WO2016161773A1 - 随机接入信令的重新发送方法及装置 - Google Patents

随机接入信令的重新发送方法及装置 Download PDF

Info

Publication number
WO2016161773A1
WO2016161773A1 PCT/CN2015/089806 CN2015089806W WO2016161773A1 WO 2016161773 A1 WO2016161773 A1 WO 2016161773A1 CN 2015089806 W CN2015089806 W CN 2015089806W WO 2016161773 A1 WO2016161773 A1 WO 2016161773A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
type
node
level
access signaling
Prior art date
Application number
PCT/CN2015/089806
Other languages
English (en)
French (fr)
Inventor
刘锟
戴博
鲁照华
夏树强
陈宪明
石靖
张雯
方惠英
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2017553133A priority Critical patent/JP2018511276A/ja
Priority to EP15888325.6A priority patent/EP3282800A4/en
Priority to US15/563,609 priority patent/US10455448B2/en
Publication of WO2016161773A1 publication Critical patent/WO2016161773A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and apparatus for retransmitting random access signaling.
  • MTC UE Machine Type Communication (MTC) User Terminal (MTC UE), also known as Machine to Machine (M2M) user communication equipment, is the main application form of the Internet of Things at this stage. .
  • M2M devices deployed on the market are mainly based on the Global System of Mobile communication (GSM) system.
  • GSM Global System of Mobile communication
  • LTE Long Term Evolution
  • LTE-A Subsequent evolution of LTE
  • M2M multi-class data services based on LTE/LTE-A will also be more attractive. Only when the cost of the LTE-M2M device can be lower than the MTC terminal of the GSM system can the M2M service be truly transferred from the GSM to the LTE system.
  • the main alternative methods for reducing the cost of the MTC user terminal include: reducing the number of terminal receiving antennas, reducing the baseband processing bandwidth of the terminal, reducing the peak rate supported by the terminal, adopting a half-duplex mode, and the like.
  • the cost reduction means that the performance is degraded.
  • the demand for the LTE/LTE-A system cell coverage cannot be reduced. Therefore, the MTC terminal with low-cost configuration needs to take some measures to meet the coverage performance requirements of the existing LTE terminal.
  • the MTC terminal may be located in a basement, a corner, etc., and the scene is worse than that of a normal LTE UE. In order to compensate for the decrease in coverage caused by the penetration loss, some MTC UEs need higher performance improvement.
  • MTC UEs it is necessary to perform uplink and downlink coverage enhancement of some MTC UEs for such a scenario. How to ensure the user's access quality is the first problem to be considered. It is necessary to enhance the design of the random access signaling (also called Msg1) of the LTE/LTE-A system to ensure that the MTC UE can access the system normally.
  • Msg1 random access signaling
  • the location information of the physical resource block (Physical Resource Block, PRB) occupied by the Random Access Response (RAR, also referred to as the Msg2 message) in the LTE/LTE-A system is included in the downlink control information.
  • Downlink Control Information referred to as DCI
  • DCI information further includes a 16-bit Cyclic Redundancy Check (CRC), and the CRC further uses a 16-bit Random Access Radio Network Temporary Identity (Random Access Radio Network Temporary Identity, Abbreviated as RA-RNTI), the scrambling method is:
  • the UE receives the RAR message and obtains the uplink time synchronization and uplink resources. However, it is not determined at this time that the RAR message is sent to the UE itself instead of to other UEs because there are different UEs in the same time-frequency resource. The possibility of sending the same random access sequence on, so that they receive the same RAR through the same RA-RNTI. Moreover, the UE also has no way of knowing if other UEs are using the same resources for random access. To this end, the UE needs to resolve such random access collisions through subsequent Msg3 and Msg4 messages.
  • Msg3 is the first message to be transmitted on the PUSCH based on the uplink scheduling and using the Hybrid Automatic Repeat Request (HARQ) mechanism.
  • the RRC layer connection request message (RRCConnectionRequest) is transmitted in the Msg3. If different UEs receive the same RAR message, they will obtain the same uplink resource and simultaneously send the Msg3 message, in order to distinguish Different UEs carry a UE-specific ID in Msg3 to distinguish different UEs. In the case of initial access, this ID may be the S-TMSI of the UE (if any) or a randomly generated 40. The value of the bit.
  • the UE After the UE sends the MSg3 message, it immediately starts the contention cancellation timer (and then restarts the timer every time the Msg3 is retransmitted). The UE needs to listen to the conflict resolution message (ContentionResolution) that the eNodeB returns to itself during this time. Msg4 message).
  • ContentionResolution ContentionResolution
  • the UE If the UE receives the Msg4 message returned by the eNodeB and the UE ID carried in the Msg3 is reported to the eNodeB, the UE considers that it has won the random access. Collision, random access succeeds. The temporary C-RNTI obtained in the RAR message is set as its own C-RNTI. Otherwise, the UE considers that the access fails and re-transmits the random access retransmission process.
  • the Msg1, Msg2, Msg3, and Msg4 of the LTE/LTE-A system also need to be enhanced to ensure that the MTC UE can access the system normally.
  • the present invention provides a method and a device for resending the random access signaling to at least Solve the above problem.
  • a retransmission method for random access signaling including: when a first condition is met, a second type of node resends random access signaling Msg1, where The first condition includes at least one of: the second type of node does not successfully decode the random access response message Msg2; the second type of node successfully decodes the random access response message Msg2, and the random access response message is decoded There is no random access response information sent to the second type of node in Msg2; the first type of node does not successfully decode the Msg3 message; the first type of node successfully decodes the Msg3 message, and sends Msg4 to the second a class node, the second type of node does not successfully decode the Msg4 message; the first type of node successfully decodes the Msg3 message, and sends Msg4 to the second type of node, the second type of node successfully decodes the Msg4 message, and the
  • the second type of node when the first condition is that the second type of node does not successfully decode the random access response message Msg2, and the random access response message Msg2 belongs to the first type of random access response message
  • the second type of node resending the random access signaling Msg1 according to at least one of the following:
  • the number of repeated transmissions of the retransmitted random access signaling Msg1 is determined by the level information of the second type of node;
  • the current level of the second type of node is level i, and the number of random access signaling Msg1 resent by the second type node at level i is less than the upper limit of the number of times of random access signaling Msg1 corresponding to level i.
  • the manner in which the second type of node resends the random access signaling Msg1 includes at least one of the following: the second type of node continues to resend the random access by using the repeated transmission times of the random access signaling Msg1 corresponding to the level i The signaling Msg1; the second type of node is configured to increase the transmission power of the random access signaling Msg1; the sending time indication information of the second type of node resending the random access signaling Msg1 is K1;
  • the current level of the second type of node is level i
  • the number of random access signaling Msg1 resent by the second type node at level i is less than the upper limit of the number of times of random access signaling Msg1 corresponding to level i.
  • the manner in which the second type of node resends the random access signaling Msg1 includes the following at least one of the following:
  • the class node continues to retransmit the random access signaling Msg1 by using the number of repeated transmissions of the random access signaling Msg1 corresponding to the level i;
  • the sending time indication information of the second type node resending the random access signaling Msg1 is K2;
  • the current level of the second type of node is level i
  • the number of random access signaling Msg1 retransmitted by the second type of node at level i is greater than or equal to the number of times of random access signaling Msg1 corresponding to level i.
  • the upper limit Ni the manner in which the second type of node retransmits the random access signaling Msg1 includes at least one of the following: the second type of node adopts the repeated sending of the random access signaling Msg1 corresponding to the next level of the level i Resending the random access signaling Msg1; the sending time indication information of the second type node resending the random access signaling Msg1 is K0;
  • the sending time indication information of the retransmission random access signaling Msg1 refers to a time interval between the retransmission random access signaling Msg1 and the detection window end time of the previous random access response message Msg2;
  • the first type of random access response message Msg2 refers to the random access response information of the second type of nodes including the same level in the random access response message Msg2.
  • the upper limit Ni of the number of times of random access signaling Msg1 corresponding to the level i is configured by the first type of node; the values of Ni corresponding to different levels are different.
  • the second type of node when the first condition is that the second type of node successfully decodes the random access response message Msg2, but does not send the random access response information to the second type of node, and the random access In response message Msg2 belongs to the first
  • the second type of node resends the random access signaling Msg1 according to at least one of the following:
  • the number of repeated transmissions of the retransmitted random access signaling Msg1 is determined by the level information of the second type of node;
  • the number of repeated transmissions of the retransmitted random access signaling Msg1 is the same as the number of repeated transmissions of the previous transmission;
  • the current level of the second type of node is level i, and the number of random access signaling Msg1 resent by the second type node at level i is less than the upper limit of the number of times of random access signaling Msg1 corresponding to level i.
  • the manner in which the second type of node resends the random access signaling Msg1 includes at least one of the following: the second type of node continues to resend the random access by using the repeated transmission times of the random access signaling Msg1 corresponding to the level i Signaling Msg1, the second type of node is configured to increase the transmission power of the random access signaling Msg1; the sending time indication information of the second type of node resending the random access signaling Msg1 is M1;
  • the current level of the second type of node is level i
  • the number of random access signaling Msg1 resent by the second type node at level i is less than the upper limit of the number of times of random access signaling Msg1 corresponding to level i.
  • the manner in which the second type of node resends the random access signaling Msg1 includes the following at least one of the following:
  • the class node continues to resend the random access signaling Msg1 by the number of repeated transmissions of the random access signaling Msg1 corresponding to the level i;
  • the sending time indication information of the second type node resending the random access signaling Msg1 is M2;
  • the current level of the second type of node is level i
  • the number of random access signaling Msg1 retransmitted by the second type of node at level i is greater than or equal to the number of times of random access signaling Msg1 corresponding to level i.
  • the upper limit Ni the manner in which the second type of node retransmits the random access signaling Msg1 includes at least one of the following: the second type of node adopts the repeated sending of the random access signaling Msg1 corresponding to the next level of the level i Resending the random access signaling; the sending time indication information of the second type node resending the random access signaling Msg1 is M0;
  • the first type of random access response message refers to random access response information of the second type node that includes only the same level in the random access response message
  • the transmission time indication information of the retransmission random access signaling Msg1 refers to a time interval between the retransmission random access signaling and the detection window end time of the previous random access response message Msg2.
  • the following conditions are met between the M0, the M1, and the M2:
  • the upper limit Ni of the number of times of random access signaling Msg1 corresponding to the level i is configured by the first type of node; the values of Ni corresponding to different levels are different.
  • the method includes: at least one of the following conditions between the K0, the K1, the K2, the M0, the M1, and the M2:
  • the second type of node when the first condition is that the second type of node does not successfully decode the random access response message Msg2, and the second type of node only decodes the random access response message Msg2 of the current level, And when the random access response message Msg2 belongs to the second type of random access response message Msg2, the second type of node resends the random access signaling Msg1 according to at least one of the following:
  • the number of repeated transmissions of the retransmitted random access signaling Msg1 is determined by the level information of the second type of node;
  • the number of repeated transmissions of the retransmitted random access signaling Msg1 is the same as the number of repeated transmissions of the previous transmission;
  • the current level of the second type of node is level i, and the number of random access signaling Msg1 resent by the second type node at level i is less than the upper limit of the number of times of random access signaling Msg1 corresponding to level i.
  • the manner in which the second type of node resends the random access signaling Msg1 includes at least one of the following: the second type of node continues to resend the random access by using the repeated transmission times of the random access signaling Msg1 corresponding to the level i Signaling Msg1; the second type of node increases the transmission power of resending the random access signaling Msg1; and the sending time indication information of the second type of node resending the random access signaling Msg1 is P(i)_1 , i is the level index, for level i;
  • the current level of the second type of node is level i
  • the number of random access signaling Msg1 resent by the second type node at level i is less than the upper limit of the number of times of random access signaling Msg1 corresponding to level i.
  • the manner in which the second type of node resends the random access signaling Msg1 includes the following at least one of the following:
  • the class node continues to retransmit the random access signaling Msg1 by using the repeated transmission times of the random access signaling Msg1 corresponding to the level i;
  • the sending time indication information of the second type node resending the random access signaling Msg1 is P(i )_2;
  • the current level of the second type of node is level i, and the number of random access signaling Msg1 retransmitted by the second type of node at level i is greater than or equal to the number of times of random access signaling Msg1 corresponding to level i.
  • the upper limit Ni the manner in which the second type of node resends the random access signaling Msg1 includes at least one of the following: the second type of node adopts the next level of the level i, and the corresponding random access signaling Msg1 is repeatedly sent. Resending the random access signaling Msg1; the sending time indication information of the second type node resending the random access signaling Msg1 is P(i)_0;
  • the second type of random access response message Msg2 refers to random access response information of the second type of node including only one or more levels in the random access response message Msg2;
  • the transmission time indication information of the retransmission random access signaling Msg1 refers to a time interval between the retransmission random access signaling Msg1 and the detection window end time of the previous random access response message Msg2.
  • the following conditions are met between the P(i)_0, the P(i)_1, and the P(i)_2:
  • the upper limit of the number of times of random access signaling Msg1 corresponding to the level i is included. Configured by the first type of nodes; the Ni values corresponding to different levels are different.
  • the second type of node when the first condition is that the second type of node does not successfully decode the random access response message Msg2 of the second type of node level, the second type of node decodes higher than the second type of node.
  • the random access response message Msg2 of the level is unsuccessful, and the random access response message Msg2 belongs to the second type of random access response message Msg2, the second type of node resends the random access signaling Msg1 according to at least one of the following:
  • the number of repeated transmissions of the retransmitted random access signaling is determined by the new level information selected by the second type of node;
  • the new level is the next level of the highest level of the random access response message Msg2 decoded by the second type of node;
  • the highest level index information of the random access response message Msg2 decoded by the second type node is sent by the first type node to the second type node;
  • the second type of random access response message Msg2 refers to random access response information of the second type of node including only one or more levels in the random access response message Msg2.
  • the second type of node when the first condition is that the second type of node does not successfully decode the random access response message Msg2 of the second type of node level, the second type of node successfully decodes higher than the first
  • the random access response message Msg2 belongs to the second type of random access response message Msg2
  • the second type of node resends the random access message according to at least one of the following:
  • the number of repeated transmissions of the retransmitted random access signaling Msg1 is determined by the new level information selected by the second type of node; wherein the new level is the second type of node successfully decoding the random access response message Msg2 grade;
  • the second type of random access response message Msg2 refers to random access response information of the second type of node including only one or more levels in the random access response message Msg2.
  • the second type of node when the first condition is that the first type of node successfully decodes the Msg3 message, and sends the Msg4 to the second type of node, and the second type of node does not successfully decode the Msg4 message, the second type of node follows the following: At least one of the retransmission random access signaling Msg1:
  • the number of repeated transmissions of the retransmitted random access signaling Msg1 is determined by the level information described by the second type of node;
  • the current level of the second type of node is level i, and the number of random access signaling Msg1 resent by the second type node at level i is less than the upper limit of the number of times of random access signaling Msg1 corresponding to level i. And when the second type of node can improve the sending power of the random access signaling Msg1, the sending power of the random access signaling is not improved;
  • the current level of the second type of node is level i, and the number of random access signaling Msg1 retransmitted by the second type of node at level i is greater than or equal to the number of times of random access signaling Msg1 corresponding to level i.
  • the upper limit Ni the second type of node resends the random access signaling Msg1 by the number of repeated transmissions of the random access signaling Msg1 corresponding to the next level of the level i.
  • the second type of node sends at least one of the following information in Msg3:
  • the upper limit Ni of the number of times of random access signaling Msg1 corresponding to the level i is configured by the first type of node; the values of Ni corresponding to different levels are different.
  • the second type of node successfully decodes the Msg4 message, not sent to the second
  • the second type of node resending the random access signaling Msg1 needs to perform according to at least one of the following:
  • the number of repeated transmissions of the retransmitted random access signaling Msg1 is determined by the level information described by the second type of node;
  • the current level of the second type of node is level i, and the number of random access signaling Msg1 resent by the second type node at level i is less than the upper limit of the number of times of random access signaling Msg1 corresponding to level i.
  • the second type of node can improve the sending power of the random access signaling, and does not increase the sending power of the random access signaling;
  • the current level of the second type of node is level i, and the number of random access signaling Msg1 retransmitted by the second type of node at level i is greater than or equal to the number of times of random access signaling Msg1 corresponding to level i.
  • the upper limit Ni the second type of node adopts the next level of the level i, and the random access signaling Msg1 resends the random access signaling Msg1.
  • the upper limit Ni of the number of times of random access signaling Msg1 corresponding to the level i is configured by the first type of node; the values of Ni corresponding to different levels are different.
  • the second type of node when the first condition is that the first type of node does not successfully decode the Msg3 message, the second type of node resends the random access signaling Msg1 according to at least one of the following:
  • the number of repeated transmissions of the retransmitted random access signaling Msg1 is determined by the level information described by the second type of node;
  • the second type of node retransmits the Msg1 by using the repeated transmission times of the random access signaling Msg1 corresponding to the level i. If the first type of node still cannot successfully decode the Msg3 message, the second type of node adopts the level i.
  • the number of repeated transmissions of the random access signaling Msg1 corresponding to the next level is retransmitted by Msg1; wherein the current level of the second type of node is level i, when the second type of node retransmits the random access at level i
  • the level of the second type of node comprises at least one of the following:
  • the PRACH channel repeats the transmission level.
  • the first node is at least one of the following:
  • Macro base station Macrocell Micro base station Microcell, pico base station Picocell, femto base station Femtocell, home base Station, low power node LPN and relay station Relay;
  • the second type of node comprises at least one of: one or more person-to-person H2H communication terminals; one or more machine-to-machine M2M communication terminals; one or more device-to-device D2D communication terminals.
  • a retransmission device for random access signaling including:
  • a detecting module configured to detect whether the first condition is met, wherein the first condition includes at least one of the following:
  • the second type of node does not successfully decode the random access response message Msg2;
  • the second type of node successfully decodes the random access response message Msg2, and the random access response information is not sent to the second type of node in the decoded random access response message Msg2;
  • the first type of node does not successfully decode the Msg3 message
  • the first type of node successfully decodes the Msg3 message, and sends Msg4 to the second type of node, and the second type of node does not successfully decode the Msg4 message;
  • the first type of node successfully decodes the Msg3 message, and sends Msg4 to the second type of node, and the second type of node successfully decodes the Msg4 message, and the Msg4 message is not sent to the second type of node;
  • a sending module configured to: when the first condition is met, the second type of node resends the random access signaling Msg1.
  • the sending module resending the random access signaling Msg1 according to at least one of the following includes:
  • the number of repeated transmissions of the retransmitted random access signaling Msg1 is determined by the level information of the second type of node;
  • the number of repeated transmissions of the retransmitted random access signaling Msg1 is the same as the number of repeated transmissions of the previous transmission;
  • the current level of the second type of node is level i, and the number of random access signaling Msg1 resent by the second type node at level i is less than the upper limit of the number of times of random access signaling Msg1 corresponding to level i.
  • the manner in which the second type of node resends the random access signaling Msg1 includes at least one of the following: the second type of node continues to resend the random access by using the repeated transmission times of the random access signaling Msg1 corresponding to the level i The signaling Msg1; the second type of node is configured to increase the transmission power of the random access signaling Msg1; the sending time indication information of the second type of node resending the random access signaling Msg1 is K1;
  • the current level of the second type of node is level i
  • the number of random access signaling Msg1 resent by the second type node at level i is less than the upper limit of the number of times of random access signaling Msg1 corresponding to level i.
  • the manner in which the second type of node resends the random access signaling Msg1 includes the following at least one of the following:
  • the class node continues to retransmit the random access signaling Msg1 by using the number of repeated transmissions of the random access signaling Msg1 corresponding to the level i;
  • the sending time indication information of the second type node resending the random access signaling Msg1 is K2;
  • the current level of the second type of node is level i
  • the number of random access signaling Msg1 retransmitted by the second type of node at level i is greater than or equal to the number of times of random access signaling Msg1 corresponding to level i.
  • the upper limit Ni the manner in which the second type of node retransmits the random access signaling Msg1 includes at least one of the following: the second type of node adopts the repeated sending of the random access signaling Msg1 corresponding to the next level of the level i Resending the random access signaling Msg1; the sending time indication information of the second type node resending the random access signaling Msg1 is K0;
  • the sending time indication information of the retransmission random access signaling Msg1 refers to a time interval between the retransmission random access signaling Msg1 and the detection window end time of the previous random access response message Msg2;
  • the first type of random access response message Msg2 refers to the random access response information of the second type of nodes including the same level in the random access response message Msg2.
  • the upper limit Ni of the number of times of random access signaling Msg1 corresponding to the level i is configured by the first type of node; the values of Ni corresponding to different levels are different.
  • the sending module when the first condition is that the second type of node successfully decodes the random access response message Msg2, but does not send the random access response information to the second type of node, and the random access
  • the sending module retransmits the random access signaling Msg1 according to at least one of the following:
  • the number of repeated transmissions of the retransmitted random access signaling Msg1 is determined by the level information of the second type of node;
  • the number of repeated transmissions of the retransmitted random access signaling Msg1 is the same as the number of repeated transmissions of the previous transmission;
  • the current level of the second type of node is level i, and the number of random access signaling Msg1 resent by the second type node at level i is less than the upper limit of the number of times of random access signaling Msg1 corresponding to level i.
  • the manner in which the second type of node resends the random access signaling Msg1 includes at least one of the following: the second type of node continues to resend the random access by using the repeated transmission times of the random access signaling Msg1 corresponding to the level i Signaling Msg1, the second type of node is configured to increase the transmission power of the random access signaling Msg1; the sending time indication information of the second type of node resending the random access signaling Msg1 is M1;
  • the current level of the second type of node is level i
  • the number of random access signaling Msg1 resent by the second type node at level i is less than the upper limit of the number of times of random access signaling Msg1 corresponding to level i.
  • the manner in which the second type of node resends the random access signaling Msg1 includes the following at least one of the following:
  • the class node continues to use the random access signaling corresponding to level i, Msg1
  • the number of repeated transmissions resends the random access signaling Msg1;
  • the transmission time indication information of the second type node resending the random access signaling Msg1 is M2;
  • the current level of the second type of node is level i
  • the number of random access signaling Msg1 retransmitted by the second type of node at level i is greater than or equal to the number of times of random access signaling Msg1 corresponding to level i.
  • the upper limit Ni the manner in which the second type of node retransmits the random access signaling Msg1 includes at least one of the following: the second type of node adopts the repeated sending of the random access signaling Msg1 corresponding to the next level of the level i Resending the random access signaling; the sending time indication information of the second type node resending the random access signaling Msg1 is M0;
  • the first type of random access response message refers to random access response information of the second type node that includes only the same level in the random access response message
  • the transmission time indication information of the retransmission random access signaling Msg1 refers to a time interval between the retransmission random access signaling and the detection window end time of the previous random access response message Msg2.
