742A (en) * 1977-12-20 1982-01-12 Ateliers Des Charmilles, S.A. EDM Process and apparatus for machining cavities and slots in a workpiece
GB2085788B (en) * 1980-10-15 1984-08-08 Inoue Japax Res Electroerosively forming three-dimensional cavities
TW339299B (en) * 1997-08-14 1998-09-01 Castek Mechatron Industry Co L The double processing-liquids circulation system of fining-hole EDM includes 1st oil-water separating tank, 2nd water-filtering tank and the 3rd oil-filtering tank, to separate & filter oil & water as processing liquid
EP1238740B1 (fr) * 2001-03-05 2008-05-14 Charmilles Technologies S.A. Procédé et dispositif pour usiner une pièce à trois dimensions par fraisage électroérosif
US20050247569A1 (en) * 2004-05-07 2005-11-10 Lamphere Michael S Distributed arc electroerosion
CN101524805B (zh) * 2009-04-10 2011-03-16 南京航空航天大学 一种加工三元流闭式叶轮叶间通道的方法及其专用夹具
CN102091839B (zh) * 2011-01-28 2012-08-22 上海交通大学 集束电极高速放电加工方法
CN104475843B (zh) * 2014-11-07 2016-08-17 沈阳黎明航空发动机(集团)有限责任公司 一种环形类机匣径向窄槽的加工方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0917033A2 (en) * 1997-11-14 1999-05-19 Fanuc Ltd Controller for machine
US20100140226A1 (en) * 2008-12-08 2010-06-10 Dong-Yea Sheu Tandem micro electro-discharge machining apparatus
CN101693310A (zh) * 2009-10-15 2010-04-14 清华大学 三维微细电火花伺服扫描粗精加工结合工艺
CN103934528A (zh) * 2014-04-14 2014-07-23 上海交通大学 一种用于电火花加工的六轴联动插补方法
CN104084654A (zh) * 2014-07-15 2014-10-08 上海交通大学 六轴联动空间摇动电火花加工方法
CN104117741A (zh) * 2014-07-15 2014-10-29 上海交通大学 闭式整体叶盘电火花加工六轴联动摄动进给方法
CN104772535A (zh) * 2015-04-09 2015-07-15 上海交通大学 开放式三维流道高速电弧放电层扫加工方法

Also Published As

Publication number Publication date
CN104772535A (zh) 2015-07-15
US10646940B2 (en) 2020-05-12
DE112016001617T5 (de) 2017-12-28
US20180104756A1 (en) 2018-04-19
CN104772535B (zh) 2017-07-18

Similar Documents

Publication Publication Date Title
WO2016161884A1 (zh) 开放式三维流道高速电弧放电层扫加工方法
JP3080650B2 (ja) 軌道電解加工法
RU2465995C2 (ru) Устройство и способ для комбинированной обработки фасонной тонкостенной обрабатываемой детали
CN105921834B (zh) 电解磨铣加工工具阴极及方法
EP2489456A2 (en) Electroerosion machining systems and methods
JP2004209639A (ja) ブリスクをニアネットシェイプ高速荒加工するための方法及び装置
CN111805026A (zh) 电解铣削-电解机械复合铣削一体化加工工具及方法
CN108714771A (zh) 一种航空发动机压气机静子叶片加工方法及其产品
CN104972183A (zh) 机器人高速柔性放电加工方法
CN103801771B (zh) 高速切割放电加工方法
CN206216056U (zh) 电解磁力研磨机
CN105033373A (zh) SiC单晶片的超声电复合切割装置及切割方法
CN110722407A (zh) 一种蜂窝环电解磨削加工系统及加工方法
CN104551277A (zh) 一种用于电化学-机械复合加工的线锯绕制工具电极
CN107891201B (zh) 铸造回转体零件铸造余量和铸造冒口的电解加工方法
CN109202706A (zh) 一种具有在线电解修整功能的磨头
US9162301B2 (en) Electrochemical machining tools and methods
TWI604905B (zh) 難加工材料之放電輔助切削加工裝置
CN204366212U (zh) 一种用于电化学-机械复合加工的线锯绕制工具电极
CN110394516A (zh) 高定域性脉动态电解线切割加工方法及装置
CN101817159A (zh) 柔性电极零件表面电火花磨削抛光方法及其系统
CN112809109A (zh) 一种短电弧-电化学复合铣削钛合金加工方法及系统
CN111975148A (zh) 一种具有高频振动的薄片电解电火花加工方法
CN108401353A (zh) 一种等离子体射流促进金属切削断屑的方法
CN208680710U (zh) 一种基于易捷电切割仪的矩形切割头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776059

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016001617

Country of ref document: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/02/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16776059

Country of ref document: EP

Kind code of ref document: A1