WO2018212377A1 - X-ray tube - Google Patents

X-ray tube Download PDF

Info

Publication number
WO2018212377A1
WO2018212377A1 PCT/KR2017/005202 KR2017005202W WO2018212377A1 WO 2018212377 A1 WO2018212377 A1 WO 2018212377A1 KR 2017005202 W KR2017005202 W KR 2017005202W WO 2018212377 A1 WO2018212377 A1 WO 2018212377A1
Authority
WO
WIPO (PCT)
Prior art keywords
generating unit
grid
vacuum chamber
electron generating
ray tube
Prior art date
Application number
PCT/KR2017/005202
Other languages
French (fr)
Korean (ko)
Inventor
윤중석
손유주
Original Assignee
주식회사 쎄크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 쎄크 filed Critical 주식회사 쎄크
Priority to KR1020197032904A priority Critical patent/KR102268608B1/en
Priority to PCT/KR2017/005202 priority patent/WO2018212377A1/en
Publication of WO2018212377A1 publication Critical patent/WO2018212377A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/14Arrangements for concentrating, focusing, or directing the cathode ray
    • H01J35/147Spot size control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/045Electrodes for controlling the current of the cathode ray, e.g. control grids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/14Arrangements for concentrating, focusing, or directing the cathode ray
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/16Vessels; Containers; Shields associated therewith
    • H01J35/18Windows
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/06Cathodes
    • H01J35/065Field emission, photo emission or secondary emission cathodes

Definitions

  • the present invention relates to an x-ray tube, and more particularly, to an x-ray tube for adjusting the focal length by changing the position of the cathode and grid after sealing the x-ray tube.
  • X-ray tube is divided into a closed type supplied for single use and an open type for exchanging a filament or a target, which can be made arbitrarily, and a vacuum.
  • the X-ray tube has a cathode, an anode, and a target attached to the anode inside the vacuum chamber decompressed with high vacuum, and generates an X-ray by injecting electrons generated from the cathode into a target, and emits the generated X-ray through the X-ray window.
  • the focal size of the electrons colliding with the target should be small.
  • the focal length must be adjusted to reduce the focal size.
  • an object of the present invention is to provide an X-ray tube after sealing the X-ray tube, to adjust the focal length to prevent errors due to the bonding process and deformation due to heat.
  • a vacuum chamber the electron generating unit is connected and sealed to the vacuum chamber and the internal space, the anode is located inside the vacuum chamber, the target is installed at one end, and located inside the electron generating unit, And a cathode for emitting electrons to the target, and a focal length adjusting unit disposed in the electron generating unit and adjusting the focal size by moving the electron generating unit.
  • the focal length adjusting unit may include a bellows member disposed in the electron generating unit, and the bellows member may contact one end of the vacuum chamber.
  • the focal length adjusting unit may include a control pin which is fastened to a fastening groove formed at one end of the vacuum chamber and moves along the fastening groove toward the target to compress the bellows member.
  • the control pin may be rotatably coupled to the electron generating unit.
  • the fastening groove is a screw groove is formed, the adjusting pin is formed with a screw line corresponding to the screw groove, it is possible to adjust the compression of the bellows by the rotation of the adjusting pin.
  • the bellows member may be a metal material.
  • the bellows member may be installed on an inner surface of the electron generating unit.
  • the electron generating unit the grid for controlling the amount of electrons emitted from the cathode; And a cylindrical grid cap focusing electrons passing through the grid to the target and including a window through which the electrons pass.
  • the electron generator may include an electrode part electrically connected to the grid and the cathode and protruding outside the electron generator.
  • the focal length adjusting part may include a bellows member surrounding a part of the electrode part and a control pin installed at an end of the electrode part to adjust a length of the electrode part.
  • the focal size of the electrons reaching the target may be determined according to the size of the window of the grid.
  • the window may be rectangular.
  • the distance between the target and the grid may be adjusted by the focal length adjusting unit.
  • the focal length may be adjusted by moving the electron generating unit by using the focal length adjusting device, thereby preventing the error due to the bonding or heat caused by the sealing process.
  • FIG. 1 is a perspective view showing an x-ray tube according to an embodiment of the present invention.
  • Figure 2 is an exploded perspective view showing an x-ray tube according to an embodiment of the present invention.
  • Figure 3 is a cross-sectional view showing an x-ray tube according to an embodiment of the present invention.
  • FIG. 4 is an enlarged view illustrating a portion A shown in FIG. 3.
  • FIG. 5 is a diagram illustrating an electron generating unit illustrated in FIG. 3.
  • FIG. 6 is a cross-sectional view of an x-ray tube according to another embodiment of the present invention.
  • FIG. 7 is a diagram illustrating an electron generating unit illustrated in FIG. 6.
  • FIG. 8 is a diagram illustrating the grid cap shown in FIG. 5.
  • first may modify various components in any order and / or importance, and may distinguish one component from another. Used only and do not limit the components.
  • the first user device and the second user device may represent different user devices regardless of the order or importance.
  • the first component may be called a second component, and similarly, the second component may be renamed to the first component.
  • FIG. 1 is a perspective view showing an x-ray tube according to an embodiment of the present invention
  • Figure 2 is an exploded perspective view showing an x-ray tube according to an embodiment of the present invention.
  • the X-ray tube 1 includes an electron generator 100 and a vacuum chamber 200.
  • the electron generator 100 and the vacuum chamber 200 may include a cathode 130 (see FIG. 2) and an anode 210 (see FIG. 2).
  • the electron generating unit 100 may include a plurality of electrode units 120, and the plurality of electrode units 120 may protrude out of the electron generating unit 100 to receive a current.
  • the electron generating unit 100 and the vacuum chamber 200 are vacuumed.
  • the current is supplied to the cathode 130 by the current supplied through the electrode unit 120, and the cathode 130 emits electrons.
  • the adjustment pin 155 may adjust the distance between the electron generating unit 100 and the vacuum chamber 200 to adjust the focal length for focusing the electrons emitted from the cathode 130 to the anode 210.
  • the electron generating unit 100 may include an electrode unit 120, a cathode 130, and a bellows member 150.
  • the electrode unit 120 is inserted into and fixed to the opening 126 formed in the electron generating unit 100.
  • the opening 126 is formed in the insulator 125, and the electrode part 120 is cut off from the case 160 of the electron generating unit 100 by the insulator 125.
  • the electron generating unit 100 may be formed of a metal material, and thus, it is necessary to block the energization between the electrode unit 120 and the case 160 of the electron generating unit 100.
  • the electrode part 120 includes a pair of first electrode parts 121 connected to the cathode 130 and a plurality of second electrode parts 122 connected to the grid 173.
  • first electrode part 121 applies a current to the filament of the cathode 130.
  • the cathode 130 generates electrons by the applied current.
  • the second electrode part 122 forms an electric field by flowing an electric current through the grid 173, and electrons are emitted into the internal space 172 of the grid cap 170. May be adjusted to face the target 220 of the anode 210 (see FIG. 3).
  • the bellows member 150 and the adjusting pin 155 serve to adjust the position of the electron generating unit 100 to serve as a focal length adjusting unit for adjusting the focal length.
  • the bellows member 150 is installed at a stepped portion formed inside of the electron generating unit 100 to be described later, and a protrusion 226 protruding from one end 227 of the cylinder 230 extending from the side of the vacuum chamber 200. Is installed on. Bellows member 150 is wrinkled is formed, it can be compressed and tensioned. Compression and tension of the bellows member 150 may control the gap between the vacuum chamber 200 and the electron generating unit 100.
  • the adjusting pin 155 is fastened to the fastening groove 225 of the vacuum chamber 200 by passing through the hole 110 of the electron generating unit 100. Although the adjusting pin 155 passes through the hole 110, the movement in the longitudinal direction in the electron generating unit 100 is restricted, there is no movement along the longitudinal direction of the electron generating unit 100, and the fastening groove 225 is closed. Can be moved longitudinally. This adjusts the distance between the electron generating unit 100 and the vacuum chamber 200.
  • the vacuum chamber 200 includes an anode 210 therein.
  • a high voltage is applied to the anode 210 to accelerate the electrons emitted from the cathode 130, so that the electrons collide with the target 220 disposed inside the anode 210.
  • Electrons emitted from the cathode 130 are directed to the anode 21 through the grid 173 and the grid cap 170 disposed inside the cylinder 230, and the electrons are moved to the electron opening 215 formed in the anode 210. It collides with the target 220 through. Electrons impinging on the target 220 are emitted to the X-ray transmission window 250 through the X-ray passing opening 216.
  • FIG. 3 is a cross-sectional view illustrating an X-ray tube according to an exemplary embodiment of the present invention
  • FIG. 4 is an enlarged view illustrating a portion A shown in FIG. 3
  • FIG. 5 is a diagram illustrating the electron generating unit illustrated in FIG. 3.
  • the cathode 130, the grid 173, and the grid cap 170 of the electron generating unit 100 are disposed inside the cylinder 230 of the vacuum chamber 200, and electron generation is performed.
  • the bellows member 150 is disposed between the part 100 and the vacuum chamber 200.
  • the case 160 and the vacuum chamber 200 are formed of a vacuum inside, and are made of a material having sufficient rigidity to withstand the pressure difference between the inside and the outside.
  • the case 160 and the vacuum chamber 200 may be made of a metal material. However, the case 160 and the vacuum chamber 200 may be formed of a metal material.
  • the bellows member 150 is wrinkled is formed on the outer surface to be compressed and tensioned.
  • the electron generating unit 100 moves toward the vacuum chamber 200, the cathode 130, the grid 173, and the grid cap 170 move toward the anode 210.
  • the bellows member 150 has been described as being formed on the inner surface of the case 160 in the drawings of the present invention, the present invention is not limited thereto, and the bellows member 150 may be disposed outside or sealed inside the case 160 and may be sealed. It may be sealed in contact with the outer surface. That is, the stepped portion may be formed on the outer surface of the case 160 of the electron generating unit 100, and the stepped portion or the protrusion may be formed on the outer surface of the vacuum chamber 200. Even when the bellows member 150 is coupled to the stepped portion or the protrusion of the case 160 and the vacuum chamber 200, the distance between the electron generator 100 and the vacuum chamber 200 may be adjusted. In addition, the bellows member 150 may be installed in the second electrode part 122, which will be described later with reference to FIGS. 6 and 7.
  • An opening formed in the grid 173 controls the amount of electrons emitted from the cathode 130 and serves to guide the electrons to the grid cap 170.
  • An insulating member 175 is installed to prevent the grid 173 and the grid cap 170 from energizing. Through this, the cathode 130 and the grid 173 has a negative potential, the potential of the grid cap is maintained at 0V. Due to the potential difference between grid 173 and grid cap 170, electrons emitted from cathode 130 are first accelerated at grid cap 170 through grid 173.
  • the grid cap 170 and the grid 173 are located inside the cylinder 230, and the moving direction is guided by the cylinder 230.
  • the cathode 130 and the grid 173 are electrically connected by the first and second electrode portions 121 and 122, and are also physically fixed.
  • the first and second electrode parts 121 and 122 are formed of a rod having a length, and one end of the first and second electrode parts 121 and 122 protrudes out of the case 160 of the electron generating part 100. It is fixed to the case.
  • the first and second electrode parts 121 and 122 pass through the opening 126 formed of the insulator 125 and are fixed to the case 160 in order to prevent power supply to the case 160.
  • the other end of the first electrode part 121 is connected to the filament by the filament of the cathode 130 and the coupling member 135 inside the case 160 of the electron generating unit 100.
  • the cathode 130 moves in response to the movement of the electron generating unit 100.
  • the other end of the second electrode part 122 is coupled to one surface of the grid cap 170, and the grid cap 170 moves in response to the movement of the electron generator 100.
  • the anode 210 includes a target 220, an electron transfer opening 215, and an x-ray passing opening 216. Electrons emitted from the cathode 130 are focused on the target 220 through the electron moving opening 215 through the window 171.
  • the target 220 is disposed with an inclination, and the X-rays generated by the target 220 travel outside the anode 210 through the X-ray passing opening 216.
  • the filament of the cathode 130 may be formed of tungsten with good thermal properties. According to the thermal properties of tungsten, when a current flows through the filament, the filament is heated to a temperature where electrons can be generated. At this time, if the voltage applied to the filament is changed, the filament current changes and electrons are emitted.
  • the adjustment pin 155 passes through the hole 110 formed in the case 160 and is rotatably coupled to the hole 110.
  • One end of the adjustment pin 155 is inserted into the fastening groove 225 formed in the cylinder 230 of the vacuum chamber 200.
  • Both ends of the bellows member 150 are sealed and coupled to the case 160 of the electron generating unit 100 and the cylinder 230 of the vacuum chamber 200, so that the adjustment pin 155 is provided to the end of the fastening groove 225.
  • the distance between the electron generating unit 100 and the vacuum chamber 200 is closest.
  • the shorter the distance that the adjustment pin 155 is inserted into the fastening groove 225 the farther the distance between the electron generating unit 100 and the vacuum chamber 200.
  • the bellows member 150 is preferably formed of a metal to withstand the internal space formed by the vacuum. However, if the material has a rigidity that can withstand vacuum, the bellows member 150 may not be limited to metal.
  • the adjusting pin 155 may have a screw line for coupling with the fastening groove 225 at one end, and the fastening groove may have a screw groove corresponding to the screw line of the adjusting pin 155.
  • the adjusting pin 155 having a screw thread is rotatably coupled to the hole 110, by the rotation of the adjusting pin 155, the adjusting pin 155 is inserted into the fastening groove 225 having the screw groove. It can be adjusted, and through this, it is possible to adjust the moving distance of the electron generating unit 100, the cathode 130, the grid 173 and the grid cap 170.
  • the adjusting pin 155 has a screw line and the fastening groove 225 has a screw groove, it is not limited thereto.
  • the adjusting pin 155 and the fastening groove 225 may have a groove and a protrusion to snap to each other.
  • the locking groove may be formed in the longitudinal direction of the fastening groove 225. In this case, when the adjustment pin 155 moves in the longitudinal direction, the projection of the adjustment pin 155 can be caught and fixed in the locking groove 225, the inner locking groove, if adjustment is necessary, the adjustment pin 155 again Can be adjusted by moving in the longitudinal direction.
  • FIG. 6 is a cross-sectional view of an X-ray tube according to another exemplary embodiment of the present invention
  • FIG. 7 is a diagram illustrating an electron generating unit illustrated in FIG. 6.
  • the plurality of bellows members 151 are installed in the first and second electrode portions 121 and 122.
  • the installation position of the bellows member 151 and the structure other than the first and second electrode portions 121 and 122 have the same configuration as the X-ray tube of FIGS. 2 to 5.
  • the bellows member 150 of the focal length adjusting unit may be disposed in the electron generating unit 100.
  • the bellows member 151 provided in the electrode part 120 will be described based on the second electrode part 122 connected to the grid 173.
  • the bellows member 151 is installed between the outer tube 122a of the second electrode portion 122 and the connection rod 122b.
  • the adjusting pin 156 is inserted into the outer tube 122a.
  • the adjusting pin 156 and the connecting rod 122b may be integrally formed.
  • the bellows member 151 is compressed, and the case 160 and the vacuum of the electron generating unit 100 are vacuumed.
  • the lengths of the first and second electrode parts 121 and 122 disposed inside the chamber 200 are shortened. Through this, the cathode 130, the grid 173, and the grid cap 170 may be moved away from the target.
  • the bellows member 150 is sealed between the electron generating unit 100 and the vacuum chamber 200, or the bellows member 151 surrounds a part of the electrode unit 120.
  • the present invention is not limited thereto, and the bellows members 150 and 151 may be installed where compression or tension is required by installing a portion for adjusting the focal length.
  • FIG. 8 is a diagram illustrating the grid cap shown in FIG. 5.
  • the grid cap 170 has a cup shape.
  • the grid cap 170 is formed of a metal material and receives a current from the second electrode part 122.
  • the grid cap 170 has an empty space inside, and a window 171 is formed in the direction toward the anode 210. Electrons emitted into the grid cap 170 are transferred to the anode 210 through the window 171.
  • the grid cap 170 receives a current from the second electrode unit 122 to form an electric field therein, thereby causing electrons to travel to the target 220, and to focus the electrons.
  • the grid 173 may be composed of a focusing coil and a deflection coil therein.
  • the grid cap 170 surrounding the electron path toward the anode 210 prevents the electrons from dispersing while the electrons move and forms a magnetic field for focusing the electrons.
  • the focal size at which electrons are focused on the target 220 is small, and the closer to the circle, the higher the sharpness. What affects the focal size is affected by the size of the window 171 of the grid cap 170 and the distance between the window 171 and the target 220. As the size of the window 171 increases, the distance between the target 220 and the grid 173, the grid cap 170, and the window 171 should be increased to reduce the focus size. Therefore, the focal length should be set differently according to the size of the window 171. Even if the cathode 130, the grid cap 170, and the grid 173 are installed at the focal length, additional errors occur due to the bonding error and deformation due to heat during the sealing process. Since the sharpness may deteriorate, it is necessary to adjust the focal length after sealing.
  • the shape of the vacuum chamber 200 is not perfectly symmetrical and the target 220 disposed on the anode 210 is inclined, when the window 171 is formed in a square shape, the electrons collide with the target 220.
  • the shape is not circular. Therefore, in order to adjust electrons colliding with the target 220 to a certain density and to form a circle close to a circular shape, a rectangular window 171 is required. Therefore, the aspect ratio of the window 171 is determined so that the focal point of the electrons colliding with the target 220 is circular.
  • the window 171 is formed in a rectangular shape so that the shape of the focus is circular, and the electron generating unit 100 and the vacuum chamber 200 are formed by using the focal length adjusting member formed of the bellows member 150 and the adjusting pin 155. You can increase the sharpness of the X-ray device by adjusting the distance between the
  • the anode 210 including the target 220 is installed in the vacuum chamber 200.
  • the bellows member 150 may be installed on an inner surface of the case 160 of the electron generating unit 100.
  • the bellows member 150 is coupled to the stepped portion 111 inside the case 160 and then sealed.
  • the electrode unit 120 is installed through the opening 126 of the insulator 125 formed on the outer surface of the case 160 of the electron generating unit 100.
  • the cathode 130 coupled to one end of the first electrode portion 121 and the grid 173 coupled to one end of the second electrode portion 122 are also fixed to the electron generator 100. Thereafter, the adjustment pin 155 is rotatably installed through the hole 110 formed in the case 160.
  • the cylinder 230 extending from the side of the vacuum chamber 200 is brought into contact with the case 160 of the electron generating unit 100.
  • the grid cap 170, the grid 173, and the cathode 130 are inserted into the cylinder 230.
  • the bellows member 150 installed in the electron generating unit 100 is disposed in contact with the protrusion 226 of the cylinder 230, and then sealed. Thereafter, the adjustment pin 155 is inserted into the fastening groove 225 to be combined to produce an X-ray tube.
  • X-ray tubes are manufactured with focal length at the time of assembly.
  • the X-ray tube 1 is commissioned.
  • the adjusting pin 155 is adjusted to move the grid 173, the grid cap 170, and the cathode 130 into the cylinder 230, or the distance from the target 220 is increased. Finally, the X-ray tube 1 is manufactured.
  • the bellows member 150 includes the case 160 of the electron generating unit 100 and the cylinder 230 of the vacuum chamber 200. ), The case 160 and the cylinder 230 are sealed.
  • the bellows member 151 and the adjusting pin 156 are inserted into the opening 126 of the insulating member 125 attached to the case 160 in the form of being installed in the electrode unit 120.
  • the adjusting pin 156 may be pulled or pushed to adjust the inner length of the case 160 of the first and second electrode parts 121 and 122, and the outer tube 122a and the adjusting pin 156 may be screwed to each other.
  • the inner length of the case 160 of the first and second electrode parts 121 and 122 may be adjusted by the rotation of the adjustment pin 156.
  • the electrode unit 120 of the X-ray tube 1 receives a current.
  • the current applied to the second electrode portion 122 flows along the second electrode portion 122 to the grid 173.
  • an electric field is formed due to the applied current.
  • the grid 173 and the grid cap 170 are insulated by the insulating member 175, so that a potential difference is generated.
  • the current applied to the first electrode part 121 is transferred to the cathode 130.
  • the cathode 130 is formed of a filament, and the electron generator 100 and the interior of the vacuum chamber 200 are decompressed with high vacuum.
  • the filament of the cathode 130 is heated by the current, and heated to generate hot electrons.
  • the emitted electrons are primarily accelerated.
  • a high voltage is applied to the anode 210 included in the vacuum chamber 200 to further accelerate the electrons, the moving speed of the electrons generated from the cathode 130 is increased.
  • an X-ray is generated.
  • the grid 173 When a current is applied to the grid 173, it serves as an electrostatic lens that focuses the emitted electrons to one point of the target. That is, the grid 173 may focus electrons on the target with a small focal size in order to increase the sharpness of the transmitted image of the X-ray.
  • the grid 173, the grid cap 170, and the cathode 130 are moved back and forth in the cylinder 230 to achieve an optimal focal length and then installed in an X-ray imaging apparatus.
  • the X-ray tube may adjust the focal length after sealing the electron generating unit 100 and the vacuum chamber 200 constituting the X-ray tube. Therefore, when the distance is adjusted using the adjustment pins 155 and 156 after sealing the error of the focal length generated during the sealing process, the electron generating unit 100 and the vacuum chamber are deformed by the deformation of the bellows members 150 and 151. The distance of 200 can be adjusted. As a result, the sharpness of the X-ray apparatus in which the X-ray tube 1 is installed may be improved by adjusting the focal size at which electrons emitted from the cathode 130 are focused on the target 220 through the grid 173.

Abstract

An X-ray tube is disclosed. The disclosed X-ray tube comprises: a vacuum chamber; an electron generation unit connected to the vacuum chamber; an anode located inside the vacuum chamber and having a target mounted on one end thereof; a cathode which is located inside the electron generation unit and emits electrons toward the target; and a focal distance adjustment unit which is located between the vacuum chamber and the electron generation unit and sealed therewith and moves the electron generation unit so as to adjust the focus.

Description

엑스레이 튜브X-ray tube
본 발명은 엑스레이 튜브에 관한 것으로 특히, 엑스레이 튜브의 밀봉 이후 캐소드와 그리드의 위치를 변형하여 초점거리를 조절하는 엑스레이 튜브에 관한 것이다.The present invention relates to an x-ray tube, and more particularly, to an x-ray tube for adjusting the focal length by changing the position of the cathode and grid after sealing the x-ray tube.
일반적으로 엑스레이 튜브는 1회용으로 공급되는 폐쇄형과 진공 상태를 임의로 만들어 낼 수 있어 소모품인 필라멘트나 타겟을 교환할 수 있는 개방형으로 구분된다.In general, X-ray tube is divided into a closed type supplied for single use and an open type for exchanging a filament or a target, which can be made arbitrarily, and a vacuum.
엑스레이 튜브는 고진공으로 감압된 진공챔버 내부에 캐소드, 애노드와 애노드에 부착된 타겟을 구비하고, 캐소드로부터 발생한 전자를 타겟(Target)에 입사시킴으로써 엑스레이를 발생시키고 발생된 엑스레이를 엑스레이 윈도우를 통하여 방출시키는 장치이다.The X-ray tube has a cathode, an anode, and a target attached to the anode inside the vacuum chamber decompressed with high vacuum, and generates an X-ray by injecting electrons generated from the cathode into a target, and emits the generated X-ray through the X-ray window. Device.
엑스레이 튜브의 일반적인 동작은 캐소드의 필라멘트에 전류가 흐르고, 필라멘트에 열이 발생하면 열전자가 발생하고, 애노드에 고전압을 인가하여 전자를 가속시켜 타겟에 충돌하여 파장이 짧고 투과력이 높은 엑스레이를 발생시킨다.In general operation of an X-ray tube, current flows through the filament of the cathode, and heat electrons are generated when heat is generated in the filament.
선명한 투과영상을 얻기 위해서 타겟에 충돌하는 전자의 초점 크기가 작아야 한다. 초점 크기를 작게하기 위하여 초점거리를 조절하여야 한다. 종래에는 전자의 초점크기를 조절한 이후, 엑스레이 튜브가 밀봉되었다. 이 경우, 밀봉작업에 의하여, 접합으로 인한 오차나 열에 의한 변형에 의한 오차가 발생하는 문제점이 있었다. 이로 인하여 제품의 신뢰성 및 고 해상도의 엑스레이 튜브를 제작하는데 문제가 있었다.In order to obtain a clear transmission image, the focal size of the electrons colliding with the target should be small. The focal length must be adjusted to reduce the focal size. Conventionally, after adjusting the focal size of the former, the X-ray tube was sealed. In this case, there is a problem that an error due to deformation due to heat or an error due to bonding occurs due to the sealing operation. Because of this, there was a problem in manufacturing a high-resolution X-ray tube of the product reliability.
상기 문제점을 해결하기 위해, 본 발명은 엑스레이 튜브를 밀봉을 한 후, 초점거리를 조절하여 접합과정 및 열에 의한 변형으로 인한 오차를 방지하기 위한 엑스레이 튜브를 제공하는데 그 목적이 있다.In order to solve the above problems, an object of the present invention is to provide an X-ray tube after sealing the X-ray tube, to adjust the focal length to prevent errors due to the bonding process and deformation due to heat.
상기 목적을 달성하기 위해, 진공 챔버와, 상기 진공 챔버와 내부공간이 연결되어 밀봉되는 전자발생부와, 상기 진공 챔버 내부에 위치하고, 일단에 타겟이 설치된 애노드와, 상기 전자발생부 내부에 위치하고, 상기 타겟으로 전자를 방출하는 캐소드와, 상기 전자발생부에 배치되고, 상기 전자발생부를 이동시켜 초점 크기를 조절하는 초점거리 조절부;를 포함하는 엑스레이 튜브를 제공한다.In order to achieve the above object, a vacuum chamber, the electron generating unit is connected and sealed to the vacuum chamber and the internal space, the anode is located inside the vacuum chamber, the target is installed at one end, and located inside the electron generating unit, And a cathode for emitting electrons to the target, and a focal length adjusting unit disposed in the electron generating unit and adjusting the focal size by moving the electron generating unit.
상기 초점거리 조절부는 상기 전자발생부에 배치된 벨로우즈부재를 포함하고, 상기 벨로우즈부재는 상기 진공 챔버의 일단과 맞닿을 수 있다.The focal length adjusting unit may include a bellows member disposed in the electron generating unit, and the bellows member may contact one end of the vacuum chamber.
상기 초점거리 조절부는, 상기 진공 챔버의 일단에 형성된 체결홈에 체결되고, 상기 타겟을 향해 상기 체결홈을 따라 이동하여 상기 벨로우즈부재를 압축하는 조절핀을 포함할 수 있다.The focal length adjusting unit may include a control pin which is fastened to a fastening groove formed at one end of the vacuum chamber and moves along the fastening groove toward the target to compress the bellows member.
상기 조절핀은 상기 전자발생부에 회전가능하게 결합될 수 있다.The control pin may be rotatably coupled to the electron generating unit.
상기 체결홈은 나사홈이 형성되고, 상기 조절핀은 상기 나사홈에 대응되는 나사선이 형성되어, 상기 조절핀의 회전으로 상기 벨로우즈의 압축을 조절할 수 있다.The fastening groove is a screw groove is formed, the adjusting pin is formed with a screw line corresponding to the screw groove, it is possible to adjust the compression of the bellows by the rotation of the adjusting pin.
상기 벨로우즈부재는 금속 재질일 수 있다.The bellows member may be a metal material.
상기 벨로우즈부재는 상기 전자발생부의 내면에 설치될 수 있다.The bellows member may be installed on an inner surface of the electron generating unit.
상기 전자발생부는, 상기 캐소드로부터 방출된 전자의 양을 조절하는 그리드; 및 상기 그리드를 통과한 전자를 상기 타겟에 집속시키고, 상기 전자가 통과하는 윈도우를 포함하는 실린더 형상의 그리드 캡을 포함할 수 있다.The electron generating unit, the grid for controlling the amount of electrons emitted from the cathode; And a cylindrical grid cap focusing electrons passing through the grid to the target and including a window through which the electrons pass.
상기 전자발생부는, 상기 그리드 및 상기 캐소드와 전기적으로 연결되고, 상기 전자발생부 외부로 돌출되는 전극부를 포함할 수 있다.The electron generator may include an electrode part electrically connected to the grid and the cathode and protruding outside the electron generator.
상기 초점거리 조절부는, 상기 전극부의 일부를 감싸는 벨로우즈 부재 및 상기 전극부의 끝단에 설치되어 전극부의 길이를 조절하는 조절핀을 포함할 수 있다.The focal length adjusting part may include a bellows member surrounding a part of the electrode part and a control pin installed at an end of the electrode part to adjust a length of the electrode part.
상기 타겟에 도달하는 전자의 초점 크기는 상기 그리드의 윈도우의 크기에 따라 결정될 수 있다.The focal size of the electrons reaching the target may be determined according to the size of the window of the grid.
상기 윈도우는 직사각형일 수 있다.The window may be rectangular.
상기 그리드는, 상기 초점거리 조절부에 의해 상기 타겟간의 거리가 조절될 수 있다.The distance between the target and the grid may be adjusted by the focal length adjusting unit.
상기한 바와 같이 본 발명에 있어서는, 엑스레이 튜브의 밀봉 이후, 초점거리 조절장치를 이용하여, 전자발생부를 이동시켜 초점거리를 조절할 수 있어 밀봉과정에 따른 접합 또는 열에 의한 오차를 방지할 수 있다.As described above, in the present invention, after sealing the X-ray tube, the focal length may be adjusted by moving the electron generating unit by using the focal length adjusting device, thereby preventing the error due to the bonding or heat caused by the sealing process.
도 1은 본 발명의 일 실시예에 따른 엑스레이 튜브를 도시한 사시도이다.1 is a perspective view showing an x-ray tube according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 엑스레이 튜브를 도시한 분해 사시도이다.Figure 2 is an exploded perspective view showing an x-ray tube according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 엑스레이 튜브를 도시한 단면도이다.Figure 3 is a cross-sectional view showing an x-ray tube according to an embodiment of the present invention.
도 4는 도 3에 표시된 A부분을 나타내는 확대도이다.4 is an enlarged view illustrating a portion A shown in FIG. 3.
도 5는 도 3에 도시된 전자발생부를 나타내는 도면이다.FIG. 5 is a diagram illustrating an electron generating unit illustrated in FIG. 3.
도 6은 본 발명의 다른 실시예에 따른 엑스레이 튜브의 단면도이다.6 is a cross-sectional view of an x-ray tube according to another embodiment of the present invention.
도 7은 도 6에 도시된 전자발생부를 나타내는 도면이다.FIG. 7 is a diagram illustrating an electron generating unit illustrated in FIG. 6.
도 8은 도 5에 도시된 그리드 캡을 나타내는 도면이다.FIG. 8 is a diagram illustrating the grid cap shown in FIG. 5.
이하, 본 문서의 다양한 실시예가 첨부된 도면을 참조하여 기재된다. 그러나 이는 본 문서에 기재된 기술을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 문서의 실시예의 다양한 변경(modifications), 균등물(equivalents), 및/또는 대체물(alternatives)을 포함하는 것으로 이해되어야 한다. 도면의 설명과 관련하여, 유사한 구성요소에 대해서는 유사한 참조 부호가 사용될 수 있다.Hereinafter, various embodiments of the present disclosure will be described with reference to the accompanying drawings. However, this is not intended to limit the techniques described in this document to specific embodiments, but should be understood to cover various modifications, equivalents, and / or alternatives to the embodiments of this document. In connection with the description of the drawings, similar reference numerals may be used for similar components.
또한, 본 문서에서 사용된 "제 1," "제 2," 등의 표현들은 다양한 구성요소들을, 순서 및/또는 중요도에 상관없이 수식할 수 있고, 한 구성요소를 다른 구성요소와 구분하기 위해 사용될 뿐 해당 구성요소들을 한정하지 않는다. 예를 들면, 제 1 사용자 기기와 제 2 사용자 기기는, 순서 또는 중요도와 무관하게, 서로 다른 사용자 기기를 나타낼 수 있다. 예를 들면, 본 문서에 기재된 권리 범위를 벗어나지 않으면서 제 1 구성요소는 제 2 구성요소로 명명될 수 있고, 유사하게 제 2 구성요소도 제 1 구성요소로 바꾸어 명명될 수 있다.In addition, the expressions "first," "second," and the like used in this document may modify various components in any order and / or importance, and may distinguish one component from another. Used only and do not limit the components. For example, the first user device and the second user device may represent different user devices regardless of the order or importance. For example, without departing from the scope of rights described in this document, the first component may be called a second component, and similarly, the second component may be renamed to the first component.
본 문서에서 사용된 용어들은 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 다른 실시예의 범위를 한정하려는 의도가 아닐 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함할 수 있다. 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 용어들은 본 문서에 기재된 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가질 수 있다. 본 문서에 사용된 용어들 중 일반적인 사전에 정의된 용어들은, 관련 기술의 문맥상 가지는 의미와 동일 또는 유사한 의미로 해석될 수 있으며, 본 문서에서 명백하게 정의되지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. 경우에 따라서, 본 문서에서 정의된 용어일지라도 본 문서의 실시예들을 배제하도록 해석될 수 없다.The terminology used herein is for the purpose of describing particular embodiments only and may not be intended to limit the scope of other embodiments. Singular expressions may include plural expressions unless the context clearly indicates otherwise. The terms used herein, including technical or scientific terms, may have the same meaning as commonly understood by one of ordinary skill in the art. Among the terms used in this document, terms defined in the general dictionary may be interpreted as having the same or similar meaning as the meaning in the context of the related art, and ideally or excessively formal meanings are not clearly defined in this document. Not interpreted as In some cases, even if terms are defined in the specification, they may not be interpreted to exclude embodiments of the present disclosure.
이하, 첨부된 도면을 참고하여, 본 발명의 일 실시예에 따른 엑스레이 튜브의 구성을 설명한다.Hereinafter, with reference to the accompanying drawings, the configuration of the X-ray tube according to an embodiment of the present invention.
도 1은 본 발명의 일 실시예에 따른 엑스레이 튜브를 도시한 사시도이고, 도 2는 본 발명의 일 실시예에 따른 엑스레이 튜브를 도시한 분해 사시도이다.1 is a perspective view showing an x-ray tube according to an embodiment of the present invention, Figure 2 is an exploded perspective view showing an x-ray tube according to an embodiment of the present invention.
도 1을 참조하면, 엑스레이 튜브(1)는 전자발생부(100), 진공챔버(200)를 포함한다. 전자발생부(100)와 진공챔버(200)내부에는 캐소드(130, 도2 참조)와 애노드(210, 도 2 참조)가 포함된다. 전자발생부(100)는 복수의 전극부(120)를 포함하고, 복수의 전극부(120)는 전자발생부(100)의 외부로 돌출되어 전류를 공급받을 수 있다. 또한, 전자의 방출을 용이하기 위하여, 전자발생부(100)와 진공챔버(200)내부는 진공으로 되어있다. 전극부(120)를 통하여 공급된 전류로 캐소드(130)에 전류가 공급되고, 캐소드(130)는 전자를 방출한다. Referring to FIG. 1, the X-ray tube 1 includes an electron generator 100 and a vacuum chamber 200. The electron generator 100 and the vacuum chamber 200 may include a cathode 130 (see FIG. 2) and an anode 210 (see FIG. 2). The electron generating unit 100 may include a plurality of electrode units 120, and the plurality of electrode units 120 may protrude out of the electron generating unit 100 to receive a current. In addition, in order to facilitate the emission of electrons, the electron generating unit 100 and the vacuum chamber 200 are vacuumed. The current is supplied to the cathode 130 by the current supplied through the electrode unit 120, and the cathode 130 emits electrons.
조절핀(155)은 전자발생부(100)와 진공챔버(200)사이의 거리를 조절하여, 캐소드(130)에서 방출된 전자를 애노드(210)에 집속시킬수 있는 초점거리를 조절할 수 있다. 전자발생부(100)와 진공챔버(200)는 벨로우즈부재(150, 도 2 참조)와 밀봉 된 후, 조절핀(155)으로 진공챔버(200) 내부에 배치된 전자발생부(100)의 삽입거리를 조절하면, 벨로우즈부재(150)가 압축되거나 인장되어 전자발생부(100)와 진공챔버(200)간의 거리가 조절된다.The adjustment pin 155 may adjust the distance between the electron generating unit 100 and the vacuum chamber 200 to adjust the focal length for focusing the electrons emitted from the cathode 130 to the anode 210. After the electron generating unit 100 and the vacuum chamber 200 are sealed with the bellows member 150 (refer to FIG. 2), the insertion of the electron generating unit 100 disposed inside the vacuum chamber 200 with the adjusting pin 155 is performed. When the distance is adjusted, the bellows member 150 is compressed or tensioned to control the distance between the electron generating unit 100 and the vacuum chamber 200.
도 2를 참조하면, 전자발생부(100)는 전극부(120), 캐소드(130)와 벨로우즈부재(150)를 포함한다. 전극부(120)는 전자발생부(100)에 형성된 개구(126)에 삽입되어 고정된다. 개구(126)는 절연체(125)에 형성되고, 전극부(120)는 절연체(125)에 의해서 전자발생부(100)의 케이스(160)와 통전이 차단된다. 일반적으로 전자발생부(100)는 금속재질로 형성될 수 있어, 전극부(120)와 전자발생부(100)의 케이스(160) 간에 통전을 차단할 필요가 있다.Referring to FIG. 2, the electron generating unit 100 may include an electrode unit 120, a cathode 130, and a bellows member 150. The electrode unit 120 is inserted into and fixed to the opening 126 formed in the electron generating unit 100. The opening 126 is formed in the insulator 125, and the electrode part 120 is cut off from the case 160 of the electron generating unit 100 by the insulator 125. In general, the electron generating unit 100 may be formed of a metal material, and thus, it is necessary to block the energization between the electrode unit 120 and the case 160 of the electron generating unit 100.
전극부(120)는 캐소드(130)와 연결되는 한 쌍의 제1 전극부(121)와 그리드(173)와 연결되는 복수의 제2 전극부(122)를 포함한다. 전자발생부(100)의 외부로 노출된 복수의 제1 및 제2 전극부(121, 122)에 전류가 인가되면, 제1 전극부(121)는 캐소드(130)의 필라멘트로 전류를 인가시키고, 인가된 전류에 의해 캐소드(130)는 전자를 발생시킨다. 제2 전극부(122)에 전류가 인가되면, 제2 전극부(122)는 그리드(173)에 전류를 흐르게 하여 전기장을 형성하여, 그리드 캡(170)의 내부 공간(172)으로 방출된 전자를 애노드(210)의 타겟(220, 도 3참조)을 향하도록 조절할 수 있다.The electrode part 120 includes a pair of first electrode parts 121 connected to the cathode 130 and a plurality of second electrode parts 122 connected to the grid 173. When a current is applied to the plurality of first and second electrode parts 121 and 122 exposed to the outside of the electron generator 100, the first electrode part 121 applies a current to the filament of the cathode 130. The cathode 130 generates electrons by the applied current. When a current is applied to the second electrode part 122, the second electrode part 122 forms an electric field by flowing an electric current through the grid 173, and electrons are emitted into the internal space 172 of the grid cap 170. May be adjusted to face the target 220 of the anode 210 (see FIG. 3).
벨로우즈부재(150)와 조절핀(155)은 전자발생부(100)의 위치를 조절하여, 초점거리를 조절할 수 있는 초점거리 조절부의 역할을 한다. 벨로우즈부재(150)는 전자발생부(100)의 후술할 내부에 형성된 단차부에서 설치되고, 진공챔버(200)의 측면에서 연장된 실린더(230)의 일단(227)에서 돌출된 돌출부(226)에 설치된다. 벨로우즈부재(150)는 주름절곡이 형성되어 있어, 압축 및 인장될 수 있다. 벨로우즈부재(150)의 압축 및 인장으로 진공챔버(200)와 전자발생부(100) 사이의 간격을 조절 할 수 있다. The bellows member 150 and the adjusting pin 155 serve to adjust the position of the electron generating unit 100 to serve as a focal length adjusting unit for adjusting the focal length. The bellows member 150 is installed at a stepped portion formed inside of the electron generating unit 100 to be described later, and a protrusion 226 protruding from one end 227 of the cylinder 230 extending from the side of the vacuum chamber 200. Is installed on. Bellows member 150 is wrinkled is formed, it can be compressed and tensioned. Compression and tension of the bellows member 150 may control the gap between the vacuum chamber 200 and the electron generating unit 100.
조절핀(155)은 전자발생부(100)의 홀(110)을 관통하여 진공챔버(200)의 체결홈(225)에 체결된다. 조절핀(155)은 홀(110)을 통과하지만, 전자발생부(100) 내의 길이방향으로 이동은 제약되어, 전자발생부(100)의 길이방향에 따른 이동은 없고, 체결홈(225)을 따라 길이방향으로 이동할 수 있다. 이를 통하여 전자발생부(100)와 진공챔버(200)사이의 거리를 조절한다.The adjusting pin 155 is fastened to the fastening groove 225 of the vacuum chamber 200 by passing through the hole 110 of the electron generating unit 100. Although the adjusting pin 155 passes through the hole 110, the movement in the longitudinal direction in the electron generating unit 100 is restricted, there is no movement along the longitudinal direction of the electron generating unit 100, and the fastening groove 225 is closed. Can be moved longitudinally. This adjusts the distance between the electron generating unit 100 and the vacuum chamber 200.
진공챔버(200)는 내부에 애노드(210)를 포함한다. 애노드(210)는 고전압이 인가되어, 캐소드(130)에서 방출된 전자를 가속화시켜, 애노드(210) 내부에 배치된 타겟(220)으로 전자가 충돌하도록 한다. 애노드(210)에 인가되는 전압이 높을수록 전자는 더 가속되고, 타겟(220)에 충돌한 전자는 투과율이 높은 엑스레이를 발생시킨다.The vacuum chamber 200 includes an anode 210 therein. A high voltage is applied to the anode 210 to accelerate the electrons emitted from the cathode 130, so that the electrons collide with the target 220 disposed inside the anode 210. As the voltage applied to the anode 210 is higher, electrons are accelerated, and electrons collided with the target 220 generate X-rays having high transmittance.
캐소드(130)로부터 방출된 전자는 실린더(230)내부에 배치된 그리드(173)와 그리드 캡(170)을 통하여 애노드(21)로 향하고, 전자는 애노드(210)에 형성된 전자 이동 개구(215)를 통하여 타겟(220)에 충돌한다. 타겟(220)에 충돌한 전자는 엑스레이를 엑스레이 통과 개구(216)을 통하여 엑스레이 투과창(250)으로 방출된다.Electrons emitted from the cathode 130 are directed to the anode 21 through the grid 173 and the grid cap 170 disposed inside the cylinder 230, and the electrons are moved to the electron opening 215 formed in the anode 210. It collides with the target 220 through. Electrons impinging on the target 220 are emitted to the X-ray transmission window 250 through the X-ray passing opening 216.
도 3은 본 발명의 일 실시예에 따른 엑스레이 튜브를 도시한 단면도이고, 도 4는 도 3에 표시된 A부분을 나타내는 확대도이고, 도 5는 도 3에 도시된 전자발생부를 나타내는 도면이다. 3 is a cross-sectional view illustrating an X-ray tube according to an exemplary embodiment of the present invention, FIG. 4 is an enlarged view illustrating a portion A shown in FIG. 3, and FIG. 5 is a diagram illustrating the electron generating unit illustrated in FIG. 3.
도 3 및 도 5를 참조하면, 진공챔버(200)의 실린더(230)의 내부에 전자발생부(100)의 캐소드(130), 그리드(173) 및 그리드 캡(170)이 배치되고, 전자발생부(100)와 진공챔버(200)의 사이에는 벨로우즈부재(150)가 배치된다.3 and 5, the cathode 130, the grid 173, and the grid cap 170 of the electron generating unit 100 are disposed inside the cylinder 230 of the vacuum chamber 200, and electron generation is performed. The bellows member 150 is disposed between the part 100 and the vacuum chamber 200.
벨로우즈부재(150)의 일단은 전자발생부(100)의 케이스(160)의 내부에 형성된 단차부(111)와 맞닿아 있고, 벨로우즈부재(150)의 타단은 진공챔버(200)의 실린더(230)의 일단(227)에 형성된 돌출부(226)와 맞닿아 있다. 벨로우즈부재(150)의 일단과 타단은 각각 단차부(111)와 돌출부(226)에 밀봉되어, 전자발생부(100)와 진공챔버(200)는 서로 밀봉된다. 케이스(160)와 진공챔버(200)는 내부가 진공으로 형성되어 있어, 내부 외부의 압력차를 견딜 수 있도록 충분한 강성을 가지는 재질로 이루어진다. 케이스(160)와 진공챔버(200)는 금속재질로 이루어질 수 있지만, 이에 한정되지 않고 내부에 진공이 형성되었을 때 견딜 수 있는 재질이면 족하다.One end of the bellows member 150 is in contact with the stepped portion 111 formed in the case 160 of the electron generating unit 100, and the other end of the bellows member 150 is a cylinder 230 of the vacuum chamber 200. Contact with the protrusion 226 formed at one end 227. One end and the other end of the bellows member 150 are sealed to the stepped portion 111 and the protrusion 226, respectively, so that the electron generating portion 100 and the vacuum chamber 200 are sealed to each other. The case 160 and the vacuum chamber 200 are formed of a vacuum inside, and are made of a material having sufficient rigidity to withstand the pressure difference between the inside and the outside. The case 160 and the vacuum chamber 200 may be made of a metal material. However, the case 160 and the vacuum chamber 200 may be formed of a metal material.
또한, 벨로우즈부재(150)는 압축 및 인장될 수 있도록 외면에 주름절곡이 형성되어 있다. 벨로우즈부재(150)가 압축되는 경우, 전자발생부(100)가 진공챔버(200)쪽으로 이동하므로, 캐소드(130), 그리드(173) 및 그리드 캡(170)은 애노드(210) 측으로 이동한다.In addition, the bellows member 150 is wrinkled is formed on the outer surface to be compressed and tensioned. When the bellows member 150 is compressed, since the electron generating unit 100 moves toward the vacuum chamber 200, the cathode 130, the grid 173, and the grid cap 170 move toward the anode 210.
벨로우즈부재(150)가 인장되는 경우, 전자발생부(100)가 진공챔버(200)에서 멀어지는 방향으로 이동하므로, 캐소드(130), 그리드(173) 및 그리드 캡(170)은 애노드(210)에서 멀어지는 방향으로 이동한다.  When the bellows member 150 is tensioned, since the electron generating unit 100 moves away from the vacuum chamber 200, the cathode 130, the grid 173, and the grid cap 170 are moved from the anode 210. Move away
본 발명의 도면에서는 벨로우즈부재(150)는 케이스(160)의 내면에 형성된 것으로 설명하였지만, 이에 한정되지 않고, 케이스(160)의 외부 또는 내부에 배치되어 밀봉될 수 있고, 진공챔버(200)의 외면과 접하여 밀봉될 수도 있다. 즉, 전자발생부(100)의 케이스(160)의 외측면에 단차부가 형성되고, 진공챔버(200)의 외측면에 단차부 또는 돌출부가 형성될 수 있다. 케이스(160)와 진공챔버(200)의 단차부 또는 돌출부에 벨로우즈부재(150)가 결합되어도 전자발생부(100)와 진공챔버(200)간의 거리가 조절될 수 있다. 또한, 벨로우즈부재(150)가 제2 전극부(122)에 설치될 수 있는데, 이와 관련하여 도 6 및 도 7의 설명에서 후술한다.Although the bellows member 150 has been described as being formed on the inner surface of the case 160 in the drawings of the present invention, the present invention is not limited thereto, and the bellows member 150 may be disposed outside or sealed inside the case 160 and may be sealed. It may be sealed in contact with the outer surface. That is, the stepped portion may be formed on the outer surface of the case 160 of the electron generating unit 100, and the stepped portion or the protrusion may be formed on the outer surface of the vacuum chamber 200. Even when the bellows member 150 is coupled to the stepped portion or the protrusion of the case 160 and the vacuum chamber 200, the distance between the electron generator 100 and the vacuum chamber 200 may be adjusted. In addition, the bellows member 150 may be installed in the second electrode part 122, which will be described later with reference to FIGS. 6 and 7.
그리드(173)에 형성된 개구는 캐소드(130)에서 방출되는 전자의 양을 조절하고, 그리드 캡(170)으로 전자를 안내하는 역할을 한다. 그리드(173)와 그리드 캡(170)의 통전을 막기 위하여 절연부재(175)가 설치된다. 이를 통하여, 캐소드(130)와 그리드(173)는 마이너스 전위를 가지고, 그리드 캡의 전위는 0V로 유지된다. 그리드(173)와 그리드 캡(170)의 전위차로 인하여, 캐소드(130)에서 방출된 전자는 그리드(173)를 통과하여 그리드 캡(170)에서 일차적으로 가속된다.An opening formed in the grid 173 controls the amount of electrons emitted from the cathode 130 and serves to guide the electrons to the grid cap 170. An insulating member 175 is installed to prevent the grid 173 and the grid cap 170 from energizing. Through this, the cathode 130 and the grid 173 has a negative potential, the potential of the grid cap is maintained at 0V. Due to the potential difference between grid 173 and grid cap 170, electrons emitted from cathode 130 are first accelerated at grid cap 170 through grid 173.
그리드 캡(170)과 그리드(173)는 실린더(230)내부에 위치하여, 실린더(230)에 의해서 이동방향이 안내된다. 캐소드(130)와 그리드(173)는 제1 및 제2 전극부(121, 122)에 의해서 전기적으로 연결되고, 물리적으로도 고정된다. 제1 및 제2 전극부(121, 122)는 길이를 가지는 봉으로 이루어져 있으며, 제1 및 제2 전극부(121, 122)의 일단은 전자발생부(100)의 케이스(160)외부로 돌출되어 있고, 케이스에 고정된다. 제1 및 제2 전극부(121, 122)는 케이스(160)와의 통전을 막기 위해 절연체(125)로 형성된 개구(126)를 통과하고, 케이스(160)에 고정된다.The grid cap 170 and the grid 173 are located inside the cylinder 230, and the moving direction is guided by the cylinder 230. The cathode 130 and the grid 173 are electrically connected by the first and second electrode portions 121 and 122, and are also physically fixed. The first and second electrode parts 121 and 122 are formed of a rod having a length, and one end of the first and second electrode parts 121 and 122 protrudes out of the case 160 of the electron generating part 100. It is fixed to the case. The first and second electrode parts 121 and 122 pass through the opening 126 formed of the insulator 125 and are fixed to the case 160 in order to prevent power supply to the case 160.
또한, 제1 전극부(121)의 타단은 전자발생부(100)의 케이스(160) 내부에 캐소드(130)의 필라멘트와 결합부재(135)에 의해서 필라멘트와 연결된다. 이를 통하여, 캐소드(130)는 전자발생부(100)의 이동에 대응하여 이동한다. 제2 전극부(122)의 타단은 그리드 캡(170)의 일면에 결합되고, 그리드 캡(170)은 전자발생부(100)의 이동에 대응하여 이동한다.  In addition, the other end of the first electrode part 121 is connected to the filament by the filament of the cathode 130 and the coupling member 135 inside the case 160 of the electron generating unit 100. Through this, the cathode 130 moves in response to the movement of the electron generating unit 100. The other end of the second electrode part 122 is coupled to one surface of the grid cap 170, and the grid cap 170 moves in response to the movement of the electron generator 100.
애노드(210)는 타겟(220)과 전자 이동 개구(215) 및 엑스레이 통과 개구(216)를 포함한다. 캐소드(130)로부터 방출된 전자는 윈도우(171)를 통하여 전자 이동 개구(215)를 통과하여 타겟(220)에 집속된다. 타겟(220)은 기울기를 가지고 배치되어, 타겟(220)에서 생성된 엑스레이는 엑스레이 통과 개구(216)를 통하여 애노드(210) 외부로 진행한다. The anode 210 includes a target 220, an electron transfer opening 215, and an x-ray passing opening 216. Electrons emitted from the cathode 130 are focused on the target 220 through the electron moving opening 215 through the window 171. The target 220 is disposed with an inclination, and the X-rays generated by the target 220 travel outside the anode 210 through the X-ray passing opening 216.
캐소드(130)의 필라멘트는 열적 특성이 좋은 텅스텐으로 형성될 수 있다. 텅스텐의 열적 특성에 따라 필라멘트를 통해 전류가 흐르면, 필라멘트는 전자가 발생할 수 있는 온도까지 가열된다. 이 때 필라멘트에 적용되는 전압을 바꾸면 필라멘트 전류가 변하며 전자가 방출된다.The filament of the cathode 130 may be formed of tungsten with good thermal properties. According to the thermal properties of tungsten, when a current flows through the filament, the filament is heated to a temperature where electrons can be generated. At this time, if the voltage applied to the filament is changed, the filament current changes and electrons are emitted.
도 4를 참조하면, 조절핀(155)은 케이스(160)에 형성된 홀(110)을 통과하고, 홀(110)에 회전가능하도록 결합된다. 조절핀(155)의 일단은 진공챔버(200)의 실린더(230)에 형성된 체결홈(225)에 삽입된다. 벨로우즈부재(150)는 양단이 전자발생부(100)의 케이스(160)와 진공챔버(200)의 실린더(230)와 밀봉되어 결합되므로, 조절핀(155)이 체결홈(225)의 끝단까지 결합되면, 전자발생부(100)와 진공챔버(200)의 거리가 가장 가까워진다. 반대로, 조절핀(155)이 체결홈(225)에 삽입되는 거리가 짧아질수록, 전자발생부(100)와 진공챔버(200)의 거리는 멀어진다.Referring to FIG. 4, the adjustment pin 155 passes through the hole 110 formed in the case 160 and is rotatably coupled to the hole 110. One end of the adjustment pin 155 is inserted into the fastening groove 225 formed in the cylinder 230 of the vacuum chamber 200. Both ends of the bellows member 150 are sealed and coupled to the case 160 of the electron generating unit 100 and the cylinder 230 of the vacuum chamber 200, so that the adjustment pin 155 is provided to the end of the fastening groove 225. When combined, the distance between the electron generating unit 100 and the vacuum chamber 200 is closest. On the contrary, the shorter the distance that the adjustment pin 155 is inserted into the fastening groove 225, the farther the distance between the electron generating unit 100 and the vacuum chamber 200.
벨로우즈부재(150)는 진공으로 형성된 내부공간에 견딜 수 있도록 금속으로 형성되는 것이 바람직하다. 하지만, 진공에서 견딜 수 있는 강성을 가지는 재질이라면, 벨로우즈부재(150)는 금속에 한정되지 않을 수 있다.The bellows member 150 is preferably formed of a metal to withstand the internal space formed by the vacuum. However, if the material has a rigidity that can withstand vacuum, the bellows member 150 may not be limited to metal.
조절핀(155)은 일단에 체결홈(225)과의 결합을 위한 나사선을 가질 수 있고, 체결홈은, 조절핀(155)의 나사선에 대응되는 나사홈을 가질 수 있다. The adjusting pin 155 may have a screw line for coupling with the fastening groove 225 at one end, and the fastening groove may have a screw groove corresponding to the screw line of the adjusting pin 155.
나사선을 가지는 조절핀(155)은 홀(110)에 회전가능하게 결합되어 있으므로, 조절핀(155)의 회전에 의해, 조절핀(155)은 나사홈을 가지는 체결홈(225)에 삽입되는 거리를 조절할 수 있고, 이를 통하여, 전자발생부(100), 캐소드(130), 그리드(173) 및 그리드 캡(170)의 이동거리를 조절할 수 있다.Since the adjusting pin 155 having a screw thread is rotatably coupled to the hole 110, by the rotation of the adjusting pin 155, the adjusting pin 155 is inserted into the fastening groove 225 having the screw groove. It can be adjusted, and through this, it is possible to adjust the moving distance of the electron generating unit 100, the cathode 130, the grid 173 and the grid cap 170.
조절핀(155)이 나사선을 가지고 체결홈(225)이 나사홈을 가진 것으로 설명하였지만, 이에 한정되지 않는다. 조절핀(155)과 체결홈(225)에 서로 스냅 결합되도록 홈과 돌기를 가질 수도 있다. 조절핀(155)에 돌기를 가지고 있도록 되어 있고, 체결홈(225)의 내부에 걸림홈이 길이방향으로 형성될 수 있다. 이 경우, 조절핀(155)이 길이방향으로 이동하면, 체결홈(225) 내부 걸림홈에 조절핀(155)의 돌기가 걸려 고정될 수 있고, 조정이 필요하다면, 조절핀(155)을 다시 길이방향으로 이동시켜 조절할 수 있다. Although the adjusting pin 155 has a screw line and the fastening groove 225 has a screw groove, it is not limited thereto. The adjusting pin 155 and the fastening groove 225 may have a groove and a protrusion to snap to each other. Has a projection on the adjustment pin 155, the locking groove may be formed in the longitudinal direction of the fastening groove 225. In this case, when the adjustment pin 155 moves in the longitudinal direction, the projection of the adjustment pin 155 can be caught and fixed in the locking groove 225, the inner locking groove, if adjustment is necessary, the adjustment pin 155 again Can be adjusted by moving in the longitudinal direction.
도 6은 본 발명의 다른 실시예에 따른 엑스레이 튜브의 단면도이고, 도 7은 도 6에 도시된 전자발생부를 나타내는 도면이다.6 is a cross-sectional view of an X-ray tube according to another exemplary embodiment of the present invention, and FIG. 7 is a diagram illustrating an electron generating unit illustrated in FIG. 6.
도 6 및 도 7을 참조하면, 복수의 벨로우즈부재(151)는 제1 및 제2 전극부(121, 122)에 설치된다. 벨로우즈부재(151)의 설치 위치와 제1 및 제2 전극부(121, 122)외의 구조는 도 2 내지 도 5의 엑스레이 튜브와 동일한 구성을 가진다. 도 6과 도 7과 같은 구성으로 초점거리 조절부의 벨로우즈부재(150)는 전자발생부(100) 내부에 배치할 수 있다.6 and 7, the plurality of bellows members 151 are installed in the first and second electrode portions 121 and 122. The installation position of the bellows member 151 and the structure other than the first and second electrode portions 121 and 122 have the same configuration as the X-ray tube of FIGS. 2 to 5. 6 and 7, the bellows member 150 of the focal length adjusting unit may be disposed in the electron generating unit 100.
그리드(173)에 연결되는 제2 전극부(122)를 바탕으로 전극부(120)에 설치된 벨로우즈부재(151)를 설명한다. The bellows member 151 provided in the electrode part 120 will be described based on the second electrode part 122 connected to the grid 173.
벨로우즈부재(151)는 제2 전극부(122)의 외부관(122a)과 연결로드(122b) 사이에 설치된다. 외부관(122a)내부에 조절핀(156)이 삽입된다.The bellows member 151 is installed between the outer tube 122a of the second electrode portion 122 and the connection rod 122b. The adjusting pin 156 is inserted into the outer tube 122a.
조절핀(156)과 연결로드(122b)는 일체로 형성될 수 있고, 조절핀(156)이 당겨지면, 벨로우즈부재(151)는 압축되고, 전자발생부(100)의 케이스(160)와 진공챔버(200)의 내부에 배치되는 제1 및 제2 전극부(121, 122)의 길이는 짧아지게 된다. 이를 통하여, 캐소드(130), 그리드(173), 그리드 캡(170)은 타겟에서 멀어지는 방향으로 이동될 수 있다.The adjusting pin 156 and the connecting rod 122b may be integrally formed. When the adjusting pin 156 is pulled, the bellows member 151 is compressed, and the case 160 and the vacuum of the electron generating unit 100 are vacuumed. The lengths of the first and second electrode parts 121 and 122 disposed inside the chamber 200 are shortened. Through this, the cathode 130, the grid 173, and the grid cap 170 may be moved away from the target.
본 발명의 엑스레이튜브는 상술한 바와 같이, 전자발생부(100)와 진공챔버(200)사이에 벨로우즈부재(150)가 밀봉되거나, 전극부(120)의 일부를 벨로우즈부재(151)가 감싸는 구성으로 설명하였지만, 이에 한정되지 않고, 초점거리를 조절하기 위한 부분을 설치하여 압축 또는 인장이 필요한 곳에는 벨로우즈부재(150, 151)가 설치될 수 있다.In the X-ray tube of the present invention, as described above, the bellows member 150 is sealed between the electron generating unit 100 and the vacuum chamber 200, or the bellows member 151 surrounds a part of the electrode unit 120. As described above, the present invention is not limited thereto, and the bellows members 150 and 151 may be installed where compression or tension is required by installing a portion for adjusting the focal length.
도 8은 도 5에 도시된 그리드 캡을 나타내는 도면이다.FIG. 8 is a diagram illustrating the grid cap shown in FIG. 5.
도 8을 참조하면, 그리드 캡(170)은 컵형상으로 이루어져 있다. 그리드 캡(170)은 금속재질로 형성되며, 제2 전극부(122)로부터 전류를 공급받는다.Referring to FIG. 8, the grid cap 170 has a cup shape. The grid cap 170 is formed of a metal material and receives a current from the second electrode part 122.
그리드 캡(170)은 내부는 빈 공간으로 형성되고, 애노드(210)를 향하는 방향으로 윈도우(171)가 형성된다. 그리드 캡(170) 내부로 방출되는 전자는 윈도우(171)를 통하여 애노드(210)로 전자가 전달된다.The grid cap 170 has an empty space inside, and a window 171 is formed in the direction toward the anode 210. Electrons emitted into the grid cap 170 are transferred to the anode 210 through the window 171.
그리드 캡(170)은 제2 전극부(122)로부터 전류를 공급받아 내부에 전기장을 형성하여 전자를 타겟(220)으로 진행하게 하고, 전자를 집속시키게 된다. 그리드(173)는 내부에 집속코일과 편향코일로 구성될 수 있다. 애노드(210)를 향하는 전자경로를 감싸는 그리드 캡(170)은 전자가 이동하는 동안 전자의 분산됨을 방지하고, 전자를 집속시키기 위한 자기장을 형성한다.The grid cap 170 receives a current from the second electrode unit 122 to form an electric field therein, thereby causing electrons to travel to the target 220, and to focus the electrons. The grid 173 may be composed of a focusing coil and a deflection coil therein. The grid cap 170 surrounding the electron path toward the anode 210 prevents the electrons from dispersing while the electrons move and forms a magnetic field for focusing the electrons.
타겟(220)에 전자가 집속되는 초점 크기(Focal Size)가 작고, 원형에 가까워야 선명도가 높아진다. 초점 크기에 영향을 미치는 것은 그리드 캡(170)의 윈도우(171)의 크기와 윈도우(171)와 타겟(220)사이의 거리에 영향을 받는다. 윈도우(171)의 크기가 커지면, 초점 크기를 작게 하기 위해서 타겟(220)과 그리드(173), 그리드 캡(170) 및 윈도우(171) 간의 거리가 멀어져야 한다. 따라서, 윈도우(171)크기에 따라 초점거리를 다르게 설정하여야 한다. 초점거리를 맞추어서 캐소드(130), 그리드 캡(170) 및 그리드(173)를 설치하더라도, 밀봉과정에서 접합오차와 열에 의한 변형으로 추가적인 오차가 발생하여 밀봉 이후 초점거리가 일치하지 않아 초점 크기가 변하면 선명도가 떨어질 수 있으므로, 밀봉 이후에 초점거리를 조절할 필요가 있다.The focal size at which electrons are focused on the target 220 is small, and the closer to the circle, the higher the sharpness. What affects the focal size is affected by the size of the window 171 of the grid cap 170 and the distance between the window 171 and the target 220. As the size of the window 171 increases, the distance between the target 220 and the grid 173, the grid cap 170, and the window 171 should be increased to reduce the focus size. Therefore, the focal length should be set differently according to the size of the window 171. Even if the cathode 130, the grid cap 170, and the grid 173 are installed at the focal length, additional errors occur due to the bonding error and deformation due to heat during the sealing process. Since the sharpness may deteriorate, it is necessary to adjust the focal length after sealing.
또한, 진공챔버(200)의 형상이 완벽하게 대칭되지 않고, 애노드(210)에 배치되는 타겟(220)이 기울어져 있으므로, 정사각형으로 윈도우(171)가 형성되면 타겟(220)에 충돌하는 전자의 형상은 원형으로 이루어지지 못한다. 따라서, 타겟(220)에 충돌하는 전자를 일정한 밀도로 조절하고, 원형에 가깝게 형성하기 위해서, 직사각형의 윈도우(171)가 필요하다. 따라서, 윈도우(171)의 가로, 세로 비율은 타겟(220)에 충돌되는 전자의 초점이 원형이 되도록 결정된다.In addition, since the shape of the vacuum chamber 200 is not perfectly symmetrical and the target 220 disposed on the anode 210 is inclined, when the window 171 is formed in a square shape, the electrons collide with the target 220. The shape is not circular. Therefore, in order to adjust electrons colliding with the target 220 to a certain density and to form a circle close to a circular shape, a rectangular window 171 is required. Therefore, the aspect ratio of the window 171 is determined so that the focal point of the electrons colliding with the target 220 is circular.
초점의 형상을 원형으로 형성되도록 윈도우(171)를 직사각형으로 제작하고, 벨로우즈부재(150)와 조절핀(155)으로 이루어진 초점거리 조절부재를 이용하여, 전자발생부(100)와 진공챔버(200)사이의 거리조절 하여 엑스레이 장치의 선명도를 높일 수 있다.The window 171 is formed in a rectangular shape so that the shape of the focus is circular, and the electron generating unit 100 and the vacuum chamber 200 are formed by using the focal length adjusting member formed of the bellows member 150 and the adjusting pin 155. You can increase the sharpness of the X-ray device by adjusting the distance between the
이하, 본 발명의 일 실시예에 따른 엑스레이 튜브의 제작 및 동작 방법에 대하여 설명한다.Hereinafter, a method of manufacturing and operating an X-ray tube according to an embodiment of the present invention will be described.
도 2를 참조하면, 타겟(220)을 포함하는 애노드(210)는 진공챔버(200) 내부에 설치된다. 전자발생부(100)의 케이스(160)의 내면에 벨로우즈부재(150)가 설치될 수 있다. 벨로우즈부재(150)는 케이스(160)내부의 단차부(111)에 결합되고 이후 밀봉과정을 거친다. 전자발생부(100)의 케이스(160)의 외면에 형성된 절연체(125)의 개구(126)를 통하여 전극부(120)가 설치된다. 제1 전극부(121)의 일단에 결합된 캐소드(130) 및 제2 전극부(122)의 일단에 결합된 그리드(173)도 전자발생부(100)에 고정된다. 이후, 케이스(160)에 형성된 홀(110)을 통하여 조절핀(155)이 회전가능하게 설치된다.Referring to FIG. 2, the anode 210 including the target 220 is installed in the vacuum chamber 200. The bellows member 150 may be installed on an inner surface of the case 160 of the electron generating unit 100. The bellows member 150 is coupled to the stepped portion 111 inside the case 160 and then sealed. The electrode unit 120 is installed through the opening 126 of the insulator 125 formed on the outer surface of the case 160 of the electron generating unit 100. The cathode 130 coupled to one end of the first electrode portion 121 and the grid 173 coupled to one end of the second electrode portion 122 are also fixed to the electron generator 100. Thereafter, the adjustment pin 155 is rotatably installed through the hole 110 formed in the case 160.
전자발생부(100)와 진공챔버(200)를 결합하기 위하여, 진공챔버(200)의 측면에서 연장된 실린더(230)와 전자발생부(100)의 케이스(160)를 접하도록 한다. 이때, 그리드 캡(170), 그리드(173) 및 캐소드(130)는 실린더(230)내부로 삽입된다.In order to couple the electron generating unit 100 and the vacuum chamber 200, the cylinder 230 extending from the side of the vacuum chamber 200 is brought into contact with the case 160 of the electron generating unit 100. In this case, the grid cap 170, the grid 173, and the cathode 130 are inserted into the cylinder 230.
전자발생부(100) 내부에 설치된 벨로우즈부재(150)는 실린더(230)의 돌출부(226)와 맞닿게 배치되고, 이후 밀봉 처리된다. 이후, 조절핀(155)을 체결홈(225)에 삽입하여 결합하게 되어 엑스레이 튜브를 제작한다.The bellows member 150 installed in the electron generating unit 100 is disposed in contact with the protrusion 226 of the cylinder 230, and then sealed. Thereafter, the adjustment pin 155 is inserted into the fastening groove 225 to be combined to produce an X-ray tube.
엑스레이 튜브는 조립 당시에 초점거리를 맞추어 제작된다.X-ray tubes are manufactured with focal length at the time of assembly.
하지만, 밀봉과정에서 진공챔버(200) 내부를 감압할 때, 진공상태에 근접하도록 하기위해 열을 가할 수 있다. 이때 가해진 열에 의해 애노드(210), 타겟(220), 캐소드(130), 그리드(173) 및 그리드 캡(170) 등의 위치가 변형될 수 있다. 따라서, 조립 당시의 초점거리가 오차가 발생할 수 있다. 초점거리에 오차가 발생하면 초점 크기가 변하게 되므로, 엑스레이 튜브의 해상도에 영향을 줄 수 있기 때문에 초점거리를 조절하는 과정이 필요하다.However, when depressurizing the inside of the vacuum chamber 200 in the sealing process, heat may be applied to approach the vacuum state. In this case, the positions of the anode 210, the target 220, the cathode 130, the grid 173, the grid cap 170, and the like may be modified by the applied heat. Therefore, an error may occur in the focal length at the time of assembly. If an error occurs in the focal length, the focal size is changed. Therefore, the focal length adjustment process is necessary because it may affect the resolution of the X-ray tube.
따라서 밀봉과정과 접합과정에서 오차가 존재하므로 이를 조절하기 위하여, 설정된 초점거리의 오차가 있는지를 판단하기 위해, 엑스레이 튜브(1)는 시운전된다.Therefore, there is an error in the sealing process and the bonding process in order to control this, in order to determine whether there is an error of the set focal length, the X-ray tube 1 is commissioned.
초점거리에 오차가 있다면, 조절핀(155)을 조절하여, 실린더(230)내부로 그리드(173), 그리드 캡(170) 및 캐소드(130)를 이동시키거나, 타겟(220)으로부터 거리가 멀어지도록 조절하여 최종적으로 엑스레이 튜브(1)는 제작된다.If there is an error in the focal length, the adjusting pin 155 is adjusted to move the grid 173, the grid cap 170, and the cathode 130 into the cylinder 230, or the distance from the target 220 is increased. Finally, the X-ray tube 1 is manufactured.
도 6과 도 7을 참조하면, 본 발명의 다른 실시예에 따른 엑스레이 튜브의 제작과정은 벨로우즈부재(150)가 전자발생부(100)의 케이스(160)와 진공챔버(200)의 실린더(230)사이에 배치되지 않고, 케이스(160)와 실린더(230)가 밀봉된다. 벨로우즈부재(151)와 조절핀(156)은 전극부(120)에 설치된 형태로 케이스(160)에 부착된 절연부재(125)의 개구(126)에 삽입되어 설치된다. 조절핀(156)은 당기거나 밀어서, 제1 및 제2 전극부(121, 122)의 케이스(160) 내부 길이가 조절될 수 있고, 외부관(122a)과 조절핀(156)이 나사결합되어, 조절핀(156)의 회전으로 제1 및 제2 전극부(121, 122)의 케이스(160) 내부 길이가 조절될 수 있다.6 and 7, in the manufacturing process of the X-ray tube according to another exemplary embodiment of the present invention, the bellows member 150 includes the case 160 of the electron generating unit 100 and the cylinder 230 of the vacuum chamber 200. ), The case 160 and the cylinder 230 are sealed. The bellows member 151 and the adjusting pin 156 are inserted into the opening 126 of the insulating member 125 attached to the case 160 in the form of being installed in the electrode unit 120. The adjusting pin 156 may be pulled or pushed to adjust the inner length of the case 160 of the first and second electrode parts 121 and 122, and the outer tube 122a and the adjusting pin 156 may be screwed to each other. The inner length of the case 160 of the first and second electrode parts 121 and 122 may be adjusted by the rotation of the adjustment pin 156.
이하, 제작된 엑스레이 튜브(1)의 동작과정을 설명한다.Hereinafter, an operation process of the manufactured x-ray tube 1 will be described.
엑스레이 튜브(1)의 전극부(120)는 전류를 인가받는다. 제2 전극부(122)로 인가된 전류는 제2 전극부(122)를 따라 그리드(173)로 흐른다. 그리드(173)에서는 인가된 전류로 인하여 전기장이 형성된다. 또한, 그리드(173)와 그리드 캡(170)은 절연부재(175)로 절연되어 있어, 전위차가 발생된다.The electrode unit 120 of the X-ray tube 1 receives a current. The current applied to the second electrode portion 122 flows along the second electrode portion 122 to the grid 173. In the grid 173 an electric field is formed due to the applied current. In addition, the grid 173 and the grid cap 170 are insulated by the insulating member 175, so that a potential difference is generated.
제1 전극부(121)로 인가된 전류는 캐소드(130)로 전달된다. 캐소드(130)는 필라멘트로 구성되어 있고, 전자발생부(100)와 진공챔버(200)의 내부는 고진공으로 감압되어 있다. 캐소드(130)의 필라멘트는 전류에 의해 가열되고, 가열되어 열전자가 발생한다. The current applied to the first electrode part 121 is transferred to the cathode 130. The cathode 130 is formed of a filament, and the electron generator 100 and the interior of the vacuum chamber 200 are decompressed with high vacuum. The filament of the cathode 130 is heated by the current, and heated to generate hot electrons.
그리드(173)와 그리드 캡(170)의 전위차로 인하여, 방출된 전자는 일차적으로 가속된다. 진공챔버(200)내부에 포함된 애노드(210)에는 고전압이 인가되어 전자를 더욱 가속시키면 캐소드(130)에서 발생된 전자의 이동 속도가 빨라진다. 애노드(210)에 위치한 타겟(220)으로 전자가 충돌하면, 엑스레이가 생성된다.Due to the potential difference between grid 173 and grid cap 170, the emitted electrons are primarily accelerated. When a high voltage is applied to the anode 210 included in the vacuum chamber 200 to further accelerate the electrons, the moving speed of the electrons generated from the cathode 130 is increased. When electrons collide with the target 220 located in the anode 210, an X-ray is generated.
그리드(173)에 전류가 인가되면, 방출된 전자를 타겟의 일 지점으로 집속시키는 정전기적 렌즈의 역할을 한다. 즉, 그리드(173)는 엑스레이의 투과영상의 선명도를 높이기 위해 전자를 작은 초점 크기로 타겟에 집속시킬 수 있다.When a current is applied to the grid 173, it serves as an electrostatic lens that focuses the emitted electrons to one point of the target. That is, the grid 173 may focus electrons on the target with a small focal size in order to increase the sharpness of the transmitted image of the X-ray.
초점 크기가 크다면, 그리드(173), 그리드 캡(170) 및 캐소드(130)를 실린더(230)내에서 전후진 시켜, 최적의 초점거리를 맞추고 이후 엑스레이 영상장치에 설치하여 사용한다.If the focal size is large, the grid 173, the grid cap 170, and the cathode 130 are moved back and forth in the cylinder 230 to achieve an optimal focal length and then installed in an X-ray imaging apparatus.
상술한 바와 같이, 본 발명의 일 실시예에 따른 엑스레이 튜브는 엑스레이 튜브를 구성하는 전자발생부(100)와 진공챔버(200)의 밀봉 이후에 초점거리를 조절할 수 있다. 따라서, 밀봉과정에서 발생하는 초점거리의 오차발생을 밀봉 이후에 조절핀(155, 156)을 이용하여 거리를 조절하면, 벨로우즈부재(150, 151)의 변형으로 전자발생부(100)와 진공챔버(200)의 거리를 조절할 수 있다. 이를 통하여, 캐소드(130)로부터 방출된 전자가 그리드(173)를 통하여 타겟(220)에 집속되는 초점 크기를 작게 조절하여 엑스레이 튜브(1)가 설치되는 엑스레이 장치의 선명도를 향상시킬 수 있다.As described above, the X-ray tube according to an embodiment of the present invention may adjust the focal length after sealing the electron generating unit 100 and the vacuum chamber 200 constituting the X-ray tube. Therefore, when the distance is adjusted using the adjustment pins 155 and 156 after sealing the error of the focal length generated during the sealing process, the electron generating unit 100 and the vacuum chamber are deformed by the deformation of the bellows members 150 and 151. The distance of 200 can be adjusted. As a result, the sharpness of the X-ray apparatus in which the X-ray tube 1 is installed may be improved by adjusting the focal size at which electrons emitted from the cathode 130 are focused on the target 220 through the grid 173.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형 가능함은 물론이다.As described above, although the present invention has been described by way of limited embodiments and drawings, the present invention is not limited thereto, and the technical idea of the present invention and the following by those skilled in the art to which the present invention pertains. Of course, various modifications and variations are possible within the scope of equivalents of the claims to be described.

Claims (13)

  1. 진공 챔버;A vacuum chamber;
    상기 진공 챔버와 내부공간이 연결되어 밀봉되는 전자발생부;An electron generating unit in which the vacuum chamber and the internal space are connected and sealed;
    상기 진공 챔버 내부에 위치하고, 일단에 타겟이 설치된 애노드;An anode located inside the vacuum chamber and having a target installed at one end thereof;
    상기 전자발생부 내부에 위치하고, 상기 타겟으로 전자를 방출하는 캐소드; 및A cathode positioned inside the electron generating unit and emitting electrons to the target; And
    상기 전자발생부에 배치되고, 상기 전자발생부를 이동시켜 초점 크기를 조절하는 초점거리 조절부;를 포함하는 엑스레이 튜브.A focal length adjusting unit disposed in the electron generating unit and adjusting the focal size by moving the electron generating unit.
  2. 제1항에 있어서,The method of claim 1,
    상기 초점거리 조절부는 상기 전자발생부에 배치된 벨로우즈부재를 포함하고, 상기 벨로우즈부재는 상기 진공 챔버의 일단과 맞닿은 엑스레이 튜브.The focal length adjusting unit includes a bellows member disposed in the electron generating unit, and the bellows member is in contact with one end of the vacuum chamber.
  3. 제2항에 있어서,The method of claim 2,
    상기 초점거리 조절부는,The focal length adjusting unit,
    상기 진공 챔버의 일단에 형성된 체결홈에 체결되고, 상기 타겟을 향해 상기 체결홈을 따라 이동하여 상기 벨로우즈부재를 압축하는 조절핀;을 포함하는 엑스레이 튜브.And a control pin which is fastened to a fastening groove formed at one end of the vacuum chamber and moves along the fastening groove toward the target to compress the bellows member.
  4. 제3항에 있어서,The method of claim 3,
    상기 조절핀은 상기 전자발생부에 회전가능하게 결합되는 엑스레이 튜브.The control pin is an X-ray tube rotatably coupled to the electron generator.
  5. 제3항에 있어서,The method of claim 3,
    상기 체결홈은 나사홈이 형성되고, The fastening groove is a screw groove is formed,
    상기 조절핀은 상기 나사홈에 대응되는 나사선이 형성되어, 상기 조절핀의 회전으로 상기 벨로우즈의 압축을 조절하는 엑스레이 튜브.The adjusting pin is a screw line corresponding to the screw groove is formed, X-ray tube for adjusting the compression of the bellows by the rotation of the adjusting pin.
  6. 제2항에 있어서,The method of claim 2,
    상기 벨로우즈부재는 금속 재질인 엑스레이 튜브.The bellows member is a metal X-ray tube.
  7. 제2항에 있어서,The method of claim 2,
    상기 벨로우즈부재는 상기 전자발생부의 내면에 설치되는 엑스레이튜브.The bellows member is an X-ray tube installed on the inner surface of the electron generating unit.
  8. 제1항에 있어서,The method of claim 1,
    상기 전자발생부는,The electron generating unit,
    상기 캐소드로부터 방출된 전자의 양을 조절하는 그리드; 및 상기 그리드를 통과한 전자를 상기 타겟에 집속시키고, 상기 전자가 통과하는 윈도우를 포함하는 실린더 형상의 그리드 캡;을 포함하는 엑스레이 튜브.A grid for controlling the amount of electrons emitted from the cathode; And a cylindrical grid cap focusing electrons passing through the grid to the target and including a window through which the electrons pass.
  9. 제8항에 있어서,The method of claim 8,
    상기 전자발생부는,The electron generating unit,
    상기 그리드 및 상기 캐소드와 전기적으로 연결되고, 상기 전자발생부 외부로 돌출되는 전극부;를 포함하는 엑스레이 튜브.And an electrode part electrically connected to the grid and the cathode and protruding outside the electron generator.
  10. 제9항에 있어서,The method of claim 9,
    상기 초점거리 조절부는,The focal length adjusting unit,
    상기 전극부의 일부를 감싸는 벨로우즈 부재; 및 상기 전극부의 끝단에 설치되어 전극부의 길이를 조절하는 조절핀;을 포함하는 엑스레이 튜브.A bellows member surrounding a part of the electrode part; And an adjusting pin installed at the end of the electrode to adjust the length of the electrode.
  11. 제8항에 있어서,The method of claim 8,
    상기 타겟에 도달하는 전자의 초점 크기는 상기 그리드의 윈도우의 크기에 따라 결정되는 엑스레이 튜브.The focal size of the electrons reaching the target is determined according to the size of the window of the grid.
  12. 제8항에 있어서,The method of claim 8,
    상기 윈도우는 직사각형인 엑스레이 튜브.The window is a rectangular x-ray tube.
  13. 제8항에 있어서,The method of claim 8,
    상기 그리드는,The grid,
    상기 초점거리 조절부에 의해 상기 타겟 간의 거리가 조절되는 엑스레이 튜브.The x-ray tube is adjusted to the distance between the target by the focal length adjusting unit.
PCT/KR2017/005202 2017-05-19 2017-05-19 X-ray tube WO2018212377A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197032904A KR102268608B1 (en) 2017-05-19 2017-05-19 x-ray tube
PCT/KR2017/005202 WO2018212377A1 (en) 2017-05-19 2017-05-19 X-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2017/005202 WO2018212377A1 (en) 2017-05-19 2017-05-19 X-ray tube

Publications (1)

Publication Number Publication Date
WO2018212377A1 true WO2018212377A1 (en) 2018-11-22

Family

ID=64274030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005202 WO2018212377A1 (en) 2017-05-19 2017-05-19 X-ray tube

Country Status (2)

Country Link
KR (1) KR102268608B1 (en)
WO (1) WO2018212377A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210017127A (en) * 2019-08-07 2021-02-17 (주) 브이에스아이 A large X-RAY Generator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090020752A (en) * 2007-08-24 2009-02-27 정원정밀공업 주식회사 An apparatus for generating the bucky centering light of diagnostic x-ray using led light
US20110182404A1 (en) * 2005-01-26 2011-07-28 Norbert Haunschild Collimator with an adjustable focal length
KR20130141789A (en) * 2012-06-18 2013-12-27 한국전자통신연구원 X-ray tube and method of controlling x-ray focal spot using the same
KR20140092437A (en) * 2012-12-27 2014-07-24 삼성전자주식회사 Medical image system and method for controlling the medical image system
KR101731594B1 (en) * 2015-08-31 2017-05-02 주식회사바텍 Micro x-ray tube with improving accuracy of alignment and aligning apparatus for the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147096A (en) * 2006-12-13 2008-06-26 Toshiba Corp Focus adjustment method and device of x-ray image tube
US8716925B2 (en) * 2011-08-09 2014-05-06 L-3 Communications Corporation Adjustable perveance electron gun header

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110182404A1 (en) * 2005-01-26 2011-07-28 Norbert Haunschild Collimator with an adjustable focal length
KR20090020752A (en) * 2007-08-24 2009-02-27 정원정밀공업 주식회사 An apparatus for generating the bucky centering light of diagnostic x-ray using led light
KR20130141789A (en) * 2012-06-18 2013-12-27 한국전자통신연구원 X-ray tube and method of controlling x-ray focal spot using the same
KR20140092437A (en) * 2012-12-27 2014-07-24 삼성전자주식회사 Medical image system and method for controlling the medical image system
KR101731594B1 (en) * 2015-08-31 2017-05-02 주식회사바텍 Micro x-ray tube with improving accuracy of alignment and aligning apparatus for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210017127A (en) * 2019-08-07 2021-02-17 (주) 브이에스아이 A large X-RAY Generator
KR102409459B1 (en) * 2019-08-07 2022-06-15 (주) 브이에스아이 A large X-RAY Generator

Also Published As

Publication number Publication date
KR102268608B1 (en) 2021-06-28
KR20190133770A (en) 2019-12-03

Similar Documents

Publication Publication Date Title
TW580721B (en) Device for generating X-ray
WO2019013381A1 (en) X-ray tube for improving electron concentration
KR101901185B1 (en) X-ray device and ct equipment having x-ray device
GB2293686A (en) X-ray tube with annular vacuum housing
WO2018212377A1 (en) X-ray tube
WO2013025080A1 (en) X-ray source having cooling and shielding functions
WO2019022282A1 (en) Cylindrical x-ray tube and manufacturing method thereof
WO2013042810A1 (en) Apparatus provided with multiple targets and multi-electron beam for generating x-rays
KR100906148B1 (en) Transmission-type microfocus x-ray tube using carbon nanotube field emitter
KR100587619B1 (en) Nondestructive inspection apparatus
US5387843A (en) Ion source having plasma chamber, an electron source, and a plasma power supply
US5235188A (en) Charged particle beam device
US2879422A (en) Electrostatic writing tube
WO2016159618A1 (en) X-ray generation device and control method therefor
CN100355323C (en) X-ray tube adjustment apparatus, X-ray tube adjustment system, and X-ray tube adjustment method
KR100599702B1 (en) Device for providing reduced convergence drift of CRT
WO2020111820A1 (en) Small x-ray tube having extractor
WO2024038953A1 (en) Easy-to-assemble closed type x-ray generator having target surface parallel to exit window
US4855638A (en) Camera tube system and electron gun therefor
WO2014073810A1 (en) Optical ionizer
US6888299B2 (en) Electron gun for cathode ray tube having SVM coil and cathode ray tube using the electron gun
WO2019225814A1 (en) Reflective x-ray tube
WO2023080693A1 (en) X-ray source
US5224592A (en) High voltage switch device and high-voltage change-over switch
JP2020043023A (en) X-ray generation apparatus, x-ray apparatus and x-ray generation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17910362

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197032904

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17910362

Country of ref document: EP

Kind code of ref document: A1