WO2016161738A1 - 一种srs的发送和接收的方法和装置 - Google Patents

一种srs的发送和接收的方法和装置 Download PDF

Info

Publication number
WO2016161738A1
WO2016161738A1 PCT/CN2015/087113 CN2015087113W WO2016161738A1 WO 2016161738 A1 WO2016161738 A1 WO 2016161738A1 CN 2015087113 W CN2015087113 W CN 2015087113W WO 2016161738 A1 WO2016161738 A1 WO 2016161738A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
value
antenna
period
antennas
Prior art date
Application number
PCT/CN2015/087113
Other languages
English (en)
French (fr)
Inventor
吴强
刘建琴
刘鹍鹏
张雷鸣
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201580067806.5A priority Critical patent/CN107005390A/zh
Publication of WO2016161738A1 publication Critical patent/WO2016161738A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present invention relates to the field of communications, and in particular, to a method for transmitting a sounding reference signal SRS.
  • the downlink multiple access method usually adopts OFDMA ( Orthogonal Frequency Division Multiple Access (Orthogonal Frequency Division Multiple Access).
  • OFDMA Orthogonal Frequency Division Multiple Access
  • the downlink resources of the system are divided into OFDM (Orthogonal Frequency Division Multiple) symbols in terms of time, and are divided into subcarriers in terms of frequency.
  • a normal uplink subframe includes two slots, each slot has 7 OFDM symbols, and a normal downlink subframe contains 14 symbols and is defined.
  • the size of the RB may also be referred to as a PRB.
  • An RB has 12 subcarriers in the frequency domain and a half subframe duration (slot) in the time domain, that is, 7 symbols, wherein the normal CP (Cyclic Prefix) length symbol is 7 OFDM symbols, the extended cyclic prefix length symbol is 6 OFDM symbols).
  • a certain subcarrier within a certain OFDM symbol is called an RE (Resource Element), so one RB contains 84 or 72 REs.
  • a pair of RBs of two slots is called a resource block pair, that is, an RB pair.
  • the fourth of the 7 symbols of a slot is the uplink demodulation pilot.
  • the data is carried on the symbol.
  • MIMO Multi-Input & Multi-Output
  • y is the received signal vector and H is the channel model matrix.
  • H is the channel model matrix.
  • s is the transmitted signal vector
  • n is the measurement noise
  • the transmitted signal vector s is precoded at the transmitting end. Precoding is performed to obtain a precoded matrix, which is subjected to a superposition of measurement noise n through a channel model matrix H, and receives a received signal vector at the receiving end.
  • a User Equipment sends a Sounding Reference Signal (SRS) to an Evolved Node B (eNB).
  • SRS Sounding Reference Signal
  • eNB Evolved Node B
  • the UE when the UE is at 2 antennas, there are only two antennas that transmit SRS to the eNB; however, the current commercial terminal device or user equipment already supports 4 antennas. However, the case where the four antennas transmit SRS has not been defined. Further, if the SRS is transmitted to the eNB by using two antennas, and the SRS is transmitted to the eNB using the four antennas, the eNB cannot obtain the channel between the transmitting and receiving antennas, resulting in a large performance loss.
  • the embodiment of the present invention provides a method for transmitting a sounding reference signal SRS, a user equipment, and a base station, which overcomes the problem that the SRS cannot be transmitted in a conventional manner when the antenna is transmitted by the four antennas, and improves the performance of the system.
  • an embodiment of the present invention provides a method for transmitting a sounding reference signal SRS, where a user equipment UE determines a coverage range for transmitting an SRS, and the UE uses one antenna of four antennas to a base station eNB in one frequency hopping sub-period.
  • one frequency hopping period includes at least two frequency hopping sub-periods, and a frequency band covered by an SRS transmitted by any one antenna in at least one time period is different, and the time period is four consecutive frequency hopping periods; And in each hopping period, the frequency range of the SRSs that are sent in each hopping sub-period is different, and in each hopping period, the frequency range of the SRSs sent by all the hopping sub-cycles is Coverage.
  • the SRS sent by any one of the UEs covers the coverage of the SRS in the four consecutive hopping periods.
  • the UE is in the four consecutive frequency hopping periods
  • the frequency width of the ith hopping sub-period of each hopping period is the same, where i is any positive integer.
  • the number of the frequency hopping sub-cycles included in the one hopping period is K;
  • the number of frequency hopping sub-cycles included in the one hopping period is K;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • is a constant, and when the value of K is an integer multiple of 8, 6, 10, 18, the value of ⁇ is 1; when the value of K is not 8, 6, 10, When the integer value is 18, the value of ⁇ is 0; the mod is a modulo symbol; wherein ⁇ is a constant, and when the value of K is an integer multiple of 6, 10, 18, the value of ⁇ is 0. When the value of K is not an integer multiple of 6, 10, 18, the value of ⁇ is 1.
  • the number of frequency hopping sub-cycles included in the one hopping period is K;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the value of K is an integer multiple of 8, or the value of K is 6 or 10 or 18, the ⁇ The value is 1; when the value of K is not an integer multiple of 8, and K is not 6, 10, 18, the value of ⁇ is 0; wherein ⁇ is a constant, when the value of K is At 6, 10, 18, the value of ⁇ is 0; when the value of K is not 6, 10, 18, the value of ⁇ is 1.
  • the number of frequency hopping sub-cycles included in the one hopping period is K;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and when the value of K is an integer multiple of 4, it satisfies :
  • is a constant, and when the value of K is an integer multiple of 8, the value of ⁇ is 1; when the value of K is not an integer multiple of 8, the value of ⁇ is 0; the mod is a modulo symbol;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the number of frequency hopping sub-cycles included in the one hopping period is K;
  • is a constant, and when the value of K is an integer multiple of 8, the value of ⁇ is 1; when the value of K is not an integer multiple of 8, the value of ⁇ is 0; the mod is a modulo symbol;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the embodiment of the present invention provides a method for transmitting a sounding reference signal SRS, which is characterized in that: the user equipment UE determines a frequency hopping sub-period; and the UE uses the at least one of the frequency hopping sub-cycles. Two of the four antennas transmit an SRS to the base station eNB.
  • the sending, by the two of the four antennas, the SRS to the base station eNB includes:
  • 2 antennas of the 4 antennas transmit SRS to the eNB during at least one frequency hopping sub-period; and 2 antennas of the 4 antennas to the eNB in at least another frequency hopping sub-period Send SRS.
  • the two antennas of the four antennas send the SRS to the base station eNB, including:
  • two of the four antennas transmit an SRS to the eNB;
  • the other two of the four antennas transmit an SRS to the eNB.
  • the second one of the four antennas sends an SRS to the base station eNB, specifically:
  • the number a (n SRS ) of the antenna group in which the nth SRS SRSs are transmitted by the UE to the base station eNB is satisfied with the n SRS relationship.
  • the constant is, and when the value of K is an integer multiple of 4, the value of ⁇ is 1; when the value of K is not an integer multiple of 4, the value of ⁇ is 0.
  • the mod is a modulo symbol, and one value of each of the a(n SRS ) corresponds to one antenna group, and the a(n SRS ) is used to indicate that the transmission station is in the nth SRS frequency hopping sub-period The antenna of the SRS.
  • the two values of the a(n SRS ) correspond to the first antenna combination and the second antenna combination, respectively, the first antenna The combination is two of the four antennas, and the second antenna combination is the other two of the four antennas.
  • the UE uses an antenna corresponding to the second element B and an antenna corresponding to the fourth element D as the second antenna combination;
  • the first element A, the second element B, the third element C, and the fourth element D are respectively weighted by the four antennas, and the first element A, the second element B, and the third element C, Four element D is a precoding matrix vector with rank 1. Elements.
  • an embodiment of the present invention provides a method for receiving a sounding reference signal SRS:
  • the base station eNB determines the coverage of the received SRS; the eNB receives, in one frequency hopping sub-cycle, an SRS sent by the user equipment UE using one of the four antennas; wherein one hop period includes at least two frequency hopping sub-cycles, And in at least one time period, the frequency bands covered by the received SRS transmitted by any one antenna are different, the time period is four consecutive frequency hopping periods; and in each frequency hopping period, in each frequency hopping frequency The frequency range of the SRSs received by the period is different, and in each frequency hopping period, the frequency range occupied by the SRSs received by all the frequency hopping sub-cycles is the coverage range.
  • the SRS sent by any one antenna received by the eNB covers the coverage of the SRS in the four consecutive frequency hopping periods.
  • the eNB is in the four consecutive frequency hopping weeks During the period, the frequency width of the ith hopping sub-period received in each hopping period is the same, where i is any positive integer.
  • the number of the frequency hopping sub-cycles included in the one hopping period is K;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • is a constant, and when the value of K is an integer multiple of 8, 6, 10, 18, the value of ⁇ is 1; when the value of K is not 8, 6, 10, When the integer value is 18, the value of ⁇ is 0; the mod is a modulo symbol; wherein ⁇ is a constant, and when the value of K is an integer multiple of 6, 10, 18, the value of ⁇ is 0. When the value of K is not an integer multiple of 6, 10, 18, the value of ⁇ is 1.
  • the number of frequency hopping sub-cycles included in the one hopping period is K;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the number of frequency hopping sub-cycles included in the one hopping period is K;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and when the value of K is an integer multiple of 4, it satisfies :
  • is a constant, and when the value of K is an integer multiple of 8, the value of ⁇ is 1; when the value of K is not an integer multiple of 8, the value of ⁇ is 0; the mod is a modulo symbol;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the number of frequency hopping sub-cycles included in the one hopping period is K;
  • is a constant, and when the value of K is an integer multiple of 8, the value of ⁇ is 1; when the value of K is not an integer multiple of 8, the value of ⁇ is 0; the mod is a modulo symbol;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • an embodiment of the present invention provides a method for receiving a sounding reference signal SRS, where a base station eNB determines a frequency hopping sub-period; and the eNB receives the UE using 4 antennas in at least one of the frequency hopping sub-cycles.
  • the 2 antennas are sent by the SRS.
  • the receiving, by the UE, the SRS sent by using the two antennas of the four antennas specifically, receiving, in the at least one frequency hopping sub-period, receiving the four antennas
  • Two antennas transmit an SRS to the eNB; and in at least another frequency hopping sub-cycle, receive two other antennas of the four antennas to transmit an SRS to the eNB.
  • the eNB receives an SRS that is sent by the UE by using two antennas of four antennas, and specifically includes: During the kth frequency hopping sub-period, the eNB receives the SRS sent by the 2 antennas of the 4 antennas to the eNB; in the k+1th hopping sub-period and/or at the k-1th hop During the frequency sub-period, the eNB receives the other two antennas of the four antennas to transmit an SRS to the eNB.
  • the eNB receives an SRS that is sent by the UE by using two antennas of four antennas, and specifically includes: Determining, by the eNB, the number K of receiving the SRS signal in the one hop period;
  • the eNB receives SRS of n-th sub-band is located SRS transmission numbers a (n SRS) Relationship between the UE and the n-SRS, satisfying:
  • is a constant, and when the value of K is an integer multiple of 4, the value of ⁇ is 1; when the value of K is not an integer multiple of 4, the value of ⁇ is 0:
  • the mod is a modulo symbol, and one value of each of the a(n SRS ) corresponds to one antenna combination, and is used to indicate that the antenna of the SRS is transmitted in the nth SRS hop sub-periods.
  • the two values of the a(n SRS ) correspond to the first antenna combination and the second antenna combination, respectively, the first antenna The combination is two of the four antennas, and the second antenna combination is the other two of the four antennas.
  • the method further includes: determining, by the eNB, an antenna corresponding to the first element A and the third element C The corresponding antenna is the first antenna combination; the eNB determines that the antenna corresponding to the second element B and the antenna corresponding to the fourth element D are the second antenna combination; wherein, the first element A, the second element B, a third element C, a fourth element D, respectively weighting the four antennas, and the first element A, the second element B, the third element C, and the fourth element D are precoding of rank 1.
  • Matrix vector Elements are provided.
  • an embodiment of the present invention provides a user equipment (UE), which is characterized in that: a determining unit is configured to determine a coverage range for transmitting an SRS; and a sending unit is configured to use one of four antennas in one frequency hopping sub-period
  • the antenna sends an SRS to the base station eNB; wherein one hop period includes at least two frequency hopping sub-cycles, and the frequency band covered by the SRS transmitted by any antenna in at least one time period is different, and the time period is four consecutive a frequency hopping period; and in each hopping period, the frequency range occupied by the SRSs transmitted in each hopping sub-period is different, and in each hopping period, the SRSs of all the hopping sub-cycles are occupied.
  • the frequency range is the coverage.
  • the sending unit sends the coverage of the SRS by using the SRS sent by using any one of the antennas.
  • the sending unit sends the same frequency width in the ith frequency hopping sub-period of each hopping period in the four consecutive hopping periods, where i is any positive integer.
  • the number of the frequency hopping sub-cycles included in the one hopping period is K;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • is a constant, and when the value of K is an integer multiple of 8, 6, 10, 18, the value of ⁇ is 1; when the value of K is not 8, 6, 10, When the integer value is 18, the value of ⁇ is 0; the mod is a modulo symbol; wherein ⁇ is a constant, and when the value of K is an integer multiple of 6, 10, 18, the value of ⁇ is 0. When the value of K is not an integer multiple of 6, 10, 18, the value of ⁇ is 1.
  • the number of frequency hopping sub-cycles included in the one hopping period is K;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the number of frequency hopping sub-cycles included in the one hopping period is K;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and when the value of K is an integer multiple of 4, it satisfies :
  • is a constant, and when the value of K is an integer multiple of 8, the value of ⁇ is 1; when the value of K is not an integer multiple of 8, the value of ⁇ is 0; the mod is a modulo symbol;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the number of frequency hopping sub-cycles included in the one hopping period is K;
  • is a constant, and when the value of K is an integer multiple of 8, the value of ⁇ is 1; when the value of K is not an integer multiple of 8, the value of ⁇ is 0; the mod is a modulo symbol;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the embodiment of the present invention provides a user equipment (UE), including a determining unit, configured to determine a frequency hopping sub-period, and a sending unit, configured to use the four antennas in at least one of the hopping sub-periods.
  • the two antennas transmit the SRS to the base station eNB.
  • the sending unit sends the SRS to the base station eNB by using the two of the four antennas, specifically, that, in the at least one frequency hopping sub-period, the sending unit Transmitting an SRS to the eNB using two of the four antennas; and transmitting, by the other two antennas of the four antennas, an SRS to the eNB in at least another frequency hopping sub-period.
  • the sending unit sends the SRS to the base station eNB by using the two antennas of the four antennas, including: In the kth frequency hopping sub-period, the transmitting unit sends an SRS to the eNB using 2 antennas of the 4 antennas; in the k+1th hopping sub-period and/or at the k-1th In the frequency hopping sub-period, the transmitting unit transmits an SRS to the eNB using the other two antennas of the four antennas.
  • the sending unit sends the SRS to the base station eNB by using the two of the four antennas, specifically:
  • the determining unit is further configured to determine a number K of sending the SRS signal in the one hopping period;
  • the number a (n SRS ) of the antenna group in which the nth SRS SRSs are transmitted by the transmitting unit to the base station eNB is related to the n SRS , and satisfies:
  • the number a (n SRS ) of the antenna group where the nth SRS SRSs are transmitted by the sending unit to the base station eNB is related to the n SRS , and satisfies:
  • is a constant, and when the value of K is an integer multiple of 4, the value of ⁇ is 1; when the value of K is not an integer multiple of 4, the value of ⁇ is 0:
  • the mod is a modulo symbol, and each of the one values corresponds to one antenna group, and the a(n SRS ) is used to indicate an antenna that transmits the SRS in the nth SRS frequency hopping sub-period .
  • the two values of the a(n SRS ) correspond to the first antenna combination and the second antenna combination, respectively, the first antenna The combination is two of the four antennas, and the second antenna combination is the other two of the four antennas.
  • the determining unit is further configured to determine an antenna corresponding to the first element A and the The antenna corresponding to the third element C is the first antenna combination; the determining unit is further configured to determine that the antenna corresponding to the second element B and the antenna corresponding to the fourth element D are the second antenna combination; The first element A, the second element B, the third element C, and the fourth element D are respectively weighted by the four antennas, and the first element A, the second element B, the third element C, and the fourth element D is a rank 1 precoding matrix vector Elements.
  • the embodiment of the present invention provides a base station apparatus, including: a determining unit, configured to determine a coverage range of a received SRS, and a receiving unit, configured to receive, by using a four antennas, a user equipment UE in a frequency hopping sub-period An SRS sent by an antenna; wherein a frequency hopping period includes at least two frequency hopping sub-periods, and in at least one time period, a frequency band covered by an SRS transmitted by any one of the received antennas is different, and the time period is Four consecutive frequency hopping periods; and in each frequency hopping period, the frequency ranges occupied by the SRSs received in each frequency hopping sub-cycle are different, and in each frequency hopping period, all of the frequency hopping sub-cycles are received The frequency range occupied by the SRS is the coverage.
  • the receiving unit receives the SRS sent by any one of the antennas to cover the coverage of the SRS.
  • the receiving unit in the four consecutive frequency hopping periods, has the same frequency width of the ith hopping sub-period received in each hopping period, where , i is any positive integer.
  • the number of the frequency hopping sub-cycles included in the one hopping period is K;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • is a constant, and when the value of K is an integer multiple of 8, 6, 10, 18, the value of ⁇ is 1; when the value of K is not 8, 6, 10, When the integer value is 18, the value of ⁇ is 0; the mod is a modulo symbol; wherein ⁇ is a constant, and when the value of K is an integer multiple of 6, 10, 18, the value of ⁇ is 0. When the value of K is not an integer multiple of 6, 10, 18, the value of ⁇ is 1.
  • the number of frequency hopping sub-cycles included in the one hopping period is K;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the number of frequency hopping sub-cycles included in the one hopping period is K;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and when the value of K is an integer multiple of 4, it satisfies :
  • is a constant, and when the value of K is an integer multiple of 8, the value of ⁇ is 1; when the value of K is not an integer multiple of 8, the value of ⁇ is 0; the mod is a modulo symbol;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the number of frequency hopping sub-cycles included in the one hopping period is K;
  • is a constant, and when the value of K is an integer multiple of 8, the value of ⁇ is 1; when the value of K is not an integer multiple of 8, the value of ⁇ is 0; the mod is a modulo symbol;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • an embodiment of the present invention provides a base station apparatus, including: a determining unit, configured to determine a frequency hopping sub-period; and a receiving unit, configured to receive, by using the UE, in at least one of the frequency hopping sub-cycles.
  • SRS transmitted by 2 antennas in the antenna.
  • the receiving, by the UE, the SRS that is sent by using the two antennas of the four antennas specifically: receiving the four antennas in at least one frequency hopping sub-period Two antennas transmit an SRS to the eNB; and in at least another frequency hopping sub-cycle, receive two other antennas of the four antennas to transmit an SRS to the eNB.
  • the receiving unit when the receiving unit receives the SRS sent by the UE by using two antennas of the four antennas, specifically includes:
  • the receiving unit receives an SRS sent by the two antennas of the four antennas to the eNB;
  • the receiving unit receives the other two antennas of the four antennas to transmit an SRS to the eNB in the k+1th hopping sub-period and/or in the k-1th hopping sub-period.
  • the receiving, by the receiving unit, the SRS that is sent by the UE using two antennas of the four antennas specifically includes:
  • the determining unit is further configured to determine a number K of receiving the SRS signal in the one frequency hopping period;
  • the receiving unit receives the sub-band number a (n SRS ) where the n-th SRS SRSs sent by the UE is located, and the n SRS relationship, and satisfies:
  • the receiving unit receives the sub-band number a (n SRS ) where the n-th SRS SRSs sent by the UE is located, and the n SRS relationship, and satisfies:
  • is a constant, and when the value of K is an integer multiple of 4, the value of ⁇ is 1; when the value of K is not an integer multiple of 4, the value of ⁇ is 0:
  • the mod is a modulo symbol, and a value of each of the a(n SRS ) corresponds to one antenna combination, and is used to indicate that the antenna of the SRS is sent in the nth SRS frequency hopping sub-period.
  • the two values of the a(n SRS ) correspond to the first antenna combination and the second antenna combination, respectively, the first antenna The combination is two of the four antennas, and the second antenna combination is the other two of the four antennas.
  • the determining unit is further configured to determine that the antenna corresponding to the first element A and the antenna corresponding to the third element C are the first antenna combination;
  • the determining unit is further configured to determine that the antenna corresponding to the second element B and the antenna corresponding to the fourth element D are the second antenna combination;
  • the first element A, the second element B, the third element C, and the fourth element D are respectively weighted by the four antennas, and the first element A, the second element B, and the third element C, Four element D is a precoding matrix vector with rank 1. Elements.
  • the embodiment of the present invention improves the speed at which the system acquires channel information by determining that the SRS is transmitted by using different antennas in a determined period and completing coverage of each antenna in a plurality of periods. System performance.
  • FIG. 1 is a flowchart of a method for a user equipment UE to send an SRS according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a method for a user equipment UE to send an SRS according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a method for a user equipment UE to send an SRS according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a method for a base station eNB to receive an SRS according to an embodiment of the present invention.
  • FIG. 5 is a flowchart of a method for a base station eNB to receive an SRS according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of a method for a base station eNB to receive an SRS according to an embodiment of the present invention.
  • FIG. 7 is a flowchart of a method for a user equipment UE and a base station eNB to send and receive SRS according to an embodiment of the present invention.
  • FIG. 8 is a timing diagram of user equipment UE and base station eNB transmitting and receiving SRS according to an embodiment of the present invention. Figure.
  • FIG. 9 is a structural diagram of a device of a user equipment UE according to an embodiment of the present invention.
  • FIG. 10 is a structural diagram of a device of a user equipment UE according to an embodiment of the present invention.
  • FIG. 11 is a structural diagram of a device of a user equipment UE according to an embodiment of the present invention.
  • FIG. 12 is a structural diagram of a device of a base station eNB according to an embodiment of the present invention.
  • FIG. 13 is a structural diagram of a device of a base station eNB according to an embodiment of the present invention.
  • FIG. 14 is a structural diagram of a device of a base station eNB according to an embodiment of the present invention.
  • the base station involved in the present invention may be, but not limited to, a Node B, a base station (BS), an access point (Access Point), a transmission point (TP), and an evolved Node B (Evolved Node). B, eNB) or relay, etc.; the user equipment UE involved in the present invention may be, but not limited to, including a mobile station (Mobile Station, MS), a relay, a mobile telephone, a mobile phone (handset). ) and portable equipment, mobile or non-mobile terminals.
  • FIG. 1 is a schematic flowchart of a communication method according to an embodiment of the present invention, and relates to a method for transmitting a sounding reference signal SRS:
  • Step 101 The user equipment UE determines a coverage range for sending the SRS.
  • Step 102 The UE sends an SRS to the base station eNB by using one of the four antennas in one frequency hopping sub-period;
  • one frequency hopping period includes at least two frequency hopping sub-periods, and the frequency band covered by the SRS transmitted by any of the antennas in at least one time period is different, and the time period is four consecutive frequency hopping periods;
  • the frequency hopping period the frequency range of the SRSs that are sent in each of the hopping sub-cycles is different, and in each hopping period, the frequency range occupied by the SRSs sent by all the hopping sub-cycles is the coverage range.
  • the UE sends the SRS to the base station, due to The frequency range of the SRS that is sent by each hop sub-period is different, and the coverage of the SRS can be quickly covered in the frequency hopping process, and the characteristics of the channel can be obtained in the early stage of the frequency hopping process, thereby improving the system. effectiveness.
  • FIG. 2 is a schematic flowchart of a communication method according to an embodiment of the present invention, and relates to a method for transmitting a sounding reference signal SRS:
  • Step 201 The user equipment UE determines a coverage range for sending the SRS.
  • the range that is, the range in which the SRS signal that the UE sends multiple SRSs to the eNB cannot exceed.
  • This range can be an overall range.
  • the range may be determined according to the value of the uplink bandwidth, and a part of the uplink bandwidth or the uplink bandwidth may be selected, or may be determined according to specific service requirements.
  • this determination may be controlled by static, semi-static or dynamic scheduling, or determined by the UE itself, or may be determined by the eNB scheduling the UE.
  • the specific frequency hopping mode can be determined by the base station and then sent to the UE, or obtained through negotiation between the base station and the UE.
  • Step 202 The UE sends an SRS to the base station eNB by using one of the four antennas in one frequency hopping sub-period; wherein one hop period includes at least two frequency hopping sub-cycles, and any one antenna is at least one time
  • the frequency bands covered by the SRS transmitted in the segment are different, and the time period is four consecutive frequency hopping periods; and in each frequency hopping period, the frequency range of the SRSs transmitted in each frequency hopping sub-period is different, and In each hopping period, the frequency range occupied by the SRSs sent by all the hopping sub-cycles is the coverage range.
  • the UE may perform hopping, that is, in a certain coverage, the position of the frequency band where the SRS is located is performed in two adjacent time intervals.
  • This conversion rule can be done in a specific way.
  • this rule can be a frequency hopping period in which n frequency hopping sub-cycles are included.
  • n is an integer greater than or equal to 2.
  • the UE transmits an SRS to the base station using one antenna of 4 antennas.
  • the SRS signal sent by the UE covers the entire coverage.
  • the value of the n may be associated with the number of nodes in the frequency hopping process, where the node may refer to a frequency band bandwidth of the SRS sent by the UE at a time, that is, a frequency band position, and the number of nodes may refer to a frequency hopping.
  • the width of a node contained in one of the coverage areas For example, in Table 1, the coverage is determined to be In the case of 6PRB-40PRB, if the value of n is 9, the number of nodes may be nine, and the frequency bands covered by the SRS transmitted by any one of the antennas in at least one time period are different:
  • 6-10 represents the 6th PRB to the 10th PRB.
  • the UE covers one node per sub-cycle, and the coverage of the entire coverage is completed. It should be understood that the order of specific coverage nodes may not be completed in the order of 1-9.
  • the process may be to divide the 9 nodes into m groups, adjacent frequency hopping sub-cycles, and use nodes in different groups.
  • the number of nodes or the node number may not be determined according to the number.
  • the coverage of the SRS transmitted by any one of the antennas in at least one time period is different, for example, the kth antenna, during which a plurality of SRSs are sent to the eNB.
  • the frequency ranges covered by the plurality of SRS signals are different, and further explained, for example, that the SRS is transmitted in the sth and t th hop sub-cycles, and the SRS in the s hopping sub-period covers the 10th PRB-14PRB.
  • the 10th PRB-14PRB cannot be repeatedly overwritten in the t-th hopping sub-cycle.
  • k can refer to a specific antenna. It should be understood that there may be some overlapping frequency band positions, in which case the number of the frequency hopping sub-cycles included may be greater than the number of nodes in one frequency hopping period.
  • the UE In addition to determining the manner of frequency hopping, the UE needs to determine the transmission mode of the antenna. In order to maximize efficiency, the frequency bands covered by the SRS transmitted by any antenna may be different in four consecutive frequency hopping periods. This frequency hopping process can begin when the system begins the sounding process. In such a case, the four-heel antennas can be traversed over the entire coverage range directly during the first four consecutive frequency hopping periods.
  • the UE may further satisfy that: the number of times the SRS is sent by any one antenna is less than or equal to one during a hopping period. among them, Indicates rounding down, Indicates rounding up. In such a case, the UE may transmit the SRS on as many antennas as possible in the first few frequency hopping periods, so that the eNB can quickly obtain SRS conditions of different antennas.
  • the UE transmits the same frequency width in the ith hopping sub-period of each hopping period in the four consecutive hopping periods, where i is any positive integer.
  • any positive integer in the present invention may refer to any positive integer within the range.
  • the frequency hopping period included in the frequency hopping period is provided with j, then the value of i is 1-j.
  • the frequency width of the transmission is from the sixth PRB to the 40th PRB, then, in the second, third, and fourth hopping periods.
  • the second frequency hopping sub-period is transmitted with a frequency width from the sixth PRB to the 40th PRB.
  • the eNB may determine corresponding channel estimates for different antennas to transmit the same frequency width according to SRSs of the same frequency width in different hopping periods.
  • the frequency width can refer to the number of PRBs. For example, 11-14PRB covers 4 PRBs, and the frequency width is 4PRB.
  • the number of frequency hopping sub-cycles included in the one hopping period is K;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • is a constant, and when the value of K is an integer multiple of 4, the value of ⁇ is 1; when the value of K is not an integer multiple of 4, the value of ⁇ is 0; the mod is a modulo symbol.
  • the number of frequency hopping sub-cycles included in the one hopping period is K;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • is a constant, and when the value of K is an integer multiple of 8, 6, 10, 18, the value of ⁇ is 1; when the value of K is not 8, 6, 10, When the integer value is 18, the value of ⁇ is 0; the mod is a modulo symbol; wherein ⁇ is a constant, and when the value of K is an integer multiple of 6, 10, 18, the value of ⁇ is 0. When the value of K is not an integer multiple of 6, 10, 18, the value of ⁇ is 1.
  • the number of frequency hopping sub-cycles included in the one hopping period is K;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the number of frequency hopping sub-cycles included in the one hopping period is K;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and when the value of K is an integer multiple of 4, it satisfies :
  • is a constant, and when the value of K is an integer multiple of 8, the value of ⁇ is 1; When the value of K is not an integer multiple of 8, the value of ⁇ is 0; the mod is a modulo symbol;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the number of frequency hopping sub-cycles included in the one hopping period is K;
  • is a constant, and when the value of K is an integer multiple of 8, the value of ⁇ is 1; when the value of K is not an integer multiple of 8, the value of ⁇ is 0; the mod is a modulo symbol;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the formula in the present invention may be represented by a mapping relationship set or a table, for example, may be a corresponding relationship.
  • the index of the SRS is determined by the antenna number a (n SRS ).
  • the value of the number may be 0, 1, 2, 3, and such a value is only
  • the value of a(n SRS ) may not be the value in the embodiment or is not limited to determining the antenna number as a symbol or identifier, and a symbol or identifier may be directly determined according to the n SRS .
  • Embodiments indicate corresponding antennas.
  • the present invention claims a mapping relationship and a corresponding set or table corresponding to the antenna identifier similar to that in this embodiment.
  • the method may further include determining a frequency hopping period and/or a frequency hopping sub-period, where the eNB may send a message to indicate the frequency hopping period.
  • a frequency hopping period and/or a frequency hopping sub-period where the eNB may send a message to indicate the frequency hopping period.
  • this hop period and / or hop sub-cycle can be preset in the UE.
  • the SRS sent by any one of the antennas of the UE covers the SRS. Coverage.
  • the SRS transmitted by any of the pth and the antennas in 4 cycles covers the coverage.
  • the SRS in the process of transmitting the SRS by the UE to the base station, since the frequency range occupied by the SRS in each frequency hopping sub-period is different, the SRS can be quickly covered in the frequency hopping process. The coverage situation, and the characteristics of the channel can be obtained in the early stage of the frequency hopping process, thereby improving the system efficiency.
  • FIG. 3 is a schematic flowchart of a communication method according to an embodiment of the present invention, and relates to a method for transmitting a sounding reference signal SRS:
  • Step 301 The user equipment UE determines a frequency hopping sub-period
  • the frequency hopping sub-period can be determined, and the hopping sub-period is the time taken by the UE to send the SRS once.
  • the base station indication signaling may be received before the initialization or the re-execution of the subsequent step, where the indication signaling includes the frequency hopping sub-period, and may also be a parameter of the preset value in the UE.
  • Step 302 The UE sends an SRS to the base station eNB by using two antennas of the four antennas in at least one of the frequency hopping sub-cycles.
  • the UE transmitting the SRS using two antennas can improve the efficiency of the sounding process, that is, the efficiency of transmitting the SRS.
  • two of the four antennas transmit an SRS to the eNB; and in at least another frequency hopping sub-period, The other two of the four antennas transmit an SRS to the eNB.
  • two of the four antennas transmit an SRS to the eNB; in the k+1th frequency hopping sub-period and/or at the k-1th During the hopping sub-periods, the other two of the four antennas transmit an SRS to the eNB.
  • the selection of the antenna may be performed in an alternating manner, for example, in the first frequency hopping sub-period, the UE uses the first group antenna, In the second frequency hopping sub-period, the UE uses the second set of antennas. In this way, it is possible to avoid reusing a certain antenna to affect the transmission efficiency.
  • the UE determines the number K of times of transmitting the SRS signal in the one hop period, and the number of the antenna group where the nth SRS SRSs are sent by the UE to the eNB when the K is even. (n SRS ) and the n SRS relationship satisfy:
  • the number a (n SRS ) of the antenna group where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • is a constant, and when the value of K is an integer multiple of 4, the value of ⁇ is 1; when the value of K is not an integer multiple of 4, the value of ⁇ is 0; mod is the modulo symbol, and a value for each of the a (n SRS) a corresponding antenna group, the a (n SRS) is used to indicate in the first sub-period n SRS frequency hopping, the transmission The antenna of the SRS.
  • K in the number of times K of transmitting the SRS signal, K is one time representing one frequency hop sub-period, and the SRS signal is sent by the two antennas, and the SRS signal is sent by two antennas.
  • the formula in the present invention may be represented by a mapping relationship set or a table, for example, may be a corresponding relationship.
  • a mapping relationship set or a table for example, may be a corresponding relationship.
  • the index of the SRS is determined by the antenna number a (n SRS ) of the transmission.
  • the value of the number may be 0, 1, and such a value is only an example, and the present invention is It is claimed that the value of a(n SRS ) may not be the value in the embodiment or is not limited to determining the antenna number as a symbol or identifier due to the deformation of the formula, and a symbol or identifier may be directly determined according to the n SRS.
  • the corresponding antenna is indicated.
  • the present invention claims a mapping relationship and a corresponding set or table corresponding to the antenna identifier similar to that in this embodiment.
  • the UE determines that an antenna corresponding to the first element A and an antenna corresponding to the third element C are the first antenna combination; and the UE uses an antenna corresponding to the second element B and the fourth The antenna corresponding to the element D is the second antenna combination; wherein, the first element A, the second element B, the third element C, and the fourth element D are respectively weighted by the four antennas, and the first element A, the second element B, the third element C, and the fourth element D are precoding matrix vectors of rank 1.
  • the UE selectable precoding matrix when considering a difference in channel characteristics, when the UE selectable precoding matrix includes a precoding matrix with a non-zero element of 2, for example:
  • the first behavior precoding matrix indicates that the precoding matrix corresponding to the second behavior, that is, the element in the codebook, can determine the grouping manner of the antenna according to the codebook form of the precoding matrix, such as the corresponding index 16
  • the precoding matrix of the structure of -19, the first element and the third element value are non-zero; as the precoding matrix corresponding to the structure of index 20-23, the second element and the fourth element value are non-zero. If the first element and the third element correspond to antenna 0 and antenna 2, the second element and the fourth element correspond to antenna 1 and antenna 3; then, after the UE sends the SRS to the eNB, The eNB is caused to obtain channel estimates of corresponding group antennas to further improve system efficiency.
  • the precoding matrix set contains Determining that the antenna corresponding to the first element in the precoding matrix and the antenna corresponding to the third element are two of the four antennas; determining that the antenna corresponding to the second element in the precoding matrix corresponds to the fourth element The antenna is the other two of the four antennas.
  • the precoding matrix with the number of non-zero elements being 2 is structured as or The determining, by the UE, the two antennas according to the precoding matrix in which the number of non-zero elements is two, and may further include: when the precoding matrix structure is Determining that the antenna corresponding to the A 1 and the A 2 is two of the four antennas; or when the precoding matrix structure is The antenna corresponding to the B 1 and the B 2 is determined to be two of the four antennas.
  • the UE determines a frequency hopping sub-period and transmits an SRS to the base station eNB using two of the four antennas in at least one of the hopping sub-cycles.
  • the antennas may be grouped according to the antenna, and the appropriate antenna grouping is used in different frequency hopping sub-cycles to achieve the process of quickly completing the SRS transmission, thereby improving the efficiency of the system.
  • FIG. 4 is a schematic flowchart of a communication method according to an embodiment of the present invention, and relates to a method for receiving a sounding reference signal SRS:
  • Step 401 The base station eNB determines a coverage range of the received SRS.
  • Step 402 the eNB receives an SRS sent by the user equipment UE using one of the four antennas in one frequency hopping sub-period;
  • one frequency hopping period includes at least two frequency hopping sub-periods, and in at least one time period, the frequency bands covered by the received SRS transmitted by any one antenna are different, and the time period is four consecutive frequency hopping. a period; and in each frequency hopping period, the frequency range occupied by the SRS received in each frequency hopping sub-cycle is different, and in each frequency hopping period, the frequency range occupied by the SRSs received by all the frequency hopping sub-cycles For the coverage.
  • the coverage situation, and the characteristics of the channel can be obtained in the early stage of the frequency hopping process, thereby improving the system efficiency.
  • FIG. 5 is a schematic flowchart of a communication method according to an embodiment of the present invention, and relates to a method for transmitting a sounding reference signal SRS:
  • Step 501 The base station eNB determines a coverage range of the received SRS.
  • the eNB receives the SRS transmitted by the UE, it is transmitted by using one of the 4 and the antennas each time, but due to the limitation of bandwidth and efficiency, the eNB usually needs to determine one in the full frequency band.
  • the coverage of the SRS is such that the UE transmits multiple SRSs to the eNB where the SRS signal cannot exceed.
  • This range can be an overall range. For example, the range may be determined according to the value of the uplink bandwidth, and a part of the uplink bandwidth or the uplink bandwidth may be selected, or may be determined according to specific service requirements. In time, this determination may be determined statically, semi-statically or dynamically, or may be determined by the eNB by signaling the UE.
  • the specific frequency hopping mode may be determined by the eNB and then sent to the UE, or obtained through negotiation between the eNB and the UE.
  • Step 502 The eNB receives, in a frequency hopping sub-period, an SRS sent by the user equipment UE by using one of four antennas, where one hop period includes at least two frequency hopping sub-cycles, and at least one time period
  • the frequency band covered by the SRS transmitted by any one of the received antennas is different, and the time period is four consecutive frequency hopping periods; and in each frequency hopping period, the SRS received in each frequency hopping sub-cycle is occupied.
  • the frequency range is different, and in each frequency hopping period, the frequency range occupied by the SRSs received by all the frequency hopping sub-cycles is the coverage range.
  • the eNB may be in a hopping manner by receiving the SRS in the UE, that is, in a certain coverage interval, in the adjacent two time intervals, the location of the frequency band in which the SRS is located Conversion.
  • This conversion rule can be done in a way that is characteristic.
  • the eNB needs to determine the frequency at which the SRS sent by the UE is received.
  • the present invention does not specifically limit this determination manner, and can be directly learned from the received signal.
  • the eNB receives the SRS signal sent by the UE according to a predetermined frequency range in a predetermined frequency hopping sub-period.
  • the eNB receives an SRS transmitted by the UE to the eNB using one antenna of 4 antennas.
  • this rule can be a frequency hopping period in which n frequency hopping sub-cycles are included.
  • n is an integer greater than or equal to 2.
  • the SRS signal received by the eNB covers the entire coverage.
  • the value of the n may be associated with the number of nodes in the frequency hopping process, where the node may refer to the bandwidth of the frequency band in which the eNB receives the SRS sent by the UE at one time, that is, the frequency band location, and the number of nodes may refer to a hop.
  • the width of a node contained in one of the coverage areas For example, in Table 3, when the coverage is determined to be 6 PRB-40 PRB, if the value of n is 9, the number of nodes may be 9, and any of the antennas covered by the SRS transmitted in at least one time period
  • the eNB receives the SRS sent by the UE, so that each sub-cycle is covered by one node, and the pair is completed. Coverage of the entire coverage. It should be understood that the order of specific coverage nodes may not be completed in the order of 1-9. In one embodiment, the process may be to divide the 9 nodes into m groups, adjacent frequency hopping sub-cycles, and use nodes in different groups. In a specific implementation, the number of nodes or the node number may not be determined according to the number.
  • the eNB receives a different frequency band covered by the SRS transmitted by any one antenna in at least one time period, for example, the kth antenna, and receives several SRSs in this time period.
  • the frequency bands covered by several SRS signals are different.
  • k can refer to a specific antenna. It should be understood that there may be some overlapping frequency band positions, in which case the number of the frequency hopping sub-cycles included may be greater than the number of nodes in one frequency hopping period.
  • the eNB In addition to determining the manner of frequency hopping, the eNB needs to determine the transmission mode of the UE antenna. For To maximize efficiency, the frequency bands covered by the SRS transmitted by any of the received antennas can be different in four consecutive frequency hopping periods. This frequency hopping process can begin when the system begins the sounding process. In such a case, the four-heel antennas can be traversed over the entire coverage range directly during the first four consecutive frequency hopping periods.
  • the receiving, by the eNB, the SRS sent by the UE may further satisfy that: in one hopping period, the number of times that any one antenna received by the eNB sends the SRS is less than or equal to among them, Indicates rounding down, Indicates rounding up.
  • the eNB may receive the SRS on as many antennas as possible in the first few frequency hopping periods, so that the eNB can quickly obtain the SRS condition of different antennas.
  • the eNB receives the UE in the four consecutive frequency hopping periods, and the frequency width of the ith hopping sub-period of each hopping period is the same, where i is any positive integer.
  • the received frequency width is from the 20th PRB to the 25th PRB, then, in the second, third, and fourth hopping periods.
  • the second frequency hopping sub-period transmits a frequency width from the 20th PRB to the 25th PRB.
  • the eNB may determine corresponding channel estimates for different antennas to transmit the same frequency width according to SRSs of the same frequency width in different hopping periods.
  • the number of frequency hopping sub-cycles included in the one hopping period is K;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • is a constant, and when the value of K is an integer multiple of 4, the value of ⁇ is 1; when the value of K is not an integer multiple of 4, the value of ⁇ is 0; the mod is a modulo symbol.
  • the number of frequency hopping sub-cycles included in the one hopping period is K;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • is a constant, and when the value of K is an integer multiple of 8, 6, 10, 18, the value of ⁇ is 1; when the value of K is not 8, 6, 10, When the integer value is 18, the value of ⁇ is 0; the mod is a modulo symbol; wherein ⁇ is a constant, and when the value of K is an integer multiple of 6, 10, 18, the value of ⁇ is 0. When the value of K is not an integer multiple of 6, 10, 18, the value of ⁇ is 1.
  • the number of frequency hopping sub-cycles included in the one hopping period is K;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the number of frequency hopping sub-cycles included in the one hopping period is K;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and when the value of K is an integer multiple of 4, it satisfies :
  • is a constant, and when the value of K is an integer multiple of 8, the value of ⁇ is 1; when the value of K is not an integer multiple of 8, the value of ⁇ is 0; the mod is a modulo symbol;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the number of frequency hopping sub-cycles included in the one hopping period is K;
  • is a constant, and when the value of K is an integer multiple of 8, the value of ⁇ is 1; when the value of K is not an integer multiple of 8, the value of ⁇ is 0; the mod is a modulo symbol;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the formula in the present invention may be represented by a mapping relationship set or a table, for example, may be a correspondence relationship.
  • the received antenna number a(n SRS ) is determined according to an index of the corresponding n SRS .
  • the number may be 0, 1, 2, 3
  • the value of the value is only an example, and the value of a(n SRS ) may not be the value in the embodiment or is not limited to determining the antenna number as a symbol or identifier, and may be directly based on the n SRS.
  • a symbol or identifier is determined for indicating the corresponding antenna in this embodiment.
  • the present invention claims a mapping relationship and a corresponding set or table corresponding to the antenna identifier similar to that in this embodiment.
  • the eNB may further include determining a frequency hopping period and/or a frequency hopping sub-period, where the eNB may send a message to indicate the frequency hopping.
  • this hopping period and/or hopping sub-period may be preset in the eNB or UE.
  • the SRS sent by any one antenna received by the eNB covers the Coverage of SRS.
  • the SRS transmitted by any of the pth and the antennas in 4 cycles covers the coverage.
  • the coverage of the fast coverage SRS in the frequency hopping process can be achieved.
  • the characteristics of the channel can be obtained in the early stage of the frequency hopping process, and the channel matrix or the channel model is initially estimated, thereby improving the system efficiency.
  • FIG. 6 is a schematic flowchart of a communication method according to an embodiment of the present invention, and relates to a method for transmitting a sounding reference signal SRS:
  • Step 601 The base station eNB determines a frequency hopping sub-period
  • the eNB may determine a frequency hopping sub-period, which is the time taken by the UE to send the SRS once.
  • the base station indication signaling may be received before the initialization or the re-execution of the subsequent step, where the indication signaling includes the frequency hopping sub-period, and may also be a parameter of the preset value in the eNB or the UE.
  • Step 602 The eNB receives an SRS sent by the UE using two antennas of four antennas in at least one of the frequency hopping sub-cycles.
  • the sounding process may be completed by notifying the UE to transmit the SRS signal by using two antennas to improve the efficiency of receiving the SRS and estimating the channel characteristics.
  • the eNB receives the SRS sent by the 2 antennas of the 4 antennas to the eNB in at least one frequency hopping sub-period; and the eNB receives the SRS in at least another frequency hopping sub-period The SRS sent by the other 2 antennas of the 4 antennas to the eNB.
  • the eNB receives 2 antennas of 4 antennas to send SRS to the eNB; in the k+1th frequency hopping sub-period and/or at the kth In the -1 frequency hopping sub-period, the eNB receives the other two antennas of the four antennas and transmits the SRS to the eNB. It should be understood that in the process of receiving 2 antennas to send the SRS to the eNB, the eNB may complete the receiving process in an alternating manner, for example, in the first frequency hopping sub-period, the eNB receives the UE using the first group.
  • the eNB determines the number K of receiving the SRS signal in the one frequency hopping period
  • the eNB receives SRS of n-th sub-band is located SRS transmission numbers a (n SRS) Relationship between the UE and the n-SRS, satisfying:
  • the eNB receives the UE SRS transmission of the n-th SRS subband number where a (n SRS) relationship to the n-SRS, satisfying:
  • is a constant, and when the value of K is an integer multiple of 4, the value of ⁇ is 1; when the value of K is not an integer multiple of 4, the value of ⁇ is 0:
  • the mod is a modulo symbol, and one value of each of the a(n SRS ) corresponds to one antenna combination, and is used to indicate that the antenna of the SRS is transmitted in the nth SRS hop sub-periods.
  • the number of times K of receiving the SRS signal, once for one hopping sub-cycle, is sent by the SRS signal, and the SRS signal is sent by two antennas.
  • the formula in the present invention may be represented by a mapping relationship set or a table, for example, may be a correspondence relationship.
  • the index of the SRS is determined by the antenna number a (n SRS ) of the transmission.
  • the value of the number may be 0, 1, and such a value is only an example, and the present invention is It is claimed that the value of a(n SRS ) may not be the value in the embodiment or is not limited to determining the antenna number as a symbol or identifier due to the deformation of the formula, and a symbol or identifier may be directly determined according to the n SRS.
  • the corresponding antenna is indicated.
  • the present invention claims a mapping relationship and a corresponding set or table corresponding to the antenna identifier similar to that in this embodiment.
  • the base station determines a frequency hopping sub-period and, in at least one of the hopping sub-cycles, receives an SRS that is sent by the UE to the base station eNB by using two antennas of the four antennas.
  • the antennas may be grouped according to the antenna, and the appropriate antenna grouping is used in different frequency hopping sub-cycles to achieve the process of quickly completing the SRS transmission, thereby improving the efficiency of the system.
  • FIG. 7 is a schematic flowchart of a communication method according to an embodiment of the present invention, and relates to a method for transmitting/receiving a sounding reference signal SRS:
  • Step 701 The eNB and the UE determine a coverage range of the sending SRS.
  • the base station determines the coverage of the SRS, where the range may be determined according to the uplink bandwidth, or may be obtained from other network devices. This determination process may be to obtain or determine a bandwidth configuration and then send it to the UE through signaling or configuration.
  • Step 702 The UE sends an SRS to the base station eNB by using one of the four antennas in one frequency hopping sub-period; wherein one hop period includes at least two frequency hopping sub-cycles, and any antenna is in The frequency bands covered by the SRS transmitted in one less time period are different, and the time period is four consecutive frequency hopping periods; and in each frequency hopping period, the frequency range of the SRSs transmitted in each frequency hopping sub-cycle is different. And in each frequency hopping period, the frequency range occupied by the SRSs sent by all the frequency hopping sub-cycles is the coverage range.
  • the eNB and the UE may determine, according to the SRS, the coverage frequency band that each antenna transmits in at least one time period; and the eNB and the UE may further determine a bandwidth of the SRS.
  • the coverage is smaller than the coverage to further determine that the UE sends the SRS in a frequency hopping manner.
  • step 702 is performed.
  • the eNB determines that the uplink bandwidth is 40-60 MHz, and the eNB determines that the frequency range in which hopping is required is 44-60 MHz. It should be understood that 40-60 MHz and 42-60 MHz here are only an example.
  • the frequency band of the hopping may be higher than, equal to, or lower than the uplink bandwidth.
  • the value of the bandwidth determined by the one node may be
  • T represents a frequency hopping period
  • t represents a frequency hopping sub-period
  • one of 801 includes an antenna with a digital square representing the UE transmitting SRS on a certain node, and the number in the square represents an antenna.
  • the number here is in the form of 0, 1, 2, 3, and the present invention does not limit the specific numbering manner, and the 0, 1, 2, 3 may be other types of indications, such as a, b, c, d or Other binary code.
  • the specific order of the indication and the transmission may be determined before the UE transmits, and the eNB receives the SRS transmitted by the determined antenna on the determined frequency band determined according to the determined sequence.
  • mapping tables of one node and coverage may be determined according to different uplink bandwidths:
  • Tables 4a, 4b, 4c, and 4d show the relationship between the number of nodes and the number of bandwidths.
  • the eNB and the UE determine an antenna transmission order, and the UE sends the SRS to the eNB according to the antenna transmission order:
  • the sequence numbers in Table 5 are a chronological order, and the numbers can also be numbered from 0.
  • the serial number in the table is the number of the antenna. It should be understood that the number of this antenna may not be 0, 1, 2, 3, or Any one indication.
  • This table may be stored in the UE or eNB for a mapping relationship, or scheduled by the UE, eNB or other network side device.
  • the eNB and the UE need to determine the transmission mode of the antenna.
  • SRS can be sent by any antenna in four consecutive frequency hopping periods. The frequency bands covered are different. This frequency hopping process can begin when the system begins the probing process. In such a case, the four-heel antennas can be traversed over the entire coverage range directly during the first four consecutive frequency hopping periods.
  • the UE may send an SRS to the eNB in four hopping periods, and the specific sending manner may be that the first antenna of the UE is sent in all hopping sub-cycles of the first hopping period. All of the hopping sub-cycles of the second hopping period are transmitted using the second antenna of the UE; all hopping sub-cycles of the third hopping period are transmitted using the third antenna of the UE; All frequency hopping sub-cycles of the four hopping periods are transmitted using the fourth antenna of the UE.
  • the UE may further satisfy that: the number of times the SRS is sent by any one antenna is less than or equal to one during a hopping period. among them, Indicates rounding down, Indicates rounding up. In such a case, the UE may transmit the SRS on as many antennas as possible in the first few frequency hopping periods, so that the eNB can quickly obtain SRS conditions of different antennas.
  • the UE transmits the same frequency width in the ith hopping sub-period of each hopping period in the four consecutive hopping periods, where i is any positive integer.
  • the frequency width of the transmission is from the 20th PRB to the 25th PRB, then, in the second, third, and fourth hopping periods.
  • the second frequency hopping sub-period transmits a frequency width from the 20th PRB to the 25th PRB.
  • the eNB may determine corresponding channel estimates for different antennas to transmit the same frequency width according to SRSs of the same frequency width in different hopping periods.
  • SRSs of the same frequency width in different hopping periods.
  • the number of frequency hopping sub-cycles included in the one hopping period is K;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • is a constant, and when the value of K is an integer multiple of 8, 6, 10, 18, the value of ⁇ is 1; when the value of K is not 8, 6, 10, When the integer value is 18, the value of ⁇ is 0; the mod is a modulo symbol; wherein ⁇ is a constant, and when the value of K is an integer multiple of 6, 10, 18, the value of ⁇ is 0. When the value of K is not an integer multiple of 6, 10, 18, the value of ⁇ is 1.
  • the number of frequency hopping sub-cycles included in the one hopping period is K;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the number of frequency hopping sub-cycles included in the one hopping period is K;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and when the value of K is an integer multiple of 4, it satisfies :
  • is a constant, and when the value of K is an integer multiple of 8, the value of ⁇ is 1; when the value of K is not an integer multiple of 8, the value of ⁇ is 0; the mod is a modulo symbol;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the number of frequency hopping sub-cycles included in the one hopping period is K;
  • is a constant, and when the value of K is an integer multiple of 8, the value of ⁇ is 1; when the value of K is not an integer multiple of 8, the value of ⁇ is 0; the mod is a modulo symbol;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the formula in the present invention may be represented by a mapping relationship set or a table, for example, may be a corresponding relationship.
  • the index of the SRS is determined by the number of the transmitted antennas a (n SRS ).
  • the value of the number may be 0, 1, 2, 3, and the value is only one.
  • the value of a(n SRS ) may not be the value in the embodiment or is not limited to determining the antenna number as a symbol or identifier, and a symbol or identifier may be directly determined according to the n SRS for the implementation.
  • the example indicates the corresponding antenna.
  • the present invention claims a mapping relationship and a corresponding set or table corresponding to the antenna identifier similar to that in this embodiment.
  • the method may further include determining a frequency hopping period and/or a frequency hopping sub-period, where the eNB may send a message to indicate the frequency hopping period.
  • a frequency hopping period and/or a frequency hopping sub-period where the eNB may send a message to indicate the frequency hopping period.
  • this hop period and / or hop sub-cycle can be preset in the UE or eNB.
  • the SRS in the process of transmitting the SRS by the UE to the base station, since the frequency range occupied by the SRS in each hopping sub-period is different, the SRS can be quickly covered in the frequency hopping process. The coverage situation, and the characteristics of the channel can be obtained in the early stage of the frequency hopping process, thereby improving the system efficiency.
  • FIG. 9 is a structural diagram of a device according to an embodiment of the present invention, which relates to a transmitting user equipment UE that detects a reference signal SRS:
  • a determining unit 901 configured to determine a coverage range of sending the SRS
  • the sending unit 902 is configured to send, by using one of the four antennas, one SRS to the base station eNB in one frequency hopping sub-period;
  • one frequency hopping period includes at least two frequency hopping sub-periods, and the frequency band covered by the SRS transmitted by any of the antennas in at least one time period is different, and the time period is four consecutive frequency hopping periods;
  • the frequency hopping period the frequency range of the SRSs that are sent in each of the hopping sub-cycles is different, and in each hopping period, the frequency range occupied by the SRSs sent by all the hopping sub-cycles is the coverage range.
  • the sending unit 902 in the process of sending the SRS to the base station, can achieve fast in the frequency hopping process due to different frequency ranges occupied by the SRS sent in each frequency hopping sub-period. Covering the coverage of the SRS, and acquiring the characteristics of the channel in the early stage of the frequency hopping process, improving system efficiency.
  • FIG. 10 is a structural diagram of a device according to an embodiment of the present invention, relating to a terminal device UE for detecting transmission of a reference signal SRS:
  • a determining unit 1001 configured to determine a coverage range of sending the SRS
  • the sending unit 1002 is configured to send, by using one of the four antennas, one SRS to the base station eNB in one frequency hopping sub-period; wherein one hopping period includes at least two frequency hopping sub-cycles, and any one day
  • the frequency band covered by the SRS transmitted by the line in at least one time period is different, the time period is four consecutive frequency hopping periods; and in each frequency hopping period, the frequency occupied by the SRS in each frequency hopping sub-period
  • the range is different, and in each hopping period, the frequency range occupied by the SRSs sent by all the hopping sub-cycles is the coverage range.
  • the sending unit 1002 is used to send an SRS, it is sent by using one of the four antennas each time, but the determining unit 1001 usually needs due to bandwidth limitation and efficiency requirement.
  • the coverage of one SRS is determined in the full frequency band, that is, the transmission unit 1002 transmits a range in which the SRS to the eNB of the SRS cannot be exceeded.
  • This range can be an overall range.
  • the range may be determined according to the value of the uplink bandwidth, and a part of the uplink bandwidth or the uplink bandwidth may be selected, or may be determined according to specific service requirements.
  • this determination may be controlled by static, semi-static or dynamic scheduling, or determined by the determining unit 1001 of the UE itself, or may be determined by the eNB scheduling the UE.
  • the specific frequency hopping mode may be determined by the base station and then sent to a receiving unit 1003 of the UE, or obtained through negotiation between the base station and the UE.
  • the sending unit 1002 may perform hopping, that is, in a certain coverage range, the position of the frequency band in which the SRS is located is performed in two adjacent time intervals.
  • This conversion rule can be done in a specific way.
  • this rule can be a frequency hopping period in which n frequency hopping sub-cycles are included.
  • n is an integer greater than or equal to 2.
  • the transmitting unit 1002 transmits an SRS to a base station using one antenna of four antennas. At the end of the n frequency hopping sub-cycles, the SRS signal transmitted by the transmitting unit 1002 covers the entire coverage.
  • the value of the n may be associated with the number of nodes in the frequency hopping process, where the node may refer to a frequency band bandwidth of the SRS sent by the UE at a time, that is, a frequency band position, and the number of nodes may refer to a frequency hopping.
  • the width of a node contained in one of the coverage areas For example, in Table 6, when the coverage is determined to be 6 PRB-40 PRB, if the value of n is 9, the number of nodes may be 9, and any of the antennas covered by the SRS transmitted in at least one time period Different frequency bands:
  • 6-10 represents the 6th PRB to the 10th PRB.
  • the process may be to divide the 9 nodes into m groups, adjacent frequency hopping sub-cycles, and use nodes in different groups.
  • the number of nodes or the node number may not be determined according to the number.
  • the coverage of the SRS transmitted by any one of the antennas in at least one time period is different, for example, the kth antenna, during which a plurality of SRSs are sent to the eNB.
  • the frequency ranges covered by the plurality of SRS signals are different, and further explained, for example, that the SRS is transmitted in the sth and t th hop sub-cycles, and the SRS in the s hopping sub-period covers the 10th PRB-14PRB.
  • the 10th PRB-14PRB cannot be repeatedly overwritten in the t-th hopping sub-cycle.
  • k can refer to a specific antenna. It should be understood that there may be some overlapping frequency band positions, in which case the number of the frequency hopping sub-cycles included may be greater than the number of nodes in one frequency hopping period.
  • the determining unit may also determine the manner of transmitting the antenna.
  • the frequency bands covered by the SRS transmitted by any antenna may be different in four consecutive frequency hopping periods. This frequency hopping process can begin when the system begins the sounding process. In such a case, the four-heel antennas can be traversed over the entire coverage range directly during the first four consecutive frequency hopping periods.
  • the sending unit may further satisfy that: the number of times the SRS is sent by any one antenna is less than or equal to one in a frequency hopping period. among them, Indicates rounding down, Indicates rounding up.
  • the transmitting unit may transmit the SRS on as many antennas as possible in the first few frequency hopping periods, so that the eNB can quickly obtain the SRS condition of different antennas.
  • the sending unit sends the same frequency width in the ith hopping sub-period of each hopping period in the four consecutive hopping periods, where i is any positive integer.
  • the frequency width of the transmission is from the sixth PRB to the 40th PRB, then, in the second, third, and fourth hopping periods.
  • the second frequency hopping sub-period is transmitted with a frequency width from the sixth PRB to the 40th PRB.
  • the eNB may determine that different antennas transmit the same frequency width according to SRSs of the same frequency width in different frequency hopping periods. Channel estimation.
  • the frequency width can refer to the number of PRBs. For example, 11-14PRB covers 4 PRBs, and the frequency width is 4PRB.
  • the number of frequency hopping sub-cycles included in the one hopping period is K;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the transmitting unit to the base station eNB is related to the n SRS , and satisfies:
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the transmitting unit to the base station eNB is related to the n SRS , and satisfies:
  • is a constant, and when the value of K is an integer multiple of 4, the value of ⁇ is 1; when the value of K is not an integer multiple of 4, the value of ⁇ is 0; the mod is a modulo symbol.
  • the number of frequency hopping sub-cycles included in the one hopping period is K;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • is a constant, and when the value of K is an integer multiple of 8, 6, 10, 18, the value of ⁇ is 1; when the value of K is not 8, 6, 10, When the integer value is 18, the value of ⁇ is 0; the mod is a modulo symbol; wherein ⁇ is a constant, and when the value of K is an integer multiple of 6, 10, 18, the value of ⁇ is 0. When the value of K is not an integer multiple of 6, 10, 18, the value of ⁇ is 1.
  • the number of frequency hopping sub-cycles included in the one hopping period is K;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the number of frequency hopping sub-cycles included in the one hopping period is K;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and when the value of K is an integer multiple of 4, it satisfies :
  • is a constant, and when the value of K is an integer multiple of 8, the value of ⁇ is 1; when the value of K is not an integer multiple of 8, the value of ⁇ is 0; the mod is a modulo symbol;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the number of frequency hopping sub-cycles included in the one hopping period is K;
  • is a constant, and when the value of K is an integer multiple of 8, the value of ⁇ is 1; when the value of K is not an integer multiple of 8, the value of ⁇ is 0; the mod is a modulo symbol;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the formula in the present invention may be represented by a mapping relationship set or a table, for example, may be a corresponding relationship.
  • the index of the SRS is determined by the antenna number a (n SRS ).
  • the value of the number may be 0, 1, 2, 3, and such a value is only
  • the value of a(n SRS ) may not be the value in the embodiment or is not limited to determining the antenna number as a symbol or identifier, and a symbol or identifier may be directly determined according to the n SRS .
  • Embodiments indicate corresponding antennas.
  • the present invention claims a mapping relationship and a corresponding set or table corresponding to the antenna identifier similar to that in this embodiment.
  • the hopping period and/or the frequency hopping sub-period may be determined by the eNB, where the eNB sends a message to indicate the frequency hopping.
  • Week Of course/hopping frequency sub-cycles of course, this frequency hopping period and/or frequency hopping sub-period may be preset in one memory unit of the UE.
  • the SRS sent by any one of the transmitting units covers the SRS. Coverage.
  • the SRS transmitted by any of the pth and the antennas in 4 cycles covers the coverage.
  • FIG. 11 is a structural diagram of a device according to an embodiment of the present invention, relating to a terminal device UE for detecting a reference signal SRS:
  • a determining unit 1101, configured to determine a frequency hopping sub-period
  • the sending unit 1102 is configured to send the SRS to the base station eNB by using two antennas of the four antennas in at least one of the frequency hopping sub-cycles.
  • the frequency hopping sub-period may be determined, where the hopping sub-period is the time taken by the sending unit to send the SRS once.
  • the base station indication signaling may be received before the initialization or the re-execution of the subsequent step, where the indication signaling includes the frequency hopping sub-period, and may also be a parameter of the storage unit whose preset value is in the UE.
  • the transmitting unit sends an SRS to the eNB by using two antennas of the four antennas in at least one frequency hopping sub-period; and in at least another frequency hopping sub-period, the sending unit The SRS is transmitted to the eNB using the other two of the four antennas.
  • the sending unit sends the SRS to the eNB by using two antennas of the four antennas; in the k+1th frequency hopping sub-period and/or In the k-1th frequency hopping sub-period, the other two antennas of the four antennas transmit an SRS to the eNB.
  • the selection of the antenna may be This is done in an alternating manner, for example, in the first frequency hopping sub-period, the transmitting unit uses a first set of antennas, and in the second frequency hopping sub-period, the transmitting unit uses a second set of antennas. In this way, it is possible to avoid reusing a certain antenna to affect the transmission efficiency.
  • the determining unit determines the number K of times of transmitting the SRS signal in the one frequency hopping period; and when the K is an even number, the antenna group of the nth SRS SRSs sent by the sending unit to the base station eNB
  • the number a (n SRS ) is related to the n SRS and satisfies:
  • the number a (n SRS ) of the antenna group in which the nth SRS SRSs are transmitted by the transmitting unit to the base station eNB is related to the n SRS , and satisfies:
  • is a constant, and when the value of K is an integer multiple of 4, the value of ⁇ is 1; when the value of K is not an integer multiple of 4, the value of ⁇ is 0; mod is the modulo symbol, and a value for each of the a (n SRS) a corresponding antenna group, the a (n SRS) is used to indicate in the first sub-period n SRS frequency hopping, the transmission The antenna of the SRS.
  • K in the number of times K of transmitting the SRS signal, K is one time representing one frequency hop sub-period, and the SRS signal is sent by the two antennas, and the SRS signal is sent by two antennas.
  • the formula in the present invention may be represented by a mapping relationship set or a table, for example, may be a corresponding relationship.
  • a mapping relationship set or a table for example, may be a corresponding relationship.
  • the index of the SRS is determined by the antenna number a (n SRS ) of the transmission.
  • the value of the number may be 0, 1, and such a value is only an example, and the present invention is It is claimed that the value of a(n SRS ) may not be the value in the embodiment or is not limited to determining the antenna number as a symbol or identifier due to the deformation of the formula, and a symbol or identifier may be directly determined according to the n SRS.
  • the corresponding antenna is indicated.
  • the present invention claims a mapping relationship and a corresponding set or table corresponding to the antenna identifier similar to that in this embodiment.
  • the determining unit determines that an antenna corresponding to the first element A and an antenna corresponding to the third element C are the first antenna combination; the transmitting unit uses an antenna corresponding to the second element B and the The antenna corresponding to the fourth element D is the second antenna combination; wherein, the first element A, the second element B, the third element C, and the fourth element D are respectively weighted by the four antennas, and the An element A, a second element B, a third element C, and a fourth element D are precoding matrix vectors of rank 1. Elements.
  • the optional precoding matrix of the determining unit when considering the difference in channel characteristics, when the optional precoding matrix of the determining unit includes a precoding matrix with a non-zero element of 2, for example:
  • the first behavior precoding matrix indicates that the precoding matrix corresponding to the second behavior, that is, the element in the codebook, can determine the grouping manner of the antenna according to the codebook form of the precoding matrix, such as the corresponding index 16
  • the precoding matrix of the structure of -19, the first element and the third element value are non-zero; as the precoding matrix corresponding to the structure of index 20-23, the second element and the fourth element value are non-zero. If the first element and the third element correspond to antenna 0 and antenna 2, the second element and the fourth element correspond to antenna 1 and antenna 3; then, after the transmitting unit sends the SRS to the eNB, The eNB may be caused to obtain channel estimates of corresponding group antennas to further improve system efficiency.
  • the determining unit determines that the antenna corresponding to the first element in the precoding matrix and the antenna corresponding to the third element are two of the four antennas; the determining unit determines that the second element in the precoding matrix corresponds to The antenna corresponding to the antenna and the fourth element is the other two of the four antennas.
  • the precoding matrix with the number of non-zero elements being 2 is structured as or Determining, by the determining unit, the two antennas according to the precoding matrix of the number of non-zero elements being 2, and further comprising: when the precoding matrix structure is Determining that the antenna corresponding to the A1 and the A2 is two of the four antennas; or when the precoding matrix structure is The antenna corresponding to the B1 and the B2 is determined to be two of the four antennas.
  • the determining unit determines a frequency hopping sub-period and transmits the SRS to the base station eNB using two of the four antennas in at least one of the hopping sub-cycles.
  • the antennas may be grouped according to the antenna, and the appropriate antenna grouping is used in different frequency hopping sub-cycles to achieve the process of quickly completing the SRS transmission, thereby improving the efficiency of the system.
  • FIG. 12 is a structural diagram of a device according to an embodiment of the present invention, relating to a base station eNB device:
  • a determining unit 1201 configured to determine a coverage range of the receiving SRS
  • the receiving unit 1202 is configured to receive, by using one of the four antennas, one SRS sent by the user equipment UE in one frequency hopping sub-period;
  • one frequency hopping period includes at least two frequency hopping sub-periods, and in at least one time period, the frequency band covered by the SRS transmitted by any one antenna received by the receiving unit is different, and the time period is four consecutive a frequency hopping period; and in each hopping period, the frequency range occupied by the SRSs received in each hopping sub-cycle is different, and in each hopping period, all the SSRs received by the hopping sub-cycles are occupied.
  • the frequency range is the coverage.
  • the receiving unit may achieve fast coverage in the frequency hopping process due to different frequency ranges occupied by the SRS transmitted in each frequency hopping sub-period.
  • the coverage of the SRS, and the channel can be obtained in the early stage of the frequency hopping process.
  • the characteristics of the system improve the efficiency of the system.
  • FIG. 13 is a structural diagram of a device according to an embodiment of the present invention, relating to a base station eNB device:
  • a determining unit 1301, configured to determine a coverage range of the received SRS
  • the receiving unit 1302 is configured to receive, by using one of the four antennas, one SRS sent by the user equipment UE in one frequency hopping sub-period; wherein one hop period includes at least two frequency hopping sub-cycles, and at least one time period
  • the frequency band covered by the SRS transmitted by any one of the received antennas is different, and the time period is four consecutive frequency hopping periods; and in each frequency hopping period, the SRS received in each frequency hopping sub-cycle is occupied.
  • the frequency range is different, and in each frequency hopping period, the frequency range occupied by the SRSs received by all the frequency hopping sub-cycles is the coverage range.
  • the receiving unit receives the SRS sent by the UE, it is sent by using one of the four antennas each time, but the determining unit usually needs due to bandwidth limitation and efficiency requirement.
  • the coverage of one SRS is determined in the full frequency band such that the UE transmits a plurality of SRSs to a range in which the SRS signal of the receiving unit cannot exceed.
  • This range can be an overall range.
  • the range may be determined according to the value of the uplink bandwidth, and a part of the uplink bandwidth or the uplink bandwidth may be selected, or may be determined according to specific service requirements.
  • the determining manner may be determined statically, semi-statically or dynamically, or may be determined by the eNB by means of a transmitting unit 1303 signaling scheduling of the UE.
  • the specific frequency hopping mode may be determined by the determining unit and sent to the UE, or may be obtained through negotiation between the determining unit and/or the sending unit and the UE.
  • the manner in which the SRS is sent by the UE may be a hopping mode, that is, in a certain coverage interval, the frequency band in which the SRS is located in two adjacent time intervals
  • the conversion of the location. This conversion rule can be done in a way that is characteristic.
  • the determining unit needs to determine the frequency at which the SRS sent by the UE is received.
  • the present invention does not specifically limit the determining manner, and may directly learn according to the received signal, or negotiate or predetermine, after the sending unit notifies the UE by one signaling, the receiving unit receives the UE in a predetermined frequency hopping.
  • Sub-cycle SRS signal transmitted according to a predetermined frequency range.
  • the receiving unit receives an SRS that the UE transmits to the receiving unit using one antenna of four antennas.
  • this rule can be a frequency hopping period in which n frequency hopping sub-cycles are included.
  • n is an integer greater than or equal to 2.
  • the SRS signal received by the receiving unit covers the entire coverage area.
  • the value of the n may be associated with the number of nodes in the frequency hopping process, where the node may refer to the bandwidth of the frequency band in which the receiving unit receives the SRS sent by the UE at one time, that is, the frequency band location, and the number of nodes may refer to The width of a node contained in one of the coverages during a frequency hopping process. For example, in Table 8, when the coverage is determined to be 6 PRB-40 PRB, if the value of n is 9, the number of nodes may be 9, and any of the antennas covered by the SRS transmitted in at least one time period Different frequency bands:
  • the receiving unit receives the SRS sent by the UE, so that each sub-cycle is covered by one node, Coverage of the entire coverage. It should be understood that the order of specific coverage nodes may not be completed in the order of 1-9. In one embodiment, the process may be to divide the 9 nodes into m groups, adjacent frequency hopping sub-cycles, and use nodes in different groups. In a specific implementation, the number of nodes or the node number may not be determined according to the number.
  • the receiving unit receives a different frequency band covered by the SRS transmitted by any one antenna in at least one time period, for example, the kth antenna, and receives several SRSs in this time period.
  • the frequency bands covered by these several SRS signals are different.
  • k can refer to a specific antenna. It should be understood that there may be some overlapping frequency band positions, in which case the number of the frequency hopping sub-cycles included may be greater than the number of nodes in one frequency hopping period.
  • the determining unit needs to determine the sending manner of the UE antenna.
  • the frequency bands covered by the SRS transmitted by any of the received antennas may be different in four consecutive frequency hopping periods. This frequency hopping process can begin when the system begins the sounding process. In such a case, the four-heel antennas can be traversed over the entire coverage range directly during the first four consecutive frequency hopping periods.
  • the receiving unit may receive the SRS sent by the UE, and may further satisfy: the number of times the SRS is sent by any one of the antennas received by the receiving unit is less than or equal to one in a frequency hopping period. among them, Indicates rounding down, Indicates rounding up. In such a case, the receiving unit may receive the SRS on as many antennas as possible in the first few frequency hopping periods, so that the receiving unit can quickly obtain the SRS condition of different antennas.
  • the receiving unit receives, in the four consecutive hopping periods, that the frequency width of the ith hopping sub-period of each hopping period is the same, where i is any positive integer.
  • the received frequency width is from the 20th PRB to the 25th PRB, then, in the second, third, and fourth hopping periods.
  • the second frequency hopping sub-period transmits a frequency width from the 20th PRB to the 25th PRB.
  • the determining unit may determine corresponding channel estimates for different antennas to transmit the same frequency width according to SRSs of the same frequency width in different hopping periods.
  • the number of frequency hopping sub-cycles included in the one hopping period is K;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the receiving unit is related to the n SRS , and satisfies:
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the receiving unit is related to the n SRS , and satisfies:
  • is a constant, and when the value of K is an integer multiple of 4, the value of ⁇ is 1; when the value of K is not an integer multiple of 4, the value of ⁇ is 0; the mod is a modulo symbol.
  • the number of frequency hopping sub-cycles included in the one hopping period is K;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • is a constant, and when the value of K is an integer multiple of 8, 6, 10, 18, the value of ⁇ is 1; when the value of K is not 8, 6, 10, When the integer value is 18, the value of ⁇ is 0; the mod is a modulo symbol; wherein ⁇ is a constant, and when the value of K is an integer multiple of 6, 10, 18, the value of ⁇ is 0. When the value of K is not an integer multiple of 6, 10, 18, the value of ⁇ is 1.
  • the number of frequency hopping sub-cycles included in the one hopping period is K;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the number of frequency hopping sub-cycles included in the one hopping period is K;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and when the value of K is an integer multiple of 4, it satisfies :
  • is a constant, and when the value of K is an integer multiple of 8, the value of ⁇ is 1; when the value of K is not an integer multiple of 8, the value of ⁇ is 0; the mod is a modulo symbol;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the number of frequency hopping sub-cycles included in the one hopping period is K;
  • is a constant, and when the value of K is an integer multiple of 8, the value of ⁇ is 1; when the value of K is not an integer multiple of 8, the value of ⁇ is 0; the mod is a modulo symbol;
  • the number a (n SRS ) of the antenna where the nth SRS SRSs are transmitted by the UE to the base station eNB is related to the n SRS , and satisfies:
  • the formula in the present invention may be represented by a mapping relationship set or a table, for example, may be a correspondence relationship.
  • the received antenna number a(n SRS ) is determined according to an index of the corresponding n SRS .
  • the number may be 0, 1, 2, 3
  • the value of the value is only an example, and the value of a(n SRS ) may not be the value in the embodiment or is not limited to determining the antenna number as a symbol or identifier, and may be directly based on the n SRS.
  • a symbol or identifier is determined for indicating the corresponding antenna in this embodiment.
  • the present invention claims a mapping relationship and a corresponding set or table corresponding to the antenna identifier similar to that in this embodiment.
  • the determining unit may further determine a frequency hopping period and/or a frequency hopping sub-period, where the sending unit may send a message, To indicate the frequency hopping period/frequency hopping sub-period, of course, this hopping period and/or hopping sub-period may be preset in the storage unit or UE of the eNB.
  • the receiving unit receives the The SRS covers the coverage of the SRS.
  • the SRS transmitted by any of the pth and the antennas in 4 cycles covers the coverage.
  • the SRS in the process of receiving the SRS by the receiving unit, since the frequency range occupied by the SRS received in each frequency hopping sub-period is different, the SRS can be quickly covered in the frequency hopping process. In the case of coverage, the characteristics of the channel can be obtained in the early stage of the frequency hopping process, and the channel matrix or channel model is initially estimated, which improves the system efficiency.
  • FIG. 14 is a schematic flowchart of a communication method according to an embodiment of the present invention, and relates to a method for transmitting a sounding reference signal SRS:
  • a determining unit 1401, configured to determine a frequency hopping sub-period
  • the eNB may determine a frequency hopping sub-period, which is the time taken by the UE to send the SRS once.
  • the base station indication signaling may be received before the initialization or the re-execution of the subsequent step, where the indication signaling includes the frequency hopping sub-period, and may also be a parameter of the preset value in the eNB or the UE.
  • the receiving unit 1402 is configured to receive, by the eNB, the UE in at least one of the frequency hopping sub-periods The SRS transmitted using 2 of the 4 antennas.
  • the sounding process may be completed by notifying the UE to transmit the SRS signal by using two antennas to improve the efficiency of receiving the SRS and estimating the channel characteristics.
  • the receiving unit receives the SRS sent by the 2 antennas of the 4 antennas to the eNB in at least one frequency hopping sub-period; and in at least another frequency hopping sub-period, the The unit receives an SRS transmitted by the other two antennas of the four antennas to the eNB.
  • the receiving unit receives 2 antennas of 4 antennas to send SRS to the eNB; in the k+1th frequency hopping sub-period and/or In the k-1 frequency hopping sub-periods, the receiving unit receives the other two antennas of the four antennas and transmits the SRS to the eNB.
  • the eNB may complete the receiving process in an alternating manner, for example, in the first frequency hopping sub-period, the eNB receives the UE using the first The SRS transmitted by the group antenna, in the second frequency hopping sub-cycle, the eNB receives the SRS transmitted by the UE using the second group antenna. It should be understood that this rule may enable the eNB itself to determine and notify the UE to transmit according to the determined manner, so that the UE may be prevented from repeatedly using a certain antenna to affect the transmission efficiency.
  • the determining unit determines the number K of receiving the SRS signal in the one frequency hopping period
  • the receiving unit receives the sub-band number a (n SRS ) where the n-th SRS SRSs sent by the UE is located, and the n SRS relationship, and satisfies:
  • the receiving unit receives the sub-band number a (n SRS ) where the n-th SRS SRSs sent by the UE is located, and the n SRS relationship, and satisfies:
  • is a constant, and when the value of K is an integer multiple of 4, the value of ⁇ is 1; when the value of K is not an integer multiple of 4, the value of ⁇ is 0:
  • the mod is a modulo symbol, and a value of each of the a(n SRS ) corresponds to one antenna combination, and is used to indicate that the antenna of the SRS is sent in the nth SRS frequency hopping sub-period.
  • the number of times K of receiving the SRS signal, once for one hopping sub-cycle, is sent by the SRS signal, and the SRS signal is sent by two antennas.
  • the formula in the present invention may be represented by a mapping relationship set or a table, for example, may be a correspondence relationship.
  • the index of the SRS is determined by the antenna number a (n SRS ) of the transmission.
  • the value of the number may be 0, 1, and such a value is only an example, and the present invention is It is claimed that the value of a(n SRS ) may not be the value in the embodiment or is not limited to determining the antenna number as a symbol or identifier due to the deformation of the formula, and a symbol or identifier may be directly determined according to the n SRS.
  • the corresponding antenna is indicated.
  • the present invention claims a mapping relationship and a corresponding set or table corresponding to the antenna identifier similar to that in this embodiment.
  • the determining unit determines a frequency hopping sub-period, and receives, by the receiving unit, at least one of the hopping sub-cycles, the UE uses two antennas of the four antennas to a base station.
  • SRS sent by the eNB the antennas may be grouped according to the antenna, and the appropriate antenna grouping is used in different frequency hopping sub-cycles to achieve the process of quickly completing the SRS transmission, thereby improving the efficiency of the system.
  • the transmitting unit may be a transmitter, or an antenna system, which may drive an antenna or a radio; for embodiments of the present invention, the UE drives 4 antennas, which may be Included in the transmitter, the SRS may be driven by a driving circuit or a transmitter; the receiving unit may be a receiver, or an antenna system, the system may receive a signal; or the same antenna system as the transmitting unit .
  • the determining unit may be one or more processors, and the processor may be a general-purpose processor, such as a general-purpose central processing unit (CPU), a network processor (NP Processor, NP), a microprocessor, etc.
  • the storage unit may be a memory, and for data information that needs to be stored, such as configuration information, The stated coverage or correspondence table may also be stored in the storage unit or the memory for invocation.
  • a program for executing the technical solution of the embodiment of the present invention may also be stored in the memory, and an operating system and other applications may also be saved.
  • the program can include program code, the program code including computer operating instructions.
  • the memory may be a read-only memory (ROM), other types of static storage devices that can store static information and instructions, random access memory (RAM), and storable information. And other types of dynamic storage devices, disk storage, and so on. It can also be a different memory storage.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a computer.
  • computer readable media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage media or other magnetic storage device, or can be used for carrying or storing in the form of an instruction or data structure.
  • the desired program code and any other medium that can be accessed by the computer may suitably be a computer readable medium.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave, then the coaxial cable , fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwave are included in the fixing of the associated media.
  • coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwave are included in the fixing of the associated media.
  • a disk and a disc include a compact disc (CD), a laser disc, a compact disc, a digital versatile disc (DVD), a floppy disk, and a Blu-ray disc, wherein the disc is usually magnetically copied, and the disc is The laser is used to optically replicate the data. Combinations of the above should also be included within the scope of the computer readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

用户设备UE确定发送SRS的覆盖范围;所述UE在一个跳频子周期,使用四天线中的一个天线向基站eNB发送一个SRS;其中,一个跳频周期包含至少两个跳频子周期,且任一天线在至少一个时间段内发送的SRS所覆盖的频带不同,所述时间段为四个连续跳频周期;且在每个跳频周期中,在每个跳频子周期发送的SRS占用的频率范围不同,且在每个跳频周期中,所有所述跳频子周期发送的SRS占用的频率范围为所述覆盖范围。

Description

一种SRS的发送和接收的方法和装置 技术领域
本发明涉及通信领域,尤其涉及一种发送探测参考信号SRS的方法。
背景技术
在3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)LTE(Long Term Evolution,长期演进)/LTE-A(LTE-advanced,LTE高级演进)系统中,下行多址接入方式通常采用OFDMA(Orthogonal Frequency Division Multiple Access,正交频分复用多址接入)方式。系统的下行资源从时间上看被划分成了OFDM(Orthogonal Frequency Division Multiple,正交频分复用多址)符号,从频率上看被划分成了子载波。
根据LTE Release 8/9/10标准,一个正常上行行子帧,包含有两个时隙(slot),每个时隙有7个OFDM符号,一个正常下行子帧共含有14个符号,并定义了RB(Physical Resource Block,物理资源块)的大小,也可称作PRB。一个RB在频域上包含12个子载波,在时域上为半个子帧时长(一个时隙,slot),即包含7个符号,其中,正常的CP(Cyclic Prefix,循环前缀)长度符号为7个OFDM符号,扩展的循环前缀长度符号为6个OFDM符号)。在某个OFDM符号内的某个子载波称为RE(Resource Element,资源元素),因此一个RB包含84个或72个RE。在一个子帧上,两个时隙的一对RB称之为资源块对,即RB对(RB pair)。在发送上行数据时,一个slot的7个符号中的第4个符号为上行解调导频。另外符号上承载数据。
此外,LTE系统引入了多输入多输出(Multi-Input&Multi-Output,MIMO)等关键传输技术,显著增加了频谱效率和数据传输速率。通过发射预编码技术和接收合并技术,基于MIMO的无线通信系统可以得到分集和阵列增益。基于MIMO的无线通信系统需要对信号进行预编码处理,基于预编码的信号传输函数可以表示为:
Figure PCTCN2015087113-appb-000001
其中,y是接收信号矢量,H是信道模型矩阵,
Figure PCTCN2015087113-appb-000002
是预编码矩阵,s是发射信号矢量,n是测量噪声,发射信号矢量s在发射端经过预编码矩阵
Figure PCTCN2015087113-appb-000003
进行预编 码,得到预编码后的矩阵,经过信道模型矩阵H,再经过测量噪声n的叠加,在接收端接收到接收信号矢量。
在系统进行后续的数据通讯前,需要确定信道的模型。由于信道具备互异性,所以当确定出下行/上行的信道模型矩阵H1后,与其对应的信道上行/下行信道模型矩阵H1'就可以表示为:
Figure PCTCN2015087113-appb-000004
所以无论是测量上行信道模型还是下行信道模型矩阵,都可以获得信道的质量。一种方法为,用户设备(User Equipment,UE)通过向演进节点B(Evolved Node B,eNB)发送探测参考信号(Sounding Reference Signal,SRS)。由eNB完成对SRS的测量并获取上行信道模型矩阵。
但是,UE在2天线时,只存在2个天线向eNB发SRS的情况;但是,目前的商用终端装置或用户设备已经支持4天线。但是,还没有定义4天线发SRS的情况。且如果使用2天线向eNB发SRS的方式,使用4天线向eNB发送SRS,那么eNB无法得到所以收发天线之间的信道,导致性能损失很大。
发明内容
本发明实施例提供了一种探测参考信号SRS的发送方法、用户设备和基站,克服了在4天线发送SRS的情况无法采用传统方式发送的问题,并提升了系统的性能。
第一方面,本发明实施例提供了一种探测参考信号SRS的发送方法,用户设备UE确定发送SRS的覆盖范围;所述UE在一个跳频子周期,使用四天线中的一个天线向基站eNB发送一个SRS;其中,一个跳频周期包含至少两个跳频子周期,且任一天线在至少一个时间段内发送的SRS所覆盖的频带不同,所述时间段为四个连续跳频周期;且在每个跳频周期中,在每个跳频子周期发送的SRS占用的频率范围不同,且在每个跳频周期中,所有所述跳频子周期发送的SRS占用的频率范围为所述覆盖范围。
在第一方面的第一种可能的实现方式中,在所述四个连续跳频周期内,所述UE的任意一个天线发送的所述SRS覆盖所述SRS的覆盖范围。
在第一方面的第二种可能的实现方式中,所述UE在所述四个连续跳频周期 中,每个跳频周期的第i个跳频子周期发送的频率宽度相同,其中,i为任意正整数。
在第一方面的第三种可能的实现方式中,所述一个跳频周期中包含的跳频子周期数量为K;
所述一个跳频周期中包含的跳频子周期数量为K;
当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
Figure PCTCN2015087113-appb-000005
和/或
当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod4;
其中,所述β为常数,且当所述K的值为8,6,10,18的整数倍时,所述β的值为1;当所述K的值不为8,6,10,18的整数倍时,所述β的值为0;所述mod为取模符号;其中,所述γ为常数,当K的值为6,10,18的整数倍时,γ的值为0;当K的值不为6,10,18的整数倍时,γ的值为1。
或者;
所述一个跳频周期中包含的跳频子周期数量为K;
当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
Figure PCTCN2015087113-appb-000006
和/或
当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod4;
其中,当所述K的值为8的整数倍时,或K的值为6或10或18时,所述β的 值为1;当所述K的值不为8的整数倍时,且K不为6,10,18时,所述β的值为0;其中,所述γ为常数,当K的值为6,10,18时,γ的值为0;当K的值不为6,10,18时,γ的值为1。
或者;
所述一个跳频周期中包含的跳频子周期数量为K;
当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,当所述K的值为4整数倍时,满足:
Figure PCTCN2015087113-appb-000007
其中,所述β为常数,且当所述K的值为8的整数倍时,所述β的值为1;当所述K的值不为8的整数倍时,所述β的值为0;所述mod为取模符号;
当所述K的值为不为4整数倍时,满足:
Figure PCTCN2015087113-appb-000008
和/或
当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod4;
或者;
所述一个跳频周期中包含的跳频子周期数量为K;
当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,当所述K的值为4整数倍时,或K=2时,满足:
Figure PCTCN2015087113-appb-000009
其中,所述β为常数,且当所述K的值为8的整数倍时,所述β的值为1;当所述K的值不为8的整数倍时,所述β的值为0;所述mod为取模符号;
当所述K的值为不为4整数倍时,且K=2时,满足:
Figure PCTCN2015087113-appb-000010
和/或
当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod4;
第二方面,本发明实施例提供了一种探测参考信号SRS的发送方法,其特征在于:用户设备UE确定跳频子周期;所述UE在至少一个所述跳频子周期内,使用所述4天线中的2个天线向基站eNB发送SRS。
在第二方面的第一种可能的实现方式中,所述4根天线中的2根向基站eNB发送SRS,具体包括:
在至少一个跳频子周期内,所述4天线中的2个天线向所述eNB发送SRS;且在至少另一个跳频子周期内,所述4天线中的另外2个天线向所述eNB发送SRS。
结合第二方面,或者第二方面第一种可能的实现方式,在第二种可能的实现方式中,所述4天线中的2个天线向基站eNB发送SRS,具体包括:
在第k个跳频子周期内,所述4天线中的2个天线向所述eNB发送SRS;
在第k+1个跳频子周期和/或在第k-1个跳频子周期内,所述4天线中的另外2个天线向所述eNB发送SRS。
结合第二方面,或者第二方面第一种可能的实现方式,在第三种可能的实现方式中,所述4跟天线中的2根向基站eNB发送SRS,具体包括:
所述UE确定所述一个跳频周期中,发送SRS信号的次数K;
当K为偶数时,所述UE向基站eNB发送的第nSRS个SRS所在天线组的编号a(nSRS)与所述nSRS关系,满足
Figure PCTCN2015087113-appb-000011
;和/或
当K为奇数时,所述UE向基站eNB发送的第nSRS个SRS所在天线组的编号a(nSRS)与所述nSRS关系,满足:a(nSRS)=nSRS mod2;
其中,所述为常数,且当所述K的值为4的整数倍时,所述β的值为1;当所述K的值不为4的整数倍时,所述β的值为0;所述mod为取模符号,且每个所述a(nSRS)的一个值对应一个天线组,所述a(nSRS)用于指示在第nSRS个跳频子周期内,发送所述SRS的天线。
结合第二方面第三种可能的实现方式,在第四种可能的实现方式中,所述a(nSRS)的两个值分别对应第一天线组合和第二天线组合,所述第一天线组合为4天线中的2个,所述第二天线组合为4天线中的另2个。
结合第二方面第四种可能的实现方式,在第五种可能的实现方式中,还包括;
所述UE确定第一元素A对应的天线和所述第三元素C对应的天线为所述第一天线组合;
所述UE使用第二元素B对应的天线和所述第四元素D对应的天线为所述第二天线组合;
其中,第一元素A,第二元素B,第三元素C,第四元素D,分别为所述4个天线加权,且所述第一元素A,第二元素B,第三元素C,第四元素D为秩为1的预编码矩阵向量
Figure PCTCN2015087113-appb-000012
的元素。
第三方面,本发明实施例提供了一种探测参考信号SRS的接收方法:
基站eNB确定接收SRS的覆盖范围;所述eNB在一个跳频子周期,接收用户设备UE使用四天线中的一个天线发送的一个SRS;其中,一个跳频周期包含至少两个跳频子周期,且在至少一个时间段内,接收到的任意一天线发送的SRS所覆盖的频带不同,所述时间段为四个连续跳频周期;且在每个跳频周期中,在每个跳频子周期接收的SRS占用的频率范围不同,且在每个跳频周期中,所有所述跳频子周期接收的SRS占用的频率范围为所述覆盖范围。
在第三方面的第一种可能的实现方式中,在所述四个连续跳频周期内,所述eNB接收的任意一个天线发送的所述SRS覆盖所述SRS的覆盖范围。
在第三方面的第二种可能的实现方式中,所述eNB在所述四个连续跳频周 期中,在每个跳频周期接收的第i个跳频子周期的频率宽度相同,其中,i为任意正整数。
在第三方面的第三种可能的实现方式中,所述一个跳频周期中包含的跳频子周期数量为K;
当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
Figure PCTCN2015087113-appb-000013
和/或
当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod4;
其中,所述β为常数,且当所述K的值为8,6,10,18的整数倍时,所述β的值为1;当所述K的值不为8,6,10,18的整数倍时,所述β的值为0;所述mod为取模符号;其中,所述γ为常数,当K的值为6,10,18的整数倍时,γ的值为0;当K的值不为6,10,18的整数倍时,γ的值为1。
或者;
所述一个跳频周期中包含的跳频子周期数量为K;
当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
Figure PCTCN2015087113-appb-000014
和/或
当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod4;
其中,当所述K的值为8的整数倍时,或K的值为6或10或18时,所述β的值为1;当所述K的值不为8的整数倍时,且K不为6,10,18时,所述β的 值为0;其中,所述γ为常数,当K的值为6,10,18时,γ的值为0;当K的值不为6,10,18时,γ的值为1。
或者;
所述一个跳频周期中包含的跳频子周期数量为K;
当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,当所述K的值为4整数倍时,满足:
Figure PCTCN2015087113-appb-000015
其中,所述β为常数,且当所述K的值为8的整数倍时,所述β的值为1;当所述K的值不为8的整数倍时,所述β的值为0;所述mod为取模符号;
当所述K的值为不为4整数倍时,满足:
Figure PCTCN2015087113-appb-000016
和/或
当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod4;
或者;
所述一个跳频周期中包含的跳频子周期数量为K;
当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,当所述K的值为4整数倍时,或K=2时,满足:
Figure PCTCN2015087113-appb-000017
其中,所述β为常数,且当所述K的值为8的整数倍时,所述β的值为1;当所述K的值不为8的整数倍时,所述β的值为0;所述mod为取模符号;
当所述K的值为不为4整数倍时,且K=2时,满足:
Figure PCTCN2015087113-appb-000018
和/或
当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod4;
第四方面,本发明实施例提供了一种探测参考信号SRS的接收方法,基站eNB确定跳频子周期;所述eNB在至少一个所述跳频子周期内,接收所述UE使用4天线中的2个天线发送的SRS。
在第四方面的第一种可能的实现方式中,所述接收所述UE使用4天线中的2个天线发送的SRS,具体包括:在至少一个跳频子周期内,接收所述4天线中的2个天线向所述eNB发送SRS;且在至少另一个跳频子周期内,接收所述4天线中的另外2个天线向所述eNB发送SRS。
结合第四方面,或者第四方面第一种可能的实现方式,在第二种可能的实现方式中,所述eNB接收所述UE使用4天线中的2个天线发送的SRS,具体包括:在第k个跳频子周期内,所述eNB接收所述4天线中的2个天线向所述eNB发送的SRS;在第k+1个跳频子周期和/或在第k-1个跳频子周期内,所述eNB接收所述4天线中的另外2个天线向所述eNB发送SRS。
结合第四方面,或者第四方面第一种可能的实现方式,在第三种可能的实现方式中,所述eNB接收所述UE使用4天线中的2个天线发送的SRS,具体包括:所述eNB确定所述一个跳频周期中,接收SRS信号的次数K;
当K为偶数时,所述eNB接收所述UE发送的第nSRS个SRS所在子频带编号a(nSRS)与所述nSRS关系,满足:
Figure PCTCN2015087113-appb-000019
;和/或
当K为奇数时,所述eNB接收所述UE发送的第nSRS个SRS所在子频带编号a(nSRS)与所述nSRS关系,满足:a(nSRS)=nSRSmod2;
其中,所述β为常数,且当所述K的值为4的整数倍时,所述β的值为1;当所述K的值不为4的整数倍时,所述β的值为0;所述mod为取模符号,且 每个所述a(nSRS)的一个值对应一个天线组合,用于指示在第nSRS个跳频子周期内,发送所述SRS的天线。
结合第四方面第二种可能的实现方式,在第四种可能的实现方式中,所述a(nSRS)的两个值分别对应第一天线组合和第二天线组合,所述第一天线组合为4天线中的2个,所述第二天线组合为4天线中的另2个。
结合第四方面第一到第四种中任意一种可能的实现方式,在第五种可能的实现方式中,还包括;所述eNB确定第一元素A对应的天线和所述第三元素C对应的天线为所述第一天线组合;所述eNB确定第二元素B对应的天线和所述第四元素D对应的天线为所述第二天线组合;其中,第一元素A,第二元素B,第三元素C,第四元素D,分别为所述4个天线加权,且所述第一元素A,第二元素B,第三元素C,第四元素D为秩为1的预编码矩阵向量
Figure PCTCN2015087113-appb-000020
的元素。
第五方面,本发明实施例提供了一种用户设备UE,其特征在于:确定单元,用于确定发送SRS的覆盖范围;发送单元,用于在一个跳频子周期,使用四天线中的一个天线向基站eNB发送一个SRS;其中,一个跳频周期包含至少两个跳频子周期,且任一天线在至少一个时间段内发送的SRS所覆盖的频带不同,所述时间段为四个连续跳频周期;且在每个跳频周期中,在每个跳频子周期发送的SRS占用的频率范围不同,且在每个跳频周期中,所有所述跳频子周期发送的SRS占用的频率范围为所述覆盖范围。
在第五方面的第一种可能的实现方式中,在所述四个连续跳频周期内,所述发送单元使用任意一个天线发送的所述SRS覆盖所述SRS的覆盖范围。
在第五方面的第二种可能的实现方式中,所述发送单元在所述四个连续跳频周期中,每个跳频周期的第i个跳频子周期发送的频率宽度相同,其中,i为任意正整数。
在第五方面的第三种可能的实现方式中,所述一个跳频周期中包含的跳频子周期数量为K;
当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的 编号a(nSRS)与所述nSRS关系,满足:
Figure PCTCN2015087113-appb-000021
和/或
当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod4;
其中,所述β为常数,且当所述K的值为8,6,10,18的整数倍时,所述β的值为1;当所述K的值不为8,6,10,18的整数倍时,所述β的值为0;所述mod为取模符号;其中,所述γ为常数,当K的值为6,10,18的整数倍时,γ的值为0;当K的值不为6,10,18的整数倍时,γ的值为1。
或者;
所述一个跳频周期中包含的跳频子周期数量为K;
当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
Figure PCTCN2015087113-appb-000022
和/或
当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod4;
其中,当所述K的值为8的整数倍时,或K的值为6或10或18时,所述β的值为1;当所述K的值不为8的整数倍时,且K不为6,10,18时,所述β的值为0;其中,所述γ为常数,当K的值为6,10,18时,γ的值为0;当K的值不为6,10,18时,γ的值为1。
或者;
所述一个跳频周期中包含的跳频子周期数量为K;
当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,当所述K的值为4整数倍时,满足:
Figure PCTCN2015087113-appb-000023
其中,所述β为常数,且当所述K的值为8的整数倍时,所述β的值为1;当所述K的值不为8的整数倍时,所述β的值为0;所述mod为取模符号;
当所述K的值为不为4整数倍时,满足:
Figure PCTCN2015087113-appb-000024
和/或
当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod4;
或者;
所述一个跳频周期中包含的跳频子周期数量为K;
当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,当所述K的值为4整数倍时,或K=2时,满足:
Figure PCTCN2015087113-appb-000025
其中,所述β为常数,且当所述K的值为8的整数倍时,所述β的值为1;当所述K的值不为8的整数倍时,所述β的值为0;所述mod为取模符号;
当所述K的值为不为4整数倍时,且K=2时,满足:
Figure PCTCN2015087113-appb-000026
和/或
当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod4;
第六方面,本发明实施例提供了一种用户设备UE,包括确定单元,用于确定跳频子周期;发送单元,用于在至少一个所述跳频子周期内,使用所述4天线中的2个天线向基站eNB发送SRS。
在第六方面的第一种可能的实现方式中,所述发送单元使用所述4根天线中的2根向基站eNB发送SRS,具体包括:在至少一个跳频子周期内,所述发送单元使用所述4天线中的2个天线向所述eNB发送SRS;且在至少另一个跳频子周期内,所述发送单元使用所述4天线中的另外2个天线向所述eNB发送SRS。
结合第六方面,或者第六方面第一种可能的实现方式,在第二种可能的实现方式中,所述发送单元使用所述4天线中的2个天线向基站eNB发送SRS,具体包括:在第k个跳频子周期内,所述发送单元使用所述4天线中的2个天线向所述eNB发送SRS;在第k+1个跳频子周期和/或在第k-1个跳频子周期内,所述发送单元使用所述4天线中的另外2个天线向所述eNB发送SRS。
结合第六方面,或者第六方面第一种可能的实现方式,在第三种可能的实现方式中,所述发送单元使用所述4跟天线中的2根向基站eNB发送SRS,具体包括:
所述确定单元还用于确定所述一个跳频周期中,发送SRS信号的次数K;
当K为偶数时,所述发送单元向基站eNB发送的第nSRS个SRS所在天线组的编号a(nSRS)与所述nSRS关系,满足:
Figure PCTCN2015087113-appb-000027
和/或
当K为奇数时,所述所述发送单元向基站eNB发送的第nSRS个SRS所在天线组的编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod2;
其中,所述β为常数,且当所述K的值为4的整数倍时,所述β的值为1;当所述K的值不为4的整数倍时,所述β的值为0;所述mod为取模符号,且每个所述的一个值对应一个天线组,所述a(nSRS)用于指示在第nSRS个跳频子周 期内,发送所述SRS的天线。
结合第六方面第三种可能的实现方式,在第四种可能的实现方式中,所述a(nSRS)的两个值分别对应第一天线组合和第二天线组合,所述第一天线组合为4天线中的2个,所述第二天线组合为4天线中的另2个。
结合第六方面第一到第四种中任意一种可能的实现方式,在第五种可能的实现方式中,还包括;所述确定单元还用于确定第一元素A对应的天线和所述第三元素C对应的天线为所述第一天线组合;所述确定单元还用于确定第二元素B对应的天线和所述第四元素D对应的天线为所述第二天线组合;其中,第一元素A,第二元素B,第三元素C,第四元素D,分别为所述4个天线加权,且所述第一元素A,第二元素B,第三元素C,第四元素D为秩为1的预编码矩阵向量
Figure PCTCN2015087113-appb-000028
的元素。
第七方面,本发明实施例提供了一种基站装置,包括:确定单元,用于确定接收SRS的覆盖范围;接收单元,用于在一个跳频子周期,接收用户设备UE使用四天线中的一个天线发送的一个SRS;其中,一个跳频周期包含至少两个跳频子周期,且在至少一个时间段内,接收到的任意一天线发送的SRS所覆盖的频带不同,所述时间段为四个连续跳频周期;且在每个跳频周期中,在每个跳频子周期接收的SRS占用的频率范围不同,且在每个跳频周期中,所有所述跳频子周期接收的SRS占用的频率范围为所述覆盖范围。
在第七方面的第一种可能的实现方式中,所述接收单元接收任意一个天线发送的所述SRS覆盖所述SRS的覆盖范围。
在第七方面的第二种可能的实现方式中,所述接收单元在所述四个连续跳频周期中,在每个跳频周期接收的第i个跳频子周期的频率宽度相同,其中,i为任意正整数。
在第七方面的第三种可能的实现方式中,所述一个跳频周期中包含的跳频子周期数量为K;
当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的 编号a(nSRS)与所述nSRS关系,满足:
Figure PCTCN2015087113-appb-000029
和/或
当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod4;
其中,所述β为常数,且当所述K的值为8,6,10,18的整数倍时,所述β的值为1;当所述K的值不为8,6,10,18的整数倍时,所述β的值为0;所述mod为取模符号;其中,所述γ为常数,当K的值为6,10,18的整数倍时,γ的值为0;当K的值不为6,10,18的整数倍时,γ的值为1。
或者;
所述一个跳频周期中包含的跳频子周期数量为K;
当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
Figure PCTCN2015087113-appb-000030
和/或
当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod4;
其中,当所述K的值为8的整数倍时,或K的值为6或10或18时,所述β的值为1;当所述K的值不为8的整数倍时,且K不为6,10,18时,所述β的值为0;其中,所述γ为常数,当K的值为6,10,18时,γ的值为0;当K的值不为6,10,18时,γ的值为1。
或者;
所述一个跳频周期中包含的跳频子周期数量为K;
当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,当所述K的值为4整数倍时,满足:
Figure PCTCN2015087113-appb-000031
其中,所述β为常数,且当所述K的值为8的整数倍时,所述β的值为1;当所述K的值不为8的整数倍时,所述β的值为0;所述mod为取模符号;
当所述K的值为不为4整数倍时,满足:
Figure PCTCN2015087113-appb-000032
和/或
当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod4;
或者;
所述一个跳频周期中包含的跳频子周期数量为K;
当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,当所述K的值为4整数倍时,或K=2时,满足:
Figure PCTCN2015087113-appb-000033
其中,所述β为常数,且当所述K的值为8的整数倍时,所述β的值为1;当所述K的值不为8的整数倍时,所述β的值为0;所述mod为取模符号;
当所述K的值为不为4整数倍时,且K=2时,满足:
Figure PCTCN2015087113-appb-000034
和/或
当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod4;
第八方面,本发明实施例提供了一种基站装置,包括:确定单元,用于确定跳频子周期;接收单元,用于在至少一个所述跳频子周期内,接收所述UE使用4天线中的2个天线发送的SRS。
在第八方面的第一种可能的实现方式中,所述接收所述UE使用4天线中的2个天线发送的SRS,具体包括:在至少一个跳频子周期内,接收所述4天线中的2个天线向所述eNB发送SRS;且在至少另一个跳频子周期内,接收所述4天线中的另外2个天线向所述eNB发送SRS。
结合第八方面,或者第八方面第一种可能的实现方式,在第二种可能的实现方式中,所述接收单元接收所述UE使用4天线中的2个天线发送的SRS,具体包括:
在第k个跳频子周期内,所述接收单元接收所述4天线中的2个天线向所述eNB发送的SRS;
在第k+1个跳频子周期和/或在第k-1个跳频子周期内,所述接收单元接收所述4天线中的另外2个天线向所述eNB发送SRS。
结合第八方面,或者第八方面第一种可能的实现方式,在第三种可能的实现方式中,所述接收单元接收所述UE使用4天线中的2个天线发送的SRS,具体包括:
所述确定单元还用于确定所述一个跳频周期中,接收SRS信号的次数K;
当K为偶数时,所述接收单元接收所述UE发送的第nSRS个SRS所在子频带编号a(nSRS)与所述nSRS关系,满足:
Figure PCTCN2015087113-appb-000035
和/或
当K为奇数时,所述接收单元接收所述UE发送的第nSRS个SRS所在子频带编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod2;
其中,所述β为常数,且当所述K的值为4的整数倍时,所述β的值为1;当所述K的值不为4的整数倍时,所述β的值为0;所述mod为取模符号,且每个所述a(nSRS)的一个值对应一个天线组合,用于指示在第nSRS个跳频子周期内, 发送所述SRS的天线。
结合第八方面第三种可能的实现方式,在第四种可能的实现方式中,所述a(nSRS)的两个值分别对应第一天线组合和第二天线组合,所述第一天线组合为4天线中的2个,所述第二天线组合为4天线中的另2个。
结合第八方面第一到第四种中任意一种可能的实现方式,在第五种可能的实现方式中,还包括;
所述确定单元还用于确定第一元素A对应的天线和所述第三元素C对应的天线为所述第一天线组合;
所述确定单元还用于确定第二元素B对应的天线和所述第四元素D对应的天线为所述第二天线组合;
其中,第一元素A,第二元素B,第三元素C,第四元素D,分别为所述4个天线加权,且所述第一元素A,第二元素B,第三元素C,第四元素D为秩为1的预编码矩阵向量
Figure PCTCN2015087113-appb-000036
的元素。
通过上述方案,本发明实施例通过确定SRS在确定的周期内采用不同的天线发送并在多个周期完成每一根天线在覆盖范围完成覆盖的方式,提高了系统在获取信道信息的速度,提升了系统性能。
附图说明
图1为本发明实施例提供的一种用户设备UE发送SRS的方法流程图。
图2为本发明实施例提供的一种用户设备UE发送SRS的方法流程图。
图3为本发明实施例提供的一种用户设备UE发送SRS的方法流程图。
图4为本发明实施例提供的一种基站eNB接收SRS的方法流程图。
图5为本发明实施例提供的一种基站eNB接收SRS的方法流程图。
图6为本发明实施例提供的一种基站eNB接收SRS的方法流程图。
图7为本发明实施例提供的一种用户设备UE和基站eNB收发SRS的方法流程图。
图8为本发明实施例提供的一种用户设备UE和基站eNB收发SRS的时序示意 图。
图9为本发明实施例提供的一种用户设备UE的装置结构图。
图10为本发明实施例提供的一种用户设备UE的装置结构图。
图11为本发明实施例提供的一种用户设备UE的装置结构图。
图12为本发明实施例提供的一种基站eNB的装置结构图。
图13为本发明实施例提供的一种基站eNB的装置结构图。
图14为本发明实施例提供的一种基站eNB的装置结构图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
应理解,本发明涉及的基站可以但不限于是节点B(NodeB),基站(Base station,BS),接入点(Access Point),发射点(Transmission Point,TP),演进节点B(Evolved Node B,eNB)或者中继(Relay)等;本发明涉及的用户设备UE可以但不限于是包括移动台(Mobile Station,MS)、中继(Relay)、移动电话(Mobile Telephone)、手机(handset)及便携设备(portable equipment)、移动或非移动终端等。
图1是根据本发明实施例的通信方法的示意性流程图,涉及一种探测参考信号SRS的发送方法:
步骤101,用户设备UE确定发送SRS的覆盖范围;
步骤102,所述UE在一个跳频子周期,使用四天线中的一个天线向基站eNB发送一个SRS;
其中,一个跳频周期包含至少两个跳频子周期,且任一天线在至少一个时间段内发送的SRS所覆盖的频带不同,所述时间段为四个连续跳频周期;且在每个跳频周期中,在每个跳频子周期发送的SRS占用的频率范围不同,且在每个跳频周期中,所有所述跳频子周期发送的SRS占用的频率范围为所述覆盖范围。
根据图1示出的实施例,所述UE向基站发送所述SRS的过程中,由于在 每个跳频子周期发送的SRS占用的频率范围不同,可以达到在跳频过程中,快速覆盖SRS的覆盖范围的情况,且可以在跳频过程的前期即获取到信道的特征,提升了系统效率。
图2是根据本发明实施例的通信方法的示意性流程图,涉及一种探测参考信号SRS的发送方法:
步骤201,用户设备UE确定发送SRS的覆盖范围;
应理解,在UE发送SRS的情况下,是通过每次使用这4跟天线中的一个发送的,但是,由于带宽受限和提高效率的需求,UE通常需要在全频带中确定一个SRS的覆盖范围,即UE发送多次SRS至eNB的SRS信号不能超过的范围。这一范围可以是一个总体范围。例如,这一范围可以根据上行带宽的值确定,可以从中选择一部分或上行带宽的全部,也可以根据具体的业务需求确定。从时间上,这一确定方式可以是以静态、半静态或者是动态调度控制,或由UE本身确定的,也可以是由eNB调度所述UE确定的。而具体的跳频方式,可以由基站确定后发送给UE,或通过基站和UE协商获得。
步骤202,所述UE在一个跳频子周期,使用四天线中的一个天线向基站eNB发送一个SRS;其中,一个跳频周期包含至少两个跳频子周期,且任一天线在至少一个时间段内发送的SRS所覆盖的频带不同,所述时间段为四个连续跳频周期;且在每个跳频周期中,在每个跳频子周期发送的SRS占用的频率范围不同,且在每个跳频周期中,所有所述跳频子周期发送的SRS占用的频率范围为所述覆盖范围。
UE在发送SRS信号的过程中,可以进行跳频(hopping),即在一个确定的覆盖范围内,在相邻的两个时间间隔,进行SRS所在频段位置的转换。这一转换规则可以根据一个特定的方式完成。例如,这一规则可以是一个跳频周期,在这个周期中,包含n个跳频子周期。可选的,n为大于或等于2的整数。在每个跳频子周期,所述UE使用4根天线的一个天线向基站发送SRS。在这n个跳频子周期结束时,所述UE发送的SRS信号覆盖了整个所述覆盖范围。一个实施例中,所述n的值可以和跳频过程中的节点数相关联,其中,节点可以指UE一次所发送SRS的频带带宽,即频段位置,节点的数量可以指在一次跳频的过程中,一个所述覆盖范围内包含的节点的宽度。例如,表1中,确定覆盖范围为 6PRB-40PRB时,若n的值为9,那么所述节点数可以为9个,且所述任一天线在至少一个时间段内发送的SRS所覆盖的频带不同:
Figure PCTCN2015087113-appb-000037
表1
表一中,6-10代表第6个PRB到第10个PRB。在表1示出的节点数与覆盖范围的关系中,当9个跳频子周期结束时,所述UE每个子周期都覆盖1个节点的方式,完成了对整个覆盖范围的覆盖。应理解,具体的覆盖节点的顺序是可以不根据1-9的顺序完成的。一个实施例中,这一过程可以是将9个节点再分m组,相邻的跳频子周期,使用不同的组中的节点。在具体实现方式中,可以不按照编号确定所述节点数或节点号。
另一个实施例中,所述任意一根天线在至少一个时间段内发送的SRS的覆盖范围不同,例如,第k根天线,在这一时间段内,向所述eNB发送了数个SRS,
这数个SRS信号所覆盖的频率范围是不同的,进一步解释,例如在第s个和第t个跳频子周期发送SRS,当第s个跳频子周期发送的SRS覆盖第10PRB-14PRB时,在第t个跳频子周期就不能再重复覆盖第10PRB-14PRB。这里k可以指的是特定的一根天线。应理解,可能存在某些覆盖重叠的频段位置,在这样的情况下,在一个跳频周期中,包含的所述跳频子周期的个数可以大于所述节点数。
所述UE除确定跳频的方式外,还需要确定天线的发送方式。为了最大程度的提高效率,可以在四个连续的跳频周期内,任一天线发送的SRS所覆盖的频带不同。这一跳频过程可以是在系统开始进行探测(Sounding)过程即行开始。在这样的情况下,可以直接在前四个连续的跳频周期内使得所述四跟天线均能遍历整个覆盖范围。
一个实施例中,所述UE可以进一步满足:在一个跳频周期内,任意一根天线发送SRS的次数小于或等于
Figure PCTCN2015087113-appb-000038
其中,
Figure PCTCN2015087113-appb-000039
表示向下取整,
Figure PCTCN2015087113-appb-000040
表示向上取整。在这样的情况下,所述UE可以在前数个跳频周期内就在尽可能多的天线上发送所述SRS,使得所述eNB可以快速获得不同天线的SRS情况。
又一个实施例中,所述UE在所述四个连续跳频周期中,每个跳频周期的第i个跳频子周期发送的频率宽度相同,其中,i为任意正整数。应理解,本发明中的任意正整数,可以是指在范围内的任意正整数,例如所述跳频周期包含的跳频子周期供有j个,那么,i的取值为1-j。例如,在第一个跳频周期中的第2个跳频子周期,其发送的频率宽度为第6个PRB至第40个PRB,那么,在第二、三、四个跳频周期中的第2个跳频子周期,其发送的频率宽度为第6个PRB至第40个PRB。在这种情况下,eNB可以根据不同跳频周期同一频率宽度的SRS确定不同天线在发送相同频率宽度的情况下对应的信道估计。这里的频率宽度,可以指PRB的个数,例如11-14PRB覆盖了4个PRB,那么其频率宽度即为4PRB。
又一个实施例中,所述一个跳频周期中包含的跳频子周期数量为K;
当K为偶数时,所述UE向基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
Figure PCTCN2015087113-appb-000041
和/或
当K为奇数时,所述UE向基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod4;
其中,所述β为常数,且当所述K的值为4的整数倍时,所述β的值为1;当所述K的值不为4的整数倍时,所述β的值为0;所述mod为取模符号。
又一个实施例中,
所述一个跳频周期中包含的跳频子周期数量为K;
当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
Figure PCTCN2015087113-appb-000042
和/或
当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod4;
其中,所述β为常数,且当所述K的值为8,6,10,18的整数倍时,所述β的值为1;当所述K的值不为8,6,10,18的整数倍时,所述β的值为0;所述mod为取模符号;其中,所述γ为常数,当K的值为6,10,18的整数倍时,γ的值为0;当K的值不为6,10,18的整数倍时,γ的值为1。
或者;
所述一个跳频周期中包含的跳频子周期数量为K;
当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
Figure PCTCN2015087113-appb-000043
和/或
当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod4;
其中,当所述K的值为8的整数倍时,或K的值为6或10或18时,所述β的值为1;当所述K的值不为8的整数倍时,且K不为6,10,18时,所述β的值为0;其中,所述γ为常数,当K的值为6,10,18时,γ的值为0;当K的值不为6,10,18时,γ的值为1。
或者;
所述一个跳频周期中包含的跳频子周期数量为K;
当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,当所述K的值为4整数倍时,满足:
Figure PCTCN2015087113-appb-000044
其中,所述β为常数,且当所述K的值为8的整数倍时,所述β的值为1;当所 述K的值不为8的整数倍时,所述β的值为0;所述mod为取模符号;
当所述K的值为不为4整数倍时,满足:
Figure PCTCN2015087113-appb-000045
和/或
当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod4;
或者;
所述一个跳频周期中包含的跳频子周期数量为K;
当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,当所述K的值为4整数倍时,或K=2时,满足:
Figure PCTCN2015087113-appb-000046
其中,所述β为常数,且当所述K的值为8的整数倍时,所述β的值为1;当所述K的值不为8的整数倍时,所述β的值为0;所述mod为取模符号;
当所述K的值为不为4整数倍时,且K=2时,满足:
Figure PCTCN2015087113-appb-000047
和/或
当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod4;
。应理解,本发明中的公式通常可以通过一映射关系集合或表格的形式表示,例如可以是一对应关系,例如本实施例中,在发送第nSRS个SRS时或在发送之前,根据一个对应nSRS的索引,确定发送的天线编号a(nSRS),应理解,在本实施 例中,所述编号的取值可以为0,1,2,3,且这样的取值方式仅仅为其中一个示例,a(nSRS)的取值可以不为本实施例中的取值或者不限于将天线编号确定为一个符号或标识,可以根据所述nSRS直接确定一个符号或标识,用以本实施例指示对应的天线。本发明要求保护与本实施例中类似的,天线标识对应的映射关系及对应集合或表格。
可选的,在所述UE向基站发送所述SRS前,还可以包括确定跳频周期和/或跳频子周期,这一方式可以是由eNB下发一个消息,用来指示该跳频周期/跳频子周期的,当然,这一跳频周期和/或跳频子周期可以是预置在UE中的。
应理解,为了eNB需要获取所有4天线在所述覆盖范围的信道情况,优选的,在所述四个连续跳频周期内,所述UE的任意一个天线发送的所述SRS覆盖所述SRS的覆盖范围。例如,在以上述实施例所叙述的接收方法过程中,任意第p跟天线在4个周期内其发送的SRS覆盖所述覆盖范围。
根据图2示出的实施例,所述UE向基站发送所述SRS的过程中,由于在每个跳频子周期发送的SRS占用的频率范围不同,可以达到在跳频过程中,快速覆盖SRS的覆盖范围的情况,且可以在跳频过程的前期即获取到信道的特征,提升了系统效率。
图3是根据本发明实施例的通信方法的示意性流程图,涉及一种探测参考信号SRS的发送方法:
步骤301,用户设备UE确定跳频子周期;
在UE发送SRS的情况下,可以确定跳频子周期,该跳频子周期为UE发送一次SRS所占用的时间。这一确定过程,可以在初始化或者再执行后续步骤前接收基站指示信令,其中指示信令中包含该跳频子周期,也可以是预设值在UE中的参数。
步骤302,所述UE在至少一个所述跳频子周期内,使用所述4天线中的2个天线向基站eNB发送SRS。
在UE发送SRS的过程中,使用两根天线可以提升探测(Sounding)过程的效率,即发送SRS的效率。但是,需要根据实际情况确定天线的选择情况,以达到不重复发送以影响效率的情况。一个实施方式中,在至少一个跳频子周期内,所述4天线中的2个天线向所述eNB发送SRS;且在至少另一个跳频子周期内, 所述4天线中的另外2个天线向所述eNB发送SRS。
又一个实施例中,在第k个跳频子周期内,所述4天线中的2个天线向所述eNB发送SRS;在第k+1个跳频子周期和/或在第k-1个跳频子周期内,所述4天线中的另外2个天线向所述eNB发送SRS。应理解,在使用2天线向所述eNB发送所述SRS的过程中,对于天线的选择可以以交替的方式完成,例如,在第一个跳频子周期,所述UE使用第1组天线,在第二个跳频子周期,所述UE使用第2组天线。这样,可以避免重复使用某一根天线从而影响发送效率。
又一个实施例中,所述UE确定所述一个跳频周期中,发送SRS信号的次数K;当K为偶数时,所述UE向基站eNB发送的第nSRS个SRS所在天线组的编号a(nSRS)与所述nSRS关系,满足:
Figure PCTCN2015087113-appb-000048
和/或
当K为奇数时,所述UE向基站eNB发送的第nSRS个SRS所在天线组的编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod2;
其中,所述β为常数,且当所述K的值为4的整数倍时,所述β的值为1;当所述K的值不为4的整数倍时,所述β的值为0;所述mod为取模符号,且每个所述a(nSRS)的一个值对应一个天线组,所述a(nSRS)用于指示在第nSRS个跳频子周期内,发送所述SRS的天线。在本实施例中,所述发送SRS信号的次数K中,K为一次代表一个跳频子周期内,所述发送了1个所述SRS信号,该SRS信号是由两根天线发送的。
应理解,本发明中的公式通常可以通过一映射关系集合或表格的形式表示,例如可以是一对应关系,例如本实施例中,在发送第nSRS个SRS时或在发送之前,根据一个对应nSRS的索引,确定发送的天线编号a(nSRS),应理解,在本实施例中,所述编号的取值可以为0,1,且这样的取值方式仅仅为一个示例,本发明要求保护由于公式的变形导致a(nSRS)的取值可以不为本实施例中的取值或者 不限于将天线编号确定为一个符号或标识,可以根据所述nSRS直接确定一个符号或标识,用以本实施例指示对应的天线。本发明要求保护与本实施例中类似的,天线标识对应的映射关系及对应集合或表格。
一个实施例中,所述UE确定第一元素A对应的天线和所述第三元素C对应的天线为所述第一天线组合;所述UE使用第二元素B对应的天线和所述第四元素D对应的天线为所述第二天线组合;其中,第一元素A,第二元素B,第三元素C,第四元素D,分别为所述4个天线加权,且所述第一元素A,第二元素B,第三元素C,第四元素D为秩为1的预编码矩阵向量
Figure PCTCN2015087113-appb-000049
的元素。
一个实施例中,由于考虑信道特性的不同,当UE可选的预编码矩阵中包含非零元素为2的预编码矩阵时,例如:
表2
在表2中,第一行为预编码矩阵指示,第二行为对应的预编码矩阵,即码本中的元素,可以根据该预编码矩阵的码本形式,确定天线的分组方式,如对应索引16-19的结构的预编码矩阵,第一个元素和第三个元素值为非零;如对应索引20-23的结构的预编码矩阵,第二个元素和第四个元素值为非零。若第一个元素和第三个元素对应天线0和天线2,第二个元素和第四个元素对应天线1和天线3,;那么,在所述UE向所述eNB发送完SRS后,可以使得所述eNB获得对应的组天线的信道估计,以进一步提高系统效率。
有一个实施例中,当所述预编码矩阵集合包含
Figure PCTCN2015087113-appb-000051
Figure PCTCN2015087113-appb-000052
时,确定预编码矩阵中第一个元素对应的天线和第三个元素对应的天线为所述4天线中的2个;确定预编码矩阵中第二个元素对应的天线和第四个元素对应的天线为所述4天线中的另外2个。
或者,所述非零元素的个数为2的预编码矩阵为结构为
Figure PCTCN2015087113-appb-000053
Figure PCTCN2015087113-appb-000054
的矩阵;所述UE根据所述非零元素的个数为2的预编码矩阵,确定所述2个天线,还可以包括:当所述预编码矩阵结构为
Figure PCTCN2015087113-appb-000055
时,确定所述A1和所述A2对应的天线为所述4个天线中的两个天线;或当所述预编码矩阵结构为
Figure PCTCN2015087113-appb-000056
时,确定所述B1和所述B2对应的天线为所述4个天线中的两个天线。
根据本发明的实施例,所述UE确定跳频子周期,并在至少一个所述跳频子周期内,使用所述4天线中的2个天线向基站eNB发送SRS。在具体的发送过程中,可以根据天线进行分组,在不同跳频子周期使用合适的天线分组,以达到快速完成SRS发送的过程,提升了系统的效率。
图4是根据本发明实施例的通信方法的示意性流程图,涉及一种探测参考信号SRS的接收方法:
步骤401,基站eNB确定接收SRS的覆盖范围;
步骤402,所述eNB在一个跳频子周期,接收用户设备UE使用四天线中的一个天线发送的一个SRS;
其中,一个跳频周期包含至少两个跳频子周期,且在至少一个时间段内,接收到的任意一天线发送的SRS所覆盖的频带不同,所述时间段为四个连续跳频 周期;且在每个跳频周期中,在每个跳频子周期接收的SRS占用的频率范围不同,且在每个跳频周期中,所有所述跳频子周期接收的SRS占用的频率范围为所述覆盖范围。
根据图4示出的实施例,所述基站接收UE发送所述SRS的过程中,由于在每个跳频子周期发送的SRS占用的频率范围不同,可以达到在跳频过程中,快速覆盖SRS的覆盖范围的情况,且可以在跳频过程的前期即获取到信道的特征,提升了系统效率。
图5是根据本发明实施例的通信方法的示意性流程图,涉及一种探测参考信号SRS的发送方法:
步骤501,基站eNB确定接收SRS的覆盖范围;
应理解,在eNB接收UE发送的SRS的情况下,是通过每次使用这4跟天线中的一个发送的,但是,由于带宽受限和提高效率的需求,eNB通常需要在全频带中确定一个SRS的覆盖范围,以使得UE发送多次SRS至eNB的SRS信号不能超过的范围。这一范围可以是一个总体范围。例如,这一范围可以根据上行带宽的值确定,可以从中选择一部分或上行带宽的全部,也可以根据具体的业务需求确定。从时间上,这一确定方式可以是以静态、半静态或者是动态确定的,也可以是由eNB通过信令调度所述UE确定的。而具体的跳频方式,可以由eNB确定后发送给UE,或通过eNB和UE协商获得。
步骤502,所述eNB在一个跳频子周期,接收用户设备UE使用四天线中的一个天线发送的一个SRS;其中,一个跳频周期包含至少两个跳频子周期,且在至少一个时间段内,接收到的任意一天线发送的SRS所覆盖的频带不同,所述时间段为四个连续跳频周期;且在每个跳频周期中,在每个跳频子周期接收的SRS占用的频率范围不同,且在每个跳频周期中,所有所述跳频子周期接收的SRS占用的频率范围为所述覆盖范围。
eNB在接收SRS信号的过程中,由于接收到UE发送SRS的方式可以是跳频(hopping)方式,即在一个确定的覆盖范围内,在相邻的两个时间间隔,进行SRS所在频段位置的转换。这一转换规则可以根据一个特点的方式完成。
由于hopping方式的发送,所述eNB需要确定接收所述UE发送的SRS所在的频率。本发明不具体限定这一确定方式,可以直接根据接收到的信号获知, 或通过协商或预先确定,eNB通过一个信令通知UE后,eNB接收UE在预先规定的跳频子周期,按照预先规定的频率范围发送的SRS信号。在每个跳频子周期,所述eNB接收UE使用4根天线的一个天线向eNB发送的SRS。例如,这一规则可以是一个跳频周期,在这个周期中,包含n个跳频子周期。可选的,n为大于或等于2的整数。在这n个跳频子周期结束时,所述eNB接收的SRS信号覆盖了整个所述覆盖范围。一个实施例中,所述n的值可以和跳频过程中的节点数相关联,其中,节点可以指eNB接收UE一次所发送SRS的频带带宽,即频段位置,节点的数量可以指在一次跳频的过程中,一个所述覆盖范围内包含的节点的宽度。例如,表3中,确定覆盖范围为6PRB-40PRB时,若n的值为9,那么所述节点数可以为9个,且所述任一天线在至少一个时间段内发送的SRS所覆盖的频带不同:
Figure PCTCN2015087113-appb-000057
表3
在表3示出的节点数与覆盖范围的关系中,当9个跳频子周期结束时,所述eNB接收UE发送的SRS,可以使得以每个子周期都覆盖1个节点的方式,完成对整个覆盖范围的覆盖。应理解,具体的覆盖节点的顺序是可以不根据1-9的顺序完成的。一个实施例中,这一过程可以是将9个节点再分m组,相邻的跳频子周期,使用不同的组中的节点。在具体实现方式中,可以不按照编号确定所述节点数或节点号。
另一个实施例中,所述eNB接收任意一根天线在至少一个时间段内发送的SRS所覆盖的频带不同,例如,第k根天线,在这一时间段内,接收到了数个SRS,这数个SRS信号所覆盖的频带是不同的。进一步解释,例如在第s个和第t个跳频子周期接收SRS,当第s个跳频子周期接收的SRS覆盖第10PRB-14PRB时,在第t个跳频子周期就不能再重复覆盖第10PRB-14PRB。这里k可以指的是特定的一根天线。应理解,可能存在某些覆盖重叠的频段位置,在这样的情况下,在一个跳频周期中,包含的所述跳频子周期的个数可以大于所述节点数。
所述eNB除确定跳频的方式外,eNB还需要确定UE天线的发送方式。为 了最大程度的提高效率,可以在四个连续的跳频周期内,接收的任一天线发送的SRS所覆盖的频带不同。这一跳频过程可以是在系统开始进行探测(Sounding)过程即行开始。在这样的情况下,可以直接在前四个连续的跳频周期内使得所述四跟天线均能遍历整个覆盖范围。
一个实施例中,所述eNB可以接收UE发送的SRS可以进一步满足:在一个跳频周期内,eNB接收到的任意一根天线发送SRS的次数小于或等于
Figure PCTCN2015087113-appb-000058
其中,
Figure PCTCN2015087113-appb-000059
表示向下取整,
Figure PCTCN2015087113-appb-000060
表示向上取整。在这样的情况下,所述eNB可以在前数个跳频周期内就在尽可能多的天线上接收到所述SRS,使得所述eNB可以快速获得不同天线的SRS情况。
又一个实施例中,所述eNB接收UE在所述四个连续跳频周期中,每个跳频周期的第i个跳频子周期接收的频率宽度相同,其中,i为任意正整数。例如,在第一个跳频周期中的第2个跳频子周期,其接收的频率宽度为第20个PRB到第25个PRB,那么,在第二、三、四个跳频周期中的第2个跳频子周期,其发送的频率宽度为第20个PRB到第25个PRB。在这种情况下,eNB可以根据不同跳频周期同一频率宽度的SRS确定不同天线在发送相同频率宽度的情况下对应的信道估计。
又一个实施例中,所述一个跳频周期中包含的跳频子周期数量为K;
当K为偶数时,所述UE向基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
Figure PCTCN2015087113-appb-000061
和/或
当K为奇数时,所述UE向基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod4;
其中,所述β为常数,且当所述K的值为4的整数倍时,所述β的值为1;当所述K的值不为4的整数倍时,所述β的值为0;所述mod为取模符号。
又一个实施例中,
所述一个跳频周期中包含的跳频子周期数量为K;
当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
Figure PCTCN2015087113-appb-000062
和/或
当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod4;
其中,所述β为常数,且当所述K的值为8,6,10,18的整数倍时,所述β的值为1;当所述K的值不为8,6,10,18的整数倍时,所述β的值为0;所述mod为取模符号;其中,所述γ为常数,当K的值为6,10,18的整数倍时,γ的值为0;当K的值不为6,10,18的整数倍时,γ的值为1。
或者;
所述一个跳频周期中包含的跳频子周期数量为K;
当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
Figure PCTCN2015087113-appb-000063
和/或
当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod4;
其中,当所述K的值为8的整数倍时,或K的值为6或10或18时,所述β的值为1;当所述K的值不为8的整数倍时,且K不为6,10,18时,所述β的值为0;其中,所述γ为常数,当K的值为6,10,18时,γ的值为0;当K的 值不为6,10,18时,γ的值为1。
或者;
所述一个跳频周期中包含的跳频子周期数量为K;
当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,当所述K的值为4整数倍时,满足:
Figure PCTCN2015087113-appb-000064
其中,所述β为常数,且当所述K的值为8的整数倍时,所述β的值为1;当所述K的值不为8的整数倍时,所述β的值为0;所述mod为取模符号;
当所述K的值为不为4整数倍时,满足:
Figure PCTCN2015087113-appb-000065
和/或
当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod4;
或者;
所述一个跳频周期中包含的跳频子周期数量为K;
当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,当所述K的值为4整数倍时,或K=2时,满足:
Figure PCTCN2015087113-appb-000066
其中,所述β为常数,且当所述K的值为8的整数倍时,所述β的值为1;当所述K的值不为8的整数倍时,所述β的值为0;所述mod为取模符号;
当所述K的值为不为4整数倍时,且K=2时,满足:
Figure PCTCN2015087113-appb-000067
和/或
当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod4;
应理解,本发明中的公式通常可以通过一映射关系集合或表格的形式表示,例如可以是一对应关系,例如本实施例中,在接收第nSRS个SRS时、在接收到第nSRS个SRS后或在接收之前,根据一个对应nSRS的索引,确定接收的天线编号a(nSRS),应理解,在本实施例中,所述编号的取值可以为0,1,2,3,且这样的取值方式仅仅为一个示例,a(nSRS)的取值可以不为本实施例中的取值或者不限于将天线编号确定为一个符号或标识,可以根据所述nSRS直接确定一个符号或标识,用以本实施例指示对应的天线。本发明要求保护与本实施例中类似的,天线标识对应的映射关系及对应集合或表格。
可选的,在所述eNB在接收UE发送所述SRS前,还可以包括确定跳频周期和/或跳频子周期,这一方式可以是由eNB下发一个消息,用来指示该跳频周期/跳频子周期的,当然,这一跳频周期和/或跳频子周期可以是预置在eNB或UE中的。
应理解,为了eNB需要获取所有4天线在所述覆盖范围的信道情况,优选的,在所述四个连续跳频周期内,所述eNB接收到的任意一个天线发送的所述SRS覆盖所述SRS的覆盖范围。例如,在以上述实施例所叙述的接收方法过程中,任意第p跟天线在4个周期内其发送的SRS覆盖所述覆盖范围。
根据图3示出的实施例,所述eNB接收所述SRS的过程中,由于在每个跳频子周期接收的SRS占用的频率范围不同,可以达到在跳频过程中,快速覆盖SRS的覆盖范围的情况,且可以在跳频过程的前期即获取到信道的特征,进行信道矩阵或信道模型的初步估算,提升了系统效率。
图6是根据本发明实施例的通信方法的示意性流程图,涉及一种探测参考信号SRS的发送方法:
步骤601,基站eNB确定跳频子周期;
在eNB接收SRS的情况下,eNB可以确定跳频子周期,该跳频子周期为UE发送一次SRS所占用的时间。这一确定过程,可以在初始化或者再执行后续步骤前接收基站指示信令,其中指示信令中包含该跳频子周期,也可以是预设值在eNB或UE中的参数。
步骤602,所述eNB在至少一个所述跳频子周期内,接收所述UE使用4天线中的2个天线发送的SRS。
在eNB接收SRS的过程中,可以通过通知UE使用两根天线发送SRS信号完成探测(Sounding)过程,以提高接收SRS和估计信道特性的效率。但是,需要根据实际情况确定天线的选择情况,以达到不重复发送以影响效率的情况。一个实施方式中,在至少一个跳频子周期内,eNB接收所述4天线中的2个天线向所述eNB发送的SRS;且在至少另一个跳频子周期内,所述eNB接收所述4天线中的另外2个天线向所述eNB发送的SRS。
又一个实施例中,在第k个跳频子周期内,所述eNB接收4天线中的2个天线向所述eNB发送SRS;在第k+1个跳频子周期和/或在第k-1个跳频子周期内,所述eNB接收4天线中的另外2个天线向所述eNB发送SRS。应理解,在接收2天线向所述eNB发送所述SRS的过程中,eNB可以以交替的方式完成接收的过程,例如,在第一个跳频子周期,所述eNB接收UE使用第1组天线发送的SRS,在第二个跳频子周期,所述eNB接收UE使用第2组天线发送的SRS。应理解,这一规则可以使eNB本身确定的并通知UE根据确定的方式发送,这样,可以避免UE重复使用某一根天线从而影响发送效率。
又一个实施例中,所述eNB确定所述一个跳频周期中,接收SRS信号的次数K;
当K为偶数时,所述eNB接收所述UE发送的第nSRS个SRS所在子频带编号a(nSRS)与所述nSRS关系,满足:
Figure PCTCN2015087113-appb-000068
和/或
当K为奇数时,所述eNB接收所述UE发送的第nSRS个SRS所在子频带编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod2;
其中,所述β为常数,且当所述K的值为4的整数倍时,所述β的值为1;当所述K的值不为4的整数倍时,所述β的值为0;所述mod为取模符号,且每个所述a(nSRS)的一个值对应一个天线组合,用于指示在第nSRS个跳频子周期内,发送所述SRS的天线。
在本实施例中,所述接收SRS信号的次数K中,一次代表一个跳频子周期内,所述发送了一个所述SRS信号,该SRS信号是由两根天线发送的。
应理解,本发明中的公式通常可以通过一映射关系集合或表格的形式表示,例如可以是一对应关系,例如本实施例中,在接收第nSRS个SRS时或在接收之前,根据一个对应nSRS的索引,确定发送的天线编号a(nSRS),应理解,在本实施例中,所述编号的取值可以为0,1,且这样的取值方式仅仅为一个示例,本发明要求保护由于公式的变形导致a(nSRS)的取值可以不为本实施例中的取值或者不限于将天线编号确定为一个符号或标识,可以根据所述nSRS直接确定一个符号或标识,用以本实施例指示对应的天线。本发明要求保护与本实施例中类似的,天线标识对应的映射关系及对应集合或表格。
根据本发明的实施例,所述基站确定跳频子周期,并在至少一个所述跳频子周期内,接收所述UE使用所述4天线中的2个天线向基站eNB发送的SRS。在具体的发送过程中,可以根据天线进行分组,在不同跳频子周期使用合适的天线分组,以达到快速完成SRS发送的过程,提升了系统的效率。
下面,将继续结合具体示例详细介绍本发明的发送SRS与接收SRS的流程。
图7是根据本发明实施例的通信方法的示意性流程图,涉及一种探测参考信号SRS的发送/接收方法:
步骤701,eNB和UE确定所述发送SRS的覆盖范围;
可选的,所述基站确定所述SRS的覆盖范围,这一范围可以是根据上行带宽确定出来的,也可以是从其它网络设备获取的。这一确定过程,可以是获得或者确定一个带宽配置,再通过信令或配置发送给UE。
步骤702,所述UE在一个跳频子周期,使用四天线中的一个天线向基站eNB发送一个SRS;其中,一个跳频周期包含至少两个跳频子周期,且任一天线在至 少一个时间段内发送的SRS所覆盖的频带不同,所述时间段为四个连续跳频周期;且在每个跳频周期中,在每个跳频子周期发送的SRS占用的频率范围不同,且在每个跳频周期中,所有所述跳频子周期发送的SRS占用的频率范围为所述覆盖范围。
可选的,步骤702前,所述eNB和所述UE可以确定每个天线在至少一个时间段内发送的SRS所述覆盖的频带;所述eNB和所述UE还可以确定所述SRS的带宽小于所述覆盖范围,以进一步确定所述UE发送SRS需要以跳频形式发送。当所述eNB和/或所述UE在确定需要跳频时,执行步骤702。
作为步骤702的一个示例,所述eNB确定的上行带宽为40-60MHz,所述eNB确定需要hopping的频带范围为为44-60MHz,应理解,这里的40-60MHz、42-60MHz仅仅是一个示例,所述hopping的频带范围可以高于、等于或低于所述上行带宽。当确定节点数为4时,所述一个节点所确定的带宽的值可以为
节点 1 2 3 4
带宽(PRB) 44-48 48-52 52-56 56-70
表4
进一步的,所述跳频子周期和所述覆盖位置的关系可以具体为图8示出的形式。图8中的T代表一个跳频周期,t代表一个跳频子周期,其中,801的一个包含带数字方格代表UE的一根天线在某个节点上发送SRS,方格中的数字代表天线的编号。这里的编号是根据0,1,2,3的形式进行,本发明不限定具体的编号方式,所述0,1,2,3可以是其它类型的指示,例如a,b,c,d或者其它二进制代码。这一指示和发送的具体顺序,可以在UE发送前即已确定,eNB根据确定好的顺序在确定的所述覆盖的频带上接收确定好的天线发送的SRS。
另一个示例中,可以根据不同的上行带宽确定一个节点与覆盖范围的多个映射关系表:
Figure PCTCN2015087113-appb-000069
Figure PCTCN2015087113-appb-000070
表4a:上行带宽
Figure PCTCN2015087113-appb-000071
mSRS,b和Nb的值(b=0,1,2,3)
Figure PCTCN2015087113-appb-000072
表4b:上行带宽
Figure PCTCN2015087113-appb-000073
mSRS,b和Nb的值(b=0,1,2,3)
Figure PCTCN2015087113-appb-000074
表4c:上行带宽
Figure PCTCN2015087113-appb-000075
mSRS,b和Nb的值(b=0,1,2,3)
Figure PCTCN2015087113-appb-000076
Figure PCTCN2015087113-appb-000077
表4d:上行带宽
Figure PCTCN2015087113-appb-000078
mSRS,b和Nb的值(b=0,1,2,3)
表4a、4b、4c、4d中,示出了节点数和带宽数的关系。例如,在上行带宽为
Figure PCTCN2015087113-appb-000079
的情况下,SRS带宽配置为6的时候,有48个PRB需要被覆盖;如果UE按照BSRS=0发送信号,则N0为1次即直接覆盖所述mSRS,0为48PRB覆盖范围;当UE按照BSRS=1发送信号,则需要发送2个跳频子周期,每个跳频子周期覆盖mSRS,1为24PRB覆盖范围;当UE按照BSRS=2发送信号,则需要发送N1N2为4个跳频子周期,每个跳频子周期覆盖mSRS,2为12PRB覆盖范围。
一个实施例中,所述eNB和所述UE确定一个天线发送顺序,所述UE根据所述天线发送顺序向所述eNB发送所述SRS:
顺序号 1 2 3 4 5 6 7 8
序号 0 1 2 3 1 2 3 0
顺序号 9 10 11 12 13 14 15 16
序号 2 3 0 1 3 0 1 2
表5
表5中的顺序号为一时间顺序,其编号也可以从0开始编号,表中的序号为天线的编号;应理解,这一天线的编号可以不为0,1,2,3,可以为任意一指示。这一表格可以为一个映射关系存储在所述UE或eNB,或由UE、eNB或其它网络侧设备调度。
所述eNB和所述UE除确定跳频的方式外,还需要确定天线的发送方式。为了最大程度的提高效率,可以在四个连续的跳频周期内,任一天线发送的SRS 所覆盖的频带不同。这一跳频过程可以是在系统开始进行探测过程即行开始。在这样的情况下,可以直接在前四个连续的跳频周期内使得所述四跟天线均能遍历整个覆盖范围。
一个实施例中,所述UE可以在4个跳频周期向所述eNB发送SRS,具体的发送方式可以是在第一个跳频周期的所有跳频子周期均使用UE的第一根天线发送,;在第二个跳频周期的所有跳频子周期均使用UE的第二根天线发送;在第三个跳频周期的所有跳频子周期均使用UE的第三根天线发送;在第四个跳频周期的所有跳频子周期均使用UE的第四根天线发送。
一个实施例中,所述UE可以进一步满足:在一个跳频周期内,任意一根天线发送SRS的次数小于或等于
Figure PCTCN2015087113-appb-000080
其中,
Figure PCTCN2015087113-appb-000081
表示向下取整,
Figure PCTCN2015087113-appb-000082
表示向上取整。在这样的情况下,所述UE可以在前数个跳频周期内就在尽可能多的天线上发送所述SRS,使得所述eNB可以快速获得不同天线的SRS情况。
又一个实施例中,所述UE在所述四个连续跳频周期中,每个跳频周期的第i个跳频子周期发送的频率宽度相同,其中,i为任意正整数。例如,在第一个跳频周期中的第2个跳频子周期,其发送的频率宽度为第20个PRB到第25个PRB,那么,在第二、三、四个跳频周期中的第2个跳频子周期,其发送的频率宽度为第20个PRB到第25个PRB。在这种情况下,eNB可以根据不同跳频周期同一频率宽度的SRS确定不同天线在发送相同频率宽度的情况下对应的信道估计。又一个实施例中,
所述一个跳频周期中包含的跳频子周期数量为K;
当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
Figure PCTCN2015087113-appb-000083
和/或
当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod4;
其中,所述β为常数,且当所述K的值为8,6,10,18的整数倍时,所述β的值为1;当所述K的值不为8,6,10,18的整数倍时,所述β的值为0;所述mod为取模符号;其中,所述γ为常数,当K的值为6,10,18的整数倍时,γ的值为0;当K的值不为6,10,18的整数倍时,γ的值为1。
或者;
所述一个跳频周期中包含的跳频子周期数量为K;
当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
Figure PCTCN2015087113-appb-000084
和/或
当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod4;
其中,当所述K的值为8的整数倍时,或K的值为6或10或18时,所述β的值为1;当所述K的值不为8的整数倍时,且K不为6,10,18时,所述β的值为0;其中,所述γ为常数,当K的值为6,10,18时,γ的值为0;当K的值不为6,10,18时,γ的值为1。
或者;
所述一个跳频周期中包含的跳频子周期数量为K;
当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,当所述K的值为4整数倍时,满足:
Figure PCTCN2015087113-appb-000085
其中,所述β为常数,且当所述K的值为8的整数倍时,所述β的值为1;当所述K的值不为8的整数倍时,所述β的值为0;所述mod为取模符号;
当所述K的值为不为4整数倍时,满足:
Figure PCTCN2015087113-appb-000086
和/或
当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod4;
或者;
所述一个跳频周期中包含的跳频子周期数量为K;
当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,当所述K的值为4整数倍时,或K=2时,满足:
Figure PCTCN2015087113-appb-000087
其中,所述β为常数,且当所述K的值为8的整数倍时,所述β的值为1;当所述K的值不为8的整数倍时,所述β的值为0;所述mod为取模符号;
当所述K的值为不为4整数倍时,且K=2时,满足:
Figure PCTCN2015087113-appb-000088
和/或
当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod4;
应理解,本发明中的公式通常可以通过一映射关系集合或表格的形式表示,例如可以是一对应关系,例如本实施例中,在发送第nSRS个SRS时或在发送之前,根据一个对应nSRS的索引,确定发送的天线编号a(nSRS),应理解,在本实施例中,所述编号的取值可以为0,1,2,3,且这样的取值方式仅仅为一个示例,a(nSRS)的取值可以不为本实施例中的取值或者不限于将天线编号确定为一个符 号或标识,可以根据所述nSRS直接确定一个符号或标识,用以本实施例指示对应的天线。本发明要求保护与本实施例中类似的,天线标识对应的映射关系及对应集合或表格。
可选的,在所述UE向eNB发送所述SRS前,还可以包括确定跳频周期和/或跳频子周期,这一方式可以是由eNB下发一个消息,用来指示该跳频周期/跳频子周期的,当然,这一跳频周期和/或跳频子周期可以是预置在UE或eNB中的。
根据图7示出的实施例,所述UE向基站发送所述SRS的过程中,由于在每个跳频子周期发送的SRS占用的频率范围不同,可以达到在跳频过程中,快速覆盖SRS的覆盖范围的情况,且可以在跳频过程的前期即获取到信道的特征,提升了系统效率。
图9是根据本发明实施例示出的装置结构图,涉及一种探测参考信号SRS的发送用户设备UE:
确定单元901,用于确定发送SRS的覆盖范围;
发送单元902,用于在一个跳频子周期,使用四天线中的一个天线向基站eNB发送一个SRS;
其中,一个跳频周期包含至少两个跳频子周期,且任一天线在至少一个时间段内发送的SRS所覆盖的频带不同,所述时间段为四个连续跳频周期;且在每个跳频周期中,在每个跳频子周期发送的SRS占用的频率范围不同,且在每个跳频周期中,所有所述跳频子周期发送的SRS占用的频率范围为所述覆盖范围。
根据图9示出的实施例,所述发送单元902向基站发送所述SRS的过程中,由于在每个跳频子周期发送的SRS占用的频率范围不同,可以达到在跳频过程中,快速覆盖SRS的覆盖范围的情况,且可以在跳频过程的前期即获取到信道的特征,提升了系统效率。
图10是根据本发明实施例示出的装置结构图,涉及一种探测参考信号SRS的发送的终端装置UE:
确定单元1001,用于确定发送SRS的覆盖范围;
发送单元1002,用于在一个跳频子周期,使用四天线中的一个天线向基站eNB发送一个SRS;其中,一个跳频周期包含至少两个跳频子周期,且任一天 线在至少一个时间段内发送的SRS所覆盖的频带不同,所述时间段为四个连续跳频周期;且在每个跳频周期中,在每个跳频子周期发送的SRS占用的频率范围不同,且在每个跳频周期中,所有所述跳频子周期发送的SRS占用的频率范围为所述覆盖范围。
应理解,所述发送单元1002用于发送SRS的情况下,是通过每次使用这4跟天线中的一个发送的,但是,由于带宽受限和提高效率的需求,所述确定单元1001通常需要在全频带中确定一个SRS的覆盖范围,即所述发送单元1002发送多次SRS至eNB的SRS信号不能超过的范围。这一范围可以是一个总体范围。例如,这一范围可以根据上行带宽的值确定,可以从中选择一部分或上行带宽的全部,也可以根据具体的业务需求确定。从时间上,这一确定方式可以是以静态、半静态或者是动态调度控制,或由UE的所述确定单元1001本身确定的,也可以是由eNB调度所述UE确定的。而具体的跳频方式,可以由基站确定后发送给UE的一个接收单元1003,或通过基站和UE协商获得。
发送单元1002在发送SRS信号的过程中,可以进行跳频(hopping),即在一个确定的覆盖范围内,在相邻的两个时间间隔,进行SRS所在频段位置的转换。这一转换规则可以根据一个特定的方式完成。例如,这一规则可以是一个跳频周期,在这个周期中,包含n个跳频子周期。可选的,n为大于或等于2的整数。在每个跳频子周期,所述发送单元1002使用4根天线的一个天线向基站发送SRS。在这n个跳频子周期结束时,所述发送单元1002发送的SRS信号覆盖了整个所述覆盖范围。一个实施例中,所述n的值可以和跳频过程中的节点数相关联,其中,节点可以指UE一次所发送SRS的频带带宽,即频段位置,节点的数量可以指在一次跳频的过程中,一个所述覆盖范围内包含的节点的宽度。例如,表6中,确定覆盖范围为6PRB-40PRB时,若n的值为9,那么所述节点数可以为9个,且所述任一天线在至少一个时间段内发送的SRS所覆盖的频带不同:
Figure PCTCN2015087113-appb-000089
表6
表一中,6-10代表第6个PRB到第10个PRB。在表6示出的节点数与覆盖范围的关系中,当9个跳频子周期结束时,所述UE每个子周期都覆盖1个节点的方式,完成了对整个覆盖范围的覆盖。应理解,具体的覆盖节点的顺序是可以不根据1-9的顺序完成的。一个实施例中,这一过程可以是将9个节点再分m组,相邻的跳频子周期,使用不同的组中的节点。在具体实现方式中,可以不按照编号确定所述节点数或节点号。
另一个实施例中,所述任意一根天线在至少一个时间段内发送的SRS的覆盖范围不同,例如,第k根天线,在这一时间段内,向所述eNB发送了数个SRS,这数个SRS信号所覆盖的频率范围是不同的,进一步解释,例如在第s个和第t个跳频子周期发送SRS,当第s个跳频子周期发送的SRS覆盖第10PRB-14PRB时,在第t个跳频子周期就不能再重复覆盖第10PRB-14PRB。这里k可以指的是特定的一根天线。应理解,可能存在某些覆盖重叠的频段位置,在这样的情况下,在一个跳频周期中,包含的所述跳频子周期的个数可以大于所述节点数。
所述确定单元除确定跳频的方式外,还可以确定天线的发送方式。为了最大程度的提高效率,可以在四个连续的跳频周期内,任一天线发送的SRS所覆盖的频带不同。这一跳频过程可以是在系统开始进行探测(Sounding)过程即行开始。在这样的情况下,可以直接在前四个连续的跳频周期内使得所述四跟天线均能遍历整个覆盖范围。
一个实施例中,所述发送单元可以进一步满足:在一个跳频周期内,任意一根天线发送SRS的次数小于或等于
Figure PCTCN2015087113-appb-000090
其中,
Figure PCTCN2015087113-appb-000091
表示向下取整,
Figure PCTCN2015087113-appb-000092
表示向上取整。在这样的情况下,所述发送单元可以在前数个跳频周期内就在尽可能多的天线上发送所述SRS,使得所述eNB可以快速获得不同天线的SRS情况。
又一个实施例中,所述发送单元在所述四个连续跳频周期中,每个跳频周期的第i个跳频子周期发送的频率宽度相同,其中,i为任意正整数。例如,在第一个跳频周期中的第2个跳频子周期,其发送的频率宽度为第6个PRB至第40个PRB,那么,在第二、三、四个跳频周期中的第2个跳频子周期,其发送的频率宽度为第6个PRB至第40个PRB。在这种情况下,eNB可以根据不同跳频周期同一频率宽度的SRS确定不同天线在发送相同频率宽度的情况下对应的 信道估计。这里的频率宽度,可以指PRB的个数,例如11-14PRB覆盖了4个PRB,那么其频率宽度即为4PRB。
又一个实施例中,所述一个跳频周期中包含的跳频子周期数量为K;
当K为偶数时,所述发送单元向基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
Figure PCTCN2015087113-appb-000093
和/或
当K为奇数时,所述发送单元向基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod4;
其中,所述β为常数,且当所述K的值为4的整数倍时,所述β的值为1;当所述K的值不为4的整数倍时,所述β的值为0;所述mod为取模符号。
又一个实施例中,
所述一个跳频周期中包含的跳频子周期数量为K;
当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
Figure PCTCN2015087113-appb-000094
和/或
当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod4;
其中,所述β为常数,且当所述K的值为8,6,10,18的整数倍时,所述β的值为1;当所述K的值不为8,6,10,18的整数倍时,所述β的值为0;所述mod为取模符号;其中,所述γ为常数,当K的值为6,10,18的整数倍时,γ的值为0;当K的值不为6,10,18的整数倍时,γ的值为1。
或者;
所述一个跳频周期中包含的跳频子周期数量为K;
当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
Figure PCTCN2015087113-appb-000095
和/或
当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod4;
其中,当所述K的值为8的整数倍时,或K的值为6或10或18时,所述β的值为1;当所述K的值不为8的整数倍时,且K不为6,10,18时,所述β的值为0;其中,所述γ为常数,当K的值为6,10,18时,γ的值为0;当K的值不为6,10,18时,γ的值为1。
或者;
所述一个跳频周期中包含的跳频子周期数量为K;
当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,当所述K的值为4整数倍时,满足:
Figure PCTCN2015087113-appb-000096
其中,所述β为常数,且当所述K的值为8的整数倍时,所述β的值为1;当所述K的值不为8的整数倍时,所述β的值为0;所述mod为取模符号;
当所述K的值为不为4整数倍时,满足:
Figure PCTCN2015087113-appb-000097
和/或
当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod4;
或者;
所述一个跳频周期中包含的跳频子周期数量为K;
当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,当所述K的值为4整数倍时,或K=2时,满足:
Figure PCTCN2015087113-appb-000098
其中,所述β为常数,且当所述K的值为8的整数倍时,所述β的值为1;当所述K的值不为8的整数倍时,所述β的值为0;所述mod为取模符号;
当所述K的值为不为4整数倍时,且K=2时,满足:
Figure PCTCN2015087113-appb-000099
和/或
当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod4;
应理解,本发明中的公式通常可以通过一映射关系集合或表格的形式表示,例如可以是一对应关系,例如本实施例中,在发送第nSRS个SRS时或在发送之前,根据一个对应nSRS的索引,确定发送的天线编号a(nSRS),应理解,在本实施例中,所述编号的取值可以为0,1,2,3,且这样的取值方式仅仅为其中一个示例,a(nSRS)的取值可以不为本实施例中的取值或者不限于将天线编号确定为一个符号或标识,可以根据所述nSRS直接确定一个符号或标识,用以本实施例指示对应的天线。本发明要求保护与本实施例中类似的,天线标识对应的映射关系及对应集合或表格。
可选的,在所述发送单元向基站发送所述SRS前,还可以包括确定跳频周期和/或跳频子周期,这一方式可以是由eNB下发一个消息,用来指示该跳频周 期/跳频子周期的,当然,这一跳频周期和/或跳频子周期可以是预置在UE的一个存储单元中的。
应理解,为了eNB需要获取所有4天线在所述覆盖范围的信道情况,优选的,在所述四个连续跳频周期内,所述发送单元的任意一个天线发送的所述SRS覆盖所述SRS的覆盖范围。例如,在以上述实施例所叙述的接收方法过程中,任意第p跟天线在4个周期内其发送的SRS覆盖所述覆盖范围。
根据图2示出的实施例,所述发送单元向基站发送所述SRS的过程中,由于在每个跳频子周期发送的SRS占用的频率范围不同,可以达到在跳频过程中,快速覆盖SRS的覆盖范围的情况,且可以在跳频过程的前期即获取到信道的特征,提升了系统效率。
图11是根据本发明实施例示出的装置结构图,涉及一种探测参考信号SRS的的终端装置UE:
确定单元1101,用于确定跳频子周期;
发送单元1102,用于在至少一个所述跳频子周期内,使用所述4天线中的2个天线向基站eNB发送SRS。
在所述发送单元发送SRS的情况下,可以确定跳频子周期,该跳频子周期为所述发送单元发送一次SRS所占用的时间。这一确定过程,可以在初始化或者再执行后续步骤前接收基站指示信令,其中指示信令中包含该跳频子周期,也可以是预设值在UE中的存储单元的参数。
在所述发送单元发送SRS的过程中,使用两根天线可以提升探测(Sounding)过程的效率,即发送SRS的效率。但是,需要根据实际情况确定天线的选择情况,以达到不重复发送以影响效率的情况。一个实施方式中,在至少一个跳频子周期内,所述发送单元使用所述4天线中的2个天线向所述eNB发送SRS;且在至少另一个跳频子周期内,所述发送单元使用所述4天线中的另外2个天线向所述eNB发送SRS。
又一个实施例中,在第k个跳频子周期内,所述发送单元使用所述4天线中的2个天线向所述eNB发送SRS;在第k+1个跳频子周期和/或在第k-1个跳频子周期内,所述4天线中的另外2个天线向所述eNB发送SRS。应理解,在所述发送单元使用2天线向所述eNB发送所述SRS的过程中,对于天线的选择可以 以交替的方式完成,例如,在第一个跳频子周期,所述所述发送单元使用第1组天线,在第二个跳频子周期,所述所述发送单元使用第2组天线。这样,可以避免重复使用某一根天线从而影响发送效率。
又一个实施例中,所述确定单元确定所述一个跳频周期中,发送SRS信号的次数K;当K为偶数时,所述发送单元向基站eNB发送的第nSRS个SRS所在天线组的编号a(nSRS)与所述nSRS关系,满足:
Figure PCTCN2015087113-appb-000100
和/或
当K为奇数时,所述发送单元向基站eNB发送的第nSRS个SRS所在天线组的编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod2;
其中,所述β为常数,且当所述K的值为4的整数倍时,所述β的值为1;当所述K的值不为4的整数倍时,所述β的值为0;所述mod为取模符号,且每个所述a(nSRS)的一个值对应一个天线组,所述a(nSRS)用于指示在第nSRS个跳频子周期内,发送所述SRS的天线。在本实施例中,所述发送SRS信号的次数K中,K为一次代表一个跳频子周期内,所述发送了1个所述SRS信号,该SRS信号是由两根天线发送的。
应理解,本发明中的公式通常可以通过一映射关系集合或表格的形式表示,例如可以是一对应关系,例如本实施例中,在发送第nSRS个SRS时或在发送之前,根据一个对应nSRS的索引,确定发送的天线编号a(nSRS),应理解,在本实施例中,所述编号的取值可以为0,1,且这样的取值方式仅仅为一个示例,本发明要求保护由于公式的变形导致a(nSRS)的取值可以不为本实施例中的取值或者不限于将天线编号确定为一个符号或标识,可以根据所述nSRS直接确定一个符号或标识,用以本实施例指示对应的天线。本发明要求保护与本实施例中类似的,天线标识对应的映射关系及对应集合或表格。
一个实施例中,所述确定单元确定第一元素A对应的天线和所述第三元素C 对应的天线为所述第一天线组合;所述发送单元使用第二元素B对应的天线和所述第四元素D对应的天线为所述第二天线组合;其中,第一元素A,第二元素B,第三元素C,第四元素D,分别为所述4个天线加权,且所述第一元素A,第二元素B,第三元素C,第四元素D为秩为1的预编码矩阵向量
Figure PCTCN2015087113-appb-000101
的元素。
一个实施例中,由于考虑信道特性的不同,当所述确定单元可选的预编码矩阵中包含非零元素为2的预编码矩阵时,例如:
Figure PCTCN2015087113-appb-000102
表7
在表7中,第一行为预编码矩阵指示,第二行为对应的预编码矩阵,即码本中的元素,可以根据该预编码矩阵的码本形式,确定天线的分组方式,如对应索引16-19的结构的预编码矩阵,第一个元素和第三个元素值为非零;如对应索引20-23的结构的预编码矩阵,第二个元素和第四个元素值为非零。若第一个元素和第三个元素对应天线0和天线2,第二个元素和第四个元素对应天线1和天线3,;那么,在所述发送单元向所述eNB发送完SRS后,可以使得所述eNB获得对应的组天线的信道估计,以进一步提高系统效率。
有一个实施例中,当所述预编码矩阵集合包含
Figure PCTCN2015087113-appb-000103
Figure PCTCN2015087113-appb-000104
时,所述确定单元确定预编码矩阵中第一个元素对应的天线和第三个元素对应的天线为所述4天线中的2个;所述确定单元确定预编码矩阵中第二个元素对应的天线和第四个元素对应的天线为所述4天线中的另外2个。
或者,所述非零元素的个数为2的预编码矩阵为结构为
Figure PCTCN2015087113-appb-000105
Figure PCTCN2015087113-appb-000106
的矩阵;所述确定单元根据所述非零元素的个数为2的预编码矩阵,确定所述2个天线,还可以包括:当所述预编码矩阵结构为
Figure PCTCN2015087113-appb-000107
时,确定所述A1和所述A2对应的天线为所述4个天线中的两个天线;或当所述预编码矩阵结构为
Figure PCTCN2015087113-appb-000108
时,确定所述B1和所述B2对应的天线为所述4个天线中的两个天线。
根据本发明的实施例,所述确定单元确定跳频子周期,并在至少一个所述跳频子周期内,使用所述4天线中的2个天线向基站eNB发送SRS。在具体的发送过程中,可以根据天线进行分组,在不同跳频子周期使用合适的天线分组,以达到快速完成SRS发送的过程,提升了系统的效率。
图12是根据本发明实施例示出的装置结构图,涉及一种基站eNB装置:
确定单元1201,用于确定接收SRS的覆盖范围;
接收单元1202,用于在一个跳频子周期,接收用户设备UE使用四天线中的一个天线发送的一个SRS;
其中,一个跳频周期包含至少两个跳频子周期,且在至少一个时间段内,所述接收单元接收到的任意一天线发送的SRS所覆盖的频带不同,所述时间段为四个连续跳频周期;且在每个跳频周期中,在每个跳频子周期接收的SRS占用的频率范围不同,且在每个跳频周期中,所有所述跳频子周期接收的SRS占用的频率范围为所述覆盖范围。
根据图12示出的实施例,所述接收单元接收UE发送所述SRS的过程中,由于在每个跳频子周期发送的SRS占用的频率范围不同,可以达到在跳频过程中,快速覆盖SRS的覆盖范围的情况,且可以在跳频过程的前期即获取到信道 的特征,提升了系统效率。
图13是根据本发明实施例示出的装置结构图,涉及一种基站eNB装置:
确定单元1301,用于确定接收SRS的覆盖范围;
接收单元1302,用于在一个跳频子周期,接收用户设备UE使用四天线中的一个天线发送的一个SRS;其中,一个跳频周期包含至少两个跳频子周期,且在至少一个时间段内,接收到的任意一天线发送的SRS所覆盖的频带不同,所述时间段为四个连续跳频周期;且在每个跳频周期中,在每个跳频子周期接收的SRS占用的频率范围不同,且在每个跳频周期中,所有所述跳频子周期接收的SRS占用的频率范围为所述覆盖范围。
应理解,在所述接收单元接收UE发送的SRS的情况下,是通过每次使用这4跟天线中的一个发送的,但是,由于带宽受限和提高效率的需求,所述确定单元通常需要在全频带中确定一个SRS的覆盖范围,以使得UE发送多次SRS至所述接收单元的SRS信号不能超过的范围。这一范围可以是一个总体范围。例如,这一范围可以根据上行带宽的值确定,可以从中选择一部分或上行带宽的全部,也可以根据具体的业务需求确定。从时间上,这一确定方式可以是以静态、半静态或者是动态确定的,也可以是由eNB通过一个发送单元1303信令调度所述UE确定的。而具体的跳频方式,可以由所述确定单元确定后发送给UE,或通过确定单元和/或发送单元和UE协商获得。
所述接收单元接收SRS信号的过程中,由于接收到UE发送SRS的方式可以是跳频(hopping)方式,即在一个确定的覆盖范围内,在相邻的两个时间间隔,进行SRS所在频段位置的转换。这一转换规则可以根据一个特点的方式完成。
由于hopping方式的发送,所述确定单元需要确定接收所述UE发送的SRS所在的频率。本发明不具体限定这一确定方式,可以直接根据接收到的信号获知,或通过协商或预先确定,所述发送单元通过一个信令通知UE后,所述接收单元接收UE在预先规定的跳频子周期,按照预先规定的频率范围发送的SRS信号。在每个跳频子周期,所述接收单元接收UE使用4根天线的一个天线向所述接收单元发送的SRS。例如,这一规则可以是一个跳频周期,在这个周期中,包含n个跳频子周期。可选的,n为大于或等于2的整数。在这n个跳频子周期结束时, 所述接收单元接收的SRS信号覆盖了整个所述覆盖范围。一个实施例中,所述n的值可以和跳频过程中的节点数相关联,其中,节点可以指所述接收单元接收UE一次所发送SRS的频带带宽,即频段位置,节点的数量可以指在一次跳频的过程中,一个所述覆盖范围内包含的节点的宽度。例如,表8中,确定覆盖范围为6PRB-40PRB时,若n的值为9,那么所述节点数可以为9个,且所述任一天线在至少一个时间段内发送的SRS所覆盖的频带不同:
Figure PCTCN2015087113-appb-000109
表8
在表8示出的节点数与覆盖范围的关系中,当9个跳频子周期结束时,所述接收单元接收UE发送的SRS,可以使得以每个子周期都覆盖1个节点的方式,完成对整个覆盖范围的覆盖。应理解,具体的覆盖节点的顺序是可以不根据1-9的顺序完成的。一个实施例中,这一过程可以是将9个节点再分m组,相邻的跳频子周期,使用不同的组中的节点。在具体实现方式中,可以不按照编号确定所述节点数或节点号。
另一个实施例中,所述接收单元接收任意一根天线在至少一个时间段内发送的SRS所覆盖的频带不同,例如,第k根天线,在这一时间段内,接收到了数个SRS,这数个SRS信号所覆盖的频带是不同的。进一步解释,例如在第s个和第t个跳频子周期接收SRS,当第s个跳频子周期接收的SRS覆盖第10PRB-14PRB时,在第t个跳频子周期就不能再重复覆盖第10PRB-14PRB。这里k可以指的是特定的一根天线。应理解,可能存在某些覆盖重叠的频段位置,在这样的情况下,在一个跳频周期中,包含的所述跳频子周期的个数可以大于所述节点数。
所述确定单元除确定跳频的方式外,还需要确定UE天线的发送方式。为了最大程度的提高效率,可以在四个连续的跳频周期内,接收的任一天线发送的SRS所覆盖的频带不同。这一跳频过程可以是在系统开始进行探测(Sounding)过程即行开始。在这样的情况下,可以直接在前四个连续的跳频周期内使得所述四跟天线均能遍历整个覆盖范围。
一个实施例中,所述接收单元可以接收UE发送的SRS可以进一步满足:在一个跳频周期内,所述接收单元接收到的任意一根天线发送SRS的次数小于或等于
Figure PCTCN2015087113-appb-000110
其中,
Figure PCTCN2015087113-appb-000111
表示向下取整,
Figure PCTCN2015087113-appb-000112
表示向上取整。在这样的情况下,所述接收单元可以在前数个跳频周期内就在尽可能多的天线上接收到所述SRS,使得所述接收单元可以快速获得不同天线的SRS情况。
又一个实施例中,所述接收单元接收UE在所述四个连续跳频周期中,每个跳频周期的第i个跳频子周期接收的频率宽度相同,其中,i为任意正整数。例如,在第一个跳频周期中的第2个跳频子周期,其接收的频率宽度为第20个PRB到第25个PRB,那么,在第二、三、四个跳频周期中的第2个跳频子周期,其发送的频率宽度为第20个PRB到第25个PRB。在这种情况下,所述确定单元可以根据不同跳频周期同一频率宽度的SRS确定不同天线在发送相同频率宽度的情况下对应的信道估计。
又一个实施例中,所述一个跳频周期中包含的跳频子周期数量为K;
当K为偶数时,所述UE向所述接收单元发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
Figure PCTCN2015087113-appb-000113
和/或
当K为奇数时,所述UE向所述接收单元发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod4;
其中,所述β为常数,且当所述K的值为4的整数倍时,所述β的值为1;当所述K的值不为4的整数倍时,所述β的值为0;所述mod为取模符号。
又一个实施例中,
所述一个跳频周期中包含的跳频子周期数量为K;
当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
Figure PCTCN2015087113-appb-000114
和/或
当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod4;
其中,所述β为常数,且当所述K的值为8,6,10,18的整数倍时,所述β的值为1;当所述K的值不为8,6,10,18的整数倍时,所述β的值为0;所述mod为取模符号;其中,所述γ为常数,当K的值为6,10,18的整数倍时,γ的值为0;当K的值不为6,10,18的整数倍时,γ的值为1。
或者;
所述一个跳频周期中包含的跳频子周期数量为K;
当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
Figure PCTCN2015087113-appb-000115
和/或
当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod4;
其中,当所述K的值为8的整数倍时,或K的值为6或10或18时,所述β的值为1;当所述K的值不为8的整数倍时,且K不为6,10,18时,所述β的值为0;其中,所述γ为常数,当K的值为6,10,18时,γ的值为0;当K的值不为6,10,18时,γ的值为1。
或者;
所述一个跳频周期中包含的跳频子周期数量为K;
当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的 编号a(nSRS)与所述nSRS关系,当所述K的值为4整数倍时,满足:
Figure PCTCN2015087113-appb-000116
其中,所述β为常数,且当所述K的值为8的整数倍时,所述β的值为1;当所述K的值不为8的整数倍时,所述β的值为0;所述mod为取模符号;
当所述K的值为不为4整数倍时,满足:
Figure PCTCN2015087113-appb-000117
和/或
当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod4;
或者;
所述一个跳频周期中包含的跳频子周期数量为K;
当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,当所述K的值为4整数倍时,或K=2时,满足:
Figure PCTCN2015087113-appb-000118
其中,所述β为常数,且当所述K的值为8的整数倍时,所述β的值为1;当所述K的值不为8的整数倍时,所述β的值为0;所述mod为取模符号;
当所述K的值为不为4整数倍时,且K=2时,满足:
Figure PCTCN2015087113-appb-000119
和/或
当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod4;
应理解,本发明中的公式通常可以通过一映射关系集合或表格的形式表示,例如可以是一对应关系,例如本实施例中,在接收第nSRS个SRS时、在接收到第nSRS个SRS后或在接收之前,根据一个对应nSRS的索引,确定接收的天线编号a(nSRS),应理解,在本实施例中,所述编号的取值可以为0,1,2,3,且这样的取值方式仅仅为一个示例,a(nSRS)的取值可以不为本实施例中的取值或者不限于将天线编号确定为一个符号或标识,可以根据所述nSRS直接确定一个符号或标识,用以本实施例指示对应的天线。本发明要求保护与本实施例中类似的,天线标识对应的映射关系及对应集合或表格。
可选的,在所述接收单元在接收UE发送所述SRS前,所述确定单元还可以确定跳频周期和/或跳频子周期,这一方式可以是由发送单元下发一个消息,用来指示该跳频周期/跳频子周期的,当然,这一跳频周期和/或跳频子周期可以是预置在eNB的存储单元或UE中的。
应理解,为了所述确定单元需要获取所有4天线在所述覆盖范围的信道情况,优选的,在所述四个连续跳频周期内,所述接收单元接收到的任意一个天线发送的所述SRS覆盖所述SRS的覆盖范围。例如,在以上述实施例所叙述的接收方法过程中,任意第p跟天线在4个周期内其发送的SRS覆盖所述覆盖范围。
根据图3示出的实施例,所述接收单元接收所述SRS的过程中,由于在每个跳频子周期接收的SRS占用的频率范围不同,可以达到在跳频过程中,快速覆盖SRS的覆盖范围的情况,且可以在跳频过程的前期即获取到信道的特征,进行信道矩阵或信道模型的初步估算,提升了系统效率。
图14是根据本发明实施例的通信方法的示意性流程图,涉及一种探测参考信号SRS的发送方法:
确定单元1401,用于确定跳频子周期;
在eNB接收SRS的情况下,eNB可以确定跳频子周期,该跳频子周期为UE发送一次SRS所占用的时间。这一确定过程,可以在初始化或者再执行后续步骤前接收基站指示信令,其中指示信令中包含该跳频子周期,也可以是预设值在eNB或UE中的参数。
接收单元1402,用于所述eNB在至少一个所述跳频子周期内,接收所述UE 使用4天线中的2个天线发送的SRS。
在所述接收单元接收SRS的过程中,可以通过通知UE使用两根天线发送SRS信号完成探测(Sounding)过程,以提高接收SRS和估计信道特性的效率。但是,需要根据实际情况确定天线的选择情况,以达到不重复发送以影响效率的情况。一个实施方式中,在至少一个跳频子周期内,所述接收单元接收所述4天线中的2个天线向所述eNB发送的SRS;且在至少另一个跳频子周期内,所述所述单元接收所述4天线中的另外2个天线向所述eNB发送的SRS。
又一个实施例中,在第k个跳频子周期内,所述接收单元接收4天线中的2个天线向所述eNB发送SRS;在第k+1个跳频子周期和/或在第k-1个跳频子周期内,所述所述接收单元接收4天线中的另外2个天线向所述eNB发送SRS。应理解,在接收2天线向所述接收单元发送所述SRS的过程中,eNB可以以交替的方式完成接收的过程,例如,在第一个跳频子周期,所述eNB接收UE使用第1组天线发送的SRS,在第二个跳频子周期,所述eNB接收UE使用第2组天线发送的SRS。应理解,这一规则可以使eNB本身确定的并通知UE根据确定的方式发送,这样,可以避免UE重复使用某一根天线从而影响发送效率。
又一个实施例中,所述确定单元确定所述一个跳频周期中,接收SRS信号的次数K;
当K为偶数时,所述接收单元接收所述UE发送的第nSRS个SRS所在子频带编号a(nSRS)与所述nSRS关系,满足:
Figure PCTCN2015087113-appb-000120
和/或
当K为奇数时,所述接收单元接收所述UE发送的第nSRS个SRS所在子频带编号a(nSRS)与所述nSRS关系,满足:
a(nSRS)=nSRS mod2;
其中,所述β为常数,且当所述K的值为4的整数倍时,所述β的值为1;当所述K的值不为4的整数倍时,所述β的值为0;所述mod为取模符号,且每个所述a(nSRS)的一个值对应一个天线组合,用于指示在第nSRS个跳频子周期内, 发送所述SRS的天线。
在本实施例中,所述接收SRS信号的次数K中,一次代表一个跳频子周期内,所述发送了一个所述SRS信号,该SRS信号是由两根天线发送的。
应理解,本发明中的公式通常可以通过一映射关系集合或表格的形式表示,例如可以是一对应关系,例如本实施例中,在接收第nSRS个SRS时或在接收之前,根据一个对应nSRS的索引,确定发送的天线编号a(nSRS),应理解,在本实施例中,所述编号的取值可以为0,1,且这样的取值方式仅仅为一个示例,本发明要求保护由于公式的变形导致a(nSRS)的取值可以不为本实施例中的取值或者不限于将天线编号确定为一个符号或标识,可以根据所述nSRS直接确定一个符号或标识,用以本实施例指示对应的天线。本发明要求保护与本实施例中类似的,天线标识对应的映射关系及对应集合或表格。
根据本发明的实施例,所述确定单元确定跳频子周期,并由所述接收单元在至少一个所述跳频子周期内,接收所述UE使用所述4天线中的2个天线向基站eNB发送的SRS。在具体的发送过程中,可以根据天线进行分组,在不同跳频子周期使用合适的天线分组,以达到快速完成SRS发送的过程,提升了系统的效率。
应理解,本发明的各个实施例中,发送单元可以是一个发射器,或一个天线系统,该系统可以驱动天线或无线电装置;对于本发明的实施例,UE驱动4天线,该4天线可以是包含在该发射器中,也可以是由一驱动电路或发送器驱动发送所述SRS;接收单元可以是一个接收器,或一个天线系统,该系统可以接收信号;或与发送单元采用同一天线系统。所述确定单元可以是一个或多个处理器,所述处理器可以是一个通用处理器,例如通用中央处理器(CPU)、网络处理器(Network Processor,简称NP)、微处理器等,也可以是特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本发明实施例方案程序执行的集成电路。还可以是数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。也可以是多个处理器完成不同的功能。所述存储单元可以是一个存储器,另外对于需要存储的数据信息,例如配置信息、确 定的所述覆盖范围或对应关系表,也可以存储在所述存储单元或所述存储器中,以便调用。
对于执行本发明的各个实施例,存储器中还可以保存有执行本发明实施例技术方案的程序,还可以保存有操作系统和其他应用程序。具体地,程序可以包括程序代码,程序代码包括计算机操作指令。更具体的,所述存储器可以是只读存储器(read-only memory,ROM)、可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(random access memory,RAM)、可存储信息和指令的其他类型的动态存储设备、磁盘存储器等等。也可以是不同的存储器存储。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发明实施例可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本发明所使用的,盘(Disk)和碟(disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
总之,以上所述仅为本发明技术方案的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (52)

  1. 一种探测参考信号SRS的发送方法,其特征在于:
    用户设备UE确定发送SRS的覆盖范围;
    所述UE在一个跳频子周期,使用四天线中的一个天线向基站eNB发送一个SRS;其中,一个跳频周期包含至少两个跳频子周期,且任一天线在至少一个时间段内发送的SRS所覆盖的频带不同,所述时间段为四个连续跳频周期;且在每个跳频周期中,在每个跳频子周期发送的SRS占用的频率范围不同,且在每个跳频周期中,所有所述跳频子周期发送的SRS占用的频率范围为所述覆盖范围。
  2. 根据权利要求1所述的发送方法,其特征在于:
    在所述四个连续跳频周期内,所述UE的任意一个天线发送的所述SRS覆盖所述SRS的覆盖范围。
  3. 根据权利要求1所述的发送方法,其特征在于:
    所述UE在所述四个连续跳频周期中,每个跳频周期的第i个跳频子周期发送的频率宽度相同,其中,i为任意正整数。
  4. 根据权利要求1所述的发送方法,其特征在于,
    所述一个跳频周期中包含的跳频子周期数量为K;
    当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
    Figure PCTCN2015087113-appb-100001
    和/或
    当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
    a(nSRS)=nSRSmod4;
    其中,所述β为常数,且当所述K的值为8,6,10,18的整数倍时,所述β的值为1;当所述K的值不为8,6,10,18的整数倍时,所述β的值为0;所述mod为取模符号;其中,所述γ为常数,当K的值为6,10,18的整数倍时,γ的值为0;当K 的值不为6,10,18的整数倍时,γ的值为1。
  5. 根据权利要求1所述的发送方法,其特征在于,
    所述一个跳频周期中包含的跳频子周期数量为K;
    当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
    Figure PCTCN2015087113-appb-100002
    和/或
    当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
    a(nSRS)=nSRSmod4;
    其中,当所述K的值为8的整数倍时,或K的值为6或10或18时,所述β的值为1;当所述K的值不为8的整数倍时,且K不为6,10,18时,所述β的值为0;其中,所述γ为常数,当K的值为6,10,18时,γ的值为0;当K的值不为6,10,18时,γ的值为1。
  6. 根据权利要求1所述的发送方法,其特征在于,
    所述一个跳频周期中包含的跳频子周期数量为K;
    当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,当所述K的值为4整数倍时,满足:
    Figure PCTCN2015087113-appb-100003
    其中,所述β为常数,且当所述K的值为8的整数倍时,所述β的值为1;当所述K的值不为8的整数倍时,所述β的值为0;所述mod为取模符号;
    当所述K的值为不为4整数倍时,满足:
    Figure PCTCN2015087113-appb-100004
    和/或
    当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
    a(nSRS)=nSRSmod4;
  7. 根据权利要求1所述的发送方法,其特征在于,
    所述一个跳频周期中包含的跳频子周期数量为K;
    当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,当所述K的值为4整数倍时,或K=2时,满足:
    Figure PCTCN2015087113-appb-100005
    其中,所述β为常数,且当所述K的值为8的整数倍时,所述β的值为1;当所述K的值不为8的整数倍时,所述β的值为0;所述mod为取模符号;
    当所述K的值为不为4整数倍时,且K=2时,满足:
    Figure PCTCN2015087113-appb-100006
    和/或
    当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
    a(nSRS)=nSRSmod4;
  8. 一种探测参考信号SRS的发送方法,其特征在于:
    用户设备UE确定跳频子周期;
    所述UE在至少一个所述跳频子周期内,使用所述4天线中的2个天线向基站eNB发送SRS。
  9. 根据权利要求8所述的方法,其特征在于,所述4根天线中的2根向所述eNB发送SRS,具体包括:
    在至少一个跳频子周期内,所述4天线中的2个天线向所述eNB发送SRS;
    在至少另一个跳频子周期内,所述4天线中的另外2个天线向所述eNB发送SRS。
  10. 根据权利要求8或9所述的方法,其特征在于,所述4天线中的2个天线向基站eNB发送SRS,具体包括:
    在第k个跳频子周期内,所述4天线中的2个天线向所述eNB发送SRS;
    在第k+1个跳频子周期和/或在第k-1个跳频子周期内,所述4天线中的另外2个天线向所述eNB发送SRS。
  11. 根据权利要求8或9所述的方法,其特征在于,所述4跟天线中的2根向所述eNB发送SRS,具体包括:
    所述UE确定所述一个跳频周期中,发送SRS信号的次数K;
    当K为偶数时,所述UE向基站eNB发送的第nSRS个SRS所在天线组的编号a(nSRS)与所述nSRS关系,满足:
    Figure PCTCN2015087113-appb-100007
    和/或
    当K为奇数时,所述UE向所述eNB发送的第nSRS个SRS所在天线组的编号a(nSRS)与所述nSRS关系,满足:
    a(nSRS)=nSRSmod2;
    其中,所述β为常数,且当所述K的值为4的整数倍时,所述β的值为1;当所述K的值不为4的整数倍时,所述β的值为0;所述mod为取模符号,且每个所述a(nSRS)的一个值对应一个天线组,所述a(nSRS)用于指示在第nSRS个跳频子周期内,发送所述SRS的天线。
  12. 根据权利要求11所述方法,其特征在于,所述a(nSRS)的两个值分别对应第一天线组合和第二天线组合,所述第一天线组合为4天线中的2个,所述第二天线组合为4天线中的另2个。
  13. 根据权利要求12所述方法,其特征在于,还包括;
    所述UE确定第一元素A对应的天线和所述第三元素C对应的天线为所述第一天线组合;
    所述UE使用第二元素B对应的天线和所述第四元素D对应的天线为所述第二天线组合;
    其中,第一元素A,第二元素B,第三元素C,第四元素D,分别为所述4个天线加权,且所述第一元素A,第二元素B,第三元素C,第四元素D为秩为1的预编码矩阵向量
    Figure PCTCN2015087113-appb-100008
    的元素。
  14. 一种探测参考信号SRS的接收方法,其特征在于:
    基站eNB确定接收SRS的覆盖范围;
    所述eNB在一个跳频子周期,接收用户设备UE使用四天线中的一个天线发送的一个SRS;其中,一个跳频周期包含至少两个跳频子周期,且在至少一个时间段内,接收到的任意一天线发送的SRS所覆盖的频带不同,所述时间段为四个连续跳频周期;且在每个跳频周期中,在每个跳频子周期接收的SRS占用的频率范围不同,且在每个跳频周期中,所有所述跳频子周期接收的SRS占用的频率范围为所述覆盖范围。
  15. 根据权利要求14所述的接收方法,其特征在于,在所述四个连续跳频周期内,所述eNB接收的任意一个天线发送的所述SRS覆盖所述SRS的覆盖范围。
  16. 根据权利要求14所述的发送方法,其特征在于:
    所述eNB在所述四个连续跳频周期中,在每个跳频周期接收的第i个跳频子周期的频率宽度相同,其中,i为任意正整数。
  17. 根据权利要求14所述的发送方法,其特征在于,
    所述一个跳频周期中包含的跳频子周期数量为K;
    当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
    Figure PCTCN2015087113-appb-100009
    和/或
    当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
    a(nSRS)=nSRSmod4;
    其中,所述β为常数,且当所述K的值为8,6,10,18的整数倍时,所述β的值为1;当所述K的值不为8,6,10,18的整数倍时,所述β的值为0;所述mod为取模符号;其中,所述γ为常数,当K的值为6,10,18的整数倍时,γ的值为0;当K的值不为6,10,18的整数倍时,γ的值为1。
  18. 根据权利要求14所述的发送方法,其特征在于,
    所述一个跳频周期中包含的跳频子周期数量为K;
    当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
    Figure PCTCN2015087113-appb-100010
    和/或
    当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
    a(nSRS)=nSRSmod4;
    其中,当所述K的值为8的整数倍时,或K的值为6或10或18时,所述β的值为1;当所述K的值不为8的整数倍时,且K不为6,10,18时,所述β的值为0;其中,所述γ为常数,当K的值为6,10,18时,γ的值为0;当K的值不为6,10,18时,γ的值为1。。
  19. 根据权利要求14所述的发送方法,其特征在于,
    所述一个跳频周期中包含的跳频子周期数量为K;
    当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,当所述K的值为4整数倍时,满足:
    Figure PCTCN2015087113-appb-100011
    其中,所述β为常数,且当所述K的值为8的整数倍时,所述β的值为1;当所述K的值不为8的整数倍时,所述β的值为0;所述mod为取模符号;
    当所述K的值为不为4整数倍时,满足:
    Figure PCTCN2015087113-appb-100012
    和/或
    当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
    a(nSRS)=nSRSmod4;
  20. 根据权利要求14所述的发送方法,其特征在于,
    所述一个跳频周期中包含的跳频子周期数量为K;
    当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,当所述K的值为4整数倍时,或K=2时,满足:
    Figure PCTCN2015087113-appb-100013
    其中,所述β为常数,且当所述K的值为8的整数倍时,所述β的值为1;当所述K的值不为8的整数倍时,所述β的值为0;所述mod为取模符号;
    当所述K的值为不为4整数倍时,且K=2时,满足:
    Figure PCTCN2015087113-appb-100014
    和/或
    当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
    a(nSRS)=nSRSmod4;
  21. 一种探测参考信号SRS的接收方法,其特征在于:
    基站eNB确定跳频子周期;
    所述eNB在至少一个所述跳频子周期内,接收所述UE使用4天线中的2个天线发送的SRS。
  22. 根据权利要求21所述的方法,其特征在于,所述接收所述UE使用4天线中的2个天线发送的SRS,具体包括:
    在至少一个跳频子周期内,接收所述4天线中的2个天线向所述eNB发送SRS;且
    在至少另一个跳频子周期内,接收所述4天线中的另外2个天线向所述eNB发送SRS。
  23. 根据权利要求21或22所述的方法,其特征在于,所述eNB接收所述UE使用4天线中的2个天线发送的SRS,具体包括:
    在第k个跳频子周期内,所述eNB接收所述4天线中的2个天线向所述eNB发送的SRS;
    在第k+1个跳频子周期和/或在第k-1个跳频子周期内,所述eNB接收所述4天线中的另外2个天线向所述eNB发送SRS。
  24. 根据权利要求22或23所述的方法,其特征在于,所述eNB接收所述UE使用4天线中的2个天线发送的SRS,具体包括:
    所述eNB确定所述一个跳频周期中,接收SRS信号的次数K;
    当K为偶数时,所述eNB接收所述UE发送的第nSRS个SRS所在子频带编号a(nSRS)与所述nSRS关系,满足:
    Figure PCTCN2015087113-appb-100015
    和/或
    当K为奇数时,所述eNB接收所述UE发送的第nSRS个SRS所在子频带编号a(nSRS)与所述nSRS关系,满足:
    a(nSRS)=nSRSmod2;
    其中,所述β为常数,且当所述K的值为4的整数倍时,所述β的值为1;当所述K的值不为4的整数倍时,所述β的值为0;所述mod为取模符号,且每个所述a(nSRS)的一个值对应一个天线组合,用于指示在第nSRS个跳频子周期内, 发送所述SRS的天线。
  25. 根据权利要求23所述方法,其特征在于,所述a(nSRS)的两个值分别对应第一天线组合和第二天线组合,所述第一天线组合为4天线中的2个,所述第二天线组合为4天线中的另2个。
  26. 根据权利要求22至25所述方法,其特征在于,还包括;
    所述eNB确定第一元素A对应的天线和所述第三元素C对应的天线为所述第一天线组合;
    所述eNB确定第二元素B对应的天线和所述第四元素D对应的天线为所述第二天线组合;
    其中,第一元素A,第二元素B,第三元素C,第四元素D,分别为所述4个天线加权,且所述第一元素A,第二元素B,第三元素C,第四元素D为秩为1的预编码矩阵向量
    Figure PCTCN2015087113-appb-100016
    的元素。
  27. 一种用户设备UE,其特征在于:
    确定单元,用于确定发送SRS的覆盖范围;
    发送单元,用于在一个跳频子周期,使用四天线中的一个天线向基站eNB发送一个SRS;其中,一个跳频周期包含至少两个跳频子周期,且任一天线在至少一个时间段内发送的SRS所覆盖的频带不同,所述时间段为四个连续跳频周期;且在每个跳频周期中,在每个跳频子周期发送的SRS占用的频率范围不同,且在每个跳频周期中,所有所述跳频子周期发送的SRS占用的频率范围为所述覆盖范围。
  28. 根据权利要求27所述的UE,其特征在于,在所述四个连续跳频周期内,所述发送单元使用任意一个天线发送的所述SRS覆盖所述SRS的覆盖范围。
  29. 根据权利要求27所述的UE,其特征在于:
    所述发送单元在所述四个连续跳频周期中,每个跳频周期的第i个跳频子周期发送的频率宽度相同,其中,i为任意正整数。
  30. 根据权利要求27所述的UE,其特征在于,
    所述一个跳频周期中包含的跳频子周期数量为K;
    当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
    Figure PCTCN2015087113-appb-100017
    和/或
    当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
    a(nSRS)=nSRSmod4;
    其中,所述β为常数,且当所述K的值为8,6,10,18的整数倍时,所述β的值为1;当所述K的值不为8,6,10,18的整数倍时,所述β的值为0;所述mod为取模符号;其中,所述γ为常数,当K的值为6,10,18的整数倍时,γ的值为0;当K的值不为6,10,18的整数倍时,γ的值为1。
  31. 根据权利要求27所述的UE,其特征在于,,
    所述一个跳频周期中包含的跳频子周期数量为K;
    当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
    Figure PCTCN2015087113-appb-100018
    和/或
    当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
    a(nSRS)=nSRSmod4;
    其中,当所述K的值为8的整数倍时,或K的值为6或10或18时,所述β的值为1;当所述K的值不为8的整数倍时,且K不为6,10,18时,所述β的值为0;其中,所述γ为常数,当K的值为6,10,18时,γ的值为0;当K的值不为6,10,18时,γ的值为1。。
  32. 根据权利要求27所述的UE,其特征在于,,
    所述一个跳频周期中包含的跳频子周期数量为K;
    当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,当所述K的值为4整数倍时,满足:
    Figure PCTCN2015087113-appb-100019
    其中,所述β为常数,且当所述K的值为8的整数倍时,所述β的值为1;当所述K的值不为8的整数倍时,所述β的值为0;所述mod为取模符号;
    当所述K的值为不为4整数倍时,满足:
    Figure PCTCN2015087113-appb-100020
    和/或
    当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
    a(nSRS)=nSRSmod4;
  33. 根据权利要求27所述的UE,其特征在于,
    所述一个跳频周期中包含的跳频子周期数量为K;
    当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,当所述K的值为4整数倍时,或K=2时,满足:
    Figure PCTCN2015087113-appb-100021
    其中,所述β为常数,且当所述K的值为8的整数倍时,所述β的值为1;当所述K的值不为8的整数倍时,所述β的值为0;所述mod为取模符号;
    当所述K的值为不为4整数倍时,且K=2时,满足:
    Figure PCTCN2015087113-appb-100022
    和/或
    当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的 编号a(nSRS)与所述nSRS关系,满足:
    a(nSRS)=nSRSmod 4;
  34. 一种用户设备UE,其特征在于:
    确定单元,用于确定跳频子周期;
    发送单元,用于在至少一个所述跳频子周期内,使用所述4天线中的2个天线向基站eNB发送SRS。
  35. 根据权利要求34所述的UE,其特征在于,所述发送单元使用所述4根天线中的2根向基站eNB发送SRS,具体包括:
    在至少一个跳频子周期内,所述发送单元使用所述4天线中的2个天线向所
    述eNB发送SRS;且
    在至少另一个跳频子周期内,所述发送单元使用所述4天线中的另外2个天线向所述eNB发送SRS。
  36. 根据权利要求34或35所述的方法,其特征在于,所述发送单元使用所述4天线中的2个天线向所述eNB发送SRS,具体包括:
    在第k个跳频子周期内,所述发送单元使用所述4天线中的2个天线向所述eNB发送SRS;
    在第k+1个跳频子周期和/或在第k-1个跳频子周期内,所述发送单元使用所述4天线中的另外2个天线向所述eNB发送SRS。
  37. 根据权利要求34或35所述的方法,其特征在于,所述发送单元使用所述4跟天线中的2根向所述eNB发送SRS,具体包括:
    所述确定单元还用于确定所述一个跳频周期中,发送SRS信号的次数K;
    当K为偶数时,所述发送单元向基站eNB发送的第nSRS个SRS所在天线组的编号a(nSRS)与所述nSRS关系,满足:
    Figure PCTCN2015087113-appb-100023
    和/或
    当K为奇数时,所述所述发送单元向eNB发送的第nSRS个SRS所在天线组的编号a(nSRS)与所述nSRS关系,满足:
    a(nSRS)=nSRSmod2;
    其中,所述β为常数,且当所述K的值为4的整数倍时,所述β的值为1;当所述K的值不为4的整数倍时,所述β的值为0;所述mod为取模符号,且每个所述a(nSRS)的一个值对应一个天线组,所述a(nSRS)用于指示在第nSRS个跳频子周期内,发送所述SRS的天线。
  38. 根据权利要求37所述方法,其特征在于,所述a(nSRS)的两个值分别对应第一天线组合和第二天线组合,所述第一天线组合为4天线中的2个,所述第二天线组合为4天线中的另2个。
  39. 根据权利要求35至38所述方法,其特征在于,还包括;
    所述确定单元还用于确定第一元素A对应的天线和所述第三元素C对应的天线为所述第一天线组合;
    所述确定单元还用于确定第二元素B对应的天线和所述第四元素D对应的天线为所述第二天线组合;
    其中,第一元素A,第二元素B,第三元素C,第四元素D,分别为所述4个天线加权,且所述第一元素A,第二元素B,第三元素C,第四元素D为秩为1的预编码矩阵向量
    Figure PCTCN2015087113-appb-100024
    的元素。
  40. 一种基站装置,其特征在于:
    确定单元,用于确定接收SRS的覆盖范围;
    接收单元,用于在一个跳频子周期,接收用户设备UE使用四天线中的一个天线发送的一个SRS;其中,一个跳频周期包含至少两个跳频子周期,且在至少一个时间段内,接收到的任意一天线发送的SRS所覆盖的频带不同,所述时间段为四个连续跳频周期;且在每个跳频周期中,在每个跳频子周期接收的SRS占用的频率范围不同,且在每个跳频周期中,所有所述跳频子周期接收的SRS占用的频率范围为所述覆盖范围。
  41. 根据权利要求40所述的基站,其特征在于,所述接收单元接收任意一个天线 发送的所述SRS覆盖所述SRS的覆盖范围。
  42. 根据权利要求40所述的基站,其特征在于:
    所述接收单元在所述四个连续跳频周期中,在每个跳频周期接收的第i个跳频子周期的频率宽度相同,其中,i为任意正整数。
  43. 根据权利要求40所述的基站,其特征在于,
    所述一个跳频周期中包含的跳频子周期数量为K;
    当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
    Figure PCTCN2015087113-appb-100025
    和/或
    当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
    a(nSRS)=nSRSmod4;
    其中,所述β为常数,且当所述K的值为8,6,10,18的整数倍时,所述β的值为1;当所述K的值不为8,6,10,18的整数倍时,所述β的值为0;所述mod为取模符号;其中,所述γ为常数,当K的值为6,10,18的整数倍时,γ的值为0;当K的值不为6,10,18的整数倍时,γ的值为1。
  44. 根据权利要求40所述的基站,其特征在于,
    所述一个跳频周期中包含的跳频子周期数量为K;
    当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
    Figure PCTCN2015087113-appb-100026
    和/或
    当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
    a(nSRS)=nSRSmod4;
    其中,当所述K的值为8的整数倍时,或K的值为6或10或18时,所述β的值为1;当所述K的值不为8的整数倍时,且K不为6,10,18时,所述β的值为0;其中,所述γ为常数,当K的值为6,10,18时,γ的值为0;当K的值不为6,10,18时,γ的值为1。
  45. 根据权利要求40所述的基站,其特征在于,
    所述一个跳频周期中包含的跳频子周期数量为K;
    当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,当所述K的值为4整数倍时,满足:
    Figure PCTCN2015087113-appb-100027
    其中,所述β为常数,且当所述K的值为8的整数倍时,所述β的值为1;当所述K的值不为8的整数倍时,所述β的值为0;所述mod为取模符号;
    当所述K的值为不为4整数倍时,满足:
    Figure PCTCN2015087113-appb-100028
    和/或
    当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
    a(nSRS)=nSRSmod4;
  46. 根据权利要求40所述的基站,其特征在于,,
    所述一个跳频周期中包含的跳频子周期数量为K;
    当K为偶数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,当所述K的值为4整数倍时,或K=2时,满足:
    Figure PCTCN2015087113-appb-100029
    其中,所述β为常数,且当所述K的值为8的整数倍时,所述β的值为1;当所述K的值不为8的整数倍时,所述β的值为0;所述mod为取模符号;
    当所述K的值为不为4整数倍时,且K=2时,满足:
    Figure PCTCN2015087113-appb-100030
    和/或
    当K为奇数时,所述UE向所述基站eNB发送的第nSRS个SRS所在天线的编号a(nSRS)与所述nSRS关系,满足:
    a(nSRS)=nSRSmod4;
  47. 一种基站装置,其特征在于:
    确定单元,用于确定跳频子周期;
    接收单元,用于在至少一个所述跳频子周期内,接收所述UE使用4天线中的2个天线发送的SRS。
  48. 根据权利要求47所述的方法,其特征在于,所述接收所述UE使用4天线中的2个天线发送的SRS,具体包括:
    在至少一个跳频子周期内,接收所述4天线中的2个天线向所述eNB发送SRS;且
    在至少另一个跳频子周期内,接收所述4天线中的另外2个天线向所述eNB发送SRS。
  49. 根据权利要求47或48所述的基站,其特征在于,所述接收单元接收所述UE使用4天线中的2个天线发送的SRS,具体包括:
    在第k个跳频子周期内,所述接收单元接收所述4天线中的2个天线向所述eNB发送的SRS;
    在第k+1个跳频子周期和/或在第k-1个跳频子周期内,所述接收单元接收所述4天线中的另外2个天线向所述eNB发送SRS。
  50. 根据权利要求47或48所述的基站,其特征在于,所述接收单元接收所述UE使用4天线中的2个天线发送的SRS,具体包括:
    所述确定单元还用于确定所述一个跳频周期中,接收SRS信号的次数K;
    当K为偶数时,所述接收单元接收所述UE发送的第nSRS个SRS所在子频带编号a(nSRS)与所述nSRS关系,满足:
    Figure PCTCN2015087113-appb-100031
    和/或
    当K为奇数时,所述接收单元接收所述UE发送的第nSRS个SRS所在子频带编号a(nSRS)与所述nSRS关系,满足:
    a(nSRS)=nSRSmod2;
    其中,所述β为常数,且当所述K的值为4的整数倍时,所述β的值为1;当所述K的值不为4的整数倍时,所述β的值为0;所述mod为取模符号,且每个所述a(nSRS)的一个值对应一个天线组合,用于指示在第nSRS个跳频子周期内,发送所述SRS的天线。
  51. 根据权利要求50所述基站,其特征在于,所述a(nSRS)的两个值分别对应第一天线组合和第二天线组合,所述第一天线组合为4天线中的2个,所述第二天线组合为4天线中的另2个。
  52. 根据权利要求48至51所述基站,其特征在于,还包括;
    所述确定单元还用于确定第一元素A对应的天线和所述第三元素C对应的天线为所述第一天线组合;
    所述确定单元还用于确定第二元素B对应的天线和所述第四元素D对应的天线为所述第二天线组合;
    其中,第一元素A,第二元素B,第三元素C,第四元素D,分别为所述4个天线加权,且所述第一元素A,第二元素B,第三元素C,第四元素D为秩为1的预编码矩阵向量
    Figure PCTCN2015087113-appb-100032
    的元素。
PCT/CN2015/087113 2015-04-10 2015-08-14 一种srs的发送和接收的方法和装置 WO2016161738A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580067806.5A CN107005390A (zh) 2015-04-10 2015-08-14 一种srs的发送和接收的方法和装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2015076372 2015-04-10
CNPCT/CN2015/076372 2015-04-10

Publications (1)

Publication Number Publication Date
WO2016161738A1 true WO2016161738A1 (zh) 2016-10-13

Family

ID=57071698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/087113 WO2016161738A1 (zh) 2015-04-10 2015-08-14 一种srs的发送和接收的方法和装置

Country Status (2)

Country Link
CN (1) CN107005390A (zh)
WO (1) WO2016161738A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11184195B2 (en) 2017-03-23 2021-11-23 Nokia Technologies Oy Enhanced SRS frequency hopping scheme for 5G NR
WO2022151439A1 (zh) * 2021-01-15 2022-07-21 华为技术有限公司 一种通信方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109802810B (zh) * 2017-11-17 2021-07-09 华为技术有限公司 发送探测参考信号srs的方法和装置
WO2021142655A1 (en) * 2020-01-15 2021-07-22 Lenovo (Beijing) Limited Determining a length of sounding reference signal symbols
CN116210158A (zh) * 2020-09-24 2023-06-02 高通股份有限公司 用于无线通信的部分频率探测

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102075274A (zh) * 2011-01-31 2011-05-25 中兴通讯股份有限公司 一种测量参考信号的多天线参数的配置方法及装置
CN102282780A (zh) * 2009-01-13 2011-12-14 Lg电子株式会社 在多天线系统中发送探测参考信号的方法和装置
CN102404029A (zh) * 2010-09-13 2012-04-04 电信科学技术研究院 周期探测参考信号的传输指示及传输方法、设备
CN103490872A (zh) * 2008-06-20 2014-01-01 三星电子株式会社 上行链路无线通信系统中传输探测参考信号的装置和方法
US20140294107A1 (en) * 2013-03-28 2014-10-02 Electronics And Telecommunications Research Institute Apparatus for multi-user multi-antenna transmission based on double codebook and method for the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101944940A (zh) * 2009-07-08 2011-01-12 中兴通讯股份有限公司 一种移动终端的天线选择方法及装置
CN101867403B (zh) * 2010-06-13 2016-06-29 中兴通讯股份有限公司 一种测量参考信号的多天线发送方法、终端
CN101908916B (zh) * 2010-08-13 2016-03-30 中兴通讯股份有限公司 上行信息的传输方法及终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103490872A (zh) * 2008-06-20 2014-01-01 三星电子株式会社 上行链路无线通信系统中传输探测参考信号的装置和方法
CN102282780A (zh) * 2009-01-13 2011-12-14 Lg电子株式会社 在多天线系统中发送探测参考信号的方法和装置
CN102404029A (zh) * 2010-09-13 2012-04-04 电信科学技术研究院 周期探测参考信号的传输指示及传输方法、设备
CN102075274A (zh) * 2011-01-31 2011-05-25 中兴通讯股份有限公司 一种测量参考信号的多天线参数的配置方法及装置
US20140294107A1 (en) * 2013-03-28 2014-10-02 Electronics And Telecommunications Research Institute Apparatus for multi-user multi-antenna transmission based on double codebook and method for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11184195B2 (en) 2017-03-23 2021-11-23 Nokia Technologies Oy Enhanced SRS frequency hopping scheme for 5G NR
WO2022151439A1 (zh) * 2021-01-15 2022-07-21 华为技术有限公司 一种通信方法及装置

Also Published As

Publication number Publication date
CN107005390A (zh) 2017-08-01

Similar Documents

Publication Publication Date Title
AU2018342485B2 (en) Information transmission method and apparatus
TWI735616B (zh) 傳輸導頻信號的方法、終端設備和網絡側設備
CN111771341A (zh) 用于高级无线通信系统中的基于资源的csi获取的方法和装置
US9912451B2 (en) Methods and nodes in a wireless communication system
TWI717440B (zh) 通訊裝置及通訊方法
KR20200104403A (ko) 블라인드 탐색들을 관리하기 위한 장치 및 방법
CN114142980B (zh) 参考信号的传输方法及装置
WO2018126913A1 (zh) 上行参考信号信息的指示方法及装置和存储介质
CN104937873A (zh) 无线通信系统中的方法和节点
WO2016161738A1 (zh) 一种srs的发送和接收的方法和装置
WO2014110928A1 (zh) 上行解调参考信号的发送方法、装置和系统
US11121848B2 (en) Communication method and network device
TW201743574A (zh) 傳輸資料的方法和裝置
JP6795252B2 (ja) 参照信号伝送方法、端末デバイス、ネットワークデバイス、プログラム、およびシステム
WO2018033148A1 (en) A method to transmit channel state information reference signals in large mimo systems
WO2018028427A1 (zh) 下行控制信令的发送及接收方法、装置、基站、终端
WO2018137460A1 (zh) 一种参考信号配置方法、基站和终端
TWI807572B (zh) 促進不同搜尋空間集合之鏈結實體下行鏈路控制通道(pdcch)候選者上之下行鏈路控制資訊(dci)重複
WO2018121123A1 (zh) 发送/接收参考信号的方法及终端设备、网络设备
US20180103475A1 (en) Information transmission method, apparatus, and system
TW201328238A (zh) 用於無線通訊系統中控制通道之盲解碼方法
CN114402676A (zh) 调制解调参考信号的配置信息获取方法、配置方法及装置
WO2018228339A1 (zh) 参考信号的信令指示、参考信号的发送方法及装置
WO2018171520A1 (zh) 一种数据传输方法、终端设备和接入网设备
US20230328705A1 (en) Demodulation Reference Signal Allocation for Uplink Shared Channel for Wireless Communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15888292

Country of ref document: EP

Kind code of ref document: A1