WO2016161646A1 - 数据传输的方法、设备和收发信机 - Google Patents

数据传输的方法、设备和收发信机 Download PDF

Info

Publication number
WO2016161646A1
WO2016161646A1 PCT/CN2015/076356 CN2015076356W WO2016161646A1 WO 2016161646 A1 WO2016161646 A1 WO 2016161646A1 CN 2015076356 W CN2015076356 W CN 2015076356W WO 2016161646 A1 WO2016161646 A1 WO 2016161646A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
time
access point
station
transmission
Prior art date
Application number
PCT/CN2015/076356
Other languages
English (en)
French (fr)
Inventor
刘晟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15888202.7A priority Critical patent/EP3276843B1/en
Priority to CN201580078716.6A priority patent/CN107534459B/zh
Priority to PCT/CN2015/076356 priority patent/WO2016161646A1/zh
Publication of WO2016161646A1 publication Critical patent/WO2016161646A1/zh
Priority to US15/728,983 priority patent/US20180035318A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/54Circuits using the same frequency for two directions of communication
    • H04B1/56Circuits using the same frequency for two directions of communication with provision for simultaneous communication in two directions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2621Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using frequency division multiple access [FDMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/16Half-duplex systems; Simplex/duplex switching; Transmission of break signals non-automatically inverting the direction of transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/02Hybrid access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present invention relates to the field of communications, and in particular, to a method, device and transceiver for data transmission.
  • the WLAN device uses the same channel for data transmission in a time division duplex mode, that is, the uplink and downlink transmissions occur on different time segments of the same channel, that is, Only one uplink transmission or downlink transmission can be performed at a certain time through the same channel, that is, the transmission and reception channels of the existing WLAN system always work alternately.
  • the receiving channel is in an idle state when transmitting a signal through the transmitting channel, and its transmitting channel is in an idle state when receiving a signal through the receiving channel.
  • Embodiments of the present invention provide a data transmission method, device, and transceiver, which can improve the throughput of a WLAN system.
  • a method for data transmission of an access point characterized in that the transceiver of the access point comprises m transmitting channels and n receiving channels, and the method is applied to a wireless local area network WLAN.
  • the method includes: the access point uses at least one of the m transmit channels at a first time, and transmits downlink data to the at least one first station by using the first channel; the access point uses the n at the first time At least one of the receiving channels receives the uplink data sent by the at least one second station by using the second channel, where the access point sends the downlink data and the start time and the end time of receiving the uplink data respectively correspond to the same.
  • the access point uses at least one of the m transmit channels at the first time, and sends the downlink data to the at least one first site by using the first channel, including: The access point uses the m transmit channels at the first time to transmit downlink data to the at least one first station through the first channel; the access point uses at least one of the n receive channels at the first time to pass Receiving, by the second channel, the uplink data sent by the at least one second station, where the access point uses the n receiving channels at the first time, and receives at least one The uplink data sent by the second station.
  • the method further includes: the access point performs uplink or downlink transmission by using the first channel at a preset time; the access point is The preset time is performed by using the second channel for uplink or downlink transmission; wherein the preset time is a time other than the first time, and the access point performs the first channel at the preset time.
  • the access point performs downlink transmission through the second channel at the preset time, or when the access point performs downlink transmission through the first channel at the preset time, the access point is in the pre-predetermined Let time pass the second channel for uplink transmission.
  • the preset time includes a second time, where the second time is a time before the start time of the first time, where the access point is Performing uplink or downlink transmission on the first channel by using the first channel, where the access point performs the CSA detection on the first channel by using the first receiving channel at the second time to determine that the first channel is idle;
  • the access point performs uplink or downlink transmission on the second channel at the preset time, where the access point performs CCA detection on the second channel by using the second receiving channel at the second time to determine that the second channel is idle.
  • the first receiving channel is at least one of any n-1 receiving channels of the n receiving channels
  • the second receiving channel is at least one of the n receiving channels except the first receiving channel.
  • the preset time further includes a third time, where the third time is before the start time of the first time and the end of the second time After the time, the access point performs uplink or downlink transmission through the first channel at a preset time, and further includes: the access point uses the first transmitting channel at the third time, and the at least the first channel is used to A first station sends a first trigger frame, where the first trigger frame is used to indicate that the at least one first station receives the downlink data sent by the access point by using the first channel at the first time; the access point is The preset time is performed by the second channel for uplink or downlink transmission, and the method further includes: the access point uses the second transmitting channel at the third time, and sends the second trigger frame to the at least one second station by using the second channel The second trigger frame is used to indicate that the at least one second station sends the uplink data to the access point by using the second channel at the first time, where the first transmit channel is in the
  • the first trigger frame includes first scheduling control information, where the first scheduling control information includes: the at least one first site The identifier of each station in the network, the transmission resource used by the at least one first station for data transmission, the number of spatial streams and the identifier of the corresponding spatial stream, and the code modulation scheme MCS information used to transmit the corresponding spatial stream, wherein the a scheduling control information is located in a high efficiency signaling B field HE-SIG-B of the physical layer of the first trigger frame or a MAC layer protocol data unit PDU in the data field, where the second trigger frame includes second scheduling control information,
  • the second scheduling control information includes: an identifier of each station in the at least one second station, a transmission resource used by the at least one second station for data transmission, a number of spatial streams and an identifier of the corresponding spatial stream, and a corresponding space for transmission Coded modulation scheme MCS information used by the stream, wherein the second scheduling control information is located in a high efficiency signaling
  • the preset time further includes a fourth time, where the fourth time is a time after the end time of the first time
  • the access point performs uplink or downlink transmission on the first channel at a preset time, and further includes: the access point uses at least one of the m receiving channels at the fourth time, and receives the at least one first through the first channel a first response message sent by a station, where the first response message is used to indicate that the at least one first station has correctly received the downlink data; and the access point performs uplink or downlink transmission through the second channel at the preset time
  • the method further includes: the access point uses at least one of the n transmission channels at the fourth time, and sends a second response message to the at least one second station by using the second channel, where the second response message is used to indicate the connection The inbound data has been correctly received by the ingress point.
  • the preset time further includes a fifth time and a sixth time, where the fifth time is a time after the end time of the fourth time, The sixth time is the time after the end time of the fifth time;
  • the first trigger frame is further configured to indicate that the at least one third station sends the third uplink data to the access point by using the first channel at the fifth time;
  • the second triggering frame is further configured to: at least one fourth station receives, by using the second channel, the fourth downlink data that is sent by the access point, where the access point is uplinked through the first channel or
  • the downlink transmission further includes: the access point uses at least one of the m receiving channels at the fifth time, and receives, by using the first channel, the third uplink data sent by the at least one third station; the access point is The sixth time uses at least one of the n transmission channels, and sends a third response message to the at least one third station by using the first channel, where the third response message is used to indicate that the access point is correctly connected
  • the preamble of the data frame of the uplink data includes a traditional preamble and a high efficiency signal.
  • the preamble of the data frame of the downlink data includes The traditional preamble, high efficiency signaling A field HE-SIG-A, high efficiency short training field HE-STF, high efficiency long training field HE-LTF, excluding the high efficiency signaling B field HE-SIG-B.
  • the first channel is in the frequency bands of 5490 to 5710 MHz and 5735 to 5835 MHz.
  • the first channel is 5570 to 5710 MHz, 5735 to 5835 MHz, and 5850 to Any continuous or non-contiguous spectrum channel in the 5925 MHz band, which is any continuous or non-contiguous spectrum channel in the 5170 to 5330 MHz and 5350 to 5430 MHz bands.
  • a second aspect provides a method for data transmission of a station, where the transceiver includes k transmit channels and z receive channels, and the method is applied to a wireless local area network WLAN, where the method includes: Receiving, by using at least one of the z receiving channels, downlink data sent by the access point through the first channel; the station uses at least one of the K transmitting channels at the first time, and the second channel is used to The access point sends uplink data.
  • the station uses the at least one of the z receiving channels at the first time, and sends uplink data to the access point by using the second channel, including: the site The z receiving channels are used at the first time, and the uplink data is sent by the second channel receiving access point, and the station uses at least one of the k transmitting channels at the first time to receive the access point through the first channel.
  • the downlink data sent includes: the station uses the k transmit channels at the first time, and sends downlink data to the access point through the first channel.
  • the method further includes: the station performs uplink or downlink transmission through the first channel at a preset time; the station performs uplink or downlink transmission through the second channel at the preset time; wherein, the site is in the pre- When the time is transmitted through the first channel for uplink transmission, the station performs downlink transmission through the second channel at the second time, or when the station performs downlink transmission through the first channel at the preset time, the station is in The preset time is uplinked through the second channel.
  • the preset time includes a third time, where the third time is a time before the start time of the first time
  • the station performs uplink or downlink transmission on the first channel at a preset time, including: the station uses the first receiving channel at the third time, and receives, by using the first channel, a first trigger frame sent by the access point, where the first a triggering frame is used to indicate that the station receives the downlink data sent by the access point by using the first channel at the first time; the station performs uplink or downlink transmission by using the second channel at the preset time, including: The second receiving channel is used by the station to receive the second triggering frame sent by the access point by using the second channel, where the second triggering frame is used to indicate that the station passes the second channel to the first time.
  • the access point sends the uplink data, where the first receiving channel is at least one of any z-1 receiving channels of the z receiving channels, and the second receiving channel is the z receiving channels
  • the first trigger frame includes first scheduling control information, where the first scheduling control information includes: an identifier of the site, the site The transmission resource used for data transmission, the number of spatial streams and the identifier of the corresponding spatial stream, and the coded modulation scheme MCS information used for transmitting the corresponding spatial stream, wherein the first scheduling control information is located at a physical layer of the trigger frame
  • the second trigger frame includes second scheduling control information, where the second scheduling control information includes: an identifier of the site, the site The transmission resource used for data transmission, the number of spatial streams and the identifier of the corresponding spatial stream, and the coded modulation scheme MCS information used for transmitting the corresponding spatial stream, wherein the second scheduling control information is located at a physical layer of the trigger frame
  • the efficiency signaling B field is in the HE-SIG-B or the MAC layer protocol data unit
  • the preset time further includes a fourth time, where the fourth time is after the end time of the first time And the time that the station performs uplink or downlink transmission through the first channel at a preset time, and further includes: the station uses at least one of k transmit channels at a fourth time, by using the first channel to The access point sends a first response message, where the first response message is used to indicate that the station has correctly received the downlink data; the station performs uplink or downlink transmission through the second channel at the preset time, and further includes: the site Receiving, by using the second channel, a second response message sent by the access point, where the second response message is used to indicate that the access point has correctly received the uplink data.
  • the preset time further includes a fifth time and a sixth time, where the fifth time is after the end time of the fourth time The time is the time after the end time of the fifth time; the first trigger frame is further used to indicate that the station sends the third uplink data to the access point by using the first channel at the fifth time; The second trigger frame is further configured to indicate that the station receives the fourth downlink data sent by the access point by using the second channel at the fifth time, where the station performs uplink or downlink transmission through the first channel at a preset time, and further The method includes: the station uses at least one of k transmit channels at a fifth time, and sends third uplink data to the access point by using the first channel; the station uses at least one of z receive channels at a sixth time, Receiving, by using the first channel, a third response message sent by the access point, where the third response message is used to indicate that the access point has correctly received the third uplink data; the station passes
  • the preamble of the data frame of the uplink data includes a traditional preamble and a high efficiency signal.
  • the preamble of the data frame of the downlink data includes The traditional preamble, high efficiency signaling A field HE-SIG-A, high efficiency short training field HE-STF, high efficiency long training field HE-LTF, excluding the high efficiency signaling B field HE-SIG-B.
  • the first channel is in the frequency bands of 5490 to 5710 MHz and 5735 to 5835 MHz.
  • the first channel is any continuous or non-contiguous spectrum channel in the 5570-5710 MHz, 5735-5835 MHz, and 5850-5925 MHz bands
  • the second channel is 5170-5332 MHz and 5350. Any continuous or non-contiguous spectrum channel in the ⁇ 5430 MHz band.
  • a third aspect provides an access point, including: a transceiver, the transceiver includes m transmit channels and n receive channels; and a sending unit, configured to use the m at a first time Transmitting at least one of the transmitting channels to the at least one first station by using the first channel; the receiving unit, configured to use at least one of the n receiving channels at the first time, and receive at least one of the second receiving channels by using the second channel
  • the sending unit uses the m transmitting channels at the first time, and sends downlink data to the at least one first station by using the first channel;
  • the n receiving channels are used at one time, and the uplink data sent by the at least one second station is received through the second channel.
  • the method further includes: a first transmission unit, configured to perform uplink or downlink by using the first channel at a preset time a second transmission unit, configured to perform uplink or downlink transmission through the second channel at the preset time; wherein the preset time is a time other than the first time, in the first transmission unit
  • the second transmission unit performs downlink transmission on the second channel at the preset time, or passes the first at the preset time in the first transmission unit.
  • the second transmission unit performs uplink transmission through the second channel at the preset time.
  • the preset time includes a second time, where the second time is a time before the start time of the first time,
  • the first transmission unit performs the idle channel estimation CCA detection on the first channel using the first receiving channel at the second time to determine that the first channel is idle; the second transmission unit uses the second receiving channel at the second time.
  • the second channel performs CCA detection to determine that the second channel is idle; wherein the first receiving channel is at least one of any n-1 receiving channels of the n receiving channels, and the second receiving channel is the n receiving channels At least one of the channels except the first receiving channel.
  • the preset time further includes a third time, which is a time before the start time of the first time and after the end time of the second time
  • the first transmission unit is further configured to use at the third time Transmitting, by the first channel, the first trigger frame to the at least one first station, where the first trigger frame is used to indicate that the at least one first station receives the connection through the first channel at the first time
  • the second transmission unit is further configured to use the second transmission channel at the third time, and send, by using the second channel, a second trigger frame to the at least one second station, where the second trigger frame is sent Instructing the at least one second station to send the uplink data to the access point by using the second channel at the first time, where the first transmit channel is any n-1 transmit channels of the n transmit channels At least one of the second transmitting channels is at least one of the n transmitting channels except the first transmitting channel.
  • the first trigger frame includes first scheduling control information, where the first scheduling control information includes: the at least one first site The identifier of each station, the transmission resource used by the at least one first station for data transmission, the number of spatial streams and the identifier of the corresponding spatial stream, and the code modulation scheme MCS information used for transmitting the corresponding spatial stream, wherein the first The scheduling control information is located in a high efficiency signaling B field HE-SIG-B of the physical layer of the first trigger frame or a MAC layer protocol data unit PDU in the data field, where the second trigger frame includes second scheduling control information, where The second scheduling control information includes: an identifier of each station in the at least one second station, a transmission resource used by the at least one second station for data transmission, a number of spatial streams and an identifier of the corresponding spatial stream, and a corresponding spatial stream. Coded modulation scheme MCS information used, wherein the second scheduling control information is located in a high efficiency signaling B word
  • the preset time further includes a fourth time, where the fourth time is after the end time of the first time
  • the first transmission unit is further configured to use at least one of the m receiving channels at the fourth time, and receive, by using the first channel, a first response message sent by the at least one first station, the first response message Means that the at least one first station has correctly received the downlink data;
  • the second transmission unit is further configured to use at least one of the n transmit channels at the fourth time, and the at least one second through the second channel
  • the station sends a second response message, which is used to indicate that the access point has correctly received the uplink data.
  • the preset time further includes a fifth time and a sixth time, wherein the fifth time is a time after the end time of the fourth time, and the six time is a time after the end time of the fifth time; the first trigger frame And the method is further configured to: at least one third station sends third uplink data to the access point by using the first channel at a fifth time; the second trigger frame is further configured to indicate that the at least one fourth station passes the fifth time at the fifth time The second channel receives the fourth downlink data sent by the access point, where the first transmission unit is further configured to use at least one of the m receiving channels at the fifth time, and receive the at least one third site by using the first channel.
  • the second transmission unit is further configured to use at least one of the n transmission channels at the fifth time, and the at least one through the second channel
  • the fourth station sends the fourth downlink data; and uses at least one of the m receiving channels at the sixth time, and receives, by using the second channel, a fourth response message sent by the at least one fourth station, the fourth response message And means that the at least one fourth station has correctly received the fourth downlink data.
  • the preamble of the data frame of the uplink data includes a traditional preamble High-efficiency signaling A field HE-SIG-A, high-efficiency short training field HE-STF, high-efficiency long training field HE-LTF, excluding high-efficiency signaling B field HE-SIG-B; data of the downlink data
  • the preamble of the frame includes the traditional preamble, the high efficiency signaling A field HE-SIG-A, the high efficiency short training field HE-STF, the high efficiency long training field HE-LTF, excluding the high efficiency signaling B field HE-SIG-B .
  • the first channel is 5490-5710 MHz and 5735 ⁇ Any continuous or non-contiguous spectrum channel in the 5835 MHz band, which is any continuous or non-contiguous spectrum channel in the 5170 to 5330 MHz band.
  • the first channel is 5570 to 5710 MHz, 5735 ⁇ Any continuous or non-contiguous spectrum channel in the 5835 MHz and 5850 to 5925 MHz bands, which is any continuous or non-contiguous spectrum channel in the 5170 to 5330 MHz and 5350 to 5430 MHz bands.
  • a site including: a transceiver, the transceiver including k transmitters a receiving channel and a receiving channel, wherein the receiving unit is configured to receive at least one of the z receiving channels at a first time, receive downlink data sent by the access point by using the first channel, and send, by the sending unit, the first The time uses at least one of the K transmission channels to transmit uplink data to the access point through the second channel.
  • the receiving unit uses the z receiving channels at the first time, and the receiving channel sends the uplink data by using the second channel, where the sending unit is in the first time.
  • the downlink data is sent to the access point by using the first channel, where the receiving unit receives the downlink data and the start time and the end time of the sending unit sending the uplink data respectively correspond to the same .
  • the method further includes: a first transmission unit, configured to perform uplink or downlink by using the first channel at a preset time a second transmission unit, configured to perform uplink or downlink transmission through the second channel at the preset time; wherein the preset time is a time other than the first time, in the first transmission unit
  • the second transmission unit performs downlink transmission on the second channel at the second time, or passes the first at the preset time in the first transmission unit.
  • the second transmission unit performs uplink transmission through the second channel at the preset time.
  • the preset time includes a third time, where the third time is a time before the start time of the first time
  • the first transmission unit uses the first receiving channel at the third time, and receives, by using the first channel, a first trigger frame sent by the access point, where the first trigger frame is used to indicate that the station passes the first time in the first time Receiving, by the channel, the downlink data sent by the access point; the second transmission unit uses the second receiving channel at the third time, and receives the second trigger frame sent by the access point by using the second channel, the second triggering
  • the frame is configured to indicate that the station sends the uplink data to the access point by using the second channel at the first time, where the first receiving channel is at least any one of the z-1 receiving channels of the z receiving channels.
  • the second receiving channel is at least one of the z receiving channels except the first receiving channel.
  • the first trigger frame includes first scheduling control information, where the first scheduling control information includes: an identifier of the site, the site The transmission resource used for data transmission, the number of spatial streams and the identifier of the corresponding spatial stream, and the coded modulation scheme MCS information used for transmitting the corresponding spatial stream, wherein the first scheduling control information is located at a physical layer of the trigger frame Efficiency signaling B field HE-SIG-B or data
  • the second trigger frame includes second scheduling control information, where the second scheduling control information includes: an identifier of the station, a transmission resource used by the station for data transmission, and a number of spatial streams.
  • a coded modulation scheme MCS information used for transmitting the corresponding spatial stream wherein the second scheduling control information is located in a high efficiency signaling B field HE-SIG-B or data of a physical layer of the trigger frame In the MAC layer protocol data unit PDU in the field.
  • the preset time further includes a fourth time, where the fourth time is after the end time of the first time
  • the first transmission unit is further configured to use at least one of the k transmission channels at the fourth time, and send, by using the first channel, a first response message to the access point, where the first response message is used to indicate the
  • the second transmission unit is configured to receive at least one of the z receiving channels at the fourth time, and receive, by using the second channel, a second response message sent by the access point, where the The second response message is used to indicate that the access point has correctly received the uplink data.
  • the preset time further includes a fifth time and a sixth time, where the fifth time is after the end time of the fourth time The time is the time after the end time of the fifth time; the first trigger frame is further used to indicate that the station sends the third uplink data to the access point by using the first channel at the fifth time; The second trigger frame is further configured to indicate that the station receives the fourth downlink data sent by the access point by using the second channel at the fifth time, where the first transmission unit is further configured to use the k transmit channels in the fifth time.
  • At least one of the third uplink data is sent to the access point through the first channel; and at least one of the z receiving channels is used at a sixth time, and the third channel sent by the access point is received through the first channel a response message, the third response message is used to indicate that the access point has correctly received the third uplink data;
  • the second transmission unit is further configured to use at least one of the z receiving channels at the fifth time, by using the Receiving, by the channel, fourth downlink data sent by the access point; and using at least one of the k transmission channels at the sixth time, sending, by using the second channel, a fourth response message to the access point, the fourth response message It is used to indicate that the site has correctly received the fourth downlink data.
  • the preamble of the data frame of the uplink data includes a traditional preamble and a high efficiency signal.
  • the A field HE-SIG-A the high efficiency short training field HE-STF, the high efficiency long training field HE-LTF, excluding the high efficiency signaling B field HE-SIG-B
  • the preamble of the data frame of the downlink data includes Traditional preamble, high efficiency signaling A field HE-SIG-A, high efficiency short training field
  • the HE-STF, high efficiency long training field HE-LTF does not include the high efficiency signaling B field HE-SIG-B.
  • the first channel is in the frequency bands of 5490 to 5710 MHz and 5735 to 5835 MHz.
  • the first channel is 5570 to 5710 MHz, 5735 to 5835 MHz, and 5850 to Any continuous or non-contiguous spectrum channel in the 5925 MHz band, which is any continuous or non-contiguous spectrum channel in the 5170 to 5330 MHz and 5350 to 5430 MHz bands.
  • a transceiver including a transmitting channel and a receiving channel, and further comprising: a first phase locked loop PLL, a second PLL, a multiple selection switch, a channel selection RF switch, and a duplex
  • the multiplexer is connected to the first PLL and the second PLL for providing a local oscillator signal for the transmitting channel and the receiving channel; the channel selects a radio frequency switch and a PA and a receiving channel of the transmitting channel
  • the LNA is connected to the duplexer for selecting a port of the duplexer for the transmitting channel and the receiving channel, and the duplexer is connected to the antenna such that the transmitting channel and the receiving channel share the antenna.
  • the first PLL and the second PLL respectively provide a first frequency signal and a second frequency signal according to the same reference frequency, where the transmitting channel and the receiving channel use the first And transmitting any one of the frequency signal and the second frequency signal, and when the transmitting channel uses the first frequency signal for data transmission, the receiving channel uses the second frequency signal for data transmission, or when the transmitting channel uses When the second frequency signal performs data transmission, the receiving channel uses the first frequency signal for data transmission.
  • the duplexer includes a first port, a second port, a third port, a first band pass filter, and a second band a pass filter, wherein the first port is connected to the first band pass filter, the second port is connected to the second pass filter, the third port is connected to the first band pass filter and the first a second band pass filter is connected, the first port and the second port are used for connecting a transmit channel and a receive channel, the third port is for connecting an antenna, and the first band pass filter is configured to turn on the first frequency signal The second band pass filter is configured to turn on the second frequency signal.
  • the transmitting channel uses the first frequency signal to perform data transmission through the first channel
  • the receiving channel uses the second frequency signal to perform data transmission through the second channel
  • the output end of the PA of the transmitting channel and the first a port connected the input end of the LNA of the receiving channel is connected to the second port
  • the transmitting channel uses the second frequency signal
  • data transmission is performed through the second channel
  • the receiving channel uses the first frequency
  • the signal is transmitted through the first channel, and the output end of the PA of the transmitting channel is connected to the second port, and the input end of the LNA of the receiving channel is connected to the first port.
  • an apparatus comprising a transceiver in any one of the first to third possible implementations of the fifth aspect, the fifth aspect.
  • the device is an access point or a site.
  • the embodiment of the present invention uses the transmission channel to transmit downlink data to the at least one first station through the first channel by using the transmission channel at the first time; and the access point uses the reception at the same first time.
  • the channel receives the uplink data sent by the at least one second station by using the second channel.
  • the embodiments of the present invention can simultaneously perform uplink and downlink transmission on different channels, so that the transmitting channel and the receiving channel work simultaneously, improve the utilization of the transceiver channel, and improve the throughput of the system.
  • FIG. 1 is a diagram of a data transmission scenario in a WLAN system.
  • FIG. 2 is a schematic diagram of a process of data transmission in a WLAN.
  • FIG. 3 is a schematic diagram of another process of data transmission in a WLAN.
  • Figure 4 is a schematic diagram of the spectrum resources available for the 5 GHz unlicensed spectrum.
  • Figure 5 is a diagram of an application scenario in accordance with one embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a method of data transmission according to an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of a method of data transmission according to another embodiment of the present invention.
  • FIG. 8 is a schematic diagram showing the structure of a data frame according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a structure of a data frame according to another embodiment of the present invention.
  • Figure 10 is a schematic illustration of the use of a 5 GHz unlicensed spectrum in accordance with one embodiment of the present invention.
  • FIG. 11 is a schematic diagram of the use of a 5 GHz unlicensed spectrum in accordance with one embodiment of the present invention.
  • FIG. 12 is a schematic flowchart of a method of data transmission according to another embodiment of the present invention.
  • FIG. 13 is a schematic flowchart of a method of data transmission according to another embodiment of the present invention.
  • Figure 14 is a schematic diagram of a data transmission process in accordance with one embodiment of the present invention.
  • FIG. 15 is a schematic diagram of a data transmission process according to another embodiment of the present invention.
  • FIG. 16 is a schematic diagram of a data transmission process according to another embodiment of the present invention.
  • FIG. 17 is a schematic diagram of a data transmission process according to another embodiment of the present invention.
  • Figure 18 is a schematic block diagram of an access point in accordance with one embodiment of the present invention.
  • FIG. 19 is a schematic block diagram of an access point in accordance with another embodiment of the present invention.
  • Figure 20 is a schematic block diagram of a station in accordance with one embodiment of the present invention.
  • 21 is a schematic block diagram of a station in accordance with another embodiment of the present invention.
  • 22 is a schematic block diagram of an access point in accordance with another embodiment of the present invention.
  • FIG. 23 is a schematic block diagram of a station in accordance with another embodiment of the present invention.
  • Figure 24 is a schematic block diagram of a transceiver in accordance with one embodiment of the present invention.
  • Figure 25 is a schematic block diagram of a transceiver in accordance with another embodiment of the present invention. .
  • Figure 26 is a schematic block diagram of a duplexer in accordance with one embodiment of the present invention.
  • Figure 27 is a schematic block diagram of an apparatus in accordance with one embodiment of the present invention.
  • the technical solution of the present invention can be applied to an Orthogonal Frequency Division Multiplexing (OFDM) system, for example, a WLAN system, in particular, Wireless Fidelity (WiFi).
  • OFDM Orthogonal Frequency Division Multiplexing
  • WLAN Wireless Fidelity
  • WiFi Wireless Fidelity
  • the method of the embodiment of the present invention may also be applied to other types of OFDM systems, and the embodiments of the present invention are not limited herein.
  • a station in the embodiments of the present invention may also be referred to as a system, a subscriber unit, an access terminal, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, and a wireless communication.
  • Device user agent, user device or UE (User Equipment, User equipment).
  • the STA may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), or a wireless local area network (A handheld device such as a Wi-Fi) communication function, a computing device, or other processing device connected to a wireless modem.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • a handheld device such as a Wi-Fi communication function
  • computing device or other processing device connected to a wireless modem.
  • an access point (AP) in the embodiment of the present invention may be used to communicate with an access terminal over a wireless local area network, and transmit data of the access terminal to the network side, or transmit data from the network side. To the access terminal.
  • AP access point
  • FIG. 1 is a diagram of a data transmission scenario in a WLAN system.
  • an access point AP is responsible for two-way communication with multiple stations (Stations, STAs), that is, an AP to a STA at a certain time (such as STA1 and/or in FIG. 1).
  • STA2 transmits (Tx) downlink data, or another time (Rx) uplink data from the STA (such as STA3 in FIG. 1).
  • the WLAN device obtains the channel through Carrier Sense Multiple Access (CSMA).
  • CSMA Carrier Sense Multiple Access
  • the right to use that is, the Clear Channel Assessment (CCA) detection before transmitting the data.
  • the WLAN device receives the signal on the channel before using one channel to transmit data, typically, When the power of the received signal exceeds the set threshold, it is judged that the channel has been occupied by other devices; otherwise, the channel is judged to be in an idle state, thereby starting to use the channel to transmit data.
  • the channel may be a continuous spectrum (Frequency Band), typically a spectrum of 20 MHz, 40 MHz or 80 MHz bandwidth, or a discontinuous spectrum, such as a discontinuous spectrum of 160 MHz bandwidth composed of two 80 MHz bandwidths separated by a certain frequency interval.
  • Frequency Band typically a spectrum of 20 MHz, 40 MHz or 80 MHz bandwidth
  • a discontinuous spectrum such as a discontinuous spectrum of 160 MHz bandwidth composed of two 80 MHz bandwidths separated by a certain frequency interval.
  • the AP starts CCA detection on a channel at time t1.
  • the AP starts to send a downlink data frame to STA1 at time t2, and ends the transmission of the downlink data frame at time t3, and STA1 is at
  • the downlink data frame is received at a corresponding time.
  • the response Acknowledgement, ACK
  • the block response is sent to the AP at time t4.
  • the AP confirms that its downlink data frame has been positive by STA1 by receiving the ACK/BA frame sent by STA1. The reception is confirmed, thereby ending the downlink data transmission operation and releasing the right to use the channel.
  • STA2 performs CCA detection at time t5. If it determines that the channel is idle, it starts to send an uplink data frame to the AP at time t6, and ends the uplink data frame at time t7.
  • the AP After the SIFS time, if the AP correctly receives the uplink data frame, it sends an ACK/BA frame to STA2 at time t8, and STA2 ends the uplink data transmission operation after receiving the ACK/BA frame, and releases the channel. Use right.
  • an AP can simultaneously transmit downlink data to multiple STAs by means of OFDMA, or simultaneously receive multiple times through OFDMA. Uplink data of STAs.
  • OFDMA-based WLAN system in order to be compatible with an existing WLAN device, the AP still uses the CSMA mode to contend for the channel, that is, CCA detection is performed on the channel before using one channel, and if it judges that the channel is idle, a segment is reserved.
  • the Transmission opportunity (TXOP) is used for uplink, downlink, or uplink and downlink cascade transmission.
  • the AP is to transmit downlink data to at least one STA, similar to the AP in the CSMA-based WLAN, the downlink data frame is directly sent after the CCA detection channel is idle, and multiple STAs can be multiplexed together for transmission by the OFDMA method.
  • the STA does not directly initiate the uplink transmission by means of channel competition. Instead, the AP contends for the channel and then uniformly schedules the STA for uplink transmission. As shown in FIG.
  • a trigger frame is sent, where the triggered frame indicates that the scheduled STA2 and STA3 and the uplink data are transmitted.
  • the AP sends a trigger frame at time t6.
  • the scheduled STA2 and STA3 start to use the resources allocated by the AP to send uplink data frames at time t7.
  • the uplink data sent by STA2 and STA3 ends the uplink transmission process after the ACK/BA frame is sent.
  • the TXOP reserved by the AP includes at least the time from the start of transmitting the trigger frame to the end of the transmission of the ACK/BA frame.
  • the WLAN device uses the same channel in a time division duplex mode, that is, the uplink and downlink transmissions occur in the same channel.
  • a time division duplex mode that is, the uplink and downlink transmissions occur in the same channel.
  • the time period that is, when the signal is transmitted through the transmitting channel, its receiving channel is in an idle state, and when the signal is received through the receiving channel, its transmitting channel is in an idle state. Therefore, the throughput of the WLAN system is low.
  • WLAN standard support such as 802.11ac and 802.11ax
  • the maximum channel bandwidth is 160MHz, and the maximum number of spatial streams supported is 8. Most actual WLAN devices only support a maximum bandwidth of 80MHz.
  • the spectrum resources available for the 5 GHz unlicensed spectrum are very rich. As shown in Figure 4, the available bandwidth of the 5 GHz unlicensed spectrum can reach 675 MHz, including 5170-5330 MHz, 5350-5470 MHz, 5490-5710 MHz, 5735-5835 MHz, and 5850. -5925MHz. Therefore, the main factor limiting the throughput of the WLAN system is the capability of the transceiver channel rather than the spectrum resources.
  • the present invention provides a WLAN system and a transmission method, which can effectively solve the system throughput caused by the low utilization rate of the transceiver channel in the existing WLAN system without significantly increasing the complexity and cost of the system. High problem.
  • the access point in the embodiment of the present invention supports uplink and downlink parallel (simultaneous) transmission.
  • the station can support uplink and downlink parallel transmission, and can also not support uplink and downlink parallel transmission.
  • Figure 5 is an application scenario diagram in accordance with one embodiment of the present invention.
  • a typical application scenario of the embodiment of the present invention is shown in FIG. 5.
  • FIG. 5(a) only the AP supports uplink and downlink parallel transmission, and the STA does not need to support uplink and downlink parallel transmission, and the AP uses the first carrier frequency of f 01 .
  • downlink data channel transmitted to the STA1 while using a carrier frequency f of the second channel 02 receives the uplink data transmission STA2.
  • Figure 5(b) is similar to Figure 5(a). Only the AP supports uplink and downlink parallel transmission and the STA does not need to support.
  • the AP uses the first channel with the carrier frequency f 01 to send downlink data to STA1 and STA2, and uses the carrier frequency as f.
  • the second channel of 02 receives the uplink data sent by STA3 and STA4, where STA1 and STA2 can be multiplexed on the first channel by using OFDMA and/or Multi-user MIMO (Multi-user MIMO, MU-MIMO for short).
  • STA3 and STA4 may be multiplexed on the second channel using OFDMA and/or uplink MU-MIMO.
  • OFDMA Orthogonal MIMO
  • MU-MIMO Multi-user MIMO
  • FIG. 5 (c) are, AP, and STA3 are supported by the vertical line parallel transmission, AP using carrier frequency f of the first channel 01 transmits downlink data to STA3, while using a carrier frequency of f the second channel 02 receives STA3 transmitted Upstream data.
  • Figure 5(d) is similar to Figure 5(c).
  • AP, STA1, and STA2 support uplink and downlink parallel transmission, but STA3 and STA4 do not support uplink and downlink parallel transmission.
  • the AP uses the first channel with carrier frequency f 01 to STA1.
  • STA2 and STA4 transmits downlink data, while using a carrier frequency f of the second channel 02 receives STA1, STA2, and STA3 uplink data transmission.
  • FIG. 6 is a schematic flowchart of a method of data transmission according to an embodiment of the present invention.
  • the method shown in Figure 6 is performed by an access point, and the transceiver of the access point includes m transmit channels and n connections.
  • the receiving channel is applied to the WLAN of the wireless local area network.
  • the method shown in FIG. 6 includes:
  • the access point uses at least one of the m transmit channels at a first time, and sends downlink data to the at least one first station by using the first channel.
  • the access point uses at least one of the n receiving channels at the first time, and receives, by using the second channel, uplink data sent by the at least one second station, where the access point sends the downlink data and the start time of receiving the uplink data. The same as the end time.
  • the access point in the embodiment of the present invention sends downlink data to the at least one first station through the first channel at the first time, and receives the at least one second station by using the second channel at the first time. Upstream data.
  • the embodiments of the present invention can simultaneously perform uplink and downlink transmission on different channels, so that the transmitting channel and the receiving channel work simultaneously to fully utilize the processing capability of the existing transmitting and receiving channels, thereby improving the utilization rate of the transceiver channel and improving The throughput of the system.
  • At least one first site may include one site, and may also include multiple sites.
  • the multiple sites may use OFDMA and/or downlink multi-user MIMO (Multi-user). MIMO, MU-MIMO) is multiplexed on the first channel.
  • the at least one second site may include one site, and may also include multiple sites. When the at least one second site is multiple sites, the multiple sites may use OFDMA and/or downlink MU-MIMO in the second channel. Multiplexing on.
  • one of the at least one first site may be the same site as the second site of the at least one second site, or may be a different site, which is not limited by the embodiment of the present invention.
  • the access point may transmit downlink data using some or all of the m transmit channels at a first time, and in 620, some or all of the n receive channels may be used to receive uplink. data.
  • the first time is the time between the start (start) time and the end time of the transmission data
  • the first channel and the second channel respectively perform downlink transmission at the first time according to the embodiment of the present invention.
  • the uplink transmission in other words, according to the embodiment of the present invention, the access point starts to send downlink data to the at least one first station through the first channel at the beginning time of the first time, and completes the transmission downlink to the end time of the first time.
  • the access point starts to receive the uplink data sent by the at least one second station through the second channel at the beginning time of the first time, to the end of the first time
  • the bundle time is completed to receive the uplink data.
  • the various times occurring hereinafter represent the time between the start of transmission of the corresponding data and the end of the completion of the corresponding data
  • the first channel and the second channel are The data transmitted at the same starting time
  • the corresponding end time is also mostly the same, that is, the transmission time of the data transmitted at the same starting time of the first channel and the second channel (the time between the start time and the end time) It is the same, but there are also different cases.
  • the start time when transmitting the last ACK frame is the same, but the end time can be different.
  • the access point uses m transmit channels at a first time, and sends downlink data to the at least one first site by using the first channel; in 620, the access point is at The n receiving channels are used at one time, and the uplink data sent by the at least one second station is received through the second channel.
  • the access point uses all m transmit channels to transmit downlink data, and uses all n receive channels to receive uplink data. Therefore, in the embodiment of the present invention, the existing transmit and receive can be fully utilized.
  • the processing power of the channel enables an effective increase in system throughput.
  • the first channel and the second channel may perform uplink or downlink transmission respectively at different times, and when the first channel performs uplink transmission at a certain time, the second channel may be at the same time.
  • the second channel may perform uplink transmission at the same time.
  • the method of the embodiment of the present invention further includes: the access point performs uplink or downlink transmission by using the first channel at a preset time; and the access point performs uplink or the second channel by using the second channel at a preset time.
  • the access point uses at least one of the m transmit channels at a first time, and sends downlink data to the at least one first station by using the first channel.
  • the access point uses at least one of the n receiving channels at the first time, and receives, by using the second channel, uplink data sent by the at least one second station, where the access point sends the downlink data and the start time of receiving the uplink data. The same as the end time.
  • the access point performs uplink or downlink transmission through the first channel at a preset time.
  • the access point performs uplink or downlink transmission through the second channel at a preset time, where the preset time is a time other than the first time, when the access point performs uplink transmission through the first channel at a preset time.
  • the access point performs downlink transmission through the second channel at the second time, or is at the access point.
  • the preset time is downlink transmission through the first channel
  • the access point performs uplink transmission through the second channel at a preset time.
  • 710 and 720 respectively correspond to 610 and 620 in FIG. 6, and in order to avoid repetition, details are not described herein again.
  • each channel can perform uplink or downlink transmission at different times, when the first channel performs data transmission, the second channel only performs data reception, and vice versa.
  • a WLAN device access point
  • its transceiver includes m transmit channels and n receive channels, where m ⁇ 2, n ⁇ 2, then all m transmit can be used.
  • the channel performs data transmission on the first channel, and simultaneously uses all n receiving channels to perform data reception on the second channel, or uses all m transmission channels to perform data transmission on the second channel, while using all n receptions simultaneously
  • the channel receives data on the first channel.
  • the preset time includes a second time
  • the second time is a time before the start time of the first time
  • the access point uses the first receiving channel at the second time.
  • the first channel performs the idle channel assessment CCA detection to determine that the first channel is idle; in 740, the access point performs the CCA detection on the second channel by using the second receiving channel at the second time to determine that the second channel is idle; wherein, the first The receiving channel is at least one of any of the n receiving channels, and the second receiving channel is at least one of the n receiving channels except the first receiving channel.
  • the access point device needs to perform CCA detection on the first channel and the second channel before performing uplink and downlink data transmission, and determines that the first channel and the second channel are idle according to the CCA detection, and then sends the downlink through the first channel. Data, while receiving uplink data through the second channel.
  • the preset time further includes a third time, where the third time is before the start time of the first time and after the end time of the second time,
  • the access point uses the first transmit channel at a third time, and sends a first trigger frame to the at least one first site by using the first channel, where the first trigger frame is used to indicate that the at least one first site is in the first time.
  • the AP using a carrier frequency f of the first channel 01 transmits downlink data to the STA1, while using a carrier frequency f of the second channel 02 receives the transmission STA2 Upstream data.
  • the transceiver of the AP includes m transmit channels and n receive channels. First, at the start time of the second time (t 1 ), the AP performs CCA detection on the first channel using at least one but no more than n-1 receive channels. And using the remaining at least one receiving channel to perform CCA detection on the second channel.
  • the AP uses at least one but no more than m-1 at the starting time (t 2 ) of the third time.
  • the transmitting channel sends a first trigger frame on the first channel for transmitting downlink transmission scheduling control information, and uses the remaining at least one transmitting channel to send a second trigger frame on the second channel for transmitting uplink transmission scheduling control information, and then passes through the SIFS.
  • the AP may use the all of the m transmit channels to transmit the downlink data frame on the first channel, and complete the downlink data transmission at the end time (t 4 ) of the first time, and
  • the STA1 receives the downlink data frame according to the downlink transmission scheduling control information sent by the first trigger frame.
  • transmit uplink data frame to the AP in the second channel an uplink data transmission is completed at time t 4, the AP can use all of its n
  • the receiving channels receive uplink data frames on the second channel.
  • the first trigger frame includes first scheduling control information, where the first scheduling control information includes: an identifier of each site of the at least one first site, and at least one first site uses data transmission.
  • the second trigger frame includes second scheduling control information, where the second scheduling control information includes: identifiers of the at least one site of the second site, transmission resources used by the at least one second site for data transmission, number of spatial streams, and corresponding spatial streams And the coded modulation scheme MCS information used to transmit the corresponding spatial stream, wherein the second scheduling control information is located in a high efficiency signaling B field HE-SIG-B of the physical layer of the trigger frame or a MAC layer protocol in the data field In the data unit PDU.
  • the second scheduling control information includes: identifiers of the at least one site of the second site, transmission resources used by the at least one second site for data transmission, number of spatial streams, and corresponding spatial streams And the coded modulation scheme MCS information used to transmit the corresponding spatial stream, wherein the second scheduling control information is located in a high efficiency signaling B field HE-SIG-B of the physical layer of the trigger frame or a MAC layer protocol in the data field In the data unit PDU.
  • each 802.11ax physical layer packet consists of a preamble and a data field, and the data field is transmitted.
  • the data unit of the Media Access Control (MAC) layer may be user data or MAC layer control signaling.
  • the preamble consists of a Legacy Preamble and an 802.11ax specific preamble.
  • the traditional preamble is a preamble of 802.11a, 802.11n, 802.11ac, 802.11ax and other WLAN protocols.
  • the 802.11ax specific preamble is used to transmit 802.11ax specific physical layer control information, and further includes high efficiency signaling A.
  • High Efficiency Signal-A field HE-SIG-A
  • High Efficiency Short Training Field HE-STF
  • High Efficiency Long Training Field HE-LTF
  • Fields such as High Efficiency Signal-B field (HE-SIG-B).
  • HE-SIG-B which is used to carry the following, including but not limited to, scheduling control information: an identifier indicating each STA performing data transmission in the packet, and a transmission used by each STA data transmission.
  • Resources such as subcarrier resources in the frequency domain
  • MCS Modulation Coding Scheme
  • the preamble of the downlink data frame is as shown in FIG. 9, and the HE-SIG-B field is no longer included.
  • the STA1 receives the downlink data frame according to the downlink transmission scheduling control information sent by the first trigger frame.
  • the AP may use all of the n receiving channels receive the uplink channel in the second The data frame, as such, the preamble of the uplink data frame no longer contains the HE-SIG-B field.
  • the preamble of the data frame of the uplink data includes a legacy preamble, an HE-SIG-A, an HE-STF, and an HE-LTF field; the HE-SIG-B field is not included.
  • the preamble of the data frame of the downlink data includes the legacy preamble, the HE-SIG-A, the HE-STF, and the HE-LTF field, excluding the HE-SIG-B field.
  • the preset time further includes a fourth time, where the fourth time is a time after the end time of the first time, and in 730, the access point uses the m receiving channels at the fourth time. At least one, receiving, by using the first channel, a first response message sent by the at least one first station, where the first response message is used to indicate that at least one first station has correctly received downlink data; and in 740, the access point is used at a fourth time. At least one of the n transmission channels sends a second response message to the at least one second station through the second channel, where the second response message is used to indicate that the access point has correctly received the uplink data.
  • the first response message may be an ACK frame or a BA frame
  • the second response message may be an ACK frame or a BA frame.
  • the scenario shown in FIG. 5( a ) is taken as an example.
  • the STAFS time if STA1 correctly receives the downlink data frame sent by the AP, i.e., a fourth time start time (t 5) to the AP transmits an uplink ACK / BA frame, while, if the AP receives uplink data frame correctly transmitted STA2, time t 5 also transmits a downlink ACK / BA frame to STA1.
  • the end time is basically the same, but the end time here may be the same or different, as shown in FIG. 14, the access point in the embodiment of the present invention.
  • the start time of the received first response message and the sent second response message is the same, because after the first response message and the second response message are transmitted, the access point may no longer have data transmission in a short time. Therefore, the completion time of receiving the first response message may be different from the completion time of the second response message, which is not limited by the embodiment of the present invention.
  • the preset time further includes a fifth time and a sixth time, the fifth time is a time after the end time of the fourth time, and the sixth time is a time after the end time of the fifth time;
  • the first trigger frame is further configured to indicate that the at least one third station sends the third uplink data to the access point by using the first channel at the fifth time;
  • the second trigger frame is further configured to indicate that the at least one fourth station passes the fifth time
  • the second channel receives the fourth downlink data sent by the access point; in 730, the access point uses at least one of the m receiving channels at the fifth time, and receives the third uplink data sent by the at least one third station by using the first channel.
  • the access point uses at least one of the n transmission channels at the sixth time, and sends a third response message to the at least one third station through the first channel, where the third response message is used to indicate that the access point has correctly received the third uplink. data.
  • the access point uses at least one of n transmit channels at a fifth time, and transmits fourth downlink data to at least one fourth station through the second channel; the access point uses m receive channels in a sixth time And receiving, by the second channel, a fourth response message sent by the at least one fourth station, where the fourth response message is used to indicate that the at least one fourth station has correctly received the fourth downlink data.
  • one third site in at least one third site may be the same site as one of the at least one fourth site, or may be a different site, and one third site and one fourth site A part of the first site and a second site may be the same site, or may be different sites, which is not limited by the embodiment of the present invention.
  • At least one first site includes STA1
  • at least one third site includes STA1
  • at least one second site includes STA2
  • at least one fourth station includes STA2
  • the process shown in FIG. 16 is basically the same as the process shown in FIG. 14 in CCA detection, trigger frame transmission, and uplink and downlink data frame transmission. To avoid repetition, details are not described herein.
  • One point is that, in the example of FIG. 16, since the access point has data transmission in a short time after transmitting the first response message and the second response message, the start time and completion of receiving the first response message The time is the same as the start time and the completion time of the second response message.
  • the access point is at the start time of the fifth time (t 6 ).
  • m receiving channels using at least one third receiving station at least one third uplink data transmitted through a first channel; the third uplink data is completed at the end time of the fifth time (t 7) receiving the access In the sixth time starting time (t 8) of the n-channel transmit at least one response message to send at least a third third station via a first channel, the third response message indicating that the access point is correct for Receiving the third uplink data.
  • the access point using the n-channel transmit at least a time t 6, the fourth downlink data transmission to at least a fourth station over a second channel; complete transmission, the access point of the fourth data in the downlink time t 7 m receiving channels using at least one of at time t 8, a fourth receiving station at least one fourth response message transmitted by a second channel, a fourth response message for representing at least one fourth receiving station has been correctly fourth downlink data .
  • the access point may no longer have data transmission in a short time, and therefore, the completion time of sending the third response message may be the same as receiving the fourth response message.
  • the completion time is different, and the embodiment of the present invention does not limit this.
  • the first channel is any continuous or non-contiguous spectrum channel in the 5490-5710 MHz and 5735-8835 MHz bands
  • the second channel is any continuous or non-contiguous spectrum in the 5170-5330 MHz band. channel.
  • FIG. 1 a schematic diagram of the use of a 5 GHz unlicensed spectrum in accordance with one embodiment of the present invention is shown in FIG.
  • the total bandwidth of the spectrum that can be used by the WLAN is 480 MHz, and 5490 to 5710 MHz and 5735 to 5835 MHz are used as one frequency band, and 5170 to 5330 MHz is used as another frequency band, and the first channel and the second channel are respectively consecutive or in the two frequency bands.
  • the channel of the discontinuous spectrum for example, the first channel may be Ch1 and Ch2, Ch3 and Ch4, Ch5 and Ch6, Ch7 and Ch8 in the figure, so that there is at least a guard band of 160 MHz between the two channels, thereby ensuring reception. Isolation between the transmitter and the transmitting channel.
  • the first channel is 5570 to 5710 MHz, Any continuous or non-contiguous spectrum channel in the 5735-5835 MHz and 5850-5925 MHz bands, and the second channel is any continuous or non-contiguous spectrum channel in the 5170-5330 MHz and 5350-5430 MHz bands.
  • FIG. 1 a schematic diagram of the use of a 5 GHz unlicensed spectrum according to another embodiment of the present invention is shown in FIG.
  • the total bandwidth of the spectrum that can be used by the WLAN is 675 MHz, and the middle section of the spectrum can be selected as the guard band.
  • the channel is not used for uplink and downlink parallel transmission, and the existing technology is still used.
  • the channel in the two bands of the protection band is used for uplink and downlink parallel transmission. .
  • a total of 315 MHz of 5570 to 5710 MHz, 5735 to 5835 MHz, and 5850 to 5925 MHz is used as one frequency band
  • 240 MHz of 5170 to 5330 MHz and 5350 to 5430 MHz are used as another frequency band
  • a spectrum of 140 MHz of 5430 to 5570 MHz is a protection band for uplink and downlink parallel transmission.
  • FIG. 12 is a schematic flowchart of a method for data transmission according to another embodiment of the present invention.
  • the method shown in FIG. 12 is performed by a station, and the transceiver of the station includes k transmit channels and z receive channels.
  • the method is applied to a WLAN in a wireless local area network.
  • the method shown in FIG. 12 includes:
  • the station uses at least one of the z receiving channels at a first time, and receives downlink data sent by the access point through the first channel.
  • the station uses at least one of the K transmission channels to send uplink data to the access point through the second channel, where the start time and the end time of the downlink data received by the station and the uplink data are respectively the same.
  • the station in the embodiment of the present invention receives the downlink data sent by the access point through the first channel at the first time, and sends the uplink data to the access point through the second channel at the first time.
  • the embodiments of the present invention can perform uplink and downlink transmissions simultaneously on different channels, so that the simultaneous operation of the transmitting channel and the receiving channel can fully utilize the processing capability of the existing transmitting and receiving channels, thereby improving the throughput of the system.
  • the station may receive downlink data using some or all of the z receive channels at a first time, and in 1220, uplink data may be transmitted using some or all of the k transmit channels.
  • the station uses z receiving channels at the first time, and sends uplink data to the access point through the second channel.
  • the station shown uses k transmit channels at a first time to receive downlink data transmitted by the access point over the first channel.
  • the first channel and the second channel may perform uplink or downlink transmission respectively at different times, and when the first channel performs uplink transmission, the second channel may perform downlink transmission, or When one channel performs downlink transmission, the second channel can perform uplink transmission.
  • the method of the embodiment of the present invention further includes: the station performs uplink or downlink transmission by using the first channel at a preset time; and the station performs uplink or downlink transmission by using the second channel at a preset time.
  • the method for data transmission as shown in FIG. 13 includes:
  • the station uses at least one of the k transmit channels at a first time, and receives downlink data sent by the access point through the first channel.
  • the station uses at least one of the z receiving channels at the first time, and sends the uplink data to the access point by using the second channel, where the start time and the end time of the downlink data received by the station and the uplink data are respectively the same.
  • the station performs uplink or downlink transmission through the first channel at a preset time.
  • the station performs uplink or downlink transmission through the second channel at a preset time, where the preset time is a time other than the first time, and when the station performs uplink transmission through the first channel at a preset time, the station is in the first
  • the second time is downlink transmission through the second channel, or when the station performs downlink transmission through the first channel at a preset time, the station performs uplink transmission through the second channel at a preset time.
  • 1310 and 1320 correspond to 1210 and 1220 in FIG. 12, respectively, and are not described again in order to avoid redundancy.
  • each channel can be uplinked or downlinked at different times. Input, but when the first channel performs data transmission, the second channel only performs data reception, and vice versa.
  • a WLAN device station point
  • its transceiver includes k transmit channels and z receive channels, where k ⁇ 2, z ⁇ 2, then all k transmit channels can be used. Data transmission is performed on the first channel, and data reception is performed on the second channel using all z reception channels at the same time, or data transmission is performed on the second channel using all k transmission channels, while all z reception channels are simultaneously used. Data reception is performed on the first channel.
  • the preset time includes a third time, where the third time is a time before the start time of the first time,
  • the station uses the first receiving channel at the third time, and receives the first trigger frame sent by the access point by using the first channel, where the first trigger frame is used to indicate that the station receives the access through the first channel in the first time.
  • the downlink data sent by the point in 1340, the station uses the second receiving channel at the third time, and receives the second trigger frame sent by the access point through the second channel, where the second trigger frame is used to indicate that the station passes the first time
  • the second channel sends uplink data to the access point; wherein the first receiving channel is at least one of any z-1 receiving channels of the z receiving channels, and the second receiving channel is the first receiving channel of the z receiving channels. At least one outside the channel.
  • the station STA3 using a carrier frequency f of the first channel 01 receives downlink data sent by the AP, while using a carrier frequency f of the second channel 02 transmits uplink data to the AP.
  • the transceiver of the AP includes m transmit channels and n receive channels, and the transceiver of the station includes k transmit channels and z receive channels.
  • the AP uses at least the start time (t 1 ) of the second time.
  • One but no more than n-1 receiving channels perform CCA detection on the first channel, and use the remaining at least one receiving channel to perform CCA detection on the second channel. If the first and second channels are idle, the AP is in the third time.
  • the starting time (t 2 ) uses at least one but no more than m-1 transmitting channels to send a first trigger frame on the first channel for transmitting downlink transmission scheduling control information, and using the remaining at least one transmitting channel to send on the second channel.
  • the second trigger frame is configured to send uplink transmission scheduling control information, and then, that is, the station uses the first receiving channel at t 2 , receives the first trigger frame sent by the access point through the first channel, and uses the second receiving at t 2 by the station.
  • AP may use all of the m transmit a downlink transmission channel in the first channel Data frame, and control station in accordance with a first downlink transmission schedule information trigger frame transmitted frame processing on the downlink data reception, for example, using the z site can receive channels at time t 3, receiving access point via a second channel transmission Upstream data. Meanwhile, at time t 3 in accordance with a control station uplink transmission schedule frame transmitted by the second trigger information, send uplink data frame to the AP in the second channel, e.g., the site of k at time t 3 transmit channels, a first channel Send downlink data to the access point.
  • the AP can receive uplink data frames on the second channel using all of its n receive channels.
  • the first trigger frame includes first scheduling control information, where the first scheduling control information includes: an identifier of the site, a transmission resource used by the station for data transmission, a number of spatial streams, and a corresponding spatial stream. Identifying, and transmitting coded modulation scheme MCS information used by the corresponding spatial stream, wherein the first scheduling control information is located in a high efficiency signaling B field HE-SIG-B of the physical layer of the trigger frame or MAC layer protocol data in the data field In the unit PDU,
  • the second trigger frame includes second scheduling control information, where the second scheduling control information includes: an identifier of the station, a transmission resource used by the station for data transmission, a number of spatial streams and an identifier of the corresponding spatial stream, and a used space stream for transmitting the corresponding spatial stream.
  • the modulation scheme MCS information is encoded, wherein the second scheduling control information is located in a high efficiency signaling B field HE-SIG-B of the physical layer of the trigger frame or a MAC layer protocol data unit PDU in the data field.
  • the data frame in the 802.11ax physical layer packet, and the control frame such as the trigger frame and the ACK/BA frame adopt the structure shown in FIG.
  • Each 802.11ax physical layer packet is composed of a preamble and a data field, and the data field transmits a data unit of a media access control (MAC) layer, which may be user data or a MAC layer.
  • MAC media access control
  • Control signaling, etc., the preamble consists of Legacy Preamble and 802.11ax specific preamble.
  • the traditional preamble is the predecessor of 802.11a, 802.11n, 802.11ac, 802.11ax and other WLAN protocols, 802.11.
  • the ax specific preamble is used to transmit 802.11ax specific physical layer control information, and further includes a High Efficiency Signal-A field (HE-SIG-A) and a High Efficiency Short Training field. , HE-STF), High Efficiency Long Training Field (HE-LTF), High Efficiency Signal-B field (HE-SIG-B) and other fields.
  • HE-SIG-B which is used to carry the following, including but not limited to, scheduling control information: an identifier indicating each STA performing data transmission in the packet, and a transmission used by each STA data transmission.
  • Resources eg, subcarrier resources in the frequency domain
  • the number of spatial streams and the identification of the corresponding spatial streams the coding modulation scheme used to transmit the corresponding spatial streams
  • MCS Modulation Coding Scheme
  • the preamble of the downlink data frame as shown in FIG. 9 no longer contains the HE-SIG-B field.
  • site scheduling uplink transmission control information frame transmitted by the second trigger send uplink data frame to the AP in the second channel
  • the AP may use all of the n receiving channels receive the uplink channel in the second The data frame, as such, the preamble of the uplink data frame no longer contains the HE-SIG-B field.
  • the preamble of the data frame of the uplink data includes a traditional preamble, a high efficiency signaling A field HE-SIG-A, a high efficiency short training field HE-STF, and a high efficiency long training field HE-LTF. ; does not include the HE-SIG-B field.
  • the preamble of the data frame of the downlink data includes the traditional preamble, the high efficiency signaling A field HE-SIG-A, the high efficiency short training field HE-STF, the high efficiency long training field HE-LTF, excluding the HE-SIG- B field.
  • the preset time further includes a fourth time, and the fourth time is a time after the end time of the first time
  • the station uses the at least one of the k transmit channels at the fourth time, and sends a first response message to the access point by using the first channel, where the first response message is used to indicate that the station has correctly received the downlink data;
  • the station uses at least one of the z receiving channels at the fourth time, and receives a second response message sent by the access point through the second channel, where the second response message is used to indicate that the access point has correctly received the uplink data.
  • the first response message may be an ACK frame or a BA frame
  • the second response message may be an ACK frame or a BA frame.
  • the scenario shown in FIG. 5(c) is taken as an example.
  • start time (t 5) to the AP transmits an uplink ACK / BA frame
  • time t 5 also transmits a downlink ACK / BA frame to the station.
  • the preset time further includes a fifth time and a sixth time, the fifth time is a time after the end time of the fourth time, and the sixth time is a time after the end time of the fifth time;
  • the first trigger frame is further configured to indicate that the station sends the third uplink data to the access point by using the first channel at the fifth time;
  • the second trigger frame is further configured to indicate that the station sends the access point through the second channel at the fifth time.
  • the station uses at least one of the k transmit channels at a fifth time to transmit third uplink data to the access point through the first channel; the station uses at least one of the z receive channels at the sixth time, through the first Receiving, by a channel, a third response message sent by the access point, where the third response message is used to indicate that the access point has correctly received the third uplink data;
  • the station uses at least one of the z receiving channels at a fifth time, and receives the fourth downlink data sent by the access point through the second channel; the station uses at least one of the k transmitting channels at the sixth time to pass The second channel sends a fourth response message to the access point, where the fourth response message is used to indicate that the station has correctly received the fourth downlink data.
  • the first channel is any continuous or non-contiguous spectrum channel in the 5490-5710 MHz and 5735-8835 MHz bands
  • the second channel is any continuous or non-contiguous spectrum in the 5170-5330 MHz band. channel.
  • the total bandwidth of the spectrum that can be used by the WLAN is 480 MHz, and 5490 to 5710 MHz and 5735 to 5835 MHz are used as one frequency band, and 5170 to 5330 MHz is used as another frequency band, and the first channel and the second channel are respectively consecutive or in the two frequency bands.
  • the channel of the discontinuous spectrum for example, the first channel may be Ch1 and Ch2, Ch3 and Ch4, Ch5 and Ch6, Ch7 and Ch8 in the figure, so that there is at least a guard band of 160 MHz between the two channels, thereby ensuring reception. Isolation between the transmitter and the transmitting channel.
  • the first channel is any continuous or non-contiguous spectrum channel in the 5570 ⁇ 5710MHz, 5735-8833MHz, and 5850-5925MHz frequency bands
  • the second channel is in the 5170 ⁇ 5330MHz and 5350-5430MHz frequency bands. Any channel of continuous or non-contiguous spectrum.
  • FIG. 1 a schematic diagram of the use of a 5 GHz unlicensed spectrum according to another embodiment of the present invention is shown in FIG.
  • the total bandwidth of the spectrum that can be used by the WLAN is 675 MHz, and the middle section of the spectrum can be selected as the guard band.
  • the channel is not used for uplink and downlink parallel transmission, and the existing technology is still used.
  • the channel in the two bands of the protection band is used for uplink and downlink parallel transmission. .
  • a total of 315 MHz of 5570 to 5710 MHz, 5735 to 5835 MHz, and 5850 to 5925 MHz is used as one frequency band
  • 240 MHz of 5170 to 5330 MHz and 5350 to 5430 MHz are used as another frequency band
  • a spectrum of 140 MHz of 5430 to 5570 MHz is a protection band for uplink and downlink parallel transmission.
  • FIG. 14 is a schematic diagram of a data transmission process according to an embodiment of the present invention.
  • the transceiver of the access point in the scenario includes m transmit channels and n receive channels, and the AP sends downlink data to STA1 using the first channel with the carrier frequency f 01 And using the second channel with the carrier frequency f 02 to receive the uplink data sent by the STA2.
  • the AP reserves a TXOP for uplink and downlink parallel transmission.
  • the AP uses at least one but no more than m-1 transmit channels at time t 2 to send a first trigger frame on the first channel for transmitting downlink transmission scheduling control information, and using the remaining at least one transmit channel.
  • the second channel is configured to send the second trigger frame for transmitting the uplink transmission scheduling control information
  • the scheduling control information includes, but is not limited to, an identifier of each STA that indicates uplink or downlink data transmission after the trigger frame, and a transmission resource used by each STA data transmission. (eg, subcarrier resources in the frequency domain), the number of spatial streams and the identification of the corresponding spatial stream, and information such as a Modulation Coding Scheme (MCS) used to transmit the corresponding spatial stream, the scheduling control information may be in the trigger frame
  • MCS Modulation Coding Scheme
  • the physical layer such as the HE-SIG-B, can also be transmitted at the MAC layer of the trigger frame, ie by the MAC data unit in the data field of the trigger frame.
  • the time t 3 at which the AP may use all channels in the m transmit a first downlink data frame transmission channel
  • the first trigger has been transmitted by the downlink transmission frames due to the scheduling control information, preferably in the downlink data frame
  • the preamble no longer includes the HE-SIG-B field, as shown in FIG. 9, and STA1 performs reception processing on the downlink data frame according to the downlink transmission scheduling control information sent by the first trigger frame.
  • the AP may use all of the n receiving channels receive the uplink channel in the second The data frame, as such, the preamble of the uplink data frame no longer contains the HE-SIG-B field.
  • the transmission time of the trigger frame and the data frame on the above two channels are aligned in time, that is, the trigger frame and the data frame transmitted on the two channels are both the same length.
  • the AP can pass For the scheduling of uplink and downlink transmissions of multiple STAs, select the appropriate STA and the appropriate amount of data for transmission, so as to ensure that the uplink and downlink data frame lengths are the same or close, and for the trigger frame and the data frame, the shorter frames can be in the MAC.
  • the layer or the physical layer is padded to ensure that the uplink and downlink data frames have the same length.
  • the method of filling in the MAC layer or the physical layer may use the method in the existing WLAN technology, and details are not described herein.
  • the SIFS time after the uplink and downlink data frame transmission if the STA1 receive the correct AP transmits downlink data frame, i.e. the transmission of uplink ACK / BA frame to the AP at time t 4, while, if the AP correctly receive uplink data frame STA2 transmitted, and transmitting a downlink ACK / BA frame to STA1 at time t 4.
  • the AP may use its all m transmit channels to transmit downlink ACK/BA frames on the second channel, or may use all of its n receive channels to receive uplink ACK/BA frames on the first channel.
  • the length of the uplink and downlink ACK/BA frames may be different.
  • the TXOP reserved by the AP shall include the time from the start of the trigger frame transmission at time t 2 and the end of the longer frame transmission in the uplink and downlink ACK/BA frames.
  • FIG. 15 is a schematic diagram of a data transmission process according to another embodiment of the present invention.
  • the AP and the at least one STA perform uplink and downlink parallel transmission.
  • the typical scenario is as shown in FIG. 5(c) and FIG. 5(d), and the scenario shown in FIG. 5(c) is
  • both the AP and the STA3 perform uplink and downlink parallel transmission.
  • the AP uses the first channel with the carrier frequency f 01 to send downlink data to the STA1, and the second channel with the carrier frequency f 02 receives the uplink data sent by the STA1.
  • the data transmission process of this embodiment is still as shown in FIG. 14.
  • the difference between FIG. 15 and FIG. 14 is that the transmission processes of STA1 and STA2 in FIG. 14 are all completed by STA3. To avoid repetition, we will not repeat them.
  • FIG. 16 is a schematic diagram of a data transmission process according to another embodiment of the present invention.
  • FIG. 16 shows a WLAN data transmission process in the case of the uplink-downlink cascade according to the present invention of the present invention.
  • the AP first uses the first channel with the carrier frequency f 01 to send downlink data to STA1, and the second channel with the carrier frequency f 02 receives the uplink data sent by STA2, and then using the first channel to receive uplink data transmitted STA1, while using the second channel to send downlink data to the STA2, AP thus be reserved TXOP includes sending a trigger frame from the start time t 2, the last uplink and downlink ACK / BA frame more The time until the end of the long frame transmission.
  • Process 16 shown in FIG. 14 and FIG CCA detection process basically the same trigger frame transmission and downlink data frame transmission, the AP is different channel transmission trigger frame carrying a first channel only for STA1 starts at time t 6 transmission scheduling uplink transmission control information, the AP sends a trigger frame in the second channel carries only the transmission schedule for uplink transmission start time t 3 the STA2 control information.
  • the AP T downlink data frame 3 timing of starting the transmission to the STA1 and the downlink data AP starts transmitting to STA2 second channel t 6 time in the first channel
  • the preamble of the frame still contains a HE-SIG-B field, which is used to carry scheduling control information of the corresponding downlink data transmission.
  • the transmission of the uplink and downlink ACK/BA frames in the process shown in FIG. 16 is different from the process shown in FIG. 14, that is, except for the length of the last uplink and downlink ACK/BA frame, the remaining uplink and downlink ACK/BA frames may be different.
  • the lengths are all the same, as such, this can be done by padding the shorter ACK/BA frames at the MAC layer or the physical layer.
  • FIG. 16 is an example of the scenario shown in FIG. 5( a ), the process is applicable to various typical application scenarios shown in FIG. 5 , including only AP supporting uplink and downlink parallel transmission, or supporting AP and at least one STA.
  • the application scenario of parallel uplink and downlink transmission is shown in Figure 17.
  • FIG. 17 is a schematic diagram of a data transmission process according to another embodiment of the present invention. The operation of the AP in Figure 17 is similar to that of Figure 16. The difference is that the uplink and downlink are transmitted in parallel with the four STAs in one TXOP time. That is, the AP first uses the first channel with the carrier frequency of f 01 to send downlink data to STA1.
  • the second channel with the carrier frequency f 02 receives the uplink data sent by the STA3; then receives the uplink data sent by the STA1 and the STA2 by using the first channel, and sends the downlink data to the STA4 by using the second channel, where STA1 and STA2 use OFDMA and/or Or uplink MU-MIMO for uplink multiplexing transmission.
  • scheduling control information further includes timing information of each STA in the uplink and / or downlink data frame, specifically, at the AP channel transmission trigger frame also indicates STA2 first channel to start up at time t 6 transmission, and a second AP in the trigger frame also indicates the transmission channel to start receiving the downlink data STA4 at time t 6.
  • the WLAN device supporting uplink and downlink parallel transmission can perform downlink and uplink correspondingly on another channel. Transmission, and can always use all m transmit channels to transmit data on one channel, and use all n receive channels to receive data on another channel, including uplink and downlink data frames and uplink and downlink ACK/BA The transmission of the frame. Therefore, it is possible to make full use of the processing power of the existing transmit and receive channels without increasing the complexity of the transmit and receive channels, including the channel bandwidth and the number of channels, to achieve a system data throughput of up to 200%.
  • the data transmission method of the embodiment of the present invention is described in detail above with reference to FIG. 1 to FIG. 17.
  • the apparatus for data transmission of the embodiment of the present invention is described in detail below with reference to FIG. 18 to FIG.
  • FIG 18 is a schematic block diagram of an access point, as shown in Figure 18, in accordance with one embodiment of the present invention.
  • the ingress 1800 includes a transceiver 1810, a transmitting unit 1820, and a receiving unit 1830.
  • the transceiver 1810 includes m transmit channels and n receive channels;
  • the sending unit 1820 is configured to use at least one of the m transmit channels at a first time, and send downlink data to the at least one first station by using the first channel;
  • the receiving unit 1830 is configured to receive, by using at least one of the n receiving channels, the uplink data sent by the at least one second station by using the second channel, where the sending unit 1820 sends the downlink data and the receiving unit 1830 receives the uplink data.
  • the start time and the end time respectively correspond to the same.
  • the embodiments of the present invention can simultaneously perform uplink and downlink transmissions on different channels, so that the simultaneous operation of the transmitting channel and the receiving channel can fully utilize the processing capabilities of the existing transmitting and receiving channels, thereby improving the throughput of the system.
  • the sending unit 1820 uses the m transmitting channels at the first time, and sends the downlink data to the at least one first station by using the first channel; the receiving unit 1830 uses the n receiving channels at the first time, Receiving uplink data sent by at least one second station through the second channel.
  • the processing capacity of the existing transmitting and receiving channels can be fully utilized to effectively improve the system throughput.
  • the maximum throughput of the system can be twice that of the existing WLAN system.
  • the method further includes: a first transmission unit and a second transmission unit.
  • the access point as shown in FIG. 19 includes a transceiver 1910, a transmitting unit 1920, a receiving unit 1930, a first transmitting unit 1940, and a second transmitting unit 1950.
  • the transceiver 1910, the transmitting unit 1920, and the receiving unit respectively correspond to the transceiver 1810, the transmitting unit 1820, and the receiving unit 1830 in FIG. 18. To avoid repetition, details are not described herein.
  • the first transmission unit 1940 is configured to perform uplink or downlink transmission through the first channel at a preset time
  • the second transmission unit 1950 is configured to perform uplink or downlink transmission through the second channel at a preset time
  • the preset time is a time other than the first time.
  • the second transmission unit performs downlink transmission through the second channel at the second time, or
  • the first transmission unit performs downlink transmission through the first channel at a preset time
  • the second transmission unit performs uplink transmission through the second channel at a preset time.
  • the preset time includes a second time, and the second time is the first time.
  • the first transmission unit 1940 performs the idle channel estimation CCA detection on the first channel using the first receiving channel at the second time to determine that the first channel is idle; the second transmission unit 1950 uses the second time.
  • the second receiving channel performs CCA detection on the second channel to determine that the second channel is idle.
  • the first receiving channel is at least one of any n-1 receiving channels of the n receiving channels, and the second receiving channel is n. At least one of the receiving channels except the first receiving channel.
  • the preset time further includes a third time, where the third time is before the start time of the first time and after the end time of the second time;
  • the first transmission unit 1940 is further configured to: Transmitting, by using the first transmit channel, the first triggering frame to the at least one first station by using the first channel, where the first triggering frame is used to indicate that the at least one first station receives the access through the first channel in the first time.
  • the second transmission unit 1950 is further configured to use the second transmission channel at a third time, and send a second trigger frame to the at least one second station by using the second channel, where the second trigger frame is used to indicate that the at least one second site is in the first time.
  • the first trigger frame includes first scheduling control information, where the first scheduling control information includes: an identifier of each site in the at least one first site, and at least one first site uses data transmission.
  • the second trigger frame includes second scheduling control information, where the second scheduling control information includes: an identifier of each station in the at least one second station, a transmission resource used by the at least one second station for data transmission, a spatial stream number, and a corresponding space. An identifier of the stream, and a coded modulation scheme MCS information used to transmit the corresponding spatial stream, wherein the second scheduling control information is located in a high efficiency signaling B field HE-SIG-B or data field of a physical layer of the second trigger frame MAC layer protocol data unit PDU.
  • the preset time further includes a fourth time, where the fourth time is the time after the end time of the first time
  • the first transmission unit 1930 is further configured to use the m receiving channels at the fourth time.
  • the second transmission unit 1940 is further configured to use at least one of the n transmission channels at a fourth time, and send a second response message to the at least one second station by using the second channel, where the second response message is used to indicate that the access point is correct Receive upstream data.
  • the preset time further includes a fifth time and a sixth time
  • the fifth time is a time after the end time of the fourth time
  • the sixth time is a time after the end time of the fifth time
  • the first trigger frame is further configured to indicate that the at least one third station sends the third uplink data to the access point by using the first channel at the fifth time
  • the second trigger frame is further configured to indicate that the at least one fourth station passes the fifth time
  • the second channel receives the fourth downlink data sent by the access point
  • the first transmission unit 1930 is further configured to: use the at least one of the m receiving channels at the fifth time, and receive the third uplink sent by the at least one third station by using the first channel.
  • the second transmission unit 1940 is further configured to use at least one of the n transmission channels at a fifth time, and send the fourth downlink number to the at least one fourth station by using the second channel. And using at least one of the m receiving channels at a sixth time, receiving, by the second channel, a fourth response message sent by the at least one fourth station, where the fourth response message is used to indicate that the at least one fourth station has correctly received the fourth Downstream data.
  • the preamble of the data frame of the uplink data includes a traditional preamble, a high efficiency signaling A field HE-SIG-A, a high efficiency short training field HE-STF, and a high efficiency long training field HE-LTF.
  • the preamble of the data frame of the downlink data includes the traditional preamble, the high efficiency signaling A field HE-SIG-A, the high efficiency short training field HE-STF, and the high efficiency long
  • the training field HE-LTF does not include the high efficiency signaling B field HE-SIG-B.
  • the first channel is any continuous or non-contiguous spectrum channel in the 5490-5710 MHz and 5735-8835 MHz bands
  • the second channel is any continuous or non-contiguous spectrum in the 5170-5330 MHz band. channel.
  • the first channel is any continuous or non-contiguous spectrum channel in the 5570-5710 MHz, 5735-5835 MHz, and 5850-5925 MHz bands
  • the second channel is in the 5170-5332 MHz and 5350-5430 MHz bands. Any channel of continuous or non-contiguous spectrum.
  • access points illustrated in Figures 18 and 19 are capable of implementing the various processes performed by the access point in the method embodiments of Figures 1-17.
  • Other functions and operations of the access point 1800 and the access point 1900 may be referred to the various processes involved in the access point in the method embodiments of FIGS. 1 through 17. To avoid repetition, it will not be detailed here.
  • FIG. 20 is a schematic block diagram of a station including a transceiver 2010, a transmitting unit 2020, and a receiving unit 2030, in accordance with an embodiment of the present invention.
  • the transceiver 2010 transceiver includes k transmit channels and z receive channels;
  • the receiving unit 2020 is configured to use at least one of the z receiving channels at a first time, and receive downlink data sent by the access point by using the first channel;
  • the sending unit 2030 is configured to send, by using at least one of the K transmit channels, the uplink data to the access point by using the second channel, where the receiving unit 2020 receives the downlink data and the start time of the sending unit 2030 to send the uplink data. The same as the end time.
  • the embodiments of the present invention can simultaneously perform uplink and downlink transmissions on different channels, so that the simultaneous operation of the transmitting channel and the receiving channel can fully utilize the processing capabilities of the existing transmitting and receiving channels, thereby improving the throughput of the system.
  • the sending unit 2020 uses z receiving channels at a first time, and receives uplink data by using a second channel receiving access point, and the receiving unit 2030 uses k transmitting channels at a first time, by using the One channel sends downlink data to the access point.
  • the method further includes: a first transmission unit and a second transmission unit.
  • the access point as shown in FIG. 21 includes a transceiver 2110, a transmitting unit 2120, a receiving unit 2130, a first transmitting unit 2140, and a second transmitting unit 2150.
  • the transceiver 2110, the transmitting unit 2120, and the receiving unit 2130 respectively correspond to the transceiver 2010, the receiving unit 2020, and the transmitting unit 2030 in FIG. 20, and are not detailed herein to avoid repetition.
  • the first transmission unit 2140 is configured to perform uplink or downlink transmission through the first channel at a preset time; the second transmission unit 2150 is configured to perform uplink or downlink transmission through the second channel at a preset time; wherein, the preset time is When the first transmission unit performs uplink transmission through the first channel at a preset time, the second transmission unit performs downlink transmission through the second channel at the second time, or is preset in the first transmission unit. When the time is downlinked through the first channel, the second transmission unit performs uplink transmission through the second channel at a preset time.
  • the preset time includes a third time, where the third time is a time before the start time of the first time,
  • the first transmission unit 2140 uses the first receiving channel at the third time, and receives the first trigger frame sent by the access point by using the first channel, where the first trigger frame is used to indicate that the station receives the access through the first channel in the first time.
  • the second transmission unit 2150 uses the second receiving channel at the third time, and receives the second trigger frame sent by the access point by using the second channel, where the second trigger frame is used to indicate that the station accesses through the second channel in the first time.
  • Point to send uplink data
  • the first receiving channel is at least one of any z-1 receiving channels of the z receiving channels
  • the second receiving channel is at least one of the z receiving channels except the first receiving channel.
  • the first trigger frame includes first scheduling control information, where the first scheduling control information includes: an identifier of the site, a transmission resource used by the station for data transmission, a number of spatial streams, and a corresponding spatial stream. Identifying, and transmitting coded modulation scheme MCS information used by the corresponding spatial stream, wherein the first scheduling control information is located in a high efficiency signaling B field HE-SIG-B of the physical layer of the trigger frame or MAC layer protocol data in the data field In the unit PDU,
  • the second trigger frame includes second scheduling control information, where the second scheduling control information includes: an identifier of the station, a transmission resource used by the station for data transmission, a number of spatial streams and an identifier of the corresponding spatial stream, and a used space stream for transmitting the corresponding spatial stream.
  • the modulation scheme MCS information is encoded, wherein the second scheduling control information is located in a high efficiency signaling B field HE-SIG-B of the physical layer of the trigger frame or a MAC layer protocol data unit PDU in the data field.
  • the preset time further includes a fourth time, where the fourth time is a time after the end time of the first time,
  • the first transmission unit 2140 is further configured to: use the at least one of the k transmission channels at a fourth time, and send a first response message to the access point by using the first channel, where the first response message is used to indicate that the station has correctly received the downlink data;
  • the second transmission unit 2150 is further configured to use at least one of the z receiving channels at a fourth time, and receive, by using the second channel, a second response message sent by the access point, where the second response message is used to indicate that the access point has been correctly received. Upstream data.
  • the preset time further includes a fifth time and a sixth time, the fifth time is a time after the end time of the fourth time, and the sixth time is a time after the end time of the fifth time;
  • the first trigger frame is further configured to indicate that the station sends the third uplink data to the access point by using the first channel at the fifth time;
  • the second trigger frame is further configured to indicate that the station receives the fourth downlink data sent by the access point by using the second channel at the fifth time,
  • the first transmission unit 2140 is further configured to use at least one of the k transmission channels at a fifth time, Transmitting, by the first channel, third uplink data to the access point; and, using the at least one of the z receiving channels, receiving the third response message sent by the access point by using the first channel, where the third response message is used by the third channel Indicates that the access point has correctly received the third uplink data;
  • the second transmission unit 2150 is further configured to: use the at least one of the z receiving channels at the fifth time, receive the fourth downlink data sent by the access point by using the second channel; and use at least the k transmit channels at the sixth time.
  • One sends a fourth response message to the access point through the second channel, where the fourth response message is used to indicate that the station has correctly received the fourth downlink data.
  • the preamble of the data frame of the uplink data includes a traditional preamble, a high efficiency signaling A field HE-SIG-A, a high efficiency short training field HE-STF, and a high efficiency long training field HE-LTF. Excluding the high efficiency signaling B field HE-SIG-B;
  • the preamble of the data frame of the downlink data includes a traditional preamble, a high efficiency signaling A field HE-SIG-A, a high efficiency short training field HE-STF, a high efficiency long training field HE-LTF, and does not include a high efficiency signaling B field HE -SIG-B.
  • the first channel is any continuous or non-contiguous spectrum channel in the 5490-5710 MHz and 5735-8835 MHz bands
  • the second channel is any continuous or non-contiguous spectrum in the 5170-5330 MHz band. channel.
  • the first channel is any continuous or non-contiguous spectrum channel in the 5570-5710 MHz, 5735-5835 MHz, and 5850-5925 MHz bands
  • the second channel is in the 5170-5332 MHz and 5350-5430 MHz bands. Any channel of continuous or non-contiguous spectrum.
  • stations illustrated in Figures 20 and 21 are capable of implementing the various processes performed by the stations in the method embodiments of Figures 1-17.
  • Other functions and operations of the site 2000 and the site 2100 may refer to the various processes involved in the site in the method embodiments of FIGS. 1 through 17. To avoid repetition, it will not be detailed here.
  • FIG. 22 is a schematic block diagram of an access point according to another embodiment of the present invention.
  • the access point 2200 shown in FIG. 22 includes:
  • processor 2202 connected to the bus
  • the processor calls, by using a bus, a program stored in the memory, for using at least one of the m transmit channels at a first time, and transmitting downlink data to the at least one first station by using the first channel; Receiving through the second channel using at least one of the n receiving channels The uplink data sent by the at least one second station, where the start time and the end time of transmitting the downlink data and receiving the uplink data respectively correspond to the same.
  • the embodiments of the present invention can simultaneously perform uplink and downlink transmissions on different channels, so that the simultaneous operation of the transmitting channel and the receiving channel can fully utilize the processing capabilities of the existing transmitting and receiving channels, thereby improving the throughput of the system.
  • the transceiver of device 2200 can include a receiving circuit, a transmitting circuit, a power controller, and an antenna, the transceiver including m transmit channels and n receive channels.
  • the processor can also be referred to as a CPU.
  • the memory can include read only memory and random access memory and provides instructions and data to the processor. A portion of the memory may also include non-volatile line random access memory (NVRAM).
  • the device 2200 may be embedded or may itself be a network device such as a wireless communication device or a network side device such as a mobile phone, and may further include a carrier accommodating the transmitting circuit and the receiving circuit to allow the device 2200 and the remote location. Data transmission and reception are performed between.
  • the transmit and receive circuits can be coupled to the antenna.
  • the various components of device 2200 are coupled together by a bus, wherein the bus includes a power bus, a control bus, and a status signal bus in addition to the data bus. However, for the sake of clarity, various buses are labeled as bus 2201 in the figure.
  • the components of the specific different products that implement the various functions may be integrated with the processing unit.
  • the processor may implement or perform the steps and logic blocks disclosed in the method embodiments of the present invention.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the processor 2202 may be a central processing unit (“CPU"), and the processor 2202 may also be another general-purpose processor, a digital signal processor (DSP). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 2203 can include read only memory and random access memory and provides instructions and data to the processor 2202.
  • a portion of the memory 2203 may also include a non-volatile random access memory.
  • the memory 2203 can also store information of the device type.
  • the bus system may include a power bus, a control bus, and a status signal bus in addition to the data bus.
  • a power bus may include a power bus, a control bus, and a status signal bus in addition to the data bus.
  • the various buses are labeled as bus systems in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 2202 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 2203, and the processor 2202 reads the information in the memory 2203 and completes the steps of the above method in combination with the hardware thereof. To avoid repetition, it will not be described in detail here.
  • the processor 2202 is configured to use the m transmit channels at a first time, send downlink data to the at least one first station by using the first channel, and use n receive channels at the first time to pass The second channel receives uplink data sent by at least one second station.
  • the processor 2202 is further configured to perform uplink or downlink transmission by using the first channel at a preset time; and performing uplink or downlink transmission by using the second channel at a preset time; wherein, the preset time is In addition to the first time, when the first transmission unit performs uplink transmission through the first channel at a preset time, the second transmission unit performs downlink transmission through the second channel at the second time, or is in the first transmission unit. When the preset time is downlink transmission through the first channel, the second transmission unit performs uplink transmission through the second channel at a preset time.
  • the preset time includes a second time
  • the second time is a time before the start time of the first time
  • the processor 2202 is further configured to use the first receiving channel at the second time.
  • One channel performs idle channel estimation CCA detection to determine that the first channel is idle; and at the second time, uses the second receiving channel to perform CCA detection on the second channel to determine that the second channel is idle; wherein the first receiving channel is n receiving channels At least one of any n-1 receiving channels, the second receiving channel being at least one of the n receiving channels except the first receiving channel.
  • the preset time further includes a third time, where the third time is before the start time of the first time and after the end time of the second time, the processor 2202 is further configured to use The first time is used to send the first triggering frame to the at least one first station by using the first channel, where the first triggering frame is used to indicate that the at least one first station sends the access point through the first channel in the first time.
  • Downstream data using a second transmit channel at a third time, sending a second trigger frame to the at least one second station by using the second channel, the second trigger frame is configured to indicate that the at least one second site passes the second time in the first time
  • the channel sends uplink data to the access point, where the first transmission pass
  • the track is at least one of any of the n transmit channels, and the second transmit channel is at least one of the n transmit channels except the first transmit channel.
  • the first trigger frame includes first scheduling control information, where the first scheduling control information includes: an identifier of each site in the at least one first site, and at least one first site uses data transmission.
  • the second trigger frame includes second scheduling control information
  • the second scheduling control information includes: at least one identifier of each site in the second site, at least one The second station performs the data transmission, the number of spatial streams and the identifier of the corresponding spatial stream, and the coded modulation scheme MCS information used to transmit the corresponding spatial stream, where the second scheduling control information is located in the physicality of the second trigger frame.
  • the preset time further includes a fourth time, where the fourth time is a time after the end time of the first time
  • the processor 2202 is further configured to use the m receiving channels at the fourth time. At least one, receiving, by using the first channel, a first response message sent by the at least one first station, where the first response message is used to indicate that at least one first station has correctly received downlink data; and at least a fourth time uses at least one of the n transmission channels And sending a second response message to the at least one second station by using the second channel, where the second response message is used to indicate that the access point has correctly received the uplink data.
  • the preset time further includes a fifth time and a sixth time, the fifth time is a time after the end time of the fourth time, and the sixth time is a time after the end time of the fifth time;
  • the first trigger frame is further configured to indicate that the at least one third station sends the third uplink data to the access point by using the first channel at the fifth time;
  • the second trigger frame is further configured to indicate that the at least one fourth station passes the fifth time
  • the second channel receives the fourth downlink data sent by the access point
  • the processor 2202 is further configured to: use the at least one of the m receiving channels at the fifth time, and receive the third uplink data sent by the at least one third station by using the first channel; And transmitting, by using the first channel, the third response message to the at least one third station by using the at least one of the n transmission channels, where the third response message is used to indicate that the access point has correctly received the third uplink data;
  • Using at least one of the n transmission channels at a fifth time transmitting fourth downlink
  • the preamble of the data frame of the uplink data includes a traditional preamble, a high efficiency signaling A field HE-SIG-A, a high efficiency short training field HE-STF, and a high efficiency long training field HE-LTF.
  • the preamble of the data frame of the downlink data includes the traditional preamble, the high efficiency signaling A field HE-SIG-A, the high efficiency short training field HE-STF, and the high efficiency long
  • the training field HE-LTF does not include the high efficiency signaling B field HE-SIG-B.
  • the first channel is any continuous or non-contiguous spectrum channel in the 5490-5710 MHz and 5735-8835 MHz bands
  • the second channel is any continuous or non-contiguous spectrum in the 5170-5330 MHz band. channel.
  • the first channel is any continuous or non-contiguous spectrum channel in the 5570-5710 MHz, 5735-5835 MHz, and 5850-5925 MHz bands
  • the second channel is in the 5170-5332 MHz and 5350-5430 MHz bands. Any channel of continuous or non-contiguous spectrum.
  • the access point shown in FIG. 22 corresponds to the access points shown in FIGS. 18 and 19, and the various processes performed by the access point in the method embodiments of FIGS. 1-17 can be implemented.
  • Other functions and operations of the access point 2200 may refer to the various processes involved in the access point in the method embodiments of FIGS. 1 through 17. To avoid repetition, it will not be detailed here.
  • FIG. 23 is a schematic block diagram of a station according to another embodiment of the present invention.
  • the station 2300 shown in FIG. 23 includes:
  • processor 2302 connected to the bus
  • the processor calls, by using a bus, a program stored in the memory, for using at least one of the z receiving channels at a first time, receiving downlink data sent by the access point through the first channel; and using K at the first time At least one of the transmitting channels sends uplink data to the access point through the second channel, where the start time and the end time of receiving the downlink data and transmitting the uplink data respectively correspond to the same.
  • the embodiments of the present invention can simultaneously perform uplink and downlink transmissions on different channels, so that the simultaneous operation of the transmitting channel and the receiving channel can fully utilize the processing capabilities of the existing transmitting and receiving channels, thereby improving the throughput of the system.
  • the transceiver of device 2300 can include a receiving circuit, a transmitting circuit, a power controller, and an antenna, the transceiver including k transmit channels and z receive channels.
  • the processor can also be referred to as a CPU.
  • the memory can include read only memory and random access memory and provides instructions and data to the processor.
  • a portion of the memory may also include non-volatile line random access memory (NVRAM).
  • the device 2300 may be embedded or may itself be a network device such as a wireless communication device or a network side device such as a mobile phone, and may further include a carrier accommodating the transmitting circuit and the receiving circuit to allow the device 2300 and the remote location. Data transmission and reception are performed between.
  • the transmit and receive circuits can be coupled to the antenna.
  • the various components of device 2300 are coupled together by a bus, wherein the bus includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • various buses are labeled as bus 2301 in the figure.
  • the components of the specific different products that implement the various functions may be integrated with the processing unit.
  • the processor may implement or perform the steps and logic blocks disclosed in the method embodiments of the present invention.
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the processor 2302 may be a central processing unit (“CPU"), and the processor 2302 may also be another general-purpose processor, a digital signal processor (DSP). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 2303 can include read only memory and random access memory and provides instructions and data to the processor 2302.
  • a portion of the memory 2303 can also include a non-volatile random access memory.
  • the memory 2303 can also store information of the device type.
  • the bus system may include a power bus, a control bus, and a status signal bus in addition to the data bus.
  • a power bus may include a power bus, a control bus, and a status signal bus in addition to the data bus.
  • the various buses are labeled as bus systems in the figure.
  • each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 2302 or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a random access memory, a flash memory, a read only memory, a programmable read only memory or an electrically erasable programmable memory, a register, etc., and a mature storage medium in the field. in.
  • the storage medium is located in the memory 2303, and the processor 2302 reads the information in the memory 2303 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor 2302 uses z receiving channels at a first time, receives an access point by using a second channel, and uses k transmitting channels at a first time to pass through the first channel.
  • the access point sends downlink data.
  • the processor 2302 is further configured to perform uplink or downlink transmission by using the first channel at a preset time; and performing uplink or downlink transmission by using the second channel at a preset time; wherein, the preset time is In addition to the first time, when the first transmission unit performs uplink transmission through the first channel at a preset time, the second transmission unit performs downlink transmission through the second channel at the second time, or is in the first transmission unit. When the preset time is downlink transmission through the first channel, the second transmission unit performs uplink transmission through the second channel at a preset time.
  • the preset time includes a third time, where the third time is a time before the start time of the first time, and the processor 2302 is further configured to use the first receiving channel at the third time, by using The first channel receives the first trigger frame sent by the access point, where the first trigger frame is used to indicate that the station receives the downlink data sent by the access point through the first channel in the first time; and uses the second receiving channel in the third time.
  • the second channel And receiving, by the second channel, a second trigger frame sent by the access point, where the second trigger frame is used to indicate that the station sends uplink data to the access point by using the second channel in the first time, where the first receiving channel is z receiving At least one of any z-1 receiving channels in the channel, the second receiving channel being at least one of the z receiving channels except the first receiving channel.
  • the first trigger frame includes first scheduling control information, where the first scheduling control information includes: an identifier of the site, a transmission resource used by the station for data transmission, a number of spatial streams, and a corresponding spatial stream. Identifying, and transmitting coded modulation scheme MCS information used by the corresponding spatial stream, wherein the first scheduling control information is located in a high efficiency signaling B field HE-SIG-B of the physical layer of the trigger frame or MAC layer protocol data in the data field
  • the second trigger frame includes second scheduling control information, where the second scheduling control information includes: an identifier of the station, a transmission resource used by the station for data transmission, a number of spatial streams, an identifier of the corresponding spatial stream, and a corresponding space for transmission.
  • the preset time further includes a fourth time, where the fourth time is a time after the end time of the first time, and the processor 2302 is further configured to use the k transmit times at the fourth time.
  • the first response message is sent to the access point by using the first channel, where the first response message is used to indicate that the station has correctly received downlink data; and at least one of the z receiving channels is used in the fourth time,
  • the second channel receives the second response message sent by the access point, and the second response message is used to indicate that the access point has correctly received the uplink data.
  • the preset time further includes a fifth time and a sixth time
  • the fifth time is a time after the end time of the fourth time
  • the sixth time is a time after the end time of the fifth time
  • the first trigger frame is further configured to indicate that the station sends the third uplink data to the access point by using the first channel at the fifth time
  • the second trigger frame is further configured to indicate that the station sends the access point by using the second channel at the fifth time.
  • the fourth downlink data, the processor 2302 is further configured to: use the at least one of the k transmit channels at the fifth time, send the third uplink data to the access point by using the first channel; and use the z receive channels at the sixth time.
  • a third response message sent by the access point where the third response message is used to indicate that the access point has correctly received the third uplink data; and at least the z times are used in the fifth time.
  • the preamble of the data frame of the uplink data includes a traditional preamble, a high efficiency signaling A field HE-SIG-A, a high efficiency short training field HE-STF, and a high efficiency long training field HE-LTF.
  • the preamble of the data frame of the downlink data includes the traditional preamble, the high efficiency signaling A field HE-SIG-A, the high efficiency short training field HE-STF, and the high efficiency long
  • the training field HE-LTF does not include the high efficiency signaling B field HE-SIG-B.
  • the first channel is any continuous or non-contiguous spectrum channel in the 5490-5710 MHz and 5735-8835 MHz bands
  • the second channel is any continuous or non-contiguous spectrum in the 5170-5330 MHz band. channel.
  • the first channel is any continuous or non-contiguous spectrum channel in the 5570-5710 MHz, 5735-5835 MHz, and 5850-5925 MHz bands
  • the second channel is in the 5170-5332 MHz and 5350-5430 MHz bands. Any channel of continuous or non-contiguous spectrum.
  • the station shown in FIG. 23 corresponds to the stations shown in FIGS. 20 and 21, and the various processes performed by the station in the method embodiments of FIGS. 1-17 can be implemented.
  • Other functions and operations of the site 2300 may refer to the various processes involved in the site in the method embodiments of FIGS. 1 through 17. To avoid repetition, it will not be detailed here.
  • the embodiment of the present invention simultaneously proposes a transceiver corresponding to the above data transmission method.
  • the embodiment of the present invention provides a transceiver different from the existing WLAN device, and ends at the end.
  • an existing transceiver is first introduced.
  • the transceiver shown in FIG. 24 includes a transmitting channel and a receiving channel. Specifically, the transmitting channel is mainly processed by a digital baseband signal.
  • DAC digital to analog converter
  • LPF low pass filter
  • PA power amplifier
  • receiving channel It is mainly composed of an antenna, a low noise amplifier (LNA), a down converter, an LPF, an analog to digital converter (ADC), and a digital baseband signal receiving and processing unit.
  • LNA low noise amplifier
  • ADC analog to digital converter
  • WLAN wireless local area network
  • the reference frequency signal of the frequency source (typically a crystal oscillator) is output through a phase locked loop (PLL) and the local oscillator signal with a carrier frequency of f 0 is output.
  • PLL phase locked loop
  • the embodiment of the invention proposes a new transceiver. Specifically, as shown in FIG. 25, the transceiver of the embodiment of the present invention includes a transmitting channel and a receiving channel, and further includes: a first phase locked loop PLL, a second PLL, a multiple selection switch, and a channel selection radio frequency.
  • the multiplexer is connected to the first PLL and the second PLL for providing a local oscillator signal for the transmit channel and the receive channel; the channel selects the RF switch and the PA of the transmit channel, and the LNA of the receive channel.
  • the duplexer is connected to select a port of the duplexer for the transmitting channel and the receiving channel, and the duplexer is connected to the antenna, so that the transmitting channel and the receiving channel share the antenna.
  • the first PLL and the second PLL respectively provide the first frequency signal and the second frequency signal according to the same reference frequency, and the transmitting channel and the receiving channel use any one of the first frequency signal and the second frequency signal for data transmission, And when the transmitting channel uses the first frequency signal for data transmission, the receiving channel uses the second frequency signal for data transmission, or when the transmitting channel uses the second frequency signal for data transmission, the receiving channel uses the first frequency signal for data transmission.
  • the duplexer includes a first port, a second port, a third port, and a first band pass filter And a second band pass filter, wherein the first port is coupled to the first band pass filter, the second port is coupled to the second pass filter, and the third port is coupled to the first band pass filter and the second band pass
  • the filter is connected, the first port and the second port are used to connect the transmitting channel and the receiving channel, the third port is used to connect the antenna, the first band pass filter is used to turn on the first frequency signal, and the second band pass filter is used to connect Turning on the second frequency signal.
  • the transmitting channel uses the first frequency signal
  • the data is transmitted through the first channel
  • the receiving channel uses the second frequency signal, and the data transmission through the second channel, the output end of the PA of the transmitting channel and the first port Connected, the input end of the LNA connected to the receiving channel is connected to the second port;
  • the transmitting channel uses the second frequency signal to perform data transmission through the second channel
  • the receiving channel uses the first frequency signal to transmit data through the first channel
  • the output end of the PA of the transmitting channel is connected to the second port.
  • the input of the LNA connected to the receiving channel is connected to the first port.
  • the transceiver of the existing WLAN device needs to be improved, and the transmitting channel and the receiving channel of the WLAN device performing uplink and downlink parallel transmission may work on different carriers at different times.
  • the transmitting channel of the AP during the transmission of the triggering frame part of which works on the first channel, and a part of which works on the second channel, and all the transmitting channels operate on the first channel only after the SIFS time. After switching to the second channel after the SIFS time, it switches to the first channel after the SIFS time.
  • a dual PLL is used to provide two-way based
  • the frequencies of the same reference frequency are f 01 and f 02 carrier signals, respectively, and then a local oscillator is provided for each of the transmitting and receiving channels via a multi-way selection switch, wherein the local oscillator signal of any one of the transmitting or receiving channels can select a frequency.
  • the carrier signal is f 01 or f 02 , so that there is no need to dynamically change the output frequency of the PLL, and any one of the transmitting or receiving channels can achieve fast channel switching.
  • a duplexer Due to the uplink and downlink parallel transmission, a duplexer (Duplexer) is used to share one antenna for one transmission channel and one reception channel operating at different carrier frequencies.
  • Figure 26 shows a typical duplexer configuration in which a first port and a second port are used to connect the transmit channel and the receive channel, and a third port is used to connect the antenna.
  • the bandpass filter 1 can only pass the signal of the first channel with the carrier frequency f 01 , including inputting the third port output from the first port, or inputting the first port output from the third port; the band pass filter 2 can only Passing the signal of the second channel with the carrier frequency f 02 includes inputting the third port output from the second port or inputting the second port output from the third port.
  • the function of the radio frequency switch is that if the transmitting channel operates on the first channel with the wave frequency f 01 and the receiving channel operates on the second channel with the wave frequency f 02 , the output end of the transmitting channel PA and the duplexer The first port is connected, and the input end of the receiving channel LNA is connected to the second port of the duplexer; if the transmitting channel operates on the second channel with the wave frequency f 02 and the receiving channel operates at the wave frequency f 01
  • the output of the transmit channel PA is connected to the second port of the duplexer, and the input of the receive channel LNA is connected to the first port of the duplexer.
  • FIG 27 is a diagram of an apparatus in accordance with an embodiment of the present invention.
  • the apparatus 2700 includes a transceiver as shown in Figure 26.
  • device 2700 can be an access point or a site.
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B from A does not mean that B is only determined based on A, and that B can also be determined based on A and/or other information.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of cells is only a logical function division.
  • multiple units or components may be combined or integrated. Go to another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a computer.
  • computer readable media may comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, disk storage media or other magnetic storage device, or can be used for carrying or storing in the form of an instruction or data structure.
  • connection may suitably be a computer readable medium.
  • the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave
  • coaxial cables, fiber optic cables, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwaves are included in the fixing of the associated media.
  • a disk and a disc include a compact disc (CD), a laser disc, a compact disc, a digital versatile disc (DVD), a floppy disk, and a Blu-ray disc, wherein the disc is usually magnetically copied, and the disc is The laser is used to optically replicate the data. Combinations of the above should also be included within the scope of the computer readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种数据传输的方法、设备和收发信机,该方法用于接入点的数据传输的方法,该接入点的收发信机包括m个发射通道和n个接收通道,该方法应用于无线局域网WLAN中,包括:该接入点在第一时间内使用该m个发射通道中的至少一个,通过第一信道向至少一个第一站点发送下行数据;该接入点在该第一时间内使用该n个接收通道中的至少一个,通过第二信道接收至少一个第二站点发送的上行数据,其中,所述接入点发送所述下行数据和接收所述上行数据的起止时刻相同。本发明实施例能够在不同的信道上同时进行上行和下行传输,使得发射通道和接收通道同时工作,提高了收发通道的利用率,进而提升了系统的吞吐量。

Description

数据传输的方法、设备和收发信机 技术领域
本发明涉及通信领域,特别涉及数据传输的方法、设备和收发信机。
背景技术
在现有无线局域网(Wireless local Access Network,WLAN)系统中,WLAN设备通过时分双工的方式使用同一信道进行数据传输,即上行和下行传输发生在同一个信道的不同时间段上,也就是说通过同一信道在某一时刻仅能进行上行传输或下行传输,也即现有WLAN系统的发射和接收通道总是交替工作的。当通过发射通道发射信号时其接收通道处于空闲状态,而当通过接收通道接收信号时其发射通道处于空闲状态。
因此,现有技术收发通道的利用率低,进而使得现有WLAN系统的吞吐量低。
发明内容
本发明实施例提供了一种数据传输的方法、设备和收发信机,该方法能够提高WLAN系统的吞吐量。
第一方面,提供了一种用于接入点的数据传输的方法,其特征在于,该接入点的收发信机包括m个发射通道和n个接收通道,该方法应用于无线局域网WLAN中,该方法包括:该接入点在第一时间使用该m个发射通道中的至少一个,通过第一信道向至少一个第一站点发送下行数据;该接入点在该第一时间使用该n个接收通道中的至少一个,通过第二信道接收至少一个第二站点发送的上行数据,其中,所述接入点发送所述下行数据和接收所述上行数据的起始时刻和结束时刻分别对应相同。
结合第一方面,在第一种可能的实现方式中,该接入点在该第一时间使用m个发射通道中的至少一个,通过第一信道向至少一个第一站点发送下行数据,包括:该接入点在该第一时间使用该m个发射通道,通过第一信道向至少一个第一站点发送下行数据;该接入点在该第一时间使用n个接收通道中的至少一个,通过第二信道接收至少一个第二站点发送的上行数据,包括:该接入点在该第一时间使用该n个接收通道,通过第二信道接收至少一个第 二站点发送的上行数据。
结合第一方面或第一种可能的实现方式,在第二种可能的实现方式中,还包括:该接入点在预设时间通过该第一信道进行上行或下行传输;该接入点在该预设时间通过该第二信道进行上行或下行传输;其中,所述预设时间为除所述第一时间之外的时间,在该接入点在该预设时间通过该第一信道进行上行传输时,该接入点在该预设时间通过该第二信道进行下行传输,或者在该接入点在该预设时间通过该第一信道进行下行传输时,该接入点在该预设时间通过该第二信道进行上行传输。
结合第二种可能的实现方式,在第三种可能的实现方式中,该预设时间包括第二时间,该第二时间为该第一时间的起始时刻之前的时间,该接入点在预设时间通过该第一信道进行上行或下行传输,包括:该接入点在该第二时间使用第一接收通道在该第一信道进行空闲信道评估CCA检测,确定该第一信道空闲;该接入点在该预设时间通过该第二信道进行上行或下行传输,包括:该接入点在该第二时间使用第二接收通道在该第二信道进行CCA检测,确定该第二信道空闲;其中,第一接收通道为该n个接收通道中的任意n-1个接收通道中的至少一个,该第二接收通道为该n个接收通道中除该第一接收通道外的至少一个。
结合第三种可能的实现方式,在第四种可能的实现方式中,该预设时间还包括第三时间,该第三时间为该第一时间的起始时刻之前、该第二时间的结束时刻之后的时间,该接入点在预设时间通过该第一信道进行上行或下行传输,还包括:该接入点在该第三时间使用第一发射通道,通过该第一信道向该至少一个第一站点发送第一触发帧,该第一触发帧用于指示该至少一个第一站点在该第一时间通过该第一信道接收该接入点发送的该下行数据;该接入点在该预设时间通过该第二信道进行上行或下行传输,还包括:该接入点在该第三时间使用第二发射通道,通过该第二信道向该至少一个第二站点发送第二触发帧,该第二触发帧用于指示该至少一个第二站点在该第一时间通过该第二信道向该接入点发送该上行数据,其中,第一发射通道为该n个发射通道中的任意n-1个发射通道中的至少一个,该第二发射通道为该n个发射通道中除该第一发射通道外的至少一个。
结合第四种可能的实现方式,在第五种可能的实现方式中,该第一触发帧包括第一调度控制信息,该第一调度控制信息包括:该至少一个第一站点 中的各个站点的标识、该至少一个第一站点进行数据传输所使用的传输资源、空间流数与相应空间流的标识、以及传输相应空间流所使用的编码调制方案MCS信息,其中,该第一调度控制信息位于该第一触发帧的物理层的高效率信令B字段HE-SIG-B或数据字段中的MAC层协议数据单元PDU中,该第二触发帧包括第二调度控制信息,该第二调度控制信息包括:该至少一个第二站点中的各个站点的标识、该至少一个第二站点进行数据传输所使用的传输资源、空间流数与相应空间流的标识、以及传输相应空间流所使用的编码调制方案MCS信息,其中,该第二调度控制信息位于该第二触发帧的物理层的高效率信令B字段HE-SIG-B或数据字段中的MAC层协议数据单元PDU中。
结合第四种或第五种可能的实现方式,在第六种可能的实现方式中,该预设时间还包括第四时间,该第四时间为该第一时间的结束时刻之后的时间,该接入点在预设时间通过该第一信道进行上行或下行传输,还包括:该接入点在该第四时间使用m个接收通道中的至少一个,通过该第一信道接收该至少一个第一站点发送的第一应答消息,该第一应答消息用于表示该至少一个第一站点已正确接收该下行数据;该接入点在该预设时间通过该第二信道进行上行或下行传输,还包括:该接入点在该第四时间使用n个发射通道中的至少一个,通过该第二信道向该至少一个第二站点发送第二应答消息,该第二应答消息用于表示该接入点已正确接收该上行数据。
结合第六种可能的实现方式,在第七种可能的实现方式中,该预设时间还包括第五时间和第六时间,该第五时间为该第四时间的结束时刻之后的时间,该六时间为该第五时间的结束时刻之后的时间;该第一触发帧还用于指示至少一个第三站点在第五时间通过该第一信道向该接入点发送第三上行数据;该第二触发帧还用于指示至少一个第四站点在该第五时间通过该第二信道接收该接入点发送的第四下行数据,该接入点在预设时间通过该第一信道进行上行或下行传输,还包括:该接入点在该第五时间使用m个接收通道中的至少一个,通过该第一信道接收该至少一个第三站点发送的该第三上行数据;该接入点在该第六时间使用n个发射通道中的至少一个,通过该第一信道向该至少一个第三站点发送第三应答消息,该第三应答消息用于表示该接入点已正确接收该第三上行数据;该接入点在该预设时间通过该第二信道进行上行或下行传输,还包括:该接入点在该第五时间使用n个发射通道中 的至少一个,通过该第二信道向该至少一个第四站点发送该第四下行数据;该接入点在该第六时间使用m个接收通道中的至少一个,通过该第二信道接收该至少一个第四站点发送的第四应答消息,该第四应答消息用于表示该至少一个第四站点已正确接收该第四下行数据。
结合第一方面、第一至第七种可能的实现方式中的任一种可能的实现方式,在第八种可能的实现方式中,该上行数据的数据帧的前导包括传统前导、高效率信令A字段HE-SIG-A、高效率短训练字段HE-STF、高效率长训练字段HE-LTF,不包括高效率信令B字段HE-SIG-B;该下行数据的数据帧的前导包括传统前导、高效率信令A字段HE-SIG-A、高效率短训练字段HE-STF、高效率长训练字段HE-LTF,不包括高效率信令B字段HE-SIG-B。
结合第一方面、第一至第八种可能的实现方式中的任一种可能的实现方式,在第九种可能的实现方式中,该第一信道为5490~5710MHz和5735~5835MHz频带中的任意连续或非连续频谱的信道,该第二信道为5170~5330MHz频带中的任意连续或非连续频谱的信道。
结合第一方面、第一至第八种可能的实现方式中的任一种可能的实现方式,在第十种可能的实现方式中,该第一信道为5570~5710MHz、5735~5835MHz和5850~5925MHz频带中的任意连续或非连续频谱的信道,该第二信道为5170~5330MHz和5350~5430MHz频带中的任意连续或非连续频谱的信道。
第二方面,提供了一种用于站点的数据传输的方法,该站点的收发信机包括k个发射通道和z个接收通道,该方法应用于无线局域网WLAN中,该方法包括:站点在第一时间使用该z个接收通道中的至少一个,通过第一信道接收接入点发送的下行数据;该站点在该第一时间使用该K个发射通道中的至少一个,通过第二信道向该接入点发送上行数据。
结合第二方面,在第一种可能的实现方式中,该站点在该第一时间使用该z个接收通道中的至少一个,通过第二信道向该接入点发送上行数据,包括:该站点在该第一时间使用该z个接收通道,通过第二信道接收接入点发送上行数据,所示站点在第一时间使用该k个发射通道中的至少一个,通过第一信道接收接入点发送的下行数据,包括:所示站点在第一时间使用该k个发射通道,通过第一信道向接入点发送下行数据。
结合第二方面或第二方面的第一种可能的实现方式,在第二种可能的实 现方式中,还包括:该站点在预设时间通过该第一信道进行上行或下行传输;该站点在该预设时间通过该第二信道进行上行或下行传输;其中,在该站点在该预设时间通过该第一信道进行上行传输时,该站点在该第二时间通过该第二信道进行下行传输,或者在该站点在该预设时间通过该第一信道进行下行传输时,该站点在该预设时间通过该第二信道进行上行传输。
结合第二方面的第二种可能的实现方式,在第三种可能的实现方式中,该预设时间包括第三时间,该第三时间为该第一时间的起始时刻之前的时间,该站点在预设时间通过该第一信道进行上行或下行传输,包括:该站点在该第三时间使用第一接收通道,通过该第一信道接收该接入点发送的第一触发帧,该第一触发帧用于指示该站点在该第一时间通过该第一信道接收该接入点发送的该下行数据;该站点在该预设时间通过该第二信道进行上行或下行传输,包括:该站点在该第三时间使用第二接收通道,通过该第二信道接收该接入点发送的第二触发帧,该第二触发帧用于指示该站点在该第一时间通过该第二信道向该接入点发送该上行数据,其中,第一接收通道为该z个接收通道中的任意z-1个接收通道中的至少一个,该第二接收通道为该z个接收通道中除该第一接收通道外的至少一个。
结合第二方面的第三种可能的实现方式,在第四种可能的实现方式中,该第一触发帧包括第一调度控制信息,该第一调度控制信息包括:该站点的标识、该站点进行数据传输所使用的传输资源、空间流数与相应空间流的标识、以及传输相应空间流所使用的编码调制方案MCS信息,其中,该第一调度控制信息位于该触发帧的物理层的高效率信令B字段HE-SIG-B或数据字段中的MAC层协议数据单元PDU中,该第二触发帧包括第二调度控制信息,该第二调度控制信息包括:该站点的标识、该站点进行数据传输所使用的传输资源、空间流数与相应空间流的标识、以及传输相应空间流所使用的编码调制方案MCS信息,其中,该第二调度控制信息位于该触发帧的物理层的高效率信令B字段HE-SIG-B或数据字段中的MAC层协议数据单元PDU中。
结合第二方面的第三种或第四种可能的实现方式,在第五种可能的实现方式中,该预设时间还包括第四时间,该第四时间为该第一时间的结束时刻之后的时间,该站点在预设时间通过该第一信道进行上行或下行传输,还包括:该站点在第四时间使用k个发射通道中的至少一个,通过该第一信道向 该接入点发送第一应答消息,该第一应答消息用于表示该站点已正确接收该下行数据;该站点在该预设时间通过该第二信道进行上行或下行传输,还包括:该站点在该第四时间使用z个接收通道中的至少一个,通过该第二信道接收该接入点发送的第二应答消息,该第二应答消息用于表示该接入点已正确接收该上行数据。
结合第二方面的第五种可能的实现方式,在第六种可能的实现方式中,该预设时间还包括第五时间和第六时间,该第五时间为该第四时间的结束时刻之后的时间,该六时间为该第五时间的结束时刻之后的时间;该第一触发帧还用于指示该站点在第五时间通过该第一信道向该接入点发送第三上行数据;该第二触发帧还用于指示该站点在该第五时间通过该第二信道接收该接入点发送的第四下行数据,该站点在预设时间通过该第一信道进行上行或下行传输,还包括:该站点在第五时间使用k个发射通道中的至少一个,通过该第一信道向该接入点发送第三上行数据;该站点在第六时间使用z个接收通道中的至少一个,通过该第一信道接收该接入点发送的第三应答消息,该第三应答消息用于表示该接入点已正确接收该第三上行数据;该站点在该预设时间通过该第二信道进行上行或下行传输,还包括:该站点在该第五时间使用z个接收通道中的至少一个,通过该第二信道接收该接入点发送的第四下行数据;该站点在该第六时间使用k个发射通道中的至少一个,通过该第二信道向该接入点发送第四应答消息,该第四应答消息用于表示该站点已正确接收该第四下行数据。
结合第二方面、第一至第六种可能的实现方式中的任一种可能的实现方式,在第七种可能的实现方式中,该上行数据的数据帧的前导包括传统前导、高效率信令A字段HE-SIG-A、高效率短训练字段HE-STF、高效率长训练字段HE-LTF,不包括高效率信令B字段HE-SIG-B;该下行数据的数据帧的前导包括传统前导、高效率信令A字段HE-SIG-A、高效率短训练字段HE-STF、高效率长训练字段HE-LTF,不包括高效率信令B字段HE-SIG-B。
结合第二方面、第一至第七种可能的实现方式中的任一种可能的实现方式,在第八种可能的实现方式中,该第一信道为5490~5710MHz和5735~5835MHz频带中的任意连续或非连续频谱的信道,该第二信道为5170~5330MHz频带中的任意连续或非连续频谱的信道。
结合第二方面、第一至第七种可能的实现方式中的任一种可能的实现方 式,在第九种可能的实现方式中,该第一信道为5570~5710MHz、5735~5835MHz和5850~5925MHz频带中的任意连续或非连续频谱的信道,该第二信道为5170~5330MHz和5350~5430MHz频带中的任意连续或非连续频谱的信道。
第三方面,提供了一种接入点,其特征在于,包括:收发信机,该收发信机包括m个发射通道和n个接收通道;发送单元,用于在第一时间使用该m个发射通道中的至少一个,通过第一信道向至少一个第一站点发送下行数据;接收单元,用于在该第一时间使用该n个接收通道中的至少一个,通过第二信道接收至少一个第二站点发送的上行数据,其中,所述发送单元发送所述下行数据和所述接收单元接收所述上行数据的起始时刻和结束时刻分别对应相同。
结合第三方面,在第一种可能的实现方式中,该发送单元在该第一时间使用该m个发射通道,通过第一信道向至少一个第一站点发送下行数据;该接收单元在该第一时间使用该n个接收通道,通过第二信道接收至少一个第二站点发送的上行数据。
结合第三方面或第三方面的第一种可能的实现方式,在第二种可能的实现方式中,还包括:第一传输单元,用于在预设时间通过该第一信道进行上行或下行传输;第二传输单元,用于在该预设时间通过该第二信道进行上行或下行传输;其中,所述预设时间为除所述第一时间之外的时间,在该第一传输单元在该预设时间通过该第一信道进行上行传输时,该第二传输单元在该预设时间通过该第二信道进行下行传输,或者在该第一传输单元在该预设时间通过该第一信道进行下行传输时,该第二传输单元在该预设时间通过该第二信道进行上行传输。
结合第三方面的第二种可能的实现方式,在第三种可能的实现方式中,该预设时间包括第二时间,该第二时间为该第一时间的起始时刻之前的时间,该第一传输单元在该第二时间使用第一接收通道在该第一信道进行空闲信道评估CCA检测,确定该第一信道空闲;该第二传输单元在该第二时间使用第二接收通道在该第二信道进行CCA检测,确定该第二信道空闲;其中,第一接收通道为该n个接收通道中的任意n-1个接收通道中的至少一个,该第二接收通道为该n个接收通道中除该第一接收通道外的至少一个。
结合第三方面的第三种可能的实现方式,在第四种可能的实现方式中, 该预设时间还包括第三时间,该第三时间为该第一时间的起始时刻之前、该第二时间的结束时刻之后的时间,该第一传输单元还用于在该第三时间使用第一发射通道,通过该第一信道向该至少一个第一站点发送第一触发帧,该第一触发帧用于指示该至少一个第一站点在该第一时间通过该第一信道接收该接入点发送的该下行数据;该第二传输单元还用于在该第三时间使用第二发射通道,通过该第二信道向该至少一个第二站点发送第二触发帧,该第二触发帧用于指示该至少一个第二站点在该第一时间通过该第二信道向该接入点发送该上行数据,其中,第一发射通道为该n个发射通道中的任意n-1个发射通道中的至少一个,该第二发射通道为该n个发射通道中除该第一发射通道外的至少一个。
结合第三方面的第四种可能的实现方式,在第五种可能的实现方式中,该第一触发帧包括第一调度控制信息,该第一调度控制信息包括:该至少一个第一站点中的各个站点的标识、该至少一个第一站点进行数据传输所使用的传输资源、空间流数与相应空间流的标识、以及传输相应空间流所使用的编码调制方案MCS信息,其中,该第一调度控制信息位于该第一触发帧的物理层的高效率信令B字段HE-SIG-B或数据字段中的MAC层协议数据单元PDU中,该第二触发帧包括第二调度控制信息,该第二调度控制信息包括:该至少一个第二站点中的各个站点的标识、该至少一个第二站点进行数据传输所使用的传输资源、空间流数与相应空间流的标识、以及传输相应空间流所使用的编码调制方案MCS信息,其中,该第二调度控制信息位于该第二触发帧的物理层的高效率信令B字段HE-SIG-B或数据字段中的MAC层协议数据单元PDU中。
结合第三方面的第四种或第五种可能的实现方式,在第六种可能的实现方式中,该预设时间还包括第四时间,该第四时间为该第一时间的结束时刻之后的时间,该第一传输单元还用于在该第四时间使用m个接收通道中的至少一个,通过该第一信道接收该至少一个第一站点发送的第一应答消息,该第一应答消息用于表示该至少一个第一站点已正确接收该下行数据;该第二传输单元还用于在该第四时间使用n个发射通道中的至少一个,通过该第二信道向该至少一个第二站点发送第二应答消息,该第二应答消息用于表示该接入点已正确接收该上行数据。
结合第三方面的第六种可能的实现方式,在第七种可能的实现方式中, 该预设时间还包括第五时间和第六时间,该第五时间为该第四时间的结束时刻之后的时间,该六时间为该第五时间的结束时刻之后的时间;该第一触发帧还用于指示至少一个第三站点在第五时间通过该第一信道向该接入点发送第三上行数据;该第二触发帧还用于指示至少一个第四站点在该第五时间通过该第二信道接收该接入点发送的第四下行数据,该第一传输单元还用于在该第五时间使用m个接收通道中的至少一个,通过该第一信道接收该至少一个第三站点发送的该第三上行数据;并且,在该第六时间使用n个发射通道中的至少一个,通过该第一信道向该至少一个第三站点发送第三应答消息,该第三应答消息用于表示该接入点已正确接收该第三上行数据;该第二传输单元还用于在该第五时间使用n个发射通道中的至少一个,通过该第二信道向该至少一个第四站点发送该第四下行数据;并且在该第六时间使用m个接收通道中的至少一个,通过该第二信道接收该至少一个第四站点发送的第四应答消息,该第四应答消息用于表示该至少一个第四站点已正确接收该第四下行数据。
结合第三方面、第三方面的第一至第七种可能的实现方式中的任一种可能的实现方式,在第八种可能的实现方式中,该上行数据的数据帧的前导包括传统前导、高效率信令A字段HE-SIG-A、高效率短训练字段HE-STF、高效率长训练字段HE-LTF,不包括高效率信令B字段HE-SIG-B;该下行数据的数据帧的前导包括传统前导、高效率信令A字段HE-SIG-A、高效率短训练字段HE-STF、高效率长训练字段HE-LTF,不包括高效率信令B字段HE-SIG-B。
结合第三方面、第三方面的第一至第八种可能的实现方式中的任一种可能的实现方式,在第九种可能的实现方式中,该第一信道为5490~5710MHz和5735~5835MHz频带中的任意连续或非连续频谱的信道,该第二信道为5170~5330MHz频带中的任意连续或非连续频谱的信道。
结合第三方面、第三方面的第一至第八种可能的实现方式中的任一种可能的实现方式,在第十种可能的实现方式中,该第一信道为5570~5710MHz、5735~5835MHz和5850~5925MHz频带中的任意连续或非连续频谱的信道,该第二信道为5170~5330MHz和5350~5430MHz频带中的任意连续或非连续频谱的信道。
第四方面,提供了一种站点,包括:收发信机,该收发信机包括k个发 射通道和z个接收通道;接收单元,用于在第一时间使用该z个接收通道中的至少一个,通过第一信道接收接入点发送的下行数据;发送单元,用于在该第一时间使用该K个发射通道中的至少一个,通过第二信道向该接入点发送上行数据。结合第二方面,在第一种可能的实现方式中,该接收单元在该第一时间使用该z个接收通道,通过第二信道接收接入点发送上行数据,所示发送单元在第一时间使用该k个发射通道,通过第一信道向接入点发送下行数据,其中,所述接收单元接收所述下行数据和所述发送单元发送所述上行数据的起始时刻和结束时刻分别对应相同。
结合第四方面或第四方面的第一种可能的实现方式,在第二种可能的实现方式中,还包括:第一传输单元,用于在预设时间通过该第一信道进行上行或下行传输;第二传输单元,用于在该预设时间通过该第二信道进行上行或下行传输;其中,所述预设时间为除所述第一时间之外的时间,在该第一传输单元在该预设时间通过该第一信道进行上行传输时,该第二传输单元在该第二时间通过该第二信道进行下行传输,或者在该第一传输单元在该预设时间通过该第一信道进行下行传输时,该第二传输单元在该预设时间通过该第二信道进行上行传输。
结合第四方面的第二种可能的实现方式,在第三种可能的实现方式中,该预设时间包括第三时间,该第三时间为该第一时间的起始时刻之前的时间,该第一传输单元在该第三时间使用第一接收通道,通过该第一信道接收该接入点发送的第一触发帧,该第一触发帧用于指示该站点在该第一时间通过该第一信道接收该接入点发送的该下行数据;该第二传输单元在该第三时间使用第二接收通道,通过该第二信道接收该接入点发送的第二触发帧,该第二触发帧用于指示该站点在该第一时间通过该第二信道向该接入点发送该上行数据,其中,第一接收通道为该z个接收通道中的任意z-1个接收通道中的至少一个,该第二接收通道为该z个接收通道中除该第一接收通道外的至少一个。
结合第四方面的第三种可能的实现方式,在第四种可能的实现方式中,该第一触发帧包括第一调度控制信息,该第一调度控制信息包括:该站点的标识、该站点进行数据传输所使用的传输资源、空间流数与相应空间流的标识、以及传输相应空间流所使用的编码调制方案MCS信息,其中,该第一调度控制信息位于该触发帧的物理层的高效率信令B字段HE-SIG-B或数据 字段中的MAC层协议数据单元PDU中,该第二触发帧包括第二调度控制信息,该第二调度控制信息包括:该站点的标识、该站点进行数据传输所使用的传输资源、空间流数与相应空间流的标识、以及传输相应空间流所使用的编码调制方案MCS信息,其中,该第二调度控制信息位于该触发帧的物理层的高效率信令B字段HE-SIG-B或数据字段中的MAC层协议数据单元PDU中。
结合第四方面的第三种或第四种可能的实现方式,在第五种可能的实现方式中,该预设时间还包括第四时间,该第四时间为该第一时间的结束时刻之后的时间,该第一传输单元还用于在第四时间使用k个发射通道中的至少一个,通过该第一信道向该接入点发送第一应答消息,该第一应答消息用于表示该站点已正确接收该下行数据;该第二传输单元还用于在该第四时间使用z个接收通道中的至少一个,通过该第二信道接收该接入点发送的第二应答消息,该第二应答消息用于表示该接入点已正确接收该上行数据。
结合第四方面的第五种可能的实现方式,在第六种可能的实现方式中,该预设时间还包括第五时间和第六时间,该第五时间为该第四时间的结束时刻之后的时间,该六时间为该第五时间的结束时刻之后的时间;该第一触发帧还用于指示该站点在第五时间通过该第一信道向该接入点发送第三上行数据;该第二触发帧还用于指示该站点在该第五时间通过该第二信道接收该接入点发送的第四下行数据,该第一传输单元还用于在第五时间使用k个发射通道中的至少一个,通过该第一信道向该接入点发送第三上行数据;并且,在第六时间使用z个接收通道中的至少一个,通过该第一信道接收该接入点发送的第三应答消息,该第三应答消息用于表示该接入点已正确接收该第三上行数据;该第二传输单元还用于在该第五时间使用z个接收通道中的至少一个,通过该第二信道接收该接入点发送的第四下行数据;并且在该第六时间使用k个发射通道中的至少一个,通过该第二信道向该接入点发送第四应答消息,该第四应答消息用于表示该站点已正确接收该第四下行数据。
结合第四方面、第一至第六种可能的实现方式中的任一种可能的实现方式,在第七种可能的实现方式中,该上行数据的数据帧的前导包括传统前导、高效率信令A字段HE-SIG-A、高效率短训练字段HE-STF、高效率长训练字段HE-LTF,不包括高效率信令B字段HE-SIG-B;该下行数据的数据帧的前导包括传统前导、高效率信令A字段HE-SIG-A、高效率短训练字段 HE-STF、高效率长训练字段HE-LTF,不包括高效率信令B字段HE-SIG-B。
结合第四方面、第一至第七种可能的实现方式中的任一种可能的实现方式,在第八种可能的实现方式中,该第一信道为5490~5710MHz和5735~5835MHz频带中的任意连续或非连续频谱的信道,该第二信道为5170~5330MHz频带中的任意连续或非连续频谱的信道。
结合第四方面、第一至第七种可能的实现方式中的任一种可能的实现方式,在第九种可能的实现方式中,该第一信道为5570~5710MHz、5735~5835MHz和5850~5925MHz频带中的任意连续或非连续频谱的信道,该第二信道为5170~5330MHz和5350~5430MHz频带中的任意连续或非连续频谱的信道。
第五方面,提供了一种收发信机,包括发射通道和接收通道,其特征在于,还包括:第一相位锁定环路PLL、第二PLL、多路选择开关、信道选择射频开关和双工器;其中该多路选择开关与该第一PLL和该第二PLL相连接,用于为该发射通道和该接收通道提供本振信号;该信道选择射频开关与该发射通道的PA、接收通道的LNA和该双工器相连,用于为该发射通道和该接收通道选择双工器的端口,该双工器与天线相连,使得该发射通道和该接收通道共用该天线。
结合第五方面,在第一种可能的实现方式中,该第一PLL和该第二PLL根据同一参考频率分别提供第一频率信号和第二频率信号,该发射通道和该接收通道使用第一频率信号和第二频率信号中的任一个进行数据传输,且当该发射通道使用该第一频率信号进行数据传输时,该接收通道使用该第二频率信号进行数据传输,或者当该发射通道使用该第二频率信号进行数据传输时,该接收通道使用该第一频率信号进行数据传输。
结合第五方面的第一种可能的实现方式,在第二种可能的实现方式中,该双工器包括第一端口、第二端口、第三端口、第一带通滤波器和第二带通滤波器,其中,该第一端口与该第一带通滤波器相连接,该第二端口与该第二通滤波器相连接,该第三端口与该第一带通滤波器和该第二带通滤波器向连接,该第一端口和该第二端口用于连接发射通道和接收通道,该第三端口用于连接天线,该第一带通滤波器用于导通该第一频率信号,该第二带通滤波器用于导通该第二频率信号。
结合第五方面的第二种可能的实现方式,在第三种可能的实现方式中, 当该发射通道使用该第一频率信号,通过第一信道进行数据传输,且该接收通道使用该第二频率信号,通过第二信道进行数据传输时,该发射通道的PA的输出端与该第一端口相连,该接接收通道的LNA的输入端与该第二端口相连;或者,当该发射通道使用该第二频率信号,通过第二信道进行数据传输,且该接收通道使用该第一频率信号,通过第一信道进行数据传输时,该发射通道的PA的输出端与该第二端口相连,该接接收通道的LNA的输入端与该第一端口相连。
第六方面,提供了一种设备,该设备包括第五方面、第五方面的第一至第三种可能的实现方式中的任一种可能的实现方式中的收发信机。
结合第六方面,在第一种可能的实现方式中,该设备为接入点或站点。
基于上述技术方案,本发明实施例通过接入点在第一时间使用发射通道中,通过第一信道向至少一个第一站点发送下行数据;并且所述接入点在相同的第一时间使用接收通道,通过第二信道接收至少一个第二站点发送的上行数据。本发明实施例能够在不同的信道上同时进行上行和下行传输,使得发射通道和接收通道同时工作,提高了收发通道的利用率,提升了系统的吞吐量。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是一种WLAN系统中数据传输场景图。
图2是一种WLAN中数据传输的过程示意图。
图3是另一种WLAN中数据传输的过程示意图。
图4是5GHz非授权频谱可用的频谱资源示意图。
图5是根据本发明一个实施例的应用场景图。
图6是根据本发明一个实施例的数据传输的方法的示意性流程图。
图7是根据本发明另一实施例的数据传输的方法的示意性流程图。
图8是根据本发明一个实施例的数据帧结构示意图。
图9是根据本发明另一实施例的数据帧结构示意图。
图10是根据本发明一个实施例的5GHz非授权频谱的使用示意图。
图11是根据本发明一个实施例的5GHz非授权频谱的使用示意图。
图12是根据本发明另一实施例的数据传输的方法的示意性流程图。
图13是根据本发明另一实施例的数据传输的方法的示意性流程图。
图14是根据本发明一个实施例的数据传输过程示意图。
图15是根据本发明另一实施例的数据传输过程示意图。
图16是根据本发明另一实施例的数据传输过程示意图。
图17是根据本发明另一实施例的数据传输过程示意图。
图18是根据本发明一个实施例的接入点的示意框图。
图19是根据本发明另一实施例的接入点的示意框图。
图20是根据本发明一个实施例的站点的示意框图。
图21是根据本发明另一实施例的站点的示意框图。
图22是根据本发明另一实施例的接入点的示意框图。
图23是根据本发明另一实施例的站点的示意框图。
图24是根据本发明一个实施例的收发信机的示意框图。
图25是根据本发明另一实施例的收发信机的示意框图。。
图26是根据本发明一个实施例的双工器的示意框图。
图27是根据本发明一个实施例的装置的示意框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
本发明的技术方案,可以应用于正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统中,例如,WLAN系统,特别是无线保真(Wireless Fidelity,WiFi)等。当然,本发明实施例的方法还可应用其它类型的OFDM系统中,本发明实施例在此不作限制。
应理解,本发明实施例中的站点(Station,STA)也可以称为系统、用户单元、接入终端、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理、用户装置或UE(User Equipment, 用户设备)。该STA可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)、具有无线局域网(例如Wi-Fi)通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备。
还应理解本发明实施例中的接入点(Access Point,AP)可用于与接入终端通过无线局域网进行通信,并将接入终端的数据传输至网络侧,或将来自网络侧的数据传输至接入终端。
图1是一种WLAN系统中数据传输场景图。如图1所示的WLAN中,接入点(Access Point,AP)负责与多个站点(Station,STA)进行双向通信,即某一时间内AP向STA(如图1中的STA1和/或STA2)发送(Tx)下行数据,或者另一时间接收(Rx)来自STA(如图1中的STA3)的上行数据。
具体而言,在现有基于OFDM技术的WLAN标准包括802.11a、802.11n、802.11ac等版本中,WLAN设备(AP或STA)均通过载波侦听多址(Carrier Sense Multiple Access,CSMA)获得信道的使用权,即在发送数据前先进行空闲信道评估(Clear Channel Assessment,CCA)检测,具体来说,WLAN设备在使用一个信道发送数据之前,先对这个信道上的信号进行接收,典型地,当接收信号的功率超过设定的门限时即判断该信道已经被其它设备占用,否则判断该信道为空闲状态,从而开始使用该信道发送数据。这里信道可以是连续的频谱(Frequency Band),典型为20MHz、40MHz或80MHz带宽的频谱,也可以是非连续频谱,如两个相距一定频率间隔的80MHz带宽的频谱组成的160MHz带宽的非连续频谱。具体的,AP与STA的交互以图2举例说明。
图2为另一种WLAN中数据传输的过程示意图。在该例中AP在t1时刻开始对一个信道进行CCA检测,当它判断该信道空闲时,在t2时刻开始向STA1发送下行数据帧,并在t3时刻结束该下行数据帧的发送,STA1则在相应时间接收该下行数据帧,经过短帧间间隔(Short Inter-frame Space,SIFS)时间后,若STA1正确接收该下行数据帧,则在t4时刻向AP发送应答(Acknowledgement,ACK)或块应答(Block Acknowledgement,BA)帧,AP通过接收STA1发送的ACK/BA帧,确认其下行数据帧已经被STA1正 确接收,从而结束此次下行数据传输操作,并释放对该信道的使用权。同样地,当STA2有上行数据需要发送给AP时,STA2在t5时刻进行CCA检测,若它判断该信道空闲,则在t6时刻开始向AP发送上行数据帧,并在t7时刻结束该上行数据帧的发送,经过SIFS时间,若AP正确接收该上行数据帧则在t8时刻向STA2发送ACK/BA帧,STA2接收到该ACK/BA帧后结束此次上行数据传输操作,并释放对该信道的使用权。
在基于正交频分多址(Orthogonal Frequency-Division Multiple Access,OFDMA)的新一代WLAN标准802.11ax中,AP可以通过OFDMA的方式同时向多个STA发送下行数据,或者通过OFDMA方式同时接收来自多个STA的的上行数据。在基于OFDMA的WLAN系统中,为了与已有的WLAN设备兼容,AP仍然采用CSMA方式竞争信道,即在使用一个信道前先对该信道进行CCA检测,若它判断该信道空闲,则预留一段时间传输机会(Transmission opportunity,TXOP)用于上行、或下行、或者上下行级联传输。若AP要向至少一个STA传输下行数据,则与基于CSMA的WLAN中的AP类似,在CCA检测信道空闲后直接发送下行数据帧,多个STA可以通过OFDMA方式复用在一起进行传输。与基于CSMA的WLAN不同,STA不通过信道竞争的方式直接发起上行传输,而是由AP竞争信道后行统一调度STA进行上行传输。如图3所示,当AP调度STA2和STA3通过OFDMA方式进行上行数据传输时,在通过CCA检测获得信道使用权后发送触发帧,该触发帧中指示所调度的STA2和STA3及它们传输上行数据所使用的资源,如图3中AP在t6时刻发送触发帧,再经过SIFS时间后,被调度的STA2和STA3在t7时刻开始使用AP所分配的资源分别发送上行数据帧,若AP正确接收到STA2和STA3发送的上行数据,则在发送ACK/BA帧后结束此次上行传输过程。在上行传输中,AP预留的TXOP至少包括从发送触发帧开始到发送ACK/BA帧结束为止的时间。
从图2和图3所示的WLAN传输过程可以看出,在基于CSMA和OFDMA的WLAN系统中,WLAN设备通过时分双工的方式使用同一信道,即上行和下行传输发生在同一个信道的不同时间段上,也就是说,当通过发射通道发射信号时其接收通道处于空闲状态,而当通过接收通道接收信号时其发射通道处于空闲状态。因此,该WLAN系统的吞吐量低。
受复杂度和成本的限制,包括802.11ac、802.11ax在内的WLAN标准支 持的最大信道带宽为160MHz,支持的最大空间流数为8个,实际的WLAN设备大多只支持最大80MHz的带宽。另一方面,5GHz非授权频谱可用的频谱资源非常丰富,如图4所示,5GHz非授权频谱可用带宽可达675MHz,具体包括5170-5330MHz、5350-5470MHz、5490-5710MHz、5735-5835MHz和5850-5925MHz。因此,限制WLAN系统吞吐量的主要因素是收发通道的能力而不是频谱资源,然而,已有WLAN系统的发射和接收通道总是交替工作的,收发通道的利用率低,因此限制了WLAN系统的传输性能。为此,本发明提出了一种WLAN系统及传输方法,在不明显增加系统复杂度和成本的前提下,可以有效解决现有WLAN系统中因收发通道的利用率低所导致的系统吞吐量不高的问题。
还应理解,本发明实施例中的接入点支持上下行并行(同时)传输。站点可以支持上下行并行传输,也可以不支持上下行并行传输,具体根据应用场景的不同来确定站点是否支持上下行并行传输。
具体而言,图5是根据本发明一个实施例的应用场景图。图5中示出了本发明实施例的一些典型应用场景,在图5(a)中,仅AP支持上下行并行传输而STA无需支持上下行并行传输,AP使用载波频率为f01的第一信道向STA1发送下行数据,同时使用载波频率为f02的第二信道接收STA2发送的上行数据。图5(b)与图5(a)相似,仅AP支持上下行并行传输而STA无需支持,AP使用载波频率为f01的第一信道向STA1和STA2发送下行数据,同时使用载波频率为f02的第二信道接收STA3和STA4发送的上行数据,其中,STA1和STA2可以使用OFDMA和/或下行多用户MIMO(Multi-user MIMO,简称MU-MIMO)在第一信道上进行多路复用,STA3和STA4可以使用OFDMA和/或上行MU-MIMO在第二信道上进行多路复用。在图5(c)中,AP和STA3均支持上下行并行传输,AP使用载波频率为f01的第一信道向STA3发送下行数据,同时使用载波频率为f02的第二信道接收STA3发送的上行数据。图5(d)与图5(c)相似,AP、STA1和STA2均支持上下行并行传输,但STA3和STA4不支持上下行并行传输,AP使用载波频率为f01的第一信道向STA1、STA2和STA4发送下行数据,同时使用载波频率为f02的第二信道接收STA1、STA2和STA3发送的上行数据。
图6为根据本发明一个实施例的数据传输的方法的示意性流程图。图6所示的的方法由接入点执行,接入点的收发信机包括m个发射通道和n个接 收通道,方法应用于无线局域网WLAN中,具体而言,如图6所示的方法包括:
610,接入点在第一时间使用m个发射通道中的至少一个,通过第一信道向至少一个第一站点发送下行数据。
620,接入点在第一时间使用n个接收通道中的至少一个,通过第二信道接收至少一个第二站点发送的上行数据,其中,接入点发送下行数据和接收上行数据的起始时刻和结束时刻分别对应相同。
具体而言,本发明实施例中的接入点在第一时间通过第一信道向至少一个第一站点发送下行数据,同时在第一时间接入点通过第二信道接收至少一个第二站点发送的上行数据。
因此,本发明实施例能够在不同的信道上同时进行上行和下行传输,使得发射通道和接收通道同时工作能够充分利用已有的发射和接收通道的处理能力,提高了收发通道的利用率,提升了系统的吞吐量。
应理解,至少一个第一站点可以包括一个站点,也可以包括多个站点,当至少一个第一站点为多个站点时,该多个站点可以使用OFDMA和/或下行多用户MIMO(Multi-user MIMO,MU-MIMO)在第一信道上进行多路复用。同样的,至少一个第二站点可以包括一个站点,也可以包括多个站点,当至少一个第二站点为多个站点时,该多个站点可以使用OFDMA和/或下行MU-MIMO在第二信道上进行多路复用。
应注意,至少一个第一站点中的一个第一站点可以与至少一个第二站点中的一个第二站点为同一个站点,也可以为不同的站点,本发明实施例并不对此做限定。
应注意,在610中,接入点在第一时间可以使用m个发射通道中的部分或全部发射通道发送下行数据,在620中,可以使用n个接收通道中的部分或全部接收通道接收上行数据。
应理解,本发明实施例中提第一时间为传输数据的开始(起始)时刻到结束时刻之间的时间,根据本发明实施例第一信道和第二信道在第一时间分别进行下行传输和上行传输,换句话说,根据本发明实施例,接入点在第一时间的起始时刻开始通过第一信道向至少一个第一站点发送下行数据,到第一时间的结束时刻完成传输下行数据,同时,接入点在第一时间的起始时刻开始通过第二信道接收至少一个第二站点发送的上行数据,到第一时间的结 束时刻完成接收上行数据。还应理解,下文中出现的各种时间均表示传输相应数据的起始时刻到完成相应数据的结束时刻之间的时间,换句话说,本发明实施例中在第一信道和第二信道在同一起始时刻传输的数据,对应的结束时刻也大都相同,也就是说在第一信道和第二信道在同一起始时刻传输的数据的传输时间(起始时刻到结束时刻之间的时间)是相同的,但也有不同的情况,例如,在传输最后的ACK帧时的开始时刻相同,但结束时刻可以不同,下文中会进行具体实施例的详细描述,此处不再展开。
可选地,作为另一实施例,在610中,接入点在第一时间使用m个发射通道,通过第一信道向至少一个第一站点发送下行数据;在620中,接入点在第一时间使用n个接收通道,通过第二信道接收至少一个第二站点发送的上行数据。
换句话说,在第一时间,接入点使用所有的m个发射通道发送下行数据,使用所有的n个接收通道接收上行数据,因此,本发明实施例,能够充分利用已有的发射和接收通道的处理能力实现系统吞吐量的有效提升,特别地,当m=n时系统最大吞吐量可以达到现有WLAN系统的两倍。
应理解,本发明实施例中,第一信道和第二信道均可以在不同的时间分别进行上行或下行传输,且在某一时间当第一信道进行上行传输时,第二信道可以在相同时间进行下行传输,或者在某一时间当第一信道进行下行传输时,第二信道可以在相同时间进行上行传输。
可选地,作为另一实施例,本发明实施例方法,还包括:接入点在预设时间通过第一信道进行上行或下行传输;接入点在预设时间通过第二信道进行上行或下行传输;具体地,如图7所示的数据传输的方法包括:
710,接入点在第一时间使用m个发射通道中的至少一个,通过第一信道向至少一个第一站点发送下行数据。
720,接入点在第一时间使用n个接收通道中的至少一个,通过第二信道接收至少一个第二站点发送的上行数据,其中,接入点发送下行数据和接收上行数据的起始时间和结束时间分别对应相同。
730,接入点在预设时间通过第一信道进行上行或下行传输。
740,接入点在预设时间通过第二信道进行上行或下行传输,其中,预设时间为除第一时间之外的时间,在接入点在预设时间通过第一信道进行上行传输时,接入点在第二时间通过第二信道进行下行传输,或者在接入点在 预设时间通过第一信道进行下行传输时,接入点在预设时间通过第二信道进行上行传输。
应注意,710、720分别与图6中的610和620对应,为避免重复,不再赘述。
换句话说,尽管每个信道均可以在不同的时间分别进行上行或下行传输,但当第一信道进行数据发送时,第二信道仅进行数据接收,反之亦然。这样,对一个支持收发并行传输的WLAN设备(接入点),若其收发信机包括m个发射通道和n个接收通道,其中m≥2,n≥2,则可以使用全部的m个发射通道在第一信道进行数据发送,而同时使用全部的n个接收通道在第二信道进行数据接收,或者使用全部的m个发射通道在第二信道进行数据发送,而同时使用全部的n个接收通道在第一信道进行数据接收。也就是说,在不增加发射和接收通道的复杂度包括通道带宽和通道数的情况下,可以充分利用已有的发射和接收通道的处理能力,实现系统吞吐量的有效提升,特别地,当m=n时系统最大吞吐量可以达到现有WLAN系统的两倍。
具体而言,作为另一实施例,预设时间包括第二时间,第二时间为第一时间的起始时刻之前的时间,在730中,接入点在第二时间使用第一接收通道在第一信道进行空闲信道评估CCA检测,确定第一信道空闲;在740中,接入点在第二时间使用第二接收通道在第二信道进行CCA检测,确定第二信道空闲;其中,第一接收通道为n个接收通道中的任意n-1个接收通道中的至少一个,第二接收通道为n个接收通道中除第一接收通道外的至少一个。
换句话说,接入点设备在进行上下行数据传输之前,需要对第一信道和第二信道进行CCA检测,根据CCA检测确定第一信道和第二信道均空闲,之后通过第一信道发送下行数据,同时通过第二信道接收上行数据。
进一步地,预设时间还包括第三时间,第三时间为第一时间的起始时刻之前、第二时间的结束时刻之后的时间,
在730中,接入点在第三时间使用第一发射通道,通过第一信道向至少一个第一站点发送第一触发帧,第一触发帧用于指示至少一个第一站点在第一时间内通过第一信道接收接入点发送的下行数据;在740中,接入点在第三时间使用第二发射通道,通过第二信道向至少一个第二站点发送第二触发帧,第二触发帧用于指示至少一个第二站点在第一时间内通过第二信道向接入点发送上行数据;其中,第一发射通道为n个发射通道中的任意n-1个发 射通道中的至少一个,第二发射通道为n个发射通道中除第一发射通道外的至少一个。
例如以图5(a)所示场景为例,结合图14举例说明,AP使用载波频率为f01的第一信道向STA1发送下行数据,同时使用载波频率为f02的第二信道接收STA2发送的上行数据。AP的收发信机包括m个发射通道和n个接收通道,首先,在第二时间的起始时刻(t1)AP使用至少一个但不超过n-1个接收通道在第一信道进行CCA检测,并使用其余的至少一个接收通道在第二信道进行CCA检测,若第一和第二信道均空闲,AP在第三时间的起始时刻(t2)使用至少一个但不超过m-1个发射通道在第一信道发送第一触发帧用于发送下行传输调度控制信息,同时使用其余的至少一个发射通道在第二信道发送第二触发帧用于发送上行传输调度控制信息,之后,经过SIFS后,在第一时间的起始时刻(t3)AP可以使用其全部的m个发射通道在第一信道发送下行数据帧,在第一时间的结束时刻(t4)完成下行数据传输,而STA1则根据第一触发帧发送的下行传输调度控制信息对该下行数据帧进行接收处理。与此同时,在t3时刻STA2根据第二触发帧发送的上行传输调度控制信息,在第二信道向AP发送上行数据帧,在t4时刻完成上行数据传输,AP则可以使用其全部的n个接收通道在第二信道接收上行数据帧。
可选地,作为另一实施例,第一触发帧包括第一调度控制信息,第一调度控制信息包括:至少一个第一站点的各个站点的标识、至少一个第一站点进行数据传输所使用的传输资源、空间流数与相应空间流的标识、以及传输相应空间流所使用的编码调制方案MCS信息,其中,第一调度控制信息位于触发帧的物理层的高效率信令B字段HE-SIG-B或数据字段中的MAC层协议数据单元(Protocol Data Unit,PDU)中。
第二触发帧包括第二调度控制信息,第二调度控制信息包括:至少一个第二站点的各个站点的标识、至少一个第二站点进行数据传输所使用的传输资源、空间流数与相应空间流的标识、以及传输相应空间流所使用的编码调制方案MCS信息,其中,第二调度控制信息位于触发帧的物理层的高效率信令B字段HE-SIG-B或数据字段中的MAC层协议数据单元PDU中。
以802.11ax中实施上下行并行传输为例,802.11ax物理层分组中的数据帧,以及触发帧和ACK/BA帧等控制帧均采用图8所示的结构。每个802.11ax物理层分组由前导(Preamble)和数据字段(Data Field)组成,数据字段传 输媒体接入控制(Media Access Control,MAC)层的数据单元,可以是用户数据,也可以是MAC层控制信令等,前导由传统前导(Legacy Preamble)和802.11ax特定的前导两部分组成,其中,传统前导是802.11a、802.11n、802.11ac、802.11ax等版本的WLAN协议都有的前导,802.11ax特定的前导用于传输802.11ax特定的物理层控制信息,进一步包括高效率信令A字段(High Efficiency Signal-A field,HE-SIG-A)、高效率短训练字段(High Efficiency Short Training field,HE-STF)、高效率长训练字段(High Efficiency Long Training field,HE-LTF)、高效率信令B字段(High Efficiency Signal-B field,HE-SIG-B)等字段。其中,与本发明相关的是HE-SIG-B,该字段用于携带包括但不限于以下调度控制信息:指示在该分组中进行数据传输的各STA的标识、各STA数据传输所使用的传输资源(例如频域的子载波资源)、空间流数与相应空间流的标识、以及传输相应空间流所使用的编码调制方案(Modulation Coding Scheme,MCS)等信息。
应注意,由于下行传输调度控制信息已经通过第一触发帧发送,因此优选地,在610中,下行数据帧的前导如图9所示,不再包含HE-SIG-B字段。而STA1则根据第一触发帧发送的下行传输调度控制信息对该下行数据帧进行接收处理。与此同时,在t3时刻STA2根据第二触发帧发送的上行传输调度控制信息,在第二信道向AP发送上行数据帧,AP则可以使用其全部的n个接收通道在第二信道接收上行数据帧,同样地,该上行数据帧的前导不再包含HE-SIG-B字段。
具体而言,如图9所示,上行数据的数据帧的前导包括传统前导、HE-SIG-A、HE-STF、HE-LTF字段;不包括HE-SIG-B字段。同样的,下行数据的数据帧的前导包括传统前导、HE-SIG-A、HE-STF、HE-LTF字段,不包括HE-SIG-B字段。
进一步地,作为另一实施例,预设时间还包括第四时间,第四时间为第一时间的结束时刻之后的时间,在730中,接入点在第四时间使用m个接收通道中的至少一个,通过第一信道接收至少一个第一站点发送的第一应答消息,第一应答消息用于表示至少一个第一站点已正确接收下行数据;在740中,接入点在第四时间使用n个发射通道中的至少一个,通过第二信道向至少一个第二站点发送第二应答消息,第二应答消息用于表示接入点已正确接收上行数据。
其中,第一应答消息可以为ACK帧或BA帧,第二应答消息可以为ACK帧或BA帧。例如,以图5(a)所示场景为例,结合图14来举例说明,在610和620之后,即在上下行数据帧传输结束后SIFS时间,若STA1正确接收AP发送的下行数据帧,即在第四时间的起始时刻(t5)向AP发送上行ACK/BA帧,同时,若AP正确接收STA2发送的上行数据帧,也在t5时刻向STA1发送下行ACK/BA帧。
应注意,正如前文,发送数据的起始时刻相同的情况下,结束时刻也基本相同,但此处的结束时刻可以相同,也可以不同,如图14所示,本发明实施例中接入点接收的第一应答消息和发送的第二应答消息的起始时刻是相同的,由于,在传输完第一应答消息和第二应答消息后,接入点在短时间内可能不再有数据传输,因此,接收第一应答消息的完成时刻可以与发送第二应答消息的完成时刻不同,本发明实施例并不对此做限定。
进一步地,作为另一实施例,预设时间还包括第五时间和第六时间,第五时间为第四时间的结束时刻之后的时间,第六时间为第五时间的结束时刻之后的时间;第一触发帧还用于指示至少一个第三站点在第五时间通过第一信道向接入点发送第三上行数据;第二触发帧还用于指示至少一个第四站点在第五时间通过第二信道接收接入点发送的第四下行数据;在730中,接入点在第五时间使用m个接收通道中的至少一个,通过第一信道接收至少一个第三站点发送的第三上行数据;接入点在第六时间使用n个发射通道中的至少一个,通过第一信道向至少一个第三站点发送第三应答消息,第三应答消息用于表示接入点已正确接收第三上行数据。在740中,接入点在第五时间使用n个发射通道中的至少一个,通过第二信道向至少一个第四站点发送第四下行数据;接入点在第六时间使用m个接收通道中的至少一个,通过第二信道接收至少一个第四站点发送的第四应答消息,第四应答消息用于表示至少一个第四站点已正确接收第四下行数据。
应注意,至少一个第三站点中的一个第三站点可以与至少一个第四站点中的一个第四站点为同一个站点,也可以为不同的站点,并且,一个第三站点、一个第四站点、一个第一站点和一个第二站点总共四个站点中的部分或全部站点可以为同一个站点,也可以互相为不同的站点,本发明实施例并不对此做限定。
例如,以图5(a)所示场景为例,结合图16来举例说明,在图16的例子 中,至少一个第一站点包括STA1,至少一个第三站点包括STA1,至少一个第二站点包括STA2,至少一个第四站点包括STA2,图16所示过程与图14所示过程在CCA检测、触发帧发送和上下行数据帧的传输上基本相同,为避免重复,不再赘述,需要说明的一点是,在图16的例子中,由于,在传输完第一应答消息和第二应答消息后,接入点在短时间内有数据传输,因此,接收第一应答消息的起始时刻和完成时刻分别与发送第二应答消息的起始时刻和完成时刻相同,在传输完第一应答消息和第二消息后,经过SIFS时间后,接入点在第五时间的起始时刻(t6)使用m个接收通道中的至少一个,通过第一信道接收至少一个第三站点发送的第三上行数据;在第五时间的结束时刻(t7)完成第三上行数据的接收,接入点在第六时间的起始时刻(t8)使用n个发射通道中的至少一个,通过第一信道向至少一个第三站点发送第三应答消息,第三应答消息用于表示接入点已正确接收第三上行数据。并且,接入点在t6时刻使用n个发射通道中的至少一个,通过第二信道向至少一个第四站点发送第四下行数据;在t7时刻完成第四下行数据的发送,接入点在t8时刻使用m个接收通道中的至少一个,通过第二信道接收至少一个第四站点发送的第四应答消息,第四应答消息用于表示至少一个第四站点已正确接收第四下行数据。同样的,由于,在传输完第三应答消息和第四应答消息后,接入点在短时间内可能不再有数据传输,因此,发送第三应答消息的完成时刻可以与接收第四应答消息的完成时刻不同,本发明实施例并不对此做限定。
可选地,作为另一实施例,第一信道为5490~5710MHz和5735~5835MHz频带中的任意连续或非连续频谱的信道,第二信道为5170~5330MHz频带中的任意连续或非连续频谱的信道。
例如,如图10所示的根据本发明一个实施例的5GHz非授权频谱的使用示意图。其中WLAN可使用的频谱总带宽为480MHz,则将5490~5710MHz和5735~5835MHz作为一个频带,5170~5330MHz作为另外一个频带,第一信道和第二信道分别为这两个频带中的任意连续或非连续频谱的信道,例如,第一信道可以为图中的Ch1和Ch2、Ch3和Ch4、Ch5和Ch6、Ch7和Ch8,这样,两个信道之间最少有160MHz的保护带,从而能够保证接收和发射通道之间的隔离度。
可替代地,作为另一实施例,第一信道为5570~5710MHz、 5735~5835MHz和5850~5925MHz频带中的任意连续或非连续频谱的信道,第二信道为5170~5330MHz和5350~5430MHz频带中的任意连续或非连续频谱的信道。
例如,图11所示的根据本发明另一实施例的5GHz非授权频谱的使用示意图。其中WLAN可使用的频谱总带宽为675MHz,可选择中间一段频谱为保护带,其中的信道不用于上下行并行传输而仍沿用现有技术,该保护带两边频带中的信道用于上下行并行传输。例如,将5570~5710MHz、5735~5835MHz和5850~5925MHz共315MHz作为一个频带,5170~5330MHz和5350~5430MHz共240MHz作为另外一个频带,其中5430~5570MHz共140MHz的频谱为上下行并行传输的保护带。
上文中结合图1至图11,从接入点的角度详细描述了根据本发明实施例的数据传输的方法,下面将结合图12和图13,从站点的角度描述根据本发明实施例的终端间应用共享的方法。
应理解,站点侧描述的接入点与站点的交互及相关特性、功能等与接入点侧的描述相应,为了简洁,适当省略重复的描述。图12和图13中仅以支持收发并行传输的站点为例说明。
图12为根据本发明另一实施例的数据传输的方法的示意性流程图。图12所示的的方法由站点执行,站点的收发信机包括k个发射通道和z个接收通道,方法应用于无线局域网WLAN中,具体而言,如图12所示的方法包括:
1210,站点在第一时间使用z个接收通道中的至少一个,通过第一信道接收接入点发送的下行数据。
1220,站点在第一时间使用K个发射通道中的至少一个,通过第二信道向接入点发送上行数据,其中,站点接收下行数据和发送上行数据的起始时刻和结束时刻分别对应相同。
具体而言,本发明实施例中的站点在第一时间通过第一信道接收接入点发送的下行数据,同时在第一时间站点通过第二信道向接入点发送上行数据。
本发明实施例能够在不同的信道上同时进行上行和下行传输,使得发射通道和接收通道同时工作能够充分利用已有的发射和接收通道的处理能力,提升了系统的吞吐量。
应注意,在1210中,站点在第一时间可以使用z个接收通道中的部分或全部接收通接收下行数据,在1220中,可以使用k个发射通道中的部分或全部发射通道发送上行数据。
可选地,作为另一实施例,在1210中,站点在第一时间使用z个接收通道,通过第二信道向接入点发送上行数据。
在1220中,所示站点在第一时间使用k个发射通道,通过第一信道接收接入点发送的下行数据。
换句话说,在第一时间,站点使用所有的z个接收通道接收下行数据,使用所有的k个发射通道发送上行数据,因此,本发明实施例,能够充分利用已有的发射和接收通道的处理能力实现系统吞吐量的有效提升,特别地,当k=z时系统最大吞吐量可以达到现有WLAN系统的两倍。
应理解,本发明实施例中,第一信道和第二信道均可以在不同的时间分别进行上行或下行传输,且当第一信道进行上行传输时,第二信道可以进行下行传输,或者当第一信道进行下行传输时,第二信道可以进行上行传输。
可选地,作为另一实施例,本发明实施例方法还包括:站点在预设时间通过第一信道进行上行或下行传输;站点在预设时间通过第二信道进行上行或下行传输。具体地,如图13所示的数据传输的方法包括:
1310,站点在第一时间使用k个发射通道中的至少一个,通过第一信道接收接入点发送的下行数据。
1320,站点在第一时间使用z个接收通道中的至少一个,通过第二信道向接入点发送上行数据,其中,站点接收下行数据和发送上行数据的起始时刻和结束时刻分别对应相同。
1330,站点在预设时间通过第一信道进行上行或下行传输。
1340,站点在预设时间通过第二信道进行上行或下行传输,其中,预设时间为除第一时间之外的时间,在站点在预设时间通过第一信道进行上行传输时,站点在第二时间通过第二信道进行下行传输,或者在站点在预设时间通过第一信道进行下行传输时,站点在预设时间通过第二信道进行上行传输。
应注意,1310、1320分别与图12中的1210和1220对应,为避免重复,不再赘述。
换句话说,尽管每个信道均可以在不同的时间分别进行上行或下行传 输,但当第一信道进行数据发送时,第二信道仅进行数据接收,反之亦然。这样,对一个支持收发并行传输的WLAN设备(站点点),若其收发信机包括k个发射通道和z个接收通道,其中k≥2,z≥2,则可以使用全部的k个发射通道在第一信道进行数据发送,而同时使用全部的z个接收通道在第二信道进行数据接收,或者使用全部的k个发射通道在第二信道进行数据发送,而同时使用全部的z个接收通道在第一信道进行数据接收。也就是说,在不增加发射和接收通道的复杂度包括通道带宽和通道数的情况下,可以充分利用已有的发射和接收通道的处理能力,实现系统吞吐量的有效提升,特别地,当k=z时系统最大吞吐量可以达到现有WLAN系统的两倍。
可选地,作为另一实施例,预设时间包括第三时间,第三时间为第一时间的起始时刻之前的时间,
在1330中,站点在第三时间使用第一接收通道,通过第一信道接收接入点发送的第一触发帧,第一触发帧用于指示站点在第一时间内通过第一信道接收接入点发送的下行数据;在1340中,站点在第三时间使用第二接收通道,通过第二信道接收接入点发送的第二触发帧,第二触发帧用于指示站点在第一时间内通过第二信道向接入点发送上行数据;其中,第一接收通道为z个接收通道中的任意z-1个接收通道中的至少一个,第二接收通道为z个接收通道中除第一接收通道外的至少一个。
例如以图5(c)所示场景为例,站点STA3使用载波频率为f01的第一信道接收AP发送的下行数据,同时使用载波频率为f02的第二信道向AP发送上行数据。AP的收发信机包括m个发射通道和n个接收通道,站点的收发信机包括k个发射通道和z个接收通道,首先,在第二时间的起始时刻(t1)时刻AP使用至少一个但不超过n-1个接收通道在第一信道进行CCA检测,并使用其余的至少一个接收通道在第二信道进行CCA检测,若第一和第二信道均空闲,AP在第三时间的起始时刻(t2)使用至少一个但不超过m-1个发射通道在第一信道发送第一触发帧用于发送下行传输调度控制信息,同时使用其余的至少一个发射通道在第二信道发送第二触发帧用于发送上行传输调度控制信息,之后,即,站点在t2使用第一接收通道,通过第一信道接收接入点发送的第一触发帧,站点在t2使用第二接收通道,通过第二信道接收接入点发送的第二触发帧,经过SIFS后,在第一时间的起始时刻(t3)AP可以使用其全部的m个发射通道在第一信道发送下行数据帧,而站点则 根据第一触发帧发送的下行传输调度控制信息对该下行数据帧进行接收处理,例如,站点可以在t3时刻使用z个接收通道,通过第二信道接收接入点发送的上行数据。与此同时,在t3时刻站点根据第二触发帧发送的上行传输调度控制信息,在第二信道向AP发送上行数据帧,例如,站点在t3时刻使用k个发射通道,通过第一信道向接入点发送下行数据。AP则可以使用其全部的n个接收通道在第二信道接收上行数据帧。
可选地,作为另一实施例,第一触发帧包括第一调度控制信息,第一调度控制信息包括:站点的标识、站点进行数据传输所使用的传输资源、空间流数与相应空间流的标识、以及传输相应空间流所使用的编码调制方案MCS信息,其中,第一调度控制信息位于触发帧的物理层的高效率信令B字段HE-SIG-B或数据字段中的MAC层协议数据单元PDU中,
第二触发帧包括第二调度控制信息,第二调度控制信息包括:站点的标识、站点进行数据传输所使用的传输资源、空间流数与相应空间流的标识、以及传输相应空间流所使用的编码调制方案MCS信息,其中,第二调度控制信息位于触发帧的物理层的高效率信令B字段HE-SIG-B或数据字段中的MAC层协议数据单元PDU中。
以802.11ax中实施上下行并行传输为例,802.11ax物理层分组中的数据帧,以及触发帧和ACK/BA帧等控制帧均采用图8所示的结构。每个802.11ax物理层分组由前导(Preamble)和数据字段(Data Field)组成,数据字段传输媒体接入控制(Media Access Control,MAC)层的数据单元,可以是用户数据,也可以是MAC层控制信令等,前导由传统前导(Legacy Preamble)和802.11ax特定的前导两部分组成,其中,传统前导是802.11a、802.11n、802.11ac、802.11ax等版本的WLAN协议都有的前导,802.11ax特定的前导用于传输802.11ax特定的物理层控制信息,进一步包括高效率信令A字段(High Efficiency Signal-A field,HE-SIG-A)、高效率短训练字段(High Efficiency Short Training field,HE-STF)、高效率长训练字段(High Efficiency Long Training field,HE-LTF)、高效率信令B字段(High Efficiency Signal-B field,HE-SIG-B)等字段。其中,与本发明相关的是HE-SIG-B,该字段用于携带包括但不限于以下调度控制信息:指示在该分组中进行数据传输的各STA的标识、各STA数据传输所使用的传输资源(例如频域的子载波资源)、空间流数与相应空间流的标识、以及传输相应空间流所使用的编码调制方案 (Modulation Coding Scheme,MCS)等信息。
应注意,由于下行传输调度控制信息已经通过第一触发帧接收,因此优选地,在1210中,如图9所示下行数据帧的前导不再包含HE-SIG-B字段。与此同时,在t3时刻站点根据第二触发帧发送的上行传输调度控制信息,在第二信道向AP发送上行数据帧,AP则可以使用其全部的n个接收通道在第二信道接收上行数据帧,同样地,该上行数据帧的前导不再包含HE-SIG-B字段。
具体而言,如图9所示,上行数据的数据帧的前导包括传统前导、高效率信令A字段HE-SIG-A、高效率短训练字段HE-STF、高效率长训练字段HE-LTF;不包括HE-SIG-B字段。同样的,下行数据的数据帧的前导包括传统前导、高效率信令A字段HE-SIG-A、高效率短训练字段HE-STF、高效率长训练字段HE-LTF,不包括HE-SIG-B字段。
进一步地,作为另一实施例,预设时间还包括第四时间,第四时间为第一时间的结束时刻之后的时间,
在1330中,站点在第四时间使用k个发射通道中的至少一个,通过第一信道向接入点发送第一应答消息,第一应答消息用于表示站点已正确接收下行数据;
在1340中,站点在第四时间使用z个接收通道中的至少一个,通过第二信道接收接入点发送的第二应答消息,第二应答消息用于表示接入点已正确接收上行数据。
其中,第一应答消息可以为ACK帧或BA帧,第二应答消息可以为ACK帧或BA帧。例如,以图5(c)所示场景为例,在1210和1220之后,即在上下行数据帧传输结束后SIFS时间,若站点正确接收AP发送的下行数据帧,即在第四时间的起始时刻(t5)向AP发送上行ACK/BA帧,同时,若AP正确接收STA2发送的上行数据帧,也在t5时刻向站点发送下行ACK/BA帧。
进一步地,作为另一实施例,预设时间还包括第五时间和第六时间,第五时间为第四时间的结束时刻之后的时间,六时间为第五时间的结束时刻之后的时间;
第一触发帧还用于指示站点在第五时间通过第一信道向接入点发送第三上行数据;
第二触发帧还用于指示站点在第五时间通过第二信道接收接入点发送 的第四下行数据,
在1330中,站点在第五时间使用k个发射通道中的至少一个,通过第一信道向接入点发送第三上行数据;站点在第六时间使用z个接收通道中的至少一个,通过第一信道接收接入点发送的第三应答消息,第三应答消息用于表示接入点已正确接收第三上行数据;
在1340中,站点在第五时间使用z个接收通道中的至少一个,通过第二信道接收接入点发送的第四下行数据;站点在第六时间使用k个发射通道中的至少一个,通过第二信道向接入点发送第四应答消息,第四应答消息用于表示站点已正确接收第四下行数据。
可选地,作为另一实施例,第一信道为5490~5710MHz和5735~5835MHz频带中的任意连续或非连续频谱的信道,第二信道为5170~5330MHz频带中的任意连续或非连续频谱的信道。
例如,如图10所示的根据本发明实一个施例的5GHz非授权频谱的使用示意图。其中WLAN可使用的频谱总带宽为480MHz,则将5490~5710MHz和5735~5835MHz作为一个频带,5170~5330MHz作为另外一个频带,第一信道和第二信道分别为这两个频带中的任意连续或非连续频谱的信道,例如,第一信道可以为图中的Ch1和Ch2、Ch3和Ch4、Ch5和Ch6、Ch7和Ch8,这样,两个信道之间最少有160MHz的保护带,从而能够保证接收和发射通道之间的隔离度。
可替代地,作为另一实施例,第一信道为5570~5710MHz、5735~5835MHz和5850~5925MHz频带中的任意连续或非连续频谱的信道,第二信道为5170~5330MHz和5350~5430MHz频带中的任意连续或非连续频谱的信道。
例如,图11所示的根据本发明另一实施例的5GHz非授权频谱的使用示意图。其中WLAN可使用的频谱总带宽为675MHz,可选择中间一段频谱为保护带,其中的信道不用于上下行并行传输而仍沿用现有技术,该保护带两边频带中的信道用于上下行并行传输。例如,将5570~5710MHz、5735~5835MHz和5850~5925MHz共315MHz作为一个频带,5170~5330MHz和5350~5430MHz共240MHz作为另外一个频带,其中5430~5570MHz共140MHz的频谱为上下行并行传输的保护带。
下面结合图14-图17的具体例子更加详细地描述本发明实施例。应注意, 本发明实施例中的例子仅仅是为了帮助本领域技术人员理解本发明实施例,而非要将本发明实施例限于所例示的具体数值或具体场景。本领域技术人员根据所给出实施例的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本发明实施例的范围内。
图14为本发明一个实施例的数据传输过程示意图,此实施例的场景如图5(a)和图5(b)所示,仅AP实施上下行并行传输而STA不实施上下行并行传输。以图5(a)所示场景为例,该场景中的接入点的收发信机包括m个发射通道和n个接收通道,AP使用载波频率为f01的第一信道向STA1发送下行数据,同时使用载波频率为f02的第二信道接收STA2发送的上行数据。如图14所示,在t1时刻AP使用至少一个但不超过n-1个接收通道在第一信道进行CCA检测,并使用其余的至少一个接收通道在第二信道进行CCA检测,若第一和第二信道均空闲,则AP预留一段TXOP用于上下行并行传输。经过SIFS时间后,AP在t2时刻使用至少一个但不超过m-1个发射通道在第一信道发送第一触发帧用于发送下行传输调度控制信息,同时使用其余的至少一个发射通道在第二信道发送第二触发帧用于发送上行传输调度控制信息,其中调度控制信息包括但不限于:指示触发帧之后进行上行或下行数据传输的各STA的标识、各STA数据传输所使用的传输资源(例如频域的子载波资源)、空间流数与相应空间流的标识、以及传输相应空间流所使用的编码调制方案(Modulation Coding Scheme,MCS)等信息,该调度控制信息可以在触发帧的物理层如HE-SIG-B中传输,也可以在触发帧的MAC层传输,即通过触发帧的数据字段中的MAC数据单元传输。
经过SIFS时间后,在t3时刻AP可以使用其全部的m个发射通道在第一信道发送下行数据帧,由于下行传输调度控制信息已经通过第一触发帧发送,因此优选地该下行数据帧的前导不再包含HE-SIG-B字段,如图9所示,而STA1则根据第一触发帧发送的下行传输调度控制信息对该下行数据帧进行接收处理。与此同时,在t3时刻STA2根据第二触发帧发送的上行传输调度控制信息,在第二信道向AP发送上行数据帧,AP则可以使用其全部的n个接收通道在第二信道接收上行数据帧,同样地,该上行数据帧的前导不再包含HE-SIG-B字段。
应注意,上述两个信道上触发帧和数据帧的传输时间上对齐,即两个信道上传输的触发帧和数据帧均长度相同。其中,对于数据帧,AP可以通过 对多个STA上下行传输的调度,选择合适的STA和合适的数据量进行传输,从而保证上下行数据帧长度相同或接近,而对触发帧和数据帧,均可对较短的帧在MAC层或物理层进行填充(Padding)来保证上下行数据帧长度相同,其中,在MAC层或物理层填充的方法可以使用现有WLAN技术中的方法,不再赘述。
在上下行数据帧传输结束后SIFS时间,若STA1正确接收AP发送的下行数据帧,即在t4时刻向AP发送上行ACK/BA帧,同时,若AP正确接收STA2发送的上行数据帧,也在t4时刻向STA1发送下行ACK/BA帧。在ACK/BA帧传输阶段,AP可以使用其全部的m个发射通道在第二信道发送下行ACK/BA帧,也可以使用其全部的n个接收通道在第一信道接收上行ACK/BA帧。其中,上下行ACK/BA帧的长度可以不同,AP预留的TXOP应包括从t2时刻发送触发帧开始,上下行ACK/BA帧中较长的帧传输结束为止的时间。
图15为本发明另一实施例的数据传输过程示意图。在本发明的另一个实施例中,AP和至少一个STA均实施上下行并行传输,其典型场景如图5(c)和图5(d)所示,以图5(c)所示场景为例,AP和STA3均实施上下行并行传输,AP使用载波频率为f01的第一信道向STA1发送下行数据,同时使用载波频率为f02的第二信道接收STA1发送的上行数据。此实施例的数据传输过程与仍如图14所示,图15与图14的区别在于,图14中STA1和STA2的传输过程均由STA3完成。为避免重复,不再赘述。
图16为本发明另一实施例的数据传输过程示意图。图16示出了本发明的基于本发明的上下行级联情况下的WLAN数据传输过程。以图5(a)所示场景为例,AP首先使用载波频率为f01的第一信道向STA1发送下行数据,同时使用载波频率为f02的第二信道接收STA2发送的上行数据,然后再使用第一信道接收STA1发送的上行数据,同时使用第二信道向STA2发送下行数据,因此AP预留的TXOP应包括从t2时刻发送触发帧开始,到最后一次上下行ACK/BA帧中较长的帧传输结束为止的时间。
图16所示过程与图14所示过程在CCA检测、触发帧发送和上下行数据帧的传输上基本相同,不同的是AP在第一信道发送的触发帧仅携带针对STA1在t6时刻开始的上行传输的传输调度控制信息,AP在第二信道发送的触发帧仅携带针对STA2在t3时刻开始的上行传输的传输调度控制信息。这 样,仅上行数据帧的前导不包含HE-SIG-B字段,而AP在第一信道t3时刻开始向STA1发送的下行数据帧以及AP在第二信道t6时刻开始向STA2发送的下行数据帧的前导仍包含HE-SIG-B字段,该字段用于携带相应下行数据传输的调度控制信息。另外,图16所示过程中上下行ACK/BA帧的传输与图14所示过程有所不同,即除最后一次上下行ACK/BA帧的长度可以不同外,其余的上下行ACK/BA帧的长度均相同,同样地,这可对较短的ACK/BA帧在MAC层或物理层进行填充来实现。
尽管图16是以图5(a)所示场景为例的,但该过程适用于图5所示的各类典型应用场景,包括仅AP支持上下行并行传输,或者AP和至少一个STA均支持上下行并行传输的应用场景,如图17所示。图17为本发明另一实施例的数据传输过程示意图。图17中AP的操作与图16类似,不同的是在一次TXOP时间内与4个STA进行上下行并行传输,即AP首先使用载波频率为f01的第一信道向STA1发送下行数据,同时使用载波频率为f02的第二信道接收STA3发送的上行数据;然后再使用第一信道接收STA1和STA2发送的上行数据,同时使用第二信道向STA4发送下行数据,其中STA1和STA2使用OFDMA和/或上行MU-MIMO进行上行复用传输。此时,触发帧中除了调度控制信息,还包括各STA的上行和/或下行数据帧的定时信息,具体来说,AP在第一信道发送的触发帧还指示STA2在t6时刻开始进行上行传输,以及AP在第二信道发送的触发帧还指示STA4在t6时刻开始接收下行数据。
从上述基于本发明的WLAN数据传输过程可以看出,尽管在任一信道的不同时间可以分别进行上行和下行传输,但支持上下行并行传输的WLAN设备可以在另外一个信道上对应地进行下行和上行传输,并且总是可以使用全部的m个发射通道在一个信道上进行数据发送,同时使用全部的n个接收通道在另外一个信道上进行数据接收,这包括上下行数据帧和上下行ACK/BA帧的传输。因此,可以在不增加发射和接收通道的复杂度包括通道带宽和通道数的情况下,充分利用已有的发射和接收通道的处理能力,获得最高200%的系统数据吞吐量。
上文中结合图1至图17详细描述了本发明实施例的数据传输的方法,下面结合图18至图27详细描述本发明实施例的数据传输的设备。
图18是根据本发明一个实施例的接入点的示意框图,如图18所示的接 入点1800包括收发信机1810、发送单元1820和接收单元1830。
具体地,收发信机1810包括m个发射通道和n个接收通道;
发送单元1820用于在第一时间使用m个发射通道中的至少一个,通过第一信道向至少一个第一站点发送下行数据;
接收单元1830用于在第一时间使用n个接收通道中的至少一个,通过第二信道接收至少一个第二站点发送的上行数据,其中,发送单元1820发送下行数据和接收单元1830接收上行数据的起始时刻和结束时刻分别对应相同。
因此,本发明实施例能够在不同的信道上同时进行上行和下行传输,使得发射通道和接收通道同时工作能够充分利用已有的发射和接收通道的处理能力,提升了系统的吞吐量。
可选地,作为另一实施例,发送单元1820在第一时间使用m个发射通道,通过第一信道向至少一个第一站点发送下行数据;接收单元1830在第一时间使用n个接收通道,通过第二信道接收至少一个第二站点发送的上行数据。
因此,本发明实施例,能够充分利用已有的发射和接收通道的处理能力实现系统吞吐量的有效提升,特别地,当m=n时系统最大吞吐量可以达到现有WLAN系统的两倍。
可选地,作为另一实施例,还包括:第一传输单元和第二传输单元。相应地,如图19所示的接入点包括收发信机1910、发送单元1920、接收单元1930、第一传输单元1940和第二传输单元1950。
具体地,收发信机1910、发送单元1920和接收单元分别与图18中的收发信机1810、发送单元1820和接收单元1830相对应,为避免重复,此处不再详述。
第一传输单元1940用于在预设时间通过第一信道进行上行或下行传输;
第二传输单元1950用于在预设时间通过第二信道进行上行或下行传输;
其中,预设时间为除第一时间之外的时间,在第一传输单元在预设时间通过第一信道进行上行传输时,第二传输单元在第二时间通过第二信道进行下行传输,或者在第一传输单元在预设时间通过第一信道进行下行传输时,第二传输单元在预设时间通过第二信道进行上行传输。
可选地,作为另一实施例,预设时间包括第二时间,第二时间为第一时 间的起始时刻之前的时间,第一传输单元1940在第二时间使用第一接收通道在第一信道进行空闲信道评估CCA检测,确定第一信道空闲;第二传输单元1950在第二时间使用第二接收通道在第二信道进行CCA检测,确定第二信道空闲;其中,第一接收通道为n个接收通道中的任意n-1个接收通道中的至少一个,第二接收通道为n个接收通道中除第一接收通道外的至少一个。
可选地,作为另一实施例,预设时间还包括第三时间,第三时间为第一时间的起始时刻之前、第二时间的结束时刻之后的时间;第一传输单元1940还用于在第三时间使用第一发射通道,通过第一信道向至少一个第一站点发送第一触发帧,第一触发帧用于指示至少一个第一站点在第一时间内通过第一信道接收接入点发送的下行数据;
第二传输单元1950还用于在第三时间使用第二发射通道,通过第二信道向至少一个第二站点发送第二触发帧,第二触发帧用于指示至少一个第二站点在第一时间内通过第二信道向接入点发送上行数据,其中,第一发射通道为n个发射通道中的任意n-1个发射通道中的至少一个,第二发射通道为n个发射通道中除第一发射通道外的至少一个。
可选地,作为另一实施例,第一触发帧包括第一调度控制信息,第一调度控制信息包括:至少一个第一站点中的各个站点的标识、至少一个第一站点进行数据传输所使用的传输资源、空间流数与相应空间流的标识、以及传输相应空间流所使用的编码调制方案MCS信息,其中,第一调度控制信息位于第一触发帧的物理层的高效率信令B字段HE-SIG-B或数据字段中的MAC层协议数据单元PDU中,
第二触发帧包括第二调度控制信息,第二调度控制信息包括:至少一个第二站点中的各个站点的标识、至少一个第二站点进行数据传输所使用的传输资源、空间流数与相应空间流的标识、以及传输相应空间流所使用的编码调制方案MCS信息,其中,第二调度控制信息位于第二触发帧的物理层的高效率信令B字段HE-SIG-B或数据字段中的MAC层协议数据单元PDU中。
可选地,作为另一实施例,预设时间还包括第四时间,第四时间为第一时间的结束时刻之后的时间,第一传输单元1930还用于在第四时间使用m个接收通道中的至少一个,通过第一信道接收至少一个第一站点发送的第一应答消息,第一应答消息用于表示至少一个第一站点已正确接收下行数据; 第二传输单元1940还用于在第四时间使用n个发射通道中的至少一个,通过第二信道向至少一个第二站点发送第二应答消息,第二应答消息用于表示接入点已正确接收上行数据。
可选地,作为另一实施例,预设时间还包括第五时间和第六时间,第五时间为第四时间的结束时刻之后的时间,六时间为第五时间的结束时刻之后的时间;第一触发帧还用于指示至少一个第三站点在第五时间通过第一信道向接入点发送第三上行数据;第二触发帧还用于指示至少一个第四站点在第五时间通过第二信道接收接入点发送的第四下行数据,第一传输单元1930还用于在第五时间使用m个接收通道中的至少一个,通过第一信道接收至少一个第三站点发送的第三上行数据;并且,在第六时间使用n个发射通道中的至少一个,通过第一信道向至少一个第三站点发送第三应答消息,第三应答消息用于表示接入点已正确接收第三上行数据;第二传输单元1940还用于在第五时间使用n个发射通道中的至少一个,通过第二信道向至少一个第四站点发送第四下行数据;并且在第六时间使用m个接收通道中的至少一个,通过第二信道接收至少一个第四站点发送的第四应答消息,第四应答消息用于表示至少一个第四站点已正确接收第四下行数据。
可选地,作为另一实施例,上行数据的数据帧的前导包括传统前导、高效率信令A字段HE-SIG-A、高效率短训练字段HE-STF、高效率长训练字段HE-LTF,不包括高效率信令B字段HE-SIG-B;下行数据的数据帧的前导包括传统前导、高效率信令A字段HE-SIG-A、高效率短训练字段HE-STF、高效率长训练字段HE-LTF,不包括高效率信令B字段HE-SIG-B。
可选地,作为另一实施例,第一信道为5490~5710MHz和5735~5835MHz频带中的任意连续或非连续频谱的信道,第二信道为5170~5330MHz频带中的任意连续或非连续频谱的信道。
可选地,作为另一实施例,第一信道为5570~5710MHz、5735~5835MHz和5850~5925MHz频带中的任意连续或非连续频谱的信道,第二信道为5170~5330MHz和5350~5430MHz频带中的任意连续或非连续频谱的信道。
应注意,图18和19所示的接入点能够实现图1-图17中的方法实施例中由接入点完成的各个过程。接入点1800和接入点1900的其他功能和操作可以参考图1至图17中的方法实施例中涉及接入点的各个过程。为避免重复,此处不再详述。
图20是根据本发明一个实施例的站点的示意框图,如图20所示的站点2000包括收发信机2010、发送单元2020和接收单元2030。
具体地,收发信机2010收发信机包括k个发射通道和z个接收通道;
接收单元2020用于在第一时间使用z个接收通道中的至少一个,通过第一信道接收接入点发送的下行数据;
发送单元2030用于在第一时间使用K个发射通道中的至少一个,通过第二信道向接入点发送上行数据,其中,接收单元2020接收下行数据和发送单元2030发送上行数据的起始时刻和结束时刻分别对应相同。
因此,本发明实施例能够在不同的信道上同时进行上行和下行传输,使得发射通道和接收通道同时工作能够充分利用已有的发射和接收通道的处理能力,提升了系统的吞吐量。
可选地,作为另一实施例,发送单元2020在第一时间使用z个接收通道,通过第二信道接收接入点发送上行数据,接收单元2030在第一时间使用k个发射通道,通过第一信道向接入点发送下行数据。
可选地,作为另一实施例,还包括:第一传输单元和第二传输单元。相应地,如图21所示的接入点包括收发信机2110、发送单元2120、接收单元2130、第一传输单元2140和第二传输单元2150。
具体地,收发信机2110、发送单元2120和接收单元2130分别与图20中的收发信机2010、接收单元2020和发送单元2030相对应,为避免重复,此处不再详述。
第一传输单元2140用于在预设时间通过第一信道进行上行或下行传输;第二传输单元2150用于在预设时间通过第二信道进行上行或下行传输;其中,预设时间为除第一时间之外的时间,在第一传输单元在预设时间通过第一信道进行上行传输时,第二传输单元在第二时间通过第二信道进行下行传输,或者在第一传输单元在预设时间通过第一信道进行下行传输时,第二传输单元在预设时间通过第二信道进行上行传输。
可选地,作为另一实施例,预设时间包括第三时间,第三时间为第一时间的起始时刻之前的时间,
第一传输单元2140在第三时间使用第一接收通道,通过第一信道接收接入点发送的第一触发帧,第一触发帧用于指示站点在第一时间内通过第一信道接收接入点发送的下行数据;
第二传输单元2150在第三时间使用第二接收通道,通过第二信道接收接入点发送的第二触发帧,第二触发帧用于指示站点在第一时间内通过第二信道向接入点发送上行数据,
其中,第一接收通道为z个接收通道中的任意z-1个接收通道中的至少一个,第二接收通道为z个接收通道中除第一接收通道外的至少一个。
可选地,作为另一实施例,第一触发帧包括第一调度控制信息,第一调度控制信息包括:站点的标识、站点进行数据传输所使用的传输资源、空间流数与相应空间流的标识、以及传输相应空间流所使用的编码调制方案MCS信息,其中,第一调度控制信息位于触发帧的物理层的高效率信令B字段HE-SIG-B或数据字段中的MAC层协议数据单元PDU中,
第二触发帧包括第二调度控制信息,第二调度控制信息包括:站点的标识、站点进行数据传输所使用的传输资源、空间流数与相应空间流的标识、以及传输相应空间流所使用的编码调制方案MCS信息,其中,第二调度控制信息位于触发帧的物理层的高效率信令B字段HE-SIG-B或数据字段中的MAC层协议数据单元PDU中。
可选地,作为另一实施例,预设时间还包括第四时间,第四时间为第一时间的结束时刻之后的时间,
第一传输单元2140还用于在第四时间使用k个发射通道中的至少一个,通过第一信道向接入点发送第一应答消息,第一应答消息用于表示站点已正确接收下行数据;
第二传输单元2150还用于在第四时间使用z个接收通道中的至少一个,通过第二信道接收接入点发送的第二应答消息,第二应答消息用于表示接入点已正确接收上行数据。
可选地,作为另一实施例,预设时间还包括第五时间和第六时间,第五时间为第四时间的结束时刻之后的时间,六时间为第五时间的结束时刻之后的时间;
第一触发帧还用于指示站点在第五时间通过第一信道向接入点发送第三上行数据;
第二触发帧还用于指示站点在第五时间通过第二信道接收接入点发送的第四下行数据,
第一传输单元2140还用于在第五时间使用k个发射通道中的至少一个, 通过第一信道向接入点发送第三上行数据;并且,在第六时间使用z个接收通道中的至少一个,通过第一信道接收接入点发送的第三应答消息,第三应答消息用于表示接入点已正确接收第三上行数据;
第二传输单元2150还用于在第五时间使用z个接收通道中的至少一个,通过第二信道接收接入点发送的第四下行数据;并且在第六时间使用k个发射通道中的至少一个,通过第二信道向接入点发送第四应答消息,第四应答消息用于表示站点已正确接收第四下行数据。
可选地,作为另一实施例,上行数据的数据帧的前导包括传统前导、高效率信令A字段HE-SIG-A、高效率短训练字段HE-STF、高效率长训练字段HE-LTF,不包括高效率信令B字段HE-SIG-B;
下行数据的数据帧的前导包括传统前导、高效率信令A字段HE-SIG-A、高效率短训练字段HE-STF、高效率长训练字段HE-LTF,不包括高效率信令B字段HE-SIG-B。
可选地,作为另一实施例,第一信道为5490~5710MHz和5735~5835MHz频带中的任意连续或非连续频谱的信道,第二信道为5170~5330MHz频带中的任意连续或非连续频谱的信道。
可选地,作为另一实施例,第一信道为5570~5710MHz、5735~5835MHz和5850~5925MHz频带中的任意连续或非连续频谱的信道,第二信道为5170~5330MHz和5350~5430MHz频带中的任意连续或非连续频谱的信道。
应注意,图20和21所示的站点能够实现图1-图17中的方法实施例中由站点完成的各个过程。站点2000和站点2100的其他功能和操作可以参考图1至图17中的方法实施例中涉及站点的各个过程。为避免重复,此处不再详述。
图22是本发明另一实施例的接入点的示意框图,如图22所示的接入点2200包括:
总线2201;
与总线相连的处理器2202;
与总线相连的存储器2203;
其中,处理器通过总线,调用存储器中存储的程序,用于在第一时间使用m个发射通道中的至少一个,通过第一信道向至少一个第一站点发送下行数据;用于在第一时间使用n个接收通道中的至少一个,通过第二信道接收 至少一个第二站点发送的上行数据,其中,发送下行数据和接收上行数据的起始时刻和结束时刻分别对应相同。
因此,本发明实施例能够在不同的信道上同时进行上行和下行传输,使得发射通道和接收通道同时工作能够充分利用已有的发射和接收通道的处理能力,提升了系统的吞吐量。
应理解,装置2200的收发信机可以包括接收电路、发射电路、功率控制器及天线,收发信机包括m个发射通道和n个接收通道。
处理器还可以称为CPU。存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失行随机存取存储器(NVRAM)。具体的应用中,装置2200可以嵌入或者本身可以就是例如移动电话之类的无线通信设备或者网络侧设备等网络设备,还可以包括容纳发射电路和接收电路的载体,以允许装置2200和远程位置之间进行数据发射和接收。发射电路和接收电路可以耦合到天线。装置2200的各个组件通过总线耦合在一起,其中,总线除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚明起见,在图中将各种总线都标为总线2201。具体的不同产品中实现各功能的部件可能与处理单元集成为一体。
处理器可以实现或者执行本发明方法实施例中的公开的各步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。
应理解,在本发明实施例中,该处理器2202可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器2202还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器2203可以包括只读存储器和随机存取存储器,并向处理器2202提供指令和数据。存储器2203的一部分还可以包括非易失性随机存取存储器。例如,存储器2203还可以存储设备类型的信息。
该总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统。
在实现过程中,上述方法的各步骤可以通过处理器2202中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器2203,处理器2202读取存储器2203中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可选地,作为另一实施例,处理器2202用于在第一时间使用m个发射通道,通过第一信道向至少一个第一站点发送下行数据;在第一时间使用n个接收通道,通过第二信道接收至少一个第二站点发送的上行数据。
可选地,作为另一实施例,处理器2202还用于在预设时间通过第一信道进行上行或下行传输;在预设时间通过第二信道进行上行或下行传输;其中,预设时间为除第一时间之外的时间,在第一传输单元在预设时间通过第一信道进行上行传输时,第二传输单元在第二时间通过第二信道进行下行传输,或者在第一传输单元在预设时间通过第一信道进行下行传输时,第二传输单元在预设时间通过第二信道进行上行传输。
可选地,作为另一实施例,预设时间包括第二时间,第二时间为第一时间的起始时刻之前的时间,处理器2202还用于在第二时间使用第一接收通道在第一信道进行空闲信道评估CCA检测,确定第一信道空闲;在第二时间使用第二接收通道在第二信道进行CCA检测,确定第二信道空闲;其中,第一接收通道为n个接收通道中的任意n-1个接收通道中的至少一个,第二接收通道为n个接收通道中除第一接收通道外的至少一个。
可选地,作为另一实施例,预设时间还包括第三时间,第三时间为第一时间的起始时刻之前、第二时间的结束时刻之后的时间,处理器2202还用于在第三时间使用第一发射通道,通过第一信道向至少一个第一站点发送第一触发帧,第一触发帧用于指示至少一个第一站点在第一时间内通过第一信道接收接入点发送的下行数据;在第三时间使用第二发射通道,通过第二信道向至少一个第二站点发送第二触发帧,第二触发帧用于指示至少一个第二站点在第一时间内通过第二信道向接入点发送上行数据,其中,第一发射通 道为n个发射通道中的任意n-1个发射通道中的至少一个,第二发射通道为n个发射通道中除第一发射通道外的至少一个。
可选地,作为另一实施例,第一触发帧包括第一调度控制信息,第一调度控制信息包括:至少一个第一站点中的各个站点的标识、至少一个第一站点进行数据传输所使用的传输资源、空间流数与相应空间流的标识、以及传输相应空间流所使用的编码调制方案MCS信息,其中,第一调度控制信息位于第一触发帧的物理层的高效率信令B字段HE-SIG-B或数据字段中的MAC层协议数据单元PDU中,第二触发帧包括第二调度控制信息,第二调度控制信息包括:至少一个第二站点中的各个站点的标识、至少一个第二站点进行数据传输所使用的传输资源、空间流数与相应空间流的标识、以及传输相应空间流所使用的编码调制方案MCS信息,其中,第二调度控制信息位于第二触发帧的物理层的高效率信令B字段HE-SIG-B或数据字段中的MAC层协议数据单元PDU中。
可选地,作为另一实施例,预设时间还包括第四时间,第四时间为第一时间的结束时刻之后的时间,处理器2202还用于在第四时间使用m个接收通道中的至少一个,通过第一信道接收至少一个第一站点发送的第一应答消息,第一应答消息用于表示至少一个第一站点已正确接收下行数据;在第四时间使用n个发射通道中的至少一个,通过第二信道向至少一个第二站点发送第二应答消息,第二应答消息用于表示接入点已正确接收上行数据。
可选地,作为另一实施例,预设时间还包括第五时间和第六时间,第五时间为第四时间的结束时刻之后的时间,六时间为第五时间的结束时刻之后的时间;第一触发帧还用于指示至少一个第三站点在第五时间通过第一信道向接入点发送第三上行数据;第二触发帧还用于指示至少一个第四站点在第五时间通过第二信道接收接入点发送的第四下行数据,处理器2202还用于在第五时间使用m个接收通道中的至少一个,通过第一信道接收至少一个第三站点发送的第三上行数据;并且,在第六时间使用n个发射通道中的至少一个,通过第一信道向至少一个第三站点发送第三应答消息,第三应答消息用于表示接入点已正确接收第三上行数据;在第五时间使用n个发射通道中的至少一个,通过第二信道向至少一个第四站点发送第四下行数据;并且在第六时间使用m个接收通道中的至少一个,通过第二信道接收至少一个第四站点发送的第四应答消息,第四应答消息用于表示至少一个第四站点已正确 接收第四下行数据。
可选地,作为另一实施例,上行数据的数据帧的前导包括传统前导、高效率信令A字段HE-SIG-A、高效率短训练字段HE-STF、高效率长训练字段HE-LTF,不包括高效率信令B字段HE-SIG-B;下行数据的数据帧的前导包括传统前导、高效率信令A字段HE-SIG-A、高效率短训练字段HE-STF、高效率长训练字段HE-LTF,不包括高效率信令B字段HE-SIG-B。
可选地,作为另一实施例,第一信道为5490~5710MHz和5735~5835MHz频带中的任意连续或非连续频谱的信道,第二信道为5170~5330MHz频带中的任意连续或非连续频谱的信道。
可选地,作为另一实施例,第一信道为5570~5710MHz、5735~5835MHz和5850~5925MHz频带中的任意连续或非连续频谱的信道,第二信道为5170~5330MHz和5350~5430MHz频带中的任意连续或非连续频谱的信道。
应注意,图22所示的接入点与图18和图19所示的接入点相对应,能够实现图1-图17中的方法实施例中由接入点完成的各个过程。接入点2200的其他功能和操作可以参考图1至图17中的方法实施例中涉及接入点的各个过程。为避免重复,此处不再详述。
图23是本发明另一实施例的站点的示意框图,如图23所示的站点2300包括:
总线2301;
与总线相连的处理器2302;
与总线相连的存储器2303;
其中,处理器通过总线,调用存储器中存储的程序,用于在第一时间使用z个接收通道中的至少一个,通过第一信道接收接入点发送的下行数据;在第一时间使用K个发射通道中的至少一个,通过第二信道向接入点发送上行数据,其中,接收下行数据和发送上行数据的起始时刻和结束时刻分别对应相同。
因此,本发明实施例能够在不同的信道上同时进行上行和下行传输,使得发射通道和接收通道同时工作能够充分利用已有的发射和接收通道的处理能力,提升了系统的吞吐量。
应理解,装置2300的收发信机可以包括接收电路、发射电路、功率控制器及天线,收发信机包括k个发射通道和z个接收通道。
处理器还可以称为CPU。存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失行随机存取存储器(NVRAM)。具体的应用中,装置2300可以嵌入或者本身可以就是例如移动电话之类的无线通信设备或者网络侧设备等网络设备,还可以包括容纳发射电路和接收电路的载体,以允许装置2300和远程位置之间进行数据发射和接收。发射电路和接收电路可以耦合到天线。装置2300的各个组件通过总线耦合在一起,其中,总线除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚明起见,在图中将各种总线都标为总线2301。具体的不同产品中实现各功能的部件可能与处理单元集成为一体。
处理器可以实现或者执行本发明方法实施例中的公开的各步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。
应理解,在本发明实施例中,该处理器2302可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器2302还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器2303可以包括只读存储器和随机存取存储器,并向处理器2302提供指令和数据。存储器2303的一部分还可以包括非易失性随机存取存储器。例如,存储器2303还可以存储设备类型的信息。
该总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统。
在实现过程中,上述方法的各步骤可以通过处理器2302中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质 中。该存储介质位于存储器2303,处理器2302读取存储器2303中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可选地,作为另一实施例,处理器2302在第一时间使用z个接收通道,通过第二信道接收接入点发送上行数据,在第一时间使用k个发射通道,通过第一信道向接入点发送下行数据。
可选地,作为另一实施例,处理器2302还用于在预设时间通过第一信道进行上行或下行传输;在预设时间通过第二信道进行上行或下行传输;其中,预设时间为除第一时间之外的时间,在第一传输单元在预设时间通过第一信道进行上行传输时,第二传输单元在第二时间通过第二信道进行下行传输,或者在第一传输单元在预设时间通过第一信道进行下行传输时,第二传输单元在预设时间通过第二信道进行上行传输。
可选地,作为另一实施例,预设时间包括第三时间,第三时间为第一时间的起始时刻之前的时间,处理器2302还用于在第三时间使用第一接收通道,通过第一信道接收接入点发送的第一触发帧,第一触发帧用于指示站点在第一时间内通过第一信道接收接入点发送的下行数据;在第三时间使用第二接收通道,通过第二信道接收接入点发送的第二触发帧,第二触发帧用于指示站点在第一时间内通过第二信道向接入点发送上行数据,其中,第一接收通道为z个接收通道中的任意z-1个接收通道中的至少一个,第二接收通道为z个接收通道中除第一接收通道外的至少一个。
可选地,作为另一实施例,第一触发帧包括第一调度控制信息,第一调度控制信息包括:站点的标识、站点进行数据传输所使用的传输资源、空间流数与相应空间流的标识、以及传输相应空间流所使用的编码调制方案MCS信息,其中,第一调度控制信息位于触发帧的物理层的高效率信令B字段HE-SIG-B或数据字段中的MAC层协议数据单元PDU中,第二触发帧包括第二调度控制信息,第二调度控制信息包括:站点的标识、站点进行数据传输所使用的传输资源、空间流数与相应空间流的标识、以及传输相应空间流所使用的编码调制方案MCS信息,其中,第二调度控制信息位于触发帧的物理层的高效率信令B字段HE-SIG-B或数据字段中的MAC层协议数据单元PDU中。
可选地,作为另一实施例,预设时间还包括第四时间,第四时间为第一时间的结束时刻之后的时间,处理器2302还用于在第四时间使用k个发射 通道中的至少一个,通过第一信道向接入点发送第一应答消息,第一应答消息用于表示站点已正确接收下行数据;在第四时间使用z个接收通道中的至少一个,通过第二信道接收接入点发送的第二应答消息,第二应答消息用于表示接入点已正确接收上行数据。
可选地,作为另一实施例,预设时间还包括第五时间和第六时间,第五时间为第四时间的结束时刻之后的时间,六时间为第五时间的结束时刻之后的时间;第一触发帧还用于指示站点在第五时间通过第一信道向接入点发送第三上行数据;第二触发帧还用于指示站点在第五时间通过第二信道接收接入点发送的第四下行数据,处理器2302还用于在第五时间使用k个发射通道中的至少一个,通过第一信道向接入点发送第三上行数据;并且,在第六时间使用z个接收通道中的至少一个,通过第一信道接收接入点发送的第三应答消息,第三应答消息用于表示接入点已正确接收第三上行数据;在第五时间使用z个接收通道中的至少一个,通过第二信道接收接入点发送的第四下行数据;并且在第六时间使用k个发射通道中的至少一个,通过第二信道向接入点发送第四应答消息,第四应答消息用于表示站点已正确接收第四下行数据。
可选地,作为另一实施例,上行数据的数据帧的前导包括传统前导、高效率信令A字段HE-SIG-A、高效率短训练字段HE-STF、高效率长训练字段HE-LTF,不包括高效率信令B字段HE-SIG-B;下行数据的数据帧的前导包括传统前导、高效率信令A字段HE-SIG-A、高效率短训练字段HE-STF、高效率长训练字段HE-LTF,不包括高效率信令B字段HE-SIG-B。
可选地,作为另一实施例,第一信道为5490~5710MHz和5735~5835MHz频带中的任意连续或非连续频谱的信道,第二信道为5170~5330MHz频带中的任意连续或非连续频谱的信道。
可选地,作为另一实施例,第一信道为5570~5710MHz、5735~5835MHz和5850~5925MHz频带中的任意连续或非连续频谱的信道,第二信道为5170~5330MHz和5350~5430MHz频带中的任意连续或非连续频谱的信道。
应注意,图23所示的站点与图20和图21所示的站点相对应,能够实现图1-图17中的方法实施例中由站点完成的各个过程。站点2300的其他功能和操作可以参考图1至图17中的方法实施例中涉及站点的各个过程。为避免重复,此处不再详述。
本发明实施例同时提出了与上述数据传输方法相对应的收发信机,为了使得本发明实施例的方法能够实施,本发明实施例提出一种不同与现有WLAN设备的收发信机,在结束本发明实施例的收发信机之前,首先介绍一种现有的收发信机,如图24所示的收发信机包括发射通道和接收通道,具体而言,发射通道主要由数字基带信号发送处理单元、数字模拟转换器(Digital to Analog Converter,简称DAC)、低通滤波器(Low Pass Filter,简称LPF)、上变频器、功率放大器(Power Amplifier,简称PA)及天线等模块构成;接收通道主要由天线、低噪声放大器(Low Noise Amplifier,简称LNA)、下变频器、LPF、模拟数字转换器(Analog to Digital Converter,简称ADC)及数字基带信号接收处理单元等模块构成。如前,在现有WLAN系统中,WLAN设备的发射和接收通道总是交替而不是同时工作的,因此,一个发射通道和一个接收通道可以通过2选1射频开关共用一根天线;同时,WLAN设备发射和接收信号均在同一信道上,所有发射和接收通道的载波频率都相同,因此所有发射通道的上变频器和接收通道的下变频器均使用同一本振信号,如图24中由参考频率源(典型为晶体振荡器)的参考频率信号经一个相位锁定环路(Phase Locked Loop,简称PLL)后输出的载波频率为f0的本振信号。
由于现有的收发信机无法实现上下行并行传输。本发明实施例提出了一种新的收发信机。具体而言,如图25所示,本发明实施例的收发信机包括发射通道和接收通道之外,还包括:第一相位锁定环路PLL、第二PLL、多路选择开关、信道选择射频开关和双工器;其中多路选择开关与第一PLL和第二PLL相连接,用于为发射通道和接收通道提供本振信号;信道选择射频开关与发射通道的PA、接收通道的LNA和双工器相连,用于为发射通道和接收通道选择双工器的端口,双工器与天线相连,使得发射通道和接收通道共用天线。
可选地,第一PLL和第二PLL根据同一参考频率分别提供第一频率信号和第二频率信号,发射通道和接收通道使用第一频率信号和第二频率信号中的任一个进行数据传输,且当发射通道使用第一频率信号进行数据传输时,接收通道使用第二频率信号进行数据传输,或者当发射通道使用第二频率信号进行数据传输时,接收通道使用第一频率信号进行数据传输。
可选地,双工器包括第一端口、第二端口、第三端口、第一带通滤波器 和第二带通滤波器,其中,第一端口与第一带通滤波器相连接,第二端口与第二通滤波器相连接,第三端口与第一带通滤波器和第二带通滤波器向连接,第一端口和第二端口用于连接发射通道和接收通道,第三端口用于连接天线,第一带通滤波器用于导通第一频率信号,第二带通滤波器用于导通第二频率信号。
可选地,当发射通道使用第一频率信号,通过第一信道进行数据传输,且接收通道使用第二频率信号,通过第二信道进行数据传输时,发射通道的PA的输出端与第一端口相连,接接收通道的LNA的输入端与第二端口相连;
或者,当发射通道使用第二频率信号,通过第二信道进行数据传输,且接收通道使用第一频率信号,通过第一信道进行数据传输时,发射通道的PA的输出端与第二端口相连,接接收通道的LNA的输入端与第一端口相连。
例如,为了实现本发明提出的上下行并行传输,现有WLAN设备的收发信机需要进行改进,进行上下行并行传输的WLAN设备的发射通道和接收通道,在不同的时间均可能工作在不同载波频率的信道上,AP的发射通道在发送触发帧期间,一部分工作在第一信道上,还有一部分工作在第二信道上,仅经过SIFS时间,其所有发射通道均工作在第一信道上,再次经过SIFS时间之后切换到第二信道上工作,再经过SIFS时间,又切换回第一信道。由于典型的SIFS时间为16微秒,而PLL从一个频率切换到另外一个频率的稳定时间通常需要数百微秒甚至数毫秒的时间,因此,如图25所示,采用双PLL提供两路基于同一参考频率的频率分别为f01和f02载波信号,然后经过一个多路选择开关分别为每个发射和接收通道提供本振,其中,任何一个发射或接收通道的本振信号均可选择频率为f01或f02的载波信号,这样,就无需动态改变PLL的输出频率,任何一个发射或接收通道均可实现快速的信道切换。
由于上下行并行传输,采用双工器(Duplexer)让工作在不同载波频率的一个发射通道和一个接收通道共用一根天线。图26所示为典型的双工器结构,其中第一端口和第二端口用于连接发射通道和接收通道,第三端口用于连接天线。带通滤波器1只能让载波频率为f01的第一信道的信号通过,包括从第一端口输入第三端口输出,或者从第三端口输入第一端口输出;带通滤波器2只能让载波频率为f02的第二信道的信号通过,包括从第二端口输入第三端口输出,或者从第三端口输入第二端口输出。如图25所示,发 射通道PA的输出端和接收通道LNA的输入端,与双工器的第一端口和第二端口之间,为一个四端口的信道选择射频开关。该射频开关的作用在于,如果发射通道工作在波频率为f01的第一信道,而接收通道工作在波频率为f02的第二信道,则将发射通道PA的输出端与双工器的第一端口相连,并将接收通道LNA的输入端与双工器的第二端口相连;如果发射通道工作在波频率为f02的第二信道,而接收通道工作在波频率为f01的第一信道,则将发射通道PA的输出端与双工器的第二端口相连,并将接收通道LNA的输入端与双工器的第一端口相连。
图27为本发明实施例的设备,设备2700包括如图26所示的收发信机。
可选地,设备2700可以为接入点或站点。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本发明实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超 出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发明可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么 同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本发明所使用的,盘(Disk)和碟(disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
总之,以上所述仅为本发明技术方案的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (48)

  1. 一种用于接入点的数据传输的方法,其特征在于,所述接入点的收发信机包括m个发射通道和n个接收通道,所述方法应用于无线局域网WLAN中,所述方法包括:
    所述接入点在第一时间使用所述m个发射通道中的至少一个,通过第一信道向至少一个第一站点发送下行数据;
    所述接入点在所述第一时间使用所述n个接收通道中的至少一个,通过第二信道接收至少一个第二站点发送的上行数据,
    其中,所述接入点发送所述下行数据和接收所述上行数据的起始时刻和结束时刻分别对应相同。
  2. 根据权利要求1所述的方法,其特征在于,
    所述接入点在所述第一时间使用所述m个发射通道中的至少一个,通过第一信道向至少一个第一站点发送下行数据,包括:
    所述接入点在所述第一时间使用所述m个发射通道,通过第一信道向至少一个第一站点发送下行数据;
    所述接入点在所述第一时间使用所述n个接收通道中的至少一个,通过第二信道接收至少一个第二站点发送的上行数据,包括:
    所述接入点在所述第一时间使用所述n个接收通道,通过第二信道接收至少一个第二站点发送的上行数据。
  3. 根据权利要求1或2所述的方法,其特征在于,还包括:
    所述接入点在预设时间通过所述第一信道进行上行或下行传输;
    所述接入点在所述预设时间通过所述第二信道进行上行或下行传输;
    其中,所述预设时间为除所述第一时间之外的时间,在所述接入点在所述预设时间通过所述第一信道进行上行传输时,所述接入点在所述预设时间通过所述第二信道进行下行传输,或者在所述接入点在所述预设时间通过所述第一信道进行下行传输时,所述接入点在所述预设时间通过所述第二信道进行上行传输。
  4. 根据权利要求3所述的方法,其特征在于,所述预设时间包括第二时间,所述第二时间为所述第一时间的起始时刻之前的时间,所述接入点在预设时间通过所述第一信道进行上行或下行传输,包括:
    所述接入点在所述第二时间使用第一接收通道在所述第一信道进行空 闲信道评估CCA检测,确定所述第一信道空闲;
    所述接入点在所述预设时间通过所述第二信道进行上行或下行传输,包括:
    所述接入点在所述第二时间使用第二接收通道在所述第二信道进行CCA检测,确定所述第二信道空闲;
    其中,第一接收通道为所述n个接收通道中的任意n-1个接收通道中的至少一个,所述第二接收通道为所述n个接收通道中除所述第一接收通道外的至少一个。
  5. 根据权利要求4所述的方法,其特征在于,所述预设时间还包括第三时间,所述第三时间为所述第一时间的起始时刻之前、所述第二时间的结束时刻之后的时间,
    所述接入点在预设时间通过所述第一信道进行上行或下行传输,还包括:
    所述接入点在所述第三时间使用第一发射通道,通过所述第一信道向所述至少一个第一站点发送第一触发帧,所述第一触发帧用于指示所述至少一个第一站点在所述第一时间通过所述第一信道接收所述接入点发送的所述下行数据;
    所述接入点在所述预设时间通过所述第二信道进行上行或下行传输,还包括:
    所述接入点在所述第三时间使用第二发射通道,通过所述第二信道向所述至少一个第二站点发送第二触发帧,所述第二触发帧用于指示所述至少一个第二站点在所述第一时间通过所述第二信道向所述接入点发送所述上行数据,
    其中,第一发射通道为所述n个发射通道中的任意n-1个发射通道中的至少一个,所述第二发射通道为所述n个发射通道中除所述第一发射通道外的至少一个。
  6. 根据权利要求5所述的方法,其特征在于,
    所述第一触发帧包括第一调度控制信息,所述第一调度控制信息包括:所述至少一个第一站点中的各个站点的标识、所述至少一个第一站点进行数据传输所使用的传输资源、空间流数与相应空间流的标识、以及传输相应空间流所使用的编码调制方案MCS信息,其中,所述第一调度控制信息位于 所述第一触发帧的物理层的高效率信令B字段HE-SIG-B或数据字段中的MAC层协议数据单元PDU中,
    所述第二触发帧包括第二调度控制信息,所述第二调度控制信息包括:所述至少一个第二站点中的各个站点的标识、所述至少一个第二站点进行数据传输所使用的传输资源、空间流数与相应空间流的标识、以及传输相应空间流所使用的编码调制方案MCS信息,其中,所述第二调度控制信息位于所述第二触发帧的物理层的高效率信令B字段HE-SIG-B或数据字段中的MAC层协议数据单元PDU中。
  7. 根据权利要求5或6所述的方法,其特征在于,所述预设时间还包括第四时间,所述第四时间为所述第一时间的结束时刻之后的时间,所述接入点在预设时间通过所述第一信道进行上行或下行传输,还包括:
    所述接入点在所述第四时间使用m个接收通道中的至少一个,通过所述第一信道接收所述至少一个第一站点发送的第一应答消息,所述第一应答消息用于表示所述至少一个第一站点已正确接收所述下行数据;
    所述接入点在所述预设时间通过所述第二信道进行上行或下行传输,还包括:
    所述接入点在所述第四时间使用n个发射通道中的至少一个,通过所述第二信道向所述至少一个第二站点发送第二应答消息,所述第二应答消息用于表示所述接入点已正确接收所述上行数据。
  8. 根据权利要求7所述的方法,其特征在于,所述预设时间还包括第五时间和第六时间,所述第五时间为所述第四时间的结束时刻之后的时间,所述六时间为所述第五时间的结束时刻之后的时间;
    所述第一触发帧还用于指示至少一个第三站点在第五时间通过所述第一信道向所述接入点发送第三上行数据;
    所述第二触发帧还用于指示至少一个第四站点在所述第五时间通过所述第二信道接收所述接入点发送的第四下行数据,
    所述接入点在预设时间通过所述第一信道进行上行或下行传输,还包括:
    所述接入点在所述第五时间使用m个接收通道中的至少一个,通过所述第一信道接收所述至少一个第三站点发送的所述第三上行数据;
    所述接入点在所述第六时间使用n个发射通道中的至少一个,通过所述 第一信道向所述至少一个第三站点发送第三应答消息,所述第三应答消息用于表示所述接入点已正确接收所述第三上行数据;
    所述接入点在所述预设时间通过所述第二信道进行上行或下行传输,还包括:
    所述接入点在所述第五时间使用n个发射通道中的至少一个,通过所述第二信道向所述至少一个第四站点发送所述第四下行数据;
    所述接入点在所述第六时间使用m个接收通道中的至少一个,通过所述第二信道接收所述至少一个第四站点发送的第四应答消息,所述第四应答消息用于表示所述至少一个第四站点已正确接收所述第四下行数据。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,
    所述上行数据的数据帧的前导包括传统前导、高效率信令A字段HE-SIG-A、高效率短训练字段HE-STF、高效率长训练字段HE-LTF,不包括高效率信令B字段HE-SIG-B;
    所述下行数据的数据帧的前导包括传统前导、高效率信令A字段HE-SIG-A、高效率短训练字段HE-STF、高效率长训练字段HE-LTF,不包括高效率信令B字段HE-SIG-B。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述第一信道为5490~5710MHz和5735~5835MHz频带中的任意连续或非连续频谱的信道,所述第二信道为5170~5330MHz频带中的任意连续或非连续频谱的信道。
  11. 根据权利要求1至9中任一项所述的方法,其特征在于,所述第一信道为5570~5710MHz、5735~5835MHz和5850~5925MHz频带中的任意连续或非连续频谱的信道,所述第二信道为5170~5330MHz和5350~5430MHz频带中的任意连续或非连续频谱的信道。
  12. 一种用于站点的数据传输的方法,其特征在于,所述站点的收发信机包括k个发射通道和z个接收通道,所述方法应用于无线局域网WLAN中,所述方法包括:
    站点在第一时间使用所述z个接收通道中的至少一个,通过第一信道接收接入点发送的下行数据;
    所述站点在所述第一时间使用所述K个发射通道中的至少一个,通过第二信道向所述接入点发送上行数据,
    其中,所述站点接收所述下行数据和发送所述上行数据的起始时刻和结束时刻分别对应相同。
  13. 根据权利要求12所述的方法,其特征在于,
    所述站点在所述第一时间使用所述z个接收通道中的至少一个,通过第二信道向所述接入点发送上行数据,包括:
    所述站点在所述第一时间使用所述z个接收通道,通过第二信道接收接入点发送上行数据,
    所示站点在第一时间使用所述k个发射通道中的至少一个,通过第一信道接收接入点发送的下行数据,包括:
    所示站点在第一时间使用所述k个发射通道,通过第一信道向接入点发送下行数据。
  14. 根据权利要求12或13所述的方法,其特征在于,还包括:
    所述站点在预设时间通过所述第一信道进行上行或下行传输;
    所述站点在所述预设时间通过所述第二信道进行上行或下行传输;
    其中,所述预设时间为除所述第一时间之外的时间,在所述站点在所述预设时间通过所述第一信道进行上行传输时,所述站点在所述预设时间通过所述第二信道进行下行传输,或者在所述站点在所述预设时间通过所述第一信道进行下行传输时,所述站点在所述预设时间通过所述第二信道进行上行传输。
  15. 根据权利要求14所述的方法,其特征在于,所述预设时间包括第三时间,所述第三时间为所述第一时间的起始时刻之前的时间,
    所述站点在预设时间通过所述第一信道进行上行或下行传输,包括:
    所述站点在所述第三时间使用第一接收通道,通过所述第一信道接收所述接入点发送的第一触发帧,所述第一触发帧用于指示所述站点在所述第一时间通过所述第一信道接收所述接入点发送的所述下行数据;
    所述站点在所述预设时间通过所述第二信道进行上行或下行传输,包括:
    所述站点在所述第三时间使用第二接收通道,通过所述第二信道接收所述接入点发送的第二触发帧,所述第二触发帧用于指示所述站点在所述第一时间通过所述第二信道向所述接入点发送所述上行数据,
    其中,第一接收通道为所述z个接收通道中的任意z-1个接收通道中的 至少一个,所述第二接收通道为所述z个接收通道中除所述第一接收通道外的至少一个。
  16. 根据权利要求15所述的方法,其特征在于,
    所述第一触发帧包括第一调度控制信息,所述第一调度控制信息包括:所述站点的标识、所述站点进行数据传输所使用的传输资源、空间流数与相应空间流的标识、以及传输相应空间流所使用的编码调制方案MCS信息,其中,所述第一调度控制信息位于所述触发帧的物理层的高效率信令B字段HE-SIG-B或数据字段中的MAC层协议数据单元PDU中,
    所述第二触发帧包括第二调度控制信息,所述第二调度控制信息包括:所述站点的标识、所述站点进行数据传输所使用的传输资源、空间流数与相应空间流的标识、以及传输相应空间流所使用的编码调制方案MCS信息,其中,所述第二调度控制信息位于所述触发帧的物理层的高效率信令B字段HE-SIG-B或数据字段中的MAC层协议数据单元PDU中。
  17. 根据权利要求15或16所述的方法,其特征在于,所述预设时间还包括第四时间,所述第四时间为所述第一时间的结束时刻之后的时间,
    所述站点在预设时间通过所述第一信道进行上行或下行传输,还包括:
    所述站点在第四时间使用k个发射通道中的至少一个,通过所述第一信道向所述接入点发送第一应答消息,所述第一应答消息用于表示所述站点已正确接收所述下行数据;
    所述站点在所述预设时间通过所述第二信道进行上行或下行传输,还包括:
    所述站点在所述第四时间使用z个接收通道中的至少一个,通过所述第二信道接收所述接入点发送的第二应答消息,所述第二应答消息用于表示所述接入点已正确接收所述上行数据。
  18. 根据权利要求17所述的方法,其特征在于,所述预设时间还包括第五时间和第六时间,所述第五时间为所述第四时间的结束时刻之后的时间,所述六时间为所述第五时间的结束时刻之后的时间;
    所述第一触发帧还用于指示所述站点在第五时间通过所述第一信道向所述接入点发送第三上行数据;
    所述第二触发帧还用于指示所述站点在所述第五时间通过所述第二信道接收所述接入点发送的第四下行数据,
    所述站点在预设时间通过所述第一信道进行上行或下行传输,还包括:
    所述站点在第五时间使用k个发射通道中的至少一个,通过所述第一信道向所述接入点发送第三上行数据;
    所述站点在第六时间使用z个接收通道中的至少一个,通过所述第一信道接收所述接入点发送的第三应答消息,所述第三应答消息用于表示所述接入点已正确接收所述第三上行数据;
    所述站点在所述预设时间通过所述第二信道进行上行或下行传输,还包括:
    所述站点在所述第五时间使用z个接收通道中的至少一个,通过所述第二信道接收所述接入点发送的第四下行数据;
    所述站点在所述第六时间使用k个发射通道中的至少一个,通过所述第二信道向所述接入点发送第四应答消息,所述第四应答消息用于表示所述站点已正确接收所述第四下行数据。
  19. 根据权利要求12至18中任一项所述的方法,其特征在于,
    所述上行数据的数据帧的前导包括传统前导、高效率信令A字段HE-SIG-A、高效率短训练字段HE-STF、高效率长训练字段HE-LTF,不包括高效率信令B字段HE-SIG-B;
    所述下行数据的数据帧的前导包括传统前导、高效率信令A字段HE-SIG-A、高效率短训练字段HE-STF、高效率长训练字段HE-LTF,不包括高效率信令B字段HE-SIG-B。
  20. 根据权利要求12至19中任一项所述的方法,其特征在于,所述第一信道为5490~5710MHz和5735~5835MHz频带中的任意连续或非连续频谱的信道,所述第二信道为5170~5330MHz频带中的任意连续或非连续频谱的信道。
  21. 根据权利要求12至19中任一项所述的方法,其特征在于,所述第一信道为5570~5710MHz、5735~5835MHz和5850~5925MHz频带中的任意连续或非连续频谱的信道,所述第二信道为5170~5330MHz和5350~5430MHz频带中的任意连续或非连续频谱的信道。
  22. 一种接入点,其特征在于,包括:
    收发信机,所述收发信机包括m个发射通道和n个接收通道;
    发送单元,用于在第一时间使用所述m个发射通道中的至少一个,通过 第一信道向至少一个第一站点发送下行数据;
    接收单元,用于在所述第一时间使用所述n个接收通道中的至少一个,通过第二信道接收至少一个第二站点发送的上行数据,
    其中,所述发送单元发送所述下行数据和所述接收单元接收所述上行数据的起始时刻和结束时刻分别对应相同。
  23. 根据权利要求22所述的接入点,其特征在于,所述发送单元在所述第一时间使用所述m个发射通道,通过第一信道向至少一个第一站点发送下行数据;所述接收单元在所述第一时间使用所述n个接收通道,通过第二信道接收至少一个第二站点发送的上行数据。
  24. 根据权利要求22或23所述的接入点,其特征在于,还包括:
    第一传输单元,用于在预设时间通过所述第一信道进行上行或下行传输;
    第二传输单元,用于在所述预设时间通过所述第二信道进行上行或下行传输;
    其中,所述预设时间为除所述第一时间之外的时间,在所述第一传输单元在所述预设时间通过所述第一信道进行上行传输时,所述第二传输单元在所述预设时间通过所述第二信道进行下行传输,或者在所述第一传输单元在所述预设时间通过所述第一信道进行下行传输时,所述第二传输单元在所述预设时间通过所述第二信道进行上行传输。
  25. 根据权利要求24所述的接入点,其特征在于,所述预设时间包括第二时间,所述第二时间为所述第一时间的起始时刻之前的时间,
    所述第一传输单元在所述第二时间使用第一接收通道在所述第一信道进行空闲信道评估CCA检测,确定所述第一信道空闲;
    所述第二传输单元在所述第二时间使用第二接收通道在所述第二信道进行CCA检测,确定所述第二信道空闲;
    其中,第一接收通道为所述n个接收通道中的任意n-1个接收通道中的至少一个,所述第二接收通道为所述n个接收通道中除所述第一接收通道外的至少一个。
  26. 根据权利要求25所述的接入点,其特征在于,所述预设时间还包括第三时间,所述第三时间为所述第一时间的起始时刻之前、所述第二时间的结束时刻之后的时间,
    所述第一传输单元还用于在所述第三时间使用第一发射通道,通过所述第一信道向所述至少一个第一站点发送第一触发帧,所述第一触发帧用于指示所述至少一个第一站点在所述第一时间通过所述第一信道接收所述接入点发送的所述下行数据;
    所述第二传输单元还用于在所述第三时间使用第二发射通道,通过所述第二信道向所述至少一个第二站点发送第二触发帧,所述第二触发帧用于指示所述至少一个第二站点在所述第一时间通过所述第二信道向所述接入点发送所述上行数据,
    其中,第一发射通道为所述n个发射通道中的任意n-1个发射通道中的至少一个,所述第二发射通道为所述n个发射通道中除所述第一发射通道外的至少一个。
  27. 根据权利要求26所述的接入点,其特征在于,
    所述第一触发帧包括第一调度控制信息,所述第一调度控制信息包括:所述至少一个第一站点中的各个站点的标识、所述至少一个第一站点进行数据传输所使用的传输资源、空间流数与相应空间流的标识、以及传输相应空间流所使用的编码调制方案MCS信息,其中,所述第一调度控制信息位于所述第一触发帧的物理层的高效率信令B字段HE-SIG-B或数据字段中的MAC层协议数据单元PDU中,
    所述第二触发帧包括第二调度控制信息,所述第二调度控制信息包括:所述至少一个第二站点中的各个站点的标识、所述至少一个第二站点进行数据传输所使用的传输资源、空间流数与相应空间流的标识、以及传输相应空间流所使用的编码调制方案MCS信息,其中,所述第二调度控制信息位于所述第二触发帧的物理层的高效率信令B字段HE-SIG-B或数据字段中的MAC层协议数据单元PDU中。
  28. 根据权利要求26或27所述的接入点,其特征在于,所述预设时间还包括第四时间,所述第四时间为所述第一时间的结束时刻之后的时间,
    所述第一传输单元还用于在所述第四时间使用m个接收通道中的至少一个,通过所述第一信道接收所述至少一个第一站点发送的第一应答消息,所述第一应答消息用于表示所述至少一个第一站点已正确接收所述下行数据;
    所述第二传输单元还用于在所述第四时间使用n个发射通道中的至少一 个,通过所述第二信道向所述至少一个第二站点发送第二应答消息,所述第二应答消息用于表示所述接入点已正确接收所述上行数据。
  29. 根据权利要求28所述的接入点,其特征在于,所述预设时间还包括第五时间和第六时间,所述第五时间为所述第四时间结束时刻之后的时间,所述六时间为所述第五时间的结束时刻之后的时间;
    所述第一触发帧还用于指示至少一个第三站点在第五时间通过所述第一信道向所述接入点发送第三上行数据;
    所述第二触发帧还用于指示至少一个第四站点在所述第五时间通过所述第二信道接收所述接入点发送的第四下行数据,
    所述第一传输单元还用于在所述第五时间使用m个接收通道中的至少一个,通过所述第一信道接收所述至少一个第三站点发送的所述第三上行数据;并且,在所述第六时间使用n个发射通道中的至少一个,通过所述第一信道向所述至少一个第三站点发送第三应答消息,所述第三应答消息用于表示所述接入点已正确接收所述第三上行数据;
    所述第二传输单元还用于在所述第五时间使用n个发射通道中的至少一个,通过所述第二信道向所述至少一个第四站点发送所述第四下行数据;并且在所述第六时间使用m个接收通道中的至少一个,通过所述第二信道接收所述至少一个第四站点发送的第四应答消息,所述第四应答消息用于表示所述至少一个第四站点已正确接收所述第四下行数据。
  30. 根据权利要求22至29中任一项所述的接入点,其特征在于,
    所述上行数据的数据帧的前导包括传统前导、高效率信令A字段HE-SIG-A、高效率短训练字段HE-STF、高效率长训练字段HE-LTF,不包括高效率信令B字段HE-SIG-B;
    所述下行数据的数据帧的前导包括传统前导、高效率信令A字段HE-SIG-A、高效率短训练字段HE-STF、高效率长训练字段HE-LTF,不包括高效率信令B字段HE-SIG-B。
  31. 根据权利要求22至30中任一项所述的接入点,其特征在于,所述第一信道为5490~5710MHz和5735~5835MHz频带中的任意连续或非连续频谱的信道,所述第二信道为5170~5330MHz频带中的任意连续或非连续频谱的信道。
  32. 根据权利要求22至30中任一项所述的接入点,其特征在于,所述 第一信道为5570~5710MHz、5735~5835MHz和5850~5925MHz频带中的任意连续或非连续频谱的信道,所述第二信道为5170~5330MHz和5350~5430MHz频带中的任意连续或非连续频谱的信道。
  33. 一种站点,其特征在于,包括:
    收发信机,所述收发信机包括k个发射通道和z个接收通道;
    接收单元,用于在第一时间使用所述z个接收通道中的至少一个,通过第一信道接收接入点发送的下行数据;
    发送单元,用于在所述第一时间使用所述K个发射通道中的至少一个,通过第二信道向所述接入点发送上行数据,
    其中,所述接收单元接收所述下行数据和所述发送单元发送所述上行数据的起始时刻和结束时刻分别对应相同。
  34. 根据权利要求33所述的站点,其特征在于,
    所述接收单元在所述第一时间使用所述z个接收通道,通过第二信道接收接入点发送上行数据,
    所述发送单元在第一时间使用所述k个发射通道,通过第一信道向接入点发送下行数据。
  35. 根据权利要求33或34所述的站点,其特征在于,还包括:
    第一传输单元,用于在预设时间通过所述第一信道进行上行或下行传输;
    第二传输单元,用于在所述预设时间通过所述第二信道进行上行或下行传输;
    其中,所述预设时间为除所述第一时间之外的时间,在所述第一传输单元在所述预设时间通过所述第一信道进行上行传输时,所述第二传输单元在所述预设时间通过所述第二信道进行下行传输,或者在所述第一传输单元在所述预设时间通过所述第一信道进行下行传输时,所述第二传输单元在所述预设时间通过所述第二信道进行上行传输。
  36. 根据权利要求35所述的站点,其特征在于,所述预设时间包括第三时间,所述第三时间为所述第一时间的起始时刻之前的时间,
    所述第一传输单元在所述第三时间使用第一接收通道,通过所述第一信道接收所述接入点发送的第一触发帧,所述第一触发帧用于指示所述站点在所述第一时间通过所述第一信道接收所述接入点发送的所述下行数据;
    所述第二传输单元在所述第三时间使用第二接收通道,通过所述第二信道接收所述接入点发送的第二触发帧,所述第二触发帧用于指示所述站点在所述第一时间通过所述第二信道向所述接入点发送所述上行数据,
    其中,第一接收通道为所述z个接收通道中的任意z-1个接收通道中的至少一个,所述第二接收通道为所述z个接收通道中除所述第一接收通道外的至少一个。
  37. 根据权利要求36所述的站点,其特征在于,
    所述第一触发帧包括第一调度控制信息,所述第一调度控制信息包括:所述站点的标识、所述站点进行数据传输所使用的传输资源、空间流数与相应空间流的标识、以及传输相应空间流所使用的编码调制方案MCS信息,其中,所述第一调度控制信息位于所述触发帧的物理层的高效率信令B字段HE-SIG-B或数据字段中的MAC层协议数据单元PDU中,
    所述第二触发帧包括第二调度控制信息,所述第二调度控制信息包括:所述站点的标识、所述站点进行数据传输所使用的传输资源、空间流数与相应空间流的标识、以及传输相应空间流所使用的编码调制方案MCS信息,其中,所述第二调度控制信息位于所述触发帧的物理层的高效率信令B字段HE-SIG-B或数据字段中的MAC层协议数据单元PDU中。
  38. 根据权利要求36或37所述的站点,其特征在于,所述预设时间还包括第四时间,所述第四时间为所述第一时间的结束时刻之后的时间,
    所述第一传输单元还用于在第四时间使用k个发射通道中的至少一个,通过所述第一信道向所述接入点发送第一应答消息,所述第一应答消息用于表示所述站点已正确接收所述下行数据;
    所述第二传输单元还用于在所述第四时间使用z个接收通道中的至少一个,通过所述第二信道接收所述接入点发送的第二应答消息,所述第二应答消息用于表示所述接入点已正确接收所述上行数据。
  39. 根据权利要求38所述的站点,其特征在于,所述预设时间还包括第五时间和第六时间,所述第五时间为所述第四时间的结束时刻之后的时间,所述六时间为所述第五时间的结束时刻之后的时间;
    所述第一触发帧还用于指示所述站点在第五时间通过所述第一信道向所述接入点发送第三上行数据;
    所述第二触发帧还用于指示所述站点在所述第五时间通过所述第二信 道接收所述接入点发送的第四下行数据,
    所述第一传输单元还用于在第五时间使用k个发射通道中的至少一个,通过所述第一信道向所述接入点发送第三上行数据;并且,在第六时间使用z个接收通道中的至少一个,通过所述第一信道接收所述接入点发送的第三应答消息,所述第三应答消息用于表示所述接入点已正确接收所述第三上行数据;
    所述第二传输单元还用于在所述第五时间使用z个接收通道中的至少一个,通过所述第二信道接收所述接入点发送的第四下行数据;并且在所述第六时间使用k个发射通道中的至少一个,通过所述第二信道向所述接入点发送第四应答消息,所述第四应答消息用于表示所述站点已正确接收所述第四下行数据。
  40. 根据权利要求33至39中任一项所述的站点,其特征在于,
    所述上行数据的数据帧的前导包括传统前导、高效率信令A字段HE-SIG-A、高效率短训练字段HE-STF、高效率长训练字段HE-LTF,不包括高效率信令B字段HE-SIG-B;
    所述下行数据的数据帧的前导包括传统前导、高效率信令A字段HE-SIG-A、高效率短训练字段HE-STF、高效率长训练字段HE-LTF,不包括高效率信令B字段HE-SIG-B。
  41. 根据权利要求33至40中任一项所述的站点,其特征在于,所述第一信道为5490~5710MHz和5735~5835MHz频带中的任意连续或非连续频谱的信道,所述第二信道为5170~5330MHz频带中的任意连续或非连续频谱的信道。
  42. 根据权利要求33至40中任一项所述的站点,其特征在于,所述第一信道为5570~5710MHz、5735~5835MHz和5850~5925MHz频带中的任意连续或非连续频谱的信道,所述第二信道为5170~5330MHz和5350~5430MHz频带中的任意连续或非连续频谱的信道。
  43. 一种收发信机,包括发射通道和接收通道,其特征在于,还包括:
    第一相位锁定环路PLL、第二PLL、多路选择开关、信道选择射频开关和双工器;
    其中所述多路选择开关与所述第一PLL和所述第二PLL相连接,用于为所述发射通道和所述接收通道提供本振信号;
    所述信道选择射频开关与所述发射通道的PA、接收通道的LNA和所述双工器相连,用于为所述发射通道和所述接收通道选择双工器的端口,所述双工器与天线相连,使得所述发射通道和所述接收通道共用所述天线。
  44. 根据权利要求43所述的收发信机,其特征在于,所述第一PLL和所述第二PLL根据同一参考频率分别提供第一频率信号和第二频率信号,所述发射通道和所述接收通道使用第一频率信号和第二频率信号中的任一个进行数据传输,且当所述发射通道使用所述第一频率信号进行数据传输时,所述接收通道使用所述第二频率信号进行数据传输,或者当所述发射通道使用所述第二频率信号进行数据传输时,所述接收通道使用所述第一频率信号进行数据传输。
  45. 根据权利要求44所述的收发信机,其特征在于,所述双工器包括第一端口、第二端口、第三端口、第一带通滤波器和第二带通滤波器,其中,所述第一端口与所述第一带通滤波器相连接,所述第二端口与所述第二通滤波器相连接,所述第三端口与所述第一带通滤波器和所述第二带通滤波器向连接,所述第一端口和所述第二端口用于连接发射通道和接收通道,所述第三端口用于连接天线,所述第一带通滤波器用于导通所述第一频率信号,所述第二带通滤波器用于导通所述第二频率信号。
  46. 根据权利要求45所述的收发信机,其特征在于,当所述发射通道使用所述第一频率信号,通过第一信道进行数据传输,且所述接收通道使用所述第二频率信号,通过第二信道进行数据传输时,所述发射通道的PA的输出端与所述第一端口相连,所述接接收通道的LNA的输入端与所述第二端口相连;
    或者,当所述发射通道使用所述第二频率信号,通过第二信道进行数据传输,且所述接收通道使用所述第一频率信号,通过第一信道进行数据传输时,所述发射通道的PA的输出端与所述第二端口相连,所述接接收通道的LNA的输入端与所述第一端口相连。
  47. 一种设备,其特征在于,所述设备包括权利要求43至46中任一项所述的收发信机。
  48. 根据权利要求47所述的设备,其特征在于,所述设备为接入点或站点。
PCT/CN2015/076356 2015-04-10 2015-04-10 数据传输的方法、设备和收发信机 WO2016161646A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15888202.7A EP3276843B1 (en) 2015-04-10 2015-04-10 Data transmission method and device, and transceiver
CN201580078716.6A CN107534459B (zh) 2015-04-10 2015-04-10 数据传输的方法、设备和收发信机
PCT/CN2015/076356 WO2016161646A1 (zh) 2015-04-10 2015-04-10 数据传输的方法、设备和收发信机
US15/728,983 US20180035318A1 (en) 2015-04-10 2017-10-10 Data transmission method, device, and transceiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/076356 WO2016161646A1 (zh) 2015-04-10 2015-04-10 数据传输的方法、设备和收发信机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/728,983 Continuation US20180035318A1 (en) 2015-04-10 2017-10-10 Data transmission method, device, and transceiver

Publications (1)

Publication Number Publication Date
WO2016161646A1 true WO2016161646A1 (zh) 2016-10-13

Family

ID=57071752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/076356 WO2016161646A1 (zh) 2015-04-10 2015-04-10 数据传输的方法、设备和收发信机

Country Status (4)

Country Link
US (1) US20180035318A1 (zh)
EP (1) EP3276843B1 (zh)
CN (1) CN107534459B (zh)
WO (1) WO2016161646A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109428747A (zh) * 2017-08-25 2019-03-05 展讯通信(上海)有限公司 本地振荡器带宽调整方法、接收机、计算机介质及系统

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208927A1 (ko) * 2015-06-21 2016-12-29 엘지전자 주식회사 비면허 대역에서 상향링크 전송을 위한 방법 및 기기
CN107534902B (zh) 2015-06-26 2020-04-28 华为技术有限公司 一种双信道并行收发方法及装置
CN110392440B (zh) 2018-04-16 2021-07-20 华为技术有限公司 并行传输方法和装置
US11716613B2 (en) * 2018-07-27 2023-08-01 Mediatek Singapore Pte. Ltd. Encryption mechanism used in multi-band channel access
CN110944392B (zh) * 2018-09-21 2023-12-19 维沃移动通信有限公司 一种信息发送方法、随机接入方法、终端设备和网络侧设备
WO2020159307A1 (en) * 2019-02-01 2020-08-06 Lg Electronics Inc. Method and apparatus for handling packet duplication based on congestion level of frequency in a wireless communication system
CN112019305B (zh) * 2019-05-28 2023-04-18 阿里巴巴集团控股有限公司 数据传输方法、装置、设备及存储介质
US11425753B2 (en) 2019-08-29 2022-08-23 Huawei Technologies, Co., Ltd. Systems and methods for out-of-band full duplex communications
CN116097738A (zh) * 2020-08-05 2023-05-09 苹果公司 用于物理侧链路反馈信道通信的时隙聚合和选择性优先级排序
WO2022027563A1 (en) * 2020-08-07 2022-02-10 Qualcomm Incorporated Configuration of cross-carrier channel state information reporting

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1647404A (zh) * 2002-04-22 2005-07-27 Ipr许可公司 多输入多输出无线电收发机
CN103139790A (zh) * 2013-01-28 2013-06-05 福建星网锐捷网络有限公司 应用于室分无线局域网的智分无线接入装置、网络设备
US20130155912A1 (en) * 2011-09-05 2013-06-20 Nec Laboratories America, Inc. Multiple-Input Multiple-Output Wireless Communications with Full Duplex Radios
CN203951468U (zh) * 2014-01-10 2014-11-19 北京大学 无线局域网的全双工接入节点

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8295209B2 (en) * 2008-02-21 2012-10-23 Nokia Corporation Frame structures with flexible partition boundary for wireless networks
US8125952B2 (en) * 2009-05-08 2012-02-28 Qualcomm Incorporated Synchronious multi-channel transmissions in wireless local area networks
GB2491226A (en) * 2011-05-27 2012-11-28 Vodafone Ip Licensing Ltd Single band query of frequency bands supported by a multi-band WLAN access point
FR2979784A1 (fr) * 2011-09-02 2013-03-08 France Telecom Procede de selection de canal, equipement wifi et programme d'ordinateur correspondants
WO2016099140A1 (ko) * 2014-12-16 2016-06-23 엘지전자(주) 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1647404A (zh) * 2002-04-22 2005-07-27 Ipr许可公司 多输入多输出无线电收发机
US20130155912A1 (en) * 2011-09-05 2013-06-20 Nec Laboratories America, Inc. Multiple-Input Multiple-Output Wireless Communications with Full Duplex Radios
CN103139790A (zh) * 2013-01-28 2013-06-05 福建星网锐捷网络有限公司 应用于室分无线局域网的智分无线接入装置、网络设备
CN203951468U (zh) * 2014-01-10 2014-11-19 北京大学 无线局域网的全双工接入节点

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109428747A (zh) * 2017-08-25 2019-03-05 展讯通信(上海)有限公司 本地振荡器带宽调整方法、接收机、计算机介质及系统
CN109428747B (zh) * 2017-08-25 2022-03-04 展讯通信(上海)有限公司 本地振荡器带宽调整方法、接收机、计算机介质及系统

Also Published As

Publication number Publication date
US20180035318A1 (en) 2018-02-01
EP3276843A1 (en) 2018-01-31
CN107534459A (zh) 2018-01-02
EP3276843B1 (en) 2020-01-01
CN107534459B (zh) 2020-03-10
EP3276843A4 (en) 2018-05-09

Similar Documents

Publication Publication Date Title
WO2016161646A1 (zh) 数据传输的方法、设备和收发信机
WO2020248897A1 (zh) 功率配置方法及装置
US9668258B2 (en) Master station and method for high-efficiency WI-FI (hew) communication using multi-device hew preamble
CN112020139B (zh) 通信方法及装置
US11424964B2 (en) Sounding reference signal receiving method, apparatus, and system
US10362604B2 (en) Multi-user multiple-input multiple-output reverse direction duration communications
US20160066328A1 (en) Scheduling method, user equipment, and base station
US20180014165A1 (en) Triggered wireless access protocol with grouped multi-user transmissions
WO2019174584A1 (zh) 一种数据传输方法、相关设备及系统
WO2019056370A1 (zh) 一种通信方法和装置
WO2020199854A1 (zh) 确定传输资源的方法及装置
US20170013506A1 (en) High efficiency signal field coding
KR102185988B1 (ko) 무선랜에서 스테이션의 동작 방법
CN111585692B (zh) 初始信号检测方法、装置
JP6350837B2 (ja) データ送信方法および端末
CN109804611B (zh) 使用聚合物理层收敛协议数据单元的通信装置和通信方法
WO2019153853A1 (zh) 资源指示方法、用户设备及网络侧设备
WO2021031668A1 (zh) 一种通信方法及装置
TW201844049A (zh) 處理用於邏輯通道的排程請求的裝置及方法
US20200137795A1 (en) Apparatuses and methods for communicating in a wireless communication network
WO2021087886A1 (zh) 定时器设置方法及相关设备
US11196599B2 (en) System and method for per frame overhead reduction in air interface for OFDMA systems
WO2016176843A1 (zh) 数据发送、接收方法、基站和用户设备
WO2024067499A1 (zh) 通信方法及通信装置
WO2016138824A1 (zh) 数据发送方法、接收方法、发送装置及接收装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888202

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE