WO2016159618A1 - X-ray generation device and control method therefor - Google Patents

X-ray generation device and control method therefor Download PDF

Info

Publication number
WO2016159618A1
WO2016159618A1 PCT/KR2016/003157 KR2016003157W WO2016159618A1 WO 2016159618 A1 WO2016159618 A1 WO 2016159618A1 KR 2016003157 W KR2016003157 W KR 2016003157W WO 2016159618 A1 WO2016159618 A1 WO 2016159618A1
Authority
WO
WIPO (PCT)
Prior art keywords
filament
voltage
grid
tube current
reference tube
Prior art date
Application number
PCT/KR2016/003157
Other languages
French (fr)
Korean (ko)
Inventor
윤중석
태진우
이승호
Original Assignee
주식회사 쎄크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 쎄크 filed Critical 주식회사 쎄크
Priority to CN201680029141.3A priority Critical patent/CN107637180B/en
Publication of WO2016159618A1 publication Critical patent/WO2016159618A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/30Controlling
    • H05G1/32Supply voltage of the X-ray apparatus or tube
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/30Controlling
    • H05G1/34Anode current, heater current or heater voltage of X-ray tube

Definitions

  • the present invention relates to an X-ray generator and a control method thereof, and more particularly, to an X-ray generator and a control method thereof capable of precisely controlling the primary focusing point of an electron beam and extending the life of the filament.
  • the X-ray generator is classified into a closed type supplied for single use and an open type for exchanging a filament or a target which is a consumable, since it can arbitrarily generate a vacuum state.
  • the filament control unit applies a predetermined voltage to the filament to increase the temperature of the filament. Accordingly, when the filament reaches a constant temperature, electrons are emitted from the filament toward the target. At this time, the voltage applied to the filament was set to a value for raising the temperature of the filament to the extent that electrons are emitted from the filament to generate a predetermined tube current.
  • the temperature of the filament rises, the temperature of the peripheral metal portion of the filament also rises with material properties, and the temperature of the vacuum chamber also rises with the vacuum property.
  • the temperature of the filament is increased again by the temperature of the surrounding metal part and the vacuum chamber of the filament thus raised, the temperature of the filament continues to rise beyond the preset temperature even when a constant voltage is applied to the filament.
  • the width of temperature rise became larger when the same voltage was applied.
  • the increase of the filament temperature increased the amount of electrons emitted from the filament, causing the tube current to exceed the reference tube current value, and the primary focusing point of the electron beam was not precisely controlled.
  • the temperature of the filament rises, the filament is rapidly thinned, thereby reducing the life of the filament.
  • the conventional X-ray generator adjusts the amount of electrons emitted from the filament by adjusting the voltage applied to the grid. That is, as the amount of electrons emitted from the filament increases, the voltage applied to the grid increases to decrease the amount of electrons emitted from the filament.When the amount of electrons emitted from the filament decreases, the voltage applied to the grid decreases the electrons emitted from the filament. Increased the amount.
  • the primary focusing point of the electron beam is continuously changed as the voltage applied to the grid is changed, so that electrons are not focused on the target precisely, and thus the resolution of the captured image is deteriorated. There was a problem.
  • an object of the present invention is to provide an X-ray generator and control method capable of precisely controlling the primary focusing point of the electron beam.
  • Another object of the present invention to provide an X-ray generator and a control method thereof that can extend the life of the filament by controlling the temperature of the filament.
  • the present invention is an X-ray generator comprising a target, filament, grid and anode, Filament control unit for controlling the voltage applied to the filament; And a grid controller for controlling a voltage applied to the grid, wherein the grid controller controls a constant grid voltage to be applied to the grid, and the filament controller measures a tube current to maintain a constant temperature of the filament.
  • the present invention provides an X-ray generating apparatus characterized by controlling a voltage applied to the filament by receiving a value and comparing it with a preset reference tube current value.
  • the grid voltage may have a reference grid voltage value for focusing electrons emitted from the filament to a primary focusing point of an electron beam according to a predetermined reference tube voltage and a reference tube current.
  • the reference grid voltage value according to the preset reference tube voltage and reference tube current may be stored in a reservoir provided in the grid controller.
  • the filament control unit may lower the voltage applied to the filament when the measurement tube current value is higher than the preset reference tube current value, and the measurement tube current value is lower than the preset reference tube current value. In this case, the voltage applied to the filament can be increased.
  • the filament may have a temperature of 1000 ° C to 3300 ° C.
  • the tube current can be measured at the anode.
  • the filament may be made of any one of tungsten, CeB 6 (Cerium Hexaboride), and LaB 6 (Lanthanum Hexaboride).
  • the amount of electrons colliding with the target may be constant.
  • the present invention also provides a control method of an X-ray generator including a target, a filament, a grid and an anode, comprising: a setting step of setting a reference tube current and a reference tube voltage; A grid voltage applying step of constantly applying a reference grid voltage according to the reference tube current and the reference tube voltage to the grid; A filament voltage applying step of applying a reference filament voltage according to the reference tube current and the reference tube voltage to the filament; And a comparison step of the filament control unit receiving the measurement tube current measured at the anode and comparing it with the reference tube current.
  • the measurement tube current is higher than the reference tube current in the comparing step, the voltage applied to the filament is lowered.
  • the above object can be achieved by providing a control method of the X-ray generator, characterized in that to increase the voltage applied to the filament.
  • the comparing step may be repeated.
  • the temperature of the filament may be 1000 °C ⁇ 3300 °C.
  • the present invention can precisely control the primary focusing point of the electron beam emitted from the filament by setting a voltage applied to the grid to a reference grid voltage value according to a preset reference tube voltage and keeping it constant.
  • the present invention can provide an X-ray generator that can control the voltage applied to the filament to prevent the temperature of the filament is too high to extend the life of the filament.
  • FIG. 1 is a view schematically showing an X-ray generating apparatus according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating a control method of an X-ray generator according to an exemplary embodiment of the present invention.
  • the X-ray generating apparatus 100 irradiates X-rays toward an object to be inspected, and includes a tubular part 110, a main controller 120, and a mold power supply 130. And an electron gun 140.
  • the tubular part 110 is provided with a vacuum chamber 111 in which a vacuum state is selectively formed at a rear end thereof.
  • the vacuum chamber 111 is in communication with the vacuum pump 117 through the connection pipe 112.
  • the cylindrical portion 110 is the target 113 is disposed at the tip, the inner side is provided with an electronic passage 114 leading to the target 113.
  • the electron path 114 is surrounded by coils 115 and 116 for aligning the moving direction of the electrons.
  • the main controller 120 includes a tube voltage controller 121, a grid controller 122, and a filament controller 123 to control each part of the X-ray generator 100.
  • the tube voltage controller 121 is connected to the high voltage generator 131 to control the tube voltage to be applied to the X-ray generator 100. That is, when a user inputs a tube voltage to be applied to the X-ray generator 100 to the main controller 120, the tube voltage controller 121 may generate the predetermined voltage so that the high voltage generator 131 generates a predetermined voltage. Control 131.
  • the grid controller 122 controls the voltage applied to the grid G.
  • the grid controller 122 is connected to the grid generator 132, and the grid generator 132 controls the reference grid voltage according to the reference tube current and the reference tube voltage set when the X-ray generator 100 operates.
  • the grid generator 132 is controlled to be applied to the grid G.
  • the reference grid voltage value data according to the set reference tube current and the reference tube voltage is stored in the storage 122a connected to the grid control unit 122.
  • the grid controller 122 receives the tube current measured from the anode A and does not perform a task of comparing it with the reference tube current, and continuously applies the reference grid voltage constantly. By making the voltage applied to the grid constant, the point where the electrons emitted from the filament F are focused is kept constant. Therefore, the imaging device using the X-ray generator 100 according to an embodiment of the present invention can capture a clearer image.
  • the filament controller 123 controls the voltage applied to the filament (F). Specifically, the filament control unit 123 is connected to the filament generating unit 133, the filament generating unit 133 is a reference filament voltage according to the reference tube current and the reference tube voltage set during the operation of the X-ray generator 100 The filament generating unit 133 is controlled to be applied to the filament (F).
  • the filament control unit 123 is connected to the tube current measuring unit 124 receives the measurement tube current from the tube current measuring unit 124. Specifically, the tube current measuring unit 124 receives the measured tube current value from the anode (A) measuring the tube current value flowing as the X-ray generator 100 is operated and transfers it to the filament controller 123. . The filament control unit 123, which has received the measured tube current value from the anode A through the tube current measuring unit 124, is compared with the reference tube current value to adjust the voltage applied to the filament F. Control 133.
  • the filament generator 133 when the measurement tube current is higher than the reference tube current, the filament generator 133 is controlled to lower the voltage applied to the filament (F). Thereby, the temperature of the filament F can be prevented from becoming unnecessarily high, and the life of the filament F can be prevented from being shortened.
  • the filament generator 133 when the measured tube current is lower than the reference tube current, the filament generator 133 is controlled to increase the voltage applied to the filament (F). As a result, the amount of electrons emitted from the filament F is reduced, thereby preventing the problem of not being able to capture a desired image.
  • the mold power supply unit 130 is made of an insulating resin (silicon, epoxy, etc.) and is fixedly coupled to the lower end of the vacuum forming unit 111. This coupling structure may be made of a conventional screw fastening structure or a conventional locking structure.
  • the mold power supply unit 130 includes a high voltage generator 131, a grid generator 132, a filament generator 133, and a conversion branch unit 134 therein.
  • the high voltage generator 131 generates a high voltage to provide a high voltage to the electron gun 130, and transmits the high voltage to the conversion branch unit 134.
  • the grid generator 132 is connected to the grid controller 122 and applies a reference grid voltage to the grid G under the control of the grid controller 122.
  • the grid generator 132 is composed of a high voltage transformer.
  • the grid generator 132 receives a predetermined tube voltage from the conversion branch unit 134.
  • the received tube voltage is a voltage slightly lower than the voltage to be applied to the actual grid G. Accordingly, the grid generator 132 generates an insufficient voltage to generate a voltage to be applied to the actual grid G.
  • the grid generator 132 Through the base 134 to the grid G.
  • the filament generating unit 133 is connected to the filament control unit 132 and applies a predetermined voltage to the filament F under the control of the filament control unit 132.
  • the filament generator 133 is composed of a high voltage transformer.
  • the filament generator 133 receives a predetermined tube voltage from the conversion branch unit 134.
  • the received tube voltage is a voltage slightly lower than the voltage to be applied to the actual filament (F), accordingly, the filament generator 133 generates a voltage that is to be applied to the actual filament (F) by generating a insufficient voltage It is applied to the filament (F) through the base 134.
  • the conversion branch unit 134 receives a voltage from the high voltage generator 131 to operate the electron gun 140 as a triode, and provides different voltages to the anode A, the filament F, and the grid G. Do it.
  • the conversion branch unit 134 branches the high voltage generated by the high voltage generator 131 to the grid generator 132 and the filament generator 133, respectively.
  • the grid generator 132 and the filament generator 133 composed of high voltage transformers are provided.
  • the generated necessary voltage is applied to the electron gun 140 through the conversion branch unit 134 to apply a voltage to the grid G and the filament F.
  • a negative voltage is applied to the filament F compared to the anode A, and a higher negative voltage is applied to the grid G than the filament F.
  • the electron gun 140 is disposed inside the vacuum chamber 111 and includes a filament F and a grid G therein.
  • the filament F may be formed of a hot electron source such as tungsten, CeB 6 (Cerium Hexaboride), and LaB 6 (Lanthanum Hexaboride).
  • the electron gun 140 may be indirectly connected to the head 135 of the mold power supply unit 130 through the heat deformation preventing member 141.
  • the electron gun 140 is precisely set in advance so as to emit electrons toward the target 113.
  • the heat deformation preventing member 141 may block the high temperature heat generated from the electron gun 140 from being transmitted to the head 135 of the mold power supply 130.
  • the heat deformation preventing member 141 and the head 135 of the mold power supply unit 130 may be provided with a surface discharge preventing electrode 142 having a substantially disc shape.
  • the surface discharge prevention electrode 142 may prevent the surface discharge from being concentrated on the top of the head 135.
  • the user sets the reference tube current and the reference tube voltage through the main controller 120 (S1). Accordingly, the grid controller 122 controls the grid generator 132 to apply the reference grid voltage according to the input reference tube current and the reference tube voltage to the grid G.
  • the filament control unit 123 controls the filament generator 133 to apply the reference filament voltage according to the input reference tube current and the reference tube voltage to the filament (F) (S2).
  • the filament F gradually rises in temperature, and then starts to emit electrons when the temperature is in the range of 1000 ° C to 3300 ° C.
  • the electrons emitted from the filament F pass through the anode A, and the electron passing through the anode A passes through the tube current measuring unit 124 disposed between the anode A and the filament controller 123. Is measured by.
  • the measured tube current is transferred to the filament controller 123, and the filament controller 123 compares the measured tube current with the reference tube current (S3).
  • the filament controller 123 controls the filament generator 133 to lower the voltage applied to the filament (F) (S4).
  • the filament controller 123 controls the filament generator 133 to increase the voltage applied to the filament (F) (S5).
  • the filament control unit 123 continuously receives the measurement tube current and repeatedly performs steps S3 to S5 to prevent the temperature of the filament F from rising.
  • the X-ray generator may maintain the voltage applied to the grid to control the primary focusing point of the electron beam to an optimal point according to the reference tube current and the reference tube voltage.

Abstract

Discloses are an X-ray generation device and a control method therefor. The disclosed X-ray generation device including a filament, a grid, and an anode comprises: a filament control unit for controlling voltage applied to the filament; and a grid control unit for controlling voltage applied to the grid, wherein the grid control unit controls the voltage such that a constant grid voltage is applied to the grid, and the filament control unit controls the voltage applied to the filament by receiving a measured tube current value and comparing the same with a predetermined reference tube current value, in order to maintain the temperature of the filament constant.

Description

X선 발생장치 및 그 제어방법X-ray generator and control method
본 발명은 X선 발생장치 및 그 제어방법에 관한 것으로 특히, 전자빔의 1차 집속지점을 정교하게 제어하며, 필라멘트의 수명을 연장시킬 수 있는 X선 발생장치 및 그 제어방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an X-ray generator and a control method thereof, and more particularly, to an X-ray generator and a control method thereof capable of precisely controlling the primary focusing point of an electron beam and extending the life of the filament.
일반적으로 X선 발생장치는 1회용으로 공급되는 폐쇄형과 진공 상태를 임의로 만들어 낼 수 있어 소모품인 필라멘트나 타깃(target)을 교환할 수 있는 개방형으로 구분된다.In general, the X-ray generator is classified into a closed type supplied for single use and an open type for exchanging a filament or a target which is a consumable, since it can arbitrarily generate a vacuum state.
상기 종래의 X선 발생장치는 필라멘트 제어부가 필라멘트에 소정 전압을 인가하여 필라멘트의 온도를 상승시켰고, 이에 따라, 필라멘트가 일정한 온도에 이르면 필라멘트로부터 전자가 타깃을 향해 방출되도록 하였다. 이때, 필라멘트에 인가되는 전압은 필라멘트로부터 전자가 방출되어 미리 설정한 관 전류가 발생할 수 있을 정도로 필라멘트의 온도를 상승시키기 위한 값으로 설정되었다.In the conventional X-ray generator, the filament control unit applies a predetermined voltage to the filament to increase the temperature of the filament. Accordingly, when the filament reaches a constant temperature, electrons are emitted from the filament toward the target. At this time, the voltage applied to the filament was set to a value for raising the temperature of the filament to the extent that electrons are emitted from the filament to generate a predetermined tube current.
하지만, 필라멘트의 온도가 상승함에 따라, 필라멘트의 주변 금속부분의 온도 역시 재질특성에 의해 함께 상승하고, 또한 진공챔버의 온도 역시 진공특성에 의해 함께 상승하게 된다. 또한, 이렇게 상승한 필라멘트의 주변 금속부분 및 진공챔버의 온도에 의해 필라멘트의 온도가 다시 상승하게 되므로, 결국 필라멘트에 일정한 전압을 인가하더라도 필라멘트의 온도는 미리 설정한 온도를 넘어서 계속 상승하였다.However, as the temperature of the filament rises, the temperature of the peripheral metal portion of the filament also rises with material properties, and the temperature of the vacuum chamber also rises with the vacuum property. In addition, since the temperature of the filament is increased again by the temperature of the surrounding metal part and the vacuum chamber of the filament thus raised, the temperature of the filament continues to rise beyond the preset temperature even when a constant voltage is applied to the filament.
또한, 필라멘트는 사용에 따라 계속해서 얇아지므로, 동일한 전압을 인가한 경우 온도 상승의 폭이 더욱 커졌다. 이러한 필라멘트 온도의 상승은 필라멘트로부터 방출되는 전자량을 증가시켜 기준 관 전류 값을 넘는 관 전류가 발생하게 하였으며, 전자빔의 1차 집속지점도 정밀하게 제어하지 못하였다. 또한, 필라멘트의 온도가 상승함에 따라, 필라멘트가 급속도로 얇아져 필라멘트의 수명도 단축시키는 문제가 있었다.In addition, since the filament continues to thin with use, the width of temperature rise became larger when the same voltage was applied. The increase of the filament temperature increased the amount of electrons emitted from the filament, causing the tube current to exceed the reference tube current value, and the primary focusing point of the electron beam was not precisely controlled. In addition, as the temperature of the filament rises, the filament is rapidly thinned, thereby reducing the life of the filament.
이를 해결하기 위해, 종래의 X선 발생장치는 그리드에 인가되는 전압을 조절하여 필라멘트로부터 방출되는 전자량을 조절하였다. 즉, 필라멘트로부터 방출되는 전자량이 증가하면 그리드에 인가되는 전압을 증가시켜 필라멘트로부터 방출되는 전자량을 감소시켰으며, 필라멘트로부터 방출되는 전자량이 감소하면 그리드에 인가되는 전압을 감소시켜 필라멘트로부터 방출되는 전자량을 증가시켰다.In order to solve this problem, the conventional X-ray generator adjusts the amount of electrons emitted from the filament by adjusting the voltage applied to the grid. That is, as the amount of electrons emitted from the filament increases, the voltage applied to the grid increases to decrease the amount of electrons emitted from the filament.When the amount of electrons emitted from the filament decreases, the voltage applied to the grid decreases the electrons emitted from the filament. Increased the amount.
하지만, 이러한 종래의 X선 발생장치는 그리드에 인가되는 전압을 변경함에 따라 전자빔의 1차 집속지점이 계속해서 변경되어 전자가 타깃에 정교하게 집속되지 못하였으며, 이에 따라 촬상한 영상의 해상도가 떨어지는 문제가 있었다.However, in the conventional X-ray generator, the primary focusing point of the electron beam is continuously changed as the voltage applied to the grid is changed, so that electrons are not focused on the target precisely, and thus the resolution of the captured image is deteriorated. There was a problem.
또한, 필라멘트로부터 방출되는 전자량은 제어하였지만, 필라멘트의 온도 상승은 제어할 수 없어 필라멘트의 수명이 감소되는 문제는 여전히 남아있었다.In addition, although the amount of electrons emitted from the filament was controlled, the problem of decreasing the life of the filament remained because the temperature rise of the filament could not be controlled.
상기 문제점을 해결하기 위해, 본 발명은 전자빔의 1차 집속지점을 정교하게 제어할 수 있는 X선 발생장치 및 그 제어방법을 제공하는 데 그 목적이 있다.In order to solve the above problems, an object of the present invention is to provide an X-ray generator and control method capable of precisely controlling the primary focusing point of the electron beam.
또한, 본 발명의 다른 목적은 필라멘트의 온도를 제어하여 필라멘트의 수명을 연장시킬 수 있는 X선 발생장치 및 그 제어방법을 제공하는 데 있다.In addition, another object of the present invention to provide an X-ray generator and a control method thereof that can extend the life of the filament by controlling the temperature of the filament.
상기 목적을 달성하기 위해, 본 발명은 타깃, 필라멘트, 그리드 및 애노드를 포함하는 X선 발생장치에 있어서, 상기 필라멘트에 인가되는 전압을 제어하는 필라멘트 제어부; 및 상기 그리드에 인가되는 전압을 제어하는 그리드 제어부;를 포함하고, 상기 그리드 제어부는 상기 그리드에 일정한 그리드 전압이 인가되도록 제어하고, 상기 필라멘트 제어부는 상기 필라멘트의 온도를 일정하게 유지하기 위해 측정 관 전류 값을 전달받아 미리 설정된 기준 관 전류 값과 비교하여 상기 필라멘트에 인가되는 전압을 제어하는 것을 특징으로 하는 X선 발생장치를 제공한다.In order to achieve the above object, the present invention is an X-ray generator comprising a target, filament, grid and anode, Filament control unit for controlling the voltage applied to the filament; And a grid controller for controlling a voltage applied to the grid, wherein the grid controller controls a constant grid voltage to be applied to the grid, and the filament controller measures a tube current to maintain a constant temperature of the filament. The present invention provides an X-ray generating apparatus characterized by controlling a voltage applied to the filament by receiving a value and comparing it with a preset reference tube current value.
여기서, 상기 그리드 전압은 상기 필라멘트에서 방출되는 전자가 미리 설정된 기준 관 전압 및 기준 관 전류에 따른 전자빔의 1차 집속지점에 집속되도록 하는 기준 그리드 전압 값을 가질 수 있다.Here, the grid voltage may have a reference grid voltage value for focusing electrons emitted from the filament to a primary focusing point of an electron beam according to a predetermined reference tube voltage and a reference tube current.
아울러, 상기 미리 설정된 기준 관 전압 및 기준 관 전류에 따른 상기 기준 그리드 전압 값은 상기 그리드 제어부에 구비된 저장소에 저장될 수 있다.In addition, the reference grid voltage value according to the preset reference tube voltage and reference tube current may be stored in a reservoir provided in the grid controller.
또한, 상기 필라멘트 제어부는, 상기 측정 관 전류 값이 상기 미리 설정된 기준 관 전류 값에 비해 높은 경우에는 상기 필라멘트에 인가하는 전압을 낮추고, 상기 측정 관 전류 값이 상기 미리 설정된 기준 관 전류 값에 비해 낮은 경우에는 상기 필라멘트에 인가하는 전압을 높일 수 있다.The filament control unit may lower the voltage applied to the filament when the measurement tube current value is higher than the preset reference tube current value, and the measurement tube current value is lower than the preset reference tube current value. In this case, the voltage applied to the filament can be increased.
더욱이, 상기 필라멘트의 온도는 1000℃ ~ 3300℃일 수 있다.Furthermore, the filament may have a temperature of 1000 ° C to 3300 ° C.
또한, 상기 관 전류는 상기 애노드에서 측정될 수 있다.In addition, the tube current can be measured at the anode.
아울러, 상기 필라멘트는 텅스텐, CeB6(Cerium Hexaboride) 및 LaB6(Lanthanum Hexaboride) 중 어느 하나로 이루어질 수 있다.In addition, the filament may be made of any one of tungsten, CeB 6 (Cerium Hexaboride), and LaB 6 (Lanthanum Hexaboride).
또한, 상기 타깃에 충돌하는 전자량은 일정할 수 있다.In addition, the amount of electrons colliding with the target may be constant.
또한, 본 발명은 타깃, 필라멘트, 그리드 및 애노드를 포함하는 X선 발생장치의 제어방법에 있어서, 기준 관 전류 및 기준 관 전압을 설정하는 설정단계; 상기 기준 관 전류 및 상기 기준 관 전압에 따른 기준 그리드 전압을 상기 그리드에 일정하게 인가하는 그리드 전압 인가단계; 상기 기준 관 전류 및 상기 기준 관 전압에 따른 기준 필라멘트 전압을 상기 필라멘트에 인가하는 필라멘트 전압 인가단계; 상기 애노드에서 측정된 측정 관 전류를 전달받은 필라멘트 제어부가 기준 관 전류와 비교하는 비교단계;를 포함하며, 상기 비교단계에서 측정 관 전류가 기준 관 전류보다 높은 경우에는 상기 필라멘트에 인가하는 전압을 낮추고, 측정 관 전류가 기준 관 전류보다 낮은 경우에는 상기 필라멘트에 인가하는 전압을 높이는 것을 특징으로 하는 X선 발생장치의 제어방법을 제공함으로써 상기 목적을 달성할 수 있다.The present invention also provides a control method of an X-ray generator including a target, a filament, a grid and an anode, comprising: a setting step of setting a reference tube current and a reference tube voltage; A grid voltage applying step of constantly applying a reference grid voltage according to the reference tube current and the reference tube voltage to the grid; A filament voltage applying step of applying a reference filament voltage according to the reference tube current and the reference tube voltage to the filament; And a comparison step of the filament control unit receiving the measurement tube current measured at the anode and comparing it with the reference tube current. When the measurement tube current is higher than the reference tube current in the comparing step, the voltage applied to the filament is lowered. When the measurement tube current is lower than the reference tube current, the above object can be achieved by providing a control method of the X-ray generator, characterized in that to increase the voltage applied to the filament.
여기서, 상기 비교단계는 반복 실시될 수 있다.Here, the comparing step may be repeated.
또한, 상기 필라멘트의 온도는 1000℃ ~ 3300℃일 수 있다.In addition, the temperature of the filament may be 1000 ℃ ~ 3300 ℃.
상기한 바와 같이 본 발명은 그리드에 인가되는 전압을 미리 설정된 기준 관 전압에 따른 기준 그리드 전압 값으로 설정하고 이를 일정하게 유지하여 필라멘트에서 방출되는 전자빔의 1차 집속지점을 정교하게 제어할 수 있다.As described above, the present invention can precisely control the primary focusing point of the electron beam emitted from the filament by setting a voltage applied to the grid to a reference grid voltage value according to a preset reference tube voltage and keeping it constant.
또한, 본 발명은 필라멘트에 인가되는 전압을 제어하여 필라멘트의 온도가 지나치게 높아지는 것을 방지할 수 있어 필라멘트의 수명이 연장된 X선 발생장치를 제공할 수 있다.In addition, the present invention can provide an X-ray generator that can control the voltage applied to the filament to prevent the temperature of the filament is too high to extend the life of the filament.
도 1은 본 발명의 일 실시예에 의한 X선 발생장치를 개략적으로 나타내는 도면이다.1 is a view schematically showing an X-ray generating apparatus according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 의한 X선 발생장치의 제어방법을 나타내는 플로우 차트(Flow chart)이다.2 is a flowchart illustrating a control method of an X-ray generator according to an exemplary embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명에 따른 X선 발생장치(100)를 설명한다. 다만, 이하에서 본 발명을 설명함에 있어서, 관련된 공지 기능 혹은 구성요소에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명 및 구체적인 도시를 생략한다. 또한, 발명의 이해를 돕기 위하여, 첨부된 도면은 실제 축척대로 도시된 것이 아니라 일부 구성요소의 치수가 과장되게 도시될 수 있다.Hereinafter, an X-ray generator 100 according to the present invention will be described with reference to the accompanying drawings. However, in the following description of the present invention, if it is determined that the detailed description of the related known functions or components may unnecessarily obscure the subject matter of the present invention, the detailed description and the detailed illustration will be omitted. In addition, in order to facilitate understanding of the invention, the accompanying drawings may not be drawn to scale, but the dimensions of some of the components may be exaggerated.
도 1을 참조하면, 본 발명의 일 실시예에 따른 X선 발생장치(100)는 피검사 대상물을 향하여 X선을 조사하며, 통형부(110), 메인제어부(120), 몰드전원부(130) 및 전자총(140)을 포함한다.Referring to FIG. 1, the X-ray generating apparatus 100 according to an embodiment of the present invention irradiates X-rays toward an object to be inspected, and includes a tubular part 110, a main controller 120, and a mold power supply 130. And an electron gun 140.
통형부(110)는 후단부에 선택적으로 진공 상태가 형성되는 진공챔버(111)가 마련된다. 이 경우, 진공챔버(111)는 연결배관(112)을 통해 진공펌프(117)와 연통된다.The tubular part 110 is provided with a vacuum chamber 111 in which a vacuum state is selectively formed at a rear end thereof. In this case, the vacuum chamber 111 is in communication with the vacuum pump 117 through the connection pipe 112.
또한, 통형부(110)는 선단에 타깃(113)이 배치되며, 내측에 타깃(113)으로 이르는 전자통로(114)가 구비된다. 이 경우, 전자통로(114)는 전자의 이동방향을 정렬하기 위한 코일(115, 116)에 의해 둘러싸여 있다.In addition, the cylindrical portion 110 is the target 113 is disposed at the tip, the inner side is provided with an electronic passage 114 leading to the target 113. In this case, the electron path 114 is surrounded by coils 115 and 116 for aligning the moving direction of the electrons.
메인제어부(120)는 X선 발생장치(100)의 각 부분을 제어하기 위해 관 전압 제어부(121), 그리드 제어부(122) 및 필라멘트 제어부(123)를 포함한다.The main controller 120 includes a tube voltage controller 121, a grid controller 122, and a filament controller 123 to control each part of the X-ray generator 100.
관 전압 제어부(121)는 고전압 발생부(131)와 연결되어, X선 발생장치(100)에 인가할 관 전압을 제어한다. 즉, 사용자가 X 선 발생장치(100)에 인가할 관 전압을 메인제어부(120)에 입력하면, 고전압 발생부(131)가 소정 전압을 발생시킬 수 있도록 관 전압 제어부(121)가 고전압 발생부(131)를 제어한다.The tube voltage controller 121 is connected to the high voltage generator 131 to control the tube voltage to be applied to the X-ray generator 100. That is, when a user inputs a tube voltage to be applied to the X-ray generator 100 to the main controller 120, the tube voltage controller 121 may generate the predetermined voltage so that the high voltage generator 131 generates a predetermined voltage. Control 131.
그리드 제어부(122)는 그리드(G)에 인가되는 전압을 제어한다. 구체적으로, 그리드 제어부(122)는 그리드 발생부(132)와 연결되며, 그리드 발생부(132)가 X선 발생장치(100)의 작동 시 설정된 기준 관 전류 및 기준 관 전압에 따른 기준 그리드 전압을 그리드(G)에 인가하도록 그리드 발생부(132)를 제어한다. 이때, 설정된 기준 관 전류 및 기준 관 전압에 따른 기준 그리드 전압 값 데이터는 그리드 제어부(122)와 연결된 저장소(122a)에 저장되어 있다.The grid controller 122 controls the voltage applied to the grid G. In detail, the grid controller 122 is connected to the grid generator 132, and the grid generator 132 controls the reference grid voltage according to the reference tube current and the reference tube voltage set when the X-ray generator 100 operates. The grid generator 132 is controlled to be applied to the grid G. In this case, the reference grid voltage value data according to the set reference tube current and the reference tube voltage is stored in the storage 122a connected to the grid control unit 122.
또한, 그리드 제어부(122)는 애노드(A)로부터 측정된 관 전류를 전달받아 이를 기준 관 전류와 비교하는 작업을 수행하지 않고, 계속해서 기준 그리드 전압을 일정하게 인가한다. 이렇게 그리드에 인가되는 전압을 일정하게 함으로써, 필라멘트(F)에서 방출된 전자가 집속되는 지점이 일정하게 유지된다. 따라서, 본 발명의 일 실시예에 따른 X선 발생장치(100)를 사용한 촬상장치는 더욱 선명한 영상을 촬상할 수 있다.In addition, the grid controller 122 receives the tube current measured from the anode A and does not perform a task of comparing it with the reference tube current, and continuously applies the reference grid voltage constantly. By making the voltage applied to the grid constant, the point where the electrons emitted from the filament F are focused is kept constant. Therefore, the imaging device using the X-ray generator 100 according to an embodiment of the present invention can capture a clearer image.
필라멘트 제어부(123)는 필라멘트(F)에 인가되는 전압을 제어한다. 구체적으로, 필라멘트 제어부(123)는 필라멘트 발생부(133)와 연결되며, 필라멘트 발생부(133)가 X선 발생장치(100)의 작동 시 설정된 기준 관 전류 및 기준 관 전압에 따른 기준 필라멘트 전압을 필라멘트(F)에 인가하도록 필라멘트 발생부(133)를 제어한다.The filament controller 123 controls the voltage applied to the filament (F). Specifically, the filament control unit 123 is connected to the filament generating unit 133, the filament generating unit 133 is a reference filament voltage according to the reference tube current and the reference tube voltage set during the operation of the X-ray generator 100 The filament generating unit 133 is controlled to be applied to the filament (F).
또한, 필라멘트 제어부(123)는 관 전류 측정부(124)와 연결되어 관 전류 측정부(124)로부터 측정 관 전류를 전달받는다. 구체적으로, 관 전류 측정부(124)는 X선 발생장치(100)가 작동됨에 따라 흐르는 관 전류 값을 측정한 애노드(A)로부터 측정 관 전류 값을 전달받아 이를 필라멘트 제어부(123)로 전달한다. 이렇게 애노드(A)로부터 관 전류 측정부(124)를 통해 측정 관 전류 값을 전달받은 필라멘트 제어부(123)는 기준 관 전류 값과 비교하여 필라멘트(F)에 인가하는 전압을 조절할 수 있도록 필라멘트 발생부(133)를 제어한다.In addition, the filament control unit 123 is connected to the tube current measuring unit 124 receives the measurement tube current from the tube current measuring unit 124. Specifically, the tube current measuring unit 124 receives the measured tube current value from the anode (A) measuring the tube current value flowing as the X-ray generator 100 is operated and transfers it to the filament controller 123. . The filament control unit 123, which has received the measured tube current value from the anode A through the tube current measuring unit 124, is compared with the reference tube current value to adjust the voltage applied to the filament F. Control 133.
구체적으로, 측정 관 전류가 기준 관 전류보다 높은 경우에는 필라멘트(F)에 인가하는 전압을 낮추도록 필라멘트 발생부(133)를 제어한다. 이에 따라, 필라멘트(F)의 온도가 불필요하게 높아지는 것을 방지할 수 있으며, 또한, 필라멘트(F)의 수명이 단축되는 것을 방지할 수 있다. 반면, 측정 관 전류가 기준 관 전류보다 낮은 경우에는 필라멘트(F)에 인가하는 전압을 증가시키도록 필라멘트 발생부(133)를 제어한다. 이에 따라, 필라멘트(F)에서 방출되는 전자량이 감소하여 원하는 영상을 촬상할 수 없는 문제를 방지할 수 있다.Specifically, when the measurement tube current is higher than the reference tube current, the filament generator 133 is controlled to lower the voltage applied to the filament (F). Thereby, the temperature of the filament F can be prevented from becoming unnecessarily high, and the life of the filament F can be prevented from being shortened. On the other hand, when the measured tube current is lower than the reference tube current, the filament generator 133 is controlled to increase the voltage applied to the filament (F). As a result, the amount of electrons emitted from the filament F is reduced, thereby preventing the problem of not being able to capture a desired image.
몰드전원부(130)는 절연수지(실리콘, 에폭시 등)로 이루어지며, 진공형성부(111)의 하단에 고정 결합된다. 이러한 결합구조는 통상의 나사 체결구조 또는 통상의 록킹구조로 이루어질 수 있다. 아울러, 이러한 몰드전원부(130)는 그 내부에 고전압 발생부(131), 그리드 발생부(132), 필라멘트 발생부(133) 및 변환분기부(134)를 포함한다.The mold power supply unit 130 is made of an insulating resin (silicon, epoxy, etc.) and is fixedly coupled to the lower end of the vacuum forming unit 111. This coupling structure may be made of a conventional screw fastening structure or a conventional locking structure. In addition, the mold power supply unit 130 includes a high voltage generator 131, a grid generator 132, a filament generator 133, and a conversion branch unit 134 therein.
고전압 발생부(131)는 전자총(130)에 고전압을 제공하기 위해 고전압을 발생시켜 변환분기부(134)로 전달한다.The high voltage generator 131 generates a high voltage to provide a high voltage to the electron gun 130, and transmits the high voltage to the conversion branch unit 134.
그리드 발생부(132)는 그리드 제어부(122)와 연결되어 있으며, 그리드 제어부(122)의 제어에 의해 기준 그리드 전압을 그리드(G)에 인가한다. 이러한 그리드 발생부(132)는 고전압 트랜스로 구성된다.The grid generator 132 is connected to the grid controller 122 and applies a reference grid voltage to the grid G under the control of the grid controller 122. The grid generator 132 is composed of a high voltage transformer.
구체적으로, 그리드 발생부(132)는 변환분기부(134)로부터 소정 관 전압을 전달받는다. 전달받은 관 전압은 실제 그리드(G)에 인가하여야 할 전압보다 소폭 낮은 전압이며, 이에 따라, 그리드 발생부(132)는 부족한 전압을 발생시켜 실제 그리드(G)에 인가하여야 할 전압을 만들어 변환분기부(134)를 통해 그리드(G)에 인가한다.Specifically, the grid generator 132 receives a predetermined tube voltage from the conversion branch unit 134. The received tube voltage is a voltage slightly lower than the voltage to be applied to the actual grid G. Accordingly, the grid generator 132 generates an insufficient voltage to generate a voltage to be applied to the actual grid G. Through the base 134 to the grid G.
필라멘트 발생부(133)는 필라멘트 제어부(132)와 연결되어 있으며, 필라멘트 제어부(132)의 제어에 의해 소정 전압을 필라멘트(F)에 인가한다. 이러한 필라멘트 발생부(133)는 고전압 트랜스로 구성된다.The filament generating unit 133 is connected to the filament control unit 132 and applies a predetermined voltage to the filament F under the control of the filament control unit 132. The filament generator 133 is composed of a high voltage transformer.
구체적으로, 필라멘트 발생부(133)는 변환분기부(134)로부터 소정 관 전압을 전달받는다. 전달받은 관 전압은 실제 필라멘트(F)에 인가하여야 할 전압보다 소폭 낮은 전압이며, 이에 따라, 필라멘트 발생부(133)는 부족한 전압을 발생시켜 실제 필라멘트(F)에 인가하여야 할 전압을 만들어 변환분기부(134)를 통해 필라멘트(F)에 인가한다.In detail, the filament generator 133 receives a predetermined tube voltage from the conversion branch unit 134. The received tube voltage is a voltage slightly lower than the voltage to be applied to the actual filament (F), accordingly, the filament generator 133 generates a voltage that is to be applied to the actual filament (F) by generating a insufficient voltage It is applied to the filament (F) through the base 134.
변환분기부(134)는 전자총(140)을 3극관으로 동작시키기 위해 고전압 발생부(131)로부터 전압을 전달받아, 애노드(A), 필라멘트(F) 및 그리드(G)에 각기 다른 전압을 제공할 수 있도록 한다.The conversion branch unit 134 receives a voltage from the high voltage generator 131 to operate the electron gun 140 as a triode, and provides different voltages to the anode A, the filament F, and the grid G. Do it.
구체적으로, 변환분기부(134)는 고전압 발생부(131)에서 발생된 고전압을 각각 그리드 발생부(132) 및 필라멘트 발생부(133)로 분기한다. 이때, 상술한 바와 같이 실제로 그리드(G) 및 필라멘트(F)에 인가하여야 하는 전압은 분기받은 전압에 비해 소폭 작은 값을 가지므로, 고전압 트랜스로 구성된 그리드 발생부(132) 및 필라멘트 발생부(133)는 필요한 소폭의 전압을 발생시켜 필요전압을 발생시킨다. 발생된 필요전압은 변환분기부(134)를 통해 전자총(140)으로 인가되어 그리드(G) 및 필라멘트(F)에 전압을 인가한다.In detail, the conversion branch unit 134 branches the high voltage generated by the high voltage generator 131 to the grid generator 132 and the filament generator 133, respectively. At this time, as described above, since the voltage to be actually applied to the grid G and the filament F has a smaller value than the branched voltage, the grid generator 132 and the filament generator 133 composed of high voltage transformers are provided. ) Generates the required small voltage to generate the required voltage. The generated necessary voltage is applied to the electron gun 140 through the conversion branch unit 134 to apply a voltage to the grid G and the filament F.
이에 따라, 필라멘트(F)에는 애노드(A)에 비해 음의 전압이 인가되고, 그리드(G)에는 필라멘트(F)에 비해 더 높은 음의 전압이 인가된다.Accordingly, a negative voltage is applied to the filament F compared to the anode A, and a higher negative voltage is applied to the grid G than the filament F.
전자총(140)은 진공챔버(111)의 내부에 배치되며, 내측에 필라멘트(F) 및 그리드(G)를 포함한다. 여기서 필라멘트(F)는 텅스텐, CeB6(Cerium Hexaboride) 및 LaB6(Lanthanum Hexaboride)와 같은 열전자원으로 이루어질 수 있다.The electron gun 140 is disposed inside the vacuum chamber 111 and includes a filament F and a grid G therein. The filament F may be formed of a hot electron source such as tungsten, CeB 6 (Cerium Hexaboride), and LaB 6 (Lanthanum Hexaboride).
아울러, 이러한 전자총(140)은 열변형 방지부재(141)를 통해 간접적으로 몰드전원부(130)의 헤드(135)에 연결될 수 있다. 이 경우, 전자총(140)은 타깃(113)을 향해 전자를 방출할 수 있도록 미리 정밀하게 세팅된다. 이러한 열변형 방지부재(141)에 의해 전자총(140)에서 발생하는 고온의 열이 몰드전원부(130)의 헤드(135)로 전달되는 것을 차단할 수 있다.In addition, the electron gun 140 may be indirectly connected to the head 135 of the mold power supply unit 130 through the heat deformation preventing member 141. In this case, the electron gun 140 is precisely set in advance so as to emit electrons toward the target 113. The heat deformation preventing member 141 may block the high temperature heat generated from the electron gun 140 from being transmitted to the head 135 of the mold power supply 130.
또한, 열변형 방지부재(141)와 몰드전원부(130)의 헤드(135) 사이에는 대략 디스크(disc) 형상으로 이루어진 연면방전 방지전극(142)이 구비될 수 있다. 이러한 연면방전 방지전극(142)에 의해 헤드(135)의 상단에 연면방전이 집중되는 것을 방지할 수 있다.In addition, between the heat deformation preventing member 141 and the head 135 of the mold power supply unit 130 may be provided with a surface discharge preventing electrode 142 having a substantially disc shape. The surface discharge prevention electrode 142 may prevent the surface discharge from being concentrated on the top of the head 135.
이하, 상기와 같이 구성된 본 발명의 일 실시예에 따른 X선 발생장치(100)의 제어방법을 도 2를 참조하여 설명한다.Hereinafter, the control method of the X-ray generator 100 according to an embodiment of the present invention configured as described above will be described with reference to FIG.
우선, 사용자는 메인제어부(120)를 통해 기준 관 전류 및 기준 관 전압을 설정한다(S1). 이에 따라, 그리드 제어부(122)는 입력받은 기준 관 전류 및 기준 관 전압에 따른 기준 그리드 전압을 그리드(G)에 인가하도록 그리드 발생부(132)를 제어한다.First, the user sets the reference tube current and the reference tube voltage through the main controller 120 (S1). Accordingly, the grid controller 122 controls the grid generator 132 to apply the reference grid voltage according to the input reference tube current and the reference tube voltage to the grid G.
아울러, 필라멘트 제어부(123)는 입력받은 기준 관 전류 및 기준 관 전압에 따른 기준 필라멘트 전압을 필라멘트(F)에 인가하도록 필라멘트 발생부(133)를 제어한다(S2).In addition, the filament control unit 123 controls the filament generator 133 to apply the reference filament voltage according to the input reference tube current and the reference tube voltage to the filament (F) (S2).
이에 따라, 필라멘트(F)는 온도가 점진적으로 상승하다가, 1000℃ ~ 3300℃ 범위의 온도가 되면 전자를 방출하기 시작한다. 이렇게 필라멘트(F)로부터 방출된 전자는 애노드(A)를 통과하며, 이때, 애노드(A)를 통과하는 전자는 애노드(A)와 필라멘트 제어부(123) 사이에 배치된 관 전류 측정부(124)에 의해 측정된다.Accordingly, the filament F gradually rises in temperature, and then starts to emit electrons when the temperature is in the range of 1000 ° C to 3300 ° C. The electrons emitted from the filament F pass through the anode A, and the electron passing through the anode A passes through the tube current measuring unit 124 disposed between the anode A and the filament controller 123. Is measured by.
이렇게 측정된 관 전류는 필라멘트 제어부(123)로 전달되며, 필라멘트 제어부(123)는 측정 관 전류와 기준 관 전류를 비교한다(S3).The measured tube current is transferred to the filament controller 123, and the filament controller 123 compares the measured tube current with the reference tube current (S3).
이때, 측정 관 전류가 기준 관 전류보다 큰 경우, 필라멘트 제어부(123)는 필라멘트(F)에 인가되는 전압을 낮추기 위해 필라멘트 발생부(133)를 제어한다(S4).At this time, when the measured tube current is greater than the reference tube current, the filament controller 123 controls the filament generator 133 to lower the voltage applied to the filament (F) (S4).
반면, 측정 관 전류가 기준 관 전류보다 작은 경우, 필라멘트 제어부(123)는 필라멘트(F)에 인가되는 전압을 높이기 위해 필라멘트 발생부(133)를 제어한다(S5).On the other hand, when the measured tube current is smaller than the reference tube current, the filament controller 123 controls the filament generator 133 to increase the voltage applied to the filament (F) (S5).
이후, 필라멘트 제어부(123)는 측정 관 전류를 지속적으로 전달받아 S3 내지 S5 단계를 반복적으로 수행하여, 필라멘트(F)의 온도 상승을 방지한다.Thereafter, the filament control unit 123 continuously receives the measurement tube current and repeatedly performs steps S3 to S5 to prevent the temperature of the filament F from rising.
이와 같이 본 발명의 일 실시예에 따른 X선 발생장치는 그리드에 인가하는 전압을 일정하게 유지하여 전자빔의 1차 집속지점을 기준 관 전류 및 기준 관 전압에 따른 최적의 지점으로 제어할 수 있다.As described above, the X-ray generator according to the exemplary embodiment may maintain the voltage applied to the grid to control the primary focusing point of the electron beam to an optimal point according to the reference tube current and the reference tube voltage.
또한, 필라멘트에 인가하는 전압을 제어하여 필라멘트로부터 방출되는 전자량을 제어할 수 있으며, 필라멘트의 온도가 지나치게 상승하는 것을 방지하여 필라멘트의 수명이 단축되는 것을 방지할 수 있다.In addition, it is possible to control the amount of electrons emitted from the filament by controlling the voltage applied to the filament, it is possible to prevent the temperature of the filament rises excessively to prevent the life of the filament is shortened.
이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 특허청구범위의 균등범위내에서 다양한 수정 및 변형 가능함은 물론이다.As described above, although the present invention has been described by way of limited embodiments and drawings, the present invention is not limited thereto, and it should be understood by those of ordinary skill in the art to which the present invention pertains. Of course, various modifications and variations are possible within the scope of the claims to be described.

Claims (11)

  1. 타깃, 필라멘트, 그리드 및 애노드를 포함하는 X선 발생장치에 있어서,An X-ray generator comprising a target, a filament, a grid, and an anode,
    상기 필라멘트에 인가되는 전압을 제어하는 필라멘트 제어부; 및A filament control unit controlling a voltage applied to the filament; And
    상기 그리드에 인가되는 전압을 제어하는 그리드 제어부;를 포함하고,And a grid controller for controlling a voltage applied to the grid.
    상기 그리드 제어부는 상기 그리드에 일정한 그리드 전압이 인가되도록 제어하고,The grid control unit controls to apply a constant grid voltage to the grid,
    상기 필라멘트 제어부는 상기 필라멘트의 온도를 일정하게 유지하기 위해, 측정 관 전류 값을 전달받아 미리 설정된 기준 관 전류 값과 비교하여 상기 필라멘트에 인가되는 전압을 제어하는 것을 특징으로 하는 X선 발생장치.The filament control unit X-ray generator characterized in that to control the voltage applied to the filament by receiving a measurement tube current value in comparison with a predetermined reference tube current value in order to maintain a constant temperature of the filament.
  2. 제1항에 있어서,The method of claim 1,
    상기 그리드 전압은 상기 필라멘트에서 방출되는 전자가 미리 설정된 기준 관 전압 및 기준 관 전류에 따른 전자빔의 1차 집속지점에 집속되도록 하는 기준 그리드 전압 값을 갖는 것을 특징으로 하는 X선 발생장치.And the grid voltage has a reference grid voltage value for focusing electrons emitted from the filament to a primary focusing point of an electron beam according to a predetermined reference tube voltage and a reference tube current.
  3. 제2항에 있어서,The method of claim 2,
    상기 미리 설정된 기준 관 전압 및 기준 관 전류에 따른 상기 기준 그리드 전압 값은 상기 그리드 제어부에 구비된 저장소에 저장된 것을 특징으로 하는 X선 발생장치.And the reference grid voltage value according to the preset reference tube voltage and reference tube current is stored in a reservoir provided in the grid control unit.
  4. 제1항에 있어서,The method of claim 1,
    상기 필라멘트 제어부는,The filament control unit,
    상기 측정 관 전류 값이 상기 미리 설정된 기준 관 전류 값에 비해 높은 경우에는 상기 필라멘트에 인가하는 전압을 낮추고,When the measured tube current value is higher than the preset reference tube current value, the voltage applied to the filament is lowered,
    상기 측정 관 전류 값이 상기 미리 설정된 기준 관 전류 값에 비해 낮은 경우에는 상기 필라멘트에 인가하는 전압을 높이는 것을 특징으로 하는 X선 발생장치.And the voltage applied to the filament is increased when the measured tube current value is lower than the preset reference tube current value.
  5. 제1항에 있어서,The method of claim 1,
    상기 필라멘트의 온도는 1000℃ ~ 3300℃인 것을 특징으로 하는 X선 발생장치.X-ray generator, characterized in that the temperature of the filament is 1000 ℃ ~ 3300 ℃.
  6. 제1항에 있어서,The method of claim 1,
    상기 관 전류는 상기 애노드에서 측정되는 것을 특징으로 하는 X선 발생장치.The tube current is measured at the anode.
  7. 제1항에 있어서,The method of claim 1,
    상기 필라멘트는 텅스텐, CeB6(Cerium Hexaboride) 및 LaB6(Lanthanum Hexaboride) 중 어느 하나로 이루어진 것을 특징으로 하는 X선 발생장치.The filament is X-ray generator, characterized in that made of any one of tungsten, CeB 6 (Cerium Hexaboride) and LaB 6 (Lanthanum Hexaboride).
  8. 제1항에 있어서,The method of claim 1,
    상기 타깃에 충돌하는 전자량은 일정한 것을 특징으로 하는 X선 발생장치.X-ray generator, characterized in that the amount of electrons impinging on the target is constant.
  9. 타깃, 필라멘트, 그리드 및 애노드를 포함하는 X선 발생장치의 제어방법에 있어서,In the control method of the X-ray generator comprising a target, filament, grid and anode,
    기준 관 전류 및 기준 관 전압을 설정하는 설정단계;A setting step of setting a reference tube current and a reference tube voltage;
    상기 기준 관 전류 및 상기 기준 관 전압에 따른 기준 그리드 전압을 상기 그리드에 일정하게 인가하는 그리드 전압 인가단계;A grid voltage applying step of constantly applying a reference grid voltage according to the reference tube current and the reference tube voltage to the grid;
    상기 기준 관 전류 및 상기 기준 관 전압에 따른 기준 필라멘트 전압을 상기 필라멘트에 인가하는 필라멘트 전압 인가단계;A filament voltage applying step of applying a reference filament voltage according to the reference tube current and the reference tube voltage to the filament;
    상기 애노드에서 측정된 측정 관 전류를 전달받은 필라멘트 제어부가 기준 관 전류와 비교하는 비교단계;를 포함하며,And a comparison step of the filament controller, which has received the measured tube current measured at the anode, with the reference tube current.
    상기 비교단계에서 측정 관 전류가 기준 관 전류보다 높은 경우에는 상기 필라멘트에 인가하는 전압을 낮추고, 측정 관 전류가 기준 관 전류보다 낮은 경우에는 상기 필라멘트에 인가하는 전압을 높이는 것을 특징으로 하는 X선 발생장치의 제어방법.In the comparing step, when the measured tube current is higher than the reference tube current, the voltage applied to the filament is lowered, and when the measured tube current is lower than the reference tube current, X-ray generation, characterized in that to increase the voltage applied to the filament Control method of the device.
  10. 제9항에 있어서,The method of claim 9,
    상기 비교단계는 반복 실시되는 것을 특징으로 하는 X선 발생장치의 제어방법.The comparing step is repeated control method of the X-ray generator.
  11. 제9항에 있어서,The method of claim 9,
    상기 필라멘트의 온도는 1000℃ ~ 3300℃인 것을 특징으로 하는 X선 발생장치의 제어방법.The temperature of the filament is a control method of the X-ray generator, characterized in that 1000 ℃ ~ 3300 ℃.
PCT/KR2016/003157 2015-03-31 2016-03-28 X-ray generation device and control method therefor WO2016159618A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680029141.3A CN107637180B (en) 2015-03-31 2016-03-28 X-ray generating apparatus and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0044831 2015-03-31
KR1020150044831A KR101648063B1 (en) 2015-03-31 2015-03-31 X-ray generating apparatus and method for control thereof

Publications (1)

Publication Number Publication Date
WO2016159618A1 true WO2016159618A1 (en) 2016-10-06

Family

ID=56715071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003157 WO2016159618A1 (en) 2015-03-31 2016-03-28 X-ray generation device and control method therefor

Country Status (3)

Country Link
KR (1) KR101648063B1 (en)
CN (1) CN107637180B (en)
WO (1) WO2016159618A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109548265A (en) * 2018-11-13 2019-03-29 中国原子能科学研究院 For the quick method for cutting of superconducting cyclotron line and its system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230345609A1 (en) * 2020-09-18 2023-10-26 Sang Soo Kim Electromagnetic wave generation device and control method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010103033A (en) * 1999-03-02 2001-11-17 테루오 히루마 X-ray generator, x-ray imaging apparatus and x-ray inspection system
JP2008251300A (en) * 2007-03-30 2008-10-16 Shimadzu Corp X-ray inspection device
JP2010049974A (en) * 2008-08-22 2010-03-04 Mikasa Kk X-ray generator and method for driving x-ray tube
JP2012235935A (en) * 2011-05-12 2012-12-06 Toshiba Corp X-ray computed tomography apparatus
JP2014064756A (en) * 2012-09-26 2014-04-17 Toshiba Corp X-ray ct apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4889871B2 (en) * 2001-03-29 2012-03-07 浜松ホトニクス株式会社 X-ray generator
WO2003019995A1 (en) * 2001-08-29 2003-03-06 Kabushiki Kaisha Toshiba X-ray generator
EP1528845A1 (en) * 2002-04-24 2005-05-04 Hamamatsu Photonics K.K. X-ray tube operation status acquiring unit, x-ray tube operation status acquiring system and x-ray tube operation status acquiring method
DE102010043561B4 (en) * 2010-11-08 2020-03-05 Nuray Technology Co., Ltd. Electron source
CN103219212B (en) * 2013-05-08 2015-06-10 重庆启越涌阳微电子科技发展有限公司 Graphene serving as cathode of X-ray tube and X-ray tube thereof
CN104411081A (en) * 2014-11-13 2015-03-11 重庆大学 Linear array micro-nano focus X-ray source for micro-nano CT (computer tomography) system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010103033A (en) * 1999-03-02 2001-11-17 테루오 히루마 X-ray generator, x-ray imaging apparatus and x-ray inspection system
JP2008251300A (en) * 2007-03-30 2008-10-16 Shimadzu Corp X-ray inspection device
JP2010049974A (en) * 2008-08-22 2010-03-04 Mikasa Kk X-ray generator and method for driving x-ray tube
JP2012235935A (en) * 2011-05-12 2012-12-06 Toshiba Corp X-ray computed tomography apparatus
JP2014064756A (en) * 2012-09-26 2014-04-17 Toshiba Corp X-ray ct apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109548265A (en) * 2018-11-13 2019-03-29 中国原子能科学研究院 For the quick method for cutting of superconducting cyclotron line and its system

Also Published As

Publication number Publication date
CN107637180B (en) 2020-01-17
KR101648063B1 (en) 2016-08-12
CN107637180A (en) 2018-01-26

Similar Documents

Publication Publication Date Title
CN102468102B (en) Electron source
EP3065161B1 (en) Electron gun, control method and control program thereof, and three-dimensional shaping apparatus
WO2016159618A1 (en) X-ray generation device and control method therefor
CN104378897A (en) X-ray generating device with tube current control function
CN1288943C (en) X-ray source
JP2004273419A (en) Electron beam source, electron optical apparatus using such beam source, and method of operating electro beam source
US5933217A (en) Electron-beam projection-microlithography apparatus and methods
JP5129692B2 (en) X-ray generator and driving method of X-ray tube
JP2000195697A (en) X-ray beam control device for imaging device
KR20110037175A (en) The apparatus and method for x-ray generating
KR101552318B1 (en) X-ray generation apparatus, computerized tomography system having the same and method for control thereof
CN100355323C (en) X-ray tube adjustment apparatus, X-ray tube adjustment system, and X-ray tube adjustment method
WO2015004981A1 (en) Electron gun and electron microscope
KR20180046959A (en) Electron generating device having heating means
CN102361002B (en) Electron beam control method and device using same, electron beam generating device and transmitter
WO2020111820A1 (en) Small x-ray tube having extractor
KR101106717B1 (en) Apparatus for generating X-ray
WO2018212377A1 (en) X-ray tube
JP5416431B2 (en) Electron beam drawing apparatus, power control apparatus and power control method for cathode heating of electron gun of electron beam drawing apparatus
KR101367683B1 (en) Optically controlled field-emission x-ray sources
JP2006294883A (en) Drive voltage generating circuit
JPS5834897B2 (en) scanning electron microscope
Qiang et al. The cathode control circuit design of auto-gating power supply for low-light-level image intensifier
JP2007078537A (en) Electron beam dimension measuring device and electron beam dimension measuring method
KR20240053227A (en) X-ray source driving device and X-ray generator using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16773399

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16773399

Country of ref document: EP

Kind code of ref document: A1