  • the following conditions are met between the M0, the M1, and the M2:
  • the upper limit Ni of the number of times of random access signaling Msg1 corresponding to the level i is configured by the first type of node; the values of Ni corresponding to different levels are different.
  • the method includes: at least one of the following conditions between the K0, the K1, the K2, the M0, the M1, and the M2:
  • the sending module resends the random access signaling Msg1 according to at least one of the following:
  • the number of repeated transmissions of the retransmitted random access signaling Msg1 is determined by the level information of the second type of node;
  • the number of repeated transmissions of the retransmitted random access signaling Msg1 is the same as the number of repeated transmissions of the previous transmission;
  • the current level of the second type of node is level i, and the number of random access signaling Msg1 resent by the second type node at level i is less than the upper limit of the number of times of random access signaling Msg1 corresponding to level i.
  • the manner in which the second type of node resends the random access signaling Msg1 includes at least one of the following: the second type of node continues to adopt the level i corresponding The number of repeated transmissions of the random access signaling Msg1 resends the random access signaling Msg1; the second type of node increases the transmission power of resending the random access signaling Msg1; and the second type of node resends the random access
  • the transmission time indication information of the incoming signaling Msg1 is P(i)_1, where i is the level index, for level i;
  • the current level of the second type of node is level i
  • the number of random access signaling Msg1 resent by the second type node at level i is less than the upper limit of the number of times of random access signaling Msg1 corresponding to level i.
  • the manner in which the second type of node resends the random access signaling Msg1 includes the following at least one of the following:
  • the class node continues to retransmit the random access signaling Msg1 by using the repeated transmission times of the random access signaling Msg1 corresponding to the level i;
  • the sending time indication information of the second type node resending the random access signaling Msg1 is P(i )_2;
  • the current level of the second type of node is level i, and the number of random access signaling Msg1 retransmitted by the second type of node at level i is greater than or equal to the number of times of random access signaling Msg1 corresponding to level i.
  • the upper limit Ni the manner in which the second type of node resends the random access signaling Msg1 includes at least one of the following: the second type of node adopts the next level of the level i, and the corresponding random access signaling Msg1 is repeatedly sent. Resending the random access signaling Msg1; the sending time indication information of the second type node resending the random access signaling Msg1 is P(i)_0;
  • the second type of random access response message Msg2 refers to random access response information of the second type of node including only one or more levels in the random access response message Msg2;
  • the transmission time indication information of the retransmission random access signaling Msg1 refers to a time interval between the retransmission random access signaling Msg1 and the detection window end time of the previous random access response message Msg2.
  • the following conditions are met between the P(i)_0, the P(i)_1, and the P(i)_2:
  • the upper limit Ni of the number of times of random access signaling Msg1 corresponding to the level i is configured by the first type of node; the values of Ni corresponding to different levels are different.
  • the sending module resends the random access signaling Msg1 according to at least one of the following:
  • the number of repeated transmissions of the retransmitted random access signaling is determined by the new level information selected by the second type of node;
  • the new level is the next level of the highest level of the random access response message Msg2 decoded by the second type of node;
  • the highest level index information of the random access response message Msg2 decoded by the second type node is sent by the first type node to the second type node;
  • the second type of random access response message Msg2 refers to random access response information of the second type of node including only one or more levels in the random access response message Msg2.
  • the sending module resends the random access signaling Msg1 according to at least one of the following: :
  • the number of repeated transmissions of the retransmitted random access signaling Msg1 is determined by the new level information selected by the second type of node; wherein the new level is the second type of node successfully decoding the random access response message Msg2 grade;
  • the second type of random access response message Msg2 refers to random access response information of the second type of node including only one or more levels in the random access response message Msg2.
  • the sending module when the first condition is that the first type of node successfully decodes the Msg3 message, and the Msg4 is sent to the second type of node, and the second type of node does not successfully decode the Msg4 message, the sending module follows the following: At least one of the retransmission random access signaling Msg1:
  • the number of repeated transmissions of the retransmitted random access signaling Msg1 is determined by the level information described by the second type of node;
  • the current level of the second type of node is level i, and the number of random access signaling Msg1 resent by the second type node at level i is less than the upper limit of the number of times of random access signaling Msg1 corresponding to level i. And when the second type of node can improve the sending power of the random access signaling Msg1, the sending power of the random access signaling is not improved;
  • the current level of the second type of node is level i, and the number of random access signaling Msg1 retransmitted by the second type of node at level i is greater than or equal to the number of times of random access signaling Msg1 corresponding to level i.
  • the upper limit Ni the second type of node resends the random access signaling Msg1 by the number of repeated transmissions of the random access signaling Msg1 corresponding to the next level of the level i.
  • the second type of node sends at least one of the following information in Msg3:
  • the upper limit Ni of the number of times of random access signaling Msg1 corresponding to the level i is configured by the first type of node; the values of Ni corresponding to different levels are different.
  • the sending module resending the random access signaling Msg1 needs to perform according to at least one of the following:
  • the number of repeated transmissions of the retransmitted random access signaling Msg1 is determined by the level information described by the second type of node;
  • the current level of the second type of node is level i, and the number of random access signaling Msg1 resent by the second type node at level i is less than the upper limit of the number of times of random access signaling Msg1 corresponding to level i.
  • the second type of node can improve the sending power of the random access signaling, and does not increase the sending power of the random access signaling;
  • the current level of the second type of node is level i, and the number of random access signaling Msg1 retransmitted by the second type of node at level i is greater than or equal to the number of times of random access signaling Msg1 corresponding to level i.
  • the upper limit Ni the second type of node adopts the next level of the level i, and the random access signaling Msg1 resends the random access signaling Msg1.
  • the upper limit Ni of the number of times of random access signaling Msg1 corresponding to the level i is configured by the first type of node; the values of Ni corresponding to different levels are different.
  • the sending module when the first condition is that the first type of node does not successfully decode the Msg3 message, the sending module resends the random access signaling Msg1 according to at least one of the following:
  • the number of repeated transmissions of the retransmitted random access signaling Msg1 is determined by the level information described by the second type of node;
  • the second type of node retransmits the Msg1 by using the repeated transmission times of the random access signaling Msg1 corresponding to the level i. If the first type of node still cannot successfully decode the Msg3 message, the second type of node adopts the level i.
  • the number of repeated transmissions of the random access signaling Msg1 corresponding to the next level is retransmitted by Msg1; wherein the current level of the second type of node is level i, when the second type of node retransmits the random access at level i
  • the level of the second type of node comprises at least one of the following:
  • the PRACH channel repeats the transmission level.
  • the first node is at least one of the following:
  • Macro base station Macrocell Micro base station Microcell, pico base station Picocell, femto base station Femtocell, home base station, low power node LPN and relay station Relay;
  • the second type of node comprises at least one of: one or more person-to-person H2H communication terminals; one or more machine-to-machine M2M communication terminals; one or more device-to-device D2D communication terminals.
  • the second type of node retransmits the random access signaling Msg1 when the first condition is met, wherein the first condition includes at least one of the following: the second type of node does not successfully decode the random access. a response message Msg2; the second type of node successfully decodes the random access response message Msg2, and the random access response information is not sent to the second type of node in the decoded random access response message Msg2;
  • the node does not successfully decode the Msg3 message; the first type of node successfully decodes the Msg3 message, and sends Msg4 to the second type of node, the second type of node does not successfully decode the Msg4 message; the first type of node successfully decodes the Msg3 message and sends Msg4 is sent to the second type of node, and the second type of node successfully decodes the Msg4 message, and the Msg4 message is not sent to the second type of node, which solves
  • FIG. 1 is a flowchart of a method for resending random access signaling according to an embodiment of the present invention
  • FIG. 2 is a structural block diagram of a retransmission apparatus for random access signaling according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for resending random access signaling according to an embodiment of the present invention. The process includes the following steps:
  • Step S102 detecting whether the first condition is met, the first condition includes at least one of: the second type of node does not successfully decode the random access response message Msg2; the second type of node successfully decodes the random access response message Msg2, The decoded random access response message Msg2 does not send random access response information to the second type of node; the first type of node does not successfully decode the Msg3 message; the first type of node successfully decodes the Msg3 message, and sends the Msg4 message to The second type of node, the second type of node does not successfully decode the Msg4 message; the first type of node successfully decodes the Msg3 message, and sends Msg4 to the second type of node, and the second type of node successfully decodes the Msg4 message, and the Msg4 message is not sent. To the second type of node;
  • Step S104 The second type of node resends the random access signaling Msg1 if the first condition is met.
  • the Msg1, Msg2, Msg3, and Msg4 of the LTE/LTE-A system are enhanced to ensure that the MTC UE can access the system normally, and the user terminal accesses the LTE/LTE-A system.
  • the problem of low access quality improves the access quality of user terminals accessing LTE/LTE-A systems.
  • the first condition is that the second type of node does not successfully decode the random access response message Msg2
  • the random access response message Msg2 belongs to the first type of random access response message Msg2
  • the first The second type of node resending the random access signaling Msg1 according to at least one of the following:
  • the number of repeated transmissions of the retransmitted random access signaling Msg1 is determined by the level information of the second type of node;
  • the number of repeated transmissions of the retransmitted random access signaling Msg1 is the same as the number of repeated transmissions of the previous transmission;
  • the current level of the second type of node is level i, and the number of random access signaling Msg1 retransmitted by the second type node at level i is less than the upper limit Ni of the number of times of random access signaling Msg1 corresponding to level i,
  • the second type of node is resent
  • the method for sending the random access signaling Msg1 includes at least one of the following: the second type of node continues to resend the random access signaling Msg1 by using the repeated transmission times of the random access signaling Msg1 corresponding to the level i; the second type of node
  • the transmission power of the random access signaling Msg1 is retransmitted;
  • the sending time indication information of the second type node resending the random access signaling Msg1 is K1;
  • the current level of the second type of node is level i
  • the number of random access signaling Msg1 retransmitted by the second type node at level i is less than the upper limit Ni of the number of times of random access signaling Msg1 corresponding to level i
  • the manner in which the second type of node resends the random access signaling Msg1 includes at least one of the following: the second type of node continues to adopt the level i Resending the random access signaling Msg1 of the corresponding random access signaling Msg1; the sending time indication information of the second type node resending the random access signaling Msg1 is K2;
  • the current level of the second type of node is level i, and the number of random access signaling Msg1 retransmitted by the second type node at level i is greater than or equal to the upper limit of the number of times of random access signaling Msg1 corresponding to level i.
  • the manner in which the second type of node resends the random access signaling Msg1 includes at least one of the following: the second type of node resends the random number of random access signaling Msg1 corresponding to the next level of the level i. Access signaling Msg1; the second type of node resends the transmission time indication information of the random access signaling Msg1 to K0;
  • the sending time indication information of the retransmission random access signaling Msg1 refers to a time interval between the retransmission random access signaling Msg1 and the detection window end time of the previous random access response message Msg2;
  • the first type of random access response message Msg2 refers to the random access response information of the second class node including the same level in the random access response message Msg2.
  • the upper limit Ni of the number of times of random access signaling Msg1 corresponding to the level i is configured by the first type of nodes; the values of Ni corresponding to different levels are different.
  • the second type of node when the first condition is that the second type of node successfully decodes the random access response message Msg2, but does not send the random access response information to the second type of node, and the random access response message Msg2 belongs to
  • the second type of node resends the random access signaling Msg1 according to at least one of the following:
  • the number of repeated transmissions of the retransmitted random access signaling Msg1 is determined by the level information of the second type of node;
  • the number of repeated transmissions of the retransmitted random access signaling Msg1 is the same as the number of repeated transmissions of the previous transmission;
  • the current level of the second type of node is level i, and the number of random access signaling Msg1 retransmitted by the second type node at level i is less than the upper limit Ni of the number of times of random access signaling Msg1 corresponding to level i,
  • the second type of node is resent
  • the method for sending the random access signaling Msg1 includes at least one of the following: the second type of node continues to resend the random access signaling Msg1 by using the repeated transmission times of the random access signaling Msg1 corresponding to the level i, the second type of node
  • the transmission power of the random access signaling Msg1 is retransmitted; the transmission time indication information of the second type node resending the random access signaling Msg1 is M1;
  • the current level of the second type of node is level i
  • the number of random access signaling Msg1 retransmitted by the second type node at level i is less than the upper limit Ni of the number of times of random access signaling Msg1 corresponding to level i, and
  • the manner in which the second type of node resends the random access signaling Msg1 includes at least one of the following: the second type of node continues to adopt the level i
  • the current level of the second type of node is level i, and the number of random access signaling Msg1 retransmitted by the second type node at level i is greater than or equal to the upper limit of the number of times of random access signaling Msg1 corresponding to level i.
  • the manner in which the second type of node resends the random access signaling Msg1 includes at least one of the following: the second type of node resends the random number of random access signaling Msg1 corresponding to the next level of the level i. Access signaling; the sending time indication information of the second type node resending the random access signaling Msg1 is M0;
  • the first type of random access response message refers to random access response information of the second type node that includes only the same level in the random access response message
  • the transmission time indication information of the retransmission random access signaling Msg1 refers to a time interval between the retransmission random access signaling and the detection window end time of the previous random access response message Msg2.
  • the upper limit Ni of the number of times of random access signaling Msg1 corresponding to the level i is configured by the first type of nodes; the values of Ni corresponding to different levels are different.
  • At least one of the following conditions is met between the K0, the K1, the K2, the M0, the M1, and the M2:
  • the second type of node when the first condition is that the second type of node does not successfully decode the random access response message Msg2, and the second type of node only decodes the local random access response message Msg2, and the random access
  • the response message Msg2 belongs to the second type of random access response message Msg2
  • the second type of node resends the random access signaling Msg1 according to at least one of the following:
  • the number of repeated transmissions of the retransmitted random access signaling Msg1 is determined by the level information of the second type of node;
  • the number of repeated transmissions of the retransmitted random access signaling Msg1 is the same as the number of repeated transmissions of the previous transmission;
  • the current level of the second type of node is level i, and the number of random access signaling Msg1 retransmitted by the second type node at level i is less than the upper limit Ni of the number of times of random access signaling Msg1 corresponding to level i,
  • the manner in which the second type of node resends the random access signaling Msg1 includes at least one of the following: the second type of node continues to resend the random access signaling Msg1 by using the repeated transmission times of the random access signaling Msg1 corresponding to the level i;
  • the second type of node increases the transmission power of the random access signaling Msg1;
  • the sending time indication information of the second type node resending the random access signaling Msg1 is P(i)_1, where i is the level index. For level i;
  • the current level of the second type of node is level i
  • the number of random access signaling Msg1 retransmitted by the second type node at level i is less than the upper limit Ni of the number of times of random access signaling Msg1 corresponding to level i, and
  • the manner in which the second type of node resends the random access signaling Msg1 includes at least one of the following: the second type of node continues to adopt the level i
  • the number of repeated transmissions of the corresponding random access signaling Msg1 is retransmitted to the random access signaling Msg1;
  • the sending time indication information of the second type of node resending the random access signaling Msg1 is P(i)_2;
  • the current level of the second type of node is level i, and the number of random access signaling Msg1 retransmitted by the second type node at level i is greater than or equal to the upper limit of the number of times of random access signaling Msg1 corresponding to level i.
  • the manner in which the second type of node resends the random access signaling Msg1 includes at least one of the following: the second type of node adopts the next level of the level i, and the corresponding random access signaling Msg1 repeats the number of repeated retransmissions. Access signaling Msg1; the second type of node resends the transmission time indication information of the random access signaling Msg1 as P(i)_0;
  • the second type of random access response message Msg2 refers to the random access response information of the second type node that includes only one or more levels in the random access response message Msg2.
  • the transmission time indication information of the retransmission random access signaling Msg1 refers to a time interval between the retransmission random access signaling Msg1 and the detection window end time of the previous random access response message Msg2.
  • the upper limit Ni of the number of times of random access signaling Msg1 corresponding to the level i is configured by the first type of nodes; the values of Ni corresponding to different levels are different.
  • the second type of node decodes the random access higher than the second type of node level.
  • the response message Msg2 is unsuccessful, and the random access response message Msg2 belongs to the second type of random access response message Msg2, the second type of node resends the random access signaling Msg1 according to at least one of the following:
  • the number of repeated transmissions of the retransmitted random access signaling is determined by the new level information selected by the second type of node;
  • the new level is the next level of the highest level of the random access response message Msg2 decoded by the second type of node;
  • the highest level index information of the random access response message Msg2 decoded by the second type node is sent by the first type node to the second type node;
  • the second type of random access response message Msg2 refers to random access response information of the second type of node including only one or more levels in the random access response message Msg2.
  • the second type of node successfully decodes a random number higher than the second type of node level.
  • the second type of node resends the random access signaling Msg1 according to at least one of the following:
  • the number of repeated transmissions of the retransmitted random access signaling Msg1 is determined by the new level information selected by the second type of node; wherein the new level is a level corresponding to the second type of node successfully decoding the random access response message Msg2;
  • the second type of random access response message Msg2 refers to random access response information of the second type of node including only one or more levels in the random access response message Msg2.
  • the second type of node follows at least one of the following: Resend random access signaling Msg1:
  • the number of repeated transmissions of the retransmitted random access signaling Msg1 is determined by the level information of the second type of node;
  • the current level of the second type of node is level i, and the number of random access signaling Msg1 retransmitted by the second type node at level i is less than the upper limit Ni of the number of times of random access signaling Msg1 corresponding to level i, and When the second type of node can improve the transmission power of the random access signaling Msg1, the transmission power of the random access signaling is not improved;
  • the current level of the second type of node is level i, and the number of random access signaling Msg1 retransmitted by the second type node at level i is greater than or equal to the upper limit of the number of times of random access signaling Msg1 corresponding to level i.
  • the second type of node resends the random access signaling Msg1 by using the number of repeated transmissions of the random access signaling Msg1 corresponding to the next level of the level i.
  • the second type of node sends at least one of the following information in Msg3:
  • the upper limit Ni of the number of times of random access signaling Msg1 corresponding to the level i is configured by the first type of nodes; the values of Ni corresponding to different levels are different.
  • the second type of node successfully decodes the Msg4 message, instead of sending to the second type of node,
  • the second type of node resending the random access signaling Msg1 needs to perform according to at least one of the following:
  • the number of repeated transmissions of the retransmitted random access signaling Msg1 is determined by the level information of the second type of node;
  • the current level of the second type of node is level i, and the number of random access signaling Msg1 retransmitted by the second type node at level i is less than the upper limit Ni of the number of times of random access signaling Msg1 corresponding to level i, and When the second type of node can improve the transmission power of the random access signaling, the transmission power of the random access signaling is not improved;
  • the current level of the second type of node is level i, and the number of random access signaling Msg1 retransmitted by the second type node at level i is greater than or equal to the upper limit of the number of times of random access signaling Msg1 corresponding to level i.
  • the second type of node uses the next level of level i, and the random access signaling Msg1 resends the random access signaling Msg1.
  • the upper limit Ni of the number of times of random access signaling Msg1 corresponding to the level i is configured by the first type of nodes; the values of Ni corresponding to different levels are different.
  • the second type of node resends the random access signaling Msg1 according to at least one of the following:
  • the number of repeated transmissions of the retransmitted random access signaling Msg1 is determined by the level information of the second type of node;
  • the second type of node resends the Msg1 by using the number of repeated transmissions of the random access signaling Msg1 corresponding to the level i. If the first type of node still cannot successfully decode the Msg3 message, the second type of node adopts the next level of the level i.
  • the number of repeated transmissions of the corresponding random access signaling Msg1 is retransmitted by Msg1; wherein the current level of the second type of node is level i, and when the second type of node retransmits the random access signaling Msg1 at level i
  • the upper limit of the number of times Ni Ni.
  • the level of the second type of node includes at least one of the following:
  • the PRACH channel repeats the transmission level.
  • the first node is at least one of the following:
  • Macro base station Macrocell Micro base station Microcell, pico base station Picocell, femto base station Femtocell, home base station, low power node LPN and relay station Relay;
  • the second type of node comprises at least one of: one or more person-to-person H2H communication terminals; one or more machine-to-machine M2M communication terminals; one or more device-to-device D2D communication terminals.
  • FIG. 2 is a structural block diagram of a retransmission apparatus for random access signaling according to an embodiment of the present invention. As shown in FIG. 2, the apparatus includes
  • the detecting module 22 is configured to detect whether the first condition is met, wherein the first condition includes at least one of the following:
  • the second type of node does not successfully decode the random access response message Msg2;
  • the second type of node successfully decodes the random access response message Msg2, and the random access response information is not sent to the second type of node in the decoded random access response message Msg2;
  • the first type of node does not successfully decode the Msg3 message
  • the first type of node successfully decodes the Msg3 message, and sends Msg4 to the second type of node, and the second type of node does not successfully decode the Msg4 message;
  • the first type of node successfully decodes the Msg3 message, and sends Msg4 to the second type of node, and the second type of node successfully decodes the Msg4 message, and the Msg4 message is not sent to the second type of node;
  • the sending module 24 is configured to: when the first condition is met, the second type of node resends the random access signaling Msg1.
  • the Msg1, Msg2, Msg3, and Msg4 of the LTE/LTE-A system are enhanced by the user equipment to ensure that the MTC UE can access the system normally, and the user terminal accesses the LTE/LTE-A system.
  • the problem of low access quality improves the access quality of user terminals accessing LTE/LTE-A systems.
  • the sending The module 24 resends the random access signaling Msg1 according to at least one of the following:
  • the number of repeated transmissions of the retransmitted random access signaling Msg1 is determined by the level information of the second type of node;
  • the number of repeated transmissions of the retransmitted random access signaling Msg1 is the same as the number of repeated transmissions of the previous transmission;
  • the current level of the second type of node is level i, and the number of random access signaling Msg1 retransmitted by the second type node at level i is less than the upper limit Ni of the number of times of random access signaling Msg1 corresponding to level i,
  • the manner in which the second type of node resends the random access signaling Msg1 includes at least one of the following: the second type of node continues to resend the random access signaling Msg1 by using the repeated transmission times of the random access signaling Msg1 corresponding to the level i;
  • the second type of node increases the transmission power of the random access signaling Msg1;
  • the sending time indication information of the second type node resending the random access signaling Msg1 is K1;
  • the current level of the second type of node is level i
  • the number of random access signaling Msg1 retransmitted by the second type node at level i is less than the upper limit Ni of the number of times of random access signaling Msg1 corresponding to level i
  • the manner in which the second type of node resends the random access signaling Msg1 includes at least one of the following: the second type of node continues to adopt the level i Resending the random access signaling Msg1 of the corresponding random access signaling Msg1; the sending time indication information of the second type node resending the random access signaling Msg1 is K2;
  • the current level of the second type of node is level i, and the number of random access signaling Msg1 retransmitted by the second type node at level i is greater than or equal to the upper limit of the number of times of random access signaling Msg1 corresponding to level i.
  • the manner in which the second type of node resends the random access signaling Msg1 includes at least one of the following: the second type of node resends the random number of random access signaling Msg1 corresponding to the next level of the level i. Access signaling Msg1; the second type of node resends the transmission time indication information of the random access signaling Msg1 to K0;
  • the sending time indication information of the retransmission random access signaling Msg1 refers to a time interval between the retransmission random access signaling Msg1 and the detection window end time of the previous random access response message Msg2;
  • the first type of random access response message Msg2 refers to the random access response information of the second class node including the same level in the random access response message Msg2.
  • the upper limit Ni of the number of times of random access signaling Msg1 corresponding to the level i is configured by the first type of nodes; the values of Ni corresponding to different levels are different.
  • the sending module 24 retransmits the random access signaling Msg1 according to at least one of the following:
  • the number of repeated transmissions of the retransmitted random access signaling Msg1 is determined by the level information of the second type of node;
  • the number of repeated transmissions of the retransmitted random access signaling Msg1 is the same as the number of repeated transmissions of the previous transmission;
  • the current level of the second type of node is level i, and the number of random access signaling Msg1 retransmitted by the second type node at level i is less than the upper limit Ni of the number of times of random access signaling Msg1 corresponding to level i,
  • the manner in which the second type of node resends the random access signaling Msg1 includes at least one of the following: the second type of node continues to resend the random access signaling Msg1 by using the repeated transmission times of the random access signaling Msg1 corresponding to the level i,
  • the second type of node increases the transmission power of the random access signaling Msg1; the sending time indication information of the second type node resending the random access signaling Msg1 is M1;
  • the current level of the second type of node is level i
  • the number of random access signaling Msg1 retransmitted by the second type node at level i is less than the upper limit Ni of the number of times of random access signaling Msg1 corresponding to level i, and
  • the manner in which the second type of node resends the random access signaling Msg1 includes at least one of the following: the second type of node continues to adopt the level i
  • the current level of the second type of node is level i, and the number of random access signaling Msg1 retransmitted by the second type node at level i is greater than or equal to the upper limit of the number of times of random access signaling Msg1 corresponding to level i.
  • the second type of node The method for resending the random access signaling Msg1 includes at least one of the following: the second type of node resends the random access signaling by using the repeated transmission times of the random access signaling Msg1 corresponding to the next level of the level i;
  • the sending time indication information of the second type node resending the random access signaling Msg1 is M0;
  • the first type of random access response message refers to random access response information of the second type node that includes only the same level in the random access response message
  • the transmission time indication information of the retransmission random access signaling Msg1 refers to a time interval between the retransmission random access signaling and the detection window end time of the previous random access response message Msg2.
  • the upper limit Ni of the number of times of random access signaling Msg1 corresponding to the level i is configured by the first type of nodes; the values of Ni corresponding to different levels are different.
  • At least one of the following conditions is met between the K0, the K1, the K2, the M0, the M1, and the M2:
  • the sending module 24 resends the random access signaling Msg1 according to at least one of the following:
  • the number of repeated transmissions of the retransmitted random access signaling Msg1 is determined by the level information of the second type of node;
  • the number of repeated transmissions of the retransmitted random access signaling Msg1 is the same as the number of repeated transmissions of the previous transmission;
  • the current level of the second type of node is level i, and the number of random access signaling Msg1 retransmitted by the second type node at level i is less than the upper limit Ni of the number of times of random access signaling Msg1 corresponding to level i,
  • the manner in which the second type of node resends the random access signaling Msg1 includes at least one of the following: the second type of node continues to resend the random access signaling Msg1 by using the repeated transmission times of the random access signaling Msg1 corresponding to the level i;
  • the second type of node increases the transmission power of the random access signaling Msg1;
  • the sending time indication information of the second type node resending the random access signaling Msg1 is P(i)_1, where i is the level index. For level i;
  • the current level of the second type of node is level i, and the number of random access signaling Msg1 retransmitted by the second type node at level i is less than the upper limit Ni of the number of times of random access signaling Msg1 corresponding to level i, and When the second type of node can no longer increase the transmission power of the random access signaling Msg1, the second type of node resends the square of the random access signaling Msg1.
  • the formula includes at least one of the following: the second type of node continues to retransmit the random access signaling Msg1 by using the repeated transmission times of the random access signaling Msg1 corresponding to the level i; the second type of node resends the random access signaling Msg1
  • the transmission time indication information is P(i)_2;
  • the current level of the second type of node is level i, and the number of random access signaling Msg1 retransmitted by the second type node at level i is greater than or equal to the upper limit of the number of times of random access signaling Msg1 corresponding to level i.
  • the manner in which the second type of node resends the random access signaling Msg1 includes at least one of the following: the second type of node adopts the next level of the level i, and the corresponding random access signaling Msg1 repeats the number of repeated retransmissions. Access signaling Msg1; the second type of node resends the transmission time indication information of the random access signaling Msg1 as P(i)_0;
  • the second type of random access response message Msg2 refers to the random access response information of the second type node that includes only one or more levels in the random access response message Msg2.
  • the transmission time indication information of the retransmission random access signaling Msg1 refers to a time interval between the retransmission random access signaling Msg1 and the detection window end time of the previous random access response message Msg2.
  • the upper limit Ni of the number of times of random access signaling Msg1 corresponding to the level i is configured by the first type of nodes; the values of Ni corresponding to different levels are different.
  • the sending module 24 resends the random access signaling Msg1 according to at least one of the following:
  • the number of repeated transmissions of the retransmitted random access signaling is determined by the new level information selected by the second type of node;
  • the new level is the next level of the highest level of the random access response message Msg2 decoded by the second type of node;
  • the highest level index information of the random access response message Msg2 decoded by the second type node is sent by the first type node to the second type node;
  • the second type of random access response message Msg2 refers to random access response information of the second type of node including only one or more levels in the random access response message Msg2.
  • the first condition is that the second type of node does not successfully decode the random access response message Msg2 of the second type of node level, and the second type of node successfully decodes the random access higher than the second type of node level.
  • the sending module 24 resends the random access signaling Msg1 according to at least one of the following:
  • the number of repeated transmissions of the retransmitted random access signaling Msg1 is determined by the new level information selected by the second type of node; wherein the new level is a level corresponding to the second type of node successfully decoding the random access response message Msg2;
  • the second type of random access response message Msg2 refers to random access response information of the second type of node including only one or more levels in the random access response message Msg2.
  • the sending module 24 follows at least one of the following: Resend random access signaling Msg1:
  • the number of repeated transmissions of the retransmitted random access signaling Msg1 is determined by the level information of the second type of node;
  • the current level of the second type of node is level i, and the number of random access signaling Msg1 retransmitted by the second type node at level i is less than the upper limit Ni of the number of times of random access signaling Msg1 corresponding to level i, and When the second type of node can improve the transmission power of the random access signaling Msg1, the transmission power of the random access signaling is not improved;
  • the current level of the second type of node is level i, and the number of random access signaling Msg1 retransmitted by the second type node at level i is greater than or equal to the upper limit of the number of times of random access signaling Msg1 corresponding to level i.
  • the second type of node resends the random access signaling Msg1 by using the number of repeated transmissions of the random access signaling Msg1 corresponding to the next level of the level i.
  • the second type of node sends at least one of the following information in Msg3:
  • the upper limit Ni of the number of times of random access signaling Msg1 corresponding to the level i is configured by the first type of nodes; the values of Ni corresponding to different levels are different.
  • the second type of node successfully decodes the Msg4 message, instead of sending to the second type of node,
  • the retransmission of the random access signaling Msg1 by the sending module 24 needs to be performed according to at least one of the following:
  • the number of repeated transmissions of the retransmitted random access signaling Msg1 is determined by the level information of the second type of node;
  • the current level of the second type of node is level i, and the number of random access signaling Msg1 retransmitted by the second type node at level i is less than the upper limit Ni of the number of times of random access signaling Msg1 corresponding to level i, and When the second type of node can improve the transmission power of the random access signaling, the transmission power of the random access signaling is not improved;
  • the current level of the second type of node is level i, and the number of random access signaling Msg1 retransmitted by the second type node at level i is greater than or equal to the upper limit of the number of times of random access signaling Msg1 corresponding to level i.
  • the second type of node uses the next level of level i, and the random access signaling Msg1 resends the random access signaling Msg1.
  • the upper limit Ni of the number of times of random access signaling Msg1 corresponding to the level i is configured by the first type of nodes; the values of Ni corresponding to different levels are different.
  • the sending module 24 resends the random access signaling Msg1 according to at least one of the following:
  • the number of repeated transmissions of the retransmitted random access signaling Msg1 is determined by the level information of the second type of node;
  • the second type of node resends the Msg1 by using the number of repeated transmissions of the random access signaling Msg1 corresponding to the level i. If the first type of node still cannot successfully decode the Msg3 message, the second type of node adopts the next level of the level i.
  • the number of repeated transmissions of the corresponding random access signaling Msg1 is retransmitted by Msg1; wherein the current level of the second type of node is level i, and when the second type of node retransmits the random access signaling Msg1 at level i
  • the upper limit of the number of times Ni Ni.
  • the level of the second type of node includes at least one of the following:
  • the PRACH channel repeats the transmission level.
  • the first node is at least one of the following:
  • Macro base station Macrocell Micro base station Microcell, pico base station Picocell, femto base station Femtocell, home base station, low power node LPN and relay station Relay;
  • the second type of node comprises at least one of: one or more person-to-person H2H communication terminals; one or more machine-to-machine M2M communication terminals; one or more device-to-device D2D communication terminals.
  • MTC UEs there are MTC UEs in the LTE system, and the MTC UEs can support Coverage Enhancement (CE).
  • Msg1 supports a total of three Coverage Enhancement Levels (CELs), namely CEL0, CEL1 and CEL2.
  • UE1 and UE2 are MTC UEs of CEL0.
  • the base station (eNB) allocates PRACH resources for the MTC UEs of the respective CELs, including a random access sequence (Preamble) used for transmitting the random access signaling, and a subframe (Subframe) and a physical resource block (PRB) used for transmitting the Preamble.
  • the number of repeated transmissions of Msg1 corresponding to different CELs is different, and UE1 and UE2 send random access signaling (Msg1) on the PRACH channel of CEL0 according to the configuration information of the eNB;
  • the eNB sends the Msg1 message in response to the Msg1 message of the CEL0 level, but the Msg2 only includes the random access response information of the UE2, and the Msg1 sent by the UE1 is not successfully detected by the eNB, so the eNB does not send the random access response to the UE1 in the Msg2. information;
  • UE1 resends random access signaling according to at least one of the following:
  • the number of repeated transmissions of the retransmitted random access signaling is determined by the CEL level information of UE1;
  • the number of repeated transmissions of the retransmitted random access signaling is the same as that of the last transmission.
  • the number of repeated transmissions is the same;
  • the CEL of the UE1 is CEL0
  • the number of times that the UE1 retransmits the random access signaling is smaller than the upper limit of the number of random access signaling corresponding to the CEL0, and the UE1 can also increase the transmission power of the random access signaling
  • the UE1 continues to retransmit the random access signaling by using the repeated transmission times of the random access signaling corresponding to the CEL0, and improves the transmission power of the random access signaling;
  • the transmission time indication information of the retransmission random access signaling is K1. ;
  • the CEL of the UE1 is CEL0
  • the number of retransmissions of the random access signaling by the UE1 is less than the upper limit of the number of times of random access signaling corresponding to the CEL0, and the UE1 cannot increase the transmission power of the random access signaling
  • the UE1 continues to retransmit the random access signaling by using the repeated transmission times of the random access signaling corresponding to the CEL0; the sending time indication information of the resending random access signaling is K2;
  • the UE1 uses the repeated transmission of the random access signaling corresponding to the CEL1. Resending the random access signaling by the number of times; the sending time indication information of the resending random access signaling is K0;
  • the sending time indication information of the resending random access signaling refers to a time interval between resending the random access signaling and the end time of the detection window of the previous random access response message;
  • MTC UEs there are MTC UEs in the LTE system, and the MTC UEs can support Coverage Enhancement (CE).
  • Msg1 supports a total of three Coverage Enhancement Levels (CELs), namely CEL0, CEL1 and CEL2.
  • UE1, UE2, and UE3 are MTC UEs of CEL0.
  • the base station (eNB) allocates PRACH resources for the MTC UEs of the respective CELs, including a random access sequence (Preamble) used for transmitting the random access signaling, and a subframe (Subframe) and a physical resource block (PRB) used for transmitting the Preamble.
  • the number of repeated transmissions of Msg1 corresponding to different CELs is different, and UE1, UE2, and UE3 send random access signaling (Msg1) on the PRACH channel of CEL0 according to the configuration information of the eNB;
  • the eNB sends the Msg2 message to respond to the Msg1 message of the CEL0 level, but the Msg2 only includes the random access response information of the UE2.
  • UE1 resends random access signaling according to at least one of the following:
  • the number of repeated transmissions of the retransmitted random access signaling is determined by the CEL level information of UE1;
  • the number of repeated transmissions of the retransmitted random access signaling is the same as the number of repeated transmissions at the previous transmission;
  • the CEL of the UE1 is CEL0
  • the number of times that the UE1 retransmits the random access signaling is smaller than the upper limit of the number of random access signaling corresponding to the CEL0, and the UE1 can also increase the transmission power of the random access signaling
  • the UE1 continues to retransmit the random access signaling by using the repeated transmission times of the random access signaling corresponding to the CEL0, and improves the transmission power of the random access signaling;
  • the transmission time indication information of the retransmission random access signaling is K1. ;
  • the CEL of the UE1 is CEL0
  • the number of retransmissions of the random access signaling by the UE1 is less than the upper limit of the number of times of random access signaling corresponding to the CEL0, and the UE1 cannot increase the transmission power of the random access signaling
  • the UE1 continues to retransmit the random access signaling by using the repeated transmission times of the random access signaling corresponding to the CEL0; the sending time indication information of the resending random access signaling is K2;
  • the UE1 uses the repeated transmission of the random access signaling corresponding to the CEL1. Resending the random access signaling by the number of times; the sending time indication information of the resending random access signaling is K0;
  • the sending time indication information of the resending random access signaling refers to a time interval between resending the random access signaling and the end time of the detection window of the previous random access response message;
  • UE3 although UE3 successfully decodes Msg2 but does not send random access response information to itself, UE3 resends random access signaling according to at least one of the following:
  • the number of repeated transmissions of the retransmitted random access signaling is determined by the CEL level information of the UE3;
  • the number of repeated transmissions of the retransmitted random access signaling is the same as the number of repeated transmissions at the previous transmission;
  • the CEL of the UE3 is CEL0
  • the number of retransmissions of the random access signaling by the UE3 is less than the upper limit of the number of times of random access signaling corresponding to the CEL0, and the UE1 can also increase the transmission power of the random access signaling
  • the UE3 continues to retransmit the random access signaling by using the repeated transmission times of the random access signaling corresponding to the CEL0, and improves the transmission power of the random access signaling;
  • the sending time indication information of the resending random access signaling is K1. ;
  • the CEL of the UE3 is CEL0
  • the number of retransmissions of the random access signaling by the UE3 is less than the upper limit of the number of random access signaling corresponding to the CEL0, and the UE3 cannot increase the transmission power of the random access signaling
  • the UE3 continues to retransmit the random access signaling by using the repeated transmission times of the random access signaling corresponding to the CEL0; the sending time indication information of the resending random access signaling is K2;
  • the UE3 uses the repeated transmission of the random access signaling corresponding to the CEL1. Resending the random access signaling by the number of times; the sending time indication information of the resending random access signaling is K0;
  • the sending time indication information of the resending random access signaling refers to a time interval between resending the random access signaling and the end time of the detection window of the previous random access response message;
  • K0, K1, K2, M0, M1, M2 satisfy at least one of the following:
  • MTC UEs there are MTC UEs in the LTE system, and the MTC UEs can support Coverage Enhancement (CE).
  • Msg1 supports a total of three Coverage Enhancement Levels (CELs), namely CEL0, CEL1 and CEL2.
  • UE1, UE2, and UE3 are MTC UEs of CEL0
  • UE4 is an MTC UE of CEL1.
  • the base station (eNB) allocates PRACH resources for the MTC UEs of the respective CELs, including a random access sequence (Preamble) used for transmitting the random access signaling, and a subframe (Subframe) and a physical resource block (PRB) used for transmitting the Preamble.
  • Preamble random access sequence
  • Subframe subframe
  • PRB physical resource block
  • Msg1 The number of repeated transmissions of Msg1 corresponding to different CELs is different.
  • UE1, UE2, and UE3 transmit random access signaling (Msg1) on the PRACH channel of CEL0 according to the configuration information of the eNB;
  • UE4 transmits on the PRACH channel of CEL1 according to the configuration information of the eNB.
  • the eNB sends the Msg2 message in response to the CEL0 and CEL1 level Msg1 messages, and the Msg2 includes the random access response information of the UE3 and the UE4, and the Msg2 is sent according to the repetition number corresponding to the CEL1 level.
  • the UE1 only attempts to decode the Msg2 message of the repeated transmission times corresponding to the CEL0 level, but the UE1 does not successfully decode the Msg2, and the UE1 retransmits the random access signaling according to at least one of the following:
  • the number of repeated transmissions of the retransmitted random access signaling is determined by the CEL level information of UE1;
  • the number of repeated transmissions of the retransmitted random access signaling is the same as the number of repeated transmissions at the previous transmission;
  • the CEL of the UE1 is CEL0
  • the number of times that the UE1 retransmits the random access signaling is smaller than the upper limit of the number of random access signaling corresponding to the CEL0, and the UE1 can also increase the transmission power of the random access signaling
  • the UE1 continues to retransmit the random access signaling by using the repeated transmission times of the random access signaling corresponding to the CEL0, and improves the transmission power of the random access signaling;
  • the transmission time indication information of the retransmission random access signaling is K1. ;
  • the CEL of the UE1 is CEL0
  • the number of retransmissions of the random access signaling by the UE1 is less than the upper limit of the number of times of random access signaling corresponding to the CEL0, and the UE1 cannot increase the transmission power of the random access signaling
  • the UE1 continues to retransmit the random access signaling by using the repeated transmission times of the random access signaling corresponding to the CEL0; the sending time indication information of the resending random access signaling is K2;
  • the UE1 uses the repeated transmission of the random access signaling corresponding to the CEL1. Resending the random access signaling by the number of times; the sending time indication information of the resending random access signaling is K0;
  • the sending time indication information of the resending random access signaling refers to a time interval between resending the random access signaling and the end time of the detection window of the previous random access response message;
  • the UE2 attempts to decode the Msg2 message of the repeated transmission times corresponding to the CEL0 and CEL1 levels, and successfully decodes the Msg2 at the CEL1 level, but the random access response information is not sent to the Msg2, and the UE2 follows at least one of the following Resend random access signaling:
  • the number of repeated transmissions of random access signaling retransmitted by UE2 is determined by the CEL1 level
  • the UE3 attempts to decode the Msg2 message of the repeated transmission times corresponding to the CEL0 and CEL1 levels, and does not successfully decode the Msg2 in the CEL0, but successfully decodes the Msg2 in the CEL1 level, and the Msg2 includes the random access response information sent to itself.
  • UE2 sends at least one of the following information in Msg3:
  • MTC UEs in the LTE system, and the MTC UEs can support Coverage Enhancement (CE).
  • Msg1 supports a total of three Coverage Enhancement Levels (CELs), namely CEL0, CEL1 and CEL2.
  • UE1 is an MTC UE of CEL0
  • UE2 is an MTC UE of CEL1.
  • the base station (eNB) allocates PRACH resources for the MTC UEs of the respective CELs, including a random access sequence (Preamble) used for transmitting the random access signaling, and a subframe (Subframe) and a physical resource block (PRB) used for transmitting the Preamble.
  • Preamble random access sequence
  • Subframe subframe
  • PRB physical resource block
  • UE1 sends random access signaling (Msg1) on the PRACH channel of CEL0 according to the configuration information of the eNB; UE2 sends a random access signal on the PRACH channel of CEL1 according to the configuration information of the eNB.
  • the eNB sends an Msg2 message in response to the Msg1 message sent by the UE1 and the UE2, and both UE1 and UE2 correctly decode the random access response information sent to itself, and UE1 and UE2 respectively send an Msg3 message to the eNB.
  • the eNB successfully decodes the Msg3 message sent by the UE1, and sends the Msg4 to the UE1, but the UE1 does not successfully decode the Msg4 message, and the UE1 retransmits the random access signaling according to at least one of the following:
  • the number of repeated transmissions of the retransmitted random access signaling is determined by the CEL level information of UE1;
  • the UE1 When the number of times that the UE1 retransmits the random access signaling is less than the upper limit of the number of random access signaling transmissions of the CEL0, and the UE1 can also improve the transmission power of the random access signaling, the UE1 does not increase the random access signal. Transmission power
  • the UE1 When the number of times that the UE1 retransmits the random access signaling is greater than or equal to the upper limit of the number of random access signaling transmissions of the CEL0, the UE1 retransmits the random access signaling by using the repeated transmission times of the random access signaling corresponding to the CEL1; UE1 sends at least one of the following information in the newly sent Msg3:
  • Incremental information indicating the number of repeated transmissions of the Msg4 of the eNB
  • the eNB successfully decodes the Msg3 message sent by the UE2, and sends the Msg4 to the UE2.
  • the UE2 successfully decodes the Msg4 message, but finds that the Msg4 message is not sent to itself, and the UE2 resends the random access message according to at least one of the following: make:
  • the number of repeated transmissions of the retransmitted random access signaling is determined by the CEL level information of UE2;
  • the UE2 When the number of times that the UE2 retransmits the random access signaling is less than the upper limit of the number of random access signaling transmissions of the CEL1, and the UE2 can also increase the transmission power of the random access signaling, the UE2 does not raise the random access signal. Transmission power
  • the UE2 When the number of re-sending random access signaling is greater than or equal to the upper limit of the number of random access signaling transmissions of the CEL1, the UE2 retransmits the random access signaling by using the repeated transmission times of the random access signaling corresponding to the CEL2;
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • the foregoing storage medium may include, but not limited to, a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, a magnetic disk, or an optical disk.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • mobile hard disk a magnetic disk
  • magnetic disk a magnetic disk
  • optical disk a variety of media that can store program code.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the second type of node resends the random access signaling Msg1, where the first condition includes at least one of the following: Did not successfully decode with The machine access response message Msg2; the second type of node successfully decodes the random access response message Msg2, and the random access response information is not sent to the second type of node in the decoded random access response message Msg2;
  • the first type of node does not successfully decode the Msg3 message; the first type of node successfully decodes the Msg3 message, and sends Msg4 to the second type of node, the second type of node does not successfully decode the Msg4 message; the first type of node successfully decodes the Msg3 message And sending Msg4 to the second type of node, the second type of node successfully decoding the Msg4 message, the Msg4 message is not sent to the second type of node, and the access

Abstract

本发明提供了一种随机接入信令的重新发送方法及装置,其中,该方法采用在满足第一条件的情况下,第二类节点重新发送随机接入信令Msg1,解决了用户终端接入LTE/LTE-A系统的接入质量不高的问题,提高了用户终端接入LTE/LTE-A系统的接入质量。

Description

随机接入信令的重新发送方法及装置 技术领域
本发明涉及通信领域,具体而言,涉及一种随机接入信令的重新发送方法及装置。
背景技术
机器类型通信(Machine Type Communication,简称为MTC)用户终端(MTC User Equipment,简称MTC UE),又称机器到机器(Machine to Machine,简称M2M)用户通信设备,是现阶段物联网的主要应用形式。低功耗低成本是其可大规模应用的重要保障。目前市场上部署的M2M设备主要基于全球移动通信(Global System of Mobile communication,简称为GSM)系统。近年来,由于长期演进(Long Term Evolution,简称为LTE)/LTE-A(LTE的后续演进)的频谱效率的提高,越来越多的移动运营商选择LTE/LTE-A作为未来宽带无线通信系统的演进方向。基于LTE/LTE-A的M2M多种类数据业务也将更具吸引力。只有当LTE-M2M设备的成本能做到比GSM系统的MTC终端低时,M2M业务才能真正从GSM转到LTE系统上。
在相关技术中,对于降低MTC用户终端成本的主要备选方法包括:减少终端接收天线的数目、降低终端基带处理带宽、降低终端支持的峰值速率、采用半双工模式等等。然而成本的降低意味着性能的下降,对于LTE/LTE-A系统小区覆盖的需求是不能降低的,因此采用低成本配置的MTC终端需要采取一些措施才能达到现有LTE终端的覆盖性能需求。另外,MTC终端可能位于地下室、墙角等位置,所处场景要比普通LTE UE恶劣。为了弥补穿透损耗导致的覆盖下降,部分MTC UE需要更高的性能提升,因此针对这种场景进行部分MTC UE的上下行覆盖增强是必要的。如何保证用户的接入质量则是首先需要考虑的问题,有必要针对LTE/LTE-A系统的随机接入信令(又叫Msg1)进行增强设计,保证MTC UE可以正常接入系统。
LTE/LTE-A系统中随机接入响应消息(Random Access Response,简称为RAR,又叫做Msg2消息)所占用的物理资源块(Physical Resource Block,简称为PRB)的位置信息是包含在下行控制信息(Downlink Control Information,简称为DCI)中且通过物理下行控制信道(Physical Downlink Control Channel,简称为PDCCH)发送的。此外,上述DCI信息中还包括16比特的循环冗余校验码(Cyclic Redundancy Check,简称为CRC),并且上述CRC进一步采用16比特的随机接入无线网络临时标识(Random Access Radio Network Temporary Identity,简称为RA-RNTI)进行加扰,加扰方式为:
ck=(bk+ak)mod2 k=0,1,…,15
其中,bk为CRC中的第k+1个比特;ak为RA-RNTI中的第k+1个比特;ck为加扰后生成的第k+1个比特。
UE接收到RAR消息,获得上行的时间同步和上行资源.但此时并不能确定RAR消息是发送给UE自己而不是发送给其他的UE的,因为存在着不同的UE在相同的时间-频率资源上发送相同的随机接入序列的可能性,这样,他们就会通过相同的RA-RNTI接收到同样的RAR。而且,UE也无从知道是否有其他的UE在使用相同的资源进行随机接入。为此UE需要通过随后的Msg3和Msg4消息,来解决这样的随机接入冲突。
Msg3是第一条基于上行调度并且采用混合自动重传请求(Hybrid Automatic Repeat request,简称为HARQ)机制在PUSCH上传输的消息。在初始随机接入过程中,Msg3中传输的是RRC层连接请求消息(RRCConnectionRequest),如果不同的UE接收到相同的RAR消息,那么他们就会获得相同的上行资源,同时发送Msg3消息,为了区分不同的UE,在Msg3中会携带一个UE特定的ID,用于区分不同的UE.在初始接入的情况下,这个ID可以是UE的S-TMSI(如果存在的话)或者随机生成的一个40位的值。
UE在发完MSg3消息后就要立刻启动竞争消除定时器(而随后每一次重传Msg3都要重新启动这个定时器),UE需要在此时间内监听eNodeB返回给自己的冲突解决消息(ContentionResolution,Msg4消息)。
如果在竞争消除定时器配置的时间内,UE接收到eNodeB返回的Msg4消息,并且其中携带的UE ID与自己在Msg3中上报给eNodeB的相符,那么UE就认为自己赢得了此次的随机接入冲突,随机接入成功.并将在RAR消息中得到的临时C-RNTI置为自己的C-RNTI。否则的话,UE认为此次接入失败,并重新进行随机接入的重传过程。
为了保证MTC UE可以正常接入系统,所以LTE/LTE-A系统的Msg1、Msg2、Msg3和Msg4也需要进行增强设计,保证MTC UE可以正常接入系统。
针对相关技术中,用户终端接入LTE/LTE-A系统的接入质量不高的问题,目前尚未提出有效的解决方案。
发明内容
对相关技术中,用户终端接入LTE/LTE-A系统的接入质量不高的问题,目前尚未提出有效的解决方案,本发明提供了随机接入信令的重新发送方法及装置,以至少解决上述问题。
根据本发明的一个实施例,提供了一种随机接入信令的重新发送方法,包括:在满足第一条件的情况下,第二类节点重新发送随机接入信令Msg1,其中,所述第一条件包括以下至少之一:所述第二类节点没有成功解码随机接入响应消息Msg2;所述第二类节点成功解码随机接入响应消息Msg2,在解码的所述随机接入响应消息Msg2中并没有发送给所述第二类节点的随机接入响应信息;所述第一类节点没有成功解码Msg3消息;所述第一类节点成功解码Msg3消息,并且发送Msg4给所述第二类节点,所述第二类节点没有成功解码Msg4消息;所述第一类节点成功解码Msg3消息,并且发送Msg4给第二类节点,第二类节点成功解码Msg4消息,所述Msg4消息不是发送给所述第二类节点的。
在本发明的实施例中,当所述第一条件为所述第二类节点没有成功解码随机接入响应消息Msg2,且所述随机接入响应消息Msg2属于第一类的随机接入响应消息Msg2时,所述第二类节点按照以下至少之一重新发送随机接入信令Msg1包括:
重新发送的随机接入信令Msg1的重复发送次数由所述第二类节点的等级信息确定;
所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,所述第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:所述第二类节点继续采用等级i对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1;所述第二类节点提高重新发送所述随机接入信令Msg1的发送功率;所述第二类节点重新发送随机接入信令Msg1的发送时间指示信息为K1;
所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,且所述第二类节点不能再提高所述随机接入信令Msg1的发送功率时,所述第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:所述第二类节点继续采用等级i对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1;所述第二类节点重新发送随机接入信令Msg1的发送时间指示信息为K2;
在所述第二类节点的当前等级,且所述第二类节点不能再提高所述随机接入信令Msg1的发送功率时,所述Ni=1;
所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数大于或等于等级i对应的随机接入信令Msg1发送次数的上限Ni,所述第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:所述第二类节点采用等级i的下一个等级所对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1;所述第二类节点重新发送随机接入信令Msg1的发送时间指示信息为K0;
其中,所述重新发送随机接入信令Msg1的发送时间指示信息是指重新发送随机接入信令Msg1与前一次随机接入响应消息Msg2的检测窗口结束时刻的时间间隔;
所述第一类随机接入响应消息Msg2是指所述随机接入响应消息Msg2中包括相同等级的所述第二类节点的随机接入响应信息。
在本发明的实施例中,包括:所述K0、所述K1和所述K2之间满足以下条件:K0<=K1<=K2。
在本发明的实施例中,包括:所述等级i对应的随机接入信令Msg1发送次数的上限Ni由所述第一类节点配置;不同等级对应的Ni取值不同。
在本发明的实施例中,当所述第一条件为第二类节点成功解码随机接入响应消息Msg2,但没有发送给所述第二类节点的随机接入响应信息,且所述随机接入响应消息Msg2属于第一 类随机接入响应消息Msg2时,第二类节点按照以下至少之一重新发送随机接入信令Msg1包括:
重新发送的随机接入信令Msg1的重复发送次数由所述第二类节点的等级信息确定;
所述第二类节点的等级信息不发生改变时,重新发送的随机接入信令Msg1的重复发送次数与上一次发送时的重复发送次数相同;
所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,所述第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:所述第二类节点继续采用等级i对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1,所述第二类节点提高重新发送所述随机接入信令Msg1的发送功率;所述第二类节点重新发送随机接入信令Msg1的发送时间指示信息为M1;
所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,且所述第二类节点不能再提高所述随机接入信令Msg1的发送功率时,所述第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:所述第二类节点继续采用等级i对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1;所述第二类节点重新发送随机接入信令Msg1的发送时间指示信息为M2;
所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数大于或等于等级i对应的随机接入信令Msg1发送次数的上限Ni,所述第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:所述第二类节点采用等级i的下一个等级所对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令;所述第二类节点重新发送随机接入信令Msg1的发送时间指示信息为M0;
其中,所述第一类随机接入响应消息是指随机接入响应消息中只包括相同等级的所述第二类节点的随机接入响应信息;
所述重新发送随机接入信令Msg1的发送时间指示信息是指重新发送随机接入信令与前一次随机接入响应消息Msg2的检测窗口结束时刻的时间间隔。
在本发明的实施例中,包括:所述M0、所述M1和所述M2之间满足以下条件:
M0<=M1<=M2。
在本发明的实施例中,包括:所述等级i对应的随机接入信令Msg1发送次数的上限Ni由所述第一类节点配置;不同等级对应的Ni取值不同。
在本发明的实施例中,包括:所述K0、所述K1、所述K2、所述M0、所述M1和所述M2之间满足以下条件至少之一:
K0<=M0;
K1<=M1;
K2<=M2。
在本发明的实施例中,当所述第一条件为所述第二类节点没有成功解码随机接入响应消息Msg2,且所述第二类节点只解码本等级的随机接入响应消息Msg2,且所述随机接入响应消息Msg2属于第二类随机接入响应消息Msg2时,所述第二类节点按照以下至少之一重新发送随机接入信令Msg1:
重新发送的随机接入信令Msg1的重复发送次数由所述第二类节点的等级信息确定;
所述第二类节点的等级信息不发生改变时,重新发送的随机接入信令Msg1的重复发送次数与上一次发送时的重复发送次数相同;
所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,所述第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:所述第二类节点继续采用等级i对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1;所述第二类节点提高重新发送所述随机接入信令Msg1的发送功率;所述第二类节点重新发送随机接入信令Msg1的发送时间指示信息为P(i)_1,i为所述等级索引,对于等级i;
所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,且所述第二类节点不能再提高所述随机接入信令Msg1的发送功率时,所述第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:所述第二类节点继续采用等级i对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1;所述第二类节点重新发送随机接入信令Msg1的发送时间指示信息为P(i)_2;
所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数大于或等于等级i对应的随机接入信令Msg1发送次数的上限Ni,所述第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:所述第二类节点采用等级i的下一个等级,对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1;所述第二类节点重新发送随机接入信令Msg1的发送时间指示信息为P(i)_0;
其中,所述第二类随机接入响应消息Msg2是指随机接入响应消息Msg2中只包括一个或多个等级的所述第二类节点的随机接入响应信息;
所述重新发送随机接入信令Msg1的发送时间指示信息是指重新发送随机接入信令Msg1与前一次随机接入响应消息Msg2的检测窗口结束时刻的时间间隔。
在本发明的实施例中,包括:所述P(i)_0、所述P(i)_1和所述P(i)_2之间满足以下条件:
P(i)_0<=P(i)_1<=P(i)_2。
在本发明的实施例中,包括:所述等级i对应的随机接入信令Msg1发送次数的上限Ni 由所述第一类节点配置;不同等级对应的Ni取值不同。
在本发明的实施例中,当所述第一条件为第二类节点没有成功解码所述第二类节点等级的随机接入响应消息Msg2,第二类节点解码高于所述第二类节点等级的随机接入响应消息Msg2没有成功,且所述随机接入响应消息Msg2属于第二类随机接入响应消息Msg2时,第二类节点按照以下至少之一重新发送随机接入信令Msg1:
重新发送的随机接入信令的重复发送次数由所述第二类节点选择的新的等级信息确定;
所述新的等级为第二类节点解码的随机接入响应消息Msg2的最高等级的下一个等级;
所述第二类节点解码的随机接入响应消息Msg2的最高等级的索引信息由所述第一类节点发送给所述第二类节点;
所述第二类随机接入响应消息Msg2是指随机接入响应消息Msg2中只包括一个或多个等级的所述第二类节点的随机接入响应信息。
在本发明的实施例中,当所述第一条件为第二类节点没有成功解码所述第二类节点等级的随机接入响应消息Msg2,所述第二类节点成功解码高于所述第二类节点等级的随机接入响应消息Msg2,且所述随机接入响应消息Msg2属于第二类随机接入响应消息Msg2时,所述第二类节点按照以下至少之一重新发送随机接入信令Msg1:
重新发送的随机接入信令Msg1的重复发送次数由所述第二类节点选择的新的等级信息确定;其中,所述新的等级为第二类节点成功解码随机接入响应消息Msg2对应的等级;
所述第二类随机接入响应消息Msg2是指随机接入响应消息Msg2中只包括一个或多个等级的所述第二类节点的随机接入响应信息。
在本发明的实施例中,当所述第一条件为第一类节点成功解码Msg3消息,并且发送Msg4给第二类节点,第二类节点没有成功解码Msg4消息时,第二类节点按照以下至少之一重新发送随机接入信令Msg1:
重新发送的随机接入信令Msg1的重复发送次数由所述第二类节点所述的等级信息确定;
所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,且所述第二类节点能提高所述随机接入信令Msg1的发送功率时,不提高所述随机接入信令的发送功率;
所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数大于或等于等级i对应的随机接入信令Msg1发送次数的上限Ni,所述第二类节点采用等级i的下一个等级对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1。
在本发明的实施例中,所述第二类节点在Msg3中发送以下至少之一信息:
指示第一类节点增加Msg4的重复发送次数的指示信息;
第一类节点Msg4的重复发送次数的增量信息;
第一类节点Msg4的重复发送次数。
在本发明的实施例中,包括:所述等级i对应的随机接入信令Msg1发送次数的上限Ni由所述第一类节点配置;不同等级对应的Ni取值不同。
在本发明的实施例中,当所述第一条件为当第一类节点成功解码Msg3消息,并且发送Msg4给第二类节点,第二类节点成功解码Msg4消息,不是发送给所述第二类节点时,所述第二类节点重新发送随机接入信令Msg1需要按照以下至少之一执行:
重新发送的随机接入信令Msg1的重复发送次数由所述第二类节点所述的等级信息确定;
所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,且所述第二类节点能提高所述随机接入信令的发送功率时,不提高所述随机接入信令的发送功率;
所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数大于或等于等级i对应的随机接入信令Msg1发送次数的上限Ni,所述第二类节点采用等级i的下一个等级,对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1。
在本发明的实施例中,包括:所述等级i对应的随机接入信令Msg1发送次数的上限Ni由所述第一类节点配置;不同等级对应的Ni取值不同。
在本发明的实施例中,当所述第一条件为第一类节点没有成功解码Msg3消息时,第二类节点按照以下至少之一重新发送随机接入信令Msg1:
重新发送的随机接入信令Msg1的重复发送次数由所述第二类节点所述的等级信息确定;
所述第二类节点采用等级i对应的随机接入信令Msg1的重复发送次数重新发送Msg1,如果所述第一类节点还是无法成功解码Msg3消息,则所述第二类节点采用等级i的下一个等级对应的随机接入信令Msg1的重复发送次数重新发送Msg1;其中,所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的发送次数的上限Ni。
在本发明的实施例中,第二类节点的等级包括以下至少之一:
覆盖增强等级;
PRACH信道覆盖增强等级;
PRACH信道重复发送等级。
在本发明的实施例中,所述第一节点是以下至少之一:
宏基站Macrocell、微基站Microcell、微微基站Picocell、毫微微基站Femtocell、家庭基 站、低功率节点LPN及中继站Relay;
其中,所述第二类节点包括以下至少之一:一个或多个人到人H2H通信终端;一个或多个机器到机器M2M通信终端;一个或多个设备到设备D2D通信终端。
根据本发明的另一个实施例,还提供了一种随机接入信令的重新发送装置,包括:
检测模块,设置为检测是否满足第一条件,其中,所述第一条件包括以下至少之一:
所述第二类节点没有成功解码随机接入响应消息Msg2;
所述第二类节点成功解码随机接入响应消息Msg2,在解码的所述随机接入响应消息Msg2中并没有发送给所述第二类节点的随机接入响应信息;
所述第一类节点没有成功解码Msg3消息;
所述第一类节点成功解码Msg3消息,并且发送Msg4给所述第二类节点,所述第二类节点没有成功解码Msg4消息;
所述第一类节点成功解码Msg3消息,并且发送Msg4给第二类节点,第二类节点成功解码Msg4消息,所述Msg4消息不是发送给所述第二类节点的;
发送模块,设置为在满足所述第一条件的情况下,第二类节点重新发送随机接入信令Msg1。
在本发明的实施例中,当所述第一条件为所述第二类节点没有成功解码随机接入响应消息Msg2,且所述随机接入响应消息Msg2属于第一类的随机接入响应消息Msg2时,所述发送模块按照以下至少之一重新发送随机接入信令Msg1包括:
重新发送的随机接入信令Msg1的重复发送次数由所述第二类节点的等级信息确定;
所述第二类节点的等级信息不发生改变时,重新发送的随机接入信令Msg1的重复发送次数与上一次发送时的重复发送次数相同;
所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,所述第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:所述第二类节点继续采用等级i对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1;所述第二类节点提高重新发送所述随机接入信令Msg1的发送功率;所述第二类节点重新发送随机接入信令Msg1的发送时间指示信息为K1;
所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,且所述第二类节点不能再提高所述随机接入信令Msg1的发送功率时,所述第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:所述第二类节点继续采用等级i对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1;所述第二类节点重新发送随机接入信令Msg1的发送时间指示信息为K2;
在所述第二类节点的当前等级,且所述第二类节点不能再提高所述随机接入信令Msg1的发送功率时,所述Ni=1;
所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数大于或等于等级i对应的随机接入信令Msg1发送次数的上限Ni,所述第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:所述第二类节点采用等级i的下一个等级所对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1;所述第二类节点重新发送随机接入信令Msg1的发送时间指示信息为K0;
其中,所述重新发送随机接入信令Msg1的发送时间指示信息是指重新发送随机接入信令Msg1与前一次随机接入响应消息Msg2的检测窗口结束时刻的时间间隔;
所述第一类随机接入响应消息Msg2是指所述随机接入响应消息Msg2中包括相同等级的所述第二类节点的随机接入响应信息。
在本发明的实施例中,包括:所述K0、所述K1和所述K2之间满足以下条件:
K0<=K1<=K2。
在本发明的实施例中,包括:所述等级i对应的随机接入信令Msg1发送次数的上限Ni由所述第一类节点配置;不同等级对应的Ni取值不同。
在本发明的实施例中,当所述第一条件为第二类节点成功解码随机接入响应消息Msg2,但没有发送给所述第二类节点的随机接入响应信息,且所述随机接入响应消息Msg2属于第一类随机接入响应消息Msg2时,所述发送模块按照以下至少之一重新发送随机接入信令Msg1包括:
重新发送的随机接入信令Msg1的重复发送次数由所述第二类节点的等级信息确定;
所述第二类节点的等级信息不发生改变时,重新发送的随机接入信令Msg1的重复发送次数与上一次发送时的重复发送次数相同;
所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,所述第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:所述第二类节点继续采用等级i对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1,所述第二类节点提高重新发送所述随机接入信令Msg1的发送功率;所述第二类节点重新发送随机接入信令Msg1的发送时间指示信息为M1;
所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,且所述第二类节点不能再提高所述随机接入信令Msg1的发送功率时,所述第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:所述第二类节点继续采用等级i对应的随机接入信令Msg1 的重复发送次数重新发送随机接入信令Msg1;所述第二类节点重新发送随机接入信令Msg1的发送时间指示信息为M2;
所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数大于或等于等级i对应的随机接入信令Msg1发送次数的上限Ni,所述第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:所述第二类节点采用等级i的下一个等级所对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令;所述第二类节点重新发送随机接入信令Msg1的发送时间指示信息为M0;
其中,所述第一类随机接入响应消息是指随机接入响应消息中只包括相同等级的所述第二类节点的随机接入响应信息;
所述重新发送随机接入信令Msg1的发送时间指示信息是指重新发送随机接入信令与前一次随机接入响应消息Msg2的检测窗口结束时刻的时间间隔。
在本发明的实施例中,包括:所述M0、所述M1和所述M2之间满足以下条件:
M0<=M1<=M2。
在本发明的实施例中,包括:所述等级i对应的随机接入信令Msg1发送次数的上限Ni由所述第一类节点配置;不同等级对应的Ni取值不同。
在本发明的实施例中,包括:所述K0、所述K1、所述K2、所述M0、所述M1和所述M2之间满足以下条件至少之一:
K0<=M0;
K1<=M1;
K2<=M2。
在本发明的实施例中,当所述第一条件为所述第二类节点没有成功解码随机接入响应消息Msg2,且所述第二类节点只解码本等级的随机接入响应消息Msg2,且所述随机接入响应消息Msg2属于第二类随机接入响应消息Msg2时,所述发送模块按照以下至少之一重新发送随机接入信令Msg1:
重新发送的随机接入信令Msg1的重复发送次数由所述第二类节点的等级信息确定;
所述第二类节点的等级信息不发生改变时,重新发送的随机接入信令Msg1的重复发送次数与上一次发送时的重复发送次数相同;
所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,所述第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:所述第二类节点继续采用等级i对应的 随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1;所述第二类节点提高重新发送所述随机接入信令Msg1的发送功率;所述第二类节点重新发送随机接入信令Msg1的发送时间指示信息为P(i)_1,i为所述等级索引,对于等级i;
所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,且所述第二类节点不能再提高所述随机接入信令Msg1的发送功率时,所述第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:所述第二类节点继续采用等级i对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1;所述第二类节点重新发送随机接入信令Msg1的发送时间指示信息为P(i)_2;
所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数大于或等于等级i对应的随机接入信令Msg1发送次数的上限Ni,所述第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:所述第二类节点采用等级i的下一个等级,对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1;所述第二类节点重新发送随机接入信令Msg1的发送时间指示信息为P(i)_0;
其中,所述第二类随机接入响应消息Msg2是指随机接入响应消息Msg2中只包括一个或多个等级的所述第二类节点的随机接入响应信息;
所述重新发送随机接入信令Msg1的发送时间指示信息是指重新发送随机接入信令Msg1与前一次随机接入响应消息Msg2的检测窗口结束时刻的时间间隔。
在本发明的实施例中,包括:所述P(i)_0、所述P(i)_1和所述P(i)_2之间满足以下条件:
P(i)_0<=P(i)_1<=P(i)_2。
在本发明的实施例中,包括:所述等级i对应的随机接入信令Msg1发送次数的上限Ni由所述第一类节点配置;不同等级对应的Ni取值不同。
在本发明的实施例中,当所述第一条件为第二类节点没有成功解码所述第二类节点等级的随机接入响应消息Msg2,第二类节点解码高于所述第二类节点等级的随机接入响应消息Msg2没有成功,且所述随机接入响应消息Msg2属于第二类随机接入响应消息Msg2时,所述发送模块按照以下至少之一重新发送随机接入信令Msg1:
重新发送的随机接入信令的重复发送次数由所述第二类节点选择的新的等级信息确定;
所述新的等级为第二类节点解码的随机接入响应消息Msg2的最高等级的下一个等级;
所述第二类节点解码的随机接入响应消息Msg2的最高等级的索引信息由所述第一类节点发送给所述第二类节点;
所述第二类随机接入响应消息Msg2是指随机接入响应消息Msg2中只包括一个或多个等级的所述第二类节点的随机接入响应信息。
在本发明的实施例中,当所述第一条件为第二类节点没有成功解码所述第二类节点等级的随机接入响应消息Msg2,所述第二类节点成功解码高于所述第二类节点等级的随机接入响应消息Msg2,且所述随机接入响应消息Msg2属于第二类随机接入响应消息Msg2时,所述发送模块按照以下至少之一重新发送随机接入信令Msg1:
重新发送的随机接入信令Msg1的重复发送次数由所述第二类节点选择的新的等级信息确定;其中,所述新的等级为第二类节点成功解码随机接入响应消息Msg2对应的等级;
所述第二类随机接入响应消息Msg2是指随机接入响应消息Msg2中只包括一个或多个等级的所述第二类节点的随机接入响应信息。
在本发明的实施例中,当所述第一条件为第一类节点成功解码Msg3消息,并且发送Msg4给第二类节点,第二类节点没有成功解码Msg4消息时,所述发送模块按照以下至少之一重新发送随机接入信令Msg1:
重新发送的随机接入信令Msg1的重复发送次数由所述第二类节点所述的等级信息确定;
所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,且所述第二类节点能提高所述随机接入信令Msg1的发送功率时,不提高所述随机接入信令的发送功率;
所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数大于或等于等级i对应的随机接入信令Msg1发送次数的上限Ni,所述第二类节点采用等级i的下一个等级对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1。
在本发明的实施例中,所述第二类节点在Msg3中发送以下至少之一信息:
指示第一类节点增加Msg4的重复发送次数的指示信息;
第一类节点Msg4的重复发送次数的增量信息;
第一类节点Msg4的重复发送次数。
在本发明的实施例中,包括:所述等级i对应的随机接入信令Msg1发送次数的上限Ni由所述第一类节点配置;不同等级对应的Ni取值不同。
在本发明的实施例中,当所述第一条件为当第一类节点成功解码Msg3消息,并且发送Msg4给第二类节点,第二类节点成功解码Msg4消息,不是发送给所述第二类节点时,所述发送模块重新发送随机接入信令Msg1需要按照以下至少之一执行:
重新发送的随机接入信令Msg1的重复发送次数由所述第二类节点所述的等级信息确定;
所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,且所述第二类节点能提高所述随机接入信令的发送功率时,不提高所述随机接入信令的发送功率;
所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数大于或等于等级i对应的随机接入信令Msg1发送次数的上限Ni,所述第二类节点采用等级i的下一个等级,对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1。
在本发明的实施例中,包括:所述等级i对应的随机接入信令Msg1发送次数的上限Ni由所述第一类节点配置;不同等级对应的Ni取值不同。
在本发明的实施例中,当所述第一条件为第一类节点没有成功解码Msg3消息时,所述发送模块按照以下至少之一重新发送随机接入信令Msg1:
重新发送的随机接入信令Msg1的重复发送次数由所述第二类节点所述的等级信息确定;
所述第二类节点采用等级i对应的随机接入信令Msg1的重复发送次数重新发送Msg1,如果所述第一类节点还是无法成功解码Msg3消息,则所述第二类节点采用等级i的下一个等级对应的随机接入信令Msg1的重复发送次数重新发送Msg1;其中,所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的发送次数的上限Ni。
在本发明的实施例中,第二类节点的等级包括以下至少之一:
覆盖增强等级;
PRACH信道覆盖增强等级;
PRACH信道重复发送等级。
在本发明的实施例中,所述第一节点是以下至少之一:
宏基站Macrocell、微基站Microcell、微微基站Picocell、毫微微基站Femtocell、家庭基站、低功率节点LPN及中继站Relay;
其中,所述第二类节点包括以下至少之一:一个或多个人到人H2H通信终端;一个或多个机器到机器M2M通信终端;一个或多个设备到设备D2D通信终端。
通过本发明,采用在满足第一条件的情况下,第二类节点重新发送随机接入信令Msg1,其中,该第一条件包括以下至少之一:该第二类节点没有成功解码随机接入响应消息Msg2;该第二类节点成功解码随机接入响应消息Msg2,在解码的所述随机接入响应消息Msg2中并没有发送给该第二类节点的随机接入响应信息;该第一类节点没有成功解码Msg3消息;该第一类节点成功解码Msg3消息,并且发送Msg4给该第二类节点,该第二类节点没有成功解码Msg4消息;该第一类节点成功解码Msg3消息,并且发送Msg4给第二类节点,第二类节点成功解码Msg4消息,该Msg4消息不是发送给该第二类节点的,解决了用户终端接入LTE/LTE-A系统的接入质量不高的问题,提高了用户终端接入LTE/LTE-A系统的接入质量。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的一种随机接入信令的重新发送方法的流程图;
图2是根据本发明实施例的一种随机接入信令的重新发送装置的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在本实施例中提供了一种随机接入信令的重新发送方法,图1是根据本发明实施例的一种随机接入信令的重新发送方法的流程图,如图1所示,该流程包括如下步骤:
步骤S102,检测是否满足第一条件,该第一条件包括以下至少之一:该第二类节点没有成功解码随机接入响应消息Msg2;该第二类节点成功解码随机接入响应消息Msg2,在解码的随机接入响应消息Msg2中并没有发送给该第二类节点的随机接入响应信息;该第一类节点没有成功解码Msg3消息;该第一类节点成功解码Msg3消息,并且发送Msg4给该第二类节点,该第二类节点没有成功解码Msg4消息;该第一类节点成功解码Msg3消息,并且发送Msg4给第二类节点,第二类节点成功解码Msg4消息,该Msg4消息不是发送给该第二类节点的;
步骤S104,在满足第一条件的情况下,第二类节点重新发送随机接入信令Msg1。
通过上述步骤,对用户终端接入LTE/LTE-A系统的Msg1、Msg2、Msg3和Msg4进行增强设计,保证了MTC UE可以正常接入系统,解决了用户终端接入LTE/LTE-A系统的接入质量不高的问题,提高了用户终端接入LTE/LTE-A系统的接入质量。
在本实施例中,当该第一条件为该第二类节点没有成功解码随机接入响应消息Msg2,且该随机接入响应消息Msg2属于第一类的随机接入响应消息Msg2时,该第二类节点按照以下至少之一重新发送随机接入信令Msg1包括:
重新发送的随机接入信令Msg1的重复发送次数由该第二类节点的等级信息确定;
该第二类节点的等级信息不发生改变时,重新发送的随机接入信令Msg1的重复发送次数与上一次发送时的重复发送次数相同;
该第二类节点的当前等级为等级i,当该第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,该第二类节点重新发 送随机接入信令Msg1的方式包括以下至少之一:该第二类节点继续采用等级i对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1;该第二类节点提高重新发送该随机接入信令Msg1的发送功率;该第二类节点重新发送随机接入信令Msg1的发送时间指示信息为K1;
该第二类节点的当前等级为等级i,当该第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,且该第二类节点不能再提高该随机接入信令Msg1的发送功率时,该第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:该第二类节点继续采用等级i对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1;该第二类节点重新发送随机接入信令Msg1的发送时间指示信息为K2;
在该第二类节点的当前等级,且该第二类节点不能再提高该随机接入信令Msg1的发送功率时,Ni=1;
该第二类节点的当前等级为等级i,当该第二类节点在等级i重新发送的随机接入信令Msg1的次数大于或等于等级i对应的随机接入信令Msg1发送次数的上限Ni,该第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:该第二类节点采用等级i的下一个等级所对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1;该第二类节点重新发送随机接入信令Msg1的发送时间指示信息为K0;
其中,该重新发送随机接入信令Msg1的发送时间指示信息是指重新发送随机接入信令Msg1与前一次随机接入响应消息Msg2的检测窗口结束时刻的时间间隔;
该第一类随机接入响应消息Msg2是指该随机接入响应消息Msg2中包括相同等级的该第二类节点的随机接入响应信息。
在本实施例中,该K0、该K1和该K2之间满足以下条件:
K0<=K1<=K2。
在本实施例中,该等级i对应的随机接入信令Msg1发送次数的上限Ni由该第一类节点配置;不同等级对应的Ni取值不同。
在本实施例中,当该第一条件为第二类节点成功解码随机接入响应消息Msg2,但没有发送给该第二类节点的随机接入响应信息,且该随机接入响应消息Msg2属于第一类随机接入响应消息Msg2时,第二类节点按照以下至少之一重新发送随机接入信令Msg1包括:
重新发送的随机接入信令Msg1的重复发送次数由该第二类节点的等级信息确定;
该第二类节点的等级信息不发生改变时,重新发送的随机接入信令Msg1的重复发送次数与上一次发送时的重复发送次数相同;
该第二类节点的当前等级为等级i,当该第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,该第二类节点重新发 送随机接入信令Msg1的方式包括以下至少之一:该第二类节点继续采用等级i对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1,该第二类节点提高重新发送该随机接入信令Msg1的发送功率;该第二类节点重新发送随机接入信令Msg1的发送时间指示信息为M1;
该第二类节点的当前等级为等级i,当该第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,且该第二类节点不能再提高该随机接入信令Msg1的发送功率时,该第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:该第二类节点继续采用等级i对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1;该第二类节点重新发送随机接入信令Msg1的发送时间指示信息为M2;
该第二类节点的当前等级为等级i,当该第二类节点在等级i重新发送的随机接入信令Msg1的次数大于或等于等级i对应的随机接入信令Msg1发送次数的上限Ni,该第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:该第二类节点采用等级i的下一个等级所对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令;该第二类节点重新发送随机接入信令Msg1的发送时间指示信息为M0;
其中,该第一类随机接入响应消息是指随机接入响应消息中只包括相同等级的该第二类节点的随机接入响应信息;
该重新发送随机接入信令Msg1的发送时间指示信息是指重新发送随机接入信令与前一次随机接入响应消息Msg2的检测窗口结束时刻的时间间隔。
在本实施例中,包括:该M0、该M1和该M2之间满足以下条件:
M0<=M1<=M2。
在本实施例中,该等级i对应的随机接入信令Msg1发送次数的上限Ni由该第一类节点配置;不同等级对应的Ni取值不同。
在本实施例中,该K0、该K1、该K2、该M0、该M1和该M2之间满足以下条件至少之一:
K0<=M0;
K1<=M1;
K2<=M2。
在本实施例中,当该第一条件为该第二类节点没有成功解码随机接入响应消息Msg2,且该第二类节点只解码本等级的随机接入响应消息Msg2,且该随机接入响应消息Msg2属于第二类随机接入响应消息Msg2时,该第二类节点按照以下至少之一重新发送随机接入信令Msg1:
重新发送的随机接入信令Msg1的重复发送次数由该第二类节点的等级信息确定;
该第二类节点的等级信息不发生改变时,重新发送的随机接入信令Msg1的重复发送次数与上一次发送时的重复发送次数相同;
该第二类节点的当前等级为等级i,当该第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,该第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:该第二类节点继续采用等级i对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1;该第二类节点提高重新发送该随机接入信令Msg1的发送功率;该第二类节点重新发送随机接入信令Msg1的发送时间指示信息为P(i)_1,i为该等级索引,对于等级i;
该第二类节点的当前等级为等级i,当该第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,且该第二类节点不能再提高该随机接入信令Msg1的发送功率时,该第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:该第二类节点继续采用等级i对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1;该第二类节点重新发送随机接入信令Msg1的发送时间指示信息为P(i)_2;
该第二类节点的当前等级为等级i,当该第二类节点在等级i重新发送的随机接入信令Msg1的次数大于或等于等级i对应的随机接入信令Msg1发送次数的上限Ni,该第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:该第二类节点采用等级i的下一个等级,对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1;该第二类节点重新发送随机接入信令Msg1的发送时间指示信息为P(i)_0;
其中,该第二类随机接入响应消息Msg2是指随机接入响应消息Msg2中只包括一个或多个等级的该第二类节点的随机接入响应信息;
该重新发送随机接入信令Msg1的发送时间指示信息是指重新发送随机接入信令Msg1与前一次随机接入响应消息Msg2的检测窗口结束时刻的时间间隔。
在本实施例中,该P(i)_0、该P(i)_1和该P(i)_2之间满足以下条件:
P(i)_0<=P(i)_1<=P(i)_2。
在本实施例中,该等级i对应的随机接入信令Msg1发送次数的上限Ni由该第一类节点配置;不同等级对应的Ni取值不同。
在本实施例中,当该第一条件为第二类节点没有成功解码该第二类节点等级的随机接入响应消息Msg2,第二类节点解码高于该第二类节点等级的随机接入响应消息Msg2没有成功,且该随机接入响应消息Msg2属于第二类随机接入响应消息Msg2时,第二类节点按照以下至少之一重新发送随机接入信令Msg1:
重新发送的随机接入信令的重复发送次数由该第二类节点选择的新的等级信息确定;
该新的等级为第二类节点解码的随机接入响应消息Msg2的最高等级的下一个等级;
该第二类节点解码的随机接入响应消息Msg2的最高等级的索引信息由该第一类节点发送给该第二类节点;
该第二类随机接入响应消息Msg2是指随机接入响应消息Msg2中只包括一个或多个等级的该第二类节点的随机接入响应信息。
在本实施例中,当该第一条件为第二类节点没有成功解码该第二类节点等级的随机接入响应消息Msg2,该第二类节点成功解码高于该第二类节点等级的随机接入响应消息Msg2,且该随机接入响应消息Msg2属于第二类随机接入响应消息Msg2时,该第二类节点按照以下至少之一重新发送随机接入信令Msg1:
重新发送的随机接入信令Msg1的重复发送次数由该第二类节点选择的新的等级信息确定;其中,该新的等级为第二类节点成功解码随机接入响应消息Msg2对应的等级;
该第二类随机接入响应消息Msg2是指随机接入响应消息Msg2中只包括一个或多个等级的该第二类节点的随机接入响应信息。
在本实施例中,当该第一条件为第一类节点成功解码Msg3消息,并且发送Msg4给第二类节点,第二类节点没有成功解码Msg4消息时,第二类节点按照以下至少之一重新发送随机接入信令Msg1:
重新发送的随机接入信令Msg1的重复发送次数由该第二类节点该的等级信息确定;
该第二类节点的当前等级为等级i,当该第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,且该第二类节点能提高该随机接入信令Msg1的发送功率时,不提高该随机接入信令的发送功率;
该第二类节点的当前等级为等级i,当该第二类节点在等级i重新发送的随机接入信令Msg1的次数大于或等于等级i对应的随机接入信令Msg1发送次数的上限Ni,该第二类节点采用等级i的下一个等级对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1。
在本实施例中,该第二类节点在Msg3中发送以下至少之一信息:
指示第一类节点增加Msg4的重复发送次数的指示信息;
第一类节点Msg4的重复发送次数的增量信息;
第一类节点Msg4的重复发送次数。
在本实施例中,该等级i对应的随机接入信令Msg1发送次数的上限Ni由该第一类节点配置;不同等级对应的Ni取值不同。
在本实施例中,当该第一条件为当第一类节点成功解码Msg3消息,并且发送Msg4给第二类节点,第二类节点成功解码Msg4消息,不是发送给该第二类节点时,该第二类节点重新发送随机接入信令Msg1需要按照以下至少之一执行:
重新发送的随机接入信令Msg1的重复发送次数由该第二类节点该的等级信息确定;
该第二类节点的当前等级为等级i,当该第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,且该第二类节点能提高该随机接入信令的发送功率时,不提高该随机接入信令的发送功率;
该第二类节点的当前等级为等级i,当该第二类节点在等级i重新发送的随机接入信令Msg1的次数大于或等于等级i对应的随机接入信令Msg1发送次数的上限Ni,该第二类节点采用等级i的下一个等级,对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1。
在本实施例中,该等级i对应的随机接入信令Msg1发送次数的上限Ni由该第一类节点配置;不同等级对应的Ni取值不同。
在本实施例中,当该第一条件为第一类节点没有成功解码Msg3消息时,第二类节点按照以下至少之一重新发送随机接入信令Msg1:
重新发送的随机接入信令Msg1的重复发送次数由该第二类节点该的等级信息确定;
该第二类节点采用等级i对应的随机接入信令Msg1的重复发送次数重新发送Msg1,如果该第一类节点还是无法成功解码Msg3消息,则该第二类节点采用等级i的下一个等级对应的随机接入信令Msg1的重复发送次数重新发送Msg1;其中,该第二类节点的当前等级为等级i,当该第二类节点在等级i重新发送的随机接入信令Msg1的发送次数的上限Ni。
在本实施例中,第二类节点的等级包括以下至少之一:
覆盖增强等级;
PRACH信道覆盖增强等级;
PRACH信道重复发送等级。
在本实施例中,该第一节点是以下至少之一:
宏基站Macrocell、微基站Microcell、微微基站Picocell、毫微微基站Femtocell、家庭基站、低功率节点LPN及中继站Relay;
其中,该第二类节点包括以下至少之一:一个或多个人到人H2H通信终端;一个或多个机器到机器M2M通信终端;一个或多个设备到设备D2D通信终端。
图2是根据本发明实施例的一种随机接入信令的重新发送装置的结构框图,如图2所示,该装置包括
检测模块22,设置为检测是否满足第一条件,其中,该第一条件包括以下至少之一:
该第二类节点没有成功解码随机接入响应消息Msg2;
该第二类节点成功解码随机接入响应消息Msg2,在解码的随机接入响应消息Msg2中并没有发送给该第二类节点的随机接入响应信息;
该第一类节点没有成功解码Msg3消息;
该第一类节点成功解码Msg3消息,并且发送Msg4给该第二类节点,该第二类节点没有成功解码Msg4消息;
该第一类节点成功解码Msg3消息,并且发送Msg4给第二类节点,第二类节点成功解码Msg4消息,该Msg4消息不是发送给该第二类节点的;
发送模块24,设置为在满足该第一条件的情况下,第二类节点重新发送随机接入信令Msg1。
通过上述装置,对用户终端接入LTE/LTE-A系统的Msg1、Msg2、Msg3和Msg4进行增强设计,保证了MTC UE可以正常接入系统,解决了用户终端接入LTE/LTE-A系统的接入质量不高的问题,提高了用户终端接入LTE/LTE-A系统的接入质量。
在本实施例中,当该第一条件为该第二类节点没有成功解码随机接入响应消息Msg2,且该随机接入响应消息Msg2属于第一类的随机接入响应消息Msg2时,该发送模块24按照以下至少之一重新发送随机接入信令Msg1包括:
重新发送的随机接入信令Msg1的重复发送次数由该第二类节点的等级信息确定;
该第二类节点的等级信息不发生改变时,重新发送的随机接入信令Msg1的重复发送次数与上一次发送时的重复发送次数相同;
该第二类节点的当前等级为等级i,当该第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,该第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:该第二类节点继续采用等级i对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1;该第二类节点提高重新发送该随机接入信令Msg1的发送功率;该第二类节点重新发送随机接入信令Msg1的发送时间指示信息为K1;
该第二类节点的当前等级为等级i,当该第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,且该第二类节点不能再提高该随机接入信令Msg1的发送功率时,该第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:该第二类节点继续采用等级i对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1;该第二类节点重新发送随机接入信令Msg1的发送时间指示信息为K2;
在该第二类节点的当前等级,且该第二类节点不能再提高该随机接入信令Msg1的发送功率时,该Ni=1;
该第二类节点的当前等级为等级i,当该第二类节点在等级i重新发送的随机接入信令Msg1的次数大于或等于等级i对应的随机接入信令Msg1发送次数的上限Ni,该第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:该第二类节点采用等级i的下一个等级所对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1;该第二类节点重新发送随机接入信令Msg1的发送时间指示信息为K0;
其中,该重新发送随机接入信令Msg1的发送时间指示信息是指重新发送随机接入信令Msg1与前一次随机接入响应消息Msg2的检测窗口结束时刻的时间间隔;
该第一类随机接入响应消息Msg2是指该随机接入响应消息Msg2中包括相同等级的该第二类节点的随机接入响应信息。
在本实施例中,该K0、该K1和该K2之间满足以下条件:
K0<=K1<=K2。
在本实施例中,该等级i对应的随机接入信令Msg1发送次数的上限Ni由该第一类节点配置;不同等级对应的Ni取值不同。
在本实施例中,当该第一条件为第二类节点成功解码随机接入响应消息Msg2,但没有发送给该第二类节点的随机接入响应信息,且该随机接入响应消息Msg2属于第一类随机接入响应消息Msg2时,该发送模块24按照以下至少之一重新发送随机接入信令Msg1包括:
重新发送的随机接入信令Msg1的重复发送次数由该第二类节点的等级信息确定;
该第二类节点的等级信息不发生改变时,重新发送的随机接入信令Msg1的重复发送次数与上一次发送时的重复发送次数相同;
该第二类节点的当前等级为等级i,当该第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,该第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:该第二类节点继续采用等级i对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1,该第二类节点提高重新发送该随机接入信令Msg1的发送功率;该第二类节点重新发送随机接入信令Msg1的发送时间指示信息为M1;
该第二类节点的当前等级为等级i,当该第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,且该第二类节点不能再提高该随机接入信令Msg1的发送功率时,该第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:该第二类节点继续采用等级i对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1;该第二类节点重新发送随机接入信令Msg1的发送时间指示信息为M2;
该第二类节点的当前等级为等级i,当该第二类节点在等级i重新发送的随机接入信令Msg1的次数大于或等于等级i对应的随机接入信令Msg1发送次数的上限Ni,该第二类节点 重新发送随机接入信令Msg1的方式包括以下至少之一:该第二类节点采用等级i的下一个等级所对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令;该第二类节点重新发送随机接入信令Msg1的发送时间指示信息为M0;
其中,该第一类随机接入响应消息是指随机接入响应消息中只包括相同等级的该第二类节点的随机接入响应信息;
该重新发送随机接入信令Msg1的发送时间指示信息是指重新发送随机接入信令与前一次随机接入响应消息Msg2的检测窗口结束时刻的时间间隔。
在本实施例中,该M0、该M1和该M2之间满足以下条件:
M0<=M1<=M2。
在本实施例中,该等级i对应的随机接入信令Msg1发送次数的上限Ni由该第一类节点配置;不同等级对应的Ni取值不同。
在本实施例中,该K0、该K1、该K2、该M0、该M1和该M2之间满足以下条件至少之一:
K0<=M0;
K1<=M1;
K2<=M2。
在本实施例中,当该第一条件为该第二类节点没有成功解码随机接入响应消息Msg2,且该第二类节点只解码本等级的随机接入响应消息Msg2,且该随机接入响应消息Msg2属于第二类随机接入响应消息Msg2时,该发送模块24按照以下至少之一重新发送随机接入信令Msg1:
重新发送的随机接入信令Msg1的重复发送次数由该第二类节点的等级信息确定;
该第二类节点的等级信息不发生改变时,重新发送的随机接入信令Msg1的重复发送次数与上一次发送时的重复发送次数相同;
该第二类节点的当前等级为等级i,当该第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,该第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:该第二类节点继续采用等级i对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1;该第二类节点提高重新发送该随机接入信令Msg1的发送功率;该第二类节点重新发送随机接入信令Msg1的发送时间指示信息为P(i)_1,i为该等级索引,对于等级i;
该第二类节点的当前等级为等级i,当该第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,且该第二类节点不能再提高该随机接入信令Msg1的发送功率时,该第二类节点重新发送随机接入信令Msg1的方 式包括以下至少之一:该第二类节点继续采用等级i对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1;该第二类节点重新发送随机接入信令Msg1的发送时间指示信息为P(i)_2;
该第二类节点的当前等级为等级i,当该第二类节点在等级i重新发送的随机接入信令Msg1的次数大于或等于等级i对应的随机接入信令Msg1发送次数的上限Ni,该第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:该第二类节点采用等级i的下一个等级,对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1;该第二类节点重新发送随机接入信令Msg1的发送时间指示信息为P(i)_0;
其中,该第二类随机接入响应消息Msg2是指随机接入响应消息Msg2中只包括一个或多个等级的该第二类节点的随机接入响应信息;
该重新发送随机接入信令Msg1的发送时间指示信息是指重新发送随机接入信令Msg1与前一次随机接入响应消息Msg2的检测窗口结束时刻的时间间隔。
在本实施例中,该P(i)_0、该P(i)_1和该P(i)_2之间满足以下条件:
P(i)_0<=P(i)_1<=P(i)_2。
在本实施例中,该等级i对应的随机接入信令Msg1发送次数的上限Ni由该第一类节点配置;不同等级对应的Ni取值不同。
在本实施例中,当该第一条件为第二类节点没有成功解码该第二类节点等级的随机接入响应消息Msg2,第二类节点解码高于该第二类节点等级的随机接入响应消息Msg2没有成功,且该随机接入响应消息Msg2属于第二类随机接入响应消息Msg2时,该发送模块24按照以下至少之一重新发送随机接入信令Msg1:
重新发送的随机接入信令的重复发送次数由该第二类节点选择的新的等级信息确定;
该新的等级为第二类节点解码的随机接入响应消息Msg2的最高等级的下一个等级;
该第二类节点解码的随机接入响应消息Msg2的最高等级的索引信息由该第一类节点发送给该第二类节点;
该第二类随机接入响应消息Msg2是指随机接入响应消息Msg2中只包括一个或多个等级的该第二类节点的随机接入响应信息。
在本实施例中,该第一条件为第二类节点没有成功解码该第二类节点等级的随机接入响应消息Msg2,该第二类节点成功解码高于该第二类节点等级的随机接入响应消息Msg2,且该随机接入响应消息Msg2属于第二类随机接入响应消息Msg2时,该发送模块24按照以下至少之一重新发送随机接入信令Msg1:
重新发送的随机接入信令Msg1的重复发送次数由该第二类节点选择的新的等级信息确定;其中,该新的等级为第二类节点成功解码随机接入响应消息Msg2对应的等级;
该第二类随机接入响应消息Msg2是指随机接入响应消息Msg2中只包括一个或多个等级的该第二类节点的随机接入响应信息。
在本实施例中,当该第一条件为第一类节点成功解码Msg3消息,并且发送Msg4给第二类节点,第二类节点没有成功解码Msg4消息时,该发送模块24按照以下至少之一重新发送随机接入信令Msg1:
重新发送的随机接入信令Msg1的重复发送次数由该第二类节点该的等级信息确定;
该第二类节点的当前等级为等级i,当该第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,且该第二类节点能提高该随机接入信令Msg1的发送功率时,不提高该随机接入信令的发送功率;
该第二类节点的当前等级为等级i,当该第二类节点在等级i重新发送的随机接入信令Msg1的次数大于或等于等级i对应的随机接入信令Msg1发送次数的上限Ni,该第二类节点采用等级i的下一个等级对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1。
在本实施例中,该第二类节点在Msg3中发送以下至少之一信息:
指示第一类节点增加Msg4的重复发送次数的指示信息;
第一类节点Msg4的重复发送次数的增量信息;
第一类节点Msg4的重复发送次数。
在本实施例中,该等级i对应的随机接入信令Msg1发送次数的上限Ni由该第一类节点配置;不同等级对应的Ni取值不同。
在本实施例中,当该第一条件为当第一类节点成功解码Msg3消息,并且发送Msg4给第二类节点,第二类节点成功解码Msg4消息,不是发送给该第二类节点时,该发送模块24重新发送随机接入信令Msg1需要按照以下至少之一执行:
重新发送的随机接入信令Msg1的重复发送次数由该第二类节点该的等级信息确定;
该第二类节点的当前等级为等级i,当该第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,且该第二类节点能提高该随机接入信令的发送功率时,不提高该随机接入信令的发送功率;
该第二类节点的当前等级为等级i,当该第二类节点在等级i重新发送的随机接入信令Msg1的次数大于或等于等级i对应的随机接入信令Msg1发送次数的上限Ni,该第二类节点采用等级i的下一个等级,对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1。
在本实施例中,该等级i对应的随机接入信令Msg1发送次数的上限Ni由该第一类节点配置;不同等级对应的Ni取值不同。
在本实施例中,当该第一条件为第一类节点没有成功解码Msg3消息时,该发送模块24按照以下至少之一重新发送随机接入信令Msg1:
重新发送的随机接入信令Msg1的重复发送次数由该第二类节点该的等级信息确定;
该第二类节点采用等级i对应的随机接入信令Msg1的重复发送次数重新发送Msg1,如果该第一类节点还是无法成功解码Msg3消息,则该第二类节点采用等级i的下一个等级对应的随机接入信令Msg1的重复发送次数重新发送Msg1;其中,该第二类节点的当前等级为等级i,当该第二类节点在等级i重新发送的随机接入信令Msg1的发送次数的上限Ni。
在本实施例中,第二类节点的等级包括以下至少之一:
覆盖增强等级;
PRACH信道覆盖增强等级;
PRACH信道重复发送等级。
在本实施例中,该第一节点是以下至少之一:
宏基站Macrocell、微基站Microcell、微微基站Picocell、毫微微基站Femtocell、家庭基站、低功率节点LPN及中继站Relay;
其中,该第二类节点包括以下至少之一:一个或多个人到人H2H通信终端;一个或多个机器到机器M2M通信终端;一个或多个设备到设备D2D通信终端。
下面结合优选实施例和实施方式对本发明进行详细说明。
实施例1:
在LTE系统中存在MTC UEs,并且MTC UEs可以支持覆盖增强(Coverage Enhancement,CE)。本实施例中,Msg1一共支持3个覆盖增强级别(Coverage Enhancement level,CEL),即CEL0、CEL1和CEL2。且UE1、UE2为CEL0的MTC UE。基站(eNB)为各个CEL的MTC UE分配PRACH资源,包括发送随机接入信令所使用的随机接入序列(Preamble)以及发送Preamble所使用的子帧(Subframe)以及物理资源块(PRB)。不同CEL对应的Msg1的重复发送次数不同,UE1、UE2按照eNB的配置信息在CEL0的PRACH信道上发送随机接入信令(Msg1);
eNB发送Msg2消息响应CEL0等级的Msg1消息,但是Msg2中只包括UE2的随机接入响应信息,UE1发送的Msg1并没有被eNB成功检测到,所以eNB不会给UE1在Msg2中发送随机接入响应信息;
本实施例中,UE1没有成功解码Msg2,则UE1按照以下至少之一重新发送随机接入信令:
重新发送的随机接入信令的重复发送次数由UE1的CEL等级信息确定;
UE1的CEL不发生改变时,重新发送的随机接入信令的重复发送次数与上一次发送时的 重复发送次数相同;
当UE1的CEL为CEL0时,当UE1重新发送随机接入信令的次数小于CEL0对应的随机接入信令发送次数的上限,且UE1还可以提高所述随机接入信令的发送功率时,UE1继续采用CEL0对应的随机接入信令的重复发送次数重新发送随机接入信令,并且提高随机接入信令的发送功率;所述重新发送随机接入信令的发送时间指示信息为K1;
当UE1的CEL为CEL0时,当UE1重新发送随机接入信令的次数小于CEL0对应的随机接入信令发送次数的上限,且UE1不能再提高所述随机接入信令的发送功率时,UE1继续采用CEL0对应的随机接入信令的重复发送次数重新发送随机接入信令;所述重新发送随机接入信令的发送时间指示信息为K2;
当UE1的CEL为CEL0时,当UE1重新发送随机接入信令的次数大于或等于CEL0对应的随机接入信令发送次数的上限时,UE1采用CEL1所对应的随机接入信令的重复发送次数重新发送随机接入信令;所述重新发送随机接入信令的发送时间指示信息为K0;
其中,所述重新发送随机接入信令的发送时间指示信息是指重新发送随机接入信令与前一次随机接入响应消息的检测窗口结束时刻的时间间隔;
其中,K0<=K1<=K2;
实施例2:
在LTE系统中存在MTC UEs,并且MTC UEs可以支持覆盖增强(Coverage Enhancement,CE)。本实施例中,Msg1一共支持3个覆盖增强级别(Coverage Enhancement level,CEL),即CEL0、CEL1和CEL2。且UE1、UE2、UE3为CEL0的MTC UE。基站(eNB)为各个CEL的MTC UE分配PRACH资源,包括发送随机接入信令所使用的随机接入序列(Preamble)以及发送Preamble所使用的子帧(Subframe)以及物理资源块(PRB)。不同CEL对应的Msg1的重复发送次数不同,UE1、UE2、UE3按照eNB的配置信息在CEL0的PRACH信道上发送随机接入信令(Msg1);
eNB发送Msg2消息响应CEL0等级的Msg1消息,但是Msg2中只包括UE2的随机接入响应信息,
本实施例中,UE1没有成功解码Msg2,则UE1按照以下至少之一重新发送随机接入信令:
重新发送的随机接入信令的重复发送次数由UE1的CEL等级信息确定;
UE1的CEL不发生改变时,重新发送的随机接入信令的重复发送次数与上一次发送时的重复发送次数相同;
当UE1的CEL为CEL0时,当UE1重新发送随机接入信令的次数小于CEL0对应的随机接入信令发送次数的上限,且UE1还可以提高所述随机接入信令的发送功率时,UE1继续采用CEL0对应的随机接入信令的重复发送次数重新发送随机接入信令,并且提高随机接入信令的发送功率;所述重新发送随机接入信令的发送时间指示信息为K1;
当UE1的CEL为CEL0时,当UE1重新发送随机接入信令的次数小于CEL0对应的随机接入信令发送次数的上限,且UE1不能再提高所述随机接入信令的发送功率时,UE1继续采用CEL0对应的随机接入信令的重复发送次数重新发送随机接入信令;所述重新发送随机接入信令的发送时间指示信息为K2;
当UE1的CEL为CEL0时,当UE1重新发送随机接入信令的次数大于或等于CEL0对应的随机接入信令发送次数的上限时,UE1采用CEL1所对应的随机接入信令的重复发送次数重新发送随机接入信令;所述重新发送随机接入信令的发送时间指示信息为K0;
其中,所述重新发送随机接入信令的发送时间指示信息是指重新发送随机接入信令与前一次随机接入响应消息的检测窗口结束时刻的时间间隔;
其中,K0<=K1<=K2;
本实施例中,UE3虽然成功解码Msg2,但其中没有发送给自己的随机接入响应信息,则UE3按照以下至少之一重新发送随机接入信令:
重新发送的随机接入信令的重复发送次数由UE3的CEL等级信息确定;
UE3的CEL不发生改变时,重新发送的随机接入信令的重复发送次数与上一次发送时的重复发送次数相同;
当UE3的CEL为CEL0时,当UE3重新发送随机接入信令的次数小于CEL0对应的随机接入信令发送次数的上限,且UE1还可以提高所述随机接入信令的发送功率时,UE3继续采用CEL0对应的随机接入信令的重复发送次数重新发送随机接入信令,并且提高随机接入信令的发送功率;所述重新发送随机接入信令的发送时间指示信息为K1;
当UE3的CEL为CEL0时,当UE3重新发送随机接入信令的次数小于CEL0对应的随机接入信令发送次数的上限,且UE3不能再提高所述随机接入信令的发送功率时,UE3继续采用CEL0对应的随机接入信令的重复发送次数重新发送随机接入信令;所述重新发送随机接入信令的发送时间指示信息为K2;
当UE3的CEL为CEL0时,当UE3重新发送随机接入信令的次数大于或等于CEL0对应的随机接入信令发送次数的上限时,UE3采用CEL1所对应的随机接入信令的重复发送次数重新发送随机接入信令;所述重新发送随机接入信令的发送时间指示信息为K0;
其中,所述重新发送随机接入信令的发送时间指示信息是指重新发送随机接入信令与前一次随机接入响应消息的检测窗口结束时刻的时间间隔;
其中,M0<=M1<=M2;
其中,K0,K1,K2,M0,M1,M2满足以下至少之一:
K0<=M0;
K1<=M1;
K2<=M2;
实施例3:
在LTE系统中存在MTC UEs,并且MTC UEs可以支持覆盖增强(Coverage Enhancement,CE)。本实施例中,Msg1一共支持3个覆盖增强级别(Coverage Enhancement level,CEL),即CEL0、CEL1和CEL2。且UE1、UE2、UE3为CEL0的MTC UE,UE4为CEL1的MTC UE。基站(eNB)为各个CEL的MTC UE分配PRACH资源,包括发送随机接入信令所使用的随机接入序列(Preamble)以及发送Preamble所使用的子帧(Subframe)以及物理资源块(PRB)。不同CEL对应的Msg1的重复发送次数不同,UE1、UE2、UE3按照eNB的配置信息在CEL0的PRACH信道上发送随机接入信令(Msg1);UE4按照eNB的配置信息在CEL1的PRACH信道上发送随机接入信令(Msg1);
eNB发送Msg2消息响应CEL0和CEL1等级的Msg1消息,且Msg2中包括UE3、UE4的随机接入响应信息,且Msg2按照CEL1等级对应的重复次数发送。
本实施例中,UE1只尝试解码CEL0等级对应的重复发送次数的Msg2消息,但UE1没有成功解码Msg2,则UE1按照以下至少之一重新发送随机接入信令:
重新发送的随机接入信令的重复发送次数由UE1的CEL等级信息确定;
UE1的CEL不发生改变时,重新发送的随机接入信令的重复发送次数与上一次发送时的重复发送次数相同;
当UE1的CEL为CEL0时,当UE1重新发送随机接入信令的次数小于CEL0对应的随机接入信令发送次数的上限,且UE1还可以提高所述随机接入信令的发送功率时,UE1继续采用CEL0对应的随机接入信令的重复发送次数重新发送随机接入信令,并且提高随机接入信令的发送功率;所述重新发送随机接入信令的发送时间指示信息为K1;
当UE1的CEL为CEL0时,当UE1重新发送随机接入信令的次数小于CEL0对应的随机接入信令发送次数的上限,且UE1不能再提高所述随机接入信令的发送功率时,UE1继续采用CEL0对应的随机接入信令的重复发送次数重新发送随机接入信令;所述重新发送随机接入信令的发送时间指示信息为K2;
当UE1的CEL为CEL0时,当UE1重新发送随机接入信令的次数大于或等于CEL0对应的随机接入信令发送次数的上限时,UE1采用CEL1所对应的随机接入信令的重复发送次数重新发送随机接入信令;所述重新发送随机接入信令的发送时间指示信息为K0;
其中,所述重新发送随机接入信令的发送时间指示信息是指重新发送随机接入信令与前一次随机接入响应消息的检测窗口结束时刻的时间间隔;
其中,K0<=K1<=K2;
本实施例中,UE2尝试解码CEL0、CEL1等级对应的重复发送次数的Msg2消息,并且在CEL1等级成功解码Msg2,但Msg2中没有发送给自己的随机接入响应信息,则UE2按照以下至少之一重新发送随机接入信令:
UE2重新发送的随机接入信令的重复发送次数由CEL1等级确定;
本实施例中,UE3尝试解码CEL0、CEL1等级对应的重复发送次数的Msg2消息,在CEL0没有成功解码Msg2,但是在CEL1等级成功解码Msg2,且Msg2包含送给自己的随机接入响应信息,则UE2在Msg3中发送以下至少之一信息:
指示eNB按照CEL1发送Msg4消息;
指示eNB发送Msg4的重复发送次数相比与CEL0对应的次数的增量信息;
指示eNB发送Msg4的重复发送次数;
实施例4:
在LTE系统中存在MTC UEs,并且MTC UEs可以支持覆盖增强(Coverage Enhancement,CE)。本实施例中,Msg1一共支持3个覆盖增强级别(Coverage Enhancement level,CEL),即CEL0、CEL1和CEL2。且UE1为CEL0的MTC UE,UE2为CEL1的MTC UE。基站(eNB)为各个CEL的MTC UE分配PRACH资源,包括发送随机接入信令所使用的随机接入序列(Preamble)以及发送Preamble所使用的子帧(Subframe)以及物理资源块(PRB)。不同CEL对应的Msg1的重复发送次数不同,UE1按照eNB的配置信息在CEL0的PRACH信道上发送随机接入信令(Msg1);UE2按照eNB的配置信息在CEL1的PRACH信道上发送随机接入信令(Msg1);
eNB发送Msg2消息响应UE1和UE2发送的Msg1消息,且UE1和UE2都正确解码了发送给自己的随机接入响应信息,则UE1和UE2分别发送Msg3消息给eNB。
本实施例中,eNB成功解码UE1发送的Msg3消息,并且发送Msg4给UE1,但UE1没有成功解码Msg4消息,UE1按照以下至少之一重新发送随机接入信令:
重新发送的随机接入信令的重复发送次数由UE1的CEL等级信息确定;
当UE1重新发送随机接入信令的次数小于CEL0的随机接入信令发送次数的上限,且UE1还可以提高所述随机接入信令的发送功率时,UE1不提高所述随机接入信令的发送功率;
当UE1重新发送随机接入信令的次数大于或等于CEL0的随机接入信令发送次数的上限时,UE1采用CEL1对应的随机接入信令的重复发送次数重新发送随机接入信令;并且UE1在新发送的Msg3中发送以下至少之一信息:
指示eNB增加Msg4的重复发送次数的指示信息;
指示eNB的Msg4的重复发送次数的增量信息;
指示eNB的Msg4的重复发送次数;
本实施例中,eNB成功解码UE2发送的Msg3消息,并且发送Msg4给UE2,UE2成功解码Msg4消息,但发现所述Msg4消息不是发送给自己的,UE2按照以下至少之一重新发送随机接入信令:
重新发送的随机接入信令的重复发送次数由UE2的CEL等级信息确定;
当UE2重新发送随机接入信令的次数小于CEL1的随机接入信令发送次数的上限,且UE2还可以提高所述随机接入信令的发送功率时,UE2不提高所述随机接入信令的发送功率;
当UE2重新发送随机接入信令的次数大于或等于CEL1的随机接入信令发送次数的上限时,UE2采用CEL2对应的随机接入信令的重复发送次数重新发送随机接入信令;
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
基于本发明实施例提供的上述技术方案,在满足第一条件的情况下,第二类节点重新发送随机接入信令Msg1,其中,该第一条件包括以下至少之一:该第二类节点没有成功解码随 机接入响应消息Msg2;该第二类节点成功解码随机接入响应消息Msg2,在解码的所述随机接入响应消息Msg2中并没有发送给该第二类节点的随机接入响应信息;该第一类节点没有成功解码Msg3消息;该第一类节点成功解码Msg3消息,并且发送Msg4给该第二类节点,该第二类节点没有成功解码Msg4消息;该第一类节点成功解码Msg3消息,并且发送Msg4给第二类节点,第二类节点成功解码Msg4消息,该Msg4消息不是发送给该第二类节点的,解决了用户终端接入LTE/LTE-A系统的接入质量不高的问题,提高了用户终端接入LTE/LTE-A系统的接入质量。

Claims (42)

  1. 一种随机接入信令的重新发送方法,包括:
    在满足第一条件的情况下,第二类节点重新发送随机接入信令Msg1,其中,所述第一条件包括以下至少之一:
    所述第二类节点没有成功解码随机接入响应消息Msg2;
    所述第二类节点成功解码随机接入响应消息Msg2,在解码的所述随机接入响应消息Msg2中并没有发送给所述第二类节点的随机接入响应信息;
    所述第一类节点没有成功解码Msg3消息;
    所述第一类节点成功解码Msg3消息,并且发送Msg4给所述第二类节点,所述第二类节点没有成功解码Msg4消息;
    所述第一类节点成功解码Msg3消息,并且发送Msg4给第二类节点,第二类节点成功解码Msg4消息,所述Msg4消息不是发送给所述第二类节点的。
  2. 根据权利要求1所述的方法,其中,当所述第一条件为所述第二类节点没有成功解码随机接入响应消息Msg2,且所述随机接入响应消息Msg2属于第一类的随机接入响应消息Msg2时,所述第二类节点按照以下至少之一重新发送随机接入信令Msg1包括:
    重新发送的随机接入信令Msg1的重复发送次数由所述第二类节点的等级信息确定;
    所述第二类节点的等级信息不发生改变时,重新发送的随机接入信令Msg1的重复发送次数与上一次发送时的重复发送次数相同;
    所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,所述第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:所述第二类节点继续采用等级i对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1;所述第二类节点提高重新发送所述随机接入信令Msg1的发送功率;所述第二类节点重新发送随机接入信令Msg1的发送时间指示信息为K1;
    所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,且所述第二类节点不能再提高所述随机接入信令Msg1的发送功率时,所述第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:所述第二类节点继续采用等级i对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1;所述第二类节点重新发送随机接入信令Msg1的发送时间指示信息为K2;
    在所述第二类节点的当前等级,且所述第二类节点不能再提高所述随机接入信令Msg1的发送功率时,Ni=1;
    所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数大于或等于等级i对应的随机接入信令Msg1发送次数的上限Ni,所述第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:所述第二类节点采用等级i的下一个等级所对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1;所述第二类节点重新发送随机接入信令Msg1的发送时间指示信息为K0;
    其中,所述重新发送随机接入信令Msg1的发送时间指示信息是指重新发送随机接入信令Msg1与前一次随机接入响应消息Msg2的检测窗口结束时刻的时间间隔;
    所述第一类随机接入响应消息Msg2是指所述随机接入响应消息Msg2中包括相同等级的所述第二类节点的随机接入响应信息。
  3. 根据权利要求2所述的方法,其中,包括:所述K0、所述K1和所述K2之间满足以下条件:
    K0<=K1<=K2。
  4. 根据权利要求2所述的方法,其中,包括:所述等级i对应的随机接入信令Msg1发送次数的上限Ni由所述第一类节点配置;不同等级对应的Ni取值不同。
  5. 根据权利要求3所述的方法,其中,当所述第一条件为第二类节点成功解码随机接入响应消息Msg2,但没有发送给所述第二类节点的随机接入响应信息,且所述随机接入响应消息Msg2属于第一类随机接入响应消息Msg2时,第二类节点按照以下至少之一重新发送随机接入信令Msg1包括:
    重新发送的随机接入信令Msg1的重复发送次数由所述第二类节点的等级信息确定;
    所述第二类节点的等级信息不发生改变时,重新发送的随机接入信令Msg1的重复发送次数与上一次发送时的重复发送次数相同;
    所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,所述第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:所述第二类节点继续采用等级i对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1,所述第二类节点提高重新发送所述随机接入信令Msg1的发送功率;所述第二类节点重新发送随机接入信令Msg1的发送时间指示信息为M1;
    所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,且所述第二类节点不能再提高所述随机接入信令Msg1的发送功率时,所述第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:所述第二类节点继续采用等级i对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1;所述第二类节点重新发送随机接入信令Msg1的发送时间指示信息为M2;
    所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数大于或等于等级i对应的随机接入信令Msg1发送次数的上限Ni,所述第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:所述第二类节点采用等级i的下一个等级所对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令;所述第二类节点重新发送随机接入信令Msg1的发送时间指示信息为M0;
    其中,所述第一类随机接入响应消息是指随机接入响应消息中只包括相同等级的所述第二类节点的随机接入响应信息;
    所述重新发送随机接入信令Msg1的发送时间指示信息是指重新发送随机接入信令与前一次随机接入响应消息Msg2的检测窗口结束时刻的时间间隔。
  6. 根据权利要求5所述的方法,其中,包括:所述M0、所述M1和所述M2之间满足以下条件:
    M0<=M1<=M2。
  7. 根据权利要求5所述的方法,其中,包括:所述等级i对应的随机接入信令Msg1发送次数的上限Ni由所述第一类节点配置;不同等级对应的Ni取值不同。
  8. 根据权利要求6所述的方法,其中,包括:所述K0、所述K1、所述K2、所述M0、所述M1和所述M2之间满足以下条件至少之一:
    K0<=M0;
    K1<=M1;
    K2<=M2。
  9. 根据权利要求1所述的方法,其中,当所述第一条件为所述第二类节点没有成功解码随机接入响应消息Msg2,且所述第二类节点只解码本等级的随机接入响应消息Msg2,且所述随机接入响应消息Msg2属于第二类随机接入响应消息Msg2时,所述第二类节点按照以下至少之一重新发送随机接入信令Msg1:
    重新发送的随机接入信令Msg1的重复发送次数由所述第二类节点的等级信息确定;
    所述第二类节点的等级信息不发生改变时,重新发送的随机接入信令Msg1的重复发送次数与上一次发送时的重复发送次数相同;
    所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,所述第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:所述第二类节点继续采用等级i对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1;所述第二类节点提高重新发送所述随机接入信令Msg1的发送功率;所述第二类节点重新发送随 机接入信令Msg1的发送时间指示信息为P(i)_1,i为所述等级索引,对于等级i;
    所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,且所述第二类节点不能再提高所述随机接入信令Msg1的发送功率时,所述第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:所述第二类节点继续采用等级i对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1;所述第二类节点重新发送随机接入信令Msg1的发送时间指示信息为P(i)_2;
    所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数大于或等于等级i对应的随机接入信令Msg1发送次数的上限Ni,所述第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:所述第二类节点采用等级i的下一个等级,对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1;所述第二类节点重新发送随机接入信令Msg1的发送时间指示信息为P(i)_0;
    其中,所述第二类随机接入响应消息Msg2是指随机接入响应消息Msg2中只包括一个或多个等级的所述第二类节点的随机接入响应信息;
    所述重新发送随机接入信令Msg1的发送时间指示信息是指重新发送随机接入信令Msg1与前一次随机接入响应消息Msg2的检测窗口结束时刻的时间间隔。
  10. 根据权利要求9所述的方法,其中,包括:所述P(i)_0、所述P(i)_1和所述P(i)_2之间满足以下条件:
    P(i)_0<=P(i)_1<=P(i)_2。
  11. 根据权利要求9所述的方法,其中,包括:所述等级i对应的随机接入信令Msg1发送次数的上限Ni由所述第一类节点配置;不同等级对应的Ni取值不同。
  12. 根据权利要求1所述的方法,其中,当所述第一条件为第二类节点没有成功解码所述第二类节点等级的随机接入响应消息Msg2,第二类节点解码高于所述第二类节点等级的随机接入响应消息Msg2没有成功,且所述随机接入响应消息Msg2属于第二类随机接入响应消息Msg2时,第二类节点按照以下至少之一重新发送随机接入信令Msg1:
    重新发送的随机接入信令的重复发送次数由所述第二类节点选择的新的等级信息确定;
    所述新的等级为第二类节点解码的随机接入响应消息Msg2的最高等级的下一个等级;
    所述第二类节点解码的随机接入响应消息Msg2的最高等级的索引信息由所述第一类节点发送给所述第二类节点;
    所述第二类随机接入响应消息Msg2是指随机接入响应消息Msg2中只包括一个或多个等级的所述第二类节点的随机接入响应信息。
  13. 根据权利要求1所述的方法,其中,当所述第一条件为第二类节点没有成功解码所述第二类节点等级的随机接入响应消息Msg2,所述第二类节点成功解码高于所述第二类节点等级的随机接入响应消息Msg2,且所述随机接入响应消息Msg2属于第二类随机接入响应消息Msg2时,所述第二类节点按照以下至少之一重新发送随机接入信令Msg1:
    重新发送的随机接入信令Msg1的重复发送次数由所述第二类节点选择的新的等级信息确定;其中,所述新的等级为第二类节点成功解码随机接入响应消息Msg2对应的等级;
    所述第二类随机接入响应消息Msg2是指随机接入响应消息Msg2中只包括一个或多个等级的所述第二类节点的随机接入响应信息。
  14. 根据权利要求1所述的方法,其中,当所述第一条件为第一类节点成功解码Msg3消息,并且发送Msg4给第二类节点,第二类节点没有成功解码Msg4消息时,第二类节点按照以下至少之一重新发送随机接入信令Msg1:
    重新发送的随机接入信令Msg1的重复发送次数由所述第二类节点所述的等级信息确定;
    所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,且所述第二类节点能提高所述随机接入信令Msg1的发送功率时,不提高所述随机接入信令的发送功率;
    所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数大于或等于等级i对应的随机接入信令Msg1发送次数的上限Ni,所述第二类节点采用等级i的下一个等级对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1。
  15. 根据权利要求14所述的方法,其中,所述第二类节点在Msg3中发送以下至少之一信息:
    指示第一类节点增加Msg4的重复发送次数的指示信息;
    第一类节点Msg4的重复发送次数的增量信息;
    第一类节点Msg4的重复发送次数。
  16. 根据权利要求14所述的方法,其中,包括:所述等级i对应的随机接入信令Msg1发送次数的上限Ni由所述第一类节点配置;不同等级对应的Ni取值不同。
  17. 根据权利要求1所述的方法,其中,当所述第一条件为当第一类节点成功解码Msg3消息,并且发送Msg4给第二类节点,第二类节点成功解码Msg4消息,不是发送给所述第二类节点时,所述第二类节点重新发送随机接入信令Msg1需要按照以下至少之一执行:
    重新发送的随机接入信令Msg1的重复发送次数由所述第二类节点所述的等级信息 确定;
    所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,且所述第二类节点能提高所述随机接入信令的发送功率时,不提高所述随机接入信令的发送功率;
    所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数大于或等于等级i对应的随机接入信令Msg1发送次数的上限Ni,所述第二类节点采用等级i的下一个等级,对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1。
  18. 根据权利要求17所述的方法,其中,包括:所述等级i对应的随机接入信令Msg1发送次数的上限Ni由所述第一类节点配置;不同等级对应的Ni取值不同。
  19. 根据权利要求1所述的方法,其中,当所述第一条件为第一类节点没有成功解码Msg3消息时,第二类节点按照以下至少之一重新发送随机接入信令Msg1:
    重新发送的随机接入信令Msg1的重复发送次数由所述第二类节点所述的等级信息确定;
    所述第二类节点采用等级i对应的随机接入信令Msg1的重复发送次数重新发送Msg1,如果所述第一类节点还是无法成功解码Msg3消息,则所述第二类节点采用等级i的下一个等级对应的随机接入信令Msg1的重复发送次数重新发送Msg1;其中,所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的发送次数的上限Ni。
  20. 根据权利要求2至19任一项所述的方法,其中,第二类节点的等级包括以下至少之一:
    覆盖增强等级;
    PRACH信道覆盖增强等级;
    PRACH信道重复发送等级。
  21. 根据权利要求1至20任一项所述的方法,其中,所述第一节点是以下至少之一:
    宏基站Macrocell、微基站Microcell、微微基站Picocell、毫微微基站Femtocell、家庭基站、低功率节点LPN及中继站Relay;
    其中,所述第二类节点包括以下至少之一:一个或多个人到人H2H通信终端;一个或多个机器到机器M2M通信终端;一个或多个设备到设备D2D通信终端。
  22. 一种随机接入信令的重新发送装置,包括:
    检测模块,设置为检测是否满足第一条件,其中,所述第一条件包括以下至少之一:
    所述第二类节点没有成功解码随机接入响应消息Msg2;
    所述第二类节点成功解码随机接入响应消息Msg2,在解码的所述随机接入响应消息Msg2中并没有发送给所述第二类节点的随机接入响应信息;
    所述第一类节点没有成功解码Msg3消息;
    所述第一类节点成功解码Msg3消息,并且发送Msg4给所述第二类节点,所述第二类节点没有成功解码Msg4消息;
    所述第一类节点成功解码Msg3消息,并且发送Msg4给第二类节点,第二类节点成功解码Msg4消息,所述Msg4消息不是发送给所述第二类节点的;
    发送模块,设置为在满足所述第一条件的情况下,第二类节点重新发送随机接入信令Msg1。
  23. 根据权利要求22所述的装置,其中,当所述第一条件为所述第二类节点没有成功解码随机接入响应消息Msg2,且所述随机接入响应消息Msg2属于第一类的随机接入响应消息Msg2时,所述发送模块按照以下至少之一重新发送随机接入信令Msg1包括:
    重新发送的随机接入信令Msg1的重复发送次数由所述第二类节点的等级信息确定;
    所述第二类节点的等级信息不发生改变时,重新发送的随机接入信令Msg1的重复发送次数与上一次发送时的重复发送次数相同;
    所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,所述第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:所述第二类节点继续采用等级i对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1;所述第二类节点提高重新发送所述随机接入信令Msg1的发送功率;所述第二类节点重新发送随机接入信令Msg1的发送时间指示信息为K1;
    所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,且所述第二类节点不能再提高所述随机接入信令Msg1的发送功率时,所述第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:所述第二类节点继续采用等级i对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1;所述第二类节点重新发送随机接入信令Msg1的发送时间指示信息为K2;
    在所述第二类节点的当前等级,且所述第二类节点不能再提高所述随机接入信令Msg1的发送功率时,所述Ni=1;
    所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数大于或等于等级i对应的随机接入信令Msg1发送次数的上限Ni,所述第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:所述第二类节点采 用等级i的下一个等级所对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1;所述第二类节点重新发送随机接入信令Msg1的发送时间指示信息为K0;
    其中,所述重新发送随机接入信令Msg1的发送时间指示信息是指重新发送随机接入信令Msg1与前一次随机接入响应消息Msg2的检测窗口结束时刻的时间间隔;
    所述第一类随机接入响应消息Msg2是指所述随机接入响应消息Msg2中包括相同等级的所述第二类节点的随机接入响应信息。
  24. 根据权利要求23所述的装置,其中,包括:所述K0、所述K1和所述K2之间满足以下条件:
    K0<=K1<=K2。
  25. 根据权利要求23所述的装置,其中,包括:所述等级i对应的随机接入信令Msg1发送次数的上限Ni由所述第一类节点配置;不同等级对应的Ni取值不同。
  26. 根据权利要求24所述的装置,其中,当所述第一条件为第二类节点成功解码随机接入响应消息Msg2,但没有发送给所述第二类节点的随机接入响应信息,且所述随机接入响应消息Msg2属于第一类随机接入响应消息Msg2时,所述发送模块按照以下至少之一重新发送随机接入信令Msg1包括:
    重新发送的随机接入信令Msg1的重复发送次数由所述第二类节点的等级信息确定;
    所述第二类节点的等级信息不发生改变时,重新发送的随机接入信令Msg1的重复发送次数与上一次发送时的重复发送次数相同;
    所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,所述第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:所述第二类节点继续采用等级i对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1,所述第二类节点提高重新发送所述随机接入信令Msg1的发送功率;所述第二类节点重新发送随机接入信令Msg1的发送时间指示信息为M1;
    所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,且所述第二类节点不能再提高所述随机接入信令Msg1的发送功率时,所述第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:所述第二类节点继续采用等级i对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1;所述第二类节点重新发送随机接入信令Msg1的发送时间指示信息为M2;
    所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数大于或等于等级i对应的随机接入信令Msg1发送次数的上限Ni,所述第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:所述第二类节点采 用等级i的下一个等级所对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令;所述第二类节点重新发送随机接入信令Msg1的发送时间指示信息为M0;
    其中,所述第一类随机接入响应消息是指随机接入响应消息中只包括相同等级的所述第二类节点的随机接入响应信息;
    所述重新发送随机接入信令Msg1的发送时间指示信息是指重新发送随机接入信令与前一次随机接入响应消息Msg2的检测窗口结束时刻的时间间隔。
  27. 根据权利要求26所述的装置,其中,包括:所述M0、所述M1和所述M2之间满足以下条件:
    M0<=M1<=M2。
  28. 根据权利要求26所述的装置,其中,包括:所述等级i对应的随机接入信令Msg1发送次数的上限Ni由所述第一类节点配置;不同等级对应的Ni取值不同。
  29. 根据权利要求27所述的装置,其中,包括:所述K0、所述K1、所述K2、所述M0、所述M1和所述M2之间满足以下条件至少之一:
    K0<=M0;
    K1<=M1;
    K2<=M2。
  30. 根据权利要求22所述的装置,其中,当所述第一条件为所述第二类节点没有成功解码随机接入响应消息Msg2,且所述第二类节点只解码本等级的随机接入响应消息Msg2,且所述随机接入响应消息Msg2属于第二类随机接入响应消息Msg2时,所述发送模块按照以下至少之一重新发送随机接入信令Msg1:
    重新发送的随机接入信令Msg1的重复发送次数由所述第二类节点的等级信息确定;
    所述第二类节点的等级信息不发生改变时,重新发送的随机接入信令Msg1的重复发送次数与上一次发送时的重复发送次数相同;
    所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,所述第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:所述第二类节点继续采用等级i对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1;所述第二类节点提高重新发送所述随机接入信令Msg1的发送功率;所述第二类节点重新发送随机接入信令Msg1的发送时间指示信息为P(i)_1,i为所述等级索引,对于等级i;
    所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接 入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,且所述第二类节点不能再提高所述随机接入信令Msg1的发送功率时,所述第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:所述第二类节点继续采用等级i对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1;所述第二类节点重新发送随机接入信令Msg1的发送时间指示信息为P(i)_2;
    所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数大于或等于等级i对应的随机接入信令Msg1发送次数的上限Ni,所述第二类节点重新发送随机接入信令Msg1的方式包括以下至少之一:所述第二类节点采用等级i的下一个等级,对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1;所述第二类节点重新发送随机接入信令Msg1的发送时间指示信息为P(i)_0;
    其中,所述第二类随机接入响应消息Msg2是指随机接入响应消息Msg2中只包括一个或多个等级的所述第二类节点的随机接入响应信息;
    所述重新发送随机接入信令Msg1的发送时间指示信息是指重新发送随机接入信令Msg1与前一次随机接入响应消息Msg2的检测窗口结束时刻的时间间隔。
  31. 根据权利要求30所述的装置,其中,包括:所述P(i)_0、所述P(i)_1和所述P(i)_2之间满足以下条件:
    P(i)_0<=P(i)_1<=P(i)_2。
  32. 根据权利要求30所述的装置,其中,包括:所述等级i对应的随机接入信令Msg1发送次数的上限Ni由所述第一类节点配置;不同等级对应的Ni取值不同。
  33. 根据权利要求22所述的装置,其中,当所述第一条件为第二类节点没有成功解码所述第二类节点等级的随机接入响应消息Msg2,第二类节点解码高于所述第二类节点等级的随机接入响应消息Msg2没有成功,且所述随机接入响应消息Msg2属于第二类随机接入响应消息Msg2时,所述发送模块按照以下至少之一重新发送随机接入信令Msg1:
    重新发送的随机接入信令的重复发送次数由所述第二类节点选择的新的等级信息确定;
    所述新的等级为第二类节点解码的随机接入响应消息Msg2的最高等级的下一个等级;
    所述第二类节点解码的随机接入响应消息Msg2的最高等级的索引信息由所述第一类节点发送给所述第二类节点;
    所述第二类随机接入响应消息Msg2是指随机接入响应消息Msg2中只包括一个或多个等级的所述第二类节点的随机接入响应信息。
  34. 根据权利要求22所述的装置,其中,当所述第一条件为第二类节点没有成功解码所述第二类节点等级的随机接入响应消息Msg2,所述第二类节点成功解码高于所述第二类节点 等级的随机接入响应消息Msg2,且所述随机接入响应消息Msg2属于第二类随机接入响应消息Msg2时,所述发送模块按照以下至少之一重新发送随机接入信令Msg1:
    重新发送的随机接入信令Msg1的重复发送次数由所述第二类节点选择的新的等级信息确定;其中,所述新的等级为第二类节点成功解码随机接入响应消息Msg2对应的等级;
    所述第二类随机接入响应消息Msg2是指随机接入响应消息Msg2中只包括一个或多个等级的所述第二类节点的随机接入响应信息。
  35. 根据权利要求22所述的装置,其中,当所述第一条件为第一类节点成功解码Msg3消息,并且发送Msg4给第二类节点,第二类节点没有成功解码Msg4消息时,所述发送模块按照以下至少之一重新发送随机接入信令Msg1:
    重新发送的随机接入信令Msg1的重复发送次数由所述第二类节点所述的等级信息确定;
    所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,且所述第二类节点能提高所述随机接入信令Msg1的发送功率时,不提高所述随机接入信令的发送功率;
    所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数大于或等于等级i对应的随机接入信令Msg1发送次数的上限Ni,所述第二类节点采用等级i的下一个等级对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1。
  36. 根据权利要求35所述的装置,其中,所述第二类节点在Msg3中发送以下至少之一信息:
    指示第一类节点增加Msg4的重复发送次数的指示信息;
    第一类节点Msg4的重复发送次数的增量信息;
    第一类节点Msg4的重复发送次数。
  37. 根据权利要求35所述的装置,其中,包括:所述等级i对应的随机接入信令Msg1发送次数的上限Ni由所述第一类节点配置;不同等级对应的Ni取值不同。
  38. 根据权利要求22所述的装置,其中,当所述第一条件为当第一类节点成功解码Msg3消息,并且发送Msg4给第二类节点,第二类节点成功解码Msg4消息,不是发送给所述第二类节点时,所述发送模块重新发送随机接入信令Msg1需要按照以下至少之一执行:
    重新发送的随机接入信令Msg1的重复发送次数由所述第二类节点所述的等级信息确定;
    所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接 入信令Msg1的次数小于等级i对应的随机接入信令Msg1发送次数的上限Ni,且所述第二类节点能提高所述随机接入信令的发送功率时,不提高所述随机接入信令的发送功率;
    所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的次数大于或等于等级i对应的随机接入信令Msg1发送次数的上限Ni,所述第二类节点采用等级i的下一个等级,对应的随机接入信令Msg1的重复发送次数重新发送随机接入信令Msg1。
  39. 根据权利要求38所述的装置,其中,包括:所述等级i对应的随机接入信令Msg1发送次数的上限Ni由所述第一类节点配置;不同等级对应的Ni取值不同。
  40. 根据权利要求22所述的装置,其中,当所述第一条件为第一类节点没有成功解码Msg3消息时,所述发送模块按照以下至少之一重新发送随机接入信令Msg1:
    重新发送的随机接入信令Msg1的重复发送次数由所述第二类节点所述的等级信息确定;
    所述第二类节点采用等级i对应的随机接入信令Msg1的重复发送次数重新发送Msg1,如果所述第一类节点还是无法成功解码Msg3消息,则所述第二类节点采用等级i的下一个等级对应的随机接入信令Msg1的重复发送次数重新发送Msg1;其中,所述第二类节点的当前等级为等级i,当所述第二类节点在等级i重新发送的随机接入信令Msg1的发送次数的上限Ni。
  41. 根据权利要求23至40任一项所述的装置,其中,第二类节点的等级包括以下至少之一:
    覆盖增强等级;
    PRACH信道覆盖增强等级;
    PRACH信道重复发送等级。
  42. 根据权利要求22至40任一项所述的装置,其中,所述第一节点是以下至少之一:
    宏基站Macrocell、微基站Microcell、微微基站Picocell、毫微微基站Femtocell、家庭基站、低功率节点LPN及中继站Relay;
    其中,所述第二类节点包括以下至少之一:一个或多个人到人H2H通信终端;一个或多个机器到机器M2M通信终端;一个或多个设备到设备D2D通信终端。
PCT/CN2015/089806 2015-04-10 2015-09-16 随机接入信令的重新发送方法及装置 WO2016161773A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017553133A JP2018511276A (ja) 2015-04-10 2015-09-16 ランダムアクセスシグナリング再送信方法及び装置
EP15888325.6A EP3282800A4 (en) 2015-04-10 2015-09-16 Random access signaling resending method and apparatus
US15/563,609 US10455448B2 (en) 2015-04-10 2015-09-16 Random access signalling resending method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510170360.0 2015-04-10
CN201510170360.0A CN106162923A (zh) 2015-04-10 2015-04-10 随机接入信令的重新发送方法及装置

Publications (1)

Publication Number Publication Date
WO2016161773A1 true WO2016161773A1 (zh) 2016-10-13

Family

ID=57071714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089806 WO2016161773A1 (zh) 2015-04-10 2015-09-16 随机接入信令的重新发送方法及装置

Country Status (5)

Country Link
US (1) US10455448B2 (zh)
EP (1) EP3282800A4 (zh)
JP (1) JP2018511276A (zh)
CN (1) CN106162923A (zh)
WO (1) WO2016161773A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019028753A1 (en) * 2017-08-10 2019-02-14 Zte Corporation RANDOM ACCESS CONFIGURATIONS

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109302746B (zh) * 2017-11-17 2019-11-01 华为技术有限公司 检测窗指示方法及装置
CN108513724B (zh) * 2018-01-12 2022-09-09 北京小米移动软件有限公司 数据传输方法、装置及数据发送端
CN110351708B (zh) * 2018-04-03 2020-11-13 维沃移动通信有限公司 标识上报的方法、设备和介质
JP7248675B2 (ja) 2018-06-28 2023-03-29 株式会社Nttドコモ 端末、無線通信方法、基地局及びシステム
EP3817495A4 (en) * 2018-06-28 2022-03-09 Ntt Docomo, Inc. USER TERMINAL
US11134511B2 (en) * 2018-07-09 2021-09-28 Qualcomm Incorporated System and method for repetition of scheduling information on a control channel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101651892A (zh) * 2008-08-11 2010-02-17 华为技术有限公司 随机接入的方法、装置及系统
CN102917433A (zh) * 2012-10-11 2013-02-06 北京创毅讯联科技股份有限公司 一种机器类通信终端的接入方法及基站、终端
CN102934469A (zh) * 2010-06-18 2013-02-13 富士通株式会社 无线通信方法、无线通信装置以及无线通信系统
WO2014082253A1 (en) * 2012-11-29 2014-06-05 Nokia Corporation Methods for device-to-device connection re-establishment and related user equipments and radio access node

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2472362B (en) 2006-11-02 2011-03-16 Nec Corp Wireless communication system and method of controlling a transmission power
EP2422573A1 (en) * 2009-04-23 2012-02-29 InterDigital Patent Holdings, Inc. Base station assistance for random access performance improvement
CN102668683B (zh) 2010-02-12 2014-07-09 上海贝尔股份有限公司 针对mtc的网络接入方法和系统
GB201005312D0 (en) 2010-03-30 2010-05-12 Vodafone Ip Licensing Ltd Device and method of operation
CN102448158B (zh) * 2010-10-11 2014-12-31 工业和信息化部电信传输研究所 一种td-scdma系统移动终端随机接入方法
CN102548012B (zh) * 2010-12-22 2019-03-15 中兴通讯股份有限公司 一种随机接入方法及终端
CN103379656B (zh) 2012-04-13 2017-03-22 普天信息技术研究院有限公司 一种随机接入方法以及相关装置
US9445446B2 (en) * 2012-07-09 2016-09-13 Industrial Technology Research Institute Method and apparatus for device to device communication
CN104519591A (zh) 2013-09-27 2015-04-15 中兴通讯股份有限公司 一种随机接入响应消息的处理方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101651892A (zh) * 2008-08-11 2010-02-17 华为技术有限公司 随机接入的方法、装置及系统
CN102934469A (zh) * 2010-06-18 2013-02-13 富士通株式会社 无线通信方法、无线通信装置以及无线通信系统
CN102917433A (zh) * 2012-10-11 2013-02-06 北京创毅讯联科技股份有限公司 一种机器类通信终端的接入方法及基站、终端
WO2014082253A1 (en) * 2012-11-29 2014-06-05 Nokia Corporation Methods for device-to-device connection re-establishment and related user equipments and radio access node

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3282800A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019028753A1 (en) * 2017-08-10 2019-02-14 Zte Corporation RANDOM ACCESS CONFIGURATIONS

Also Published As

Publication number Publication date
EP3282800A4 (en) 2018-04-11
US10455448B2 (en) 2019-10-22
CN106162923A (zh) 2016-11-23
JP2018511276A (ja) 2018-04-19
EP3282800A1 (en) 2018-02-14
US20180084455A1 (en) 2018-03-22

Similar Documents

Publication Publication Date Title
TWI795455B (zh) 針對共享頻譜下行鏈路的半持久排程
US10271355B2 (en) Non-contention random access method, node, system, and computer storage medium
WO2016161773A1 (zh) 随机接入信令的重新发送方法及装置
EP2869489B1 (en) Method of handling coverage enhancement in wireless communication system
US9668280B2 (en) Method of handling random access in wireless communication system
US20150117374A1 (en) Method of Handling Random Access in Wireless Communication System
KR20190067891A (ko) 비스케줄링된 업링크에 대한 harq 피드백
WO2019029498A1 (zh) 一种通信的方法和装置
CA2923551A1 (en) Communications device and method for improving the transmission of random access messages
WO2014177092A1 (zh) 随机接入响应消息的处理方法、第一节点
JP2022078280A (ja) 通信システム
US11825514B2 (en) Repetitive random access transmissions
JP2022528514A (ja) ランダムアクセス方法、端末装置及びネットワーク装置
WO2016165388A1 (zh) 随机接入的处理方法及装置
WO2021057793A1 (en) Method and apparatus for random access procedure
EP3791505A1 (en) Arq/harq-related procedure for grant-free random access
US20130176930A1 (en) Method of Handling Hybrid Automatic Repeat Request Resources in Wireless Communication System
CN115211216A (zh) 两步随机接入过程中的反馈报告
EP3619961B1 (en) Requesting system information in a wireless communication network
WO2017101569A1 (zh) 下行信息的发送方法及装置
WO2015016174A1 (ja) 無線基地局及び移動局
WO2023272549A1 (en) Techniques for coordinating sidelink feedback channel resources
Alsewaidi et al. A study on the influence of m2m gateways on the radio access channel of lte-a
WO2020164141A1 (zh) 随机接入响应的发送和接收方法、装置和系统
WO2016165428A1 (zh) 消息的资源配置方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888325

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15563609

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017553133

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE