WO2016159522A1 - 네트워크 선택 및 트래픽 라우팅을 수행하는 방법 및 사용자 장치 - Google Patents

네트워크 선택 및 트래픽 라우팅을 수행하는 방법 및 사용자 장치 Download PDF

Info

Publication number
WO2016159522A1
WO2016159522A1 PCT/KR2016/002190 KR2016002190W WO2016159522A1 WO 2016159522 A1 WO2016159522 A1 WO 2016159522A1 KR 2016002190 W KR2016002190 W KR 2016002190W WO 2016159522 A1 WO2016159522 A1 WO 2016159522A1
Authority
WO
WIPO (PCT)
Prior art keywords
wlan
pdn connection
nbifom
information
nbifom function
Prior art date
Application number
PCT/KR2016/002190
Other languages
English (en)
French (fr)
Inventor
김현숙
김래영
류진숙
김재현
김태훈
윤명준
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020177025115A priority Critical patent/KR20170134363A/ko
Priority to US15/560,127 priority patent/US10206155B2/en
Publication of WO2016159522A1 publication Critical patent/WO2016159522A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • H04W36/22Performing reselection for specific purposes for handling the traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0247Traffic management, e.g. flow control or congestion control based on conditions of the access network or the infrastructure network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0016Hand-off preparation specially adapted for end-to-end data sessions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/34Modification of an existing route
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/34Modification of an existing route
    • H04W40/36Modification of an existing route due to handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • H04W74/0858Random access procedures, e.g. with 4-step access with collision treatment collision detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/34Selective release of ongoing connections
    • H04W76/36Selective release of ongoing connections for reassigning the resources associated with the released connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • H04W28/0236Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present disclosure relates to mobile communication.
  • the 3GPP which enacts the technical specifications of the mobile communication system, has been trying to optimize and improve the performance of 3GPP technologies since late 2004 in order to respond to various forums and new technologies related to 4G mobile communication. Started research on Term Evolution / System Architecture Evolution technology.
  • 3GPP SAE centered on 3GPP SA WG2
  • 3GPP SA WG2 is a study on network technology aimed at determining network structure and supporting mobility between heterogeneous networks in parallel with LTE work of 3GPP TSG RAN.
  • Recent important standardization issues of 3GPP Is one of. This is a work to develop a 3GPP system into a system supporting various radio access technologies based on IP, and has been aimed at an optimized packet-based system that minimizes transmission delay with improved data transmission capability.
  • the Evolved Packet System (EPS) high-level reference model defined by 3GPP SA WG2 includes non-roaming cases and roaming cases in various scenarios. See TS 23.401 and TS 23.402.
  • the network structure diagram of FIG. 1 is a simple reconfiguration.
  • 1 illustrates an evolved mobile communication network It is a structure diagram .
  • the EPC may include various components, and in FIG. 1, some of them correspond to a Serving Gateway (S-GW) 52, a PDN Packet Data Network Gateway (GW) 53, and a Mobility Management Entity (MME). 51, a Serving General Packet Radio Service (GPRS) Supporting Node (SGSN), and an enhanced Packet Data Gateway (ePDG).
  • S-GW Serving Gateway
  • GW Packet Data Network Gateway
  • MME Mobility Management Entity
  • GPRS General Packet Radio Service
  • SGSN Serving General Packet Radio Service
  • ePDG enhanced Packet Data Gateway
  • the S-GW 52 acts as a boundary point between the radio access network (RAN) and the core network, and is an element that functions to maintain a data path between the eNodeB 22 and the PDN GW 53.
  • the S-GW 52 serves as a local mobility anchor point. That is, packets may be routed through the S-GW 52 for mobility in the E-UTRAN (Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later).
  • E-UTRAN Universal Mobile Telecommunications System (Evolved-UMTS) Terrestrial Radio Access Network defined in 3GPP Release-8 or later.
  • the S-GW 52 may be connected to other 3GPP networks (RANs defined before 3GPP Release-8, for example, UTRAN or GERAN (GSM (Global System for Mobile Communication) / EDGE (Enhanced Data rates for Global Evolution) Radio Access). It can also serve as an anchor point for mobility with a network).
  • 3GPP networks RANs defined before 3GPP Release-8, for example, UTRAN or GERAN (GSM (Global System for Mobile Communication) / EDGE (Enhanced Data rates for Global Evolution) Radio Access). It can also serve as an anchor point for mobility with a network).
  • PDN GW (or P-GW) 53 corresponds to the termination point of the data interface towards the packet data network.
  • the PDN GW 53 may support policy enforcement features, packet filtering, charging support, and the like.
  • mobility management between 3GPP networks and non-3GPP networks for example, untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax) Can serve as an anchor point for.
  • untrusted networks such as Interworking Wireless Local Area Networks (I-WLANs), code-division multiple access (CDMA) networks, or trusted networks such as WiMax
  • I-WLANs Interworking Wireless Local Area Networks
  • CDMA code-division multiple access
  • WiMax trusted networks
  • FIG. 1 shows that the S-GW 52 and the PDN GW 53 are configured as separate gateways, two gateways may be implemented according to a single gateway configuration option. have.
  • the MME 51 is an element that performs signaling and control functions to support access to the network connection of the UE, allocation of network resources, tracking, paging, roaming and handover, and the like. .
  • the MME 51 controls control plane functions related to subscriber and session management.
  • the MME 51 manages a number of eNodeBs 22 and performs signaling for the selection of a conventional gateway for handover to other 2G / 3G networks.
  • the MME 51 performs security procedures, terminal-to-network session handling, idle terminal location management, and the like.
  • the SGSN handles all packet data, such as user's mobility management and authentication to other connecting 3GPP networks (e.g., GPRS networks, UTRAN / GERAN).
  • 3GPP networks e.g., GPRS networks, UTRAN / GERAN.
  • the ePDG acts as a secure node for untrusted non-3GPP networks (eg, I-WLAN, WiFi hotspots, etc.).
  • untrusted non-3GPP networks eg, I-WLAN, WiFi hotspots, etc.
  • a terminal having IP capability is provided by an operator (ie, an operator) via various elements in the EPC, based on 3GPP access as well as non-3GPP access.
  • an IP service network eg, IMS
  • FIG. 1 illustrates various reference points (eg, S1-U, S1-MME, etc.).
  • a conceptual link defining two functions existing in different functional entities of E-UTRAN and EPC is defined as a reference point.
  • Table 1 below summarizes the reference points shown in FIG. 1.
  • the eNodeB 20 is responsible for routing to the gateway, scheduling and sending paging messages, scheduling and sending broadcaster channels (BCHs), and uplink and downlink resources while the RRC connection is active. Function for dynamic allocation, configuration and provision for measurement of the eNodeB 20, radio bearer control, radio admission control, and connection mobility control. Within the EPC, paging can occur, LTE_IDLE state management, user planes can perform encryption, EPS bearer control, NAS signaling encryption and integrity protection.
  • BCHs broadcaster channels
  • Degree 3 is UE and eNodeB
  • the structure of the Radio Interface Protocol in the control plane between Illustrative 4 shows another structure of a radio interface protocol in a user plane between a terminal and a base station. It is an illustration .
  • the radio interface protocol is based on the 3GPP radio access network standard.
  • the air interface protocol is composed of a physical layer, a data link layer, and a network layer horizontally, and a user plane and control for data information transmission vertically. It is divided into a control plane for signal transmission.
  • the protocol layers are based on the lower three layers of the Open System Interconnection (OSI) reference model, which is well known in communication systems, and includes L1 (first layer), L2 (second layer), and L3 (third layer). ) Can be separated.
  • OSI Open System Interconnection
  • the physical layer which is the first layer, provides an information transfer service using a physical channel.
  • the physical layer is connected to a medium access control layer on the upper side through a transport channel, and data between the medium access control layer and the physical layer is transmitted through the transport channel.
  • data is transferred between different physical layers, that is, between physical layers of a transmitting side and a receiving side through a physical channel.
  • the physical channel is composed of several subframes on the time axis and several sub-carriers on the frequency axis.
  • one subframe includes a plurality of symbols and a plurality of subcarriers on the time axis.
  • One subframe consists of a plurality of resource blocks, and one resource block consists of a plurality of symbols and a plurality of subcarriers.
  • the transmission time interval (TTI) which is a unit time for transmitting data, is 1 ms corresponding to one subframe.
  • the physical channels existing in the physical layer of the transmitting side and the receiving side are physical downlink shared channel (PDSCH), physical uplink shared channel (PUSCH) and physical downlink control channel (PDCCH), which are control channels, It may be divided into a Physical Control Format Indicator Channel (PCFICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Uplink Control Channel (PUCCH).
  • PCFICH Physical Control Format Indicator Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • PUCCH Physical Uplink Control Channel
  • the PCFICH transmitted in the first OFDM symbol of a subframe carries a control format indicator (CFI) regarding the number of OFDM symbols (that is, the size of the control region) used for transmission of control channels in the subframe.
  • CFI control format indicator
  • the wireless device first receives the CFI on the PCFICH and then monitors the PDCCH.
  • the PCFICH does not use blind decoding and is transmitted on a fixed PCFICH resource of a subframe.
  • the PHICH carries a positive-acknowledgement (ACK) / negative-acknowledgement (NACK) signal for a UL hybrid automatic repeat request (HARQ).
  • ACK positive-acknowledgement
  • NACK negative-acknowledgement
  • HARQ UL hybrid automatic repeat request
  • the Physical Broadcast Channel (PBCH) is transmitted in the preceding four OFDM symbols of the second slot of the first subframe of the radio frame.
  • the PBCH carries system information necessary for the wireless device to communicate with the base station, and the system information transmitted through the PBCH is called a master information block (MIB).
  • MIB master information block
  • SIB system information block
  • the PDCCH includes resource allocation and transmission format of downlink-shared channel (DL-SCH), resource allocation information of uplink shared channel (UL-SCH), paging information on PCH, system information on DL-SCH, and random access transmitted on PDSCH. Resource allocation of higher layer control messages such as responses, sets of transmit power control commands for individual UEs in any UE group, activation of voice over internet protocol (VoIP), and the like.
  • a plurality of PDCCHs may be transmitted in the control region, and the terminal may monitor the plurality of PDCCHs.
  • the PDCCH is transmitted on an aggregation of one or several consecutive control channel elements (CCEs).
  • CCEs control channel elements
  • CCE is a logical allocation unit used to provide a PDCCH with a coding rate according to a state of a radio channel.
  • the CCE corresponds to a plurality of resource element groups.
  • the format of the PDCCH and the number of bits of the PDCCH are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.
  • DCI downlink control information
  • PDSCH also called DL grant
  • PUSCH resource allocation also called UL grant
  • VoIP Voice over Internet Protocol
  • the Medium Access Control (MAC) layer is responsible for mapping various logical channels to various transport channels, and also for multiplexing logical channel multiplexing to map multiple logical channels to one transport channel. Play a role.
  • the MAC layer is connected to the RLC layer, which is the upper layer, by a logical channel.
  • the logical channel includes a control channel for transmitting information of a control plane according to the type of information to be transmitted. It is divided into a traffic channel that transmits user plane information.
  • the Radio Link Control (RLC) layer of the second layer adjusts the data size so that the lower layer is suitable for transmitting data to the radio section by segmenting and concatenating data received from the upper layer. It plays a role.
  • RLC Radio Link Control
  • TM Transparent Mode
  • UM Un-acknowledged Mode
  • AM Acknowledged Mode, Response mode
  • the AM RLC performs a retransmission function through an automatic repeat and request (ARQ) function for reliable data transmission.
  • ARQ automatic repeat and request
  • the Packet Data Convergence Protocol (PDCP) layer of the second layer is an IP containing relatively large and unnecessary control information for efficient transmission in a wireless bandwidth where bandwidth is small when transmitting an IP packet such as IPv4 or IPv6. Performs Header Compression which reduces the packet header size. This transmits only the necessary information in the header portion of the data, thereby increasing the transmission efficiency of the radio section.
  • the PDCP layer also performs a security function, which is composed of encryption (Ciphering) to prevent third-party data interception and integrity protection (Integrity protection) to prevent third-party data manipulation.
  • the radio resource control layer (hereinafter RRC) layer located at the top of the third layer is defined only in the control plane, and the configuration and resetting of radio bearers (abbreviated as RBs) are performed. It is responsible for the control of logical channels, transport channels and physical channels in relation to configuration and release.
  • RB means a service provided by the second layer for data transmission between the terminal and the E-UTRAN.
  • RRC connection When there is an RRC connection (RRC connection) between the RRC of the terminal and the RRC layer of the wireless network, the terminal is in the RRC connected mode (Connected Mode), otherwise it is in the RRC idle mode (Idle Mode).
  • RRC connection RRC connection
  • the RRC state refers to whether or not the RRC of the UE is in a logical connection with the RRC of the E-UTRAN. If the RRC state is connected, the RRC_CONNECTED state is called, and the RRC_IDLE state is not connected. Since the UE in the RRC_CONNECTED state has an RRC connection, the E-UTRAN can grasp the existence of the UE in units of cells, and thus can effectively control the UE. On the other hand, the UE in the RRC_IDLE state cannot identify the existence of the UE by the E-UTRAN, and the core network manages the unit in a larger tracking area (TA) unit than the cell.
  • TA tracking area
  • each TA is identified by a tracking area identity (TAI).
  • TAI tracking area identity
  • the terminal may configure a TAI through a tracking area code (TAC), which is information broadcast in a cell.
  • TAC tracking area code
  • the terminal When the user first turns on the power of the terminal, the terminal first searches for an appropriate cell, then establishes an RRC connection in the cell, and registers the terminal's information in the core network. Thereafter, the terminal stays in the RRC_IDLE state. The terminal staying in the RRC_IDLE state (re) selects a cell as needed and looks at system information or paging information. This is called camping on the cell.
  • the UE staying in the RRC_IDLE state makes an RRC connection with the RRC of the E-UTRAN through an RRC connection procedure and transitions to the RRC_CONNECTED state.
  • RRC_CONNECTED There are several cases in which the UE in RRC_IDLE state needs to establish an RRC connection. For example, when an uplink data transmission is necessary due to a user's call attempt, or when a paging message is received from E-UTRAN, Send a response message.
  • a non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management.
  • NAS non-access stratum
  • ESM Evolved Session Management
  • the default bearer resource is characterized in that it is allocated from the network when it is connected to the network when it first accesses a specific Packet Data Network (PDN).
  • PDN Packet Data Network
  • the network allocates an IP address usable by the terminal so that the terminal can use the data service, and also allocates QoS of the default bearer.
  • LTE supports two types of bearer having a guaranteed bit rate (GBR) QoS characteristic that guarantees a specific bandwidth for data transmission and reception, and a non-GBR bearer having a best effort QoS characteristic without guaranteeing bandwidth.
  • GBR guaranteed bit rate
  • Non-GBR bearer is assigned.
  • the bearer allocated to the terminal in the network is called an evolved packet service (EPS) bearer, and when the EPS bearer is allocated, the network allocates one ID. This is called EPS Bearer ID.
  • EPS bearer ID This is called EPS Bearer ID.
  • MLR maximum bit rate
  • GRR guaranteed bit rate
  • AMBR aggregated maximum bit rate
  • 5A 3GPP In LTE A flowchart illustrating a random access process.
  • the random access procedure is used for the UE 10 to obtain UL synchronization or to allocate UL radio resources to the base station, that is, the eNodeB 20.
  • the UE 10 receives a root index and a physical random access channel (PRACH) configuration index from the eNodeB 20.
  • PRACH physical random access channel
  • Each cell has 64 candidate random access preambles defined by a Zadoff-Chu (ZC) sequence, and the root index is a logical index for the UE to generate 64 candidate random access preambles.
  • ZC Zadoff-Chu
  • the PRACH configuration index indicates a specific subframe and a preamble format capable of transmitting the random access preamble.
  • UE 10 transmits a randomly selected random access preamble to eNodeB 20.
  • the UE 10 selects one of the 64 candidate random access preambles. Then, the corresponding subframe is selected by the PRACH configuration index.
  • UE 10 transmits the selected random access preamble in the selected subframe.
  • the eNodeB 20 Upon receiving the random access preamble, the eNodeB 20 sends a random access response (RAR) to the UE 10.
  • RAR random access response
  • the random access response is detected in two steps. First, the UE 10 detects a PDCCH masked with a random access-RNTI (RA-RNTI). The UE 10 receives a random access response in a medium access control (MAC) protocol data unit (PDU) on the PDSCH indicated by the detected PDCCH.
  • MAC medium access control
  • RRC radio resource control
  • an RRC state is shown depending on whether RRC is connected.
  • the RRC state refers to whether or not an entity of the RRC layer of the UE 10 is in a logical connection with an entity of the RRC layer of the eNodeB 20. If the RRC state is connected, the RRC state is connected. A state that is not connected is called an RRC idle state.
  • the E-UTRAN may determine the existence of the corresponding UE in units of cells, and thus may effectively control the UE 10.
  • the UE 10 in the idle state cannot be understood by the eNodeB 20, and is managed by a core network in units of a tracking area, which is a larger area than a cell.
  • the tracking area is a collection unit of cells. That is, the idle state UE (10) is identified only in the presence of a large area unit, in order to receive the normal mobile communication services such as voice or data, the terminal must transition to the connected state (connected state).
  • the UE 10 When the user first powers up the UE 10, the UE 10 first searches for a suitable cell and then remains in an idle state in that cell. When the UE 10 staying in the idle state needs to establish an RRC connection, the UE 10 establishes an RRC connection with the RRC layer of the eNodeB 20 through an RRC connection procedure and performs an RRC connection state ( connected state).
  • the UE in the idle state needs to establish an RRC connection. For example, a user's call attempt or an uplink data transmission is necessary, or a paging message is received from EUTRAN. In this case, the response message may be transmitted.
  • the RRC connection process is largely a process in which the UE 10 sends an RRC connection request message to the eNodeB 20, and the eNodeB 20 transmits an RRC connection setup message to the UE 10. And a process in which the UE 10 sends an RRC connection setup complete message to the eNodeB 20. This process will be described in more detail with reference to FIG. 4B.
  • the UE 10 When the UE 10 in idle state attempts to establish an RRC connection due to a call attempt, a data transmission attempt, or a response to the paging of the eNodeB 20, the UE 10 first performs an RRC connection. A RRC connection request message is transmitted to the eNodeB 20.
  • the eNB 10 When the RRC connection request message is received from the UE 10, the eNB 10 accepts the RRC connection request of the UE 10 when the radio resources are sufficient, and establishes an RRC connection that is a response message (RRC connection). setup) message is transmitted to the UE 10.
  • RRC connection a response message
  • the UE 10 When the UE 10 receives the RRC connection setup message, the UE 10 transmits an RRC connection setup complete message to the eNodeB 20. When the UE 10 successfully transmits an RRC connection establishment message, the UE 10 establishes an RRC connection with the eNodeB 20 and transitions to the RRC connected mode.
  • 6A and 6B illustrate an architecture for connecting a WLAN to an EPC. Indicates
  • FIG. 6A shows an architecture in which a WLAN is connected to a P-GW via an S2a interface.
  • a WLAN access network (particularly, in the case of the S2a interface, is a trusted WLAN access network because it is an interface that connects trusted non-3GPP access with the EPC) is connected to the P-GW via the S2a interface.
  • the structure of the Trusted WLAN Access Network (TWAN) will be referred to the contents described in TS 23.402.
  • FIG. 6B shows an architecture in which a WLAN is connected to a P-GW via an S2b interface.
  • the WLAN access network (in particular, the S2b interface is an untrusted WLAN access network because it is an interface that connects untrusted non-3GPP access with the EPC) is connected to the P-GW via the S2b interface. It is connected to the P-GW via an evolved packet data gateway (ePDG).
  • ePDG evolved packet data gateway
  • WLAN a trusted WLAN and an untrusted WLAN may be referred to as WLANs without distinction.
  • the IFOM provides the same PDN connection through several different accesses at the same time. This IFOM provides a bypass to seamless WLAN.
  • IFOM also provides for passing the IP flow of the same PDN connection from one access to another.
  • MAPCON technology is to connect multiple PDN connections, easily IP flows to other APNs through other access systems.
  • This MAPCON technology allows the UE 10 to create a new PDN connection on an access that was not previously used.
  • the UE 10 may create a new PDN connection in an optional one of several previously used accesses.
  • the UE 10 may transfer all or some of all PDN connections that are already connected to another access.
  • the operator In order to divert traffic to non-3GPP access, the operator provides a policy to the terminal, and the terminal may bypass its data to the wireless LAN according to the policy.
  • an access network discovery and selection function (ANDSF) based on 3GPP has been improved to provide a policy related to a wireless LAN.
  • 8A and 8B illustrate a network control entity for access network selection.
  • the ANDSF may be present in the home network (hereinafter referred to as 'HPLMN') of the UE 10. Also, as can be seen with reference to FIG. 8B, the ANDSF may also be present in the visited network (UE site VPLMN) of the UE 10. As such, when located in the home network, it may be referred to as H-ANDSF 61, and may be called as V-ANDSF 62 when located in the visited network.
  • ANDSF 60 collectively refers to H-ANDSF 61 or V-ANDSF 62.
  • the ANDSF may provide information about an inter-system mobility policy, information for access network discovery, and information about inter-system routing, for example, a routing rule.
  • IFOM is performed by the UE's initiative decision and uses DSMIP (Dual Stack Mobile IP), which is a host-based mobility protocol.
  • DSMIP Direct Stack Mobile IP
  • NBIFOM Network Based IP Flow Mobility
  • one disclosure of the present specification provides a method of performing network selection and traffic routing by the Mobility Management Entity (MME).
  • MME Mobility Management Entity
  • PDN public data network
  • UE user equipment
  • WLAN Wireless Local Area Network
  • determining whether to bypass the PDN connection to a WLAN Based on an indication, determining whether to bypass the PDN connection to a WLAN; Sending, by the MME, a message including a determination result of the PDN connection and information on a Network Based IP Flow Mobility (NBIFOM) function to the UE; And transmitting, by the MME, the determination result for the PDN connection to at least one of a PDN gateway (P-GW) and a policy and charging rule function (PCRF), wherein the determination result and the NBIFOM function for the PDN connection are included.
  • Information about may be used to trigger any one or more of the UE, the P-GW and the PCRF to suspend or resume the NBIFOM function.
  • the method may include: when the information on the NBIFOM function indicates that the NBIFOM function is capable of performing, while the determination result for the PDN connection indicates that bypassing to a WLAN is impossible, among the UE, the P-GW, and the PCRF. Any one or more may suspend the NBIFOM function.
  • the method includes: determining whether to bypass the WLAN when an update request for the PDN connection is received from the UE or a request for a new PDN connection, transmitting to the UE, and the P-GW And transmitting to one or more of the PCRFs.
  • the method may further include: after the step of transmitting to the UE and the step of transmitting to one or more of the P-GW and the PCRF are performed again, information on the retransmitted NBIFOM function may be performed by the NBIFOM function and transmitted again.
  • information on the retransmitted NBIFOM function may be performed by the NBIFOM function and transmitted again.
  • any one or more of the UE, the P-GW, and the PCRF may determine whether to resume the NBIFOM function.
  • the method may further comprise: the step of transmitting to at least one of the P-GW and the PCRF is performed again, wherein the PDN prior to performing the step of determining again whether a result of the determination of the PDN connection to be sent back is diverted to the WLAN. Only when the result value is opposite to the determination result for the connection, the step of transmitting to one or more of the P-GW and PCRF may be performed again.
  • the method may include determining, by the MME, whether to bypass the PDN connection to the WLAN based on an indication of WLAN bypassability obtained from an HSS when a request for a PDN connection is received from a user equipment (UE).
  • UE user equipment
  • the method may include: if the information on the NBIFOM function indicates that the NBIFOM function can be performed, and the determination result for the PDN connection indicates that bypassing to the WLAN is not possible, it may be determined that the collision exists.
  • the method includes: if an update request for the PDN connection is received from the UE or a request for a new PDN connection is received, determining whether to bypass the WLAN and determining whether the collision exists again can do.
  • the method may further include: if the information on the NBIFOM function newly received from the P-GW indicates that the NBIFOM function is capable of performing, and the determination result for the determined PDN connection indicates that the WLAN can bypass the WLAN, the collision is resolved. You can judge.
  • the apparatus includes a transceiver; It may include a processor for controlling the transceiver.
  • the processor upon receiving a request for a PDN connection from a UE, determining whether to bypass the PDN connection to the WLAN based on an indication of WLAN bypassability obtained from the HSS; Send a message to the UE including a decision result for the PDN connection and information on an NBIFOM function; And performing a procedure for transmitting the determination result of the PDN connection to one or more of P-GW and PCRF, wherein the determination result of the PDN connection and information on the NBIFOM function are included in the UE, the P-GW, and the PCRF. Any one or more may be used to trigger to suspend or resume the NBIFOM function.
  • the apparatus includes a transceiver; It may include a processor for controlling the transceiver.
  • the processor determines, upon receiving a request for a PDN connection from a user equipment (UE), based on an indication of WLAN bypassability obtained from an HSS, whether to divert the PDN connection to a WLAN; Determine whether there is a conflict between the determination result on the PDN connection and the information on the NBIFOM function; Sending a message to the UE, in addition to the determination result of the PDN transaction and information on the NBIFOM function, further including information indicating the suspension of the NBIFOM function based on the presence or absence of the collision; And information indicating a suspension of the NBIFOM function based on the presence or absence of the collision or a message including the information to one or more of the P-GW and the PCRF.
  • 1 is a structural diagram of an evolved mobile communication network.
  • Figure 2 is an exemplary view showing the architecture of a general E-UTRAN and a general EPC.
  • FIG. 3 is an exemplary diagram illustrating a structure of a radio interface protocol in a control plane between a UE and an eNodeB.
  • FIG. 4 is another exemplary diagram illustrating a structure of a radio interface protocol in a user plane between a terminal and a base station.
  • 5a is a flowchart illustrating a random access procedure in 3GPP LTE.
  • RRC radio resource control
  • 6A and 6B show an architecture for connecting a WLAN to an EPC.
  • FIG. 7A is an exemplary diagram illustrating an example of an IFOM technique
  • FIG. 7B is an exemplary diagram illustrating an example of a MAPCON technique.
  • 8A and 8B illustrate a network control entity for access network selection.
  • FIG. 9A shows an example in which newly defined RAN support parameters (RAN rules) are provided to the UE in addition to the ANDSF policy.
  • RAN rules RAN support parameters
  • FIG. 9B is an exemplary diagram showing in detail a procedure for providing a RAN assistance parameter (RAN rule) shown in FIG. 9A to the UE.
  • RAN assistance parameter RAN rule
  • FIG. 10 shows an example in which the NBIFOM function is detected / negotiated during the PDN connection establishment procedure.
  • 11 shows a process for delivering an update of a routing rule for NBIFOM.
  • FIG. 13 is an exemplary view showing an existing attempt to solve the problem illustrated in FIG. 12.
  • 14A is a signal flow diagram illustrating a first description of the disclosure herein.
  • FIG. 14B is a signal flowchart exemplarily showing a modification to the first description shown in FIG. 14A.
  • FIG. 15 is an exemplary diagram illustrating the NBIFOM resumption determination process of the UE illustrated in FIG. 14 in detail.
  • 16 is a signal flow diagram illustrating a second description of the disclosure herein.
  • 17 is a signal flow diagram illustratively illustrating a third description of the disclosure herein.
  • FIG. 18 is a block diagram illustrating a configuration of a UE 100 and an MME 510 according to an embodiment of the present invention.
  • the present invention is described based on the Universal Mobile Telecommunication System (UMTS) and the Evolved Packet Core (EPC), the present invention is not limited to such a communication system, but also to all communication systems and methods to which the technical spirit of the present invention can be applied. Can be applied.
  • UMTS Universal Mobile Telecommunication System
  • EPC Evolved Packet Core
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • a user equipment UE
  • the illustrated UE may be referred to in terms of terminal, mobile equipment (ME), and the like.
  • the UE may be a portable device such as a laptop, a mobile phone, a PDA, a smart phone, a multimedia device, or a non-portable device such as a PC or a vehicle-mounted device.
  • GSM EDGE Radio Access Network An acronym for GSM EDGE Radio Access Network, and refers to a wireless access section connecting a core network and a terminal by GSM / EDGE.
  • UTRAN Abbreviation for Universal Terrestrial Radio Access Network, and refers to a wireless access section connecting a terminal and a core network of 3G mobile communication.
  • E-UTRAN Abbreviation for Evolved Universal Terrestrial Radio Access Network, and refers to a 4G mobile communication, that is, a wireless access section connecting a terminal to a LTE network.
  • UMTS stands for Universal Mobile Telecommunication System and means a core network of 3G mobile communication.
  • UE / MS User Equipment / Mobile Station, means a terminal device.
  • EPS stands for Evolved Packet System and means a core network supporting a Long Term Evolution (LTE) network.
  • LTE Long Term Evolution
  • UMTS evolved network
  • PDN Public Data Network
  • PDN connection connection from the terminal to the PDN, that is, association (connection) between the terminal represented by the IP address and the PDN represented by the APN
  • PDN-GW Packet Data Network Gateway
  • Network node of EPS network that performs UE IP address allocation, Packet screening & filtering, Charging data collection
  • Serving GW Network node of EPS network that performs mobility anchor, packet routing, idle mode packet buffering, Triggering MME to page UE function
  • PCRF Policy and Charging Rule Function
  • APN Access Point Name: A name of an access point managed in a network, which is provided to a UE. (Example) internet.mnc012.mcc345.gprs
  • Tunnel Endpoint Identifier An end point ID of a tunnel established between nodes in a network, and is set for each section in bearer units of each UE.
  • NodeB A base station of a UMTS network, which is installed outdoors, and a cell coverage scale corresponds to a macro cell.
  • eNodeB A base station of an evolved packet system (EPS), which is installed outdoors, and a cell coverage size corresponds to a macro cell.
  • EPS evolved packet system
  • NodeB A term referring to NodeB and eNodeB.
  • MME Mobility Management Entity
  • a session is a channel for data transmission.
  • the unit may be a PDN, a bearer, or an IP flow unit.
  • the difference in each unit can be divided into the entire target network unit (APN or PDN unit), the QoS classification unit (Bearer unit), and the destination IP address unit as defined in 3GPP.
  • PDN connection (connection) A connection from the terminal to the PDN, that is, the association (connection) between the terminal represented by the IP address and the PDN represented by the APN.
  • UE Context The context information of the UE used to manage the UE in the network, that is, the context information consisting of the UE id, mobility (current location, etc.), and attributes of the session (QoS, priority, etc.).
  • NAS Non-Access-Stratum: Upper stratum of a control plane between a UE and an MME. Support mobility management, session management, IP address maintenance between UE and network
  • RAT Abbreviation for Radio Access Technology, which means GERAN, UTRAN, E-UTRAN and the like.
  • Local Operating Environment Information This is a set of implementation specific parameters which describe the local environment in which the UE is operating.
  • Presence Reporting Area This area is defined for the purpose of reporting the presence of the UE in the 3GPP packet domain due to policy control and / or charging reasons.
  • the presence reporting area consists of a neighboring or non-neighboring tracking area or a set of eNodeBs and / or cells.
  • ANDSF Access Network Discovery and Selection Function: Provides a policy that allows a terminal to discover and select available access on an operator basis as a network entity.
  • ISRP Inter-System Routing Policy
  • IFOM IP Flow Mobility
  • MAPCON Multi Access PDN Connectivity
  • NSWO non-seamless WLAN offload
  • IP Flow Mobility (IFOM) rule This rule prioritizes the access technology / access networks that should be used by the UE when it is able to route traffic that matches a particular IP traffic filter on a particular APN or any APN. It's a list. In addition, this rule may specify for which wireless access the traffic that matches a particular IP traffic filter on a particular APN or any APN is restricted.
  • IOM IP Flow Mobility
  • MAPCON Multi Access PDN Connectivity
  • This rule is a list of prioritized access technologies / access networks that should be used by the UE when it is possible to route PDN connections to a particular APN.
  • this rule may specify to which radio access the PDN connection to a particular APN should be restricted.
  • Non-seamless WLAN offload (NSWO) rule This rule specifies which traffic should be bypassed non-seamlessly to the WLAN or not.
  • ISMP Inter-System Mobility Policy
  • the RAN rule Evaluate the RAN rule programmed in the UE with the Radio Access Network (RAN) Assistance Parameters received from the network.
  • the RAN rule is also referred to as WLAN interworking supported by the RAN used without ANDSF ISRP / ISMP.
  • the access stratum (AS) layer of the UE delivers a move-traffic-to-WLAN indication to the upper layer of the UE.
  • the UE selects the WLAN to move all offloadable PDN connections to the WLAN.
  • the access stratum (AS) layer of the UE delivers a move-traffic-from-WLAN indication to a higher layer of the UE.
  • the UE moves all PDN connections on the WLAN to 3GPP.
  • a detailed description of the RAN rule can be found with reference to 3GPP TS 23.401, TS 23.060, TS 23.402, TS 36.300, TS 36.304, TS 36.331, TS 25.304 and TS 25.331.
  • Multi-access PDN connection A PDN connection in which traffic can be routed through 3GPP access and / or WLAN access. Each IP flow is only routed through one access at a time.
  • the ANDSF 600 may provide the policy information to the UE 100 as shown in FIG. 9A
  • the base station 200 of the E-UTRAN (or UTRAN) may use the newly defined Radio Access Network (RAN) support parameters. May be provided to the UE 100.
  • RAN Radio Access Network
  • the RAN support parameter may be delivered via RRC signaling.
  • the RAN support parameters may include a threshold for E-UTRAN signal strength and quality, a threshold for WLAN channel utilization, a threshold for WLAN backhaul data rate, a list of WLAN identifiers, and an Offload Preference Indicator (OPI). .
  • OPI Offload Preference Indicator
  • the RAN assistance information may include the following thresholds and parameters.
  • the 3GPP access threshold may be a lower / high reference signal received power (RSRP) threshold for some UTRA and / or E-UTRA radio parameters, such as E-UTRA, or a lower / lower for UTRA.
  • RSRP reference signal received power
  • CPICH Common Pilot Channel
  • WLAN access thresholds are low / high for some WLAN access parameters, eg, low / high Beacon RSSI threshold, low / high UL
  • the UL / DL backhaul data rate is defined in hotspot 2.0.
  • Channel utilization and beacon Received Signal Strength Indicator (RSSI) are defined in IEEE 802.11.
  • the OPI value provided by the RAN is in bitmap format (i.e., primary bit array) that allows the UE to determine when to move specific traffic (eg, specific IP flow) to WLAN access or 3GPP access.
  • specific traffic eg, specific IP flow
  • the UE may use this RAN support parameter for access network selection and routing of traffic between 3GPP access and WLAN access.
  • the MME may deliver information indicating which PDN connections can be bypassed to the WALN and information indicating which PDN connections cannot be bypassed to the WLAN.
  • the MME can provide this information per PDN connection. Specifically, the MME may deliver this information when a PDN connection is established.
  • the subscriber information in the Home Subscriber Server is an indie as to whether WLAN bypass is allowed or prohibited for a specific PDN. May include an application.
  • the MME may determine whether to allow bypass to the WLAN for the UE and PDN connections as follows.
  • the MME determines the offloadability for the PDN connection based on the subscriber information and the internally set policy.
  • the MME may indicate whether it can bypass this PDN connection to the WLAN.
  • the MME may provide the UE with an update indication of WLAN bypassability for the PDN connection. This may be initiated through the Insert Subscriber Data procedure of the HSS. It may also be initiated through a bearer modification procedure.
  • the UE may consider WLAN bypassability information provided from the MME when performing traffic offloading / handover between 3GPP access and WLAN access.
  • the UE When the UE receives a WLAN bypassability indication for a PDN connection, the UE stores the indication while the PDN connection is maintained and performs an update if a new indication is received.
  • an indication of whether or not the PDN transaction can be bypassed to the WLAN is delivered from the source MME to the target MME during the mobility management procedure. This allows the target MME to learn from the indication that was previously provided to the UE and thereby provide the UE with the updated indication.
  • FIG. 9B shows the RAN support parameters (RAN rules) shown in FIG. 9A. To the UE Detailing the procedure provided It is an illustration .
  • WLAN offloadability Indicates whether traffic associated with this APN can be bypassed to the WLAN or maintained over 3GPP access
  • the MME 510 determines whether to bypass the PDN connection based on the WLAN bypassability transmitted from the HSS.
  • the MME 510 may transmit a WLAN offloadability indication to the UE 100 during a PDN connection procedure or a modification procedure.
  • the base station 200 collects the relevant information about the neighboring WLAN AP, and accordingly the RAN support parameter (RAN rule) through the AS layer (UE layer) of the UE (100) through the system information block (SIB) or RRC signal ( That is, it can be delivered to the RRC layer.
  • RAN rule RAN support parameter
  • AS layer UE layer
  • SIB system information block
  • RRC signal That is, it can be delivered to the RRC layer.
  • the RAN support parameter (RAN rule) is received from a network (base station) included in a WLAN-OffloadConfig parameter (eg, wlan-OffloadConfigCommon parameter or wlan-OffloadConfigDedicated parameter) of an RRC Connection Reconfiguration message when the UE is in RRC connected mode.
  • a WLAN-OffloadConfig parameter eg, wlan-OffloadConfigCommon parameter or wlan-OffloadConfigDedicated parameter
  • the RAN assistance parameters (RAN rules) are included in the WLAN-OffloadConfig parameter of the system information block, eg SIB17, and are received from the network (base station).
  • RRCConnectionReconfiguration-v1250-IEs :: SEQUENCE ⁇ wlan-OffloadInfo-r12 CHOICE ⁇ release NULL, setup SEQUENCE ⁇ wlan-OffloadConfigDedicated-r12 WLAN-OffloadConfig-r12,
  • system information block for example, SIB type 17 may include WLAN-OffloadConfig as follows.
  • the WLAN-OffloadConfig may include the following information.
  • the AS layer (ie, RRC layer) of the UE evaluates the received RAN support parameter (RAN rule) to indicate an indication of offloading to non-3GPP access (eg WLAN). (I.e., move-traffic-to WLAN indication) or an indication indicating movement to 3GPP access (e.g., E-UTRAN / UTRAN) (i.e., move-traffic-from WLAN indication) To provide.
  • RAN support parameter eg WLAN
  • E-UTRAN / UTRAN i.e., move-traffic-from WLAN indication
  • the AS layer of the UE may provide an indication (ie, move-traffic-from WLAN indication) indicating to a 3GPP access (eg, E-UTRAN / UTRAN) to a higher layer (ie, NAS layer).
  • a 3GPP access eg, E-UTRAN / UTRAN
  • NAS layer ie, NAS layer
  • NBIFOM Network Based IP Flow Mobility
  • Network-initiated NBIFOM (NBIFOM) initiated by the network may provide the UE with a desired mapping between the IP flows and access links. In this case, the UE can only accept or reject the IP flow movement by the network, and the UE cannot initiate the IP flow movement by itself.
  • the NBIFOM feature must be supported by both the UE and the network, but is enabled. Therefore, a detection / negotiation process for NBIFOM function is needed.
  • the UE 100 transmits an NBIFOM function indication in a PDN Connectivity Request message.
  • the MME 510 and the S-GW 520 each transmit a session creation request message including their NBIFOM function indication.
  • the P-GW 530 delivers a PCC request message to the PCRF 600 including the NBIFOM function indication and the RAT type of the UE and the P-GW.
  • the PCRF 600 transmits a PCC response message including its NBIFOM function indication to the P-GW 530.
  • the P-GW 530 includes the NBIFOM function indication in the session creation response message and delivers it to the MME 510.
  • the MME 510 transmits a PDN connection accept message to the UE 100.
  • 11 is NBIFOM A process of delivering an update of a routing rule for a process is shown.
  • PCRF 600 may trigger the updating of routing rules for NBIFOM and may forward the updated routing rules to P-GW 530 during the session modification procedure.
  • the P-GW 530 forwards the routing rule to the UE 100 via the S-GW 520 and the MME 510. Specifically, when the P-GW 530 receives a policy regarding routing rule updates from the PCRF 600, and the corresponding PDN junction is being routed to both 3GPP and WLAN access, the P-GW 530 is 3GPP.
  • the routing rules can be passed on access and WLAN access.
  • the UE 100 transmits the updated routing rule to the P-GW 530. Specifically, if the corresponding PDN transaction is being routed to both 3GPP and WLAN access, the UE 100 may communicate the routing rule on 3GPP access and WLAN access.
  • the MME 510 is for example.
  • PDN connection On # 1 It's impossible to bypass Decide
  • PDN connection # 1 To WLAN Indicating that it is impossible to bypass Indication
  • PDN connection #One: WLAN offloadability No
  • PDN connection #One: WLAN offloadability No
  • the MME 510 determines whether to bypass the PDN connection identified by PDN connection # 1 to the WLAN based on the WLAN bypassability indication. At this time, according to the WLAN bypass possibility indication, although it is possible to bypass the PDN connection identified by PDN connection # 1 to the WLAN, if the UE is roaming, the MME 510 is a PDN connection as a policy for roaming. It may be determined not to bypass the PDN connection identified by # 1 to the WLAN.
  • the NBIFOM function detection / negotiation process is performed during the PDN connection setup / modification procedure, and in consideration of the NBIFOM functions of the network nodes as well as the UE, the corresponding PDN connection # 1 may be moved in units of IP flows through the NBIFOM.
  • the NBIFOM function detection / negotiation process is performed during the PDN connection setup / modification procedure, and in consideration of the NBIFOM functions of the network nodes as well as the UE, the corresponding PDN connection # 1 may be moved in units of IP flows through the NBIFOM.
  • a result indicating that the PDN connection # 1 may be moved in units of IP flows is transmitted to the UE.
  • the P-GW 530 may request that the UE add / update a routing rule for moving an IP flow to the corresponding PDN by triggering the PCRF.
  • the UE 100 may reject the routing rule update request from the network.
  • FIG. 13 illustrates an existing attempt to solve the problem illustrated in FIG. 12. It is an illustration .
  • the disclosure herein proposes a method that allows a UE to flexibly suspend or resume NBIFOM functionality for a corresponding PDN connection, in accordance with an indication of WLAN bypassability.
  • the UE after receiving the indication information on the possibility of WLAN bypass, the UE determines whether to suspend or resume NBIFOM function, As a result, the network can be notified or requested to suspend or resume.
  • the MME determines whether there is a collision with the NBIFOM in the process of determining whether to bypass the PDN connection, and if there is a collision, determines the suspension of the NBIFOM, Once the stone is resolved, it may be decided to resume NBIFOM.
  • information / message informing / requesting suspension or resumption of NBIFOM transmitted by the UE to the network may directly request / activate (temporarily) NBIFOM function for the corresponding PDN. It can be information / messages.
  • the information / message may be implicit information / message to induce the network to (temporarily) activate / deactivate the NBIFOM function.
  • the UE may transmit an indication of WLAN bypassability to the network as it is, and thus the network may indirectly determine that the function of the NBIFOM is enabled / disabled.
  • the NAS layer of the UE 100 transmits a PDN Connectivity Request message alone or the PDN connection request message to generate a PDN connection # 1 using APN # 1.
  • Attach Attach (Attach Request) message including a transmits to the MME (510).
  • the PDN connection request message includes an indication (eg, NBIFOM capability) regarding whether the UE 100 supports NBIFOM function.
  • the MME 510 Upon receiving the PDN connection request message, the MME 510 transmits a session creation request (eg, Create Session Request) message to the S-GW 520.
  • the session creation request message includes an indication (eg, NBIFOM capability) regarding whether the MME 510 supports the NBIFOM function.
  • the S-GW 520 forwards the session creation request message to the P-GW 530.
  • the session creation request message includes an indication (eg, NBIFOM capability) regarding whether the S-GW 520 supports the NBIFOM function.
  • the P-GW 530 forwards the PCC request message including the NBIFOM function indication and the RAT type of the UE and the P-GW to the PCRF 600 during the establishment of the IP-CAN session.
  • the PCRF 600 transmits a PCC response message including its NBIFOM function indication to the P-GW 530.
  • the MME 510 performs interaction with the HSS 540 and receives subscriber information from the HSS 540 through a PDN subscriber context.
  • the subscriber information includes a WLAN bypassability indication that can be used in an interworking solution using RAN assistance parameters (RAN rules).
  • the MME 510 determines whether to bypass the PDN connection # 1 using APN # 1 to the WLAN based on the WLAN bypassability indication obtained from the HSS 540.
  • the MME 510 transmits a PDN connectivity accept message (eg, PDN connectivity accept) message including a WLAN bypassability indication and an NBIFOM function indication to the UE 100 according to the determination.
  • PDN connectivity accept message eg, PDN connectivity accept
  • the UE 100 transmits information or a message (eg, Message for suspension of NBIFOM) informing / requesting suspension of NBIFOM to P-GW 530. Accordingly, updating of the network-initiated NBIFOM routing rule by the PCRF 550 / P-GW 530 may not be performed (that is, updating the routing rule causing a collision again). In addition, the updating of the routing rule initiated by the UE 100 (that is, the updating of the routing rule causing the collision again) may not be performed.
  • a message eg, Message for suspension of NBIFOM
  • the UE 100 may inform the P-GW 530 of the resumption of NBIFOM through one of several options shown.
  • the UE 100 transmits information or a message (eg, Message for resumption of NBIFOM) indicating / requesting a resumption of NBIFOM to P-GW 530.
  • a message eg, Message for resumption of NBIFOM
  • the UE 100 may inform the P-GW 530 of the resumption of the NBIFOM in an implicit manner.
  • the UE 100 may notify the P-GW 530 of the resumption of the NBIFOM by requesting an update of the NBIFOM routing rule. That is, the UE 100 can implicitly notify the resume of NBIFOM by requesting the P-GW 530 to update the NBIFOM routing rule to bypass the specific IP flow of the PDN connection # 1 to the WLAN. .
  • the UE 100 implicitly announces the resumption of NBIFOM by sending a PDN connection creation request message via a WLAN access network (ie, WLAN AP). Can be.
  • a WLAN access network ie, WLAN AP
  • the P-GW 530 indirectly knows that the collision has been resolved, and thus it can be seen that resumption of NBIFOM is required.
  • FIG. 15 is shown in FIG. Of UE NBIFOM Detailing the resumption decision process It is an illustration .
  • the NAS layer of the UE 100 receives a PDN connection accept message for a PDN connection using APN # 1.
  • the UE 100 checks the WLAN bypassability indication and the NBIFOM function indication included in the PDN connection acceptance message, respectively, and checks whether a collision has been resolved.
  • the base station 200 collects the relevant information about the neighboring WLAN AP, and accordingly, the RAN support parameters (RAN rules) through the system information block (SIB) or through the RRC signal AS layer of the UE 100 (I.e., RRC layer).
  • SIB system information block
  • RRC Radio Resource Control
  • the AS layer of the UE 100 is an upper layer (ie, NAS layer) indicating an indication (ie, move-traffic-to WLAN indication) indicating offloading to a non-3GPP access (eg, WLAN). ) Is when the two conditions described with reference to FIG. 9B are satisfied for a predetermined time (eg, Tsteering WLAN ).
  • the NAS layer of the UE 100 determines whether to resume NBIFOM based on whether the collision is resolved and the indication received from the AS layer.
  • the UE 100 NAS layer decides to resume the NBIFOM.
  • a non-3GPP access eg, WLAN
  • the UE 100 NAS layer decides to resume the NBIFOM.
  • the MME 510 determines a bypassability for a PDN connection during a PDN connection establishment procedure, and then displays an indication of the determined bypassability as well as the UE. It may also forward to other network nodes (eg, P-GW, S-GW, PCRF, etc.). In the past, the MME 510 improved the delivery of the indication of the determined bypassability only to the UE through a NAS message (eg, PDN Connectivity Accept).
  • a NAS message eg, PDN Connectivity Accept
  • 16 is a signal flow diagram illustrating a second description of the disclosure herein.
  • the NAS layer of the UE 100 performs a PDN connection request procedure to establish a PDN connection # 1 using APN # 1.
  • the MME 510 determines not to bypass PDN connection # 1 using APN # 1 to the WLAN based on the WLAN bypassability indication obtained from the HSS 540 and then the APN.
  • the MME 510 then forwards the indication to the P-GW 530 as well.
  • the P-GW 530 determines to pause the NBIFOM based on the indication while performing the PCC interaction with the PCRF 550. Accordingly, updating of the network-initiated NBIFOM routing rule by the PCRF 550 / P-GW 530 may not be performed (that is, updating the routing rule causing a collision again).
  • the NAS layer of the UE 100 performs a PDN connection request procedure to establish a PDN connection # 2 using APN # 1. Accordingly, the MME 510 determines to bypass the PDN connection # 2 using the APN # 1 to the WLAN, based on the WLAN bypassability indication obtained from the HSS 540, and then the APN # 1.
  • the MME 510 then forwards the indication to the P-GW 530 as well.
  • the P-GW 530 determines to resume NBIFOM based on the indication while performing the PCC interaction with the PCRF 550. Accordingly, update of the network-initiated NBIFOM routing rule by the PCRF 550 / P-GW 530 may be performed as shown in Option 1 shown.
  • the UE 100 checks the WLAN bypassability indication and the NBIFOM function indication included in the PDN connection accept message as in FIGS. 14 and 15, respectively, and when the collision is resolved with each other, the NBIFOM is determined. Decide to resume. Accordingly, update of the routing rule initiated by the UE 100 may be performed as shown in option 2 shown in the drawing.
  • 17 is a signal flow diagram illustratively illustrating a third description of the disclosure herein.
  • FIGS. 14 and 16 The same procedure as that of FIGS. 14 and 16 among the procedures illustrated in FIG. 17 will not be duplicated, and the descriptions of FIGS. 14 and 16 will be applied mutatis mutandis. Hereinafter, a description will be given focusing on a procedure that is different from the procedure of FIGS. 14 and 16.
  • the NAS layer of the UE 100 performs a PDN connection request procedure to establish a PDN connection # 1 using APN # 1.
  • the MME 510 determines not to bypass PDN connection # 1 using APN # 1 to the WLAN based on the WLAN bypassability indication obtained from the HSS 540.
  • the MME 510 then checks whether the decision collides with the NBIFOM. If it is determined that the collision exists, the MME 510 decides to suspend NBIFOM.
  • the MME 510 transmits information or a message (eg, Message for suspension of NBIFOM) informing / requesting suspension of NBIFOM to P-GW 530.
  • the UE 100 may transmit information or a message (eg, Message for suspension of NBIFOM) informing / requesting suspension of the NBIFOM to the P-GW 530.
  • the PCRF 550 / P-GW 530 may suspend NBIFOM via PCC interaction, thereby updating the network-initiated NBIFOM routing rule (ie, updating the routing rule causing a conflict again). This may not be done.
  • the MME 510 determines to bypass the PDN connection # 2 using the APN # 1 to the WLAN based on the WLAN bypassability indication obtained from the HSS 540.
  • the MME 510 then checks whether the decision collides with the NBIFOM. If it is determined that the collision has been resolved, the MME 510 decides to resume NBIFOM.
  • the MME 510 transmits information or a message (eg, Message for resumption of NBIFOM) to inform the P-GW 530 of the resumption / request of the NBIFOM.
  • the UE 100 may inform the P-GW 530 of the resumption of NBIFOM.
  • the UE 100 may transmit a message (eg, Message for resumption of NBIFOM) indicating the resumption of the NBIFOM to the P-GW 530.
  • the UE 100 may indirectly notify the resume of NBIFOM by transmitting a request for updating a routing rule initiated by the UE to the P-GW 530.
  • the P-GW 530 / PCRF 550 when the P-GW 530 / PCRF 550 receives the information / message informing / requesting the suspension of the NBIFOM, it suspends or temporarily deactivates the NBIFOM and informs the resume of the NBIFOM.
  • NBIFOM is restarted or activated.
  • the P-GW 530 / PCRF 550 may be configured based on information / message / indication received from the UE 100 or the MME 510 and information (eg, preset information) obtained through PCC interaction.
  • information eg, preset information
  • NBIFOM suspend / resumption is marked on the PDN connection-related context while maintaining all the NBIFOM-related information on the PDN connection.
  • the P-GW 530 / PCRF 550 may not request to update the routing rule of the network-initiated NBIFOM.
  • the P-GW 530 / PCRF 550 generates a routing rule and forwards it to the UE 100 through a request procedure for updating the routing rule initiated by the network. But may inform the UE to use the NBIFOM when it is resumed later.
  • the UE 100 includes a storage means 101, a controller 102, and a transceiver 103.
  • the MME 510 includes a storage means 511, a controller 512, and a transceiver 513.
  • the storage means 101, 511 store the method described above.
  • the controllers 102 and 512 control the storage means 101 and 511 and the transceivers 103 and 513. Specifically, the controllers 102 and 512 execute the methods stored in the storage means 101 and 511, respectively. The controllers 102 and 512 transmit the aforementioned signals through the transceivers 103 and 513.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 명세서의 일 개시는 MME(Mobility Management Entity)가 네트워크 선택 및 트래픽 라우팅을 수행하는 방법을 제공한다. 상기 방법은 상기 MME가, UE(User Equipment)로부터 PDN(Public Data Network) 커넥션에 대한 요청이 수신되면, HSS(Home Subscriber Server)로부터 획득한 WLAN(Wireless Local Area Network) 우회가능성(offloadablility)에 대한 인디케이션을 기초로, 상기 PDN 커넥션을 WLAN으로 우회시킬지 여부를 결정하는 단계; 상기 MME가, 상기 PDN 커넥션에 대한 결정 결과 및 NBIFOM(Network Based IP Flow Mobility) 기능에 대한 정보를 포함하는 메시지를 상기 UE로 전송하는 단계; 및 상기 MME가, 상기 PDN 커넥션에 대한 결정 결과를 P-GW(PDN Gateway) 및 PCRF(Policy and Charging Rule Function) 중 하나 이상으로 전송하는 단계를 포함하되, 상기 PDN 커넥션에 대한 결정 결과 및 NBIFOM 기능에 대한 정보는 상기 UE, 상기 P-GW 및 상기 PCRF 중 어느 하나 이상이 상기 NBIFOM 기능을 일시 중지하거나 재개하도록 트리거링하는데 이용될 수 있다.

Description

네트워크 선택 및 트래픽 라우팅을 수행하는 방법 및 사용자 장치
본 명세서는 이동통신에 관한 것이다.
이동통신 시스템의 기술 규격을 제정하는 3GPP에서는 4세대 이동통신과 관련된 여러 포럼들 및 새로운 기술에 대응하기 위하여, 2004년 말경부터 3GPP 기술들의 성능을 최적화 시키고 향상시키려는 노력의 일환으로 LTE/SAE (Long Term Evolution/System Architecture Evolution) 기술에 대한 연구를 시작하였다.
3GPP SA WG2을 중심으로 진행된 SAE는 3GPP TSG RAN의 LTE 작업과 병행하여 네트워크의 구조를 결정하고 이 기종 망간의 이동성을 지원하는 것을 목적으로 하는 망 기술에 관한 연구이며, 최근 3GPP의 중요한 표준화 이슈들 중 하나이다. 이는 3GPP 시스템을 IP 기반으로 하여 다양한 무선 접속 기술들을 지원하는 시스템으로 발전 시키기 위한 작업으로, 보다 향상된 데이터 전송 능력으로 전송 지연을 최소화 하는, 최적화된 패킷 기반 시스템을 목표로 작업이 진행되어 왔다.
3GPP SA WG2에서 정의한 EPS (Evolved Packet System) 상위 수준 참조 모델(reference model)은 비로밍 케이스(non-roaming case) 및 다양한 시나리오의 로밍 케이스(roaming case)를 포함하고 있으며, 상세 내용은 3GPP 표준문서 TS 23.401과 TS 23.402에서 참조할 수 있다. 도 1의 네트워크 구조도는 이를 간략하게 재구성 한 것이다.
도 1은 진화된 이동 통신 네트워크의 구조도이다 .
EPC는 다양한 구성요소들을 포함할 수 있으며, 도 1에서는 그 중에서 일부에 해당하는, S-GW(Serving Gateway)(52), PDN GW(Packet Data Network Gateway)(53), MME(Mobility Management Entity) (51), SGSN(Serving GPRS(General Packet Radio Service) Supporting Node), ePDG(enhanced Packet Data Gateway)를 도시한다.
S-GW(52)는 무선 접속 네트워크(RAN)와 코어 네트워크 사이의 경계점으로서 동작하고, eNodeB(22)와 PDN GW(53) 사이의 데이터 경로를 유지하는 기능을 하는 요소이다. 또한, 단말(또는 User Equipment: UE)이 eNodeB(22)에 의해서 서빙(serving)되는 영역에 걸쳐 이동하는 경우, S-GW(52)는 로컬 이동성 앵커 포인트(anchor point)의 역할을 한다. 즉, E-UTRAN (3GPP 릴리즈-8 이후에서 정의되는 Evolved-UMTS(Universal Mobile Telecommunications System) Terrestrial Radio Access Network) 내에서의 이동성을 위해서 S-GW(52)를 통해서 패킷들이 라우팅될 수 있다. 또한, S-GW(52)는 다른 3GPP 네트워크(3GPP 릴리즈-8 전에 정의되는 RAN, 예를 들어, UTRAN 또는 GERAN(GSM(Global System for Mobile Communication)/EDGE(Enhanced Data rates for Global Evolution) Radio Access Network)와의 이동성을 위한 앵커 포인트로서 기능할 수도 있다.
PDN GW(또는 P-GW) (53)는 패킷 데이터 네트워크를 향한 데이터 인터페이스의 종료점(termination point)에 해당한다. PDN GW(53)는 정책 집행 특징(policy enforcement features), 패킷 필터링(packet filtering), 과금 지원(charging support) 등을 지원할 수 있다. 또한, 3GPP 네트워크와 비-3GPP 네트워크 (예를 들어, I-WLAN(Interworking Wireless Local Area Network)과 같은 신뢰되지 않는 네트워크, CDMA(Code Division Multiple Access) 네트워크나 WiMax와 같은 신뢰되는 네트워크)와의 이동성 관리를 위한 앵커 포인트 역할을 할 수 있다.
도 1의 네트워크 구조의 예시에서는 S-GW(52)와 PDN GW(53)가 별도의 게이트웨이로 구성되는 것을 나타내지만, 두 개의 게이트웨이가 단일 게이트웨이 구성 옵션(Single Gateway Configuration Option)에 따라 구현될 수도 있다.
MME(51)는, UE의 네트워크 연결에 대한 액세스, 네트워크 자원의 할당, 트래킹(tracking), 페이징(paging), 로밍(roaming) 및 핸드오버 등을 지원하기 위한 시그널링 및 제어 기능들을 수행하는 요소이다. MME(51)는 가입자 및 세션 관리에 관련된 제어 평면(control plane) 기능들을 제어한다. MME(51)는 수많은 eNodeB(22)들을 관리하고, 다른 2G/3G 네트워크에 대한 핸드오버를 위한 종래의 게이트웨이의 선택을 위한 시그널링을 수행한다. 또한, MME(51)는 보안 과정(Security Procedures), 단말-대-네트워크 세션 핸들링(Terminal-to-network Session Handling), 유휴 단말 위치결정 관리(Idle Terminal Location Management) 등의 기능을 수행한다.
SGSN은 다른 접속 3GPP 네트워크(예를 들어, GPRS 네트워크, UTRAN/GERAN)에 대한 사용자의 이동성 관리 및 인증(authentication)과 같은 모든 패킷 데이터를 핸들링한다.
ePDG는 신뢰되지 않는 비-3GPP 네트워크(예를 들어, I-WLAN, WiFi 핫스팟(hotspot) 등)에 대한 보안 노드로서의 역할을 한다.
도 1을 참조하여 설명한 바와 같이, IP 능력을 가지는 단말(또는 UE)은, 3GPP 액세스는 물론 비-3GPP 액세스 기반으로도 EPC 내의 다양한 요소들을 경유하여 사업자(즉, 오퍼레이터(operator))가 제공하는 IP 서비스 네트워크(예를 들어, IMS)에 액세스할 수 있다.
또한, 도 1에서는 다양한 레퍼런스 포인트들(예를 들어, S1-U, S1-MME 등)을 도시한다. 3GPP 시스템에서는 E-UTRAN 및 EPC의 상이한 기능 개체(functional entity)들에 존재하는 2 개의 기능을 연결하는 개념적인 링크를 레퍼런스 포인트(reference point)라고 정의한다. 다음의 표 1은 도 1에 도시된 레퍼런스 포인트를 정리한 것이다. 표 1의 예시들 외에도 네트워크 구조에 따라 다양한 레퍼런스 포인트들이 존재할 수 있다.
Figure PCTKR2016002190-appb-T000001
Figure PCTKR2016002190-appb-I000001
도 2는 일반적으로 E- UTRAN과 일반적인 EPC의 주요 노드의 기능을 나타낸 예시도이다 .
도시된 바와 같이, eNodeB(20)는 RRC 연결이 활성화되어 있는 동안 게이트웨이로의 라우팅, 페이징 메시지의 스케줄링 및 전송, 브로드캐스터 채널(BCH)의 스케줄링 및 전송, 상향링크 및 하향 링크에서의 자원을 UE에게 동적 할당, eNodeB(20)의 측정을 위한 설정 및 제공, 무선 베어러 제어, 무선 허가 제어(radio admission control), 그리고 연결 이동성 제어 등을 위한 기능을 수행할 수 있다. EPC 내에서는 페이징 발생, LTE_IDLE 상태 관리, 사용자 평면이 암호화, EPS 베어러 제어, NAS 시그널링의 암호화 및 무결성 보호 기능을 수행할 수 있다.
3는 UE과 eNodeB 사이의 제어 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 예시도이고 , 도 4는 단말과 기지국 사이에 사용자 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 다른 예시도이다 .
상기 무선인터페이스 프로토콜은 3GPP 무선접속망 규격을 기반으로 한다. 상기 무선 인터페이스 프로토콜은 수평적으로 물리계층(Physical Layer), 데이터링크계층(Data Link Layer) 및 네트워크계층(Network Layer)으로 이루어지며, 수직적으로는 데이터정보 전송을 위한 사용자평면(User Plane)과 제어신호(Signaling)전달을 위한 제어평면(Control Plane)으로 구분된다.
상기 프로토콜 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속(Open System Interconnection; OSI) 기준모델의 하위 3개 계층을 바탕으로 L1 (제1계층), L2 (제2계층), L3(제3계층)로 구분될 수 있다.
이하에서, 상기 도 3에 도시된 제어 평면의 무선프로토콜과 도 4에 도시된 사용자 평면에서의 무선 프로토콜의 각 계층을 설명한다.
제1 계층인 물리계층은 물리채널(Physical Channel)을 이용하여 정보전송서비스(Information Transfer Service)를 제공한다. 상기 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 전송 채널(Transport Channel)을 통해 연결되어 있으며, 상기 전송 채널을 통해 매체접속제어계층과 물리계층 사이의 데이터가 전달된다. 그리고, 서로 다른 물리계층 사이, 즉 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 전달된다.
물리채널(Physical Channel)은 시간축 상에 있는 여러 개의 서브프레임과 주파수축상에 있는 여러 개의 서브 캐리어(Sub-carrier)로 구성된다. 여기서, 하나의 서브프레임(Sub-frame)은 시간 축 상에 복수의 심볼 (Symbol)들과 복수의 서브 캐리어들로 구성된다. 하나의 서브프레임은 복수의 자원블록(Resource Block)들로 구성되며, 하나의 자원블록은 복수의 심볼(Symbol)들과 복수의 서브캐리어들로 구성된다. 데이터가 전송되는 단위시간인 TTI(Transmission Time Interval)는 1개의 서브프레임에 해당하는 1ms이다.
상기 송신측과 수신측의 물리계층에 존재하는 물리 채널들은 3GPP LTE에 따르면, 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
서브프레임의 첫번째 OFDM 심벌에서 전송되는 PCFICH는 서브프레임내에서 제어채널들의 전송에 사용되는 OFDM 심벌의 수(즉, 제어영역의 크기)에 관한 CFI(control format indicator)를 나른다. 무선기기는 먼저 PCFICH 상으로 CFI를 수신한 후, PDCCH를 모니터링한다.
PDCCH와 달리, PCFICH는 블라인드 디코딩을 사용하지 않고, 서브프레임의 고정된 PCFICH 자원을 통해 전송된다.
PHICH는 UL HARQ(hybrid automatic repeat request)를 위한 ACK(positive-acknowledgement)/NACK(negative-acknowledgement) 신호를 나른다. 무선기기에 의해 전송되는 PUSCH 상의 UL(uplink) 데이터에 대한 ACK/NACK 신호는 PHICH 상으로 전송된다.
PBCH(Physical Broadcast Channel)은 무선 프레임의 첫번째 서브프레임의 두번째 슬롯의 앞선 4개의 OFDM 심벌에서 전송된다. PBCH는 무선기기가 기지국과 통신하는데 필수적인 시스템 정보를 나르며, PBCH를 통해 전송되는 시스템 정보를 MIB(master information block)라 한다. 이와 비교하여, PDCCH에 의해 지시되는 PDSCH 상으로 전송되는 시스템 정보를 SIB(system information block)라 한다.
PDCCH는 DL-SCH(downlink-shared channel)의 자원 할당 및 전송 포맷, UL-SCH(uplink shared channel)의 자원 할당 정보, PCH 상의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상으로 전송되는 랜덤 액세스 응답과 같은 상위 계층 제어 메시지의 자원 할당, 임의의 UE 그룹 내 개별 UE들에 대한 전송 파워 제어 명령의 집합 및 VoIP(voice over internet protocol)의 활성화 등을 나를 수 있다. 복수의 PDCCH가 제어 영역 내에서 전송될 수 있으며, 단말은 복수의 PDCCH를 모니터링 할 수 있다. PDCCH는 하나 또는 몇몇 연속적인 CCE(control channel elements)의 집합(aggregation) 상으로 전송된다. CCE는 무선채널의 상태에 따른 부호화율을 PDCCH에게 제공하기 위해 사용되는 논리적 할당 단위이다. CCE는 복수의 자원 요소 그룹(resource element group)에 대응된다. CCE의 수와 CCE들에 의해 제공되는 부호화율의 연관 관계에 따라 PDCCH의 포맷 및 가능한 PDCCH의 비트수가 결정된다.
PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(downlink control information, DCI)라고 한다. DCI는 PDSCH의 자원 할당(이를 DL 그랜트(downlink grant)라고도 한다), PUSCH의 자원 할당(이를 UL 그랜트(uplink grant)라고도 한다), 임의의 UE 그룹내 개별 UE들에 대한 전송 파워 제어 명령의 집합 및/또는 VoIP(Voice over Internet Protocol)의 활성화를 포함할 수 있다.
제2계층에는 여러 가지 계층이 존재한다. 먼저 매체접속제어 (Medium Access Control; MAC) 계층은 다양한 논리채널 (Logical Channel)을 다양한 전송채널에 매핑시키는 역할을 하며, 또한 여러 논리채널을 하나의 전송채널에 매핑시키는 논리채널 다중화 (Multiplexing)의 역할을 수행한다. MAC 계층은 상위계층인 RLC 계층과는 논리채널 (Logical Channel)로 연결되어 있으며, 논리채널은 크게 전송되는 정보의 종류에 따라 제어평면 (Control Plane)의 정보를 전송하는 제어채널 (Control Channel)과 사용자평면 (User Plane)의 정보를 전송하는 트래픽채널 (Traffic Channel)로 나뉜다.
제2계층의 무선링크제어 (Radio Link Control; RLC) 계층은 상위계층으로부터 수신한 데이터를 분할 (Segmentation) 및 연결 (Concatenation)하여 하위계층이 무선 구간으로 데이터를 전송하기에 적합하도록 데이터 크기를 조절하는 역할을 수행한다. 또한, 각각의 무선베어러 (Radio Bearer; RB)가 요구하는 다양한 QoS를 보장할 수 있도록 하기 위해 TM (Transparent Mode, 투명모드), UM (Un-acknowledged Mode, 무응답모드), 및 AM (Acknowledged Mode, 응답모드)의 세가지 동작 모드를 제공하고 있다. 특히, AM RLC는 신뢰성 있는 데이터 전송을 위해 자동 반복 및 요청 (Automatic Repeat and Request; ARQ) 기능을 통한 재전송 기능을 수행하고 있다.
제2계층의 패킷데이터수렴 (Packet Data Convergence Protocol; PDCP) 계층은 IPv4나 IPv6와 같은 IP 패킷 전송시에 대역폭이 작은 무선 구간에서 효율적으로 전송하기 위하여 상대적으로 크기가 크고 불필요한 제어정보를 담고 있는 IP 패킷 헤더 사이즈를 줄여주는 헤더압축 (Header Compression) 기능을 수행한다. 이는 데이터의 헤더(Header) 부분에서 반드시 필요한 정보만을 전송하도록 하여, 무선 구간의 전송효율을 증가시키는 역할을 한다. 또한, LTE 시스템에서는 PDCP 계층이 보안 (Security) 기능도 수행하는데, 이는 제 3자의 데이터 감청을 방지하는 암호화 (Ciphering)와 제 3자의 데이터 조작을 방지하는 무결성 보호 (Integrity protection)로 구성된다.
제3 계층의 가장 상부에 위치한 무선자원제어(Radio Resource Control; 이하 RRC라 약칭함) 계층은 제어평면에서만 정의되며, 무선 운반자(Radio Bearer; RB라 약칭함)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리 채널, 전송 채널 및 물리 채널들의 제어를 담당한다. 이때, RB는 단말과 E-UTRAN간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다.
상기 단말의 RRC와 무선망의 RRC계층 사이에 RRC 연결(RRC connection)이 있을 경우, 단말은 RRC연결상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC휴지상태(Idle Mode)에 있게 된다.
이하 단말의 RRC 상태 (RRC state)와 RRC 연결 방법에 대해 설명한다. RRC 상태란 단말의 RRC가 E-UTRAN의 RRC와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC_CONNECTED 상태(state), 연결되어 있지 않은 경우는 RRC_IDLE 상태라고 부른다. RRC_CONNECTED 상태의 단말은 RRC 연결이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 단말을 효과적으로 제어할 수 있다. 반면에 RRC_IDLE 상태의 단말은 E-UTRAN이 단말의 존재를 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 TA(Tracking Area) 단위로 핵심망이 관리한다. 즉, RRC_IDLE 상태의 단말은 셀에 비하여 큰 지역 단위로 해당 단말의 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 해당 단말이 RRC_CONNECTED 상태로 천이하여야 한다. 각 TA는 TAI(Tracking area identity)를 통해 구분된다. 단말은 셀에서 방송(broadcasting)되는 정보인 TAC(Tracking area code)를 통해 TAI를 구성할 수 있다.
사용자가 단말의 전원을 맨 처음 켰을 때, 단말은 먼저 적절한 셀을 탐색한 후 해당 셀에서 RRC 연결을 맺고, 핵심망에 단말의 정보를 등록한다. 이 후, 단말은 RRC_IDLE 상태에 머무른다. RRC_IDLE 상태에 머무르는 단말은 필요에 따라서 셀을 (재)선택하고, 시스템 정보(System information)나 페이징 정보를 살펴본다. 이를 셀에 캠프 온(Camp on) 한다고 한다. RRC_IDLE 상태에 머물러 있던 단말은 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정 (RRC connection procedure)을 통해 E-UTRAN의 RRC와 RRC 연결을 맺고 RRC_CONNECTED 상태로 천이한다. RRC_IDLE 상태에 있던 단말이 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도 등의 이유로 상향 데이터 전송이 필요하다거나, 아니면 E-UTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
상기 RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management)등의 기능을 수행한다.
아래는 도 3에 도시된 NAS 계층에 대하여 상세히 설명한다.
NAS 계층에 속하는 ESM (Evolved Session Management)은 Default Bearer 관리, Dedicated Bearer관리와 같은 기능을 수행하여, 단말이 망으로부터 PS서비스를 이용하기 위한 제어를 담당한다. Default Bearer 자원은 특정 Packet Data Network(PDN)에 최초 접속 할 시에 망에 접속될 때 망으로부터 할당 받는다는 특징을 가진다. 이때, 네트워크는 단말이 데이터 서비스를 사용할 수 있도록 단말이 사용 가능한 IP 주소를 할당하며, 또한 default bearer의 QoS를 할당해준다. LTE에서는 크게 데이터 송수신을 위한 특정 대역폭을 보장해주는 GBR(Guaranteed bit rate) QoS 특성을 가지는 bearer와 대역폭의 보장 없이 Best effort QoS 특성을 가지는 Non-GBR bearer의 두 종류를 지원한다. Default bearer의 경우 Non-GBR bearer를 할당 받는다. Dedicated bearer의 경우에는 GBR또는 Non-GBR의 QoS특성을 가지는 bearer를 할당 받을 수 있다.
네트워크에서 단말에게 할당한 bearer를 EPS(evolved packet service) bearer라고 부르며, EPS bearer를 할당 할 때 네트워크는 하나의 ID를 할당하게 된다. 이를 EPS Bearer ID라고 부른다. 하나의 EPS bearer는 MBR(maximum bit rate) 와 GBR(guaranteed bit rate) 또는 AMBR (Aggregated maximum bit rate) 의 QoS 특성을 가진다.
도 5a는 3GPP LTE에서 랜덤 액세스 과정을 나타낸 흐름도이다.
랜덤 액세스 과정은 UE(10)가 기지국, 즉 eNodeB(20)과 UL 동기를 얻거나 UL 무선자원을 할당받기 위해 사용된다.
UE(10)는 루트 인덱스(root index)와 PRACH(physical random access channel) 설정 인덱스(configuration index)를 eNodeB(20)로부터 수신한다. 각 셀마다 ZC(Zadoff-Chu) 시퀀스에 의해 정의되는 64개의 후보(candidate) 랜덤 액세스 프리앰블이 있으며, 루트 인덱스는 단말이 64개의 후보 랜덤 액세스 프리앰블을 생성하기 위한 논리적 인덱스이다.
랜덤 액세스 프리앰블의 전송은 각 셀마다 특정 시간 및 주파수 자원에 한정된다. PRACH 설정 인덱스는 랜덤 액세스 프리앰블의 전송이 가능한 특정 서브프레임과 프리앰블 포맷을 지시한다.
UE(10)은 임의로 선택된 랜덤 액세스 프리앰블을 eNodeB(20)로 전송한다. UE(10)은 64개의 후보 랜덤 액세스 프리앰블 중 하나를 선택한다. 그리고, PRACH 설정 인덱스에 의해 해당되는 서브프레임을 선택한다. UE(10)은 은 선택된 랜덤 액세스 프리앰블을 선택된 서브프레임에서 전송한다.
상기 랜덤 액세스 프리앰블을 수신한 eNodeB(20)은 랜덤 액세스 응답(random access response, RAR)을 UE(10)로 보낸다. 랜덤 액세스 응답은 2단계로 검출된다. 먼저 UE(10)은 RA-RNTI(random access-RNTI)로 마스킹된 PDCCH를 검출한다. UE(10)은 검출된 PDCCH에 의해 지시되는 PDSCH 상으로 MAC(Medium Access Control) PDU(Protocol Data Unit) 내의 랜덤 액세스 응답을 수신한다.
도 5b는 무선자원제어(RRC) 계층에서의 연결 과정을 나타낸다.
도 5b에 도시된 바와 같이 RRC 연결 여부에 따라 RRC 상태가 나타나 있다. 상기 RRC 상태란 UE(10)의 RRC 계층의 엔티티(entity)가 eNodeB(20)의 RRC 계층의 엔티티와 논리적 연결(logical connection)이 되어 있는가 아닌가를 말하며, 연결되어 있는 경우는 RRC 연결 상태(connected state)라고 하고, 연결되어 있지 않은 상태를 RRC 유휴 상태(idle state)라고 부른다.
상기 연결 상태(Connected state)의 UE(10)은 RRC 연결(connection)이 존재하기 때문에 E-UTRAN은 해당 단말의 존재를 셀 단위에서 파악할 수 있으며, 따라서 UE(10)을 효과적으로 제어할 수 있다. 반면에 유휴 상태(idle state)의 UE(10)은 eNodeB(20)이 파악할 수는 없으며, 셀 보다 더 큰 지역 단위인 트래킹 지역(Tracking Area) 단위로 핵심망(Core Network)이 관리한다. 상기 트래킹 지역(Tracking Area)은 셀들의 집합단위이다. 즉, 유휴 상태(idle state) UE(10)은 큰 지역 단위로 존재여부만 파악되며, 음성이나 데이터와 같은 통상의 이동통신 서비스를 받기 위해서는 단말은 연결 상태(connected state)로 천이해야 한다.
사용자가 UE(10)의 전원을 맨 처음 켰을 때, 상기 UE(10)은 먼저 적절한 셀을 탐색한 후 해당 셀에서 유휴 상태(idle state)에 머무른다. 상기 유휴 상태(idle state)에 머물러 있던 UE(10)은 RRC 연결을 맺을 필요가 있을 때 비로소 RRC 연결 과정 (RRC connection procedure)을 통해 eNodeB(20)의 RRC 계층과 RRC 연결을 맺고 RRC 연결 상태(connected state)로 천이한다.
상기 유휴 상태(Idle state)에 있던 단말이 RRC 연결을 맺을 필요가 있는 경우는 여러 가지가 있는데, 예를 들어 사용자의 통화 시도 또는 상향 데이터 전송 등이 필요하다거나, 아니면 EUTRAN으로부터 페이징 메시지를 수신한 경우 이에 대한 응답 메시지 전송 등을 들 수 있다.
유휴 상태(idle state)의 UE(10)이 상기 eNodeB(20)와 RRC 연결을 맺기 위해서는 상기한 바와 같이 RRC 연결 과정(RRC connection procedure)을 진행해야 한다. RRC 연결 과정은 크게, UE(10)이 eNodeB(20)으로 RRC 연결 요청 (RRC connection request) 메시지 전송하는 과정, eNodeB(20)가 UE(10)로 RRC 연결 설정 (RRC connection setup) 메시지를 전송하는 과정, 그리고 UE(10)이 eNodeB(20)으로 RRC 연결 설정 완료 (RRC connection setup complete) 메시지를 전송하는 과정을 포함한다. 이와 같은 과정에 대해서 도 4b를 참조하여 보다 상세하게 설명하면 다음과 같다.
1) 유휴 상태(Idle state)의 UE(10)은 통화 시도, 데이터 전송 시도, 또는 eNodeB(20)의 페이징에 대한 응답 등의 이유로 RRC 연결을 맺고자 할 경우, 먼저 상기 UE(10)은 RRC 연결 요청(RRC connection request) 메시지를 eNodeB(20)으로 전송한다.
2) 상기 UE(10)로부터 RRC 연결 요청 메시지를 수신하면, 상기 eNB(10) 는 무선 자원이 충분한 경우에는 상기 UE(10)의 RRC 연결 요청을 수락하고, 응답 메시지인 RRC 연결 설정(RRC connection setup) 메시지를 상기 UE(10)로 전송한다.
3) 상기 UE(10)이 상기 RRC 연결 설정 메시지를 수신하면, 상기 eNodeB(20)로 RRC 연결 설정 완료(RRC connection setup complete) 메시지를 전송한다. 상기 UE(10)이 RRC 연결 설정 메시지를 성공적으로 전송하면, 비로소 상기 UE(10)은 eNodeB(20)과 RRC 연결을 맺게 되고 RRC 연결 모드로 천이한다.
한편, 최근에는 데이터의 폭발적인 증가로 인하여 이동통신 사업자의 3GPP 액세스의 혼잡이 가중되고 있다. 이를 완화하기 위한 방안으로는 사용자 단말의 데이터를 비-3GPP 액세스인, 무선랜(WLAN)을 통해 우회(offload)시키려는 움직임이 있다. 이하, 무선랜을 EPC에 연결하기 위한 아키텍처를 설명한다.
도 6a 및 도 6b는 무선랜을 EPC에 연결하는 아키텍처를 나타낸다
도 6a는 WLAN이 S2a 인터페이스를 통해 P-GW에 연결된 아키텍처를 보여준다. 도 6a에서 볼 수 있듯이 WLAN 액세스 네트워크(특히, S2a 인터페이스의 경우 신뢰되는 비-3GPP 액세스를 EPC와 연결하는 인터페이스이므로 신뢰되는 WLAN 액세스 네트워크가 됨)는 S2a 인터페이스를 통해 P-GW와 연결된다. TWAN(Trusted WLAN Access Network)에 대한 구조는 TS 23.402에 기술된 내용을 참고하기로 한다.
도 6b는 WLAN이 S2b 인터페이스를 통해 P-GW에 연결된 아키텍처를 보여준다. 도 6b에서 볼 수 있듯이 WLAN 액세스 네트워크(특히, S2b 인터페이스의 경우 신뢰되지 않는 비-3GPP 액세스를 EPC와 연결하는 인터페이스이므로 신뢰되지 않는 WLAN 액세스 네트워크가 됨)는 S2b 인터페이스를 통해 P-GW와 연결되어 있는 ePDG(Evolved Packet Data Gateway)를 통해 P-GW에 연결된다.
이하에서 신뢰되는 WLAN과 신뢰되지 않는 WLAN은 구분 없이 WLAN으로 지칭될 수 있다.
한편, 전술한 바와 같이 사용자 단말의 데이터를 사업자의 3GPP 액세스를 거치치 않고, 비-3GPP 액세스인 무선랜(WLAN)을 통해 우회(offload)시키려는 움직임에 따라, 다중 무선 액세스(Multiple radio access)를 지원하기 위한 IFOM(IP Flow Mobility and Seamless Offload), MAPCON(Multi Access PDN Connectivity) 등의 기술이 제안된 바 있다. MAPCON 기술은 3GPP 액세스와 Wi-Fi 액세스를 각각의 PDN 커넥션(connection)으로 두고 데이터를 전송하는 것이고, IFOM 기술은 3GPP 액세스와 Wi-Fi 액세스를 하나의 PDN이나 P-GW 에 묶어 데이터를 전송하는 것을 일컫는다.
도 7a는 IFOM 기술의 예를 나타낸 예시도이다 .
도 7a을 참조하면, IFOM은 동일한 PDN 커넥션을 동시에 다른 여러 액세스들을 통해 제공하는 것이다. 이러한 IFOM은 끊김없는(Seamless) WLAN으로의 우회를 제공한다.
또한 IFOM은 동일한 하나의 PDN 커넥션의 IP 흐름을 하나의 액세스로부터 다른 액세스로 전달하는 것을 제공한다.
도 7b는 MAPCON 기술의 예를 나타낸 예시도이다 .
도 7b를 참조하여 알 수 있는 바와 같이, MAPCON 기술은 여러 PDN 커넥션, 쉽게 IP 흐름(flow)들을 다른 액세스 시스템을 통하여 다른 APN들로 연결시키는 것이다.
이러한 MAPCON 기술에 따라 UE(10)는 이전에 사용되지 않았던 액세스 상에서 새로운 PDN 커넥션을 생성할 수 있다. 또는 UE(10)는 이전에 사용된 여러 액세스들 중에서 선택적인 하나에 새로운 PDN 커넥션을 생성할 수 있다. 또는, UE(10)는 이미 연결되어 있는 모든 PDN 커넥션들 중 전부 또는 일부를 다른 액세스로 이전시킬 수도 있다.
이상과 같이 UE의 트래픽을 무선랜(Wireless LAN)으로 우회시킬 수 있는 기술덕분에, 이동통신 사업자의 3GPP 액세스의 혼잡을 덜 수 있게 되었다.
트래픽을 비-3GPP 액세스로 우회시키기 위해서 사업자는 정책을 단말에게 제공하고, 상기 단말은 상기 정책에 따라 자신의 데이터를 무선랜(Wireless LAN)으로 우회시킬 수 있다.
이와 같은 정책을 단말에게 프로비저닝(provisioning)하기 위해서, 3GPP에 기반한 ANDSF(Access Network Discovery and Selection Function)가 무선랜(Wireless LAN)과 관련된 정책을 제공할 수 있도록 개선되었다.
도 8a 및 도 8b는 액세스 네트워크 선택을 위한 네트워크 제어 엔티티를 나타낸다.
도 8a을 참조하여 알 수 있는 바와 같이, ANDSF는 UE(10)의 홈 네트워크(Home Public Land Mobile Network: 이하 'HPLMN'이라 함)에 존재할 수 있다. 또한 도 8b을 참조하여 알 수 있는 바와 같이, ANDSF는 UE(10)의 방문 네트워크(Visited Public Land Mobile Network: 이하 'VPLMN'이라 함)에도 존재할 수 있다. 이와 같이 홈 네트워크에 위치할 때, H-ANDSF(61)로 불릴 수 있고, 방문 네트워크에 위치할 때 V-ANDSF(62)로 불릴 수 있다. 이하, ANDSF(60)은 H-ANDSF(61) 또는 V-ANDSF(62)를 통칭한다.
상기 ANDSF는 시스템간(inter-system) 이동 정책에 대한 정보, 액세스 네트워크 탐색을 위한 정보, 그리고 시스템간(inter-system) 라우팅에 관한 정보, 예컨대 Routing Rule를 제공할 수 있다.
전술한, IFOM은 UE의 주도적인 결정에 의해서 수행되며, 호스트(host) 기반의 이동성 프로토콜(mobility protocol)인 DSMIP(Dual Stack Mobile IP)를 사용한다.
한편, 네트워크 기반 프로토콜인 GTP 내지는 PMIP을 사용하는 S2a 및 S2b 인터페이스를 통하여 IFOM을 제공하는 기술을 NBIFOM(Network Based IP Flow Mobility)라고 한다.
그런데 이와 같이 사용자의 트래픽을 WLAN으로 우회시키기 위한 여러 정책들이 존재함으로 인하여, UE 내부에서 여러 정책들 간에 충돌이 발생할 수 있다.
따라서, 본 명세서의 일 개시는 전술한 문제점을 해결할 수 있는 방안을 제시하는 것을 목적으로 한다.
상기와 같은 목적을 달성하기 위하여, 본 명세서의 일 개시는 MME(Mobility Management Entity)가 네트워크 선택 및 트래픽 라우팅을 수행하는 방법을 제공한다. 상기 방법은 상기 MME가, UE(User Equipment)로부터 PDN(Public Data Network) 커넥션에 대한 요청이 수신되면, HSS(Home Subscriber Server)로부터 획득한 WLAN(Wireless Local Area Network) 우회가능성(offloadablility)에 대한 인디케이션을 기초로, 상기 PDN 커넥션을 WLAN으로 우회시킬지 여부를 결정하는 단계; 상기 MME가, 상기 PDN 커넥션에 대한 결정 결과 및 NBIFOM(Network Based IP Flow Mobility) 기능에 대한 정보를 포함하는 메시지를 상기 UE로 전송하는 단계; 및 상기 MME가, 상기 PDN 커넥션에 대한 결정 결과를 P-GW(PDN Gateway) 및 PCRF(Policy and Charging Rule Function) 중 하나 이상으로 전송하는 단계를 포함하되, 상기 PDN 커넥션에 대한 결정 결과 및 NBIFOM 기능에 대한 정보는 상기 UE, 상기 P-GW 및 상기 PCRF 중 어느 하나 이상이 상기 NBIFOM 기능을 일시 중지하거나 재개하도록 트리거링하는데 이용될 수 있다.
상기 방법은: 상기 NBIFOM 기능에 대한 정보는 상기 NBIFOM 기능이 수행 가능함을 나타내는 반면, 상기 PDN 커넥션에 대한 결정 결과는 WLAN으로 우회가 불가능함을 나타내는 경우, 상기 UE, 상기 P-GW 및 상기 PCRF 중 어느 하나 이상은 상기 NBIFOM 기능을 일시 중지할 수 있다.
상기 방법은: 상기 UE로부터 상기 PDN 커넥션에 대한 갱신 요청이 수신되거나, 새로운 PDN 커넥션에 대한 요청이 수신되면, 상기 WLAN으로 우회시킬지 여부를 결정하는 단계, 상기 UE로 전송하는 단계 및 상기 P-GW 및 PCRF 중 하나 이상으로 전송하는 단계를 다시 수행할 수 있다.
상기 방법은: 상기 UE로 전송하는 단계 및 상기 P-GW 및 PCRF 중 하나 이상으로 전송하는 단계가 다시 수행된 후, 다시 전송된 NBIFOM 기능에 대한 정보는 상기 NBIFOM 기능이 수행 가능하고, 다시 전송된 PDN 커넥션에 대한 결정 결과는 WLAN으로 우회가 가능함을 나타내는 경우, 상기 UE, 상기 P-GW 및 상기 PCRF 중 어느 하나 이상은 상기 NBIFOM 기능의 재개 여부를 결정할 수 있다.
상기 방법은: 상기 P-GW 및 PCRF 중 하나 이상으로 전송하는 단계가 다시 수행되는 단계는, 다시 전송할 PDN 커넥션에 대한 결정 결과가 상기 WLAN으로 우회시킬지 여부를 결정하는 단계를 다시 수행하기 이전의 PDN 커넥션에 대한 결정 결과와 상반된 결과 값을 가지는 경우에 한하여, 상기 P-GW 및 PCRF 중 하나 이상으로 전송하는 단계를 다시 수행할 수 있다.
상기와 같은 목적을 달성하기 위하여, 본 명세서의 다른 개시는 MME가 네트워크 선택 및 트래픽 라우팅을 수행하는 방법을 제공한다. 상기 방법은 상기 MME가, 사용자 장치(UE)로부터 PDN 커넥션에 대한 요청이 수신되면, HSS로부터 획득한 WLAN 우회가능성에 대한 인디케이션을 기초로, 상기 PDN 커넥션을 WLAN으로 우회시킬지 여부를 결정하는 단계; 상기 MME가, 상기 PDN 커넥션에 대한 결정 결과 및 NBIFOM 기능에 대한 정보 간에 충돌이 존재하는지 판단하는 단계; 상기 MME가, 상기 PDN 커녁션에 대한 결정 결과 및 NBIFOM 기능에 대한 정보 외에, 상기 충돌 유무에 기초한 NBIFOM 기능의 일시 중지를 나타내는 정보 추가로 포함하는 메시지를 상기 UE로 전송하는 단계; 및 상기 MME가, 상기 충돌 유무에 기초한 NBIFOM 기능의 일시 중지를 나타내는 정보 또는 상기 정보를 포함하는 메시지를 P-GW 및 PCRF 중 하나 이상으로 전송하는 단계를 포함할 수 있다.
상기 방법은: 상기 NBIFOM 기능에 대한 정보는 상기 NBIFOM 기능이 수행 가능함을 나타내는 반면, 상기 PDN 커넥션에 대한 결정 결과는 WLAN으로 우회가 불가능함을 나타내는 경우, 상기 충돌이 존재하는 것으로 판단할 수 있다.
상기 방법은: 상기 UE로부터 상기 PDN 커넥션에 대한 갱신 요청이 수신되거나, 새로운 PDN 커넥션에 대한 요청이 수신되면, 상기 WLAN으로 우회시킬지 여부를 결정하는 단계 및 상기 충돌이 존재하는지 판단하는 단계를 다시 수행할 수 있다.
상기 방법은: 상기 P-GW로부터 새롭게 수신된 NBIFOM 기능에 대한 정보는 상기 NBIFOM 기능이 수행 가능하고, 다시 결정된 PDN 커넥션에 대한 결정 결과는 WLAN으로 우회가 가능함을 나타내는 경우, 상기 충돌이 해소된 것으로 판단할 수 있다.
상기와 같은 목적을 달성하기 위하여, 본 명세서의 또 다른 개시는 네트워크 선택 및 트래픽 라우팅을 수행하는 장치를 제공한다. 상기 장치는 송수신부와; 상기 송수신부를 제어하는 프로세서를 포함할 수 있다. 상기 프로세서는, UE로부터 PDN 커넥션에 대한 요청이 수신되면, HSS부터 획득한 WLAN 우회가능성에 대한 인디케이션을 기초로, 상기 PDN 커넥션을 WLAN으로 우회시킬지 여부를 결정하고; 상기 PDN 커넥션에 대한 결정 결과 및 NBIFOM 기능에 대한 정보를 포함하는 메시지를 상기 UE로 전송하고; 및 상기 PDN 커넥션에 대한 결정 결과를 P-GW 및 PCRF 중 하나 이상으로 전송하기 위한 절차를 수행하되, 상기 PDN 커넥션에 대한 결정 결과 및 NBIFOM 기능에 대한 정보는 상기 UE, 상기 P-GW 및 PCRF 중 어느 하나 이상이 상기 NBIFOM 기능을 일시 중지하거나 재개하도록 트리거링하는데 이용될 수 있다.
상기와 같은 목적을 달성하기 위하여, 본 명세서의 또 다른 개시는 네트워크 선택 및 트래픽 라우팅을 수행하는 장치를 제공한다. 상기 장치는 송수신부와; 상기 송수신부를 제어하는 프로세서를 포함할 수 있다. 상기 프로세서는, 사용자 장치(UE)로부터 PDN 커넥션에 대한 요청이 수신되면, HSS로부터 획득한 WLAN 우회가능성에 대한 인디케이션을 기초로, 상기 PDN 커넥션을 WLAN으로 우회시킬지 여부를 결정하고; 상기 PDN 커넥션에 대한 결정 결과 및 NBIFOM 기능에 대한 정보 간에 충돌이 존재하는지 판단하고; 상기 PDN 커녁션에 대한 결정 결과 및 NBIFOM 기능에 대한 정보 외에, 상기 충돌 유무에 기초한 NBIFOM 기능의 일시 중지를 나타내는 정보 추가로 포함하는 메시지를 상기 UE로 전송하고; 및 상기 충돌 유무에 기초한 NBIFOM 기능의 일시 중지를 나타내는 정보 또는 상기 정보를 포함하는 메시지를 P-GW 및 PCRF 중 하나 이상으로 전송하기 위한 절차를 수행할 수 있다.
본 명세서의 개시에 의하면, 종래 기술의 문제점을 해결할 수 있다.
본 명세서의 개시에 의하면, 로밍 환경에서 방문 네트워크의 사업자의 WLAN 우회에 대한 정책을 유연하게(flexible) 보장하면서, UE 내에서 서로 다른 정책이 충돌하는 경우를 피할 수 있도록 하며, 정책 충돌로 인해 발행할 수 있는 요청/거절에 대한 시그널링을 줄일 수 있다.
또한, 본 명세서의 개시에 의하면, 시스템 전체적인 시그널링 사용을 줄여, 네트워크 자원 활용의 효율성을 높일 수 있다.
도 1은 진화된 이동 통신 네트워크의 구조도이다.
도 2는 일반적으로 E-UTRAN과 일반적인 EPC의 아키텍처를 나타낸 예시도이다.
도 3는 UE과 eNodeB 사이의 제어 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 예시도이다.
도 4는 단말과 기지국 사이에 사용자 평면에서의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 구조를 나타낸 다른 예시도이다.
도 5a는 3GPP LTE에서 랜덤 액세스 과정을 나타낸 흐름도이다.
도 5b는 무선자원제어(RRC) 계층에서의 연결 과정을 나타낸다.
도 6a 및 도 6b는 무선랜을 EPC에 연결하는 아키텍처를 나타낸다
도 7a는 IFOM 기술의 예를 나타낸 예시도이고, 도 7b는 MAPCON 기술의 예를 나타낸 예시도이다.
도 8a 및 도 8b는 액세스 네트워크 선택을 위한 네트워크 제어 엔티티를 나타낸다.
도 9a는 ANDSF 정책 외에 새롭게 정의된 RAN 지원 파라미터(RAN 규칙)이 UE에게 제공되는 예를 나타낸다.
도 9b는 도 9a에 도시된 RAN 지원 파라미터(RAN 규칙)를 UE에게 제공하는 절차를 상세하게 나타낸 예시도이다.
도 10은 PDN 커넥션 수립 절차 동안에 NBIFOM 기능이 탐지/협상되는 예를 나타낸다.
도 11은 NBIFOM을 위한 라우팅 규칙의 갱신을 전달하는 과정을 나타낸다.
도 12는 WLAN 우회가능성에 대한 인디케이션들이 상충되는 예를 나타낸다.
도 13은 도 12에 예시된 문제점을 해결하기 위한 기존의 시도를 나타낸 예시도이다.
도 14a는 본 명세서의 개시에 대한 제1 설명을 예시적으로 나타낸 신호 흐름도이다.
도 14b는 도 14a에 도시된 제1 설명에 대한 변형예을 예시적으로 나타낸 신호 흐름도이다.
도 15는 도 14에 도시된 UE의 NBIFOM 재개 결정 과정을 상세하게 나타낸 예시도이다.
도 16은 본 명세서의 개시에 대한 제2 설명을 예시적으로 나타낸 신호 흐름도이다.
도 17은 본 명세서의 개시에 대한 제3 설명을 예시적으로 나타낸 신호 흐름도이다.
도 18은 본 발명의 실시예에 따른 UE(100) 및 MME(510)의 구성 블록도이다.
본 발명은 UMTS(Universal Mobile Telecommunication System) 및 EPC(Evolved Packet Core)를 기준으로 설명되나, 본 발명은 이러한 통신 시스템에만 한정되는 것이 아니라, 본 발명의 기술적 사상이 적용될 수 있는 모든 통신 시스템 및 방법에도 적용될 수 있다.
본 명세서에서 사용되는 기술적 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아님을 유의해야 한다. 또한, 본 명세서에서 사용되는 기술적 용어는 본 명세서에서 특별히 다른 의미로 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 의미로 해석되어야 하며, 과도하게 포괄적인 의미로 해석되거나, 과도하게 축소된 의미로 해석되지 않아야 한다. 또한, 본 명세서에서 사용되는 기술적인 용어가 본 발명의 사상을 정확하게 표현하지 못하는 잘못된 기술적 용어일 때에는, 당업자가 올바르게 이해할 수 있는 기술적 용어로 대체되어 이해되어야 할 것이다. 또한, 본 발명에서 사용되는 일반적인 용어는 사전에 정의되어 있는 바에 따라, 또는 전후 문맥상에 따라 해석되어야 하며, 과도하게 축소된 의미로 해석되지 않아야 한다.
또한, 본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "구성된다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 여러 구성 요소들, 또는 여러 단계들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다.
또한, 본 명세서에서 사용되는 제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성 요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성 요소도 제1 구성 요소로 명명될 수 있다.
어떤 구성 요소가 다른 구성 요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성 요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성 요소가 존재할 수도 있다. 반면에, 어떤 구성 요소가 다른 구성 요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성 요소가 존재하지 않는 것으로 이해되어야 할 것이다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 또한, 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 발명의 사상을 쉽게 이해할 수 있도록 하기 위한 것일뿐, 첨부된 도면에 의해 본 발명의 사상이 제한되는 것으로 해석되어서는 아니됨을 유의해야 한다. 본 발명의 사상은 첨부된 도면외에 모든 변경, 균등물 내지 대체물에 까지도 확장되는 것으로 해석되어야 한다.
첨부된 도면에서는 예시적으로 UE(User Equipment)가 도시되어 있으나, 도시된 상기 UE는 단말(Terminal), ME(Mobile Equipment), 등의 용어로 언급될 수 도 있다. 또한, 상기 UE는 노트북, 휴대폰, PDA, 스마트 폰(Smart Phone), 멀티미디어 기기등과 같이 휴대 가능한 기기일 수 있거나, PC, 차량 탑재 장치와 같이 휴대 불가능한 기기일 수 있다.
용어의 정의
이하 도면을 참조하여 설명하기 앞서, 본 발명의 이해를 돕고자, 본 명세서에서 사용되는 용어를 간략하게 정의하기로 한다.
GERAN: GSM EDGE Radio Access Network의 약자로서, GSM/EDGE에 의한 코어 네트워크와 단말을 연결하는 무선 접속 구간을 말한다.
UTRAN: Universal Terrestrial Radio Access Network의 약자로서, 3세대 이동통신의 코어 네트워크와 단말을 연결하는 무선 접속 구간을 말한다.
E-UTRAN: Evolved Universal Terrestrial Radio Access Network의 약자로서, 4세대 이동통신, 즉 LTE의 코어 네트워크와 단말을 연결하는 무선 접속 구간을 말한다.
UMTS: Universal Mobile Telecommunication System의 약자로서 3세대 이동통신의 코어 네트워크를 의미한다.
UE/MS: User Equipment/Mobile Station, 단말 장치를 의미 함.
EPS: Evolved Packet System의 약자로서, LTE(Long Term Evolution) 네트워크를 지원하는 코어 네트워크를 의미한다. UMTS가 진화된 형태의 네트워크
PDN (Public Data Network): 서비스를 제공하는 서버가 위치한 독립적인망
PDN connection: 단말에서 PDN으로의 연결, 즉, ip 주소로 표현되는 단말과 APN으로 표현되는 PDN과의 연관(연결)
PDN-GW (Packet Data Network Gateway): UE IP address allocation, Packet screening & filtering, Charging data collection 기능을 수행하는 EPS망의 네트워크 노드
Serving GW(Serving Gateway): 이동성 담당(Mobility anchor), 패킷 라우팅(Packet routing), 유휴 모드 패킷 버퍼링(Idle mode packet buffering), Triggering MME to page UE 기능을 수행하는 EPS망의 네트워크 노드
PCRF(Policy and Charging Rule Function): 서비스 flow 별로 차별화된 QoS 및 과금 정책을 동적(dynamic)으로 적용하기 위한 정책 결정(Policy decision)을 수행하는 EPS망의 노드
APN (Access Point Name): 네트워크에서 관리하는 접속 포인트의 이름으로서 UE에게 제공된다. (예) internet.mnc012.mcc345.gprs
TEID(Tunnel Endpoint Identifier): 네트워크 내 노드들 간에 설정된 터널의 End point ID, 각 UE의 bearer 단위로 구간별로 설정된다.
NodeB: UMTS 네트워크의 기지국으로 옥외에 설치되며, 셀 커버리지 규모는 매크로 셀에 해당한다.
eNodeB: EPS(Evolved Packet System) 의 기지국으로 옥외에 설치되며, 셀 커버리지 규모는 매크로 셀에 해당한다.
(e)NodeB: NodeB와 eNodeB를 지칭하는 용어이다.
MME: Mobility Management Entity의 약자로서, UE에 대한 세션과 이동성을 제공하기 위해 EPS 내에서 각 엔티티를 제어하는 역할을 한다.
세션(Session): 세션은 데이터 전송을 위한 통로로써 그 단위는 PDN, Bearer, IP flow 단위 등이 될 수 있다. 각 단위의 차이는 3GPP에서 정의한 것처럼 대상 네트워크 전체 단위(APN 또는 PDN 단위), 그 내에서 QoS로 구분하는 단위(Bearer 단위), 목적지 IP 주소 단위로 구분할 수 있다.
PDN 커넥션(connection): 단말에서 PDN으로의 연결, 즉, ip 주소로 표현되는 단말과 APN으로 표현되는 PDN과의 연관(연결)을 나타낸다. 이는 세션이 형성될 수 있도록 코어 네트워크 내의 엔티티간 연결(단말-PDN GW)을 의미한다.
UE Context: 네크워크에서 UE를 관리하기 위해 사용되는 UE의 상황 정보, 즉, UE id, 이동성(현재 위치 등), 세션의 속성(QoS, 우선순위 등)으로 구성된 상황 정보
NAS (Non-Access-Stratum): UE와 MME간의 제어 플레인(control plane)의 상위 stratum. UE와 네트워크간의 이동성 관리(Mobility management)와 세션 관리 (Session management), IP 주소 관리 (IP address maintenance) 등을 지원
RAT: Radio Access Technology의 약자로서, GERAN, UTRAN, E-UTRAN 등을 의미한다.
로컬 운영 환경 정보(Local Operating Environment Information): This is a set of implementation specific parameters which describe the local environment in which the UE is operating.
존재 보고 영역(Presence Reporting Area): 정책 제어 및/또는 과금 이유 등으로 인하여 3GPP 패킷 도메인 내에서의 UE의 존재를 보고하기 위한 목적으로 정의되는 영역이다. E-UTRAN의 경우에, 존재 보고 영역은 이웃하는 혹은 이웃하지 않는 트래킹 영역 또는 eNodeB 및/또는 셀들의 집합으로 이루어진다. 존재 보고 영역은 2가지 타입이 존재하는데, 하나는 UE-전용(UE-dedicated) 존재 보고 영역이고, 다른 하나는 핵심 네트워크가 미리 설정한 존재 보고 영역이다.
ANDSF (Access Network Discovery and Selection Function): 하나의 네트워크 entity로써 사업자 단위로 단말이 사용가능한 access 를 발견하고 선택하도록 하는 Policy를 제공
ISRP(Inter-System Routing Policy): UE가 여러 무선 액세스 인터페이스들 중 어느 것으로 IP 트래픽을 라우팅해야 하는지를 사업자(operator)가 정의한 규칙이다. 이러한, ISRP는 패킷 서비스(또는 IP flow 또는 IP 트래픽 또는 애플리케이션)를 라우팅/조정(steering) 하기 위해 선호되는 (즉, 우선순위가 높은) 또는 제한되는 액세스 네트워크를 정의한 정책으로 다음과 같이 3 종류의 규칙을 포함할 수 있다. 즉, ISRP는 다음과 같이 IFOM(IP Flow Mobility) 규칙, MAPCON(Multi Access PDN Connectivity) 규칙 그리고 NSWO(Non-seamless WLAN offload) 규칙으로 구분될 수 있다.
- IFOM(IP Flow Mobility) 규칙: 이 규칙은 특정 APN 또는 임의 APN 상에서 특정 IP 트래픽 필터와 매칭되는 트래픽을 라우팅할 수 있을 때, UE에 의해서 사용되어야 하는 액세스 테크놀로지/액세스 네트워크들을 우선순위에 따라 정리한 리스트이다. 또한, 이 규칙은 특정 APN 또는 임의 APN 상에서 특정 IP 트래픽 필터와 매칭되는 트래픽이 어느 무선 액세스에 대해서 제한되는지를 지정할 수 있다.
- MAPCON(Multi Access PDN Connectivity) 규칙: 이 규칙은 특정 APN에 대한 PDN 커넥션을 라우팅할 수 있을때, UE에 의해서 사용되어야 하는 액세스 테크놀로지/액세스 네트워크들을 우선순위에 따라 정리한 리스트이다. 또한, 이 규칙은 특정 APN으로의 PDN 커넥션을 어느 무선 액세스에 대해서 제한해야 할지를 지정할 수 있다.
- NSWO(Non-seamless WLAN offload) 규칙: 이 규칙은 어느 트래픽이 non-seamless하게 WLAN으로 우회되어야 할지 우회되지 말아야 할지를 지정한다.
ISMP(Inter-System Mobility Policy): UE에 의해서 수행되는 시스템 간 이동성 결정에 영향을 미치도록 사업자가 정의한 규칙의 집합이다. UE가 단독의 무선 액세스 인터페이스 상에서 IP 트래픽을 라우팅할 수 있을 때, UE는 가장 적합한 액세스 테크놀로지 타입 또는 액세스 네트워크를 주어진 시간에 선택하기 위해서, ISMP를 사용할 수 있다.
RAN 규칙(rule): 네트워크로부터 수신된 RAN(Radio Access Network) 지원 파라미터(Assistance Parameters)를 가지고 UE에 프로그램되어 있는 RAN 규칙을 평가한다. RAN 규칙은 ANDSF ISRP/ISMP 없이 사용되는 RAN이 지원하는 WLAN 인터워킹으로도 일컬어진다. 트래픽을 WLAN으로 이동시키기 위한 RAN 규칙이 충족되었을 때, UE의 AS(Access Stratum) 계층은 move-traffic-to-WLAN 인디케이션을 UE의 상위 계층으로 전달한다. 이 경우 UE는 WLAN을 선택하여 모든 offloadable PDN connection을 WLAN으로 이동시킨다. 또는, 트래픽을 3GPP 액세스로 이동시키기 위한 RAN 규칙이 충족되었을 때, UE의 AS(Access Stratum) 계층은 move-traffic-from-WLAN 인디케이션을 UE의 상위 계층으로 전달한다. 이 경우 UE는 WLAN 상의 모든 PDN connection을 3GPP로 이동시킨다. RAN 규칙에 대한 상세한 설명은 3GPP TS 23.401, TS 23.060, TS 23.402, TS 36.300, TS 36.304, TS 36.331, TS 25.304 그리고 TS 25.331를 참조하여 알 수 있다.
다중 액세스(Multi-access) PDN 커넥션: 트래픽이 3GPP 액세스 및/또는 WLAN 액세스를 통해 라우팅될 수 있는 PDN 커넥션. 각 IP 플로우는 한 순간에 하나의 액세스를 통해서만 라우팅된다.
<RAN 지원 파라미터>
최근에는, ANDSF에 의해 제공되는 정책과 별개로, WLAN으로의 우회를 결정하기 위한 정책을 이동통신 사업자 중심으로 정하려는 움직임이 있다. 이러한 움직임 하에 최근에 RAN 지원 파라미터가 제안되었다.
도 9a는 ANDSF 정책 외에 새롭게 정의된 RAN 지원 파라미터(RAN 규칙)이 UE에게 제공되는 예를 나타낸다.
도 9a에 도시된 바와 같이 ANDSF(600)가 정책 정보를 UE(100)에게 제공할 수도 있지만, E-UTRAN(또는 UTRAN)의 기지국(200)이 새롭게 정의된 RAN(Radio Access Network) 지원 파라미터를 UE(100)에게 제공할 수도 있다.
상기 RAN 지원 파라미터는 RRC 시그널링을 통해 전달될 수 있다. 상기 RAN 지원 파라미터는 E-UTRAN 신호 세기 및 품질에 대한 임계값, WLAN 채널 이용율에 대한 임계값, WLAN 백홀 데이터 전송율에 대한 임계값, WLAN 식별자의 리스트, OPI(Offload Preference Indicator)를 포함할 수 있다.
보다 구체적으로, 상기 RAN 지원 정보는 다음과 같은 임계값 및 파라미터를 포함할 수 있다.
- 3GPP 액세스 임계값
- WLAN 액세스 임계값
- OPI(Offload Preference Indication) 값
상기 3GPP 액세스 임계값은 일부 UTRA 및/또는 E-UTRA 무선 파라미터, 예컨대 E-UTRA에 대한 하한(low)/상한(high) RSRP (Reference Signal Received Power) 임계값, UTRA에 대한 하한(low)/상한(high) CPICH (Common Pilot Channel) Ec/No 임계값을 정의한다. WLAN 액세스 임계값은 일부 WLAN 액세스 파라미터에 대한 하한(low)/상한(high), 예컨대, 하한(low)/상한(high) 비콘(Beacon) RSSI 임계값, 하한(low)/상한(high) UL/DL 백홀 데이터 레이트 임계값, 그리고 하한(low)/상한(high) 채널 이용률(utilization) 임계값을 정의한다. 상기 UL/DL 백홀 데이터 레이트는 hotspot 2.0에서 정의된다. 채널 이용률 및 비콘 RSSI (Received Signal Strength Indicator)는 IEEE 802.11에서 정의된다.
RAN에 의해서 제공되는 OPI 값은 비트맵 형식(즉, 1차 비트 배열)로서 UE가 특정 트래픽(예컨대, 특정 IP flow)를 WLAN 액세스 또는 3GPP 액세스로 언제 이동시킬지를 결정할 수 있도록 한다.
다시 도면을 참조하면, 상기 UE는 이러한 RAN 지원 파라미터를 3GPP 액세스와 WLAN 액세스 간에 액세스 네트워크 선택 및 트래픽의 라우팅을 위해서 사용할 수 있다.
상기 트래픽의 라우팅을 위해서, MME는 어느 PDN 커넥션이 WALN으로 우회될 수 있는지를 나타내는 정보 그리고 어느 PDN 커넥션이 WLAN으로 우회될 수 없는지를 나타내는 정보를 UE에게 전달할 수 있다. MME는 이러한 정보를 PDN 커넥션 별로 제공할 수 있다. 구체적으로 MME는 PDN 커넥션이 수립될 때, 이러한 정보를 전달할 수 있다.
한편, 사업자가 WLAN 우회(offloading)을 사용자 별로 혹은 APN 별로 허용하거나, 금지할 수 있도록 하기 위해, HSS (Home Subscriber Server)내의 가입자 정보는 특정 PDN에 대해서 WLAN 우회가 허용되는지 혹은 금지되는지에 대한 인디케이션을 포함할 수 있다.
MME는 UE 및 PDN 커넥션에 대한 WLAN으로의 우회를 허가할지 말지를 아래와 같이 결정할 수 있다.
- MME는 가입자 정보 및 내부 설정된 정책에 기초하여 PDN 커넥션에 대한 우회가능성(offloadability)을 결정한다.
- UE가 새로운 PDN 케넥션을 수립할 때, MME는 이 PDN 커넥션을 WLAN으로 우회할 수 있는지 아닌지를 지시할 수 있다.
- MME는 PDN 커넥션에 대한 WLAN 우회가능성의 갱신 인디케이션을 UE에게 제공할 수 있다. 이는, HSS의 가입자 데이터 추가 절차(Insert Subscriber Data procedure)를 통해서 개시될 수 있다. 또한, 이는 베어러 수정 절차(Bearer Modification Procedure)를 통해 개시될 수도 있다.
UE는 3GPP 액세스와 WLAN 액세스 간의 트래픽 오프로딩/핸드오버를 수행할 때, MME로부터 제공된 WLAN 우회가능성 정보를 고려할 수 있다.
UE가 PDN 커넥션에 대한 WLAN 우회 가능성 인디케이션을 수신하는 경우, 상기 UE는 상기 인디케이션을 상기 PDN 커넥션이 유지되는 동안에 저장하고, 새로운 인디케이션을 수신하는 경우에는 갱신을 수행한다.
한편, PDN 커녁션을 WLAN으로 우회시킬 수 있는지 아닌지에 대한 인디케이션은 이동성 관리 절차 동안에 소스 MME (Source MME)로부터 타겟 MME (Target MME)로 전달된다. 이는 타겟 MME가 이전에 UE에게 제공되었던 인디케이션으로부터 학습할 수 있게 하고 그를 통해 갱신된 인디케이션을 UE에게 제공할 수 있도록 한다.
도 9b는 도 9a에 도시된 RAN 지원 파라미터(RAN 규칙)를 UE에게 제공하는 절차를 상세하게 나타낸 예시도이다 .
도 9b를 참조하여 알 수 있는 바와 같이, HSS(540)은 아래 표 2와 같은 WLAN 우회 가능성을 MME(510)으로 전달할 수 있다. 상기 WLAN 우회 가능성은 도 9b에 도시된 PDN 가입자 컨텍스트를 통해 전달될 수도 있지만, 위치 갱신 절차 동안에 MME로 전달할 수도 있다.
WLAN offloadability 이 APN과 연계된 트래픽이 WLAN으로 우회될 수 있는지 혹은 3GPP 액세스 상에서 유지되어야 하는지를 나타냄
그러면, 상기 MME(510)는 상기 HSS로부터 전달된 상기 WLAN 우회가능성에 기초하여, PDN 커넥션에 대한 우회여부를 결정한다.
그리고 상기 MME(510)는 PDN 연결 절차 혹은 수정 절차 동안에, WLAN 우회가능성(WLAN offloadability) 인디케이션을 UE(100)에게 전달할 수 있다.
한편, 상기 기지국(200)은 주변 WLAN AP에 대한 관련 정보를 수집하고, 그에 따라 RAN 지원 파라미터(RAN 규칙)을 시스템 정보 블록(SIB)를 통해 혹은 RRC 시그널을 통해 UE(100)의 AS 계층(즉, RRC 계층)에게 전달할 수 있다.
상기 RAN 지원 파라미터(RAN 규칙)는 상기 UE가 RRC 연결 모드일 때에는 RRC Connection Reconfiguration 메시지의 WLAN-OffloadConfig 파라미터(예컨대, wlan-OffloadConfigCommon 파라미터 또는 wlan-OffloadConfigDedicated 파라미터) 내에 포함되어 네트워크(기지국)으로부터 수신된다. 상기 UE가 RRC IDLE 모드일때에는, 상기 RAN 지원 파라미터(RAN 규칙)는 시스템 정보 블록, 예컨대 SIB17의 WLAN-OffloadConfig 파라미터에 포함되어 네트워크 (기지국)으로부터 수신된다.
다른 한편, RRC Connection Reconfiguration 메시지는 다음과 같이 WLAN-OffloadConfig를 포함할 수 있다.
RRCConnectionReconfiguration-v1250-IEs ::= SEQUENCE { wlan-OffloadInfo-r12 CHOICE { release NULL, setup SEQUENCE { wlan-OffloadConfigDedicated-r12 WLAN-OffloadConfig-r12,
또한, 시스템 정보 블록, 예컨대 SIB type 17은 다음과 같이 WLAN-OffloadConfig를 포함할 수 있다.
-- ASN1STARTWLAN-OffloadInfoPerPLMN-r12 ::= SEQUENCE { wlan-OffloadConfigCommon-r12 WLAN-OffloadConfig-r12 OPTIONAL, -- Need OR wlan-Id-List-r12 WLAN-Id-List-r12 OPTIONAL, -- Need OR ...
상기 WLAN-OffloadConfig는 다음과 같은 정보를 포함할 수 있다.
WLAN-OffloadConfig 필드 설명
offloadPreferenceIndicator우회 선호도 인디케이터로서, ANDSF 규칙에 기초한 RAN 지원 WLAN 인터워킹에 적용된다.
thresholdBackhaulDLBandwidth-HighWLAN으로의 트래픽 조정을 위해 UE에 의해서 사용되는 하향링크 대역폭 상한 임계값
thresholdBackhaulDLBandwidth-LowE-UTRAN으로의 트래픽 조정을 위해 UE에 의해서 사용되는 하향링크 대역폭 하한 임계값
thresholdBackhaulULBandwidth-HighWLAN으로의 트래픽 조정을 위해 UE에 의해서 사용되는 상향링크 대역폭 상한 임계값
thresholdBackhaulULBandwidth-LowE-UTRAN으로의 트래픽 조정을 위해 UE에 의해서 사용되는 상향링크 대역폭 하한 임계값
thresholdBeaconRSSI-HighWLAN으로의 트래픽 조정을 위해 UE에 의해서 사용되는 비컨(Beacon) RSSI 상한 임계값
thresholdBeaconRSSI-LowE-UTRAN으로의 트래픽 조정을 위해 UE에 의해서 사용되는 비컨(Beacon) RSSI 하한 임계값
thresholdChannelUtilization-HighE-UTRAN으로의 트래픽 조정을 위해 UE에 의해서 사용되는 WLAN 채널 상한 이용율(부하)
thresholdChannelUtilization-LowE-UTRAN으로의 트래픽 조정을 위해 UE에 의해서 사용되는 WLAN 채널 하한 이용율(부하)
thresholdRSRP -HighE-UTRAN으로의 트래픽 조정을 위해 UE에 의해서 사용되는 RSRP 상한 임계값
thresholdRSRP -LowE-UTRAN으로의 트래픽 조정을 위해 UE에 의해서 사용되는 RSRP 하한 임계값
t- SteeringWLANE-UTRAN가 WLAN 사이의 트래픽 조정을 시작하기 전에 규칙이 충족되어야 하는 시간 구간을 나타내는 타이머 값
다시 본론으로 돌아가, 상기 UE의 AS 계층(즉, RRC 계층)은 상기 수신한 RAN 지원 파라미터(RAN 규칙)을 평가하여, non-3GPP 액세스(예컨대, WLAN)으로의 우회(offloading)를 나타내는 인디케이션(즉, move-traffic-to WLAN 인디케이션) 또는 3GPP 액세스(예컨대, E-UTRAN/UTRAN)로의 이동을 나타내는 인디케이션(즉, move-traffic-from WLAN 인디케이션)을 상위 계층(즉, NAS 계층)에게 제공한다.
여기서, 상기 UE의 AS 계층이 non-3GPP 액세스(예컨대, WLAN)으로의 우회(offloading)를 나타내는 인디케이션(즉, move-traffic-to WLAN 인디케이션)을 상위 계층(즉, NAS 계층)에게 제공하는 것은 다음의 2가지 조건이 소정 시간 동안(예컨대, TsteeringWLAN) 충족된 경우이다.
1. 3GPP 액세스의 서빙 셀 (Serving Cell)에 대한 조건
RSRPmeas < ThreshServingOffloadWLAN , LowP ; 또는
RSRQmeas < ThreshServingOffloadWLAN , LowQ ;
2. WLAN에 대한 조건
ChannelUtilizationWLAN < ThreshChUtilWLAN , Low; and
BackhaulRateDlWLAN > ThreshBackhRateDLWLAN , High; and
BackhaulRateUlWLAN > ThreshBackhRateULWLAN , High; and
BeaconRSSI > ThreshBeaconRSSIWLAN , High;
한편, 상기 UE의 AS 계층이 3GPP 액세스(예컨대, E-UTRAN/UTRAN)로의 이동을 나타내는 인디케이션(즉, move-traffic-from WLAN 인디케이션)을 상위 계층(즉, NAS 계층)에게 제공하는 것은 다음의 2가지 조건이 소정 시간 동안(예컨대, TsteeringWLAN) 충족된 경우이다.
1. WLAN에 대한 조건
ChannelUtilizationWLAN > ThreshChUtilWLAN , High; 또는
BackhaulRateDlWLAN < ThreshBackhRateDLWLAN , Low; 또는
BackhaulRateUlWLAN < ThreshBackhRateULWLAN , Low; 또는
BeaconRSSI < ThreshBeaconRSSIWLAN , Low;
2. 3GPP 액세스의 타겟 셀에 대한 조건
RSRPmeas > ThreshServingOffloadWLAN , HighP ; 그리고
RSRQmeas > ThreshServingOffloadWLAN , HighQ ;
다시 본론으로 달아가, 만약 UE(100)의 NAS 계층이 상기 AS 계층으로부터 전달받은 인디케이션이 non-3GPP 액세스(예컨대, WLAN)으로의 우회(offloading)를 나타내는 인디케이션(즉, move-traffic-to WLAN 인디케이션)인 경우, 상기 UE(100)의 NAS 계층은, 상기 WLAN 우회가능성 인디케이션에 의해 지시된 APN과 연관된 PDN 커넥션만을 WLAN으로 우회(offloading)시킨다.
< NBIFOM (Network Based IP Flow Mobility)>
한편, 네트워크 기반 프로토콜인 GTP 내지는 PMIP을 사용하는 S2a 및 S2b 인터페이스를 통하여 IFOM을 제공하는 기술을 NBIFOM(Network Based IP Flow Mobility)라고 한다. 이러한 NBIFOM은 UE가 3GPP 액세스 및 WLAN 액세스를 지원한다. 이와 같은 NBIFOM은 누가 먼저 트리거 하는지에 따라서 UE가 개시하는 NBIFOM(UE-initiated NBIFOM)과 네트워크가 개시하는 NBIFOM(Network-initiated NBIFOM)으로 구분될 수 있다.
UE가 개시하는 NBIFOM(UE-initiated NBIFOM): IP 플로우들과 액세스 링크들 간에 UE가 희망하는 매핑을 PGW에게 제공할 수 있음. 이 경우 네트워크는 UE의 IP 플로우 이동에 대해서 수락하거나 거절만 할 수 있고, 네트워크가 스스로 IP 플로우 이동을 개시할 수는 없음
네트워크가 개시하는 NBIFOM(Network-initiated NBIFOM): IP 플로우들과 액세스 링크들 간에 네트워크가 희망하는 매핑을 UE에게 제공할 수 있음. 이 경우 UE는 네트워크에 의한 IP 플로우 이동에 대해서 수락하거나 거절만 할 수 있고, UE가 스스로 IP 플로우 이동을 개시할 수는 없음
NBIFOM 기능은 UE와 네트워크가 모두 지원해야지만, 활성화된다. 따라서, NBIFOM 기능에 대한 탐지/협상 과정이 필요하다.
구체적으로 설명하면, 최초 PDN 커넥션 수립 절차 동안에 UE는 NBIFOM 기능 인디케이션을 네트워크로 전달한다. 네트워크도 NBIFOM 기능을 지원하는 경우, P-GW(530)은 NBIFOM 지원을 확정한다.
보다 구체적인 절차는 도면을 참조하여 설명하기로 한다.
도 10은 PDN 커넥션 수립 절차 동안에 NBIFOM 기능이 탐지/ 협상되는 예를 나타낸다.
도 10을 참조하여 알 수 있는 바와 같이, UE(100)는 PDN 커넥션 요청(PDN Connectivity Request) 메시지에 NBIFOM 기능 인디케이션을 포함시켜 전송한다.
상기 MME(510) 및 S-GW(520)는 각기 자신의 NBIFOM 기능 인디케이션을 포함하는 세션 생성 요청 메시지를 전송한다.
IP-CAN 세션 수립 동안에, 상기 P-GW(530)은 UE 및 P-GW의 NBIFOM 기능 인디케이션 및 RAT 타입을 포함하는 PCC 요청 메시지를 PCRF(600)에게 전달한다.
그러면, PCRF(600)는 자신의 NBIFOM 기능 인디케이션을 포함하는 PCC 응답 메시지를 상기 P-GW(530)로 전달한다.
그러면, 상기 P-GW(530)는 세션 생성 응답 메시지 내에 NBIFOM 기능 인디케이션을 포함시켜, MME(510)으로 전달한다. 그리고, MME(510)는 PDN 커넥션 수락 메시지를 UE(100)로 전달한다.
한편, 상기 NBIFOM을 위한 라우팅 규칙이 갱신되는 경우, PCRF(600)은 P-GW(530)을 거쳐 UE(100)로 전달할 수 있다. 이에 대해서 도면을 참조하여 설명하면 다음과 같다.
도 11은 NBIFOM을 위한 라우팅 규칙의 갱신을 전달하는 과정을 나타낸다.
도 11을 참조하여 알 수 있는 바와 같이, 네트워크가 NBIFOM을 개시하는지 아니면 UE가 NBIFOM을 개시하는지에 따라서, 갱신된 라우팅 규칙의 전달이 달라질 수 있다.
먼저, 네트워크가 개시하는 NBIFOM의 경우, PCRF(600)은 NBIFOM을 위한 라우팅 규칙의 갱신을 트리거링할 수 있고, 이와 같이 갱신된 라우팅 규칙을 세션 수정 절차 동안에 P-GW(530)에게 전달할 수 있다.
P-GW(530)은 라우팅 규칙을 S-GW(520) 및 MME(510)을 거쳐 UE(100)로 전달한다. 구체적으로, P-GW(530)이 PCRF(600)로부터 라우팅 규칙 갱신에 관한 정책을 수신하고, 대응하는 PDN 커녁션이 3GPP 및 WLAN 액세스 둘다로 라우팅되고 있는 경우, P-GW(530)은 3GPP 액세스 및 WLAN 액세스 상에서 상기 라우팅 규칙을 전달할 수 있다.
이 경우, 상기 UE(100)는 상기 갱신된 라우팅 규칙에 대해 수락/거절을 할 수 있다. 그리므로, 상기 P-GW(530)는 UE(100)가 확인하기 전까지는 이와 같이 갱신된 라우팅 규칙을 적용하지 않을 수 있다.
한편, UE가 개시하는 NBIFOM의 경우, UE(100)는 갱신된 라우팅 규칙을 P-GW(530)으로 전달한다. 구체적으로, 대응하는 PDN 커녁션이 3GPP 및 WLAN 액세스 둘다로 라우팅되고 있는 경우, UE(100)은 3GPP 액세스 및 WLAN 액세스 상에서 상기 라우팅 규칙을 전달할 수 있다.
<본 명세서에서 제시하는 문제 시나리오>
위에서 도 9b의 예시에서, MME(510)는 예컨대 PDN 커넥션 #1에 대해서 우회가 불가능하다고 결정하고, PDN 커넥션 #1을 WLAN으로 우회시키는 것이 불가능함을 나타내는 인디케이션 ( PDN 커넥션 #1: WLAN offloadability =No)을 상기 UE(100)로 전달한다고 가정하자 . 그러나, 도 10의 예시에서 NBIFOM 기능이 탐지/ 협상되는 동안에는 PDN 커넥션 #1을 IP 플로우 단위로 이동 가능한 것으로 결정되어, 서로 상충될 수 있다. 이에 대해서 도 12를 참조하여 보다 상세하게 설명하기로 한다.
도 12는 WLAN 우회가능성에 대한 인디케이션들이 상충되는 예를 나타낸다.
도 12를 참조하면, MME(510)는 HSS로부터 PDN 가입자 컨텍스트를 통해 가입자 정보를 수신한다. 상기 가입자 정보는 RAN 지원 파라미터(RAN 규칙)를 사용하는 인터워킹 솔루션에 사용할 수 있는 WLAN 우회 가능성 인디케이션을 포함한다.
그러면, 상기 MME(510)는 상기 WLAN 우회 가능성 인디케이션을 기초로, PDN 커넥션#1로 식별되는 PDN 커넥션을 WLAN으로 우회시킬지 여부를 결정한다. 이때, 상기 WLAN 우회 가능성 인디케이션에 따르면, PDN 커넥션#1로 식별되는 PDN 커넥션을 WLAN으로의 우회시키는 것은 가능하더라도, 상기 UE가 로밍중이라면, 상기 MME(510)는 로밍에 대한 정책으로 PDN 커넥션#1로 식별되는 PDN 커넥션을 WLAN으로의 우회시키지 않는 것으로 결정할 수 있다.
그러면, 상기 MME(510)는 PDN 수립 혹은 수정 절차 동안에 PDN 커넥션#1로 식별되는 PDN 커넥션을 WLAN으로 우회시키지 않을 것이라는 인디케이션(PDN 커넥션#1: WLAN offloadability=No)을 상기 UE(100)로 전달한다.
한편, PDN 커넥션 설정/수정 절차 중 NBIFOM 기능 탐지/협상 과정이 진행되며, UE 뿐만 아니라 네트워크 노드들의 NBIFOM 기능을 고려하여, 해당 PDN 커넥션#1이 NBIFOM을 통해 IP 플로우(flow) 단위로 이동될 수 있을지 여부를 협상한다. 도 12에서는 상기 PDN 커넥션#1이 IP 플로우 단위로 이동이 가능하다는 결과가 UE로 전달된다.
따라서 P-GW(530)는 PCRF의 트리거링 등에 의해 해당 PDN에 대한 IP 플로우 이동을 위한 라우팅 규칙을 UE에게 추가/갱신해 줄 것을 요청할 수 있다.
그러면, UE(100) 입장에서는 WLAN으로의 우회가 불가능하다는 인디케이션을 수신한 PDN 커넥션#1에 대해서, IP 플로우 이동을 수행해야 하는 상황이 발생한다.
즉, UE(100) 내에서 서로 다른 정책이 충돌하게 되며, UE(100)는 네트워크로부터의 라우팅 규칙 갱신 요청을 거절하게 될 가능성이 있다.
다수의 UE가 이러한 상황에 처하게 될 경우 전체 시스템에 불필요한 시그널링이 송수신되어, 자원 낭비가 발생하고, 네트워크 자원의 활용성이 저하된다.
도 13은 도 12에 예시된 문제점을 해결하기 위한 기존의 시도를 나타낸 예시도이다 .
도 13을 참조하면, 도 12에 도시된 문제점을 해결하기 위한 기존의 시도에 따르면, UE(100)는 네트워크에 의해 개시되는 라우팅 규칙의 갱신 요청에 대해 검사 및 평가를 수행하고, 충돌이 있다고 판단되면, 규칙의 충돌을 알리는 인디케이션을 포함하는 라우팅 규칙 갱신 거절 메시지를 전송할 수 있다.
이러한 시도를 도 12에 도시된 PDN 커넥션 수립 절차 과정에 적용하여 설명하면 다음과 같다. PDN 커넥션 수립 절차 동안에 NBIFOM의 기능 협상이 수행되었고, 그에 따라 NBIFOM을 위한 PDN 커넥션이 수립된다면, UE (100)는 WLAN 우회가능성(offloadability)에 관한 인디케이션을 수신할 있다. 이때, 해당 PDN 커넥션에 대해 WLAN으로의 우회가 불가능하다는 인디케이션 정보가 있었더라면, UE(100)는 규칙의 충돌을 야기하는 라우팅 규칙의 갱신 요청을 네트워크로부터 받게 되더라도(즉, 해당 PDN의 특정 IP 플로우에 대해 WLAN으로의 우회를 야기시키는 규칙), 규칙의 충돌을 알리는 인디케이션(예컨대, cause 필드의 값)을 포함하는 라우팅 규칙 갱신 거절 메시지를 전송할 수 있다.
한편 UE(100)이 개시하는 라우팅 규칙의 갱신의 경우에는, UE(100)가 스스로의 판단에 따라 규칙의 충돌을 야기하는 라우팅 규칙을 생성하지 않거나, 설사 충돌을 야기하는 라우팅 규칙이 생성되더라도, 이를 스스로 폐기(drop) 시킴으로써 네트워크로 요청하지 않는 것이 가능하다.
그러나 이러한 시도에 의하더라도 기존의 문제점이 완벽히 해결되지는 않았다. 이에 대해서, P-GW/PCRF가 UE로부터 규칙의 충돌을 알리는 인디케이션을 수신하였음에도 계속하여 라우팅 규칙의 갱신을 요청할 수 있는 경우와, P-GW/PCRF가 UE로부터 규칙의 충돌을 알리는 인디케이션을 수신한 뒤에는 추후 라우팅 규칙의 갱신을 요청할 수 없는 경우로 나누어 설명한다. 먼저, 첫 번째 경우에, UE(100)는 규칙의 충돌을 알리는 인디케이션을 포함하는 라우팅 규칙의 갱신 거절 메시지를 P-GW/PCRF로 전송하였지만, 상기 P-GW/PCRF는 계속하여 라우팅 규칭의 갱신을 시도할 수 있고, UE(100)는 라우팅 규칙의 갱신을 반복적으로 거절함으로써, 네트워크 자원이 낭비될 수 있다. 두 번째 경우에, MME는 WLAN 우회가능성에 대해 변경된 인디케이션을 UE(100)로 전송하더라도(즉, MME는 해당 PDN 커넥션에 대해 WLAN으로의 우회가 가능함으로 변경되었다는 인디케이션을 UE로 전송하더라도), P-GW/PCRF는 그 사실을 모르기 때문에, 여전히 규칙의 충돌이 존재하는 상황으로 인지하여 라우팅 규칙의 갱신을 시도할 수 없을 수 있다.
이러한 이유로 인하여, 기존에 시도에 의해서도, 문제점이 해결되지 않았다.
<본 명세서의 개시>
따라서, 본 명세서의 개시는 WLAN 우회가능성에 대한 인디케이션에 따라서, UE가 해당 PDN 커넥션에 대한 NBIFOM 기능을 융통성이 있게 일시중지(suspension) 혹은 재개(resumption)할 수 있도록 하는 방안을 제시한다.
구체적으로, 본 명세서의 개시에 대한 제1 설명에 따르면, UE는 WLAN 우회가능성에 대한 인디케이션 정보를 받은 후, NBIFOM 기능의 일시 중지(suspension) 혹은 재개(resumption)해야 할지를 판단하고, 상기 판단에 따라 일시 중지 혹은 재개를 네트워크로 알리거나 요청할 수 있다.
또한, 본 명세서의 개시에 대한 제2 설명에 따르면 MME는 PDN 커넥션에 대한 우회가능성을 결정한 후, 상기 결정된 우회가능성에 대한 인디케이션을 상기 UE 뿐만 아니라 다른 네트워크 노드(예컨대, P-GW, S-GW, PCRF, 등)에게도 전달할 수 있다. 기존에는 상기 MME는 상기 결정된 우회가능성에 대한 인디케이션을 NAS 메시지(예컨대, PDN Connectivity Accept)를 통해 UE에만 전달하였던 것을 개선한 것이다.
한편, 본 명세서의 개시에 대한 제3 설명에 따르면, MME가 PDN 커넥션에 대한 우회여부를 결정하는 과정에서 NBIFOM과의 충돌이 존재하는지 판단하고, 충돌이 존재하면 NBIFOM의 일시 중지를 결정하고, 총돌이 해소되면 NBIFOM의 재개를 결정할 수 있다.
이하, 본 명세서의 개시에 대한 각 설명에 대해서 구체적으로 다루기로 한다.
I. 본 명세서의 개시에 대한 제1 설명
UE는 WLAN 우회가능성에 대한 인디케이션 정보를 획득하면, 해당 PDN 커넥션을 WLAN으로 우회시킬 수 있는지를 판단할 수 있다. 또한, UE는 NBIFOM 협상 결과에 따라 해당 PDN 커넥션이 NBIFOM으로 설정되어 있는지 알 수 있다. 이러한 정보를 바탕으로, 해당 PDN 커넥션이 NBIFOM으로 설정된 상태이지만, WLAN으로 우회시키기가 불가능한 상태라면, UE는 네트워크(예를 들어, P-GW/PCRF)로 NBIFOM의 일시 중지(suspension)을 알리는/요청하는 정보 혹은 메시지를 전송한다.
한편, UE는 해당 PDN 커넥션에 대해 변경된 WLAN 우회가능성(WLAN offloadability) 인디케이션을 수신할 수 있다. 예를 들어, 가입자 정보가 변경되어 WLAN 우회가능성(WLAN offloadability) 인디케이션이 NO에서 YES를 바뀐 경우, 또는 변경된 정책에 따라 MME가 WLAN 우회가능성(WLAN offloadability) 인디케이션을 NO에서 YES로 변경한 경우, 또는 UE가 RAT을 변경하여(예컨대, E-UTRAN과 UTRAN 사이의 변경), 현재 RAT에서의 WLAN 우회가능성(WLAN offloadability) 인디케이션이 NO에서 YES로 변경된 경우가 있을 수 있다. 이와 같이, WLAN 우회가능성(WLAN offloadability) 인디케이션이 NO에서 YES로 변경되면, UE는 규칙의 충돌이 해소되었음을 판단할 수 있고, NBIFOM 기능의 재개를 결정할 수 있다. 그러면, UE는 NBIFOM의 재개(resumption)을 알리는/요청하는 정보 혹은 메시지를 네트워크로 (예를 들어 P-GW/PCRF)로 전송할 수 있다.
전술한 일시 중지(suspension) 또는 재개(resumption)을 알리는/요청하는 정보는 NAS 메시지, WLCP 프로토콜의 메시지, GTP 프로토콜의 메시지 등에 포함되어 전달 될 수도 있다. 또는, NBIFOM 기능(capability) 교환/협상 혹은 라우팅 규칙 정보 교환, 액세스 단절(access loss)에 대한 인디케이션을 전달하기 위해 만들어진 NBIFOM 관련 메시지에 포함되어 전송될 수 있다. 혹은 새로이 정의된 메시지에 포함되어 전송될 수 있다. 대안적으로, 전술한 일시 중지(suspension) 또는 재개(resumption)을 알리기 위해/요청하기 위해 새로운 메시지가 새로이 정의되고, 상기 메시지가 전송될 수도 있다. 뿐만 아니라 MME/S-GW/SGSN/TWAN/ePDG 등 다른 네트워크 노드 및 해당 인터페이스 상의 프로토콜을 경유하여 전달될 수 있다.
추가적으로 UE가 해당 PDN 커넥션에 대해 변경된 WLAN 우회가능성(WLAN offloadability) 인디케이션을 수신하지 않았더라도, 이전에 수신 저장해 두었던 정보를 기반으로 해당 PDN 커넥션에 대해 NBIFOM의 일시 중지(suspension) 또는 재개(resumption)를 요청/지시할 수 있다. 예를 들어 WLAN 우회가능성에 대한 인디케이션은 액세스 네트워크 별로 UE로 전달되는데, 이때 WLAN 우회가능성에 대한 인디케이션들이 액세스 네트워크 마다 서로 다른 경우(예컨대, E-UTRAN에 대해서는 WLAN 우회가능성 인디케이션이 NO이고, UTRAN에 대해서는 WLAN 우회가능성 인디케이션이 YES인 경우), 상기 UE는 이들을 저장하고 있다가, E-UTRAN 접속시에는 NBIFOM의 일시 중지(suspension)을 요청하였다가, U-TRAN에 접속하면서 NBIFOM 의 재개를 요청할 수 있다.
한편, 상기 UE가 네트워크로 전송하는 NBIFOM의 일시 중지(suspension) 혹은 재개(resumption)를 알리는/요청하는 정보/메시지는 해당 PDN에 대해 NBIFOM 기능을 (일시적으로) 활성/비활성시키기 위해 직접적으로 요청하는 정보/메시지일 수 있다. 대안적으로, 상기 정보/메시지는 네트워크가 NBIFOM 기능을 (일시적으로) 활성/비활성화하도록 유도하기 위한 함축적인 정보/메시지가 될 수 도 있다. 함축적인 정보가 전달되는 예를 설명하면, UE는 WLAN 우회가능성에 대한 인디케이션을 그대로 네트워크로 전달할 수 있고, 그에 따라 네트워크는 NBIFOM의 기능이 가능/불가능한 상황임을 간접적으로 판단할 수 있다.
본 명세서의 개시에 대한 제1 설명에 대해서 도 14 및 도 15를 참조하여 설명하기로 한다.
도 14a는 본 명세서의 개시에 대한 제1 설명을 예시적으로 나타낸 신호 흐름도이다. 도 14b는 도 14a에 도시된 제1 설명에 대한 변형예을 예시적으로 나타낸 신호 흐름도이다.
도 14a 및 도 14b를 참조하면, UE(100)의 NAS 계층은 APN#1을 이용하는 PDN 커넥션#1을 생성하기 위해 PDN 연결 요청(PDN Connectivity Request) 메시지를 단독으로 전송하거나 혹은 상기 PDN 연결 요청 메시지를 포함하는 어태치 요청(Attach Request) 메시지를 MME(510)으로 전송한다. 상기 PDN 연결 요청 메시지 내에는 상기 UE(100) 자신의 NBIFOM 기능 지원 여부에 대한 인디케이션(예컨대, NBIFOM capability)가 포함된다.
상기 PDN 연결 요청 메시지를 수신하면, 상기 MME(510)은 세션 생성 요청(예컨대, Create Session Request) 메시지를 S-GW(520)로 전송한다. 상기 세션 생성 요청 메시지 내에는 상기 MME(510) 자신의 NBIFOM 기능 지원 여부에 대한 인디케이션(예컨대, NBIFOM capability)가 포함된다. 상기 S-GW(520)은 상기 세션 생성 요청 메시지를 P-GW(530)로 전달한다. 이때, 상기 세션 생성 요청 메시지 내에는 상기 S-GW(520)의 NBIFOM 기능 지원 여부에 대한 인디케이션(예컨대, NBIFOM capability)가 포함된다.
상기 P-GW(530)은 IP-CAN 세션을 수립하는 동안에, UE 및 P-GW의 NBIFOM 기능 인디케이션 및 RAT 타입을 포함하는 PCC 요청 메시지를 PCRF(600)에게 전달한다.
그러면, PCRF(600)는 자신의 NBIFOM 기능 인디케이션을 포함하는 PCC 응답 메시지를 상기 P-GW(530)로 전달한다.
그러면, 상기 P-GW(530)는 세션 생성 응답(예컨대, Create Session Response) 메시지 내에 NBIFOM 기능 인디케이션을 포함시켜, S-GW(520)로 전달한다. 상기 S-GW(520)은 상기 세션 생성 응답 메시지를 MME(510)로 전달한다.
한편, 상기 PDN 커넥션 생성 요청 절차에 따라 MME(510)는 HSS(540)과 인터렉션(interaction)을 수행하고, 상기 HSS(540)으로부터 PDN 가입자 컨텍스트를 통해 가입자 정보를 수신한다. 상기 가입자 정보는 RAN 지원 파라미터(RAN 규칙)를 사용하는 인터워킹 솔루션에 사용할 수 있는 WLAN 우회 가능성 인디케이션을 포함한다.
상기 MME(510)는 상기 HSS(540)로부터 획득한 WLAN 우회 가능성 인디케이션을 기초로, APN#1을 사용하는 PDN 커넥션#1을 WLAN으로 우회시킬지 여부를 결정한다.
그리고, 상기 MME(510)는 상기 결정에 따라 WLAN 우회 가능성 인디케이션과 NBIFOM 기능 인디케이션을 포함하는 PDN 연결 수락(예컨대, PDN connectivity accept) 메시지를 상기 UE(100)로 전달한다. 여기서 도 14의 예시에서 상기 PDN 연결 수락 메시지 내에 포함되는 WLAN 우회 가능성 인디케이션은 상기 APN#1을 이용하는 상기 PDN 커넥션#1을 WLAN으로 우회시키지 않음(WLAN offloadability=No for APN#1)을 나타낸다
상기 UE(100)는 상기 PDN 연결 수락 메시지 내에 포함되어 있는 WLAN 우회 가능성 인디케이션과 NBIFOM 기능 인디케이션을 각기 확인하고, 서로 간에 충돌이 있는지 판단한다. 만약 충돌이 존재한다고 판단되는 경우, 상기 UE(100)는 NBIFOM을 일시 중지(suspension) 시킬지를 결정한다.
상기 일시 중지시키기로 결정한 경우, 상기 UE(100)는 P-GW(530)로 NBIFOM의 일시 중지(suspension)을 알리는/요청하는 정보 혹은 메시지(예컨대, Message for suspension of NBIFOM)를 전송한다. 이에 따라, 상기 PCRF(550)/P-GW(530)에 의한 네트워크 개시 NBIFOM 라우팅 규칙의 갱신(즉, 충돌을 재차 야기하는 라우팅 규칙의 갱신)이 수행되지 않을 수 있다. 또한, 상기 UE(100)가 개시하는 라우팅 규칙의 갱신(즉, 충돌을 재차 야기하는 라우팅 규칙의 갱신)이 수행되지 않을 수 있다.
한편, 상기 UE(100)의 NAS 계층은 APN#1을 이용하는 PDN 커넥션#2를 수립하기 위해서, PDN 연결 요청 절차를 수행한다. 상기 PDN 연결 요청 절차 동안에, 상기 UE(100)의 NAS 계층은 APN#1을 이용하는 PDN 커넥션#2에 대한 PDN 연결 수락 메시지를 수신한다. 여기서, 상기 PDN 연결 수락 메시지는 NBIFOM 기능 인디케이션과 그리고 APN#1에 대해 WLAN으로의 우회가 가능함으로 변경되었음을 알리는 인디케이션(예컨대, WLAN offloadability = Yes for APN#1)를 포함한다.
상기 UE(100)는 상기 PDN 연결 수락 메시지 내에 포함되어 있는 WLAN 우회 가능성 인디케이션과 NBIFOM 기능 인디케이션을 각기 확인하고, 서로 간에 충돌이 있는지 판단한다. 만약 충돌이 해소되었다고 판단되는 경우, 상기 UE(100)는 NBIFOM을 재개(resumption) 할지를 결정한다. 한편, 도 14b에 도시된 바와 같이 네트워크에서는 APN#1을 이용하는 PDN 커넥션#1의 베어러 갱신 절차를 수행할 수 있으며, 이때 MME는 상기 UE (100)로 전달 되는 메시지에 WLAN으로의 우회가 가능함으로 변경되었음을 알리는 인디케이션(예컨대, WLAN offloadability = Yes for APN#1)을 포함할 수 있다. 상기 UE(100)는 상기 PDN 연결 수락 메시지 내에 포함되어 있는 WLAN 우회 가능성 인디케이션과 NBIFOM 기능 인디케이션을 각기 확인하고, 서로 간에 충돌이 있는지 판단한다. 만약 충돌이 해소되었다고 판단되는 경우, 상기 UE(100)는 NBIFOM을 재개(resumption) 할지를 결정한다. 상기 재개의 결정에 대한 구체적인 과정은 도 15를 참조하여 후술하기로 한다.
상기 재개하기로 결정한 경우, 도 14a 및 도 14b에 도시된 바와 같이 상기 UE(100)는 도시된 여러 옵션 중 하나를 통하여 P-GW(530)로 NBIFOM의 재개(resumption)를 알릴 수 있다.
도시된 옵션1에 따르면, 상기 UE(100)는 P-GW(530)로 NBIFOM의 재개(resumption)를 알리는/요청하는 정보 혹은 메시지(예컨대, Message for resumption of NBIFOM)를 전송한다.
대안적으로, 상기 UE(100)는 함축적인 방법으로 P-GW(530)로 NBIFOM의 재개(resumption)를 알릴 수 있다.
예를 들어, 도시된 옵션2와 같이 상기 UE(100)는 NBIFOM 라우팅 규칙의 갱신을 요청함으로써, P-GW(530)로 NBIFOM의 재개(resumption)를 알릴 수 있다. 즉, UE(100)가 PDN 커넥션#1의 특정 IP 플로우에 대하여 WLAN으로 우회시키기 위해 NBIFOM 라우팅 규칙의 갱신을 P-GW(530)로 요청함으로써, NBIFOM의 재개(resumption)를 묵시적으로 알릴 수 있다.
또 다른 예를 들어, 도시된 옵션 3과 같이, 상기 UE(100)는 WLAN 액세스 네트워크(즉, WLAN AP)를 통하여, PDN 커넥션 생성 요청 메시지를 전송함으로써, NBIFOM의 재개(resumption)를 묵시적으로 알릴 수 있다.
도시된 옵션2 및 옵션3에 따라, 상기 P-GW(530)은 충돌이 해소되었음을 간적접으로 알게 되고, 그로 인해 NBIFOM의 재개(resumption)가 요청됨을 알 수 있다.
도 15는 도 14에 도시된 UE의 NBIFOM 재개 결정 과정을 상세하게 나타낸 예시도이다 .
도 15를 참조하면, UE(100)의 NAS 계층은 APN#1을 이용하는 PDN 커넥션에 대한 PDN 연결 수락 메시지를 수신한다. 여기서, 상기 PDN 연결 수락 메시지는 NBIFOM 기능 인디케이션과 그리고 APN#1에 대해 WLAN으로의 우회가 가능함으로 변경되었음을 알리는 인디케이션(예컨대, WLAN offloadability = Yes)를 포함한다.
상기 UE(100)는 상기 PDN 연결 수락 메시지 내에 포함되어 있는 WLAN 우회 가능성 인디케이션과 NBIFOM 기능 인디케이션을 각기 확인하고, 서로 간에 충돌이 해소되었는지 확인한다.
다른 한편, 상기 기지국(200)은 주변 WLAN AP에 대한 관련 정보를 수집하고, 그에 따라 RAN 지원 파라미터(RAN 규칙)을 시스템 정보 블록(SIB)를 통해 혹은 RRC 시그널을 통해 UE(100)의 AS 계층(즉, RRC 계층)에게 전달할 수 있다.
상기 UE(100)의 AS 계층(즉, RRC 계층)은 상기 수신한 RAN 지원 파라미터(RAN 규칙)을 평가하여, non-3GPP 액세스(예컨대, WLAN)으로의 우회(offloading)를 나타내는 인디케이션(즉, move-traffic-to WLAN 인디케이션) 또는 3GPP 액세스(예컨대, E-UTRAN/UTRAN)로의 이동을 나타내는 인디케이션(즉, move-traffic-from WLAN 인디케이션)을 상위 계층(즉, NAS 계층)에게 제공한다.
여기서, 상기 UE(100)의 AS 계층이 non-3GPP 액세스(예컨대, WLAN)으로의 우회(offloading)를 나타내는 인디케이션(즉, move-traffic-to WLAN 인디케이션)을 상위 계층(즉, NAS 계층)에게 제공하는 것은 도 9b를 참조하여 설명한 2가지 조건이 소정 시간 동안(예컨대, TsteeringWLAN) 충족된 경우이다.
상기 UE(100)의 NAS 계층은 상기 충돌이 해소 여부와, 상기 AS 계층으로부터 수신한 인디케이션에 기초하여, NBIFOM 재개 여부를 결정한다.
여기서, 상기 충돌이 해소되었으며, 상기 인디케이션이 non-3GPP 액세스(예컨대, WLAN)으로의 우회(offloading)를 나타내는 인디케이션(즉, move-traffic-to WLAN 인디케이션)인 경우, 상기 UE(100)의 NAS 계층은 상기 NBIFOM을 재개하는 것으로 결정한다.
II. 본 명세서의 개시에 대한 제2 설명
앞서 간략히 설명한 바와 같이, 본 명세서의 개시에 대한 제2 설명에 따르면 MME(510)는 PDN 커넥션 수립 절차 동안에 PDN 커넥션에 대한 우회가능성을 결정한 후, 상기 결정된 우회가능성에 대한 인디케이션을 상기 UE 뿐만 아니라 다른 네트워크 노드(예컨대, P-GW, S-GW, PCRF, 등)에게도 전달할 수 있다. 기존에는 상기 MME(510)는 상기 결정된 우회가능성에 대한 인디케이션을 NAS 메시지(예컨대, PDN Connectivity Accept)를 통해 UE에만 전달하였던 것을 개선한 것이다.
상기 네트워크 노드(예컨대, P-GW, S-GW, PCRF, 등)로 전달되는 인디케이션이 APN#1에 대해 WLAN으로의 우회가 불가능함을 알리는 인디케이션(예컨대, WLAN offloadability = No for APN#1)인 경우, 상기 인디케이션은 NBIFOM 기능을 일시 중지 혹은 일시적 비활성화를 유도할 수 있다.
반면, 상기 네트워크 노드(예컨대, P-GW, S-GW, PCRF, 등)로 전달되는 인디케이션이 APN#1에 대해 WLAN으로의 우회가 가능함으로 변경됨을 알리는 인디케이션(예컨대, WLAN offloadability = Yes for APN#1)인 경우, 상기 인디케이션은 NBIFOM 기능을 재개 혹은 활성화를 유도할 수 있다.
본 명세서의 개시에 대한 제2 설명에 대해서 도 16을 참조하여 설명하기로 한다.
도 16은 본 명세서의 개시에 대한 제2 설명을 예시적으로 나타낸 신호 흐름도이다.
도 16에 도시된 절차 중 도 14의 절차와 동일한 절차에 대해서는 중복하여 설명하지 않고, 도 14의 설명을 그대로 준용하기로 한다. 이하에서는, 도 14의 절차와 차별되는 절차를 위주로 설명한다.
상기 UE(100)의 NAS 계층은 APN#1을 이용하는 PDN 커넥션#1를 수립하기 위해서, PDN 연결 요청 절차를 수행한다. PDN 연결 요청 절차 동안에, 상기 MME(510)는 상기 HSS(540)로부터 획득한 WLAN 우회 가능성 인디케이션을 기초로, APN#1을 사용하는 PDN 커넥션#1을 WLAN으로 우회시키지 않기로 결정한 다음, 상기 APN#1을 이용하는 상기 PDN 커넥션#1을 WLAN으로 우회시키지 않음을 나타내는 인디케이션(WLAN offloadability=No for APN#1)을 포함하는 PDN 연결 수락(예컨대, PDN connectivity accept) 메시지를 상기 UE(100)로 전달한다.
이어서, 상기 MME(510)는 상기 인디케이션을 P-GW(530)에게도 전달한다. 상기 P-GW(530)은 PCRF(550)와의 PCC 인터렉션을 수행하는 동안에, 상기 인디케이션에 기초하여 NBIFOM을 일시 중지하는 것으로 결정한다. 이에 따라, 상기 PCRF(550)/P-GW(530)에 의한 네트워크 개시 NBIFOM 라우팅 규칙의 갱신(즉, 충돌을 재차 야기하는 라우팅 규칙의 갱신)이 수행되지 않을 수 있다.
아울러, 상기 UE(100)는 도 14 및 도 15와 동일하게 상기 PDN 연결 수락 메시지 내에 포함되어 있는 WLAN 우회 가능성 인디케이션과 NBIFOM 기능 인디케이션을 각기 확인하고, 서로 간에 충돌이 존재하는 경우, NBIFOM을 일시중지(suspension)하는 것으로 결정한다. 이에 따라, 상기 UE(100)가 개시하는 라우팅 규칙의 갱신(즉, 충돌을 재차 야기하는 라우팅 규칙의 갱신)이 수행되지 않을 수 있다.
한편, 상기 UE(100)의 NAS 계층은 APN#1을 이용하는 PDN 커넥션#2를 수립하기 위해서, PDN 연결 요청 절차를 수행한다. 이에 따라, 상기 MME(510)는 상기 HSS(540)로부터 획득한 WLAN 우회 가능성 인디케이션을 기초로, APN#1을 사용하는 PDN 커넥션#2을 WLAN으로 우회시키는 것으로 결정한 다음, 상기 APN#1을 이용하는 상기 PDN 커넥션#2을 WLAN으로 우회시킬 수 있음을 나타내는 인디케이션(WLAN offloadability=Yes for APN#1)을 포함하는 PDN 연결 수락(예컨대, PDN connectivity accept) 메시지를 상기 UE(100)로 전달한다.
이어서, 상기 MME(510)는 상기 인디케이션을 P-GW(530)으로도 전달한다. 상기 P-GW(530)은 PCRF(550)와의 PCC 인터렉션을 수행하는 동안에, 상기 인디케이션에 기초하여 NBIFOM을 재개하는 것으로 결정한다. 이에 따라, 도시된 옵션1과 같이 상기 PCRF(550)/P-GW(530)에 의한 네트워크 개시 NBIFOM 라우팅 규칙의 갱신이 수행될 수 있다.
아울러, 상기 UE(100)는 도 14 및 도 15와 동일하게 상기 PDN 연결 수락 메시지 내에 포함되어 있는 WLAN 우회 가능성 인디케이션과 NBIFOM 기능 인디케이션을 각기 확인하고, 서로 간에 충돌이 해소된 경우, NBIFOM을 재개하는 것으로 결정한다. 이에 따라, 도시된 옵션2와 같이 상기 UE(100)가 개시하는 라우팅 규칙의 갱신이 수행될 수 있다.
III. 본 명세서의 개시에 대한 제3 설명
앞서 간략히 설명한 바와 같이, 본 명세서의 개시에 대한 제3 설명에 따르면, MME가 PDN 커넥션에 대한 우회여부를 결정하는 과정에서 NBIFOM과의 충돌이 존재하는지 판단하고, 충돌이 존재하면 NBIFOM의 일시 중지를 결정하고, 충돌이 해소되면 NBIFOM의 재개를 결정할 수 있다.
본 명세서의 개시에 대한 제3 설명에 대해서 도 17을 참조하여 설명하기로 한다.
도 17은 본 명세서의 개시에 대한 제3 설명을 예시적으로 나타낸 신호 흐름도이다.
도 17에 도시된 절차 중 도 14 및 도 16의 절차와 동일한 절차에 대해서는 중복하여 설명하지 않고, 도 14 및 도 16의 설명을 그대로 준용하기로 한다. 이하에서는, 도 14 및 도 16의 절차와 차별되는 절차를 위주로 설명한다.
상기 UE(100)의 NAS 계층은 APN#1을 이용하는 PDN 커넥션#1를 수립하기 위해서, PDN 연결 요청 절차를 수행한다.
PDN 연결 요청 절차 동안에, 상기 MME(510)는 상기 HSS(540)로부터 획득한 WLAN 우회 가능성 인디케이션을 기초로, APN#1을 사용하는 PDN 커넥션#1을 WLAN으로 우회시키지 않기로 결정한다.
그리고, 상기 MME(510)는 상기 결정이 NBIFOM과 충돌되는지 확인한다. 상기 충돌이 존재한다고 판단되면, 상기 MME(510)는 NBIFOM을 일시 중지하기로 결정한다.
그러면, 상기 MME(510)는 상기 APN#1을 이용하는 상기 PDN 커넥션#1을 WLAN으로 우회시키지 않음을 나타내는 인디케이션(WLAN offloadability=No for APN#1)과, NBIFOM의 일시 중지를 나타내는 정보를 포함하는 PDN 연결 수락(예컨대, PDN connectivity accept) 메시지를 상기 UE(100)로 전달한다.
이어서, 도시된 옵션1에 따르면, 상기 MME(510)는 P-GW(530)으로 NBIFOM의 일시 중지(suspension)를 알리는/요청하는 정보 혹은 메시지(예컨대, Message for suspension of NBIFOM)를 전송한다. 혹은 도시된 옵션2에 따르면, 상기 UE(100)가 P-GW(530)로 NBIFOM의 일시 중지(suspension)를 알리는/요청하는 정보 혹은 메시지(예컨대, Message for suspension of NBIFOM)를 전송할 수 있다. 이에 따라, 상기 PCRF(550)/P-GW(530)는 PCC 인터렉션을 통해 NBIFOM을 일시 중지할 수 있고, 그로 인해 네트워크 개시 NBIFOM 라우팅 규칙의 갱신(즉, 충돌을 재차 야기하는 라우팅 규칙의 갱신)이 수행되지 않을 수 있다.
한편, 상기 UE(100)의 NAS 계층은 APN#1을 이용하는 PDN 커넥션#2를 수립하기 위해서, PDN 연결 요청 절차를 수행한다.
이에 따라, 상기 MME(510)는 상기 HSS(540)로부터 획득한 WLAN 우회 가능성 인디케이션을 기초로, APN#1을 사용하는 PDN 커넥션#2을 WLAN으로 우회시키는 것으로 결정한다.
그리고, 상기 MME(510)는 상기 결정이 NBIFOM과 충돌되는지 확인한다. 상기 충돌이 해소되었다고 판단되면, 상기 MME(510)는 NBIFOM을 재개하기로 결정한다.
그러면, 상기 MME(510)는 상기 APN#1을 이용하는 상기 PDN 커넥션#2을 WLAN으로 우회시킴을 나타내는 인디케이션(WLAN offloadability=Yes for APN#1)과, NBIFOM의 재개를 나타내는 정보를 포함하는 PDN 연결 수락(예컨대, PDN connectivity accept) 메시지를 상기 UE(100)로 전달한다.
이어서, 도시된 옵션1에 따르면, 상기 MME(510)는 P-GW(530)으로 NBIFOM의 재개를 알리는/요청하는 정보 혹은 메시지(예컨대, Message for resumption of NBIFOM)를 전송한다. 혹은 도시된 옵션2에 따르면, 상기 UE(100)가 P-GW(530)으로 NBIFOM의 재개(resumption)를 알릴 수 있다. 예를 들어, 상기 UE(100)는 P-GW(530)로 NBIFOM의 재개(resumption)를 알리는 메시지(예컨대, Message for resumption of NBIFOM)를 전송할 수 있다. 혹은 상기 UE(100)는 P-GW(530)로 UE가 개시하는 라우팅 규칙의 갱신 요청을 전송함으로써, NBIFOM의 재개(resumption)를 간접적으로 알릴 수 있다.
IV. 본 명세서의 개시에 대한 보충 설명
IV-1. P- GW / PCRF의 상세 동작에 대한 설명
앞서, P-GW(530)/PCRF(550)가 NBIFOM의 일시 중지(suspension)를 알리는/요청하는 정보/메시지를 수신하면, NBIFOM을 일시 중지 혹은 일시적 비활성화하고, NBIFOM의 재개(resumption)을 알리는/요청하는 정보/메시지를 수신하면 NBIFOM을 재개 혹은 활성화한다고 설명하였다. 이러한 P-GW(530)/PCRF(550)의 동작에 대해서 상세하게 설명하면 다음과 같다.
상기 P-GW(530)/PCRF(550)는 UE(100) 혹은 MME(510)로부터 전달받은 정보/메시지/인디케이션과, PCC 인터렉션을 통하여 획득한 정보(예컨대, 사전 설정 정보) 등에 기반하여, 해당 PDN 커넥션에 대한 NBIFOM 관련 정보를 모두 유지한 상태에서 PDN 커넥션 관련 컨텍스트에 NBIFOM 일시 중지(suspension)/재개(resumption)을 마킹 한다.
상기 NBIFOM이 일시 중지/비활성화됨에 따라, 상기 P-GW(530)/PCRF(550)는 네트워크 개시 NBIFOM의 라우팅 규칙 갱신을 요청하지 않을 수 있다.
이와 같이 상기 NBIFOM의 일시 중지/비활성화 동안에, 상기 P-GW(530)/PCRF(550)는 라우팅 규칙을 생성하지 않을 수 있다. 혹은 상기 NBIFOM이 재개되는 상황을 대비하여, 라우팅 규칙을 생성하여 저장해두는 대신, 라우팅 규칙의 갱신만을 요청하지 않을 수 있다.
대안적으로, 상기 NBIFOM의 일시 중지/비활성화 동안에, 상기 P-GW(530)/PCRF(550)는 라우팅 규칙을 생성하고, 네트워크가 개시하는 라우팅 규칙의 갱신 요청 절차를 통해 UE(100)로 전달할 수 있되, 상기 UE에게 추후 NBIFOM이 재개되면 사용하라고 알릴 수 있다.
IV-2. NBIFOM 일시 중지(suspension) 상황에서 UE /P- GW의 기본 액세스(default access) 설정 동작
UE/P-GW는 자신이 가지고 있는 라우팅 규칙이 적용되지 않는 트래픽 이 발생할 경우 이를 기본 액세스를 통해서 보내도록 되어 있다. NBIFOM 일시 중지(suspension) 상황에서 UE/P-GW는 일시 중지(suspension)를 위해 명시되어 있는 값에 따라서 기본 액세스를 유지할지 아니면 변경할지를 결정하거나, UE/P-GW에 미리-설정된 액세스를 기본 액세스로 사용할 수 있다. 예를 들어, 기본 액세스가 WLAN으로 설정되어 있는 경우, UE는 NBIFOM의 일시 중지(suspension)를 알리거나/요청하면서 기본 액세스를 3GPP 액세스로 변경할 수 있다. 만일 기본 액세스에 대한 정보가 없을 경우에, UE/P-GW는 미리-설정된 정보를 이용하여, 기본 액세스를 변경할 수 있다. 만일 기본 액세스가 WLAN으로 계속해서 유지되는 경우에는, 해당 트래픽은 WLAN 액세스를 통해 전송되지 못하고, 폐기(drop)된다.
IV-3. NBIFOM 일시 중지(suspension) 상황에서 추가적인 PDN 커넥션에 대한 동작
UE/P-GW는 NBIFOM의 일시 중지(suspension) 상황에서 추가적인 PDN 커넥션을 계속해서 유지할지 아니면 해제(release)할지를 결정할 수 있다. UE/P-GW가 상기 추가적인 PDN 커넥션을 해제할 경우, UE의 요청에 의한 PDN 연결해제(disconnection) 절차 혹은 P-GW의 개시에 의한 베어러 비활성화 절차(bearer deactivation procedure)를 통해서 명시적으로 PDN 커넥션을 해제해야 한다. 만일 일시 중지(suspension)를 알리는/요청하는 정보/메시지 내에 상기 추가적인 PDN커넥션을 해제해야 한다는 정보가 들어가 있을 경우에는, 상기 추가적인 PDN 커넥션은 해제될 수 있다.
상기 추가적인 PDN 커넥션을 계속해서 유지하기로 되어 있는데, 만약 상기 추가적인 PDN 커넥션의 손실(loss)가 발생하는 경우, 상기 UE는 P-GW로 액세스 손실 인디케이션(access loss indication)을 전송한다.
지금까지 설명한 내용들은 하드웨어로 구현될 수 있다. 이에 대해서 도 18를 참조하여 설명하기로 한다.
도 18은 본 발명의 실시예에 따른 UE (100) 및 MME(510)의 구성 블록도이다 .
도 18에 도시된 바와 같이 상기 UE(100)은 저장 수단(101)와 컨트롤러(102)와 송수신부(103)를 포함한다. 그리고 상기 MME(510)는 저장 수단(511)와 컨트롤러(512)와 송수신부(513)를 포함한다.
상기 저장 수단들(101, 511)은 전술한 방법을 저장한다.
상기 컨트롤러들(102, 512)은 상기 저장 수단들(101, 511) 및 상기 송수신부들(103, 513)을 제어한다. 구체적으로 상기 컨트롤러들(102, 512)은 상기 저장 수단들(101, 511)에 저장된 상기 방법들을 각기 실행한다. 그리고 상기 컨트롤러들(102, 512)은 상기 송수신부들(103, 513)을 통해 상기 전술한 신호들을 전송한다.
이상에서는 본 발명의 바람직한 실시예를 예시적으로 설명하였으나, 본 발명의 범위는 이와 같은 특정 실시예에만 한정되는 것은 아니므로, 본 발명은 본 발명의 사상 및 특허청구범위에 기재된 범주 내에서 다양한 형태로 수정, 변경, 또는 개선될 수 있다.

Claims (18)

  1. MME(Mobility Management Entity)가 네트워크 선택 및 트래픽 라우팅을 수행하는 방법으로서,
    상기 MME가, UE(User Equipment)로부터 PDN(Public Data Network) 커넥션에 대한 요청이 수신되면, HSS(Home Subscriber Server)로부터 획득한 WLAN(Wireless Local Area Network) 우회가능성(offloadablility)에 대한 인디케이션을 기초로, 상기 PDN 커넥션을 WLAN으로 우회시킬지 여부를 결정하는 단계;
    상기 MME가, 상기 PDN 커넥션에 대한 결정 결과 및 NBIFOM(Network Based IP Flow Mobility) 기능에 대한 정보를 포함하는 메시지를 상기 UE로 전송하는 단계; 및
    상기 MME가, 상기 PDN 커넥션에 대한 결정 결과를 P-GW(PDN Gateway) 및 PCRF(Policy and Charging Rule Function) 중 하나 이상으로 전송하는 단계를 포함하되,
    상기 PDN 커넥션에 대한 결정 결과 및 NBIFOM 기능에 대한 정보는 상기 UE, 상기 P-GW 및 상기 PCRF 중 어느 하나 이상이 상기 NBIFOM 기능을 일시 중지하거나 재개하도록 트리거링하는데 이용되는 것을 특징으로 하는 방법.
  2. 제1 항에 있어서,
    상기 NBIFOM 기능에 대한 정보는 상기 NBIFOM 기능이 수행 가능함을 나타내는 반면, 상기 PDN 커넥션에 대한 결정 결과는 WLAN으로 우회가 불가능함을 나타내는 경우, 상기 UE, 상기 P-GW 및 상기 PCRF 중 어느 하나 이상은 상기 NBIFOM 기능을 일시 중지하는 것을 특징으로 하는 방법.
  3. 제1 항에 있어서,
    상기 UE로부터 상기 PDN 커넥션에 대한 갱신 요청이 수신되거나, 새로운 PDN 커넥션에 대한 요청이 수신되면, 상기 WLAN으로 우회시킬지 여부를 결정하는 단계, 상기 UE로 전송하는 단계 및 상기 P-GW 및 PCRF 중 하나 이상으로 전송하는 단계를 다시 수행하는 것을 특징으로 하는 방법.
  4. 제3 항에 있어서,
    상기 UE로 전송하는 단계 및 상기 P-GW 및 PCRF 중 하나 이상으로 전송하는 단계가 다시 수행된 후, 다시 전송된 NBIFOM 기능에 대한 정보는 상기 NBIFOM 기능이 수행 가능하고, 다시 전송된 PDN 커넥션에 대한 결정 결과는 WLAN으로 우회가 가능함을 나타내는 경우, 상기 UE, 상기 P-GW 및 상기 PCRF 중 어느 하나 이상은 상기 NBIFOM 기능의 재개 여부를 결정하는 것을 특징으로 하는 방법.
  5. 제3 항에 있어서,
    상기 P-GW 및 PCRF 중 하나 이상으로 전송하는 단계가 다시 수행되는 단계는,
    다시 전송할 PDN 커넥션에 대한 결정 결과가 상기 WLAN으로 우회시킬지 여부를 결정하는 단계를 다시 수행하기 이전의 PDN 커넥션에 대한 결정 결과와 상반된 결과 값을 가지는 경우에 한하여, 상기 P-GW 및 PCRF 중 하나 이상으로 전송하는 단계를 다시 수행하는 것을 특징으로 하는 방법.
  6. MME가 네트워크 선택 및 트래픽 라우팅을 수행하는 방법으로서,
    상기 MME가, 사용자 장치(UE)로부터 PDN 커넥션에 대한 요청이 수신되면, HSS로부터 획득한 WLAN 우회가능성에 대한 인디케이션을 기초로, 상기 PDN 커넥션을 WLAN으로 우회시킬지 여부를 결정하는 단계;
    상기 MME가, 상기 PDN 커넥션에 대한 결정 결과 및 NBIFOM 기능에 대한 정보 간에 충돌이 존재하는지 판단하는 단계;
    상기 MME가, 상기 PDN 커녁션에 대한 결정 결과 및 NBIFOM 기능에 대한 정보 외에, 상기 충돌 유무에 기초한 NBIFOM 기능의 일시 중지를 나타내는 정보 추가로 포함하는 메시지를 상기 UE로 전송하는 단계; 및
    상기 MME가, 상기 충돌 유무에 기초한 NBIFOM 기능의 일시 중지를 나타내는 정보 또는 상기 정보를 포함하는 메시지를 P-GW 및 PCRF 중 하나 이상으로 전송하는 단계를 포함하는 것을 특징으로 하는 방법.
  7. 제6 항에 있어서, 상기 충돌이 존재하는지 판단하는 단계는
    상기 NBIFOM 기능에 대한 정보는 상기 NBIFOM 기능이 수행 가능함을 나타내는 반면, 상기 PDN 커넥션에 대한 결정 결과는 WLAN으로 우회가 불가능함을 나타내는 경우, 상기 충돌이 존재하는 것으로 판단하는 것을 특징으로 하는 방법.
  8. 제6 항에 있어서,
    상기 UE로부터 상기 PDN 커넥션에 대한 갱신 요청이 수신되거나, 새로운 PDN 커넥션에 대한 요청이 수신되면, 상기 WLAN으로 우회시킬지 여부를 결정하는 단계 및 상기 충돌이 존재하는지 판단하는 단계를 다시 수행하는 것을 특징으로 하는 방법.
  9. 제8 항에 있어서,
    상기 충돌이 존재하는지 판단하는 단계가 다시 수행되는 단계는,
    상기 P-GW로부터 새롭게 수신된 NBIFOM 기능에 대한 정보는 상기 NBIFOM 기능이 수행 가능하고, 다시 결정된 PDN 커넥션에 대한 결정 결과는 WLAN으로 우회가 가능함을 나타내는 경우, 상기 충돌이 해소된 것으로 판단하는 것을 특징으로 하는 방법.
  10. 네트워크 선택 및 트래픽 라우팅을 수행하는 장치로서,
    송수신부와;
    상기 송수신부를 제어하는 프로세서를 포함하고, 상기 프로세서는,
    UE로부터 PDN 커넥션에 대한 요청이 수신되면, HSS부터 획득한 WLAN 우회가능성에 대한 인디케이션을 기초로, 상기 PDN 커넥션을 WLAN으로 우회시킬지 여부를 결정하고;
    상기 PDN 커넥션에 대한 결정 결과 및 NBIFOM 기능에 대한 정보를 포함하는 메시지를 상기 UE로 전송하고; 및
    상기 PDN 커넥션에 대한 결정 결과를 P-GW 및 PCRF 중 하나 이상으로 전송하기 위한 절차를 수행하되,
    상기 PDN 커넥션에 대한 결정 결과 및 NBIFOM 기능에 대한 정보는 상기 UE, 상기 P-GW 및 상기 PCRF 중 어느 하나 이상이 상기 NBIFOM 기능을 일시 중지하거나 재개하도록 트리거링하는데 이용되는 것을 특징으로 하는 장치.
  11. 제10 항에 있어서,
    상기 NBIFOM 기능에 대한 정보는 상기 NBIFOM 기능이 수행 가능함을 나타내는 반면, 상기 PDN 커넥션에 대한 결정 결과는 WLAN으로 우회가 불가능함을 나타내는 경우, 상기 UE, 상기 P-GW 및 상기 PCRF 중 어느 하나 이상은 상기 NBIFOM 기능을 일시 중지하는 것을 특징으로 하는 장치.
  12. 제10 항에 있어서, 상기 프로세서는 상기 UE로부터 상기 PDN 커넥션에 대한 갱신 요청이 수신되거나, 새로운 PDN 커넥션에 대한 요청이 수신되면, 상기 WLAN으로 우회시킬지 여부를 결정하고, 상기 UE로 전송하고, 상기 P-GW 및 PCRF 중 하나 이상으로 전송하기 위한 절차를 다시 수행하는 것을 특징으로 하는 장치.
  13. 제12 항에 있어서,
    상기 UE로 전송하고, 상기 P-GW 및 PCRF 중 하나 이상으로 전송하기 위한 절차가 다시 수행된 후, 다시 전송된 NBIFOM 기능에 대한 정보는 상기 NBIFOM 기능이 수행 가능하고, 다시 전송된 PDN 커넥션에 대한 결정 결과는 WLAN으로 우회가 가능함을 나타내는 경우, 상기 UE, 상기 P-GW 및 상기 PCRF 중 어느 하나 이상은 상기 NBIFOM 기능의 재개 여부를 결정하는 것을 특징으로 하는 장치.
  14. 제12 항에 있어서, 상기 프로세서는
    다시 전송할 PDN 커넥션에 대한 결정 결과가 상기 WLAN으로 우회시킬지 여부를 결정하는 단계를 다시 수행하기 이전의 PDN 커넥션에 대한 결정 결과와 상반된 결과 값을 가지는 경우에 한하여, 상기 P-GW 및 PCRF 중 하나 이상으로 전송하기 위한 절차를 다시 수행하는 것을 특징으로 하는 장치.
  15. 네트워크 선택 및 트래픽 라우팅을 수행하는 장치로서,
    송수신부와;
    상기 송수신부를 제어하는 프로세서를 포함하고, 상기 프로세서는,
    사용자 장치(UE)로부터 PDN 커넥션에 대한 요청이 수신되면, HSS로부터 획득한 WLAN 우회가능성에 대한 인디케이션을 기초로, 상기 PDN 커넥션을 WLAN으로 우회시킬지 여부를 결정하고;
    상기 PDN 커넥션에 대한 결정 결과 및 NBIFOM 기능에 대한 정보 간에 충돌이 존재하는지 판단하고;
    상기 PDN 커녁션에 대한 결정 결과 및 NBIFOM 기능에 대한 정보 외에, 상기 충돌 유무에 기초한 NBIFOM 기능의 일시 중지를 나타내는 정보 추가로 포함하는 메시지를 상기 UE로 전송하고; 및
    상기 충돌 유무에 기초한 NBIFOM 기능의 일시 중지를 나타내는 정보 또는 상기 정보를 포함하는 메시지를 P-GW 및 PCRF 중 하나 이상으로 전송하기 위한 절차를 수행하는 것을 특징으로 하는 장치.
  16. 제15 항에 있어서, 상기 프로세서는
    상기 NBIFOM 기능에 대한 정보는 상기 NBIFOM 기능이 수행 가능함을 나타내는 반면, 상기 PDN 커넥션에 대한 결정 결과는 WLAN으로 우회가 불가능함을 나타내는 경우, 상기 충돌이 존재하는 것으로 판단하는 것을 특징으로 하는 장치.
  17. 제15 항에 있어서, 상기 프로세서는
    상기 UE로부터 상기 PDN 커넥션에 대한 갱신 요청이 수신되거나, 새로운 PDN 커넥션에 대한 요청이 수신되면, 상기 WLAN으로 우회시킬지 여부를 결정하고, 상기 충돌이 존재하는지 판단하기 위한 절차를 다시 수행하는 것을 특징으로 하는 장치.
  18. 제17 항에 있어서, 상기 프로세서는
    상기 P-GW로부터 새롭게 수신된 NBIFOM 기능에 대한 정보는 상기 NBIFOM 기능이 수행 가능하고, 다시 결정된 PDN 커넥션에 대한 결정 결과는 WLAN으로 우회가 가능함을 나타내는 경우, 상기 충돌이 해소된 것으로 판단하는 것을 특징으로 하는 장치.
PCT/KR2016/002190 2015-04-01 2016-03-04 네트워크 선택 및 트래픽 라우팅을 수행하는 방법 및 사용자 장치 WO2016159522A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020177025115A KR20170134363A (ko) 2015-04-01 2016-03-04 네트워크 선택 및 트래픽 라우팅을 수행하는 방법 및 사용자 장치
US15/560,127 US10206155B2 (en) 2015-04-01 2016-03-04 Method and user equipment for performing network selection and traffic routing

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562141266P 2015-04-01 2015-04-01
US62/141,266 2015-04-01
US201562143228P 2015-04-06 2015-04-06
US62/143,228 2015-04-06

Publications (1)

Publication Number Publication Date
WO2016159522A1 true WO2016159522A1 (ko) 2016-10-06

Family

ID=57007325

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2016/002162 WO2016159521A1 (ko) 2015-04-01 2016-03-03 네트워크 선택 및 트래픽 라우팅을 수행하는 방법 및 사용자 장치
PCT/KR2016/002190 WO2016159522A1 (ko) 2015-04-01 2016-03-04 네트워크 선택 및 트래픽 라우팅을 수행하는 방법 및 사용자 장치

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/002162 WO2016159521A1 (ko) 2015-04-01 2016-03-03 네트워크 선택 및 트래픽 라우팅을 수행하는 방법 및 사용자 장치

Country Status (3)

Country Link
US (2) US10455471B2 (ko)
KR (2) KR20170134362A (ko)
WO (2) WO2016159521A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180098373A1 (en) * 2015-04-07 2018-04-05 Sharp Kabushiki Kaisha Terminal device, mme, and pgw
WO2018093168A1 (ko) * 2016-11-18 2018-05-24 엘지전자(주) 무선 통신 시스템에서의 네트워크 노드 선택 방법 및 이를 위한 장치
WO2018142021A1 (en) * 2017-02-06 2018-08-09 Nokia Technologies Oy Counting traffic when split between two accesses
US11464716B1 (en) 2017-08-31 2022-10-11 American Spraytech, L.L.C. Semi-permanent colorant composition for hair

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018093252A (ja) * 2015-04-07 2018-06-14 シャープ株式会社 端末装置、mme、pgw、及び通信制御方法
EP3282809B1 (en) * 2015-04-07 2020-10-07 SHARP Kabushiki Kaisha Terminal device, pgw, and twag
CN113645618B (zh) 2015-08-20 2022-05-17 北京三星通信技术研究有限公司 一种ue的接入、切换和加密控制的方法与设备
US11096106B2 (en) * 2016-02-02 2021-08-17 Motorola Mobility Llc Rules handling in a wireless communication system
ES2827398T3 (es) * 2016-04-01 2021-05-21 Samsung Electronics Co Ltd Procedimiento y aparato para comunicación inalámbrica en sistema de comunicación inalámbrica
US10820370B2 (en) 2016-05-18 2020-10-27 Samsung Electronics Co., Ltd. Method and apparatus for performing efficient layer 2 function in mobile communication system
WO2018030474A1 (ja) * 2016-08-12 2018-02-15 シャープ株式会社 端末装置、ゲートウェイ、及び通信制御方法
CN116567853A (zh) * 2017-04-11 2023-08-08 IPCom两合公司 控制用户设备的网络接入
US10405281B1 (en) * 2017-06-15 2019-09-03 Sprint Communications Company L.P. Dynamic minimum receiver levels based on carrier aggregation
US11071004B2 (en) * 2017-10-24 2021-07-20 Cisco Technology, Inc. Application-based traffic marking in a link-aggregated network
KR102075659B1 (ko) * 2017-12-22 2020-02-10 한국전자통신연구원 이종 무선 접속망에서 액세스 네트워크 전환 방법 및 이를 수행하는 단말
US10952104B2 (en) * 2018-03-12 2021-03-16 T-Mobile Usa, Inc. Methods and systems for cellular-preferred logic for mobile devices
US20190313311A1 (en) * 2018-04-09 2019-10-10 Mediatek Inc. Apparatuses, service networks, and methods for handling plmn-specific parameters for an inter-plmn handover
CN110621080A (zh) * 2018-06-19 2019-12-27 夏普株式会社 接入控制方法及用户设备
US11026124B2 (en) 2018-07-02 2021-06-01 Mediatek Inc. Enhanced handling on 5G QoS operations
US11039369B2 (en) 2018-08-10 2021-06-15 Mediatek Inc. Handling 5G QoS rules on QoS operation errors
US10798635B2 (en) * 2018-12-03 2020-10-06 At&T Intellectual Property I, L.P. Mobile edge computing for data network traffic

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120257598A1 (en) * 2011-04-01 2012-10-11 Interdigital Patent Holdings, Inc. Method and apparatus for performing a selective ip traffic offload procedure
US20140204909A1 (en) * 2011-09-22 2014-07-24 Panasonic Corporation Method and apparatus for mobile terminal connection control and management of local accesses
WO2014119966A1 (ko) * 2013-01-31 2014-08-07 엘지전자 주식회사 무선 통신 시스템에서 트래픽 조종 방법 및 이를 지원하는 장치

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9750019B2 (en) * 2010-09-23 2017-08-29 Interdigital Patent Holdings, Inc. Channel access systems and methods for cognitive relaying for cellular systems
JP5383854B2 (ja) * 2012-04-06 2014-01-08 株式会社Nttドコモ 通信システム、移動局及び通信方法
US9930678B2 (en) * 2012-07-19 2018-03-27 Qualcomm Incorporated Multiplexing UEs with different TDD configurations and some techniques to mitigate UE-to-UE and base station-to-base station interference
EP2896265B1 (en) 2012-09-14 2020-09-02 Interdigital Patent Holdings, Inc. System enhancements for enabling non-3gpp offload in 3gpp
CN106165524B (zh) * 2014-01-29 2020-01-07 交互数字专利控股公司 用于设备到设备发现或通信的资源选择
US9668288B2 (en) * 2014-03-19 2017-05-30 Acer Incorporated Method of handling device-to-device operation and related communication device
KR20160002298A (ko) 2014-06-30 2016-01-07 삼성전자주식회사 트래픽 오프로딩 결정을 위한 방법 및 장치
US10149307B2 (en) * 2014-08-01 2018-12-04 Samsung Electronics Co., Ltd. Method and apparatus for providing feedback between base transceiver stations through cooperative communication in wireless communication system
US10313942B2 (en) * 2015-01-14 2019-06-04 Lg Electronics Inc. Method for determining whether to offload traffic to WLAN
CN107113899B (zh) * 2015-01-20 2021-07-30 英特尔公司 用于双向ip流移动性控制的设备和网关
US10455460B2 (en) * 2015-03-18 2019-10-22 Lg Electronics Inc. Method for processing loss of access in a wireless communication system, and device therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120257598A1 (en) * 2011-04-01 2012-10-11 Interdigital Patent Holdings, Inc. Method and apparatus for performing a selective ip traffic offload procedure
US20140204909A1 (en) * 2011-09-22 2014-07-24 Panasonic Corporation Method and apparatus for mobile terminal connection control and management of local accesses
WO2014119966A1 (ko) * 2013-01-31 2014-08-07 엘지전자 주식회사 무선 통신 시스템에서 트래픽 조종 방법 및 이를 지원하는 장치

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Clarification of WLAN Offload Indication from MME in E-UTRAN", S 2-143431 , 3GPP TSG SA WG2 MEETING #105, 16 October 2014 (2014-10-16), Sapporo, Japan, XP050901564, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_sa/wg2_arch/TSGS2_105_Sapporo/Docs> *
SAMSUNG: "Solution for NBIFOM", TD S 2-142606 , 3GPP TSG SA WG2 MEETING #104, 2 July 2014 (2014-07-02), Dublin, Ireland, XP050837038, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_sa/WG2_Arch/TSGS2_104_Dublin/Docs> *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180098373A1 (en) * 2015-04-07 2018-04-05 Sharp Kabushiki Kaisha Terminal device, mme, and pgw
US11672037B2 (en) * 2015-04-07 2023-06-06 Sharp Kabushiki Kaisha UE and MME for determining NBIFOM mode
WO2018093168A1 (ko) * 2016-11-18 2018-05-24 엘지전자(주) 무선 통신 시스템에서의 네트워크 노드 선택 방법 및 이를 위한 장치
CN109964509A (zh) * 2016-11-18 2019-07-02 Lg 电子株式会社 在无线通信系统中选择网络节点的方法及其设备
US10791508B2 (en) 2016-11-18 2020-09-29 Lg Electronics Inc. Method for selecting network node in wireless communication system and device therefor
CN109964509B (zh) * 2016-11-18 2021-10-29 Lg 电子株式会社 在无线通信系统中选择网络节点的方法及其设备
WO2018142021A1 (en) * 2017-02-06 2018-08-09 Nokia Technologies Oy Counting traffic when split between two accesses
US11464716B1 (en) 2017-08-31 2022-10-11 American Spraytech, L.L.C. Semi-permanent colorant composition for hair

Also Published As

Publication number Publication date
US20180070288A1 (en) 2018-03-08
WO2016159521A1 (ko) 2016-10-06
KR20170134362A (ko) 2017-12-06
US20180103405A1 (en) 2018-04-12
KR20170134363A (ko) 2017-12-06
US10206155B2 (en) 2019-02-12
US10455471B2 (en) 2019-10-22

Similar Documents

Publication Publication Date Title
WO2016159522A1 (ko) 네트워크 선택 및 트래픽 라우팅을 수행하는 방법 및 사용자 장치
WO2015160215A2 (ko) 라우팅 규칙을 전달하는 방법
WO2018128456A1 (ko) 5세대 이동통신 시스템에서 액세스 제어를 수행하는 방법 및 단말
WO2019198960A1 (ko) Qos를 지원하는 방법 및 smf
WO2016076606A1 (ko) Acdc에 의한 네트워크 액세스 차단 방법 및 사용자 장치
WO2016003140A1 (ko) 애플리케이션 별 네트워크 액세스 차단 방법 및 사용자 장치
WO2017142170A1 (ko) 차세대 이동통신에서 세션을 생성, 수정, 해제하는 방법 및 단말
WO2019216526A1 (ko) 5gs에서 액세스 제어를 수행하는 방법 및 사용자 장치
WO2018231007A1 (ko) 요청에 대한 응답 방법 및 네트워크 장치
WO2018088812A1 (ko) 핸드오버 방법 및 사용자기기
WO2018231029A1 (ko) 무선 통신 시스템에서 단말의 등록 방법 및 이를 위한 장치
WO2018231028A1 (ko) 무선 통신 시스템에서 단말의 등록 방법 및 이를 위한 장치
WO2015142048A1 (ko) 서비스 요청 절차 수행 방법 및 사용자 장치
WO2017171184A1 (ko) Nb-iot rat에서 네트워크 액세스를 시도하는 방법
WO2018070689A1 (ko) 무선 통신 시스템에서의 반영형 서비스 퀄리티 적용 방법 및 이를 위한 장치
WO2016024832A1 (ko) 애플리케이션 별 네트워크 액세스 차단 방법 및 사용자 장치
WO2017034352A1 (ko) 기지국 접속 방법 및 이를 수행하는 사용자 장치
WO2016126109A1 (ko) 네트워크 선택 및 트래픽 라우팅을 수행하는 방법 및 사용자 장치
WO2018066919A1 (ko) 네트워크로의 연결 방법 및 사용자기기
WO2018026185A1 (ko) 접속 시도 방법 및 사용자기기와, 접속 제어 방법 및 기지국
WO2014112826A1 (en) Method and terminal for determining handover for traffic offloaded onto wlan
WO2019054783A1 (ko) 무선 통신 시스템에서 v2x 통신을 수행하기 방법 및 이를 위한 장치
WO2015170858A1 (ko) Sipto 서비스 중의 csfb 또는 srvcc를 처리하는 방법
WO2018117313A1 (ko) 무선 통신 시스템에서 단말의 무선 링크 및 무선 연결을 제어하기 위한 방법 및 이를 지원하는 장치
WO2014058242A1 (ko) 페이징 처리 방법 및 다운링크 데이터 전달 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16773303

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177025115

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15560127

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16773303

Country of ref document: EP

Kind code of ref document: A1